
Safety-Complete Test Suites

Wen-ling Huang2 and Jan Peleska1,2(B)

1 Verified Systems International GmbH, Bremen, Germany
2 Department of Mathematics and Computer Science,

University of Bremen, Bremen, Germany
{huang,jp}@cs.uni-bremen.de

Abstract. In this paper, a novel safety-related variant of complete test
suites for finite state machines is introduced. Under certain hypotheses
which are similar to the ones used in the well-known W-Method or the
Wp-Method, the new method guarantees to uncover every safety viola-
tion, while erroneous outputs without safety-relevance may remain unde-
tected. In well-defined situations that can be precisely pre-determined
from the reference model, this leads to a substantial reduction of test
cases in comparison to the size of the analogous Wp-test suites. We advo-
cate this new test suite for situations, where exhaustive testing of the
complete system is too expensive. In these cases, strong guarantees with
respect to fault coverage should only be given for the errors representing
safety violations, while it is considered as acceptable if less critical errors
remain undetected.

Keywords: Model-based testing · Complete testing theories · Safety

1 Introduction

Motivation. Complete test suites guarantee to uncover all conformance viola-
tions of the implementation under test checked against a given reference model,
provided that certain hypotheses – typically captured in a fault model – are
fulfilled. This ideal test strength has attracted many researchers over the last 50
years, so that a large variety of contributions exists (a comprehensive overview
has been given in [4, Sect. 5]). On the other hand, the often infeasible size of
the test suites involved has frequently prevented their practical application. As
a result, there is a considerable interest in testing strategies allowing to focus
the effort on certain critical properties, while requiring lesser fault coverage for
non-critical ones; we name [7] as one example among a multitude of publications
in this field which is typically denoted as property-oriented testing.

Main Contributions. A novel contribution to property-oriented testing for
the domain of finite state machines is presented. Our approach modifies the
well-known Wp-Method in such a way, that complete coverage for output and

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 145–161, 2017.
DOI: 10.1007/978-3-319-67549-7 9

146 W. Huang and J. Peleska

transition faults (including addition of new states) is guaranteed, if these lead
to erroneous outputs representing safety-violations. To this end, an abstraction
concept for outputs is introduced, so that it can be formally captured whether
an erroneous replacement of another output for the expected one presents a
safety violation or just a non-critical deviation. In contrast to other publications
in this field, we formally prove that our strategy is complete with respect to
this safety-related fault coverage. We show by means of examples, that applying
this Safety-complete Wp-Method can lead to significantly reduced test suites in
comparison to the Wp-Method, though this is not guaranteed, but depends on
the nature of the reference model and its safety-related abstraction.

Overview. In Sect. 2, basic terms and concepts are introduced, so that this
paper remains sufficiently self-contained. In Sect. 3, the Safety-complete Wp-
Method is introduced, and its completeness properties are proven. In Sect. 4,
three small case studies are presented that provide some insight into the situa-
tions where the new method leads to a significant test case reduction. Section 5
presents the conclusion.

2 Notation and Technical Background

A deterministic finite state machine (DFSM) is a tuple M = (Q, q,ΣI , ΣO, h)
denoting the finite state space Q, initial state q ∈ Q, finite input and output
alphabets ΣI and ΣO, and the transition relation h ⊆ Q × ΣI × ΣO × Q. For
deterministic machines, pre-state q and input x uniquely determine the associ-
ated output y and the post-state q′, such that h(q, x, y, q′) holds. We assume
that all DFSMs are completely specified. This means that for every q and every
x, there exists y and q′ such that h(q, x, y, q′).

The after operator q-after-x maps a pre-state q and a finite sequence x of
inputs to the uniquely determined post-state q′ resulting from repetitive appli-
cation of h. The language of a DFSM is the set of finite input/output traces
x/y ∈ Σ∗

I × Σ∗
O resulting from applying all x ∈ Σ∗

I to the initial state q and
associating the output trace y which is uniquely determined by q, x, and h. Two
DFSMs are I/O-equivalent (M ∼ M ′) if they produce the same language. The
language of a state q is the set of x/y generated by applying all x ∈ Σ∗

I to q.
The prime machine prime(M) of a DFSM M is the minimal DFSM producing
the same language as M .

A test suite is a subset TS ⊆ Σ∗
I , each x ∈ TS is a test case. This simplified

notation is possible, since only deterministic machines are considered, so that the
input trace x uniquely determines the output trace to be expected according to
the reference DFSM. An implementation passes a test case x if the application
of this input sequence produces an output sequence y, such that x/y is in the
language of the reference DFSM.

For sets of input traces A,B ⊆ Σ∗
I , the expression A.B denotes the set of

all input traces resulting from concatenating a trace x ∈ A with a trace x′ ∈ B.
Given a collection of sets of input traces indexed over the states of a DFSM M ,

Safety-Complete Test Suites 147

say, Wq ⊆ Σ∗
I , q ∈ Q, the notation A ⊕ {Wq | q ∈ Q} is used to denote the set

of all input traces x.x′ where x ∈ A and x′ ∈ W(q-after-x). Σk
I denotes the set

of all input traces of length k ≥ 0. For input or output traces z = z1 . . . zk, the
following notation is used for trace sections.

z[i,j] = zi.zi+1 . . . zj where 1 ≤ i ≤ j ≤ k.

