
Nina Yevtushenko
Ana Rosa Cavalli
Hüsnü Yenigün (Eds.)

 123

LN
CS

 1
05

33

29th IFIP WG 6.1 International Conference, ICTSS 2017
St. Petersburg, Russia, October 9–11, 2017
Proceedings

Testing Software
and Systems

Lecture Notes in Computer Science 10533

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Nina Yevtushenko • Ana Rosa Cavalli
Hüsnü Yenigün (Eds.)

Testing Software
and Systems
29th IFIP WG 6.1 International Conference, ICTSS 2017
St. Petersburg, Russia, October 9–11, 2017
Proceedings

123

Editors
Nina Yevtushenko
Tomsk State University
Tomsk
Russia

Ana Rosa Cavalli
SAMOVAR, CNRS, Télécom SudParis
Paris-Saclay University
Paris
France

Hüsnü Yenigün
Sabanci University
Istanbul
Turkey

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-67548-0 ISBN 978-3-319-67549-7 (eBook)
DOI 10.1007/978-3-319-67549-7

Library of Congress Control Number: 2017952861

LNCS Sublibrary: SL2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-4006-1161
http://orcid.org/0000-0003-4480-5030
http://orcid.org/0000-0003-0947-8150

Preface

This volume contains the proceedings of the 29th International Conference on Testing
Software and Systems, ICTSS 2017. The conference was held in St. Petersburg, Russia,
during October 9–11, 2017.

The conference has a long history. In the past five years, ICTSS has been held in
Graz (Austria), Dubai and Sharjah (United Arab Emirates), Madrid (Spain), Istanbul
(Turkey), and Aalborg (Denmark). During the period from 2007 to 2009, the confer-
ence was held as part of the International Conference on Testing of Communicating
Systems (TESTCOM) and FATES in Tallinn (Estonia), Tokyo (Japan), and Eindhoven
(the Netherlands). Before that, between 2000 and 2006, TESTCOM was held in Ottawa
(Canada), Berlin (Germany), Sophia Antipolis (France), Oxford (UK), Montreal
(Canada), and New York City (USA). During the period from 1997 to 1999, the
conference was called the International Workshop on Testing of Communicating
Systems (IWTCS) and was held on Cheju Island (South Korea), in Tomsk (Russia),
and in Budapest (Hungary). Between 1988 and 1996, the conference was known as the
International Workshop for Protocol Test Systems (IWPTS). Nine workshops took
place in Vancouver (Canada), Berlin (Germany), McLean (USA), Leidschendam (the
Netherlands), Montreal (Canada), Pau (France), Tokyo (Japan), Evry (France), and
Darmstadt (Germany).

The topics of this volume cover model-based testing, test derivation and monitoring,
fault localization, and system testing including real-time systems. In total, 41 papers
were submitted and the Program Committee selected 18 regular and 4 short papers for
presentation at the conference. The accepted papers form the contents of the
proceedings.

We are grateful to the authors of submitted papers, invited speakers, and Steering and
Program Committee members for their valuable contributions, and particularly to
Robert M. Hierons, the Steering Committee chair, for his help and guidance. We
acknowledge the use of EasyChair for the conference management and thank the IFIP and
WG 6.1 chair, Jean-Bernard Stefani, for his help. We also thank Springer for publishing
the proceedings, and the Tomsk State University, the Institut Mines-Télécom/
Télécom SudParis, and Sabanci University for their support.

October 2017 Nina Yevtushenko
Ana Rosa Cavalli
Hüsnü Yenigün

Organization

ICTSS 2017 was organized by Tomsk State University in cooperation with the
International Federation for Information Processing (IFIP).

Steering Committee

Robert M. Hierons Brunel University London, UK (Chair)
Andreas Ulrich Siemens AG, Germany
Ana Rosa Cavalli SAMOVAR, CNRS, Télécom SudParis,

Paris-Saclay University, France
Franz Wotawa Technische Universität Graz, Austria
Natalia Kushik SAMOVAR, CNRS, Télécom SudParis,

Université Paris-Saclay, France
Khaled El–Fakih American University of Sharjah, United Arab Emirates
Nina Yevtushenko Tomsk State University, Russia
Mercedes G. Merayo Universidad Complutense de Madrid, Spain
Edgardo Montes de Oca Montimage, France

Conference Chairs

General Chairs

Nina Yevtushenko Tomsk State University, Russia
Ana Rosa Cavalli SAMOVAR, CNRS, Télécom SudParis,

Paris-Saclay University, France
Hüsnü Yenigün Sabanci University, Turkey

Industrial Chair

Masaki Suzuki KDDI Research, Inc., Japan

Publicity Chair

Jorge López SAMOVAR, CNRS, Télécom SudParis,
Université Paris-Saclay, France

Program Committee

Harald Altinger Audi AG, Ingolstadt, Germany
Sergey Baranov St. Petersburg Institute for Informatics and Automation

of the Russian Academy of Sciences, Russia
Mario Bravetti University of Bologna, Italy
Ana Rosa Cavalli SAMOVAR, CNRS, Télécom SudParis,

Paris-Saclay University, France

John Derrick University of Sheffield, UK
Christophe Gaston CEA LIST, France
Arnaud Gotlieb SIMULA Research Laboratory, Norway
Jens Grabowski Georg-August-University of Göttingen, Germany
Jürgen Großmann Fraunhofer FOKUS, Germany
Roland Groz Grenoble INP - LIG, France
Robert M. Hierons Brunel University London, UK
Teruo Higashino Osaka University, Japan
Jie-Hong Roland Jiang National Taiwan University, Taiwan
Guy-Vincent Jourdan University of Ottawa, Canada
Natalia Kushik SAMOVAR, CNRS, Télécom SudParis,

Université Paris-Saclay, France
Pascale Le Gall MICS, CentraleSupélec, University of Paris-Saclay, France
Stephane Maag Institut Mines-Télécom/Télécom SudParis, France
Patricia Machado Federal University of Campina Grande, Brazil
Mercedes Merayo Universidad Complutense de Madrid, Spain
Edgardo Montes De Oca Montimage, France
Brian Nielsen Aalborg University, Denmark
Alexander K. Petrenko ISP, Russian Academy of Sciences, Russia
Alexandre Petrenko CRIM, Canada
Antoine Rollet LaBRI, Bordeaux INP, University of Bordeaux, France
Adenilso Simão ICMC/USP, Brazil
Daniel Sundmark Mälardalen University, Sweden
Kenji Suzuki Kennisbron Co., Ltd., Japan
Masaki Suzuki KDDI Research, Inc., Japan
Uraz Cengiz Turker Gebze Technical University, Turkey
Andreas Ulrich Siemens AG, Germany
Hasan Ural University of Ottawa, Canada
Tiziano Villa Università di Verona, Italy
Franz Wotawa Technische Universität Graz, Austria
Hüsnü Yenigün Sabanci University, Turkey
Nina Yevtushenko Tomsk State University, Russia
Fang Yu National Chengchi University, Taiwan
Fatiha Zaïdi Université Paris-Sud, France

Additional Referees

Cesar Andres
Daniel Brahneborg
Pamela Carvallo
Adnan Causevic
Fabian Glaser
Omer Nguena-Timo
Diego Rivera

Martin Schneider
Natalia Shabaldina
Helge Spieker
Marco Antonio To
Fabian Trautsch
Johannes Viehmann

VIII Organization

Local Organizing Committee

Nina Yevtushenko Tomsk State University, Russia
Stanislav Mikoni St. Petersburg Institute for Informatics

and Automation of the Russian Academy of Sciences,
St. Petersburg, Russia

Natalia Aseeva Monomax Company, St. Petersburg, Russia

Sponsoring Institutions

International Federation for Information Processing (IFIP), Laxenburg, Austria
Tomsk State University, Russia

Organization IX

Contents

Model Based Testing

Fragility-Oriented Testing with Model Execution
and Reinforcement Learning . 3

Tao Ma, Shaukat Ali, Tao Yue, and Maged Elaasar

Fault-Based Testing for Refinement in CSP . 21
Ana Cavalcanti and Adenilso Simao

Effective Infinite-State Model Checking by Input Equivalence
Class Partitioning . 38

Niklas Krafczyk and Jan Peleska

Using Robustness Testing to Handle Incomplete Verification Results
When Combining Verification and Testing Techniques 54

Stefan Huster, Jonas Ströbele, Jürgen Ruf, Thomas Kropf,
and Wolfgang Rosenstiel

AI for Localizing Faults in Spreadsheets . 71
Birgit Hofer, Iulia Nica, and Franz Wotawa

Test Derivation Methods

n-Complete Test Suites for IOCO . 91
Petra van den Bos, Ramon Janssen, and Joshua Moerman

Multiple Mutation Testing from Finite State Machines
with Symbolic Inputs. 108

Omer Nguena Timo, Alexandre Petrenko, and S. Ramesh

From Passive to Active FSM Inference via Checking
Sequence Construction. 126

Alexandre Petrenko, Florent Avellaneda,
Roland Groz, and Catherine Oriat

Safety and Security Testing

Safety-Complete Test Suites . 145
Wen-ling Huang and Jan Peleska

http://dx.doi.org/10.1007/978-3-319-67549-7_1
http://dx.doi.org/10.1007/978-3-319-67549-7_1
http://dx.doi.org/10.1007/978-3-319-67549-7_2
http://dx.doi.org/10.1007/978-3-319-67549-7_3
http://dx.doi.org/10.1007/978-3-319-67549-7_3
http://dx.doi.org/10.1007/978-3-319-67549-7_4
http://dx.doi.org/10.1007/978-3-319-67549-7_4
http://dx.doi.org/10.1007/978-3-319-67549-7_5
http://dx.doi.org/10.1007/978-3-319-67549-7_6
http://dx.doi.org/10.1007/978-3-319-67549-7_7
http://dx.doi.org/10.1007/978-3-319-67549-7_7
http://dx.doi.org/10.1007/978-3-319-67549-7_8
http://dx.doi.org/10.1007/978-3-319-67549-7_8
http://dx.doi.org/10.1007/978-3-319-67549-7_9

Testing TLS Using Combinatorial Methods and Execution Framework 162
Dimitris E. Simos, Josip Bozic, Feng Duan, Bernhard Garn,
Kristoffer Kleine, Yu Lei, and Franz Wotawa

Using Data Integration for Security Testing . 178
Sébastien Salva and Loukmen Regainia

Test Selection and Quality Estimation

A “Strength of Decision Tree Equivalence”-Taxonomy and Its Impact
on Test Suite Reduction. 197

Hermann Felbinger, Ingo Pill, and Franz Wotawa

Quality Estimation of Virtual Machine Placement in Cloud Infrastructures . . . 213
Jorge López, Natalia Kushik, and Djamal Zeghlache

Homing Sequence Derivation with Quantified Boolean Satisfiability 230
Hung-En Wang, Kuan-Hua Tu, Jie-Hong R. Jiang, and Natalia Kushik

Synchronizing Heuristics: Speeding up the Slowest 243
Ömer Faruk Altun, Kamil Tolga Atam,
Sertaç Karahoda, and Kamer Kaya

Testing Timed and Distributed Systems

GREP: Games for the Runtime Enforcement of Properties 259
Matthieu Renard, Antoine Rollet, and Yliès Falcone

Constraint-Based Oracles for Timed Distributed Systems 276
Nassim Benharrat, Christophe Gaston, Robert M. Hierons,
Arnault Lapitre, and Pascale Le Gall

Checking Response-Time Properties of Web-Service Applications
Under Stochastic User Profiles . 293

Richard Schumi, Priska Lang, Bernhard K. Aichernig,
Willibald Krenn, and Rupert Schlick

Short Contributions

Ongoing Work on Automated Verification of Noisy Nonlinear Systems
with ARIADNE . 313

Luca Geretti, Davide Bresolin, Pieter Collins,
Sanja Zivanovic Gonzalez, and Tiziano Villa

Generating Checking Sequences for User Defined Fault Models 320
Alexandre Petrenko and Adenilso Simao

XII Contents

http://dx.doi.org/10.1007/978-3-319-67549-7_10
http://dx.doi.org/10.1007/978-3-319-67549-7_11
http://dx.doi.org/10.1007/978-3-319-67549-7_12
http://dx.doi.org/10.1007/978-3-319-67549-7_12
http://dx.doi.org/10.1007/978-3-319-67549-7_13
http://dx.doi.org/10.1007/978-3-319-67549-7_14
http://dx.doi.org/10.1007/978-3-319-67549-7_15
http://dx.doi.org/10.1007/978-3-319-67549-7_16
http://dx.doi.org/10.1007/978-3-319-67549-7_17
http://dx.doi.org/10.1007/978-3-319-67549-7_18
http://dx.doi.org/10.1007/978-3-319-67549-7_18
http://dx.doi.org/10.1007/978-3-319-67549-7_19
http://dx.doi.org/10.1007/978-3-319-67549-7_19
http://dx.doi.org/10.1007/978-3-319-67549-7_20

Adaptive Localizer Based on Splitting Trees. 326
Roland Groz, Adenilso Simao, and Catherine Oriat

Refining the Specification FSM When Deriving Test Suites
w.r.t. the Reduction Relation . 333

Aleksandr Tvardovskii

Author Index . 341

Contents XIII

http://dx.doi.org/10.1007/978-3-319-67549-7_21
http://dx.doi.org/10.1007/978-3-319-67549-7_22
http://dx.doi.org/10.1007/978-3-319-67549-7_22

Model Based Testing

Fragility-Oriented Testing with Model
Execution and Reinforcement Learning

Tao Ma1(&), Shaukat Ali1, Tao Yue1,2, and Maged Elaasar3

1 Simula Research Laboratory, P.O. Box 134, 1325 Lysaker, Norway
{taoma,shaukat,tao}@simula.no

2 University of Oslo, P.O. Box 1072, 0316 Blindern, Norway
3 Carleton University, 1125 Colonel by Dr., Ottawa, ON K1S5B6, Canada

melaasar@gmail.com

Abstract. Self-healing is becoming an essential behavior of smart Cyber-
Physical Systems (CPSs), which enables them to recover from faults by them-
selves. Such behaviors make decisions autonomously at runtime and they often
operate in an uncertain physical environment making testing even more chal-
lenging. To this end, we propose Fragility-Oriented Testing (FOT), which relies
on model execution and reinforcement learning to cost-effectively test
self-healing behaviors of CPSs in the presence of environmental uncertainty. We
evaluated FOT’s performance by comparing it with a Coverage-Oriented
Testing (COT) algorithm. Evaluation results show that FOT significantly out-
performed COT for testing nine self-healing behaviors implemented in three
case studies. On average, FOT managed to find 80% more faults than COT and
for cases when both FOT and COT found the same faults, FOT took on average
50% less time than COT.

Keywords: Cyber-Physical Systems � Uncertainty � Self-healing behaviors �
Model execution � Reinforcement learning

1 Introduction

Self-healing is becoming an important functionality of smart Cyber-Physical Systems
(CPSs) [1]. With such functionality, a Self-Healing CPS (SH-CPS) has the ability to
recover from faults and adapt its behavior accordingly. Given that uncertainty is
inherent in CPSs since such systems operate in highly unpredictable physical envi-
ronment [2], self-healing behaviors of an SH-CPS must deal with uncertainty grace-
fully. By uncertainty, we mean “the lack of knowledge of which value an uncertain
factor will take at a given point of time during execution” [3]. In this paper, we limit
our scope to uncertain factors related to sensing (e.g., noise) and actuation (e.g.
deviation) of SH-CPSs as a starting point.

To check the correctness of self-healing behaviors of SH-CPSs in the presence of
uncertainty, a cost-effective testing method is required. In this paper, we propose a

This research was funded by the MBT4CPS project (grant no. 240013/O70).

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 3–20, 2017.
DOI: 10.1007/978-3-319-67549-7_1

Fragility-Oriented Testing (FOT) algorithm to ensure that self-healing behaviors
properly handle environmental uncertainty. The core idea of FOT is using fragility (i.e.,
a measure indicating how near an SH-CPS is to fail in a given state) as a heuristic for
revealing faults. Based on this heuristic, we use model execution and reinforcement
learning to explore various execution paths of the SH-CPS and simulate uncertainty in
its physical environment to cost-effectively find faults.

A traditional model-based testing (MBT) approach generates test cases from test
models with a test strategy and executes them on a system in separate steps. In contrast,
FOT tests a system with a test strategy that dynamically incorporates information
during execution to decide the next test execution step. From the execution informa-
tion, FOT uses a reinforcement learning method to identify transitions that have high
possibilities to reveal a fault, i.e., lead to a state with the highest fragility. Accordingly,
FOT adapts its transition selection policy to favor these transitions for test execution
with the aim to cost-effectively find faults.

We evaluated FOT by testing nine self-healing behaviors in three case studies. We
conducted one experiment per self-healing behavior and compared cost (measured as
time to find a fault) and effectiveness (measured as the number of faults found) of FOT
as opposed to Coverage-Oriented Testing (COT) [4]. Each self-healing behavior was
tested under 10 environmental uncertainties. Evaluation results show that FOT sig-
nificantly outperformed COT in five out of nine experiments in terms of finding faults.
On average, FOT found 80% more faults and spent 50% less test execution time to find
a fault than COT. Note that COT was used as a naive baseline to be compared with
FOT and comparison with more sophisticated comparable algorithms is required in the
future.

Our key contributions: (1) proposing a reinforcement learning based testing algo-
rithm to cost-effectively find faults in SH-CPSs under uncertainty, (2) defining fragility
as the heuristic to guide the reinforcement learning algorithm, (3) evaluating FOT (by
comparing with COT) in terms of cost-effectiveness for testing nine self-healing
behaviors implemented in three real case studies. We organize the paper as follows.
Section 2 presents the background, Sect. 3 presents the running example, and the FOT
is presented in Sect. 4. Section 5 presents an evaluation, Sect. 6 summarizes related
work, and Sect. 7 concludes the paper.

2 Background

This section discusses Executable Test Model (ETM) and Dynamic Flat State Machine
(DFSM), the key models used in FOT, in Sects. 2.1 and 2.2. Section 2.3 briefly
summarizes a test model execution framework – TM-Executor.

2.1 Executable Test Model (ETM)

A CPS can be seen as a set of networked physical units, working together to monitor
and control physical processes. A physical unit can be further decomposed into sensors,
actuators, and controllers. A controller monitors and controls physical processes via
sensors and actuators, which are functional behaviors. As a specific type of CPSs, an

4 T. Ma et al.

SH-CPS monitors fault occurrences and adapts its behavior if a fault is detected with
self-healing behaviors. As the objective of a self-healing behavior is to restore func-
tional behaviors, both expected functional and self-healing behaviors need to be cap-
tured for testing. Previously, we proposed a UML-based modeling framework, called
MoSH [3], which allows creating an Executable Test Model (ETM) for an SH-CPS
Under Test (SUT). The ETM consists of a set of UML state machines annotated with
dedicated stereotypes from the MoSH profiles.

The set of state machines captures expected functional and self-healing behaviors of
the SUT: SM ¼ sm1; . . .; smnf g, where each state machine smi has MoSH stereotype
applied. A smi has a set of states Ssmi ¼ ssmi1; . . .; ssmisf g and transitions
Tsmi ¼ tsmi1; . . .; tsmitf g. A state ssmij (ssmij 2 Ssmi) is defined by a state invariant Osmij,
which is specified as a constraint in OCL1 constraining one or more state variables.
When ssmij is active, its corresponding state invariant should be satisfied. A transition
tsmik (tsmik 2 Tsmi) is defined as a tuple t := ssrc; star; op; gð Þ, where ssrc and star are the
source and target states of t. op denotes an operation call event that can trigger the
transition2 and the operation represents a testing API used to control the SUT. g signifies
the transition’s guard, an OCL constraint. It restricts input parameter values that can be
used to invoke the operation for firing the transition. By conforming to the fUML3 and
Precise Semantics Of UML State Machines(PSSM)4 standards, the specified state
machines are executable. Thus the test model is called an Executable Test Model.

2.2 Dynamic Flat State Machine (DFSM)

Test execution with concurrent and hierarchical state machines is computationally
expensive and complex. Since statically flattening state machines may lead to state
explosion, we implemented an algorithm to dynamically and incrementally flatten UML
state machines into a DFSM during test execution. A DFSM has a set of states S ¼
s1; s2; . . .; snf g and a set of transitions T ¼ t1; t2; . . .; tmf g. Each state si in S is con-

stituted by states ssmij from each smi, denoted as si ¼ ssm1i ^ ssm2j ^ . . . ^ ssmnk .
Accordingly, the conjunction of all constituents’ state invariants ½osm1i ^ osm2j ^ . . . ^
osmnk� forms the state invariant of si, denoted as oi. Meanwhile, the set of transitions
connecting the DFSM states is captured by T. Each transition ti belonging to T is
uniquely mapped to a transition tsmxj in a state machine smx, expressed as ti ¼ tsmxj.
While the ETM is being executed, the DFSM of the ETM is dynamically constructed.
FOT uses the DFSM to learn the value of firing each transition and find the optimal
transition selection policy to cost-effectively find faults. Thus, we mainly use DFSM to
explain FOT.

1 http://www.omg.org/spec/OCL/2.4.
2 Though call, change and signal event occurrences can all be triggers to model expected behaviors,
only transitions having call event occurrences as triggers can be activated from the outside. A change
event or a signal event is only for the SUT’s internal behaviors, which cannot be controlled for
testing.

3 http://www.omg.org/spec/FUML/1.2.1.
4 http://www.omg.org/spec/PSSM/1.0/Beta1.

Fragility-Oriented Testing with Model Execution 5

http://www.omg.org/spec/OCL/2.4
http://www.omg.org/spec/FUML/1.2.1
http://www.omg.org/spec/PSSM/1.0/Beta1

2.3 Test Model Execution Framework

We developed a testing framework called TM-Executor [3] in our previous work,
which executes the ETM and the SUT at the same time. Via testing APIs, state variable
values are queried from the SUT and used by TM-Executor to evaluate state invariants
of the active state. If an invariant is evaluated false, it means that the SUT fails to
behave consistently with the ETM and a fault is detected.

The execution of an ETM results in the execution of the SUT. During the execu-
tion, TM-Executor dynamically and incrementally derives a DFSM from the set of
concurrent state machines in the ETM. As aforementioned, a transition’s trigger op and
guard g specify which operation to invoke with which input parameter values to make
the SUT and the ETM transit from one state to another. While an operation is being
invoked, an operation call event is generated, which drives the execution of the ETM.
Meanwhile, the operation is executed to call a corresponding testing API, which makes
the SUT enter the next state.

Two kinds of testing APIs for controlling the SUT can be specified as a transition’s
trigger op. One is functional control operation, which instructs the SUT to execute a
nominal functional operation. Second is fault injection operation, which introduces a
fault in the SUT, based on which, TM-Executor controls when and which faults to be
injected to the SUT to trigger its self-healing behaviors.

3 Running Example

We will use a running example of an Unmanned Aerial Vehicle control system (i.e.,
ArduCopter5) to illustrate FOT. It has two physical units, i.e., copter and Ground
Control Station (GCS). With the GCS, users remotely control the copter using a
number of flight modes. During the flight, the copter is constantly affected by envi-
ronmental uncertainties such as wind speed and direction, measurements noise from the
GPS, accelerometer, and compass. This poses an extra challenge to the self-healing
behaviors of the copter. Collision avoidance is one of the self-healing behaviors. Due
to improper flight control (operational fault), the copter may approach another aircraft.
In such case, the copter automatically adapts the velocity and orientation (i.e., the
angles of rotations in roll, pitch, and yaw) of the flight to avoid a collision. We build an
ETM to specify the expected collision avoidance behavior along with related functional
behaviors. Figure 1 presents a partial simplified DFSM corresponding to the ETM;
while, the complete ETM is presented in [5]. We take one path (bold transitions in
Fig. 1: t1 ! t2 ! t3 ! t4 ! t11 ! t12 ! t16 ! t18) to explain test execution.

Starting from the Initial state, the DFSM directly enters Stopped, as there is no
trigger on t1. From Stopped, TM-Executor fires t2 by calling the functional control
operation start to launch the SUT. As a result, Started becomes active. To make the
copter enter state Lift, TM-Executor invokes operation throttle with a valid value of
input parameter thr obtained by solving guard constraint [thr > 1600 and thr < 2000]
via constraint solver EsOCL [6]. Then, the copter takes off and reaches the Lift state. In

5 http://ardupilot.org/copter/.

6 T. Ma et al.

http://ardupilot.org/copter/

the Lift state, TM-Executor needs to choose one of the two outgoing transitions to be
triggered. Assuming t4 is chosen, it is triggered by invoking pitch with a valid value of
pit satisfying [pit > 1000 and pit < 1400]. This invocation triggers the copter to move
forward. In the Forward state, TM-Executor either changes the copter’s movement
(i.e., firing t5, t7, or t16) or invokes the fault injection operation setThreat, which
simulates that an aircraft is approaching from the left behind of the copter to trigger the
collision avoidance behavior. Here the second option is adopted. Triggered by this, the
collision avoidance behavior controls the copter to fly away from the aircraft. When the
distance between them (threatDis) is over 1000 meters (not shown in Fig. 1), the
collision threat is avoided and the copter’s flight mode changes back to the previous
one. Hence, t12 is traversed6. Then TM-Executor chooses to trigger t16, followed by
firing t18, to stimulate that the copter passes through the Landing state and reaches the
final state.

In parallel to the execution, TM-Executor periodically obtains the values of the
SUT’s state variables through testing APIs and repeatedly uses these values to evaluate
the active state’s invariant, using a constraint evaluator DresdenOCL [7]. If an invariant
is evaluated to be false, then a fault is detected.

The decision to which transition to be triggered determines if a fault can be found
by executing the ETM and the SUT. From specifications, we know that there is a fault
in the collision avoidance behavior when an aircraft is approaching from −45° and the
copter is flying to the forward left, the collision avoidance behavior has to reverse the
copter’s orientation to make the two aerial vehicles fly away. Since reversing the
orientation takes more time than other orientation adjustments, the copter, in this case,
flies closer to the approaching aircraft. Due to noisy sensor data and inaccurate actu-
ations, a collision does have a chance to occur in this condition.