Given a reference DFSM M , the W-Method defines the test suite

W(M) = V.
m−n+1⋃

i=0

Σi
I .W,

where V is a state cover and W is a characterisation set. A state cover is a set
of input traces, such that every state of M can be reached by q-after-x for some
x ∈ V . V contains the empty trace ε which “reaches” the initial state of M . It is
assumed that prime(M) has n states and that the prime machine representing
the true behaviour of the SUT has at most m ≥ n states. A characterisation
set W contains input traces distinguishing all states of prime(M). This means
that for each pair of distinct states q, q′ of prime(M), there exists an x ∈ W
such that x applied to q produces an output trace which differs from the one
resulting from application of x to q′. It is shown in [1,10] that test suite W(M)
uncovers every violation of I/O-equivalence, provided that the prime machine
representing the true behaviour of the implementation does not have more than
m states.

The Wp-Method [2,8] is an alternative test strategy which has the same test
strength as the W-Method, but requires fewer test cases.

Wp(M) = V.W ∪ (
V.

m−n⋃

i=0

Σi
I .W

) ∪ (
V.Σm−n+1

I ⊕ {Wq | q ∈ Q(prime(M))})

Here V,W are defined as above. The state identification sets Wq are subsets of
W , such that each Wq contains sufficient input traces to distinguish q from every
other state in prime(M).

3 A Safety-Complete Wp-Method

3.1 Safety-Related Output Abstractions

Let M = (Q, q,ΣI , ΣO, h) be a deterministic completely specified FSM. Then
any reflexive and transitive relation ≤s⊆ ΣO×ΣO is called a safety-related output
abstraction. The intuition behind this definition is that y ≤s y′ indicates that an
erroneous output of y′ instead of an expected output y does not induce a safety
violation. Reflexivity just indicates that the occurrence of the output expected
according to the reference model M can never be a safety violation. Transitivity
implies that output z must also be a safe replacement of w, if w ≤s y ∧ y ≤s z
holds. Relation ≤s induces an equivalence relation ∼s on ΣO × ΣO by defining

y1 ∼s y2 ≡ y1 ≤s y2 ∧ y2 ≤s y1

148 W. Huang and J. Peleska

Example 1. Consider a train onboard controller which compares actual train
speed against the allowed speed and progressively outputs

ΣO = {ok, warning, ServiceBrakeTrigger, EmergencyBrakeTrigger},

depending on how much the train is overspeeding. The outputs ok and warning
are shown on the display unit of the train engine driver, whereas the outputs
ServiceBrakeTrigger and EmergencyBrakeTrigger directly act on the train’s
braking system. The service brake slows the train down with lower braking
force than the emergency brake, so that the latter is used only as the “last
resort”, when warnings and service brake interventions do not suffice. These
considerations induce a safety-related output abstraction ≤s as the reflexive and
transitive closure of

ok ≤s warning ≤s ServiceBrakeTrigger ≤s EmergencyBrakeTrigger

The intuition behind this definition is that a warning or even a braking inter-
vention performed by the controller is an acceptable substitute for an expected
ok-output from the safety perspective: the substitute output may be a nuisance
(a spurious warning when the speed is within range) or even a severe reduc-
tion of reliability (triggering the emergency brake without need), but it does not
introduce a safety threat. The same holds for situations where the service brake
should be triggered but instead, the emergency brakes are activated.

When an intervention by service brakes or emergency brakes is expected,
however, an output ok or warning would certainly be regarded as a safety hazard.

Next, suppose that the outputs to the train engine driver are extended by
status messages

Σ′
O = {s1, . . . , sn}.

Since these informative messages have no safety-relevance at all, we wish to
extend the relation ≤s in a way expressing that each status message can be
replaced by any other output of ΣO ∪ Σ′

O without causing any safety hazard.
This is achieved by extending ≤s according to the rules

s ∼s s′ for all s, s′ ∈ Σ′
O

s ≤s e for all s ∈ Σ′
O, e ∈ ΣO

Finally consider a design extension, where the onboard controller operates
in a de-centralised distributed train control environment, so that it switches its
own points

Σ′′
O = {p+i , p−

i | i = 1, . . . ,m}
along the route (such a system has been investigated, for example, in [3]). Nota-
tion p+i stands for switching point number i into the straight position, p−

i for
switching the point into the branching position. From the safety-perspective,
switching a point into the desired position cannot be replaced by any other
event without introducing a safety hazard. Therefore we extend ≤s this time as
follows.

Safety-Complete Test Suites 149

p ≤s p for all p ∈ Σ′′
O

s ≤s p for all s ∈ Σ′
O, p ∈ Σ′′

O ��
Given a safety-related output abstraction ≤s on ΣO, this is extended in the

natural way to a reflexive and transitive relation (again denoted by ≤s) on output
traces ι, π ∈ Σ∗

O by setting

ι ≤s π ≡ (
#ι = #π ∧ ∀i ∈ {1, . . . ,#ι} : ι(i) ≤s π(i)

)

for ι, π ∈ Σ∗
O.

Now let q, q′ be two states of the same state machine or of different state
machines over the same input/output alphabet (ΣI , ΣO). In the latter case, it
is assumed without loss of generality that their states come from disjoint sets
Q,Q′. Then it is possible to specify a joint output function ω : (Q ∪ Q′) × ΣI →
ΣO which is extended in the natural way to operate on sequences of inputs,
i.e. ω : (Q ∪ Q′) × Σ∗

I → Σ∗
O. Let x ∈ Σ∗

I be an input trace. We define

q′ x≤s q ≡ (
ω(q′, x) ≤s ω(q, x)

)
.

Intuitively speaking, q′ x≤s q states that applying input trace x to state q pro-
duces an output sequence ω(q, x) which is an admissible substitute to the output
sequence ω(q′, x) expected when applying the same input sequence to q′.

Relation
x≤s induces an equivalence relation on states by defining

q′ x∼s q ≡ (
q′ x≤s q ∧ q

x≤s q′)

These relations can be extended to sets of input traces in the natural way by
defining

q′ W≤s q ≡ (∀x ∈ W : q′ x≤s q
)

q′ W∼s q ≡ (∀x ∈ W : q′ x∼s q
)

for arbitrary W ⊆ Σ∗
I . Finally, the specific case where W = Σ∗

I is written in the
simplified notation

q′ ≤s q ≡ (
q′ Σ∗

I≤s q
)

q′ ∼s q ≡ (
q′ Σ∗

I∼s q
)
.

If q′ ∼s q holds, any input trace applied to q′ will lead to an output trace
which – regarded from the safety perspective – is an admissible replacement of
the outputs expected when applying the same inputs to q and vice versa. If the
initial states q and q′ of two state machines M,M ′ are s-equivalent (q′ ∼s q), we
denote this by M ′ ∼s M .

We call Ws ⊆ Σ∗
I an s-characterisation set of DFSM M , if and only if

q′ Ws∼s q ⇔ q′ ∼s q

150 W. Huang and J. Peleska

holds. For any q ∈ Q, Wsq
⊆ Ws is called an s-state identification set of q, if and

only if

∀q′ ∈ Q :
(
q′ Wsq∼s q ⇔ q′ ∼s q

)

holds. The sets of input traces in Ws and Wsq
, respectively, allow to distinguish

states from the perspective of their safety-relevant outputs. Conversely, different
states are indistinguishable by Ws and Wsq

, if their safety-relevant outputs are
equivalent, while the non-relevant outputs may differ for certain input traces.

Note that Ws and Wsq
coincide with the conventional characterisation sets

and state identification sets introduced in [8], if we choose ≤s to be the reflexive
and transitive relation defined by the diagonal of ΣO, that is,

≤s= diag(ΣO) = {(y, y) | y ∈ ΣO},

where every output is only comparable to itself.
The following lemma states an obvious but useful fact about the ≤s-relation,

input prefixes, and input suffixes.

Lemma 1. Let x = x1 . . . xk and 1 ≤ i < k. Let q, q′ ∈ Q∪Q′ satisfying q′ x≤s q.
Define states

qi = q-after-x[1,i]

q′
i = q′-after-x[1,i]

Then q′
i

x[i+1,k]

≤s qi holds. ��

3.2 A Safety-Complete Variant of the Wp-Method

Throughout this section, let M = (Q, q,ΣI , ΣO, h), M ′ = (Q′, q′, ΣI , ΣO, h′)
be completely specified, deterministic, and minimised FSMs over the same
input/output alphabet Σ = ΣI × ΣO with |Q| = n, |Q′| ≤ m and m ≥ n.

Definition 1 (Safety-related Fault Model). Let ≤s⊆ ΣO ×ΣO be a safety-
related output abstraction with associated equivalence relation ∼s. A safety-
related fault model

F = (M,∼s,D(m))

is composed of

1. the reference model M ,
2. the conformance relation ∼s, and
3. the fault domain D(m) consisting of all finite, completely specified, determin-

istic, and minimised state machines M ′ over input/output alphabet Σ, such
that |Q′| ≤ m and m ≥ n. ��

Safety-Complete Test Suites 151

Definition 2 (Safety-complete Test Suite). With the definitions above, let
TS ⊆ Σ∗ be a test suite.

1. TS is called sound w.r.t. fault model F , if and only if every member M ′ ∈
D(m) which is I/O-equivalent to M (M ′ ∼ M) passes the test suite.

2. TS is called safety-exhaustive w.r.t. fault model F , if and only if every mem-
ber M ′ ∈ D(m) which is not safety-equivalent to M (M ′ �∼s M) fail at least
one test case in TS.