To detect the fault leading to the collision, the fault injection operation setThreat
needs to be invoked in state ForwardLeft, i.e., t9 must be activated. However, acti-
vating t9 once may not be sufficient to find the fault. One reason is that a large number

Fig. 1. A Simplified DFSM for ArduCopter

6 When a collision is avoided, the copter is back to the flight mode. Hence, no testing API needs to be
invoked to trigger t12. When the flight mode is changed back, a corresponding change event is
generated by TM-Executor to activate the transition. As this event is from inside, we do not
capture it in DFSM.

Fragility-Oriented Testing with Model Execution 7

of input parameter values could be used to invoke an operation for firing a transition,
e.g., t4 (Fig. 1). Each input leads to a distinct flight orientation and only in particular
situations, the collision is likely to happen. Another reason is the effect of uncertainties.
Measurement uncertainties from sensors and actuation offset from actuators change
from time to time. Different values of the uncertain factors7 lead to diverse orientations,
making it even harder to reveal the fault.

Therefore, TM-Executor mainly identifies which transition in the DFSM will most
likely reveal a fault and frequently triggers the transition to reveal the fault. Since the
DFSM is normally large, containing hundreds or thousands of transitions, fulfilling this
task is non-trivial. We therefore present a novel cost-effective testing algorithm, FOT. It
uses a reinforcement learning method to learn values of firing each transition, which
helps TM-Executor to cost-effectively find faults.

4 Fragility-Oriented Testing Under Uncertainty

In this section, we present details of the testing algorithm FOT (Sect. 4.1) and three
uncertainty generation strategies (Sect. 4.2), which together enable TM-Executor to
cost-effectively find faults in the SUT under uncertainty. Section 4.3 describes the
implementation of FOT and the uncertainty generation strategies.

4.1 Testing Algorithm

Definition 1. The fragility of the SUT in a given state expressed as F sð Þ, is a real value
between 0 and 1. It describes how close (distance wise) the state invariant of s is to be
false, where 1 means that the state invariant is false and 0 means that it is far from being
violated. We therefore define F sð Þ as follows:

F sð Þ ¼ 1� dis :oð Þ ð1Þ

where :o is the negation of state s’s invariant o and disð:oÞ is a distance function
(adopted from [6]) that returns a value between 0 and 1 indicating how close the
constraint :o is to be true. For instance, in the running example, if the SUT is
currently in state Avoiding2 and the value of state variable threatDis is 15, then the
distance of invariant “threatDis > 10” to be false can be calculated as

dis : threatDis[10ð Þð Þ ¼ 15�10ð Þþ 1
15�10ð Þþ 1þ 1 ¼ 0:868. The closer the distance is to zero, the

higher the possibility the invariant is to be violated, i.e., the SUT failing in the state.
Hence, 1� disð:oÞ is used to define the fragility of the SUT in state s.

Definition 2. The T-value of a transition expressed as T tð Þ, is a real value between 0
and 1. It states the possibility that a fault can be revealed after firing the transition. With

7 Uncertain factor is a feature (e.g., a parameter) whose value is uncertain due to lack of knowledge.
8 The distance function of greater operator is: dis x[yð Þ ¼ ðy� xþ kÞ=ðy� xþ kþ 1Þ;when x� y,
where k is an arbitrary positive value. Here we set k = 1. More details are in.

8 T. Ma et al.

an assumption that the more fragile the SUT is, the higher the chance a fault can be
revealed, we define the T-value of a transition as the discounted highest fragility of the
SUT after firing the transition:

T tð Þ ¼ max
s2Snext

cn � F sð Þf g ð2Þ

where c (0� c\1) is a discount rate; n is the number of transitions between s and t’s
target state; and Snext is a set of states that can be reached from t’s source state via a
path in the DFSM. As for testing, revealing faults via a short path is preferable, we
penalize the fragility of a state by multiplying cn, if traversing at least n transitions is
required to reach the state from t’s target state. For example, in Fig. 1, to obtain the
T-value of t4, we calculate the discounted fragility of each state in Snext. For the
fragility of Avoiding1, it needs to be discounted by c2, since at least two transitions t5
and t9 are required to connect the Avoiding1 state to t4’s target state Forward. Clearly,
when c equals 0, only the fragility of t’s target state is considered. While, c
approaching 1 makes a state to be reached more important.

Overview. The objective of FOT is to find the optimal transition selection policy to
cost-effectively find faults. To achieve this objective, FOT tries to learn transitions’
T-values during the execution of the SUT. Each transition’s T-value indicates the
possibility that a fault will be revealed after firing the transition. When transitions’
T-values are learned, by simply firing the transition with the highest T-value, FOT can
manage to cost-effectively find faults. The pseudocode of FOT is presented below with
in total 17 lines (L1–L17).

At the beginning, all transitions’ T-values are unknown. As every transition has a
possibility to reveal a fault, we initialize an estimated T-value of each transition with
the highest one (L1, L2). This encourages the algorithm to extensively explore
uncovered transitions. After that, iterations of test execution and the learning process
begin. At each iteration, the execution of the ETM as well as the SUT starts from the
initial state (L4) and terminates at a final state (L5). During the execution, a DFSM is
dynamically constructed (L6) to enable the continuous calculation of T-values.
Whenever, the SUT enters a state s, FOT selects one of the outgoing transitions of s
according to their estimated T-values (L7, L8) and makes TM-Executor trigger the
selected transition (L9). As the transition is fired, the system moves from s to s0. If the
state invariant of s0 is not satisfied, then a fault is detected (L12–L15). Otherwise, FOT
evaluates the fragility of the SUT in s0 (L16), i.e., F s0ð Þ, and uses F s0ð Þ to update
estimated T-values. Since it is possible to reach s0 via numerous transitions, finding all
these transitions and updating their T-values are computationally impractical for an
ETM with hundreds of transitions. Thus FOT only updates the estimated T-value of the
last triggered transition (L17). Since F s0ð Þ is not a constant value, the upper bound of
F s0ð Þ is used to update the T-value. As the iteration of the execution proceeds, the
estimated T-values are continuously updated and getting close to their true values. In
this way, the T-values are learned from the execution and the learned T-values direct
FOT to cost-effectively find faults. Note that testing budget determines the maximum
number of iterations. If it is too small, FOT may not able to find faults. The details of
T-value learning and transition selection policy are explained next.

Fragility-Oriented Testing with Model Execution 9

Algorithm 1 FOT(TMExecutor executor, ETM etm, int maxIteration):
Input executor is TM-Executor, the testing framework

etm is the Executable Test Model
maxIteration is the maximum iteration number

Begin
1 for each transition in etm
2 transition.Tvalue ← 1 // initialize T-values of transitions
3 for i=1 to maxIteration
4 etm.Start()
5 while etm.ReachFinalState() is false
6 dfsm ← EnrichDFSM(etm) // dynamically construct the DFSM
7 reachedTransitions ← dfsm.activeState.outgoingTransitions
8 selectedTransition ← SoftmaxSelect(reachedTransitions) //select transition
9 executor.Trigger(selectedTransition)

11 stateInvariant ← selectedTransition.target.invariant
12 if executor.Evaluate(stateInvariant) is false
13 LogFaultDetected(selectedTransition)
14 dfsm.Remove(selectedTransition)
15 break
16 fragility ← executor.DistanceToViolation(stateInvariant)

17 executor.UpdateTvalue(selectedTransition, fragility)
// revise the T-value of selectedTransition

End

T-Value Learning. Before executing the SUT and the ETM, the T-value T tð Þ of every
transition is unknown. We adopt a reinforcement learning approach to learn T tð Þ from
execution. A fundamental property of T tð Þ is that it satisfies a recursive relation, which
is called the Bellman Equation [8], as shown in the formula below:

Recursive relation between T tð Þ andTsuc :

T tð Þ ¼ max F starð Þ; c � max
tsuc2Tsuc

T tsucð Þ
� � ð3Þ

where star is the target state of transition t; Tsuc represents a set of direct successive
transitions whose source state is star. This equation reveals the relation between the
T-values of a transition and its direct successive transitions. It states that the T-value of
t must equal to the greater of two values: the fragility of t’s target state (F starð Þ and the
maximum discounted T-value of t’s direct successive transitions c �maxt02Tsuc

T t0ð Þ� �
.

Given a DFSM, T tð Þ is the unique solution to satisfy Eq. (3). So, we try to update the
estimate of each T-value to make it get increasingly closer to satisfy Eq. (3). When
Eq. (3) is satisfied by the estimated T-values for all transitions, it implies that the true
T tð Þ is learned.

Inspired by Q-learning [8], a reinforcement learning method, FOT uses the esti-
mated T-value ET tð Þ to approximate T tð Þ, i.e., the true T-value. ET tð Þ is updated in the
following way to make it approach T tð Þ.

10 T. Ma et al.

ET tð Þ0 ¼ max F starð Þ; c � max
tsuc2Tsuc

ET tsucð Þ
� �

ð4Þ

where ET tð Þ0 denotes the updated estimate of t’s T-value and ET tsucð Þ represents the
current estimated T-value of a successive transition.

Equation (4) enables FOT to iteratively update ET tð Þ. Once a transition t is trig-
gered, the fragility of the SUT in t’s target state F starð Þ can be evaluated using Eq. (1).
Using Eq. (4), ET tð Þ can be updated whenever a fragility is obtained. As proved in [8],
as long as the estimated T-values are continuously updated, ET tð Þ will converge to the
true T-value: T tð Þ.

However, the fragility of the SUT in a state dynamically changes, due to the
variation of test inputs and environmental uncertainty. To deal with this, we use the
bootstrapping technique [9] to predict the distribution of the fragility and select the
upper bound of its 95% interval as the value for F starð Þ, to update the estimated
T-value. Thus ET tð Þ is iteratively updated by the following equation:

ET tð Þ0 ¼ max Upper F starð Þ½ �; c � max
tsuc2Tsuc

ET tsucð Þ
� �

ð5Þ

where Upper[F starð Þ] is the upper bound of F starð Þ’s 95% confidence interval.

Softmax Transition Selection. To cost-effectively find faults, FOT should extensively
explore different paths in a DFSM. Meanwhile, the covered high T-value transitions
should be exploited (triggered) more frequently to find faults, as a high T-value implies
a high possibility to reveal faults. Hence, in FOT, we use a softmax transition selection
policy to address the dilemma of exploration and exploitation by assigning a selection
probability to a transition proportional to the transition’s T-value. The selection
probability is given below (from [8]):

Prob t0out
� � ¼ eET t0outð Þ=s=

X
toutTout

eET toutð Þ=s ð6Þ

where Prob t0out
� �

denotes the selection probability of an outgoing transition t0out;
ET t0out

� �
is the estimated T-value; Tout represents the set of all outgoing transitions

under the current DFSM state, and s is a parameter, called temperature [10]. s is a
positive real value from 0 to infinity. A large s causes transitions to be equally selected,
whereas, a small s causes high T-value transitions to be selected much more frequently
than transitions with lower T-values.

At the beginning, all transitions’ estimated T-values (ET tð Þ) are initialized to 1,
thus initially transitions have equal probability to be selected. As testing proceeds,
ET tð Þ is continuously updated using Eq. (5). Directed by ET tð Þ, the softmax policy
assigns a high selection probability to transitions that leads to states with high
fragilities. As a result, more fragile states will be exercised more frequently. Note that
this doesn’t preclude covering the less fragile states. In addition, loops in the ETM are
also covered depending on fragilities of states involved in a loop.

Fragility-Oriented Testing with Model Execution 11

4.2 Uncertainty Generation Strategies

Since SH-CPSs typically operate in an uncontrolled environment [2] and are constantly
affected by various environmental uncertainties, e.g., measurement uncertainties from
sensors and actuation deviation from actuators. Effects of these uncertainties on
SH-CPSs’ behaviors should be explicitly considered and tested.

In our previous work [3], we adopted three levels of uncertainty from [11] and
provided modeling notions to explicitly capture uncertainties that affect the behaviors
of SH-CPSs. Table 1 presents a summary of the three uncertainty levels, with their
definitions, methods for specification, and generation mechanisms.

For level 1 uncertainty, at a given point of time, the value of an uncertain factor is a
single value with a margin of error, such as the precision of a digital compass. Based on
its specification, its precision can be determined with a margin of error. The determined
value and the margin of error are specified as an interval. By selecting a value from the
interval, level 1 uncertainty can be simulated.

Level 2 uncertainty signifies the situation that an uncertain factor has alternative
values with known probabilities, like the measurement error of an accelerometer. By
statistically analyzing samples of the measurement error, the probability distribution of
the measurement error can be obtained. Based on the distribution, a value can be
generated for the uncertain factor to simulate level 2 uncertainty.

For level 3 uncertainty, an uncertain factor also has multiple possible values, while
only ranked likelihoods rather than probabilities of the possible values are known. In
this case, possibility distribution is used to capture the ranked likelihoods. For instance,
wind speed and direction are level 3 uncertainties, since the probability of each possible
value is unknown due to limited knowledge and we can only compare their likelihood.
To simulate level 3 uncertainty, the possibility distribution is first transformed to an
equivalent probability distribution [12], from which the value of the uncertain factor is
generated.

Based on testers’ domain knowledge, relevant environmental uncertainties can be
explicitly modeled at the three levels (see [3] for further details). By simulating the
uncertainties based on the specification, effects of uncertainties are reflected in the
testing environment, which enables SH-CPSs to be tested under uncertainties.

4.3 Implementation

We implemented the FOT algorithm and the three uncertainty generation strategies in
TM-Executor. Figure 2 presents its three packages: software in the loop testing (light
gray), uncertainty generation (dark gray), and FOT (white).

TM-Executor tests the software of an SH-CPS in a simulated environment. During
testing, sensor data is computed by simulation models in simulators. Based on the
simulated data, the software generates actuation instructions to control the system.
Uncertainties are added to simulators’ inputs and outputs to simulate the effects of
uncertainties. Based on uncertainty specification, an uncertainty generator generates the
values of uncertain factors whenever sensor data or actuation instructions are trans-
ferred between the software and simulators. By using the values to modify simulators’

12 T. Ma et al.

inputs and outputs, the specified uncertainties are introduced into the testing
environment.

The SUT and its ETM are executed together by an execution engine, which is
deployed in Moka [14], a UML model execution platform. During the execution, the
engine dynamically derives a DFSM from the ETM and used it to guide the execution.
Meanwhile, the active state’s state invariant is checked by a test inspector (using
DresdenOCL [7]). The inspector evaluates the invariant with the actual values of the
state variables, which are updated by the execution engine via testing APIs (Sect. 2.3).
If the invariant is evaluated to be false, a fault is detected. Otherwise, the inspector
calculates the fragility of the SUT in the current state, using Eq. (1). Taking fragility as
input, the FOT algorithm updates its estimate of T-value (Eq. (5)) and uses the softmax
policy to select the next transition. Next, the test driver generates a valid test input with
EsOCL [6], a search-based test data generator, for firing the selected transition. The
execution engine takes this input to invoke the corresponding operation, causing the
ETM and the SUT to enter the next state. In this way, T-values are learned from
iterations of execution and the learned T-values direct FOT to cost-effectively find
faults.

5 Evaluation

We aim to evaluate the cost-effectiveness of FOT by comparing it with a Coverage
Oriented Testing (COT) algorithm to test nine self-healing behaviors in three real
SH-CPSs under 10 uncertainties, by answering two research questions: RQ1: Is FOT
more effective than COT in terms of fault revelation? RQ2: Compared with COT, does
FOT incur less cost to find a fault?

5.1 Case Studies and Test Configuration

We used three open source SH-CPSs for evaluation: (1) ArduCopter is a fully featured
copter control system supporting 18 flight modes to control a copter and has five

Table 1. Uncertainty level, definition, specification and generation

Level Definition Specification Generation

1 “A determined value with
a margin of error” [13]

Interval Derive an uncertainty value from the
interval

2 A set of possible values
with known probability
for each value [13]

Probability
distribution

Generate an uncertainty value
according to the probability
distribution

3 A set of possible values
with known likelihood for
each value [13]

Possibility
distribution

Transform the possibility
distribution to an equivalent
probability distribution [12]. Based
on it, generate an uncertainty value

Fragility-Oriented Testing with Model Execution 13

self-healing behaviors; (2) ArduRover9 is an autopilot system for ground vehicles
having two self-healing behaviors to avoid obstacle and handle the disruption of
control link; (3) ArduPlane10 is an autonomous plane control system having two
self-healing behaviors to avoid collision and address network disruption. Test execu-
tion was performed with software in the loop simulators, including GPS, barometer,
accelerometer, gyro meter, compass, and servo simulators. Nine fault injection oper-
ations were implemented in the simulators to trigger the nine self-healing behaviors to
test them in the presence of uncertainty. More details can be found in [5]. The system
specification includes 10 uncertainties related to the sensors and actuators and details
are presented in Table 2.

5.2 Experimental Design and Execution

Table 3 is the experiment design. We implemented COT [4] and used it as the com-
parison baseline. It selects a transition with a likelihood that is reverse proportional to
the total number of times that the transition has been fired plus one, to explore

Fig. 2. SH-CPS testing framework

Table 2. Identified uncertainties from the three case studies

Uncertainty Level Specification Uncertainty Level Specification

Wind
direction

3 Possibility Categorical
Distribution

Servos Bias 2 Probability normal
distribution

Wind velocity Barometer altitude
noise

GPS location
noise

2 Probability Normal
Distribution

Barometer climb
rate noise

GPS velocity
noise

Accelerometer
noise

GPS location
drift

Compass noise

9 http://ardupilot.org/rover/.
10 http://ardupilot.org/plane/.

14 T. Ma et al.

http://ardupilot.org/rover/
http://ardupilot.org/plane/

uncovered transitions as many as possible. For FOT, we set discount rate c to 0.99 and
temperature s to 0.2.

The nine self-healing behaviors were tested independently (i.e., nine experiments).
We specified expected functional and self-healing behaviors as ETMs, whose statistics
are shown in Table 4. The last row of Table 4 presents twice the time taken by COT to
cover all transitions of an ETM. We chose this time as the maximum test execution
time for each ETM. To reduce randomness, we run each experiment 10 times for both
algorithms.

To answer RQ1, we used Number of Detected Faults (NDF) to evaluate the effec-
tiveness of the algorithms in terms offinding faults and is calculated as NDF ¼ P10

i¼1 ni,
where ni is the number of detected faults in the ith run of an experiment. Note that it is the
first time the three case studies are tested under uncertainties. Thus, the total number of
real faults was unknown. For RQ2, we define Time to Find Fault (TFF, i.e., the time (in
minutes) that FOT/COT spent to find a fault) to assess the cost of finding faults. TFFi

represents the TFF for the ith run of an experiment and the average TFF of an experiment

is TFF ¼
Pm

i¼1
TFFi

m , where m is the number of runs out of ten, that a fault was detected.
Following the guidelines in [15], we conducted the Fisher’s exact test to check the

significance of results and used the odds ratio as the effect size measure for the results of
RQ1, as they are dichotomous data, i.e., faults found or not. Since data to answer RQ2 are
continuous, i.e., the time to find a fault, we applied the Vargha and Delaney’s Â12

statistics to measure the effect size. To check the significance of the results, we first
performed the Shapiro-Wilk test to test the normality of the two TFF samples.
The calculated p-values corresponding to the two algorithms are 0.26 and 0.48, which are

Table 3. Experiment design

RQ Comparison Case study #Runs Metric Statistical test
Name #Self-healing

behaviors

1 FOT vs.
COT

ArduCopter 5 10 NDF Fisher’s exact test, odds
ratio

2 ArduPlane 2 TFF Vargha and Delaney’s Â12

Welch’s t-testArduRover 2

Table 4. Descriptive statistics of ETMs

Statistics ArduCopter ArduRover ArduPlane
ETM1 ETM2 ETM3 ETM4 ETM5 ETM6 ETM7 ETM8 ETM9

#States 64 60 70 64 36 58 54 79 40
#Transitions 440 268 286 440 106 306 303 347 104
Max. Exe. Time
(mins)

744 472 562 740 276 960 756 914 290

Fragility-Oriented Testing with Model Execution 15

greater than 0.05 suggesting that the samples do not strongly depart from normality.
Based on this, we performed theWelch’s t-test to check the significance of RQ2’s results,
because the two TFF samples have unequal variances as results of the F-test revealed.

5.3 Evaluation Results

Table 5 shows results for RQ1. Within the fixed time, FOT and COT detected the same
fault for SH1. FOT was able to find faults in five other self-healing behaviors, while
COT failed for the rest. Note that both FOT and COT achieved 100% transition
coverage and thus we do not compare them based on this measure.

For SH1, the Fisher’s exact test calculated a p-value of 0.474 (greater than 0.05)
suggesting no significant difference between COT and FOT. The obtained odds ratio
was 3.67 indicating that FOT is likely to find more faults than COT. Both FOT and
COT didn’t detect any fault in SH4, SH5, and SH6, which might be due to two reasons:
1) No faults in these behaviors, 2) Neither algorithm covered a particular path with
specific test input and uncertainty values that could reveal faults. For the other five
behaviors, COT failed to detect any faults, while FOT succeeded in all the cases
suggesting that FOT is significantly better than COT.

Since COT only detected a fault in SH1, only the TFFs for SH1 are used to answer
RQ2. On average, FOT could find a fault within 142 min, while COT required 282 min
to find a fault (Table 5). We conducted the Welch’s t-test and the result
(p-value = 0.043) showed that COT took significantly more time than FOT to find a
fault. In addition, the result of Â12 ¼ 0:875 suggests that, in most cases, COT is
expected to spend more time than FOT to find a fault.

5.4 Discussion

We obtained three key observations. First, due to the effect of uncertainties,
self-healing behaviors might fail to timely detect faults or improperly adapt system
behaviors. For instance, because of sensors’ measurement uncertainties, the copter
could not accurately capture its location, orientation, and velocity. When the copter was

about to collide with another vehicle, inaccurate measurements sometimes caused the
copter incorrectly adjust its orientation, leading to a collision. Therefore, it is necessary
to test self-healing behaviors in the presence of environmental uncertainties. To build
such a testing environment, we generate uncertainties according to interval, probability

Table 5. Number of detected faults in 10 runs

Alg. Metrics ArduCopter ArduRover ArduPlane

SH1 SH2 SH3 SH4 SH5 SH6 SH7 SH8 SH9

COT NDF 8 0 0 0 0 0 0 0 0

TFFðminsÞ 282 – – – – – – – –

FOT NDF 10 7 6 0 0 0 8 10 5

TFFðminsÞ 142 247 415 – – – 548 468 208

16 T. Ma et al.

or possibility distributions. Though this may not be the optimal strategy, it provides a
preliminary solution for this problem. Second, a typical objective of a coverage-based
testing approach is to achieve full coverage, e.g., 100% transition coverage. However,
this is not sufficient to reveal a fault in self-healing behaviors under uncertainty, as
demonstrated by the experiment result. Since transitions have different possibilities to
reveal a fault, the ones with high possibility should be tested more frequently to
cost-effectively find faults. Third, for testing SH-CPSs under uncertainty, FOT is more
cost-effective than COT in terms of a number of detected faults and time spent to reveal
a fault. On average, FOT found 80% more faults and when both algorithms managed to
find a fault, FOT took 50% less time than COT. This is because FOT used execution
information to dynamically learn transitions’ T-values, which indicates the possibility
of revealing a fault when firing transitions; COT only used coverage information to
direct test execution.

5.5 Threats to Validity

Conclusion validity is concerned with factors that affect the conclusion drawn from
the outcome of experiments. Because of random transition selection used by FOT and
COT, randomness in the results is the most probable conclusion validity threat. To
reduce this threat, all the experiments were repeated 10 times. We applied two sta-
tistical tests and two effect size measures to evaluate statistical differences and mag-
nitude of improvement. In addition, the variation in simulated uncertainties may be
another conclusion validity threat. However, we simulated the same sequence of
uncertainties for both algorithms. We fixed the maximum test execution time for both
of the algorithms. This measure was taken to remove the internal validity threat that
different settings might favor one algorithm over the other. However, more experiments
with other settings in terms of test execution time are required to further strengthen the
current conclusion. External validity threats concern the generalization of the
experiment results. We tested nine self-healing behaviors of three real case studies.
However, additional case studies are needed to further generalize the results. With
respect to construct validity threats, we used the number of detected faults and the
time required to detect a fault as the evaluation metrics, which are comparable across
both of the algorithms.

6 Related Work

Model-Based Testing (MBT) has shown good results of producing effective test suites
to reveal faults [16]. For a typical MBT approach, abstract test cases are generated from
models first, e.g., using structural coverage criteria (e.g., all state coverage) [17, 18].
Generated abstract test cases are then transformed into executable ones, which are
executed on the SUT. To reduce the overhead caused by test cases generation,
researchers proposed to combine test generation, selection, and execution into one
process [19, 20]. De Vries et al. [19] created a testing framework, with which the SUT
is modeled as a labeled transition system. By parsing this model, test inputs are gen-
erated on the fly to perform conformance testing. This approach aims to test all paths

Fragility-Oriented Testing with Model Execution 17

belonging to this model. However, if loops exist or the specified model is large,
additional mechanisms are required to reduce the state space. Larsen et al. [20] pro-
posed a similar testing tool for embedded real-time systems. It uses the timed I/O
transition system as the test model, and test inputs are randomly generated from the
model on the fly for testing.

Different from the existing works, FOT relies on the model execution of ETMs to
facilitate the testing of SH-CPSs under uncertainty. During the execution, FOT applies
a reinforcement learning technique to learn transitions’ T-values, which direct FOT to
cost-effectively find faults. Besides, FOT focuses on testing self-healing behaviors in
the presence of environmental uncertainty, which is not covered by existing works. The
first reinforcement learning based testing algorithm was proposed in [4]. It uses fre-
quencies of transitions’ coverage as the heuristics of reinforcement learning. By
learning frequencies, the algorithm tries to equally explore all transitions. However, a
long-term reward is not realized in this approach. Groce et al. [21] created a framework
to simplify the application of reinforcement learning for testing, which uses coverage as
the heuristic and relies on SARSA(k) [8] for calculating long term rewards. Similarly,
Araiza-Illan et al. [22] used coverage as the reward function to test human-robot
interactions with reinforcement learning. Due to uncertainty, achieving the full tran-
sition coverage is insufficient to find faults in self-healing behaviors. Thus, we propose
to use fragility instead of coverage as the heuristic.

7 Conclusion

This paper presents a new testing algorithm, Fragility Oriented Testing (FOT), for testing
self-healing behaviors of SH-CPSs under uncertainty. It applies model execution and a
reinforcement learning method to learn each transition’s T-value, which indicates the
possibility to reveal a fault after firing the transition. Accordingly, FOT focuses on
exercising transitions with high T-values to cost-effectively find faults. To evaluate FOT,
we tested nine self-healing behaviors in three case studies. The results showed that FOT
significantly outperformed COT for five out of nine self-healing behaviors in terms of
faults finding. On average, FOT discovered 80% more faults than COT. When both
algorithms succeeded to find a fault, FOT on average took 50% less time than COT. In the
future, we plan to conduct more experiments and integrate more advanced reinforcement
learning algorithms to further enhance the algorithm’s fault detection capability.

References

1. Bures, T., Weyns, D., Berger, C., et al.: Software engineering for smart cyber-physical
systems–towards a research agenda: report on the first international workshop on software
engineering for smart CPS. ACM SIGSOFT Softw. Eng. Notes 40(6), 28–32 (2015). ACM

2. Lee, E.A.: Cyber physical systems: design challenges. In: 11th IEEE International
Symposium on Object and Component-Oriented Real-Time Distributed Computing
(ISORC), pp. 363–369. IEEE (2008)

18 T. Ma et al.

3. Ma, T., Ali, S., Yue, T.: Modeling healing behaviors of cyber-physical systems with
uncertainty to support automated testing. In: Simula Research Lab Technical report 2016-08
(2016). https://www.simula.no/publications/modeling-healing-behaviors-cyber-physical-
systems-uncertainty-support-automated-testing

4. Veanes, M., Roy, P., Campbell, C.: Online testing with reinforcement learning. In:
Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV -2006. LNCS, vol. 4262,
pp. 240–253. Springer, Heidelberg (2006). doi:10.1007/11940197_16

5. Ma, T., Ali, S., Yue, T.: Fragility-oriented testing with model execution and reinforcement
learning. In: Simula Research Lab Technical report 2017-05 (2017). https://www.simula.no/
publications/fragility-oriented-testing-model-execution-and-reinforcement-learning

6. Ali, S., Iqbal, M.Z., Arcuri, A., et al.: Generating test data from OCL constraints with search
techniques. IEEE Trans. Softw. Eng. 39(10), 1376–1402 (2013). IEEE

7. Demuth, B., Wilke, C.: Model and object verification by using Dresden OCL. In:
Proceedings of the Russian-German Workshop Innovation Information Technologies:
Theory and Practice, Ufa, Russia, pp. 687–690. Citeseer (2009)

8. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge
(1998)

9. Mooney, C.Z., Duval, R.D., Duval, R.: Bootstrapping: A Nonparametric Approach to
Statistical Inference. Sage, London (1993)

10. Anzai, Y.: Pattern Recognition and Machine Learning. Elsevier, Amsterdam (2012)
11. Walker, W.E., Lempert, R.J., Kwakkel, J.H.: Deep uncertainty. In: Gass, S.I., Fu, M.C.

(eds.) Encyclopedia of Operations Research and Management Science, pp. 395–402.
Springer, New York (2013). doi:10.1007/978-1-4419-1153-7_1140

12. Dubois, D., Prade, H., Sandri, S.: On possibility/probability transformations. In: Lowen, R.,
Roubens, M. (eds.) Fuzzy Logic. Theory and Decision Library (Series D: System Theory,
Knowledge Engineering and Problem Solving), vol. 12. Springer, Dordrecht (1993). 10.
1007/978-94-011-2014-2_10

13. Ma, T., Ali, S., Yue, T.: Conceptually understanding uncertainty in self-healing
cyber-physical systems. In: Simula Research Lab Technical report 2016-07 (2016).
https://www.simula.no/publications/conceptually-understanding-uncertainty-self-healing-
cyber-physical-systems

14. Tatibouet, J.: Moka – a simulation platform for Papyrus based on OMG specifications for
executable UML. In: EclipseCon, OSGI (2016)

15. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess randomized
algorithms in software engineering. In: 33rd International Conference on Software
Engineering (ICSE), pp. 1–10. IEEE (2011)

16. Enoiu, E.P., Cauevic, A., Sundmark, D., et al.: A controlled experiment in testing of
safety-critical embedded software. In: IEEE International Conference on Software Testing,
Verification and Validation (ICST), pp. 1–11. IEEE (2016)

17. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model‐based testing approaches.
Softw. Testing, Verification Reliabil. 22(5), 297–312 (2012)

18. Grieskamp, W., Hierons, R.M., Pretschner, A.: Model-based testing in practice. In: Dagstuhl
Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2011)

19. de Vries, R.G., Tretmans, J.: On-the-fly conformance testing using SPIN. Int. J. Softw. Tools
Technol. Transf. (STTT) 2(4), 382–393 (2000). Springer

20. Larsen, Kim G., Mikucionis, M., Nielsen, B.: Online testing of real-time systems using
Uppaal. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp. 79–94.
Springer, Heidelberg (2005). doi:10.1007/978-3-540-31848-4_6

Fragility-Oriented Testing with Model Execution 19

https://www.simula.no/publications/modeling-healing-behaviors-cyber-physical-systems-uncertainty-support-automated-testing
https://www.simula.no/publications/modeling-healing-behaviors-cyber-physical-systems-uncertainty-support-automated-testing
http://dx.doi.org/10.1007/11940197_16
https://www.simula.no/publications/fragility-oriented-testing-model-execution-and-reinforcement-learning
https://www.simula.no/publications/fragility-oriented-testing-model-execution-and-reinforcement-learning
http://dx.doi.org/10.1007/978-1-4419-1153-7_1140
http://dx.doi.org/10.1007/978-94-011-2014-2_10
http://dx.doi.org/10.1007/978-94-011-2014-2_10
https://www.simula.no/publications/conceptually-understanding-uncertainty-self-healing-cyber-physical-systems
https://www.simula.no/publications/conceptually-understanding-uncertainty-self-healing-cyber-physical-systems
http://dx.doi.org/10.1007/978-3-540-31848-4_6

21. Groce, A., Fern, A., Pinto, J., et al.: Lightweight automated testing with adaptation-based
programming. In: IEEE 23rd International Symposium on Software Reliability Engineering
(ISSRE), pp. 161–170. IEEE (2012)

22. Araiza-Illan, D., Pipe, A.G., Eder, K.: Intelligent agent-based stimulation for testing robotic
software in human-robot interactions. In: Proceedings of the 3rd Workshop on
Model-Driven Robot Software Engineering. ACM (2016)

20 T. Ma et al.

Fault-Based Testing for Refinement in CSP

Ana Cavalcanti1 and Adenilso Simao2(B)

1 University of York, York, UK
ana.cavalcanti@york.ac.br

2 University of São Paulo, São Carlos, Brazil
adenilso@icmc.usp.br

Abstract. The process algebra CSP has been studied as a modeling
notation for test derivation. Work has been developed using its trace
and failure semantics, and their refinement notions as conformance rela-
tions. In this paper, we propose a procedure for online test generation
for selection of finite test sets for traces refinement from CSP models,
based on the notion of fault domains, that is, focusing on the set of faulty
implementations of interest. We investigate scenarios where the verdict
of a test campaign can be reached after a finite number of test executions.
We illustrate the usage of the procedure with a small case study.

1 Introduction

Model-based testing (MBT) has received increasing attention due to its ability
to improve productivity, by automating test planning, generation, and execu-
tion. The central artifact of an MBT technique is the model. It serves as an
abstraction of the system under test (SUT), manageable by the testing engi-
neers, and can be processed by tools to automatically derive tests. Most nota-
tions for test modeling are based on states; examples are Finite State Machines,
Labelled Transition Systems, and Input/Output Transition Systems. Many test-
generation techniques are available for them [7,11,21,25]. Other notations use
state-based machines as the underlying semantics [12,16].

CSP [24] has been used as a modelling notation for test derivation. The
pioneering work in [20] formalises a test-automation approach based on CSP.
More recently, CSP and its model checker FDR [10] have been used to automate
test generation with ioco as a conformance relation [19]. A theory for testing for
refinement from CSP has been fully developed in [4].

Two sets of tests have been defined and proved to be exhaustive: they can
detect any SUT that is non-conforming according to traces or failures refinement.
Typically, however, these test sets are infinite. A few selection criteria have been
explored: data-flow and synchronisation coverage [5], and mutation testing [1]
for a state-rich version of CSP. The traditional approaches for test generation
from state-based models have not been studied in this context.

Even though the operational semantics of CSP defines a Labelled Transition
System (LTS), applying testing approaches based on states in this context is

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 21–37, 2017.
DOI: 10.1007/978-3-319-67549-7 2

22 A. Cavalcanti and A. Simao

challenging: (i) not every process has a finite LTS, and it is not trivial to deter-
mine when it has; (ii) even if the LTS finite, in may not be deterministic; (iii) for
refinement, we are not interested in equivalence of LTS; and (iv) to deal with
failures, the notion of state needs to be very rich.

Here, we present a novel approach for selection of finite test sets from CSP
models by identifying scenarios where the verdict of a campaign can be reached
after a finite number of test executions. We adopt the concept of fault domain
from state-based methods to constrain the possible faults in an SUT [22]. Fault-
based testing is more general than the criteria above, since the test engineering
can embed knowledge about the possible faults of the SUT into a fault domain to
guide generation and execution [13]. We define a fault domain as a CSP process
that is assumed to be refined by the SUT. With that, we establish that some
tests are not useful, as they cannot reveal any new information about the SUT.

In addition, we propose a procedure for online generation of tests for traces
refinement. Tests are derived and applied to the SUT and, based on the verdict,
either the SUT is cast incorrect, or the fault domain is refined.

We present some scenarios where our procedure is guaranteed to provide a
verdict after a finite number of steps. A simple scenario is that of a specifi-
cation with a finite set of traces: unsurprisingly, after that set is exhaustively
explored our procedure terminates. A more interesting scenario is when the SUT
is incorrect; our procedure also always terminates in this case.

We have also investigated the scenario where the set of traces of the specifica-
tion is infinite, but that of the SUT is finite and the SUT is correct. A challenge
in establishing termination is that, while when testing using Mealy and finite
state machines every trace of the model leads to a test, this is not the case with
CSP. For example, for traces refinement, traces of the specification that lead to
states in which all possible events are accepted give rise to no tests. After such
a trace, the behavior of the SUT is unconstrained, and so does not need to be
tested. Another challenge is that most CSP fault domains are infinite.

Our approach is similar to those adopted in the traditional finite state-
machines setting, but addresses these challenges. We could, of course, change
the notion of test and add tests for all traces. A test that cannot fail, however,
is, strictly speaking, just a probe. For practical reasons, it is important to avoid
such probes, which cannot really reveal faults.

The contributions of this paper are: (1) the introduction of the notion of
fault domain in the context of a process algebra for refinement; (2) a procedure
for online testing for traces refinement validated by a prototype implementation;
and (3) the characterization of some scenarios in which the procedure terminates.

Next, in Sect. 2 we present background material: fault-based testing, and CSP
and its testing theory. Section 3 casts the traditional concepts of fault-based test-
ing in the context of CSP. Our procedure is presented in Sect. 4. Termination is
studied in Sect. 5. Section 6 describes a prototype implementation of our proce-
dure and its use in a case study. Finally, we conclude in Sect. 7.

Fault-Based Testing for Refinement in CSP 23

2 Preliminaries

In this section, we describe the background material to our work.

2.1 CSP: Testing and Refinement

CSP is distinctive as a process algebra for refinement. In CSP models, systems
and components are specified as reactive processes that communicate synchro-
nously via channels. A prefixing a → P is a process that is ready to communicate
by engaging in the event a and then behaves like P . The external choice operator
� combines processes to give a menu of options to the environment.

Example 1. The process Counter uses events add and sub to count up to 2.

Counter = add → Counter1
Counter1 = add → Counter2 � sub → Counter
Counter2 = sub → Counter1

Counter1 offers a choice to increase (add) or decrease (sub) the counter. ��
Other operators combine processes in internal (nondeterministic) choice, parallel,
sequence, and so on. Nondeterminism can also be introduced by interleaving and
by hiding internal communications, for example.

There are three standard semantics for CSP: traces, failures, and failure-
divergences, with refinement as the notion of conformance. As usual, the testing
theory assumes that specifications and the SUT are free of divergence, which is
observed as deadlock in a test. So, tests are for traces or failures refinement.

We write P �T Q when P is trace-refined by Q ; similarly, for P �F Q and
failures-refinement. In many cases, definitions and results hold for both forms of
refinement, and we write simply P � Q . In all cases, P � Q requires that the
observed behaviours of Q (either its traces or failures) are all possible for P .

The CSP testing theory adopts two testability hypothesis. The first is often
used to deal with a nondeterministic SUT: there is a number k such that, if
we execute a test k times, the SUT produces all its possible behaviours. (In
the literature, it appears in [14,15,25], for example, as fairness hypothesis or
all-weather assumption.) The second testability hypothesis is that there is an
(unknown) CSP process SUT that characterises the SUT.

The notion of execution of a test T is captured by a process ExecutionS
SUT (T)

that composes the SUT and the test T in parallel, with all their common (speci-
fication) events made internal. Special events in T give the verdict: pass, fail , or
inc, for inconclusive tests that cannot be executed to the end because the SUT
does not have the trace that defines the test.

The testing theory also has a notion of successful testing experiment: a
property passes�(S ,SUT ,T) defines that the SUT passes the test T for
specification S . A particular definition for passes�(S ,SUT ,T) typically uses
the definition of ExecutionS

SUT (T), but also explains how the information aris-
ing from it is used to achieve a verdict. For example, for traces refinement, we
have the following.

24 A. Cavalcanti and A. Simao

passesT (S ,SUT ,T) =̂ ∀ t : traces [[ExecutionS
SUT (T)]] • last(t) �= fail

For a definition of passes�(S ,SUT ,T) and a test suite TS , we use the notation
passes�(S ,SUT ,TS) as a shorthand for ∀T : TS • passes�(S ,SUT ,T).

In general, for a given definition of passes�(S ,SUT ,T), we can characterise
exhaustivity Exhaust�(TS) of a test suite TS as follows.

Definition 1. A test suite TS satisfies the property Exhaust�(S ,TS), that is,
it is exhaustive for a specification S and a conformance relation � exactly when,
for every process P, we have S � P ⇔ passes�(S ,P ,TS).

Different forms of test give rise to different exhaustive sets. We use Exhaust�(S)
to refer to a particular exhaustive test suite for S and �.

For a trace 〈a1, a2, . . . 〉 with events a1, a2, and so on, and one of its forbidden
continuations a, that is, an event a not allowed by the specification after the
trace, the traces-refinement test TT (〈a1, a2, . . . 〉, a) is given by the process inc →
a1 → inc → a2 → ... → pass → a → fail . In alternation, it gives an inc verdict
and offers an event of the trace to the SUT, until all the trace is accepted, when
it gives the verdict pass, but offers the forbidden continuation. It is accepted,
the verdict is fail . The exhaustive test set ExhaustT (S) for traces refinement
includes all tests TT (t , a) formed in this way from the traces t and forbidden
continuations a of the specification.

Example 2. We consider the specification S1 = a → b → S1. The exhaustive
test set for S1 and traces refinement is sketched below.

{pass → b → fail → STOP , inc → a → pass → a → fail → STOP ,
inc → a → inc → b → pass → b → fail → STOP , . . .} ��

In [3], it is proven that Exhaust�T
(S ,ExhaustT (S)).

2.2 Fault-Based Testing

The testing activity is constrained by the amount of resources available. Some
criteria is needed to select a finite subset of finite tests. Fault-based criteria con-
sider that there is a fault domain, modelling the set of all possible faulty imple-
mentations [13,22]. They restrict the set of required tests using the assumption
that the SUT is in that domain [26]. Testing has to consider the possibility that
the SUT can be any of those implementations, but no others [17].

For Finite State Machines (FSMs), many test-generation techniques assume
that the SUT may have a combination of initialisation faults (that is, the SUT
initialises in a wrong state), output faults (that is, the SUT produces a wrong
output for a given input), transfer faults (that is, a transition of the SUT leads
to the wrong states), and missing or extra states (that is, the set of states of the
SUT is increased or decreased). Therefore, for a specification with n states, it is
common that the fault domain is defined denotationally as “the set of FSMs (of
a given class) with no more than m states, for some m ≥ n” [7,9,11]. In this
case, all faults above are considered, except for more extra states than m − n.

Fault-Based Testing for Refinement in CSP 25

Fault domains can also be used to restrict testing to parts of the specification
that the tester judges more relevant. For instance, some events of the specifica-
tion can be trivial to implement and the tester may decide to ignore them. An
approach for modelling faults of interest, considering FSMs, is to assume that
the SUT is a submachine of a given non-deterministic FSM, as in [13]. Thus, the
parts of the SUT that are assumed to be correct can be easily modelled by a
copy the specification; the faults are then modelled by adding extra transitions
with the intended faults. Fault domains can also be modelled by explicitly enu-
merating the possible faulty implementations, known as mutants [8]. Thus, tests
can be generated targetting each of those mutants, in turn.

In the next section, we define fault domains by refinement of a CSP process.

3 Fault-Based Testing in CSP

For CSP, we define a fault domain as a process FD � SUT ; it characterises the
set of all processes that refine it. We use the term fault domain sometimes to
refer to the CSP process itself and sometimes to the whole collection of processes
it identifies. In the CSP testing theory, the specification and SUT are processes
over the same alphabet of events. Accordingly, here, we assume that a fault
domain FD uses only those events as well.

The usefulness of the concept of fault domain is illustrated below.

Example 3. For S1 in Example 2, we first take just FD1 = RUN ({a, b}) as a
fault domain. For any alphabet A, the process RUN (A) repeatedly offers all
events in A. So, with FD1, we add no extra information, since every process
that uses only channels a and b trace refines FD1. A more interesting example
is FD2 = a → (a → FD2 � b → FD2). In this case, the assumption that
FD2 �T SUT allows us to eliminate the first and the third tests in Example 2,
because an SUT that refines FD2 always passes those tests. ��
In examples, we use traces refinement as the conformance relation, and assume
that we have a fixed notion of test. The concepts introduced here, however, are
relevant for testing for either traces or failures refinement.

It is traditional in the context of Mealy machines to consider a fault domain
characterised by the size of the machines, and so, finite. Here, however, if a
fault domain FD has an infinite set of traces, it may have an infinite number of
refinements. For traces refinement, for example, for each trace t , a process that
performs just t refines FD . So, we do not assume that fault domains are finite.

Just like we define the notion of exhaustive test set to identify a collection
of tests of interest, we define the notion of a complete test set, which contains
the tests of interest relative to a fault domain.

Definition 2. For a specification S, and a fault domain FD, we define a test set
TS : PExhaust�(S) to be complete, written CompleteS

�(TS ,FD), with respect to
FD if, and only if, for every implementation I in FD we have

¬ (S � I) ⇒ ∃T : TS • ¬ passes�(S , I ,T)

26 A. Cavalcanti and A. Simao

This is a property based not on the whole of the fault domain, but just on its
faulty implementations. For traces refinement, the exhaustive test set is given
by ExhaustT (S) and the verdict by passesT (S ,SUT ,T) defined in Sect. 2.1.

If FD is the bottom of the refinement relation �, then a complete test set
TS is exhaustive. It is direct from Definition 2 the fact that a complete test set
is a subset of the exhaustive test set and, therefore, unbiased, that is, it does
not reject correct programs. We also need validity: only correct programs are
accepted. This is also fairly direct as established in the theorem below.

Theorem 1. Provided FD � SUT, we have that

∃TS : PExhaust�(S) • complete(TS ,FD) ∧ passes�(S ,SUT ,TS)

implies S � SUT.

Proof

∃TS : PExhaust�(S) • complete(TS ,FD) ∧ passes�(S ,SUT ,TS)

= ∃TS : PExhaust�(S) •
(¬ (S � SUT) ⇒ ∃T : TS • ¬ passes�(S ,SUT ,T)) ∧
passes�(S ,SUT ,TS)

[Definition 2]

= ∃TS : PExhaust�(S) •
(passes�(S ,SUT ,TS) ⇒ S � SUT) ∧ passes�(S ,SUT ,TS)

[predicate calculus and definition of passes]

⇒ (S � SUT) [predicate calculus]

��
Finally, if an unbiased test is added to a complete set, the resulting set is still
complete. Unbias follows from inclusion in the exhaustive test set.

An important set is those of the useless tests for implementations in the fault
domain. The fact that we can eliminate such tests from any given test suite has
an important practical consequence.

Definition 3

Useless�(S ,FD) = {T : Exhaust�(S) | passes�(S ,FD ,T)}

Since FD passes the tests in Useless�(S ,FD), all implementations in that fault
domain also pass those tests, provided passes�(S ,P ,T) is monotonic on P with
respect to refinement. This is proved below.

Lemma 1. For every I in FD, and for every T : Useless�(S ,FD), we have
passes�(S , I ,T), if passes�(S ,P ,T) is monotonic on P with respect to �.

Fault-Based Testing for Refinement in CSP 27

Proof

FD � I
⇒ passes�(S ,FD ,T) ⇒ passes�(S , I ,T) [monotonicity of passes]
= T ∈ Useless�(S ,FD) ⇒ passes�(S , I ,T) [definition of Useless�(S ,FD)]

��
Example 4. We recall that the definition for passesT (S ,SUT ,T) is monotonic,
as shown below, where we consider processes P1 and P2 such that P1 �T P2.

ExecutionS
P1

(T) = (P1 |[αS]| T)\αS [definition of Execution]

⇒ ExecutionS
P1

(T) �T (P2 |[αS]| T)\αS
[monotonicity of CSP operators with respect to refinement]

= ExecutionS
P1

(T) �T ExecutionS
P2

(T) [definition of Execution]

⇒ traces [[ExecutionS
P2

(T)]] ⊆ traces [[ExecutionS
P1

(T)]] [definition of �T]

⇒ (∀ t : traces [[ExecutionS
P1

(T)]] • last(t) �= fail) ⇒
(∀ t : traces [[ExecutionS

P2
(T)]] • last(t) �= fail)

[predicate calculus]

= passesT (S ,P1,T) ⇒ passesT (S ,P2,T) [definition of passesT]

��
Typically, it is expected that the notions of passes�(S ,P ,T) are monotonic on
P with respect to the refinement relation �: a testing experiment that accepts
a process, also accepts its correct implementations.

It is important to note that there are tests that do become useless with a
fault-domain assumption. This is illustrated below.

Example 5. In Example 3, the first and third tests of the exhaustive test set are
useless as already indicated. For instance, we can show that FD2 passes the first
test T1 = pass → b → fail → STOP as follows.

ExecutionS1
FD2

(T1)

= (FD2 |[{a, b}]| T1) \ {a, b} [definition of Execution]

= (pass → (FD2 |[{a, b}]| b → fail → STOP)) \ {a, b}
[step law of parallelism]

= pass → (FD2 |[{a, b}]| b → fail → STOP) \ {a, b} [step law of hiding]

= pass → STOP \ {a, b} [step law of parallelism]
= pass → STOP [step law of hiding]

So, traces [[ExecutionS1
FD2

(T1)]] = {〈〉, 〈pass〉}, none of which finish with fail . ��

28 A. Cavalcanti and A. Simao

4 Generating Test Sets

To develop algorithms to generate tests based on a fault domain, we need to
consider particular notions of refinement, and the associated notions of test and
verdict. In this paper, we present an algorithm for traces refinement (Fig. 1).

A particular execution of the test can result in the verdicts inc, pass or fail.
Due to nondeterminism in the SUT, the test may need to be executed multiple
times, resulting in more than one verdict. We assume that the test is executed as
many times as needed to observe all possible verdicts according to our testability
hypothesis. So, for a test T and implementation SUT , we write verdSUT (T) to
denote the set of verdicts observed when T is executed to test SUT .

If fail ∈ verdSUT (T), the SUT is faulty (if T is in Exhaust�(TS)). In this
case, we can stop the testing activity, since the SUT needs to be corrected.
Otherwise, we can determine additional properties of the SUT, considering the
test verdicts. The SUT is a black box, but combining the knowledge that it is
in the fault domain and has not failed a test, we can refine the fault domain.

If fail �∈ verdSUT (T), both inc and pass bring relevant information. We
consider a test TT (t , a), and recall that the SUT refines the fault domain FD .
If pass ∈ verdI (TT (t , a)), then t ∈ traces [[SUT]], but t � 〈a〉 �∈ traces [[SUT]].
Thus, the fault domain can be updated, since we have more knowledge about the
SUT: it does not have the trace t�〈a〉. Otherwise, if verdI (TT (t , a)) = {inc}, the
trace t was not completely executed, and hence the SUT does not implement t .
We can, therefore, update the fault domain as well.

In both cases, we include in the fault domain knowledge about traces not
implemented. Information about implemented traces is not useful: given the
definition of traces refinement, it cannot be used to reduce the fault domain.

Given a fault domain FD and a trace t , such that t �∈ traces [[SUT]], we define
a new fault domain as follows. First, we define a process NOTTRACE (t), which
tracks the execution of each event in t , behaving like the process RUN (Σ) if the
corresponding event of the trace does not happen. If we get to the end of t , then
NOTTRACE (t) prevents its last event from occurring. It, however, accepts any
other event, and, at that point, also behaves like RUN (Σ).

NOTTRACE (〈a〉) = � e : Σ \ {a} • e → RUN (Σ)
NOTTRACE (〈a〉 � t) = a → NOTTRACE (t)

�

(� e : Σ \ {a} • e → RUN (Σ))

Formally, if the monitored trace is a singleton 〈a〉, then a is blocked by the
process NOTTRACE (〈a〉). It offers in external choice all events except a: those
in the set Σ of all events minus {a}. If a different event e happens, then 〈a〉 is
no longer possible and the monitor accepts all events. If the monitored trace is
〈a〉 � t , for a non-empty t , then, if a happens, we monitor t . If a different event
e happens, then 〈a〉 � t is no longer possible and the monitor accepts all events.