3. TS is called safety-complete w.r.t. fault model F , if it is both sound and
safety-exhaustive. ��

Theorem 1. Let M = (Q, q,ΣI , ΣO, h), M ′ = (Q′, q′, ΣI , ΣO, h′) be two com-
pletely specified, deterministic, mimimal FSMs with |Q| = n, |Q′| ≤ m and
m ≥ n. Let ≤s⊆ ΣO × ΣO be a safety-related output abstraction. Suppose that

1. ε ∈ V ⊆ Σ∗
I is a state cover of M ,

2. W ⊆ Σ∗
I is a characterisation set of M , and

3. Ws ⊆ Σ∗
I is an s-characterisation set of M .

Define

A = V.W and B = V.

m−n+1⋃

i=0

Σi
I .Ws

Then
q′ A∼ q ∧ q′ B∼s q

implies q′∼sq and therefore M ′ ∼s M .

Proof. We prove by induction over |x| that for any x ∈ Σ∗
I ,

1. q′ x∼s q.

2. q′-after-x Ws∼s q-after-x

Statement 2 is an auxiliary assertion needed to prove Statement 1. The latter
directly implies the statement of the theorem.

Induction Base. Statements 1 and 2 trivially hold for x = ε.

Induction Hypothesis. Suppose that Statements 1 and 2 are true for some
k ≥ 0.

Induction Step. Let x.x ∈ Σ∗
I be any input trace with |x| = k and x ∈ ΣI .

Let
q = q-after-x/y, q1 = q-after-(x/y).(x/y)

and
q′ = q′-after-x/y′, q′

1 = q′-after-(x/y′).(x/y′).

152 W. Huang and J. Peleska

From induction hypothesis we have q′ Ws∼s q.
Since q′ V.W∼ q and since W is a characterisation set of M , the set

{q′-after-x | x ∈ V }

contains n = |M | states of M ′. Consequently,

V ′ = V.
m−n⋃

i=0

Σi
I

is a state cover of M ′. Therefore, there exists some input trace π ∈ V ′ such
that q′-after-π = q′ (note that it is not necessarily the case that x ∈ V ′). Let

q2 = q-after-π. We wish to show that q
Ws∼s q2 holds.

Assume that π ∈ V.Σi
I for some i ∈ {0, . . . , m − n}. Now assumption q′ B∼s q

of the theorem, together with Lemma 1 implies again that q′ Ws∼s q2.
This fact is now combined with the induction hypothesis which implies that

q′ Ws∼s q. From these facts we can conclude that q
Ws∼s q2. Now Ws is an s-

characterisation set of M , so q
Ws∼s q2 implies q ∼s q2.

Let q3 = q2-after-(x/y1). Then q ∼s q2, ω(q, x) = y, and ω(q2, x) = y1
implies y ∼s y1. From Lemma 1 we have q1 = q-after-x ∼s q3 = q2-after-x.
Since π.x ∈ V.

⋃m−n+1
i=1 Σi

I we have q′
1

Ws∼s q3 and y ∼s y′. Hence we have

q′ x.x∼s q and q′-after-(x.x) Ws∼s q-after-(x.x), which proves the induction step. ��
Theorem 2. Let M = (Q, q,ΣI , ΣO, h), M ′ = (Q′, q′, ΣI , ΣO, h′) be two com-
pletely specified, deterministic, minimal FSMs with |Q| = n, |Q′| ≤ m and
m ≥ n. Let ≤s⊆ ΣO × ΣO be a safety-related output abstraction. Suppose that

1. ε ∈ V ⊆ Σ∗
I is a state cover of M ,

2. W ⊆ Σ∗
I is a characterisation set of M ,

3. Ws ⊆ Σ∗
I is an s-characterisation set of M , and

4. Wsq
⊆ Ws are s-identification sets of M for all q ∈ Q.

Define

A = V.W, C = V.

m−n⋃

i=0

Σi
I .Ws, and D = V.Σm−n+1

I ⊕ {Wsq
| q ∈ Q}.

Then
q′ A∼ q ∧ q′ C∼s q ∧ q′ D∼s q

implies q′∼sq, and therefore M ′ ∼s M .

Proof. From Theorem 1 we conclude that it suffices to prove that the assump-
tions of Theorem 2 imply the validity of q′ B∼s q, with B = V.

⋃m−n+1
i=0 Σi

I .Ws

Safety-Complete Test Suites 153

as specified in Theorem 1. Since Theorem 2 is already based on the assumption
q′ C∼s q, it suffices to prove that

q′ V.Σm−n+1
I .Ws∼s q

holds.
Let x ∈ V.Σm−n+1

I and define q = q-after-x and q′ = q′-after-x. We need to

show that q′ Ws∼s q follows from the assumptions of the theorem.

From assumption q′ D∼s q and Lemma 1, we already have q′ Wsq∼s q. Since
V ′ = V.

⋃m−n
i=0 Σi

I is a state cover of M ′ (this has been established in the proof of
Theorem 1), there is some x′ ∈ V ′ such that q′-after-x′ = q′. Let q2 = q-after-x′.