We notice that NOTTRACE is not defined for the empty trace, which is
a trace of every process, and that, as required, t �∈ traces [[NOTTRACE (t)]].

Fault-Based Testing for Refinement in CSP 29

On the other hand, for any trace s that does not have t as a prefix, we have
that s ∈ traces [[NOTTRACE (t)]]. To obtain a refined fault domain FDU (t), we
compose FD in parallel with NOTTRACE (t).

FDU (t) = FD |[Σ]| NOTTRACE (t)

The parallelism requires synchronisation on all events and, therefore, controls
the occurrence of events as defined by NOTTRACE (t). So, the fault domain
defined by FDU (t) excludes processes that perform t .

1: procedure TestGen(S ,FDinit ,SUT)
2: FD ← FDinit

3: failed ← false
4: TS ← ∅
5: while ¬ (S �T FD) ∧ ¬ failed do
6: Select a shortest t ∈ (traces [[FD]] ∩ traces [[S]]) \ TS
7: if initials(FD/t) \ initials(S/t) �= ∅ then
8: Select a ∈ initials(FD/t) \ initials(S/t)
9: verd ← ApplyTest(SUT ,TT (t , a))

10: if fail ∈ verd then
11: failed ← true
12: else if pass ∈ verd then
13: FD ← FDU (FD , t � 〈a〉)
14: else � that is, verd = {inc}
15: FD ← FDU (FD , t)
16: end if
17: else � that is, initials(FD/t) \ initials(S/t) = ∅
18: TS ← TS ∪ {t}
19: end if
20: end while
21: return ¬ failed
22: end procedure

Fig. 1. Procedure for test generation

Since t �∈ traces [[SUT]] and FD �T SUT , then FDU (t) �T SUT . Thus, we
have FD �T FDU (t) �T SUT . If the fault domain trace refines the specification
S , we have that S �T FD �T SUT ; thus, we can stop testing, since S �T SUT .

Based on these ideas, we now introduce a procedure TestGen for test gener-
ation. It is shown for a specification S , an implementation SUT , and an initial
fault domain FDinit . In the case that there is no special information about the
implementation, the initial fault domain can be simply RUN (Σ).

TestGen uses local variables failed , to record whether a fault has been found
as a result of a test whose execution gives rise to a fail verdict, and FD , to record
the current fault domain. Initially, their values are false and FDinit . A variable
TS records the set of traces for which tests are no longer needed, because all its
forbidden continuations, if any, have already been used for testing.

30 A. Cavalcanti and A. Simao

The procedure loops until it is found that the specification is refined by the
fault domain or a test fails. In each iteration, we select a trace t that belongs both
to the specification and the fault domain (Step 6). A trace of the specification
that is not of the fault domain is guaranteed to lead to an inconclusive verdict,
as it is necessarily not implemented by the SUT.

Next, we check whether t has a continuation that is allowed by the fault
domain FD , but is forbidden by S . If it has, we choose one of these forbidden
continuations a (Step 8). If not, t is not (or no longer) useful to construct tests,
and is added to TS . A forbidden continuation a of S that is also forbidden by
FD is guaranteed to be forbidden by the SUT. So, testing for a is useless.

The resulting test TT (t , a) is used and the set of verdicts verd is analysed as
explained above, leading to an update of the fault domain. The value returned
by the procedure indicates whether the SUT trace refines S or not.

Example 6. We consider as specification the Counter from Example 1. A few
tests for traces refinement obtained by applying TT (t , a) to the traces t of
Counter are sketched below in order of increasing length.

TT (〈 〉, sub) = pass → sub → fail → STOP
TT (〈add , sub〉, sub) = inc → add → inc → sub → pass → sub → fail → STOP
TT (〈add , add〉, add) = inc → add → inc → add → pass → add → fail → STOP
TT (〈add , add , sub, add〉, add) =

inc→add →inc→add →inc→sub→inc→add →pass→add →fail →STOP
TT (〈add , add , sub, sub〉, sub) = . . .

This is, of course, an infinite set, arising from an infinite set of traces. We note,
however, that there are no tests for a trace that has one more occurrence of add
than sub, since, in such a state, Counter has no forbidden continuations.

The verdicts depend on the particular SUT; we consider below one exam-
ple: SUT = add → add → STOP . We note that, at no point, we use our
knowledge of the SUT to select tests. That knowledge is used just to identify
the result of the tests used in our procedure.

In considering TestGen(Counter ,SUT ,RUN (Σ)), the first test we execute
is TT (〈〉, sub), whose verdict is pass. So, we have 〈sub〉 �∈ traces [[SUT]],
and the updated fault domain is FD1 = NOTTRACE (〈sub〉) = add →
RUN (Σ). The parallelism with the fault domain RUN (Σ) does not change
NOTTRACE (〈sub〉).

Counter is not refined by FD1, which after the event add has arbitrary behav-
iour. The next test is TT (〈add , sub〉, sub), whose verdict is inc. Thus, we have
that 〈add , sub〉 �∈ traces [[SUT]]. Now, the fault domain is FD2 below.

FD2 = FD1 |[Σ]| NOTTRACE (〈add , sub〉)
= (add → RUN (Σ)) |[Σ]| (sub → RUN (Σ) � add → add → RUN (Σ))
= add → add → RUN (Σ)

The next test is TT (〈add , add〉, add) with verdict pass. Thus, FD3 is the process
add → add → sub → RUN (Σ). Next, TT (〈add , add , sub, add〉, add) gives ver-
dict inc, and we get FD4 = add → add → sub → sub → RUN (Σ) when we

Fault-Based Testing for Refinement in CSP 31

update the fault domain. Finally, TT (〈add , add , sub, sub〉, sub) has verdict inc
as well. So, FD5 = add → add → sub → STOP is the new domain. Since
Counter �T FD5, the procedure terminates indicating that SUT is correct.

Our procedure, however, may never terminate. We discuss below some cases
where we can prove that it does.

5 Generating Test Sets: Termination

A specification that has a finite set of (finite) traces is a straightforward case,
since it suffices to test with each trace and each forbidden continuation. Our
procedure, however, can still be useful, because useless tests may be used if the
fault domain is not considered. Our procedure can reduce the number of tests.

In this scenario, our procedure terminates because, for any maximal trace
t of the specification (that is, a trace that is not a prefix of any other of its
traces), all events are forbidden continuations. Thus, once t is selected and all
tests derived from the forbidden continuations are applied, either we find a fault,
or the fault domain is refined to a process that has no traces that extends t .

When all maximal traces of the specification are selected (and the corre-
sponding tests are applied), if no test returns a fail verdict, no trace of the fault
domain extends a maximal trace of the specification. Thus, if no test returns a
fail verdict, any trace of the fault domain is a trace of the specification and the
procedure stops indicating success, since, in this case, S �T FD .

We now discuss a scenario where the specification does not have a finite set
of traces, but the SUT does. Once a trace t is selected, if the set of events, and,
therefore, forbidden continuations is finite, with the derived tests, we can deter-
mine whether or not the SUT implements any of the forbidden continuations.
Moreover, if no pass verdict is observed, t itself is not implemented.

We note that if the SUT is incorrect, that is, it does not trace refine the
specification, the procedure always terminates.

Lemma 2. If ¬ (S �T SUT), then TestGen(S ,FDinit ,SUT) terminates (and
returns false), for any fault domain FDinit and finite SUT.

Proof. By ¬ (S �T SUT), there exists a trace s ∈ traces [[SUT]] \ traces [[S]].
Let t be the longest prefix of s that is a trace of S , that is, the longest trace in
pref (s) ∩ traces [[S]], which gives rise to the shortest test that reveals an invalid
prefix of s. Let a be such that t � 〈a〉 ∈ traces [[SUT]] \ traces [[S]]. We know that
a is a forbidden continuation of t , since t ∈ traces [[S]], but t � 〈a〉 /∈ traces [[S]].
Moreover, since traces [[SUT]] ⊆ traces [[FD]], it follows that t�〈a〉 ∈ traces [[FD]];
hence a ∈ initials(FD/t)\initials(S/t). Thus, there exists a test TT (t , a) which,
when applied to the SUT produces a fail verdict.

Since t is the longest trace in pref (s)∩traces [[S]], tests generated for any pre-
fix of t do not exclude t from the traces of the updated fault domain. Moreover,
the event a remains in initials(FD/t) \ initials(S/t), since no tests for traces
longer than t are applied before t . Therefore, the test TT (t , a) is applied (unless

32 A. Cavalcanti and A. Simao

a test for a trace of the same length of t is applied and the verdict is fail , in
which case the result also follows). In this case, TestGen(S ,FDinit ,SUT) assigns
true to the variable failed , since the verdict is fail and terminates with ¬ failed ,
that is, false. ��

Now we consider the case when the SUT is correct and finite. For some
specifications, like the Counter from Example 1 the procedure terminates, but
not for all specifications as illustrated below.

Example 7. We consider UNBOUNDED = a → UNBOUNDED � b → STOP ,
the initial fault domain FDinit = RUN (Σ), where Σ = {a, b}, and the SUT
STOP . In TestGen(UNBOUNDED ,SUT ,RUN (Σ)), the first trace we choose is
〈〉, for which there is no forbidden continuation, and so, no test. The next trace
is 〈a〉, for which again there is no forbidden continuation. For 〈b〉, the events a
and b are forbidden continuations; the test TT (〈b〉, a) results in an inc verdict.
Thus, the fault domain is updated to FD1 = FDU (FDinit , 〈b〉) below.

FD1 = FDinit |[Σ]| NOTTRACE (〈b〉)
= RUN (Σ) |[Σ]| a → RUN (Σ)
= a → RUN (Σ)

As expected, 〈b〉 is not a trace of the fault domain anymore and no further tests
are generated for it: it is never again selected in Step 6.

The next trace we select is 〈a, a〉, for which there is no forbidden continuation.
Then, we select 〈a, b〉, with forbidden continuations a and b. TT (〈a, b〉, a) is
executed with an inc verdict. The next fault domain is FD2 = FDU (FD1, 〈a, b〉).

FD2 = FD1 |[Σ]| NOTTRACE (〈a, b〉)
= (a → RUN (Σ)) |[Σ]| (b → RUN (Σ) � a → a → RUN (Σ))
= a → a → RUN (Σ)

In fact, the refined fault domains are always of the form

a → a → ... → a → RUN (Σ)

This is because there is no test generated for a trace 〈a〉k , for k ≥ 0. So,
the procedure does not terminate. This happens for any correct SUT with
respect to the specification UNBOUNDED . For an incorrect SUT , the procedure
terminates. ��
Example 8. We now consider Counter and why our procedure stops for its
correct finite implementations. First, we note that our procedure uses traces
of increasing length for deriving and applying tests, and for a finite SUT ,
there is a k such that all traces of the SUT are shorter than k . We con-
sider a trace t ∈ traces [[Counter]] of length k . There are three possibilities
for Counter/t . If Counter/t = Counter or Counter/t = Counter2, we have

Fault-Based Testing for Refinement in CSP 33

initials(Counter/t) �= Σ and, thus, there is a test TT (t , a) for a forbidden sub
or add . The verdict for this test is inc because the SUT has no trace of the
length of t and the fault domain is updated, removing t as a trace of the fault
domain and, thus, as a possible trace of the SUT . If Counter/t = Counter1, we
have that initials(Counter/t) = Σ and no test can be derived from t . However,
for each trace s, such that t � s ∈ traces [[Counter]], s starts with either add or
sub. In either case, a test will be generated, since Counter/t �〈add〉 = Counter2
and Counter/t � 〈sub〉 = Counter1, for which there are tests, as seen before.
For those tests, the verdict is inc, the fault domain is similarly updated, and
the traces t � 〈add〉 and t � 〈sub〉 are removed. The fact that t for which
Counter/t = Counter1 cannot be arbitrarily extended just to traces without
tests is the key property required for the procedure to terminate.

For some specifications, like UNBOUNDED , there may be no tests for an
unboundedly long trace. In this case, a correct SUT does not fail and, in spite
of this, no test is applied that prunes the fault domain. ��
To characterise the above termination scenario, we introduce some notation.

Given traces r and t , we say that r is a prefix of t , denoted r ≤ t if there
exists s, such that r � s = t . A prefix is proper, denoted r < t , if s �= 〈〉. We
say that t is a (proper) suffix of r if, and only if, r is a (proper) prefix of t . We
denote by pref (t) all prefixes of t , that is, pref (t) = {s : Σ∗ | s ≤ t}, and by
ppref (t), all proper prefixes of t , that is, ppref (t) = pref (t) \ {t}. Similarly, we
denote by suff (t) the set of all suffixes of t .

For a process S and k ≥ 0, we define the set traces [[S]]k of the traces of S
of length k . Formally, traces [[S]]k = {t : traces [[S]] | #t = k}. Another subset
hfc(S ,FD) of traces of S includes those for which there is at least a forbidden
continuation that takes into account the fault domain. Formally, hfc(S ,FD) =
{t : traces [[S]] | initials(FD/t) \ initials(S/t) �= ∅}. Importantly, for each t ∈
hfc(S ,FD), there exists at least one test TT (t , a) for a forbidden continuation a
that is allowed by the fault domain. Finally, given a set of traces Q , we denote
by minimals(Q) the set of traces of Q that are not a proper prefix of another
trace in Q . Formally, minimals(Q) = {t : Q | ¬ ∃ s : Q • t < s}.

We use hfc(S ,FD) to define conditions for termination of the procedure.

Lemma 3. For a specification S and a fault domain FDinit , if for any finite set
of traces P ⊆ traces [[S]], there exists a k ≥ 0, such that, for each r ∈ traces [[S]]k ,
we have that there is a prefix of r that is not in P and has a forbidden continua-
tion, that is, ((pref (r) \P)∩ hfc(S ,FDinit)) �= ∅, then TestGen(S ,FDinit ,SUT)
terminates for any finite SUT.

Proof. If ¬ (S �T SUT), by Lemma 2, the procedure terminates.
We, therefore, assume that S �T SUT , and so traces [[SUT]] ⊆ traces [[S]].

Finiteness of the SUT means that traces [[SUT]] is finite. Let k ≥ 0 be such that,
for each r ∈ traces [[S]]k , we have ((pref (r) \ traces [[SUT]]) ∩ hfc(S ,FDinit)) �=
∅. This k is larger than the size of the largest trace of SUT , since otherwise
pref (r) \ traces [[SUT]] is empty, and it exists because traces [[SUT]] is finite.

34 A. Cavalcanti and A. Simao

Let now Q = (pref (traces [[S]]k)\ traces [[SUT]])∩hfc(S ,FDinit) and let M =
minimals(Q). Let p ∈ traces [[SUT]]. Let r ∈ traces [[S]]k be such that p ≤ r .
There is at least an s ∈ pref (r), such that p ≤ s and s ∈ hfc(S ,FDinit) because
((pref (r)\traces [[SUT]])∩hfc(S ,FDinit)) �= ∅. Without loss of generality, assume
that s is the shortest such a trace. Thus, s ∈ M and p ∈ pref (M), since p ≤ s.
It follows that traces [[SUT]] ⊆ pref (M) since p is arbitrary.

For each t ∈ M , there exists a ∈ initials(FDinit/t) \ initials(S/t), since
t ∈ hfc(S ,FDinit) and from the definition of hfc(S ,FDinit). Then, if the test
TT (t , a) is applied to the SUT , the verdict is inc, since t �∈ traces [[SUT]] because
t ∈ M ⊆ Q and Q ∩ traces [[SUT]] = ∅. In this case, the fault domain is updated
so that t is not a trace of the fault domain anymore.

Thus, if all tests derived for each t ∈ M are applied, we obtain a fault domain
FD such hat traces [[FD]] ⊆ pref (M). As all traces in M have length at most
k , eventually, all traces in M are selected (unless the procedure has already
terminated) and the tests derived for those traces are applied. As pref (M) ⊆
Q ⊆ hfc(S ,FDinit) ⊆ traces [[S]], it follows that traces [[FD]] ⊆ traces [[S]], that
is, S �T SUT . TestGen(S ,FDinit ,SUT) then terminates, with failed = false,
and the result is true.

��
One scenario where the conditions in Lemma 3 hold is if there is an event in
the alphabet which is not used in the model. In this case, that event is always a
forbidden continuation and thus a test is generated for all traces. Even though
this can be rarely the case for a specification at hand, the alphabet can be
augmented with a special event for the purpose, guaranteeing that the procedure
terminates. Such an event would act as a probe event. As said before, in practice,
it is best to avoid probes since the tests that they induce can reveal no faults.

6 Tool Support and Case Studies

We have developed a prototype tool that implements our procedure. The tasks
related to the manipulation of the CSP model, such as checking refinement,
computing forbidden continuations, determining verdicts, and so on, are handled
by FDR. The tool is implemented in Ruby. It submits queries (assert clauses) to
FDR and parses FDR’s results in order to perform the computations required
by the procedure. Specifically, FDR is used in two points:

1. for checking whether the specification refines the fault domain (Line 5). It is
a straightforward refinement check in FDR;

2. for computing initials and forbidden continuations (Lines 7 and 8). For
instance, to compute the complement of initials(S/t), we invoke FDR to check
S �T TTHENANY (t), where S is compared to the process TTHENANY (t)
that performs t and then any event e from Σ. It is defined as follows.

TTHENANY (〈〉) = � e : Σ • e → STOP
TTHENANY (〈a〉 � t) = a → TTHENANY (t)

Fault-Based Testing for Refinement in CSP 35

If t is a trace of S , counterexamples to this refinement check provide traces
t � 〈e〉, where e is not in the set initials(S/t). Thus, we obtain initials(S/t)
by considering the events in Σ for which no such counterexample exists.

Currently, our prototype calls FDR many times from scratch. As a future opti-
mization, we will incorporate the caching of the internal results of the FDR, to
speed up posterior invocations with the same model.

We have used our prototype to carry out two case studies, the Transputer-
based sensor for autonomous vehicles in [23], and the Emergency Response Sys-
tem (ERS) in [2]. The sensor is part of an architecture where each sensor is
associated with a Transputer for local processing and can be part of a network
of sensors. The ERS allows members of the public to identify incidents requir-
ing emergency response; it is a system of operationally independent systems (a
Phone System, a Call Center, an Emergency Response Unit, and so on). The
ERS ensures that every call is sent to the correct target. It is used in [18] to
assess the deadlock detection of a prototype model checker for Circus.

For each case study, we have randomly generated 1000 finite SUTs with the
same event alphabet. The experimental results confirm what we expected from
the lemmas of the previous section. Namely, all incorrect SUTs are identified
and the procedure terminates for all finite SUTs identified in Lemma 3. The
prototype tool and the CSP model for the sensor, the ERS and other examples
are in http://www.github.com/adenilso/CSP-FD-TGen. The data for the SUTs
used in this case study is also available.

7 Conclusions

In this paper, we have investigated how fault domains can be used to guide test
generation from CSP models. We have cast core notions of fault-domain testing
in the context of the CSP testing theory. For testing for traces refinement, we
have presented a procedure which, given a specification and a fault domain, it
tests whether an SUT trace refines the fault domain. If the SUT is incorrect, the
procedure selects a test that can reveal the fault. In the case of a correct SUT,
we have stated conditions that guarantee that the procedure terminates.

There are specifications for which the procedure does not terminate. We
postulate that for those specifications, there is no finite set of tests that is able
to demonstrate the correctness of the SUT. Finiteness requires extra assumptions
about the SUT. We plan to investigate this point further in future work.

The CSP testing theory also includes tests for conf , a conformance relation
that deals with forbidden deadlocks; together, tests for conf and traces refine-
ment can be used to establish failures refinement. Another interesting failures-
based conformance relation for testing from CSP models takes into account the
asymmetry of controllability of inputs and outputs in the interaction with the
SUT [6]. It is worth investigating how fault domains can be used to generate
finite test sets for these notions of conformance.

http://www.github.com/adenilso/CSP-FD-TGen

36 A. Cavalcanti and A. Simao

Acknowledgements. The authors would like to thank the partial financial support of
the following entities: Royal Society (Grant: NI150186), FAPESP (Grant: 2013/07375-
0). The authors also are thankful to Marie-Claude Gaudel, for the useful discussion in
an early version of this paper.

References

1. Alberto, A., Cavalcanti, A.L.C., Gaudel, M.-C., Simao, A.: Formal mutation testing
for Circus. IST 81, 131–153 (2017)

2. Andrews, Z., et al.: Model-based development of fault tolerant systems of systems.
In: SysCon, pp. 356–363, April 2013

3. Cavalcanti, A., Gaudel, M.-C.: Testing for refinement in CSP. In: Butler, M.,
Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS, vol. 4789, pp.
151–170. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76650-6 10

4. Cavalcanti, A.L.C., Gaudel, M.-C.: Testing for refinement in Circus. Acta Infor-
matica 48(2), 97–147 (2011)

5. Cavalcanti, A., Gaudel, M.-C.: Data flow coverage for Circus-based testing. In:
Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 415–429. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54804-8 29

6. Cavalcanti, A., Hierons, R.M.: Testing with inputs and outputs in CSP. In:
Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp. 359–374.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-37057-1 26

7. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng. 4(3), 178–187 (1978)

8. El-Fakih, K.A., et al.: FSM-based testing from user defined faults adapted to incre-
mental and mutation testing. Program. Comput. Softw. 38(4), 201–209 (2012)

9. Fujiwara, S., von Bochmann, G.: Testing non-deterministic state machines with
fault coverage. In: FORTE, North-Holland, pp. 267–280 (1991)

10. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54862-8 13

11. Hierons, R.M., Ural, H.: Optimizing the length of checking sequences. IEEE TC
55(5), 618–629 (2006)

12. Huang, W., Peleska, J.: Exhaustive model-based equivalence class testing. In:
Yenigün, H., Yilmaz, C., Ulrich, A. (eds.) ICTSS 2013. LNCS, vol. 8254, pp. 49–64.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-41707-8 4

13. Koufareva, I., Petrenko, A., Yevtushenko, N.: Test generation driven by user-
defined fault models. In: Csopaki, G., Dibuz, S., Tarnay, K. (eds.) Testing of Com-
municating Systems. ITIFIP, vol. 21, pp. 215–233. Springer, Boston (1999). doi:10.
1007/978-0-387-35567-2 14

14. Luo, G., et al.: Test selection based on communicating nondeterministic finite-state
machines using a generalized Wp-method. IEEE TSE 20(2), 149–162 (1994)

15. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). doi:10.1007/3-540-10235-3

16. Moraes, A., et al.: A family of test selection criteria for timed input-output symbolic
transition system models. SCP 126, 52–72 (2016)

17. Morell, L.J.: A theory of fault-based testing. IEEE TSEg 16(8), 844–857 (1990)

http://dx.doi.org/10.1007/978-3-540-76650-6_10
http://dx.doi.org/10.1007/978-3-642-54804-8_29
http://dx.doi.org/10.1007/978-3-642-37057-1_26
http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://dx.doi.org/10.1007/978-3-642-41707-8_4
http://dx.doi.org/10.1007/978-0-387-35567-2_14
http://dx.doi.org/10.1007/978-0-387-35567-2_14
http://dx.doi.org/10.1007/3-540-10235-3

Fault-Based Testing for Refinement in CSP 37

18. Mota, A., Farias, A., Didier, A., Woodcock, J.: Rapid prototyping of a semanti-
cally well founded Circus model checker. In: Giannakopoulou, D., Salaün, G. (eds.)
SEFM 2014. LNCS, vol. 8702, pp. 235–249. Springer, Cham (2014). doi:10.1007/
978-3-319-10431-7 17

19. Nogueira, S., Sampaio, A.C.A., Mota, A.C.: Test generation from state based use
case models. FACJ 26(3), 441–490 (2014)

20. Peleska, J.: Test automation for safety-critical systems: industrial application and
future developments. In: Gaudel, M.-C., Woodcock, J. (eds.) FME 1996. LNCS,
vol. 1051, pp. 39–59. Springer, Heidelberg (1996). doi:10.1007/3-540-60973-3 79

21. Petrenko, A., Yevtushenko, N.: Testing from partial deterministic FSM specifica-
tions. IEEE TC 54(9), 1154–1165 (2005)

22. Petrenko, A., et al.: On fault coverage of tests for finite state specifications. Com-
put. Netw. ISDN Syst. 29(1), 81–106 (1996)

23. Probert, P.J., Djian, D., Hu, H.: Transputer architectures for sensing in a robot
controller: formal methods for design. Concurr. Pract. Exp. 3(4), 283–292 (1991)

24. Roscoe, A.W.: Understanding Concurrent Systems. Springer, London (2011).
doi:10.1007/978-1-84882-258-0

25. Tretmans, J.: Test generation with inputs, outputs, and quiescence. In:
Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 127–146.
Springer, Heidelberg (1996). doi:10.1007/3-540-61042-1 42

26. Yu, Y.T., Lau, M.F.: Fault-based test suite prioritization for specification-based
testing. Inf. Softw. Technol. 54(2), 179–202 (2012)

http://dx.doi.org/10.1007/978-3-319-10431-7_17
http://dx.doi.org/10.1007/978-3-319-10431-7_17
http://dx.doi.org/10.1007/3-540-60973-3_79
http://dx.doi.org/10.1007/978-1-84882-258-0
http://dx.doi.org/10.1007/3-540-61042-1_42

Effective Infinite-State Model Checking by Input
Equivalence Class Partitioning

Niklas Krafczyk and Jan Peleska(B)

Department of Mathematics and Computer Science,
University of Bremen, Bremen, Germany

{niklas,jp}@cs.uni-bremen.de

Abstract. In this paper, it is shown how a complete input equivalence
class testing strategy developed by the second author can be effectively
used for infinite-state model checking of system models with infinite
input domains but finitely many internal state values and finite out-
put domains. This class of systems occurs frequently in the safety-critical
domain, where controllers may input conceptually infinite analogue data,
but make a finite number of control decisions based on inputs and current
internal state. A variant of Kripke Structures is well-suited to provide a
behavioural model for this system class. It is shown how the known con-
struction of specific input equivalence classes can be used to abstract the
infinite input domain of the reference model into finitely many classes.
Then quick checks can be made on the implementation model showing
that the implementation is not I/O-equivalent to the reference model if
its abstraction to observable minimal finite state machines has a differ-
ent number of states or a different input partitioning as the reference
model. Only if these properties are consistent with the reference model,
a detailed equivalence check between the abstracted models needs to be
performed. The complete test suites obtained as a by-product of the
checking procedure can be used to establish counter examples showing
the non-conformity between implementation model and reference model.
Using various sample models, it is shown that this approach outper-
forms model checkers that do not possess this equivalence class genera-
tion capability.

Keywords: Input equivalence class partition testing · Infinite-state
model checking · Kripke Structures

1 Introduction

Motivation. Model checking of infinite-state systems is an important research
field. Notable examples are Timed Automata, where physical time represents a
model or meta variable with uncountable domain [3] and the more general Hybrid
Systems, where also real-valued observables are taken into account [8]. Other
approaches investigate model checking in presence of unbounded data structures,
we cite here [6] as a representative of many results achieved in this area.
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 38–53, 2017.
DOI: 10.1007/978-3-319-67549-7 3

Model Checking by Input Equivalence Class Partitioning 39

The close relationship between infinite state model checking and testing has
been observed, for example, in [18], where a complete testing method for verifying
real-time systems against Time Automata models has been presented.1

In this paper, we show how results from model-based testing of reactive
systems can inspire approaches to infinite-state model checking.

Main contribution. We present a new algorithm for checking I/O-equivalence
of systems with infinite input domains, but finite domains for internal state vari-
ables and outputs. It applies to both deterministic and nondeterministic systems,
whose behavioural semantics can be expressed by I/O-state transitions systems,
a specific variant of Kripke Structures. The algorithm exploits a new method for
calculating input equivalence classes, that has originally been developed for con-
structing complete test suites for systems of this type [10]. While an algorithm
for calculating these classes for deterministic models has been published in [9],
the algorithm presented in this paper can handle nondeterministic systems.

It is shown that for I/O-equivalence checking problems of reference and imple-
mentation models in this domain, the new algorithm clearly outperforms conven-
tional model checkers, because the latter need to operate on an explicit discreti-
sation of the input space, whereas the new algorithm presented here only needs
to check a significantly smaller number of input equivalence classes. Moreover,
the new method is very effective for constructing counter examples in case of
failing equivalence checks, since these examples are simply given by failing test
cases.

To our best knowledge, this approach to checking systems with infinite input
domains is new: other authors using equivalence partition techniques of the input
space used more general classes, at the cost of losing the completeness of the
method [19].

Overview. The equivalence calculation method and the resulting model check-
ing algorithm are described in Sect. 2. In Sect. 3, several model checking exper-
iments are described, comparing the implementation of the method presented
here against the well-established FDR3 model checker for the CSP process alge-
bra. Section 4 presents the conclusions.

2 Method

In this section we describe how to calculate the input equivalence class partition-
ing of a given model described in Sect. 3 and how we use this input equivalence
class partitioning to check two models for I/O-equivalence.

1 Recall that a test suite is called complete if it guarantees to accept every implemen-
tation conforming to a given reference model and to reject every non-conforming
implementation, provided that its true behaviour is represented by a model from a
well-defined fault domain.

40 N. Krafczyk and J. Peleska

2.1 State Space Representation

Our approach is based on state transition systems (STS) described as triples
(S, s,R) where S is the possibly infinite state space, s ∈ S is the initial state
and R ⊆ S ×S the transition relation. Furthermore, we assume that all states in
S are reachable from the initial state via the transition relation and require that
the properties of I/O-state transition systems (IOSTS) apply which we specify
as follows:

– Every state s ∈ S is a valuation function s : V → D, mapping variables v
from a finite set of symbols v ∈ V to their values s(v) in the domain D.

– The set V of variable symbols can be partitioned into disjoint sets of input
variables, internal state variables, and output variables. Let I ⊆ V be the set
of input variables. Then DI is the set of all input vectors which is the cross
product of the domains of all input variables in I. From now on, the set of
input variables is referred to as I, the set of internal state variables as M ,
and the set of output variables as O.

– The state space of an IOSTS can be partitioned into two sets of states SQ

and ST which are the sets of the so-called quiescent and transient states,
respectively. Transient and quiescent states are characterised as follows.

∀(sq, s) ∈ SQ × SQ : (sq, s) ∈ R ⇒ s|M∪O = sq|M∪O (1)
∀(st, s) ∈ ST × S : (st, s) ∈ R ⇒ s|I = st|I (2)
∀(sq, s) ∈ SQ × ST : (sq, s) ∈ R ⇒ ∃x ∈ I : s(x) �= sq(x) (3)

Here, s|X ,X ⊆ V denotes the restriction of the valuation function s to the
set of variables symbols v ∈ X. Thus, no internal state or output variable
may change over a transition from a quiescent state, no input variables may
change over a transition from a transient state, and every transient state
reached by a transition from a quiescent state needs to evaluate at least one
input variable differently. If the latter were not the case, SQ and ST would
not be disjoint.

– The initial state is contained in SQ.

An IOSTS describes the behaviour of a state-based system. From the outside view,
only input variables influence the state of the system and only output variables are
observable. States in partition SQ of the state space are stable states where the
system waits for new inputs. States in partition ST of the state space are transient
states.A systemperforming some sort of calculationwouldwait in a quiescent state
for the inputs to the calculation. If the inputs allow for the calculation to be per-
formed, the internal state variables and output variables are modified in a sequence
of transient states. The calculation is finished when a quiescent state is reached,
allowing for the outputs to be observed. Inputs are changed by modifying the input
variables. The possible modifications to the input variables are defined by the tran-
sition relation as follows: An input vector c can be applied to the system if for the
new state s′ = s⊕{x
→ c} the condition (s, s′) ∈ R holds. The set of all input vec-
tors allowed in state s is defined as C(s) = {c ∈ DI | ∃x : (s, s ⊕ {x
→ c}) ∈ R}.

Model Checking by Input Equivalence Class Partitioning 41

If the condition ∀s ∈ SQ : C(s) = DI holds for every state of SQ of an IOSTS,
that IOSTS is called completely specified. An IOSTS is free of livelocks if there is
no reachable infinite sequence of transitions between transient states linked by the
transition relation.

Let S = (S, s,R) be an IOSTS as defined above. Then, the partitioning of
SQ ⊆ S induced by the equivalence relation s ∼MO s′ ⇐⇒ ∀vmo ∈ M ∪
O : s(vmo) = s′(vmo) with s, s′ ∈ SQ is called the MO partitioning. All states
evaluating all internal state and output variables in the same way are members
of the same partition. Here, such a partitioning is named A = A0, . . . ,An and
it is finite, as the domains of all internal state and output variables are finite.
Every member of A is called a state class. The state class containing the initial
state of the IOSTS under consideration is called A0. For mapping a state to the
corresponding state class, the shorthand MO : S → A is introduced.

For any IOSTS free of livelocks, every quiescent state s of that IOSTS can be
mapped to a set of quiescent states that are reachable by a finite, possibly empty
sequence of only transient states for every input vector c ∈ C(s). Let s/c be
this mapping for state s and input vector c. The case where (s⊕{x
→ c}) ∈ SQ

holds is trivial. If, however, (s ⊕ {x
→ c}) ∈ ST holds, the set of quiescent
states the state s maps to under input vector c can be determined by unrolling
the transition relation. If, for any s and any c, |s/c| > 1, the IOSTS is called
nondeterministic.

2.2 Input Equivalence Class Partitioning

When checking a pair of livelock free IOSTS for I/O-equivalence, we may have
to deal with a possibly infinite input domain. In our approach we partition the
input domain into a finite number of input equivalence classes as presented by
[10]. For every pair s1, s2 of states in the same state class of the MO parti-
tioning of an IOSTS, and for every input vector in every element Ii of such an
input equivalence class partitioning (IECP) I, the state classes of the reachable
quiescent states are identical: ∀s1, s2 ∈ S : ∀Ii ∈ I : ∀c ∈ Ii : MO(s1) =
MO(s2) =⇒ {MO(s′

1)|s′
1 ∈ s1/c} = {MO(s′

2)|s′
2 ∈ s2/c}. To obtain such an

IECP, first the input equivalence classes of every state class are calculated. An
algorithm to do so is given in Sect. 2.2.1, taking nondeterminism into account.
Given these IECPs for every state class, the final IECP is given as every non-
empty intersection of input equivalence classes containing exactly one element
from each of the calculated IECPs of every state class for which an algorithm is
given in Sect. 2.2.2.

For illustration purposes, the approach is applied to the system described
by the SysML state machine shown in Fig. 1. This model has one integer input
variable x and one output variable m. Initially, the output m is 0, meaning that
no alarm is active. If the input value x exceeds a threshold max, m is set to 2,
triggering an alarm which will only be ceded after x is equal to or drops below
another threshold max - delta. However, if the input value is equal to max,
the behaviour of the described system is non-deterministic: either, the alarm is
triggered and the system progresses as described before, or a state is entered

42 N. Krafczyk and J. Peleska

Fig. 1. SysML model of an alarm system reacting to input changes.

where there is no full alarm but maybe a message is sent to a security company
to check on the secured object (these possibilities are not shown in the model).
For this state to be left into the idle state where there is no alarm, the input may
simply drop by an arbitrary amount. However, if it rises further, a full alarm is
triggered.

2.2.1 Input Equivalence Classes for State Classes
Let gi,j be the condition on the input variables describing all input vectors for
which there is a possibly empty sequence of only transient states terminated
by a quiescent state for every state in state class Ai ending in state class Aj :
∀c ∈ DI : c |= gi,j ⇐⇒ ∀s ∈ Ai : ∃s′ ∈ Aj : s′ ∈ s/c. Furthermore, let G be
the set of all such conditions for the MO partitioning of an IOSTS, where the
set of satisfying input vectors is not empty, i.e. where there is at least one input
vector allowing the transition from one state class into another. Finally, let Gi

be a subset of G where gi,� ∈ Gi ⇐⇒ ∀s ∈ Ai : ∃c ∈ DI : s/c ∈ A�, that is, Gi

contains all conditions applicable to transitions emanating from state class Ai.
Then, for a given Gi, Algorithm 1 calculates a set Mi of tuples of conditions:

Mi = {(p, n) ∈ P(Gi) × P(Gi) |
(|=

∧

pk∈p

pk ∧
∧

nk∈n

¬nk)

∧ (∀g ∈ Gi :|=
∧

pk∈p

pk ∧ g ⇐⇒ g ∈ p ∪ n)}

Model Checking by Input Equivalence Class Partitioning 43

Every tuple in Mi describes an input equivalence class for state class Ai.
Transferring this to our example, we first derive the state classes A. In the

given model, every SysML state corresponds to a state class as every state maps
to a separate state class in the MO partitioning. Thus, A0 corresponds to S0.
The other state class counterparts to the SysML states may be chosen arbitrarily.
We chose A1 to be equivalent to state S1 and A2 to state S2. Then, the formulas
in Fig. 2 are the elements of G.

Fig. 2. Expressions in G, representing all conditions on the input variables for transi-
tions from one state class to the other to occur.

For every state class, Gi is calculated, its elements are given by the ith line
of expressions in Fig. 2.

Algorithm 1 first calculates all satisfiable subsets of Gi for every state class Ai.
As the IOSTS under consideration can be nondeterministic, there may be subsets
with more than one member. The classes of a partitioning are disjoint, thus an
IECP cannot contain overlapping elements, i.e. multiple classes containing the
same input vector. Thus, for every satisfiable subset of Gi which is also a subset
of another satisfiable subset of Gi, the difference to all supersets is added as
negated terms to form an input equivalence class if the resulting conjunction is
satisfiable.

For G0 from our example, the sets

{g0,0}, {g0,1}, {g0,2}, {g0,0, g0,1}, {g0,0, g0,2}, {g0,1, g0,2}

and
{g0,0, g0,1, g0,2}

are tested for satisfiability. As neither g0,0 ∧ g0,1 nor g0,0 ∧ g0,2 is satisfiable,
supersets of {g0,0, g0,1} and {g0,0, g0,2} do not have to be checked for satisfiability,
as these will never be satisfiable either. The sets of expressions satisfiable under
conjunction are the singleton sets and {g0,1, g0,2}. The latter is introduced due
to the non-determinism of the described system in the case of x == max. In
this example, the satisfiable subset {g0,2} of G cannot be an input equivalence
class, since the set of input vectors described would not be disjoint from the set
described by {g0,1, g0,2}. However, g0,2 ∧ ¬g0,1 is satisfiable, allowing A2 to be
reached deterministically by a set of input vectors which now represent one input
equivalence class. As g0,1 ∧ ¬g0,2 is not satisfiable, neither g0,1 nor g0,1 ∧ ¬g0,2

represents an input equivalence class. Thus, the input equivalence classes of the
system are given as follows:

44 N. Krafczyk and J. Peleska

Input: Set G of transition conditions.
Input: Set I of indexes of state classes: {n ∈ N | n < |A|}
Output: Set M of IECPs Mi.
M ← ∅;
for i ∈ I do

Gi ← {gi,j ∈ G | ∀s ∈ Ai : ∃c ∈ DI : c |= gi,j ∧ s/c ∈ Aj};
satset ← CalculateSatisfiableSubsets(Gi, ∅);
Mi ← ∅;
for p ∈ satset do

super ← {s ∈ satset | p � s};
n ← (

⋃

s∈super

s) \ p;

if |= ∧

mi∈p

mi ∧ ∧

ni∈n

¬ni then

Mi ← Mi ∪ {(p, n)};

M ← M ∪ {Mi};

return M ;
function CalculateSatisfiableSubsets(Gx, Ex)

if Gx = ∅ then
return {Ex};

Mx ← ∅;
U ← ∅;
for gx ∈ Gx do

U ← U ∪ {gx};
if |= ∧

e∈Ex

e ∧ gx then

Mx ← Mx∪ CalculateSatisfiableSubsets(Gx\U , Ex ∪ {gx});

return Mx;

Algorithm 1. Algorithm calculating every state class’ input equivalence
classes.

M0 = {({g0,0}, {}), ({g0,2}, {g0,1}), ({g0,1, g0,2}, {})}
M1 = {({g1,0}, {}), ({g1,1}, {}), ({g1,2}, {})}
M2 = {({g2,0}, {}), ({g2,2}, {})}

In previous implementations, |p|+|n| = |Gi| held for every element m ∈ Mi as
every element of Gi appeared in m in either identical or negated form. In contrast
to this, our approach possibly results in smaller descriptions of input equivalence
classes, where |p| + |n| ≤ |Gi|, which has practical ramifications: for large sizes
of |Gi|, instantiating and solving the resulting input equivalence classes using
an SMT solver shows significant speedups. Furthermore, our approach exploits
the fact that ∀p, q ∈ P(P) : (p ⊆ q∧ �|= ∧

pi∈p
pi) =⇒ �|= ∧

qi∈q
qi holds for arbitrary

sets P of first order logic formulae and may thus show significant speedups in
contrast to checking every subset of Gi for satisfiability.

Model Checking by Input Equivalence Class Partitioning 45

2.2.2 Input Equivalence Classes for IOSTS
Given the IECP for every state class, we can calculate the IECP over all state
classes by calculating all non-empty intersections φ of input equivalence classes
containing exactly one input equivalence class from every state class. In other
words, the IECP is a non-empty subset M of M0 × . . . × M|A|−1, where every
element describes a set of first order logic expressions whose conjunction is
satisfiable:

∀φ ∈ M :|=
∧

(p,n)∈φ

⎛

⎝

⎛

⎝
∧

pj∈p

pj

⎞

⎠ ∧
(

∧

nk∈n

¬nk

)⎞

⎠ (4)

To calculate all φ efficiently, Algorithm 2 is used. Similar to Algorithm1, every
satisfiable φ has to be found. Otherwise, the partitioning would be incomplete,
as parts of the input domain were not covered by the result. Again, parts of the
search space M = M0 × . . . × M|A|−1 not containing a solution can be left out.
If for a set P the fact could be established that the conjunction of its elements
is not satisfiable, conjunctions with further expressions will not be satisfiable as
well. The number of elements in M of which P is a subset is

∏

i=|P |
|A| − 1|Mi| (5)

Input: Set M = {M0, . . . , M|A|−1} of IECPs of all state classes
Output: IECP of the IOSTS under consideration
function CalculateSatisfiableSubsets(Mx, Ex)

if Mx = ∅ then
return {Ex};

Φx ← ∅;
Mi ← argmin

mx∈Mx

(|mx|);
for (p, n) ∈ Mi do

exp ←
(
∧

pi∈p

pi

)

∧
(
∧

nj∈n

¬nj

)

;

if |= exp ∧ ∧

e∈Ex

e then

Φx ← Φx∪ CalculateSatisfiableSubsets(Mx\Mi, Ex ∪ {exp});
return Φx;

return CalculateSatisfiableSubsets(M , ∅);
Algorithm 2. Algorithm calculating the IECP.

assuming the elements of P were picked by ascending index of the elements of
M . This number is maximal if |P | is as small and all Mi as large as possible, or
if the following condition holds ∀0 ≤ j < |P | : ∀|P | ≤ k < |A| : |Mj | ≤ |Mk|.

46 N. Krafczyk and J. Peleska

To be able to ignore as large parts of the search space as possible, sorting the
elements of M by cardinality, picking a P of size � out of the first � elements of
M and checking it for satisfiability is beneficial. If P is satisfiable, then � should
be increased and a new P picked until either � = |A| or a conjunction of the
elements of P is not satisfiable. In the former case, P describes an input equiv-
alence class, in the latter a different P shall be picked. Algorithm 2 describes a
possible implementation. In our example, first an order for the Mi is determined,
beginning with the smallest set, which is M2. For each of its elements, every ele-
ment of the next Mi in order, e.g. M0, is picked and the conjunction checked for
satisfiability. If that is satisfiable, every conjunction with every element of M1

would be checked. This way, all IECP are found, which are listed in Fig. 3.

Fig. 3. Input equivalence classes of the alarm system example.

2.3 Checking for Input/Output Equivalence

Two IOSTS are I/O-equivalent, if they produce the same language of
input/output traces. To check two IOSTS for I/O-equivalence, we first calcu-
late the IECP for both. In [10] the authors show how to derive FSMs or, more
precisely, transductors from these IECP which are I/O-equivalent iff the same
holds for the corresponding IOSTS. In short, these transductors are constructed
as follows: Let S1, S2 be a pair of IOSTS to be checked for I/O-equivalence with
a known bijective mapping for their input and output variables, i.e. for every
input and output variable of S1 there is a corresponding variable in S2. Fur-
thermore, let AS1 ,AS2 be the MO partitionings and IS1 , IS2 be the IECPs for
both IOSTS. Then, T1 = (Q1, q1, ΣI,1, ΣO,1, R1), T2 = (Q2, q2, ΣI,2, ΣO,2, R2)
are the corresponding transductors, where every state in the state space Q1 has
a corresponding state class in AS1 , and every input symbol in the input alphabet
ΣI,1 has a corresponding input space partition in IS1 . The initial state q

1
∈ Q1

maps to the state class containing the initial state of S1. T1’s output alphabet
ΣO,1 results from the output vectors in the state classes AS1 where every dis-
tinct output vector is assigned an output symbol in ΣO,1. The transition relation
R1 is constructed according to the transition relation of S1. T2 is constructed
accordingly.

For a word composed of symbols from the input alphabet, each transductor
produces a set of output traces. Only for non-deterministic IOSTS, this set may
contain more than one trace. Every element of that set represents a possible
response of the system for the applied input trace.

Model Checking by Input Equivalence Class Partitioning 47

Minimising the transductor allows the input alphabet to be partitioned.
Two input symbols x1, x2 are equivalent and thus elements of the same par-
tition element iff for every transition (q, x1, y, q′) ∈ Rm there is a transition
(q, x2, y, q′) ∈ Rm, where Rm is the transition relation of the minimised trans-
ductor. Merging all input space partitions corresponding to an element of a set
of equivalent input symbols results in the coarsest IECP for the corresponding
IOSTS.

After calculating the coarsest IECP using T1 and T2 described above, two
further transductors T̄1, T̄2 can be derived as described above, now using the
coarsest IECPs to construct the input alphabets. These are I/O-equivalent, i.e.
their languages are equal, iff S1 and S2 are I/O-equivalent. Using a test method
which is complete regarding I/O-equivalence, a test suite can be calculated, con-
sisting of a set of input words. T̄1 and T̄2 are I/O-equivalent if and only if they
produce the same set of output words for every input word of the test suite.
However, if for one input word the sets of output words differ, a counterexample
has been found. The counterexample consists of the input word and the sym-
metric difference of the sets of output words produced by T̄1 and T̄2. Naturally,
the shortest counterexample can be found effectively by executing the test suite
sorted by the length of the input words in ascending order. As a prerequisite
for the calculation and execution of a common test suite, a bijective mapping
between the input symbols of T̄1’s and T̄2’s input alphabets has to be known.
This requires that the input alphabets are of the same size and that for every
input equivalence class partition of the coarsest IECP of S1 there is a congruent
input equivalence class partition in the coarsest IECP of S2. If this is not the
case, S1 and S2 are known to not be I/O-equivalent as shown in [16]. To calculate
a common test suite nonetheless, the intersection of both coarsest IECPs can be
used as the coarsest common IECP, allowing T̄1 and T̄2 to be constructed with
the same IECP. This is necessary if a counterexample has to be calculated.

3 Case Study and Quantitative Evaluation

3.1 General Evaluation Approach

To evaluate the described approach, a case study involving models with varying
complexity and state space size has been performed. Each model was represented
as a SysML state machine [14]. Its behavioural semantics was specified by asso-
ciating an IOSTS transition relation with the state machine, as described in [9].
Errors were injected into each model M by applying mutation operators, this
resulted in mutant models M1,M2, Each pair (M,Mi) has been checked
by means of the I/O-equivalence checking approach described in the previous
section. Additionally, each model M and each mutant Mi has been represented
using the CSP process algebra [17], so that the FDR3 model checker [7] could
be used to check I/O-equivalence by means of CSP trace equivalence. For each
equivalence check, the performance of our equivalence checker was compared to
that of FDR3.

48 N. Krafczyk and J. Peleska

3.2 Models Used

For our case study, five models have been selected, two of these were already
described in previous publications [11].

3.2.1 Airbag Controller
The most complex model used for our case study describes the behaviour of an
airbag controller and is described in the following section as an example of the
complexity our approach can handle. This model has two floating point inputs
s1 and s2, describing the acceleration measured by the acceleration sensors the
airbag controller is evaluating, and two Boolean output values, fire and defect,
which are set to true iff the airbag should be triggered or the sensors are regarded
as defect, respectively. Furthermore, there is a Boolean input variable clk that
toggles iff there is a new pair of input values to be processed.

If the system is not defect, and if the airbag has not been triggered, the con-
troller waits for a new pair of input values. Such a pair will be checked for plau-
sibility first. A difference of more than 5% is considered to be implausible. For a
pair of plausible input values the following relation holds: s1 ∈ [s2 · 0.95, s2 · 1.05].
An internal integer counter variable plausibleCtr is set to zero if this is not the
case. Also, another internal integer counter variable errCtr is incremented. If
afterwards the relation errCtr ≥ 3 holds, the system is regarded as defect, thus
defect is set to true and the controller halts, otherwise, the next pair of input
values is awaited. However, if the sensor values are plausible, plausibleCtr is
incremented and the relation plausibleCtr ≥ 3 checked. If it holds, errCnt is
reset to zero. In any case of plausible sensor values, the sensor values are com-
pared to a threshold, in our model this is the floating point value 3.0. If one of the
values does not exceed the threshold, another internal integer counter variable
crashCnt is reset to zero, and the next pair of values awaited. However, if both
exceed the threshold, crashCnt is incremented. If this counter equals 3 after the
increment, this is considered as a trustworthy crash indication; thus the output
fire is set to true, and the system halts. Figure 4 shows a SysML state machine
describing this behaviour.

3.2.2 Further Models
Table 1 summarises the properties of all models used for the case study. Apart
from the number of input variables, output variables and size of state space after
applying our approach, it lists an approximation of the input domain size.

For SysML models, the size calculation |DI | of the input domain is based on
the lower and upper bounds of each input variable type and the number of dis-
tinct representable values between these bounds. As CSP only admits data types
based on integral numbers, all variables representing floating point numbers had
to be approximated as integer variables using one of two methods:

1. Two integers modelling one floating point number, where one models the
integral part, and the other the fractional part.

2. Scaling all floating point numbers in a model by the same factor sufficiently
large to allow for discarding the fractional part.

Model Checking by Input Equivalence Class Partitioning 49

Fig. 4. SysML state machine describing the behaviour of an airbag controller.

Due to these changes, all models using floating point numbers show different
input space sizes for SysML and CSP models. The size of the CSP model input
space is denoted by |DI,CSP|.

Table 1. Model input and state space size for the original models used for the case
study.

Model |VI | |VO| |DI | |DI,CSP|
alarm1 1 1 2 × 102 2 × 102

alarm2 1 1 1.1 × 109 2 × 102

csm 2 3 1.4 × 1018 3.3 × 1012

turn ind 4 3 8.8 × 109 103

airbag 3 2 2.4 × 1018 2.5 × 105

Model alarm1 is the simple alarm system used in the examples above, alarm2
is a more complex variant of alarm1. Model csm specifies a ceiling speed monitor
for a train control system; it is described in [4]. Model turn ind describes a turn
indication controller for cars, taking left/right flashing and emergency flashing
into account; it is a simplified version of the complete model described in [15].

50 N. Krafczyk and J. Peleska

3.2.3 Mutation Operators
For every model used in our case study – from now on called reference model – a
set of mutated implementation models has been created. At least one implemen-
tation was chosen to be syntactically different, but semantically equivalent, and
at least one mutation differed in its behaviour. To this end, we applied exactly
one mutation operator out of a set of commonly used syntax mutation opera-
tors [1,2,13] to the SysML reference model, guaranteeing syntactically different
implementations with the same input and output variables. Thirteen mutation
operators described in Table 2 were selected and used for error injection into the
reference models, as far as applicable.