Then q′ Ws∼s q2 follows from assumption from q′ C∼s q (this has also been shown in

detail in the proof of Theorem 1). Since Wsq
⊆ Ws, the fact that q′ Ws∼s q2 holds

implies that q′ Wsq∼s q2 holds as well. In combination with q′ Wsq∼s q, this implies

q2
Wsq∼s q, Therefore, q2∼sq and q2

Ws∼s q. From q′ Ws∼s q2 and q2
Ws∼s q, we conclude

that q′ Ws∼s q. This completes the proof. ��
The theorem above induces a safety-complete test suite, this time it is based

on the original Wp-Method.

Corollary 1 (Safety-complete Wp-Method). Let M = (Q, q,ΣI , ΣO, h)
be a completely specified, deterministic, minimal FSM with |Q| = n, and let m
be a fixed integer satisfying m ≥ n. Let ≤s⊆ ΣO × ΣO be a safety-related output
abstraction. Using the notation and terms introduced in Definitions 1 and 2, and
Theorem 2. Then the test suite

TS = V.W ∪ (
V.

m−n⋃

i=0

Σi
I .Ws

) ∪ (
V.Σm−n+1

I ⊕ {Wsq
| q ∈ Q})

is safety-complete with respect to fault model F = (M,∼s,D(m)). ��

3.3 Implementation

For implementing an algorithm calculating the safety-complete test suite accord-
ing to Corollary 1, we proceed as follows.

FSM Abstraction. Given a completely specified, deterministic, minimal FSM
M = (Q, q,ΣI , ΣO, h), every safety-related output abstraction ≤s⊆ ΣO × ΣO

induces an abstraction αs of the alphabet by mapping each output y ∈ ΣO to
the set of outputs y′ ∈ ΣO that are greater or equal to y according to ≤s.

αs : ΣO → P(ΣO); y �→ {y′ ∈ ΣO | y ≤s y′}

154 W. Huang and J. Peleska

The image Σs
O = αs(ΣO) is again finite, therefore it can be used as a new output

alphabet of a state machine Ms which is an abstraction of M with respect to
≤s in the following sense.

Ms = prime(Q, q,ΣI , Σ
s
O, hs)

hs = {(q, x, αs(y), q′) | (q, x, y, q′) ∈ h}
Though M is assumed to be already minimised, the abstracted machine

(Q, q,ΣI , Σ
s
O, hs) will not be minimised in general, because the output abstrac-

tion may result in fewer states of Q being distinguishable. Therefore Ms is spec-
ified as the prime machine of (Q, q,ΣI , Σ

s
O, hs).

By construction, two different states (q, q′) in Ms produce outputs for certain
input traces that differ in Σs

O. As a consequence, q �∼s q′ holds. Therefore, the
characterisation set of Ms equals the s-characterisation set Ws of M , as specified
in Sect. 3.1. Analogously, the state identification sets of Ms are exactly the s-
state identification sets of M . As a consequence, s-characterisation sets and
s-state identification sets can be calculated by using the existing algorithms for
characterisation sets and state identification sets, but the calculation needs to
be performed on the abstracted FSM M2.

Algorithm. With the FSM abstraction at hand, the algorithm for calculating
the safety-complete test suite works as follows.

1. Input 1. Reference model M = (Q, q,ΣI , ΣO, h) with |Q| = n.
2. Input 2. Integer m satisfying m ≥ n.
3. Input 3. Deterministic, completely specified, minimised FSM

Ms = (Qs, qs
, ΣI , Σ

s
O, hs) resulting from the abstraction of M with respect

to ≤s.
4. Output. Test suite TS which is safety-complete with respect to fault model

F = (M,∼s,D(m)).
5. Calculate state cover V from M .
6. Calculate characterisation set W from M .
7. Calculate characterisation set Ws from Ms.
8. For all q ∈ Qs, calculate state identification sets Wsq

from Ms.
9. Calculate V.Σm−n+1

I ⊕ {Wsq
| q ∈ Qs} from Ms.

10. Set

TS = V.W ∪ (
V.

m−n⋃

i=0

Σi
I .Ws

) ∪ (
V.Σm−n+1

I ⊕ {Wsq
| q ∈ Qs}

)

11. Remove test cases from TS that are prefixes of longer test cases.
12. Return TS.

FSM Open Source Library. We have published the open source C++ library
fsmlib-cpp1 which contains all algorithms needed for implementing the algo-
rithm above. This library also provides essential methods for minimising DFSMs
1 https://github.com/agbs-uni-bremen/fsmlib-cpp.git.

https://github.com/agbs-uni-bremen/fsmlib-cpp.git

Safety-Complete Test Suites 155

and for making nondeterministic FSMs observable. Moreover, a generator main
program is provided which uses these methods to calculated W-Method, Wp-
Method, and Safety-complete Wp-Method test suites. An overview over this
library is given in the lecture notes [9, Appendix B].

4 Case Studies and Strategy Evaluation

4.1 Control of Fasten Seat Belt and Return-to-Seat Signs in the
Aircraft Cabin

Application. The following example is a (slightly simplified) real-world exam-
ple concerning safety-related and uncritical indications in an aircraft cabin. A
cabin controller in a modern aircraft switches the fasten seat belt (FSB) signs
located above the passenger seats in the cabin and the return to seat (RTS) signs
located in the lavatories according to the rules modelled in the DFSM shown in
Table 1.