Table 2. Mutation operators.

3.2.4 CSP Models
The CSP models were manually created by translating SysML reference models
and implementations into CSP, taking into account the discretisation of floating
point input variables as described above.

3.3 Results

Every SysML reference model and each associated implementation were checked
for I/O-equivalence using the method described in this paper. The test suites
used to check the transductors for I/O-equivalence as described in Sect. 2 were
calculated using the W-Method [5,20]. The corresponding CSP reference and

Model Checking by Input Equivalence Class Partitioning 51

implementation models were checked for trace equivalence using the FDR3 model
checker. Each check was limited to 40 GBytes of RAM and 2 h execution time
(wallclock time).

Regarding the correctness of the checks, both our model checking method and
the FDR3 tool detected the same I/O-equivalence violations, as was expected.

For the alarm1 model, the FDR3 tool was approximately 70 times slower than
our checker and needed approximately 11 times more memory. These factors are
calculated as the averages of all 10 checks performed for the alarm1 model and
its 10 mutated implementations.

For the alarm2 model, the FDR3 tool was approximately 22 times slower
and needed 7 times more memory. This value was calculated from 11 mutations
checked against the reference model.

For all model pairs derived from the models csm, turn ind and airbag, the
CSP model checker was not able to complete the calculation within the resource
limits set, while our checker completed these checks with durations from 27 s to
1217 s. The average checking time needed by our checker was 365 s.

All performance measurements described here included the time for abstract-
ing the original model to its finite state machine and the time for creating a
counter example in case of failures. A detailed tabular view documenting all
checks and comparisons performed is given in [12].

4 Conclusion

We have presented a new algorithm for I/O-equivalence checking of models with
infinite input domains but finite domains for internal state and outputs. The
underlying method has been based on a new complete input equivalence class
testing strategy previously developed by the second author and his research
group.

Our approach clearly outperforms the FDR3 model checker. The cause is
easy to understand, since FDR3 does not implement the equivalence class con-
struction techniques that were available for our checker. As a consequence, FDR3
needed to explore the models by explicitly checking a very large number of input
values instead of restricting the investigation to small numbers of input classes.
This comparison shows that the input equivalence class construction method
advocated in this paper can be a valuable extension to other model checking
tools as well. Additionally, the results presented here are another example of the
closeness between testing and model checking methods.

The algorithms needed for abstracting a nondeterministic I/O-state transi-
tion system to its finite state machine have exponential worst case complexity.
Future work will focus on mitigating this problem by means of further distrib-
uting the algorithms involved on multiple threads and CPU cores.

52 N. Krafczyk and J. Peleska

References

1. Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W.: Model-based mutation testing
of hybrid systems. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel,
M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 228–249. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-17071-3 12

2. Aichernig, B.K., Lorber, F., Ničković, D.: Time for mutants — model-based
mutation testing with timed automata. In: Veanes, M., Viganò, L. (eds.) TAP
2013. LNCS, vol. 7942, pp. 20–38. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38916-0 2

3. Alur, R., Madhusudan, P.: Decision problems for timed automata: a survey. In:
Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 1–24.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30080-9 1

4. Braunstein, C., Haxthausen, A.E., Huang, W., Hübner, F., Peleska, J., Schulze,
U., Vu Hong, L.: Complete model-based equivalence class testing for the ETCS
ceiling speed monitor. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829,
pp. 380–395. Springer, Cham (2014). doi:10.1007/978-3-319-11737-9 25

5. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng. (SE) 4(3), 178–186 (1978)

6. Dingel, J., Filkorn, T.: Model checking for infinite state systems using data abstrac-
tion, assumption-commitment style reasoning and theorem proving. In: Wolper, P.
(ed.) CAV 1995. LNCS, vol. 939, pp. 54–69. Springer, Heidelberg (1995). doi:10.
1007/3-540-60045-0 40

7. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3: a paral-
lel refinement checker for CSP. Int. J. Softw. Tools Technol. Transf. 18(2), 149–167
(2016). http://dx.doi.org/10.1007/s10009-015-0377-y

8. Henzinger, T.A., Ho, P., Wong-Toi, H.: HYTECH: a model checker for hybrid
systems. STTT 1(1–2), 110–122 (1997). https://doi.org/10.1007/s100090050008

9. Huang, W., Peleska, J.: Complete model-based equivalence class testing. STTT
18(3), 265–283 (2016). http://dx.doi.org/10.1007/s10009-014-0356-8

10. Huang, W., Peleska, J.: Complete model-based equivalence class testing for
nondeterministic systems. Form. Asp. Comput. 29(2), 335–364 (2017). http://
dx.doi.org/10.1007/s00165-016-0402-2

11. Hübner, F., Huang, W., Peleska, J.: Experimental evaluation of a novel equiva-
lence class partition testing strategy. In: Blanchette, J.C., Kosmatov, N. (eds.)
TAP 2015. LNCS, vol. 9154, pp. 155–172. Springer, Cham (2015). doi:10.1007/
978-3-319-21215-9 10

12. Krafczyk, N.: Äquivalenzprüfung für Zustandstransitionssysteme mittels
Eingabeäquivalenzklassenpartitionierung. Master’s thesis, University of Bre-
men, November 2016

13. Krenn, W., Schlick, R., Tiran, S., Aichernig, B., Jobstl, E., Brandl, H.: MoMut:
UML model-based mutation testing for UML. In: 2015 IEEE 8th International
Conference on Software Testing, Verification and Validation (ICST), pp. 1–8. IEEE
(2015)

14. Object Management Group: OMG Systems Modeling Language (OMG SysML),
Version 1.4. Technical report, Object Management Group (2015). http://www.
omg.org/spec/SysML/1.4

15. Peleska, J., et al.: A real-world benchmark model for testing concurrent real-
time systems in the automotive domain. In: Wolff, B., Zäıdi, F. (eds.) ICTSS
2011. LNCS, vol. 7019, pp. 146–161. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24580-0 11

http://dx.doi.org/10.1007/978-3-642-17071-3_12
http://dx.doi.org/10.1007/978-3-642-38916-0_2
http://dx.doi.org/10.1007/978-3-642-38916-0_2
http://dx.doi.org/10.1007/978-3-540-30080-9_1
http://dx.doi.org/10.1007/978-3-319-11737-9_25
http://dx.doi.org/10.1007/3-540-60045-0_40
http://dx.doi.org/10.1007/3-540-60045-0_40
http://dx.doi.org/10.1007/s10009-015-0377-y
https://doi.org/10.1007/s100090050008
http://dx.doi.org/10.1007/s10009-014-0356-8
http://dx.doi.org/10.1007/s00165-016-0402-2
http://dx.doi.org/10.1007/s00165-016-0402-2
http://dx.doi.org/10.1007/978-3-319-21215-9_10
http://dx.doi.org/10.1007/978-3-319-21215-9_10
http://www.omg.org/spec/SysML/1.4
http://www.omg.org/spec/SysML/1.4
http://dx.doi.org/10.1007/978-3-642-24580-0_11
http://dx.doi.org/10.1007/978-3-642-24580-0_11

Model Checking by Input Equivalence Class Partitioning 53

16. Peleska, J., Huang, W.: Model-based testing strategies and their (in)dependence
on syntactic model representations. In: Beek, M.H., Gnesi, S., Knapp, A. (eds.)
FMICS/AVoCS -2016. LNCS, vol. 9933, pp. 3–21. Springer, Cham (2016). doi:10.
1007/978-3-319-45943-1 1

17. Roscoe, A.W.: Understanding Concurrent Systems. Springer, London (2010).
doi:10.1007/978-1-84882-258-0

18. Springintveld, J., Vaandrager, F., D’Argenio, P.: Testing timed automata. Theor.
Comput. Sci. 254(1–2), 225–257 (2001)

19. Sulzmann, M., Zechner, A.: Model checking DSL-generated C source code. In:
Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 241–247.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31759-0 18

20. Vasilevskii, M.P.: Failure diagnosis of automata. Kibernetika (Transl.) 4, 98–108
(1973)

http://dx.doi.org/10.1007/978-3-319-45943-1_1
http://dx.doi.org/10.1007/978-3-319-45943-1_1
http://dx.doi.org/10.1007/978-1-84882-258-0
http://dx.doi.org/10.1007/978-3-642-31759-0_18

Using Robustness Testing to Handle Incomplete
Verification Results When Combining
Verification and Testing Techniques

Stefan Huster(B), Jonas Ströbele, Jürgen Ruf, Thomas Kropf,
and Wolfgang Rosenstiel

Department of Computer Science, University of Tübingen,
Sand 14, 72076 Tübingen, Germany

{huster,stroebele,ruf,kropf,rosenstiel}@informatik.uni-tuebingen.de

Abstract. Modular verification and dynamic testing techniques are
often combined to validate complex software systems. Formal verifica-
tion is used to cover all input spaces and program paths. However, due to
the high complexity of modern software systems, they might not achieve
complete verification results. Dynamic testing techniques can easily be
applied to any type of software. Current approaches use them to handle
incomplete verification results by validating unverified sections. This way
of combining verification and testing ignores the fact that tests can only
be used to show the presence of errors, but not their absence. Undis-
covered errors pose the risk to trigger further errors in vulnerable code
sections. Vulnerable sections are modularly verified, but depend on the
guarantees of the tested code. We include robustness testing to analyse
the influence of undiscovered errors. The generated robustness tests sim-
ulate failed guarantees within the tested code. The triggered response
to those simulated errors helps the developer in adding additional error
handling code. This makes the system more robust against undiscov-
ered errors and guards it against uncontrolled crashes and unexpected
behaviour in case of software failures. In the second part of this paper,
we introduce a reference-architecture to generate and apply robustness
tests. This architecture has been applied to multiple case studies and
helped to identify potential errors yet undiscovered by generated test
cases.

Keywords: Software verification · Robustness testing · Test vector
generation

1 Introduction

Modular verification and dynamic testing techniques are often combined to val-
idate complex software systems. Verification techniques are used to guarantee
that an implementation matches its formal specification. For object oriented
programs (OOPs), the specification is often defined as a set of conditions such

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 54–70, 2017.
DOI: 10.1007/978-3-319-67549-7 4

Using Robustness Testing to Handle Incomplete Verification Results 55

as pre- and post-conditions and invariants. Modular verification techniques [1]
analyse this type of specification based on a generated set of proof obligations
(also known as verification goals). A proof obligation (POG) is similar to a
Hoare-Triple {P} S {Q} [2]. The POG contains a program segment (Hoare: S),
a set of assumptions (Hoare: {P}), and a guarantee (Hoare: {Q}) [3]. While con-
sidering all assumptions, the verification framework has to verify whether each
possible execution of the embedded program section fulfils the defined guaran-
tee. Assumptions made by one proof obligation must be ensured by another one.
Only the validity of all proof obligations implies the correctness of the entire
software system. Especially OOP concepts such as inheritance and (recursive)
aggregation cause an infinite number of feasible control flows and thereby a high
level of complexity. Due to this complexity, formal verification techniques are
rarely capable of achieving complete verification results.

We use Listing 1.1 as running example to introduce our methodology. The
listed method cannot be verified using the verification framework Microsoft Code
Contracts 1. It is part of a program to solve the Cutting Stock problem [4]. This
problem is about cutting standard-sized pieces of material into pieces of specified
sizes. The listed method is used to add new cutting lengths (Cut) to the current
cutting layout (Bar). It checks whether the available material length is long
enough to add the given piece length. It analyses the summarised lengths of all
added cuts plus the required minimum space between two cuts (line 14). The
value of UsedLength must always be smaller than the total material length. This
is required by the invariant in line 7. Figure 1 shows how Code Contracts claims
that this invariant is not guaranteed on exit. This illustrates how specifications
remain unverified.

Fig. 1. Code Contracts marks unverified invariant

In such cases, where some proof obligations remain unverified, current
approaches ensure the correctness of those proof obligations by exhaustive testing.
1 https://www.microsoft.com/en-us/research/project/code-contracts/, Last visit
June 2017.

https://www.microsoft.com/en-us/research/project/code-contracts/

56 S. Huster et al.

1 public class Bar {
2 public double Length , UsedLength , MinSpace ;
3 public List<Double> Cuts ;
4 [ContractInvariantMethod]
5 private void Objec t Invar iant () {
6 Contract . Inva r i an t (UsedLength >= 0) ;
7 Contract . Inva r i an t (UsedLength <= Length) ;
8 Contract . Inva r i an t (Cuts != null) ;
9 }

10 public Bar (double l ength , double minSpace) { [. . .] }
11 public bool AddCut(double cutLength) {
12 Contract . Requires (cutLength > 0) ;
13 double usedSpace = Cuts . Count ∗ MinSpace ;
14 if ((Length − UsedLength − usedSpace) < cutLength) {
15 return false ;
16 }
17 UsedLength += cutLength ;
18 Cuts .Add(cutLength) ;
19 return true ;
20 }
21 }

Listing 1.1. Code Contracts: Unverified Invariant

1 public void TestAddCut () {
2 Bar bar = new Bar (5000 , 5) ;
3 bool couldAdd = bar . AddCut(1500) ;
4 Assert . IsTrue (couldAdd && bar . UsedLength == 1500) ;
5 couldAdd = bar . AddCut(5500) ;
6 Assert . IsTrue (! couldAdd && bar . UsedLength == 1500) ;
7 }

Listing 1.2. Testing unverified method

This use of testing can be shown to have residual risks. As Dijkstra put it, pro-
gram testing can only be used to show the presence of bugs, but not their absence.
Program sections which require the correctness of tested guarantees remain vul-
nerable, because undiscovered errors regarding failed guarantees produce further
failures. Let’s come back to our running example. The unverified method in List-
ing 1.1 can be tested using the unit test Listing 1.2, achieving full branch, path
and condition coverage. In view of testing, this test case covers all major coverage
rates and the method can be seen as validated. However, we achieve the same test-
ing results when replacing line 14 by if ((Length - usedSpace)< cutLength).
This would be a major bug, because this line ignores the used material length. This
bug allows to add more cuts to the bar than available material space. This could
be tested when executing line 4 of our test case multiple times in a row. This sim-
ple example illustrates how testing can achieve good coverage rates while missing
important defects.

Using Robustness Testing to Handle Incomplete Verification Results 57

This paper introduces a new approach that uses robustness testing to analyse
the influence of such undiscovered errors. We initialise invalid program states to
simulate failed guarantees and inspect the corresponding behaviour of vulnerable
program sections. Our goal is to support the developer in adding additional error
handling code on critical locations in order to secure vulnerable sections against
potential failures.

The remainder of this paper is structured as follows: Sect. 2 describes related
work and current tools. Section 3 describes how we use robustness testing to
analyse the influence of undiscovered errors. Section 4 defines one reference imple-
mentation to generate the defined type of robustness tests. Section 5 presents our
results in comparison to current tools. Section 6 concludes the paper and presents
future work.

2 Related Work

Several methodologies and tools already exist which combine formal verification
and dynamic testing.

Christakis et al. [5–7] present a methodology that combines verification and
semantic testing. Different static verification models are used together to verify
the software under test in a sound way. Assumptions made by one prover, e.g.
regarding numerical overflows, are ensured by another. Unverified assumptions
are subsequently tested. The symbolic testing is guided to cover specifically those
properties that could not been verified.

Czech et al. [8] present a method to create residual programs based on failed
proof obligations. They reduce the number of required test cases, by testing only
those control flows that have not been verified.

Kanig et al. [9] present an approach that uses explicit assumptions to verify
ADA programs. Unverified assumptions are tested by generated test suites.

Code Contracts [10], Pex [11] and Moles [12] is the current Microsoft tool
chain for software verification and symbolic test case execution. Code Contracts
can be used to verify C# programs and supports contracts such as pre- and
postconditions. Pex and Moles have been integrated into Visual Studio 2015
under the names IntelliTest and Fakes. Moles/Fakes is used to isolate test cases
and can replace any method with a delegate. Pex iteratively applies symbolic
execution to create test vectors in order to cover all branches of the method under
test. The Microsoft tool chain does not provide any standard methodology to
combine both tools.

In summary, all mentioned approaches try to reduce the number of required
test cases by testing only unverified control flows. They try to handle incomplete
verification results by achieving high test coverage on the unverified software
components. No mentioned approach handled the residual risk of tested source
code on vulnerable code sections. Therefore, they mark code sections as formally
correct, even when those sections may contain serious errors caused by failed
guarantees in tested code.

58 S. Huster et al.

3 Methodology

The presented methodology integrates into existing workflows combining formal
verification and dynamic testing techniques. Figure 2 shows an abstract illus-
tration on how current approaches combine verification and testing. The input
to those workflows is the program source code and its specification. The proof-
obligation-generator analyses the source code and the specification to generate
a set of proof obligations. In the second step, those proof obligations are verified
by the verification backend. This step divides the set of proof obligations into a
verified and unverified subset. In step 3, unverified proof obligations are further
analysed by a test case generation framework. Those frameworks use symbolic
execution (also known as concolic testing) to automatically create test cases and
test vectors to explicitly cover control flows of unverified proof obligations.

Fig. 2. Abstract workflow to combine formal verification and testing techniques

The presented methodology adds two new steps to existing workflows. In step
2B, the POG inspector analyses the dependencies between verified and unverified
proof obligations in order to identify vulnerable code sections. Step 3B generates
robustness tests for those vulnerable POGs. These tests simulate errors within
the tested code and uncover locations where additional error handling and sanity
checks are required.

This section starts by defining proof obligations, then describes how to iden-
tify vulnerable code sections, illustrates their risks and finally explains how to
generate corresponding robustness tests.

Using Robustness Testing to Handle Incomplete Verification Results 59

3.1 Proof Obligations

We start by defining the input to our methodology and corresponding symbols
to refer to the different components of object oriented programs. The input to
the proof obligation inspector is a set of verified and unverified proof obligations
(POG). The POGs are generated based on the source code of an object-oriented
program Prog and its specification set ΓProg. This program contains classes
c ∈ CProg. Each class can contain methods m ∈Mc and fields f ∈ Fc. A method
consists of an ordered set of statements s∈〈S〉m. The list of method parameters is
�m. The specification can contain preconditions Γ pre

m , postconditions Γ post
m , and

object invariants Γ inv
c .

The proof of the overall correctness is divided into a generated set of proof
obligations. Each proof obligation covers one control flow:

Definition 1 (Control Flow). A control flow S̃ = 〈s0, . . . , sn〉 is a set of state-
ments si ∈ Sm, m ∈Mc. Between each pair of statements si and si+1 exists one
unique transition.

Definition 2 (Proof Obligation). The set of all generated proof obligations
is Π. A proof obligation π = (Ω, S̃, φ) is a triple, combining a set of assumptions
(Ω), a control flow (S̃), and a verification goal (φ). We refer to the method
which contains the control flow S̃ by mπ. Assumptions and goals are represented
as boolean predicates. A proof obligation is verified iff one can show that each
execution of S̃ validates φ while assuming Ω. The predicate Ψ(π) is true iff π
can be verified. A proof obligation is always generated based on a specification
γ ∈ Γ , we write Π(γ)→ π.

Let’s apply this to our running example. Here we can extract two work flows
and POGs: s̃1 = 〈s12, s13, s14, s15〉 and s̃2 = 〈s12, s13, s14, s17, s18, s19〉. The indexes
si mark the global line number of the corresponding statement. The unverified
invariant φ1 = (UsedLength<=Length) is covered by two proof obligations: Ω1 =

{(cutLength > 0), (CutLength! = null)} in π1 = (Ω1, s̃1, φ1) and π2 = (Ω1, s̃2, φ1).

3.2 Identifying Vulnerable Proof Obligations

The verification framework (Step 2 in Fig. 2) divides the set of POGs Π into a
set of verified POGs Π+ = {π ∈Π|Ψ(π)} and a set of unverified POGs Π−

= {π ∈
Π| ¬ Ψ(π)}. Modular verification techniques build their correctness proof upon
dependencies between different POGs. Those dependencies must be considered
when testing unverified POGs. In step 3B of Fig. 2, we identify POGs depending
on unverified code. We call them vulnerable proof obligations.

Definition 3 (Vulnerable Proof Obligations). One proof obligation πi =

(Ωi, s̃i, φi) depends on a different proof obligation πj =(Ωj , s̃j , φj) iff the assump-
tion list Ωi contains the verification goal φj:

πi ⊢ πj ⇔ ∃ω ∈Ωi|ω ≡ φj (1)

One proof obligation πi is vulnerable iff πi⊢πj ∧¬Ψ(πj). The set of all vulnerable
proof obligations is defined as Π?

= {πi|πi ⊢ πj ∧ ¬Ψ(πj)}.

60 S. Huster et al.

1 public List<Bar> CreateBars (L i s t<double> cutLengths ,
Dict ionary<double , int> mate r i a l s) {

2 List<Bar> cutt ingLayouts = new List<Bar>() ;
3 foreach (double cLen in cutLengths) {
4 bool couldAdd = false ;
5 foreach (Bar bar in cutt ingLayouts) {
6 if (bar . AddCut(cLen)) { couldAdd = true ; break ; }
7 }
8 if (! couldAdd) {
9 double bfLength = Double . MaxValue ;

10 foreach (double matLength in mate r i a l s . Keys) {
11 double o f f c u t = matLength − cLen ;
12 if (o f f c u t > 0 && o f f c u t < bfLength − cLen &&

mate r i a l s [matLength] > 0) {
13 bfLength = matLength ;
14 }
15 }
16 if (bfLength < Double . MaxValue) {
17 Bar newBar = new Bar (bfLength , 5) ;
18 newBar . AddCut(cLen) ;
19 cutt ingLayouts .Add(newBar) ;
20 mate r i a l s [bfLength] −= 1 ;
21 }
22 }
23 return cutt ingLayouts ;
24 }

Listing 1.3. Implicit depending code

Let’s have a look what dependencies and vulnerable code section we can
identify in our running example. Listing 1.3 shows another code section of the
Cutting Stock program. To conserve space, we list this example without its
specification. This method creates different cutting layouts using the AddCut
method. The above defined POG π2 = (Ω1, s̃2, φ1) of AddCut requires a valid
precondition. Therefore, this POG depends on all POGs covering this precon-
dition. One of those POGs is generated based on the following control flow
s̃3 = 〈s2, s3, s4, s5, s6, . . . 〉 for the CreateBars method π3 = (Ω3, s̃3, (CLen > 0)).
This control flow must guarantee that the used cut length is greater than zero
before calling AddCut. We call this an explicit dependency. There exists another
kind of dependency for all control flows calling AddCut. These code sections
depend on the invariants of Bar, such as π2, even if these invariants are not explic-
itly addressed. This is the case because every method requires valid object states
when calling their methods. We call this an implicit dependency. Such dependen-
cies are expressed as assumptions and are handled during the POG generation.
However, we remember that the POG π2 could not be verified. Therefore, all
POGs calling AddCut in their control flow are considered as vulnerable.

Using Robustness Testing to Handle Incomplete Verification Results 61

3.3 Spreading Errors - the Risk of Vulnerable Proof Obligations

The main risk is the spreading of undiscovered errors in tested code into seem-
ingly unrelated or previously verified code sections. In such cases, errors might
be difficult to find, because the error source might be hidden in the method call
stack. This is illustrated in Fig. 3. The method call graph shows two methods,
m1 and m3, both calling method m2. The precondition γ3 of method m2 must
be respected by both calling methods m1 and m3. Therefore, the precondition
is covered by two POGs: π3a for the control flow in m1 and π3b for the control
flow in m3. The postcondition γ4 of m2 is covered by the POG π4 = Π(γ4). It
depends on the correctness of the precondition γ3: π4⊢{π3a, π3b}. Let us assume
that the POG π3a can not be verified. This makes π4 vulnerable because it now
depends on an unverified POG. Errors in m1 may cause a failed precondition γ3,
which produces errors in m2 even though m2 has been modularly verified. The
result might be an invalid return value of m2, which in turn may affect the code
section in m1 handling this return value. Thereby, even the postcondition γ2 of
method m1 may fail.

Fig. 3. Method call graph (Top) and possible POG dependency graph (Bottom)

The goal of our approach is to identify such risks by testing the method m2

assuming that γ3 has failed. This allows us to add additional checks to prevent
such an error propagation.

3.4 Generating Robustness Tests

In general, robustness tests are used to analyse the behaviour of a program
under hostile circumstances. This can be done in different ways. In some cases,
it is sufficient to call a method with invalid parameter values. In other cases it
is required to modify the tested code in order to simulate failures. In such a
scenario, we speak of “Mocked Test Cases”.

62 S. Huster et al.

Definition 4 (Mocked Test Case). A test case t ∈T with test vector �t executes
the control flow s̃: t→ s̃. A mocked test case t[η↦ ή]→ s̃ replaces in s̃ the symbol
η by ή before executing s̃.

Definition 5 (Robustness Tests). A robustness tests t ∈T ? is used to simulate
failed guarantees by injecting invalid symbol values. We use following syntax to
express the requirements on a symbol’s value: ⟦γ ⟧v →⊥. When evaluating γ using
value v, γ must evaluate to false. Additional test oracles are defined using following
syntax: ⟦t ⟧ → ⊥ φ The evaluation of test case t must fulfil the boolean condition
φ. Invalid symbols must be set during the test case execution and the only location
to define them is within the robustness test parameter vector. Therefore it must be
possible to back trace those values to the test vector. We use the right arrow syntax
→ to express this trace, e.g. �t→ �̈m→F . This syntax expresses that the original test
vector �t is used to fill the method parameter list �̈m. These parameter values �̈m are
used to set the class field values F .