As inputs, the cabin controller reads the actual position of the fasten seat
belts switch in the cockpit, which has the position f0 (OFF), f1 (ON), and f2
(AUTO). Further inputs come from the cabin pressure control system which
indicates “cabin pressure low” by event d1 and “cabin pressure ok” by d0. This
controller also indicates “excessive altitude” by e1 or “altitude in admissible
range” by e0. Another sub-component of the cabin controller determines whether
the so-called AUTO condition is true (event a1) or false (a0).

The cabin controller switches the fasten seat belt signs and return to seat
signs on and off, depending on the actual input change and its current internal
state. As long as the cabin pressure and the cruising altitude are ok (after initial-
isation of the cabin controller or if last events from the cabin pressure controller
were d0, e0), the status of the FSB and RTS signs is determined by the cockpit
switch and the AUTO condition: if the switch is in the ON position, both FSB
and RTS signs are switched on (output 11 in Table 1). Turning the switch into
the OFF position switches the signs off. If the switch is in the AUTO position,
both FSB and RTS signs are switched on if the AUTO condition becomes true
with event a1, and they are switched off again after event a0. The AUTO con-
dition may depend on the status of landing gears, slats, flaps, and oil pressure,
these details are abstracted to a1, a0 in our example.

As soon as there occurs a loss of pressure in the cabin (event d1) or an
excessive altitude is reached, the FSB signs must be switched on and remain in
this state, regardless of the actual state of the cockpit switch and the AUTO
condition. The RTS signs, however, need to be switched off, because passengers
should not be encouraged to leave the lavatories in a low pressure or excessive
altitude situation.

After the cabin pressure and the altitude are back in the admissible range,
the FSB and RTS signs shall automatically resume their state as determined by
the “normal” inputs from cockpit switch and AUTO condition.

156 W. Huang and J. Peleska

Table 1. State-transition table of DFSM specifying the control of FSB signs and RTS
signs in an aircraft cabin.

f0 f1 f2 d1 d0 e1 e0 a1 a0

s0 s0/00 s1/11 s2/00 s3/10 s0/00 s6/10 s0/00 s12/00 s0/00

s1 s0/00 s1/11 s2/00 s4/10 s1/11 s7/10 s1/11 s13/11 s1/11

s2 s0/00 s1/11 s2/00 s5/10 s2/00 s8/10 s2/00 s14/11 s2/00

s3 s3/10 s4/10 s5/10 s3/10 s0/00 s9/10 s3/10 s15/10 s3/10

s4 s3/10 s4/10 s5/10 s4/10 s1/11 s11/10 s4/10 s16/10 s4/10

s5 s3/10 s4/10 s5/10 s5/10 s2/00 s11/10 s5/10 s17/10 s5/10

s6 s6/10 s7/10 s8/10 s9/10 s6/10 s6/10 s0/00 s18/10 s6/10

s7 s6/10 s7/10 s8/10 s10/10 s7/10 s7/10 s1/11 s19/10 s7/10

s8 s6/10 s7/10 s8/10 s11/10 s8/10 s8/10 s2/00 s20/10 s8/10

s9 s9/10 s10/10 s11/10 s9/10 s6/10 s9/10 s3/10 s21/10 s9/10

s10 s9/10 s10/10 s11/10 s10/10 s7/10 s10/10 s4/10 s22/10 s10/10

s11 s9/10 s10/10 s11/10 s11/10 s8/10 s11/10 s5/10 s23/10 s11/10

s12 s12/00 s13/11 s14/11 s15/10 s12/00 s18/10 s12/00 s12/00 s0/00

s13 s12/00 s13/11 s14/11 s16/10 s13/11 s19/10 s13/11 s13/11 s1/11

s14 s12/00 s13/11 s14/11 s17/10 s14/11 s20/10 s14/11 s14/11 s2/00

s15 s15/10 s16/10 s17/10 s15/10 s12/00 s21/10 s15/10 s15/10 s3/10

s16 s15/10 s16/10 s17/10 s16/10 s13/11 s22/10 s16/10 s16/10 s4/10

s17 s15/10 s16/10 s17/10 s17/10 s14/11 s23/10 s17/10 s17/10 s5/10

s18 s18/10 s19/10 s20/10 s21/10 s18/10 s18/10 s12/00 s18/10 s6/10

s19 s18/10 s19/10 s20/10 s22/10 s19/10 s19/10 s13/11 s19/10 s7/10

s20 s18/10 s19/10 s20/10 s23/10 s20/10 s20/10 s14/11 s20/10 s8/10

s21 s21/10 s22/10 s23/10 s21/10 s18/10 s21/10 s15/10 s21/10 s9/10

s22 s21/10 s22/10 s23/10 s22/10 s19/10 s22/10 s16/10 s22/10 s10/10

s23 s21/10 s22/10 s23/10 s23/10 s20/10 s23/10 s17/10 s23/10 s11/10

First column defines the states (initial state s0)
First row defines the inputs
Fields s/y denote ‘Post-state/Output’