We create one robustness test for each POG πi depending on an unverified POG:

T ?
= {∀i πi = (Ωi, S̃i, φi) ∈Π? : t→ S̃i} (2)

We use the verification goals of all proof obligations covering the tested control
flow as additional test oracles:

∀i (ti → S̃i) ∈ T ? ∀j πj = (Ωj , S̃j , φj) ∈Π : ⟦ti ⟧ →φj | S̃i ⊆ S̃j (3)

The way failed guarantees are simulated depends on the POG’s origin:
If the unverified POG πi was generated to cover the precondition γpre

i of
method ṁ, we must create a robustness test which calls ṁ with parameter
values �t violating γpre

i :

∀j πj ⊢ πi | ¬ Ψ(πi) : t→ S̃j ,�t | ⟦ γpre
i ⟧�t →⊥ (4)

If the unverified POG πi was generated to cover the postcondition γpost
i of

method ṁ, we must inject a return value of ṁ violating γpost
i . To inject the

simulated return value, we must create a mocked version m̈ of ṁ. The mocked
version uses an extended parameter list �̈m, which allows us to directly set the
return value based on �t. We refer to the return value of m̈ by ⟦m̈⟧.

∀j πj ⊢ πi | ¬ Ψ(πi) : t[ṁ↦ m̈]→ S̃j ,�t→ �̈m→ ⟦m̈ ⟧ | ⟦ γpos
i ⟧

⟦m̈⟧ →⊥ (5)

If the unverified POG πi was generated to cover an invariant γinv
i of class

ci, we must inject an invalid object instance. Therefore we must distinguish
between two further cases: (1) The POG was generated based on a constructor

˙ctor. (2) The POG was generated based on a method ṁ. In the first case, the
invalid object instance can be created by a mocked constructor method ¨ctor.
The mocked constructor uses an extended parameter list �̈ctor, which allows us
to directly set all class fields F based on �t.

∀j πj ⊢ πi | ¬ Ψ(πi) : t[˙ctor↦ ¨ctor]→ S̃j ,�t→
�̈ctor→ F | ⟦ γinv

i ⟧F →⊥ (6)

Using Robustness Testing to Handle Incomplete Verification Results 63

1 public bool AddCutMocked(double cutLength , double usedLength ,
double l ength) {

2 if ((Length − UsedLength − (Cuts . Count ∗ MinSpace)) <
cutLength)

3 { return false ; }
4 UsedLength += cutLength ;
5 Cuts .Add(cutLength) ;
6 UsedLength = usedLength ; // Inject invalid field values

7 Length = length ; // based on parameter list

8 return true ;
9 }

Listing 1.4. Mocked method to inject simulated errors

In the second case, the invalid instance must be simulated by a mocked copy m̈
of ṁ. The mocked method must set all referenced class fields F of ci based on
its own extended parameter list �̈m.

∀j πj ⊢ πi | ¬ Ψ(πi) : t[˙ctor↦ ¨ctor]→ S̃j ,�t→ �̈m→ F | ⟦ γinv
i ⟧F →⊥ (7)

In our running example, the failed POG was generated to cover an invariant
during the execution of AddBar. Therefore, we need to inject the simulated error
through a mocked method, which is Listing 1.4. We have added the additional
parameters UsedLength and length to the original parameter list. These values
are used in line 6 and 7 to set the invalid object state. Now, we only need to
replace calls to AddBar by calls to AddBarMocked when testing CreateBars. We
can simulate the invalid object state of Bar by calling AddBarMocked, e.g. with
usedLength=7000 and length=5000. The results of the robustness test will show
that the created cutting layouts are invalid. Now we know that we need to add
extra sanity checks to validate the correctness of cuttingLayouts before return
them. This prevents undiscovered errors in AddBar from spreading into code
sections where the origin of invalid cutting layouts may be difficult to find.

4 Reference-Implementation

Applying robustness tests and injecting simulated errors requires more effort
than regular testing. Especially creating all required mocks is very labour intense
when doing it manually. Therefore, we have implemented our methodology into
a new mocking framework to face three major challenges: First, we need to
ensure that every tested method is visible and accessible within the test suite.
Second, we need to initialise object instances with deliberate states hosting the
tested methods. Third, we must create the possibility to inject simulated errors
to apply robustness testing. We meet those challenges by creating three different
layers of mocked code: The first layer mocks the original source code to provide
access to all class fields and methods. The second layer contains the mocked test
methods to validate unverified POGs and vulnerable code sections. All steps in

64 S. Huster et al.

Algorithm: InitList(c)

Globals: RecursionDepth, MaxRecursion, CollectionSize
begin

if RecursionDepth[c] >MaxRecursion then return {c}
IP ←∅
RecursionDepth[c] + +
foreach f ∈ Fc do

if IsSimpleType(f) then IP = IP ∪ Type(f)
else if IsCollection(f) then

for i = 0→ CollectionSize do
if HasKeyType(f) then IP = IP ∪ InitList(KeyType(f))
IP = IP ∪ InitList(V alueType(f))

end

else IP = IP ∪ InitList(Type(f))

end
RecursionDepth[c] − −
return IP ;

end
Algorithm 1. Algorithm to generate initialisation parameter lists

both layers can be applied automatically and do not require manual work. The
third layer contains the actual test cases.
Layer 1 contains a mocked version ¯Prog of Prog to make the complete code
base testable. We need to consider that we do not want to test complete meth-
ods but explicit control flows of unverified POGs. Those control flows might be
extracted from private or abstract methods. In ¯Prog we set the visibility of each
class field and tested method to public. We have chosen this way, because it
is language independent. other solutions for accessing private symbols require
language specific runtime flags or reflection APIs. We remove the abstract
attribute from each tested class and method. Instead, we add an empty default
implementation and a corresponding default return value to each pure abstract
method so our program can be compiled. To be able to initialise every object
type, we add a default constructor and a static initialisation method to each
user-defined type. To create those initialisation methods, we use the recursive
Algorithm 1 to inspect aggregated object types c ∈ C. The algorithm extracts a
list with parameters representing the aggregated primitive values. To that end,
we also create items to fill used collection types, such as Lists, Arrays or Dictio-
naries. The number of items are added is set with the constant CollectionSize.
Recursively analysing the key and value types, we merge the resulting parameter
lists. To prevent endless recursion steps, we track the recursion depth with the
map RecursionDepth(c→N) until the maximum recursion depth MaxRecursion
has been reached.

Layer 2 contains the mocked methods and constructors to inject invalid return
types and object states. Invalid return values and object states are injected by set-
ting corresponding class fields or by creating corresponding return values, instead

Using Robustness Testing to Handle Incomplete Verification Results 65

of computing them. We use Algorithm 1 to extract the list of required primitive
types in order to manipulate or initialise the aggregated object. These extracted
primitive types are added to the parameter list of the mocked method. Thereby,
we can use the parameter list to explicitly control return values and object states.
An example is given in Listing 1.7, in lines 6 and 7.

Layer 3 contains the actual robustness tests calling the mocked test methods
in layer 2. The parameter lists of test cases in this layer combine the extended
parameter lists of called mocked methods. Errors can be injected by assigning
corresponding parameter values. This might require additional manual work,
if the list of parameters is to long and cannot be automatically covered by a
symbolic execution tool like Pex.

5 Case Studies

The real world case study ‘Settings Manager’ (SM) is extracted from an indus-
trial machine control software. The case study ‘Cutting Stock’ (CS) is the pro-
gram hosting our running example. The program creates a list of cutting lay-
outs based on the lengths and quantities of material and pieces. The case study
‘Lending Library’ (LL) is a small code example to manage the rental and return
of items. All three studies are implemented in C# and use Code Contracts as
specification language. Table 1 summarises the main properties.

We compare our methodology with results of current verification and testing
techniques. We apply Microsoft Code Contracts as formal verification framework
and IntelliTest as automatic test case generation framework. To get detailed
POG information, we have implemented our own POG generator based on [3,13].
The results are summarised in Table 2. To benchmark the achieved benefits, we
analyse the results of the generated robustness tests, and analyse whether they
triggered an error within the vulnerable code. The resulting table lists those
errors as “Robustness Errors”. This table also lists the automatically achieved
test coverage by regular test cases on unverified proof obligations.

Table 1. Overview case studies

Settings
Manager (SM)

Cutting Stock
(CS)

Lending
Library (LL)

LOC 1277 634 432

Preconditions 46 32 12

Postconditions 22 19 13

Invariants 21 13 15

Proof obligations 187 115 52

66 S. Huster et al.

1 public object GetValue (string targetName) { [. . .]
2 Contract . Requires (ta rge tVa lues . ContainsKey (targetName)) ;
3 Contract . Requires (ta rge tScopes . ContainsKey (targetName)) ;
4 Contract . Ensures (Contract . Result<System . Object >() != null) ;
5 if (! ta rge tVa lues . ContainsKey (targetName))
6 { throw new UnkownTargetException ("[...]") ; }
7 // Exception when targetName is no key [...] }

8 Sett ingScope targetSope = targe tScopes [targetName] ;

Listing 1.5. Vulnerable code section which can causes a software crash

5.1 Case Study: Settings Manager

We have created 187 POGs to cover all 89 single specifications. The verification
framework left 4 POGs unverified, covering different preconditions. The auto-
matically generated test suite achieved 92% branch coverage on those 4 unverified
control flows. Analysing those 4 unverified POGs, we could identify 18 vulnerable
proof obligations. Two of them were not sufficiently secured against undiscovered
errors.

Listing 1.5 shows one of those unsecured code sections. The precondition in
line 3 could not be verified for each caller. To handle this incomplete verifica-
tion result, related approaches create test cases to validate the unverified caller.
In addition, we use robustness tests to analyse the consequences of a failing
precondition. The robustness tests created by our approach call this method
with a value for targetName which explicitly invalidates the precondition in line
2, while respecting all other assumptions. Thereby, we discovered the potential
KeyNotFound-Exception in line 8, which would cause a software crash. This dis-
tinguishes a robustness test from a regular test. Regular test coverage could be
achieved by testing this method while respecting both preconditions, but such
tests would not trigger the error in line 8. This method was programmed based
on the assumption that both containers (targetScopes and targedNames) share
the same keys. Therefore the programmer checked the key only for one container.
After discovering this risk, the developer could add additional exception handling
similar to the one in lines 5–6.

5.2 Case Study: Cutting Stock

This case study is comprised of 64 specifications, which are covered by 115 POGs.
The verification framework left 7 POGs unverified (4 invariants, 2 preconditions,
1 postcondition). The automatically generated test suite achieved 94% branch
coverage on those 7 unverified control flows. We could identify 23 vulnerable
proof obligations.

One of them was already discussed above and used as the running exam-
ple. Another unverified POG covers the postcondition of GetFreeClamp in List-
ing 1.6. This method is called by a different method AssignClamps, which of
course depends on the validity of that postcondition. AssignClamps calculates
the required Clamp positions for the cutting machine, which is used to produce

Using Robustness Testing to Handle Incomplete Verification Results 67

1 private Clamp GetFreeClamp (double minPos , double maxPos) {
2 Contract . Ensures (Contract . Result<Clamp>() == null | | (

Contract . Result<Clamp>() . f r e e && Contract . Result<Clamp>() .
minPos <= minPos)) ;

3 foreach (Clamp clamp in clamps) {
4 if (clamp == null) continue ;
5 if (clamp . minPos <= minPos && clamp .maxPos >= maxPos)
6 { return clamp ; }
7 }
8 return null ; }

Listing 1.6. Code section with an unverified postcondition

the generated cutting-layouts. Wrong clamp positions may cause damage to the
machine, e.g. when the saw hits a wrongly positioned clamp. Therefore, we want
to test the behaviour of AssignClamps when this postcondition fails, in order to
guarantee safe error handling. The corresponding robustness test must inject an
invalid return value for GetFreeClamp into AssignClamps. Our framework gen-
erates the mocked copy GetFreeClampMocked in Listing 1.7. In AssignClamps,
all method calls to the original methods are replaced in order to call the mocked
copy. As described in Sect. 4, the mocked method uses an extended parameter
list to initialise the returned object: free 3, minPos 4, maxPos 5. These parame-
ters map to the basic field values of class Clamp. Thereby it is possible to return
a Clamp instance which is not null and which does not meet the defined postcon-
dition. The analysis of this robustness test shows that the simulated error caused
an invalid return value for AssignClamps. An invalid return value would cause
invalid cutting layouts, leading to faulty production in the real world. What
makes this bug particular dangerous is the absence of easily detectable errors
such as exceptions or a crash. The problem would not have been detected until
someone tried to produce the erroneously calculated cutting layouts. Analysing
the robustness test, the developer can add an additional sanity check within
AssignClamps and make sure that the results meet all requirements.

1 private Clamp GetFreeClampMocked (double minPos 1 , double

maxPos 2 , bool f r e e 3 , double minPos 4 , double maxPos 5) {
2 Clamp clamp = new Clamp () ;
3 clamp . I n i t (f r e e 3 , minPos 4 , maxPos 5) ;
4 return clamp ; }

Listing 1.7. Mocked method to inject invalid return values

5.3 Case Study: Lending Library

The smallest case study, ‘Lending Library’ was specified using 30 conditions,
which were covered by 54 generated POGs. The verification step left 6 proof
obligations unverified (3 invariants, 2 postconditions, 1 precondition). Based on
those 6 unverified POGs, we could identify 12 vulnerable code sections. The cor-
responding robustness tests discovered 3 critical code sections where additional

68 S. Huster et al.

1 public bool ReturnItem (RentalItem item) {
2 if (! item . Rented) { return false ; }
3 [. . .] }

Listing 1.8. Existing checks also handle simulated errors

sanity checks were required. Now someone could wonder about the vulnerable
sections where no robustness error was found. The answer is very simple. The
other 9 vulnerable code sections already contained error handling code, so no
additional code needed to be added. An example is given in Listing 1.8. This
method requires that the given RentalItem is actually rented and not returned.
This state is encoded as an boolean class field. The related precondition could
not be verified. However, this flag is already checked in line 2 and the robustness
test could not trigger any new error.

Table 2. Comparsion between both approaches

SM CS LL

Unverified proof obligations 4 7 6

Autom. achieved code coverage 92% 94% 98%

Identified vulnerable code sections 18 23 12

Discovered robustness errors 2 5 3

6 Conclusion and Future Work

Our case studies have shown that automatic test frameworks already achieve
high coverage rates on unverified code sections. This poses the risk that such
test suites might never be checked manually by the corresponding developer to
identify insufficient test cases, as shown in Listing 1.2. That makes the inspection
of code sections that rely on the correctness of the tested code particularly impor-
tant. Even tested methods, entirely covered, may still contain errors. Therefore,
only testing unverified code sections is insufficient when combining formal veri-
fication and dynamic testing techniques. Undiscovered errors in tested code my
spread into other code sections, even those sections that have been previously
verified. Such errors may be hard to debug, as they might be camouflaged after
having been propagated through different methods. This was demonstrated in
our running example extracted from the Cutting Stock case study. These risks
are not handled by current approaches.

To reduce this residual risk, we have presented a new methodology to use
robustness testing to handle incomplete verification results. We extract the guar-
antees of unverified proof obligations and use them to create and inject simulated
errors. Those errors test the behaviour of vulnerable code sections in situations
when those guarantees fail. The presented reference-architecture demonstrates

Using Robustness Testing to Handle Incomplete Verification Results 69

how robustness tests can be generated and how simulated errors can be injected.
By injecting simulated errors, the developer can analyse the consequences of
failed guarantees. They can add further exception handling and sanity checks to
prevent the propagation of previously undiscovered errors into other methods.
The software can then handle errors in a controlled way rather than default-
ing to unpredictable behaviour. It could be argued that developers can always
add more exception handling and state checking. But this would be very labour
intense when applied for every return value and argument. Furthermore, these
sanity checks must be tested as well, requiring many robustness tests to cover
the corresponding program paths. The presented methodology helps the devel-
oper to localise precisely those code sections, where additional error handling is
required.

Finally, one major issue regarding formal verification needs to be addressed in
future work. There is still no proper way to tell whether the defined specifications
are sufficient and cover all necessary requirements. When the specification is
insufficient, the number of generated POGs may be too small to properly analyse
dependencies between them in order to identify vulnerable sections. Future work
must find more sophisticated coverage rates for specifications.

References

1. Müller, P. (ed.): Modular Specification and Verification of Object-Oriented Pro-
grams. LNCS, vol. 2262. Springer, Heidelberg (2002). doi:10.1007/3-540-45651-1

2. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. The KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-69061-0

4. Amor, H.B., de Carvalho, J.V.: Cutting stock problems. In: Desaulniers, G.,
Desrosiers, J., Solomon, M.M. (eds.) Column Generation, pp. 131–161. Springer,
Boston (2005). doi:10.1007/0-387-25486-2 5

5. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing with
explicit assumptions. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol.
7436, pp. 132–146. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32759-9 13

6. Christakis, M., Müller, P., Wüstholz, V.: Guiding dynamic symbolic execution
toward unverified program executions. In: Proceedings of the 38th International
Conference on Software Engineering, pp. 144–155. ACM (2016)

7. Christakis, M.: Narrowing the gap between verification and systematic testing.
Ph.D. thesis, National Technical University of Athens, Greece (2015)

8. Czech, M., Jakobs, M.-C., Wehrheim, H.: Just test what you cannot verify!. In:
Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 100–114. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46675-9 7

9. Kanig, J., Chapman, R., Comar, C., Guitton, J., Moy, Y., Rees, E.: Explicit
assumptions - a prenup for marrying static and dynamic program verification. In:
Seidl, M., Tillmann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 142–157. Springer,
Cham (2014). doi:10.1007/978-3-319-09099-3 11

http://dx.doi.org/10.1007/3-540-45651-1
http://dx.doi.org/10.1007/978-3-540-69061-0
http://dx.doi.org/10.1007/0-387-25486-2_5
http://dx.doi.org/10.1007/978-3-642-32759-9_13
http://dx.doi.org/10.1007/978-3-662-46675-9_7
http://dx.doi.org/10.1007/978-3-319-09099-3_11

70 S. Huster et al.

10. Fähndrich, M.: Static verification for code contracts. In: Cousot, R., Martel, M.
(eds.) SAS 2010. LNCS, vol. 6337, pp. 2–5. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-15769-1 2

11. Xie, T., Tillmann, N., Lakshman, P.: Advances in unit testing: theory and prac-
tice. In: Proceedings of the 38th International Conference on Software Engineering
Companion, pp. 904–905. ACM (2016)

12. Halleux, J., Tillmann, N.: Moles: tool-assisted environment isolation with closures.
In: Vitek, J. (ed.) TOOLS 2010. LNCS, vol. 6141, pp. 253–270. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-13953-6 14

13. Huster, S., Heckeler, P., Eichelberger, H., Ruf, J., Burg, S., Kropf, T.,
Rosenstiel, W.: More flexible object invariants with less specification overhead. In:
Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702, pp. 302–316.
Springer, Cham (2014). doi:10.1007/978-3-319-10431-7 25

http://dx.doi.org/10.1007/978-3-642-15769-1_2
http://dx.doi.org/10.1007/978-3-642-15769-1_2
http://dx.doi.org/10.1007/978-3-642-13953-6_14
http://dx.doi.org/10.1007/978-3-319-10431-7_25

AI for Localizing Faults in Spreadsheets

Birgit Hofer(B), Iulia Nica, and Franz Wotawa

Graz University of Technology, Graz, Austria
{bhofer,inica,wotawa}@ist.tugraz.at

Abstract. Localizing faults in programs is considered a demanding
task. A lot of effort is usually spent in finding the root cause of a misbe-
havior and correcting the program such that it fulfills its intended behav-
ior. The situation is even worse in case of end user programming like
spreadsheet development where more or less complex spreadsheets are
developed only with little knowledge in programming and also testing. In
order to increase quality of spreadsheets and also efficiency of spreadsheet
development, tools for testing and debugging support are highly required.
In this paper, we focus on the latter and show that approaches originat-
ing from Artificial Intelligence can be adapted for (semi-) automated
fault localization in spreadsheets in an interactive manner. In particular,
we introduce abstract models that can be automatically obtained from
spreadsheets enabling the computation of diagnoses within a fraction
of a second. Besides the basic foundations, we discuss empirical results
using artificial and real-world spreadsheet examples. Furthermore, we
show that the abstract models have a similar accuracy to models of
spreadsheets capturing their semantics.

Keywords: Fault localization · Abstract models · Empirical evaluation

1 Introduction

Quality assurance of software and systems is an important part of development
to avoid failures occurring after deployment. Activities like testing at all lev-
els are part of all currently used development processes where experienced and
educated personnel is involved. This unfortunately does not hold in spreadsheet
programming where end users are developing programs, who are usually not
educated in program development. In addition, in spreadsheet development it is
not easy to distinguish testing from programming, and further more, the pro-
grams themselves, i.e., the equations assigned to cells, are not that visible during
development. As a consequence, there is a 3–5% error rate when writing formulae
in spreadsheets (see Panko [16]). Therefore, there is a need for tools supporting
testing and fault localization during spreadsheet development specifically consid-
ering the end-user aspect, requiring tools that easily and transparently integrate
into spreadsheet development causing a high degree of interactivity. Previously
developed approaches to spreadsheet fault localization like [7] are not sufficient
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 71–87, 2017.
DOI: 10.1007/978-3-319-67549-7 5

72 B. Hofer et al.

due to high runtime requirements. There Hofer and colleagues reported that
computing single faults including repair suggestions took 25.1 s even for smaller
spreadsheets having up to 70 non-empty cells.

In this paper, we focus solely on spreadsheet fault localization aiming at
improving runtime whereas not reducing the quality of diagnosis. For this pur-
pose, we introduce abstract models that can be automatically derived from
spreadsheets and used for (semi-)automated fault localization. In order to show
how models can be used for fault localization, let us have a look at a small
example. In Fig. 1(a) we see a spreadsheet allowing to compute payments of
Mr. Green and Mrs. Jones based on their weekly working hours and their hourly
rate. In Fig. 1(b) we have the same spreadsheet but with a fault in cell D2 intro-
duced. What we immediately see is that the values of cells F2 and D4 are lower
than expected. Note that in practice at least the failure in cell F2 would have
been easily detected because Mr. Green would complain about the lower payment
to be received for two weeks. When having a look at the equations stored (see
Fig. 1(c)), the reason behind the failures becomes obvious. Instead of summing
up the hours of week 1 and week 2 in cell D2 only the working hours for week 1
are considered. But how to find such a bug using the available information?

(a) Correct version (b) Faulty version

(c) Equations used in faulty version

Fig. 1. A small spreadsheet example (a variant from the EUSES corpus [5])

In the following, we make use of the equations stored in the spreadsheets,
their references to other cells and assumptions about the correctness of cells to
localize the faulty cell. Let us, for example, assume that all cells except cell D2
are correct. In practice, we obtain this information from the spreadsheet user,
who indicates his/her observations about the computed values. Additionally, we
make use of the expected values for cells F2 and D4, which are 810 and 123
respectively. From the values of E2 and the expected value of F2 we can derive a
value of 54 for cell D2 (Note, 54 = 810/15). When using this value and the value
of cell D3 we finally receive 123 (=54 + 69), which is exactly the expected value

AI for Localizing Faults in Spreadsheets 73

for cell D4. Hence, D2 is a potential root cause, but are there more? We can use
the same idea but in this case we assume all cells except cell F2 to be correct. In
this case, we would get again a value of 92 for cell D4 when using the underlying
equations. Therefore, cell F2 alone is not a candidate. When assuming F2 and
D4 to be faulty, we would not be able to compute values for cells F2 and D4 and
there is no contradiction when comparing these values with the expected ones.
Hence, we have another root cause comprising cells F2 and D4. In most cases
we are more interested in smaller explanations. In this case, we would prefer
diagnosis D2 over diagnosis F2, D4.

What can we take from this brief example? First, we only considered the
available equations for computing values. Second, we used assumptions about
the correctness of cells. In case a cell is assumed to be correct, we used the
corresponding equation. Otherwise, we ignored the equation and did not compute
any value using this equation. Computing all diagnoses can be simplified done
assuming all subsets of cells comprising equations to be faulty and the others
to be correct, and checking whether the computable values are contradicting
input values or expected output values. Unfortunately, this is computationally
infeasible. In addition, equation solving is also computationally demanding, and
there is a need for abstract models. An abstract model, for example, might only
consider information regarding whether a certain value is smaller, equivalent,
or larger than expected, or whether the value is correct or not correct. In our
running example, we obtain that the value of cells F2 and D4 are both too
small. When assuming cell F2 to work as expected and assuming that the cells
comprising only values are correct (like done previously), we can immediately
conclude that also the value of cell D2 is too small. With similar arguments
than before when using the equations and real values, we are able to come
up with similar diagnoses. We will discuss the abstract models in detail in the
next section. The idea behind abstract models dealing with qualities instead of
quantitative values comes from Qualitative Reasoning (QR), which is a subfield
of Artificial Intelligence (AI).

The consequences when using abstract models instead of the stored equations
and values are interesting. Do we compute more diagnoses? Do the computed
diagnoses always include the real fault? What is the impact of abstract models
on the runtime? And finally, are there any other consequences when using real
world spreadsheets? In this paper, we will discuss these questions and also give
answers. In summary, the contributions of this paper are:

– Providing a solid foundation for model-based debugging of spreadsheets,
which is based on previous work on model-based diagnosis [17,19].

– Introducing three different types of models where one makes use of a qual-
itative representation of deviations between the expected and the current
spreadsheet.

– Comparing the different types of models with respect to their diagnosis accu-
racy and runtime.

The paper is organized as follows. First, we introduce the basic definitions of
diagnosis and discuss the underlying models. Afterwards, we present the results

74 B. Hofer et al.

of our experimental evaluation, where we focus on the runtime issue and the
diagnosis accuracy. Finally, we conclude the paper, which includes a brief dis-
cussion on related research.

2 Basic Definitions

Wotawa [19] described the use of constraints for fault localization. Constraints
are basically equations or conditions on variables that must hold in order to
be satisfied. For example, the constraint x = 2 · y is satisfied when assigning a
value of 2 to variable x and 1 to variable y. When given a set of constraints the
aim of constraint solving is to provide variable assignments such that all con-
straints are satisfied. For a deeper introduction into constraint solving including
algorithms we refer the interested reader to Dechter [4]. However, in order to
be self-contained, we briefly introduce the basic concepts of constraint solving
first, discuss automated diagnosis afterwards, and show how spreadsheets can
be compiled into three different constraint representations for the purpose of
automated fault localization.