Inputs:
f0, f1, f2 : FSB switch in position OFF, ON, AUTO
d1, d0 : Cabin decompression true, false
e1, e0 : Excessive altitude true, false
a1, a0 : Auto condition true, false
Outputs:
00 denotes (FSB,RTS)=(0,0)
11 denotes (FSB,RTS)=(1,1)
10 denotes (FSB,RTS)=(1,0)

Safety-Complete Test Suites 157

Safety Considerations. Analysing the outputs

(FSB,RTS) ∈ ΣO = {00, 10, 11, 01}

from the safety-perspective, leads to the identification of one safety-critical out-
put (FSB,RTS) = (1, 0), which should be set whenever cabin decompression or
excessive altitude occurs. If the other outputs {00, 11, 01} are changed due to an
application error, this is certainly undesirable, but does not represent a safety
hazard. Note that the output combination 01 should never occur at all.

These considerations lead to an abstraction function

αs : ΣO → P(ΣO)
00 �→ {00, 10, 11, 01}
11 �→ {00, 10, 11, 01}
01 �→ {00, 10, 11, 01}
10 �→ {10}

as introduced in Sect. 3.3, and the abstracted FSM described there is obtained by
replacing outputs 00, 11 by YY = {00, 10, 11, 01}, while leaving every occurrence
of output 10 unchanged.

Comparison Wp-Method Versus Safety-Complete Wp-Method. The
reference FSM with 24 states as specified in Table 1 is already minimal, and a
characterisation set has 4 elements. The minimised version of the FSM abstrac-
tion only has 4 states and a characterisation set with 3 elements.

These figures motivate why the Wp-Method requires 549 test cases if the
minimised machine representing the implementation has the same number of
states as the reference model (m = n). The Safety-complete Wp-Method only
requires 468 test cases in this situation; this corresponds to a test case reduction
of approx. 15%.

4.2 Synthetic Example

Application. The following example does not come from a practical applica-
tion, but has been constructed to illustrate that the reduction of test cases in
comparison to the original Wp-Method can be quite significant. The reference
state machine is shown in Table 2.

Safety Considerations. We assume that outputs 1 and 2 can be considered
as non-critical, so that they can be abstracted to a single output Y . Output 0 is
considered as critical.

158 W. Huang and J. Peleska

Table 2. Example showing the effectiveness of the safety-complete Wp-Method

a b c d e

s0 s1/1 s3/2 s2/0 s4/1 s5/1

s1 s1/1 s3/1 s2/0 s4/2 s5/1

s2 s1/1 s3/1 s2/0 s4/1 s5/1

s3 s1/2 s3/2 s1/0 s4/1 s5/1

s4 s1/2 s3/2 s2/0 s4/1 s5/1

s5 s1/0 s3/1 s0/0 s4/1 s6/1

s6 s1/0 s3/1 s2/0 s4/1 s5/1

First column defines the states (initial state s0)
First row defines the inputs
Fields s/y denote ‘Post-state/Output’

Comparison Wp-Method Versus Safety-Complete Wp-Method. The
reference machine in Table 2 with its 7 states is already minimal, but the min-
imised abstracted FSM only has 2 states. As a consequence, both characterisa-
tion set and state identification sets of the abstracted machine are significantly
smaller. Therefore, the Wp-Methods with assumption m = n requires 87 test
cases, while the Safety-complete Wp-Method only requires 41, this corresponds
to a test case reduction of approx. 53%.

While this example is of no practical value, it illustrates effectively that test
case reductions to less than half of the cases required for the Wp-Method are
possible when using the Safety-complete Wp-Method.

4.3 Garage Door Controller

Application. This example has been originally proposed in [6]. We use it here
as a negative example: it is not guaranteed that the Safety-complete Wp-Method
will always require fewer test cases than the Wp-Method, though the former has
lesser test strength than the latter. Therefore it is important to compare the
required test case numbers beforehand – for example, by using the algorithms
made available in the FSM Library described in [9, Appendix B] – before deciding
which test suites to run against the system under test.

The garage door controller uses inputs from a remote control, two sensors
indicating whether the door has reached the up position or the down position,
respectively, and a light sensor indicating whether the door area is crossed while
the door is closing or opening. The controller commands the motor to go down,
up, stop, or to reverse the down direction to the up direction. Its detailed behav-
iour is specified in Table 3.

Safety-Complete Test Suites 159

Safety Considerations. The only output considered as safety-critical is the
command to reverse the down-direction to the up direction. All other outputs
can be abstracted to some value Y .

Comparison Wp-Method Versus Safety-Complete Wp-Method. Both
the reference model in Table 3 and its abstraction are not minimal. It turns
out, however, that the minimised abstracted model still has as many states as
the minimised reference model. Moreover, the characterisation set and the state
identification sets of the abstracted model are larger than the equivalent sets
derived from the minimised reference model.

As a consequence, the Wp-Method requires only 17 test cases for m = n,
while the Safety-complete Wp-Method requires 33 cases.

Table 3. DFSM modelling the garage door controller.

e1 e2 e3 e4

DU DC/a1 DU/a3 DU/a3 DU/a3

DD DO/a2 DD/a3 DD/a3 DD/a3

DSD DC/a1 DSD/a3 DSD/a3 DSD/a3

DSU DO/a2 DSU/a3 DSU/a3 DSU/a3

DC DSD/a3 DD/a3 DC/a1 DO/a4

DO DSU/a3 DO/a2 DU/a3 DO/a2

Inputs:
e1 : Remote control has been pressed
e2 : Sensor indicates “door reaches down position”
e3 : Sensor indicates “door reaches up position”
e4 : Sensor indicates “light beam crossed”
Outputs:
a1 : Command “start down movement” to motor
a2 : Command “start up movement” to motor
a3 : Command “stop movement” to motor
a4 : Command “reverse down movement to up” to motor
States:
DU : Door is in up position
DD : Door is in down position
DSD : Door is stopped while going down
DSU : Door is stopped while going up
DC : Door is closing
DO : Door is opening

160 W. Huang and J. Peleska

5 Conclusion

We have presented a testing strategy which guarantees to uncover every safety
violation when testing an implementation against a deterministic finite state
machine reference model. These guarantees hold under the assumption that the
true behaviour of the implementation, when expressed by a minimised state
machine, does not exceed a certain maximum of states m, in comparison to the
number n of states in the minimised reference model. Safety criticality has been
modelled by means of a safety-related output abstraction which allows to express
that certain outputs can be exchanged by certain others without introducing a
safety violation. The new strategy has been derived from the well-known Wp-
Method. A proof has been presented which shows that – while no longer guaran-
teeing to uncover every violation of input/output equivalence – the strategy will
uncover every failure which ends in an erroneous output representing a safety
violation.

First experiments have shown that this Safety-complete Wp-Method may
require significantly fewer test cases than the Wp-Method (reductions between
15% and 50% have been observed). It has been indicated by another example,
however, that this reduction is not guaranteed.

The concept described here can be extended to more complex systems whose
behaviour can be represented by a certain class of Kripke structures over infinite
input domains, but with finite domains for internal states and outputs. It has
been shown in [5] that a specific input equivalence class construction technique
can be applied, so that any complete testing theory valid for FSMs can be
translated to a likewise complete equivalence class partition testing strategy for
these systems with Kripke semantics.

References

1. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Software Eng. 4(3), SE-178–186 (1978)

2. Fujiwara, S., Bochmann, G.V., Khendek, F., Amalou, M., Ghedamsi, A.: Test
selection based on finite state models. IEEE Trans. Software Eng. 17(6), 591–603
(1991)

3. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed
railway control system. IEEE Trans. Softw. Eng. 26(8), 687–701 (2000)

4. Huang, W., Peleska, J.: Complete model-based equivalence class testing. STTT
18(3), 265–283 (2016). http://dx.doi.org/10.1007/s10009-014-0356-8

5. Huang, W.I., Peleska, J.: Complete model-based equivalence class testing for
nondeterministic systems. Formal Aspects Comput. 29(2), 335–364 (2017).
http://dx.doi.org/10.1007/s00165-016-0402-2

6. Jorgensen, P.C.: The Craft of Model-Based Testing. CRC Press, Boca Raton (2017)
7. Li, S., Qi, Z.: Property-oriented testing: An approach to focusing testing efforts on

behaviours of interest. In: SOQUA/TECOS (2004)
8. Luo, G., von Bochmann, G., Petrenko, A.: Test selection based on commu-

nicating nondeterministic finite-state machines using a generalized wp-method.
IEEE Trans. Software Eng. 20(2), 149–162 (1994). http://doi.ieeecomputersociety.
org/10.1109/32.265636

http://dx.doi.org/10.1007/s10009-014-0356-8
http://dx.doi.org/10.1007/s00165-016-0402-2
http://doi.ieeecomputersociety.org/10.1109/32.265636
http://doi.ieeecomputersociety.org/10.1109/32.265636

Safety-Complete Test Suites 161

9. Peleska, J., Huang, W.l.: Test Automation - Foundations and Applications of
Model-based Testing. University of Bremen (2017). Lecture notes http://www.
informatik.uni-bremen.de/agbs/jp/papers/test-automation-huang-peleska.pdf

10. Vasilevskii, M.P.: Failure diagnosis of automata. Kibernetika (Transl.) 4, 98–108
(1973)

http://www.informatik.uni-bremen.de/agbs/jp/papers/test-automation-huang-peleska.pdf
http://www.informatik.uni-bremen.de/agbs/jp/papers/test-automation-huang-peleska.pdf

	Safety-Complete Test Suites
	1 Introduction
	2 Notation and Technical Background
	3 A Safety-Complete Wp-Method
	3.1 Safety-Related Output Abstractions
	3.2 A Safety-Complete Variant of the Wp-Method
	3.3 Implementation

	4 Case Studies and Strategy Evaluation
	4.1 Control of Fasten Seat Belt and Return-to-Seat Signs in the Aircraft Cabin
	4.2 Synthetic Example
	4.3 Garage Door Controller

	5 Conclusion
	References