Constraint Solving: We define a constraint system as a tuple (VARS,DOM,
CONS) where VARS is defined as a finite set of variables, DOM is a function
mapping each variable to its domain comprising at least one element, and CONS
is a finite set of constraints. Without restricting generality we define a constraint
c as a pair ((v1, . . . , vk), tl) where (v1, . . . , vk) is a tuple of variables from VARS,
and tl a set of tuples (x1, . . . , xk) of values where for each i ∈ {1, . . . , k}: xi ∈
DOM(vi). The set of tuples tl in this definition declares all allowed variable value
combinations for a particular constraint. For simplicity, we assume a function
scope(c) for a constraint c returning the tuple (v1, . . . , vk), and a similar function
tl(c) returning the set of tuples tl of c.

Searching for solutions of given constraint systems is equivalent to searching
for values assigned to all variables such that all constraints are satisfied. The
corresponding problem is called constraint satisfaction problem (CSP). In
order to formally define CSP we first start defining value assignments: Given
a constraint system (VARS,DOM,CONS), and variable v ∈ VARS, then v = x
with x ∈ DOM(v) is a single assignment of a value x to the variable v. We
further define a value assignment as a set of single assignments where there is
at maximum one single assignment for each variable. A constraint c with scope
(v1, . . . , vk) fulfills a value assignment {. . . , v1 = x1, . . . , vk = xk, . . .}, if there
exists a tuple (x1, . . . , xk) in the constraint tl(c). Otherwise, we say that such a
value assignment contradicts the constraint.

Example 1. Cell D3 of the spreadsheet in Fig. 1(c) contains the formula B3+ C3.
We model this by using the constraint ((B3, C3,D3), {(a, b, a + b)|a, b ∈ N})
where B3, C3, D3 are the variables representing the value of cells B3, C3, D3
respectively.

AI for Localizing Faults in Spreadsheets 75

Using the definition of value assignments, we are now able to define CSPs. A
CSP for a given constraint system is defined as question whether there exists a
value assignment that fulfills all given constraints. If there is such a value assign-
ment, the CSP is said to be fulfilled. Solving a constraint satisfaction problem is
computationally demanding but there are efficient algorithms available, e.g. [6].

Model-Based Diagnosis: Model-based diagnosis is an AI method for computing
all diagnoses from an available model of a system or in our case spreadsheet.
The underlying idea is to make the assumptions about correctness of a compo-
nent explicit. For each component, we add a model representing its behavior.
Diagnosis becomes searching for assumptions about the correctness of certain
components of a system: Which components are correct and which behave faulty
so that given observations are not in contradiction with values obtained using
the model?

Reiter [17] defines a diagnosis problem as a tuple (COMP,SD,OBS) where
COMP is a set of components, SD a logical sentence describing the behavior of
the system, i.e., the system description, and OBS a set of observations. In our
case, the observations are the information we obtain from the user who indicates
that a certain cell contains a wrong value while others compute the correct result.
When using constraints for diagnosis, we have to slightly modify this definition.
We assume a constraint representation of the system and additional constraints
specifying the observations. In this context, the diagnosis problem becomes a
tuple (VARS,DOM,CONS ∪COBS) where (VARS,DOM,CONS) is a constraint
representation of a system comprising variables abC for every component C of
the system, and COBS is the constraint representation of all observations OBS.

Example 2 (Continuation of Example 1). Assuming that the values of B3 and
C3 are correct, then D3 either computes the desired output or its formula is
faulty. We can model this by using the following constraint where we introduced
a variable abD3 representing the assumption that cell D3 is faulty:

((abD3, B3, C3,D3), {(F, a, b, a + b)|a, b ∈ N} ∪ {(T, a, b, c)|a, b, c ∈ N}).

We can create such constraints for all formula cells to represent the spread-
sheet given in Fig. 1. For simplicity, in the following model, we only consider the
cells D2, D3, and D4. The constraints for D2, D4 are similar to the one of D3. This
set of constraints builds the system description SD. The given formula cells build
the set of components COMP, i.e. COMP = {D2,D3,D4}. The set of observa-
tions contains the information about the correct and erroneous output as well
as the input cells and their values: OBS = {B2 = 23, C2 = 31, B3 = 35, C3 =
34,D4 = 123}. The observations can be easily represented as a constraint, e.g.,
((B2, B3, C2, C3,D4), {(23, 35, 31, 34, 123)}).

Given a diagnosis problem a solution, i.e., a diagnosis, is a subset of the
set of components COMP so that assuming all components in a diagnosis to
be faulty, allows to compute a solution for the corresponding constraint rep-
resentation. Formally, a diagnosis Δ ⊆ COMP is a diagnosis if and only if
the following constraint system is satisfiable, i.e., there exists a solution for:

76 B. Hofer et al.

CONS ∪COBS ∪{((abC), {(T)|C ∈ Δ}), ((abC), {(F)|C ∈ COMP\Δ})}. There
could be more than one diagnosis. We are usually focusing on minimal diagnoses
only. A minimal diagnosis in our setting is a diagnosis where none of its subsets
is itself a diagnosis.

Nica and Wotawa [15] introduced the ConDiag algorithm that allows com-
puting all minimal diagnoses up to a predefined size using the constraint rep-
resentation of a diagnosis problem. Algorithm1 illustrates the pseudo-code of
ConDiag. At the beginning of the algorithm, the result and the model are ini-
tialized (line 1–2). Within the loop the constraint model is constructed (line 4)
bringing together the initial model M and the assumption that we are only inter-
ested in diagnoses of size i. Afterwards, in line 5 the constraint solver is called
returning all diagnoses of size i. If the constraint system is satisfiable for i = 0,
we terminate ConDiag and return the set comprising the empty set as results
meaning that the system is fault free. In line 9 the new diagnoses are added and
in line 10 a new constraint is added to the model. This constraint basically states
that we are not interested in supersets of already computed diagnoses. The loop
continues until we reach the maximum size. ConDiag always terminates (provid-
ing the constraint solver terminates) and computes all minimal diagnoses up to
a pre-defined size n. ConDiag is also efficient. Nica et al. [14] compared ConDiag
with other diagnosis algorithms showing a good overall runtime. In practice, n
is usually set to 1 up to 3.

Algorithm 1. ConDiag((VARS,DOM,CONS ∪ COBS),COMP, n)

Input: A constraint model (VARS,DOM,CONS ∪ COBS) of a system having
components COMP and the desired diagnosis cardinality n
Output: All minimal diagnoses up to the predefined cardinality n

1: Let DS be {}
2: Let M be CONS ∪ COBS
3: for i = 0 to n do
4: CM = M ∪ {|{abC |C ∈ COMP ∧ abC = T}| = i}
5: S = P (CSolver(VARS,DOM, CM))
6: if i is 0 and S is {{}} then
7: return S
8: end if
9: Let DS be DS ∪ S.

10: M = M ∪ {¬(C(S))}
11: end for
12: return DS

Modeling for Spreadsheets: For making use of model-based diagnosis for spread-
sheet fault localization, we have to provide a constraint model of the spreadsheet.
For simplicity, we assume a spreadsheet to be a finite set of cells {c1, . . . , ck}.
Each cell ci is uniquely identifiable using its row and column. Like in ordinary

AI for Localizing Faults in Spreadsheets 77

spreadsheet implementations we write a cell as Ar where A denotes the column
using letters, and r the row using natural numbers. A cell c has a value and
maybe a corresponding formula. In case c has attached a formula its value is
determined by the formula. Without restricting generality, we assume every for-
mula to be of the form c1 op c2 where c1, c2 are (references to) cells and op is an
operator +,−, /, or ∗. A cell with no formula attached is called an input cell. A
cell that is never referenced in a formula is called an output cell.

Algorithm 2 gives the pseudo-code of a compiler that takes a spreadsheet as
input and computes its corresponding constraint representation. The algorithm
Compile2Model makes use of two functions constraintF and constraintO which
compute the constraint representation of formulae and observations respectively.
These functions depend on the used model type: We explain the functions for the
three different types of models in this paper. One model directly represents the
behavior of formulae (called value-based model) and serves as reference model.
The other model (called dependency-based model) only considers knowledge
about the correctness of values, whereas the third model (called comparison-
based model) uses the deviations of cell values. The last two models are abstract
models not considering the real values used in spreadsheets.

Algorithm 2. Compile2Model(SP,OBS)

Input: A spreadsheet SP and its observations OBS
Output: A constraint model

1: Let M and VAR be {}.
2: for all cells c in SP do
3: Add c to VAR and let DOM(c) = N/B/{0, 1, 2}.
4: if c has an equation attached then
5: Add abc to VAR and let DOM(abc) = B.
6: Add constraintF (c) to M .
7: end if
8: end for
9: Add constraintO(OBS) to M .

10: return (VAR,DOM,M)

In line 3, all cells of the spreadsheet are added to the set of variables VAR and
are assigned an domain DOM depending on the underlying model: DOM = N

when using the value-based model, DOM = B when using the dependency-
based model, and DOM = {0, 1, 2} when using the comparison-based model.
For all cells containing equations, an additional variable abc is added to VAR
with DOM(abc) = B and the equations are translated into constraints (lines 4–
7). Finally, the constraints for the observations are added using the function
constraintO. The functions constraintF and constraintO for the different models
are defined as follows:

78 B. Hofer et al.

– Value-based model (VM): The VM directly represents spreadsheets. For-
mulae are directly represented as constraints. Let us assume a formula
c1 op c2 stored in cell c. The function constraintF (c) returns the constraint

((abc, c1, c2, c), {(F, a, b, a op b)|a, b ∈ N} ∪ {(T, a, b, c)|a, b, c ∈ N}).
In this constraint, we distinguish the correct case where abc is set to false
from the faulty case. In the latter case, there are no restrictions on the values
of cells c, c1, c2. For the representation of observations, we assume to have
a set {c1 = v1, . . . , ck = vk}. In this case constraintO returns one constraint
((c1, . . . , ck), {(v1, . . . , vk)}).

– Dependency-based model (DM): The DM only considers values being correct
or not correct, which are represented using the numbers 1 and 0 respectively.
A formula c1 op c2 for a cell c cannot be directly represented as constraint.
Instead, we make use of the following idea: A formula returns a definitely cor-
rect value only if both input values are correct. In cases where we do not have
fault masking, we are also able to say that a correct value computed using a
formula also requires both inputs to be correct. This assumption is not always
true. However, in case of using only numbers failure masking has a very low
probability. More information on this improved version of the dependency-
based model can be found in [8,10].
Taking the idea of dealing with correctness and incorrectness of values,
we are able to define constraintF as a function returning the constraint
((abc, c1, c2, c), TD) where TD is a set comprising the following elements:

abXY c1 c2 c
F 1 1 1
F 0 1 0
F 1 0 0
F 0 0 0
T . . .

In this table “.” stands for arbitrary values. Thus, in case of a fault all possible
combinations are considered. For the observations, we define constraintO as
follows: Let us assume to have a set {c1 = v1, . . . , ck = vk} and a function δ
with the cell and its value as parameters. δ(c, v) returns 1 if c is an input cell
or if the value of cell c provided when executing the spreadsheet is equivalent
to v. Otherwise, δ returns 0. constraintO returns a constraint of the following
form: ((c1, . . . , ck), {(δ(c1, v1), . . . , δ(ck, vk))}).

– Comparison-based model (CM): CM is very similar to DM. But instead of only
considering values to be correct or incorrect, we consider values to be smaller,
equivalent or larger than expected represented using the numbers 0, 1, and
2 respectively. The function constraintE applied to formula c1 op c2 of cell c
returns a constraint ((abc, c1, c2, c), TD) where TD is a set comprising elements
depending on the underlying operator. The table for operators + and * is given
on the right; the table for operators − and / is given on the left:

AI for Localizing Faults in Spreadsheets 79

abc c1 c2 c
F 1 1 1
F 0 1 0
F 1 0 0
F 0 0 0
F 2 1 2
F 1 2 2
F 2 2 2
F 0 2 1
F 0 2 0
F 0 2 2
F 2 0 1
F 2 0 0
F 2 0 2
T . . .

abc c1 c2 c
F 1 1 1
F 0 1 0
F 1 0 2
F 0 0 0
F 0 0 1
F 0 0 2
F 2 1 2
F 1 2 0
F 2 2 0
F 2 2 1
F 2 2 2
F 0 2 0
F 2 0 2
T . . .

Again, “.” stands for arbitrary values and in case of a fault we consider all
possible combinations to be part of the constraint values. For the observations
and function constraintO, we make use of a similar idea than for DM. Instead
of using function δ, we define a function ψ with the cell and its value as
parameters. ψ(c, v) returns 0 if c is not an input cell and the value computed
when executing the spreadsheet is smaller than v. ψ returns 1 if c is an
input cell or if the value of cell c provided when executing the spreadsheet
is equivalent to v. Otherwise, ψ returns 2. Function constraintO returns a
constraint of the following form: ((c1, . . . , ck), {(ψ(c1, v1), . . . , ψ(ck, vk))}).

3 Experimental Evaluation

In this section, we present and discuss empirical results obtained using a class of
artificially generated examples and real-world spreadsheets. The purpose of this
section is to answer the questions whether the comparison-based model has a
good runtime and accuracy compared with the dependency-based model and the
value-based model. The latter can be seen as reference model because it is more
or less a one-to-one representation of its corresponding spreadsheet. For solving
the constraints, we used Minion [6], an out-of-the-box, open source constraint
solver that supports arithmetic, relational, and logic constraints over Boolean
and Integers.

In the first part of the experimental evaluation, we focused mainly
on the question regarding the runtime of the different models to compute all
diagnoses. Therefore, we used a parametrizable example comprising components
for adding and multiplying integers, which is close to an ordinary spreadsheet
for calculating sums of numbers. For the artificial example have a look at Fig. 2
where we have parameters m,n ≥ 2. From the figure we see that we obtain
((n+4)·m)−3 components for given parameters in total. For the experiment, we
implemented an input-output values generator, which randomly assigns values
to the m × n inputs xi j and computes the expected m outputs zk, and outputs

80 B. Hofer et al.

Σ

Σ

Σ

Σ

Σ

x1n

xmn

xm1
xm2

y1

y2

y3

z1

zm

x12
x11

Fig. 2. Parametrizable example with m×n inputs xi j , m outputs zk, and outputs y1,
y2, and y3.

y1, y2, y3. Furthermore, we implemented a model generator, which returns the
three models and the observations directly as constraints.

In Table 1, we summarize the obtained results when running the search
for single, double, and triple diagnoses on a Windows 10 Pro notebook with
a Intel(R) Core(TM) i7-4500U CPU 1.80 GHz and 8 GB of RAM. For the
dependency-based and comparison-based model, we carried out ten runs and
give the obtained average values in the table. For the value-based model, we
used only three runs due to the very high runtime requirements, especially when
carrying out the computation of triple fault diagnoses. The times given in Table 1
are in milli-seconds. The table has two parts. In the upper one, the results when
setting only one output to a wrong value are given. The lower part comprises
the results obtained when introducing failures at two outputs.

From Table 1 we see that in case of one output to be faulty the dependency-
based and the comparison-based models provide the same set of diagnoses that
is substantially different from the results obtained using the value-based model.
In contrast, the more abstract models are less computationally demanding. In
case of two output values that are different to the expected value, the situa-
tion is different. Here, the comparison-based model provide less diagnoses than
the dependency-based model. The runtime again is much better for the more

AI for Localizing Faults in Spreadsheets 81

Table 1. Results for parametrizable example with V representing the value-based
model, C representing the comparison-based model and D representing the improved
dependency-based model. Note that Minion is called with -timelimit 1200

Model Inputs Comps Runtime [ms] Number of diagnoses

Diag. size V C D V C D

m n 1 2 1 2 1 2 1 2 1 2 1 2

Single failure

10 10 100 137 319 7561 916 104 66 56 2 0 99 0 99 0

10 15 150 187 707 33085 201 100 95 58 2 0 149 0 149 0

10 2 20 57 71 82 71 62 36 44 2 0 19 0 19 0

15 10 150 207 992 46995 247 97 96 71 2 0 149 0 149 0

15 2 30 87 111 195 96 95 47 44 2 0 29 0 29 0

15 20 300 357 3985 422274 536 147 299 93 2 0 299 0 299 0

2 10 20 25 56 62 58 50 37 37 1 0 19 0 19 0

2 15 30 35 49 116 60 57 32 41 1 0 29 0 29 0

2 2 4 9 29 41 49 54 35 35 1 0 3 0 3 0

2 20 40 45 61 256 64 68 41 42 1 0 39 0 39 0

2 3 6 11 38 38 88 58 40 35 1 0 5 0 5 0

20 15 300 377 4971 520498 575 154 313 96 2 0 299 0 299 0

20 2 40 117 147 527 94 92 60 47 2 0 39 0 39 0

20 20 400 477 9714 1205255 867 158 583 117 2 0 399 0 399 0

3 2 6 15 47 34 68 70 37 34 2 0 5 0 5 0

Double failure

10 10 100 137 268 9836 110 231 89 62 0 24 90 342 99 0

10 15 150 187 573 41880 135 248 117 76 0 24 140 342 149 0

10 2 20 57 61 122 54 153 58 55 0 24 10 342 19 0

15 10 150 207 711 59066 129 1028 121 76 0 34 135 812 149 0

15 2 30 87 108 384 49 502 64 53 0 34 15 812 29 0

15 20 300 357 3000 526077 380 1741 356 115 0 34 285 812 299 0

2 10 20 25 47 70 48 45 37 42 0 3 18 6 19 0

2 15 30 35 52 116 55 56 48 50 0 3 28 6 29 0

2 2 4 9 43 35 44 49 44 49 0 3 2 6 3 0

2 20 40 45 52 249 53 62 54 48 0 3 38 6 39 0

2 3 6 11 31 43 88 199 44 35 0 3 4 6 5 0

20 15 300 377 3627 702607 426 5707 383 96 0 44 280 1482 299 0

20 2 40 117 139 1066 70 1840 69 65 0 44 20 1482 39 0

20 20 400 477 6176 1204305 581 7343 668 134 0 44 380 1482 399 0

3 2 6 15 43 41 104 99 45 40 0 10 3 20 5 0

abstract models. Figure 3 shows the runtime of diagnosis using all three mod-
els as a function of the number of components. The dependency-based and the
comparison-based model provide a similar runtime behavior whereas the value-
based model requires a lot more time for computing all single fault diagnoses.
This hold for the case of single failures as well as for double failures.

82 B. Hofer et al.

Fig. 3. Runtime using parametrizable example for computing all single fault diagnoses

In the second part of the empirical evaluation, we used a subset of the
publicly available Integer spreadsheet corpus [3]1. This corpus contains spread-
sheets with up to three artificially seeded faults. Unfortunately, we have to
exclude some of the spreadsheets from our evaluation for two reasons: First,
Minion was not able to compute any solutions at all within a time limit of
20 min for some of the spreadsheets when using the value-based model. Second,
our prototype does not support the conversion of IF and MAX expressions to
constraints. This is not a limitation of the approach, but only a limitation of
the prototype. We have used an Intel Core processor (2.90 GHz) with 8 GB
RAM, a 64-bit version of Windows 8 and MINION version 1.8 for this part of
the evaluation.

Table 2 shows the results for 35 faulty spreadsheets. The spreadsheets are
categorized into three groups: 15 spreadsheets whose true fault is a single fault,
14 spreadsheets with a double fault as true fault and 6 spreadsheets with a
triple fault as true fault. The runtime is the time Minion requires to parse
and solve the given constraint system for the indicated diagnosis size (1, 2, 3).
The indicated times are the arithmetic mean over 10 runs. Whenever we have
indicated ‘0’ as time, Minion required less than 0.5 ms and therefore returned
0 ms as solving time. Whenever we have indicted ‘-’ as time, Minion’s solving
process exceeded a time limit of 20 min. The value-based model requires sig-
nificantly more time than the dependency-based and comparison-based model
and Minion could not compute double (respectively triple) fault diagnoses for
6 (respectively 7) spreadsheets. The reason for the poor runtime behavior of
the value-based model lies in the different domain sizes: The abstract models
restrict the variables’ domains to a size of 2 (dependency-based model) respec-
tively 3 (comparison-based model); the value-based model reasons of Integer
values ranging from −2, 000 to 50,000. The comparison-based model and the
dependency-based model have similar runtimes.

1 http://spreadsheets.ist.tugraz.at/index.php/corpora-for-benchmarking/
integer-corpus/.

http://spreadsheets.ist.tugraz.at/index.php/corpora-for-benchmarking/integer-corpus/
http://spreadsheets.ist.tugraz.at/index.php/corpora-for-benchmarking/integer-corpus/

AI for Localizing Faults in Spreadsheets 83

Table 2. Results for Integer Corpus with V representing the value-based model, C rep-
resenting the comparison-based model and D representing the improved dependency-
based model. The solving time and the number of diagnoses are separately indicated for
single (1), double (2), and triple (3) fault diagnoses. An ‘-’ entry indicates a timeout.
The entries of the columns ‘Faults founds’ indicate whether the model has the true
fault as one of its diagnoes (Y) or only a subset of it (P). ‘Obs.’ provides information
about the observations, where column ‘F’ indicates the number of observations where
the computed output contradicts the expected output and ‘T’ indicates those where
the computed output is equal to the expected one.

Runtime [ms] Number of Diagnoses Fault
Obs.

Model V C D V C D found
Diag. Size 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 V C D F T

True fault = single fault

arith02 1 1 19 156 486 603 215 245 1 4 3 4 3 0 13 0 0 16 0 0 16 0 0 Y Y Y 1 0
arith02 1 2 610 - - 3 1 3 1 6 6 7 - - 8 26 0 8 9 0 Y Y Y 1 1
arith02 1 3 490 2 963 44 0 0 3 3 4 3 7 27 0 7 29 0 7 8 0 Y Y Y 1 1
cake 1 1 175 564 - - 10 13 16 32 32 35 44 - - 65 0 0 65 0 0 Y Y Y 1 1
oscars 1 3 845 1 594 1 823 4 3 3 1 4 12 2 36 0 11 0 0 11 0 0 Y Y Y 1 1
oscars 1 4 801 91 91 3 3 1 9 0 0 10 0 0 10 0 0 10 0 0 Y Y Y 1 2
oscars 1 5 507 1 454 6 903 0 1 3 12 4 1 1 0 57 11 0 0 11 0 0 Y Y Y 1 1
prom 1 1 338 245 243 1 0 0 1 0 0 13 0 0 13 0 0 13 0 0 Y Y Y 1 1
shares 1 1 969 933 935 3 4 4 10 13 20 1 0 0 1 1 2 1 1 2 Y Y Y 1 11
shares 1 2 1 254 1 227 1 226 1 3 3 13 9 13 1 0 0 1 0 0 1 0 0 Y Y Y 1 11
shares 1 3 1 327 3 179 5 384 1 0 4 12 10 15 1 1 2 1 1 2 1 1 2 Y Y Y 1 11
shares 1 4 1 591 3 128 5 222 3 0 4 9 9 16 1 1 2 1 1 2 1 1 2 Y Y Y 1 11
shares 1 5 1 260 1 227 1 227 1 3 1 12 6 12 1 0 0 1 0 0 1 0 0 Y Y Y 1 11
shop b1 1 1 529 107 107 1 3 3 10 9 6 15 0 0 15 0 0 15 0 0 Y Y Y 1 2
shop b1 1 2 513 107 109 6 3 4 7 6 7 15 0 0 15 0 0 15 0 0 Y Y Y 1 2

Average 13 717 - - 3 3 4 9 8 10 9 - - 12 4 0 12 1 0

True fault = double fault

arith01 2 2 112 1 199 63 0 3 4 3 1 0 0 36 0 1 32 0 3 15 0 Y Y P 2 0
arith01 2 3 136 - - 1 3 3 4 1 1 4 - - 4 15 0 4 6 0 P P P 1 1
arith02 2 1 207 5 104 115 1 1 9 3 7 1 0 81 0 0 90 0 7 8 0 Y Y P 2 0
arith02 2 2 465 2 979 - 0 3 7 1 4 1 5 24 - 7 29 0 7 8 0 P P P 1 1
cake 2 1 162 217 - - 13 16 16 31 37 34 43 - - 64 0 0 64 0 0 P P P 1 2
cake 2 2 158 977 - - 12 15 16 35 38 35 20 - - 65 0 0 65 0 0 P P P 1 1
cake 2 3 156 173 - - 10 13 13 34 32 37 17 - - 65 0 0 65 0 0 P P P 1 1
oscars 2 2 504 1 471 6 251 1 3 4 4 6 1 1 0 48 11 0 0 11 0 0 P P P 1 1
prom 2 1 424 337 335 1 3 3 4 4 3 13 0 0 13 0 0 13 0 0 P P P 1 1
prom 2 2 341 245 245 3 3 1 1 1 3 13 0 0 13 0 0 13 0 0 P P P 1 1
prom 2 3 343 248 246 6 0 0 3 6 3 13 0 0 13 0 0 13 0 0 P P P 1 1
shop b1 2 1 526 107 107 1 4 0 9 9 7 15 0 0 15 0 0 15 0 0 P P P 1 2
shop b1 2 2 512 107 109 3 4 1 4 10 6 15 0 0 15 0 0 15 0 0 P P P 1 2
shop b1 2 3 515 112 109 1 1 4 9 9 10 16 0 0 16 0 0 16 0 0 P P P 1 2

Average 34 389 - - 4 5 6 10 12 10 13 - - 22 12 0 22 3 0

True fault = triple fault

arith01 3 1 31 108 32 4 3 3 0 0 3 0 6 0 3 16 0 3 16 0 P P P 2 0
arith02 3 1 19 600 451 007 214 501 4 4 4 3 1 3 13 0 0 16 0 0 16 0 0 P P P 1 0
cake 3 1 2 194 837 413 - 1 27 66 26 52 87 0 96 - 0 186 0 0 186 0 P P P 2 2
prom 3 1 340 245 246 3 3 1 7 1 3 10 3 0 13 0 0 13 0 0 P P P 1 1
shares 3 1 1 265 1 585 47 272 3 3 7 10 7 26 0 0 16 0 0 17 0 0 17 Y Y Y 3 9
shop b1 3 1 504 4 124 352 4 20 35 9 16 41 0 240 0 0 240 0 0 240 0 P P P 2 1

Average 3 989 215 747 - 3 10 19 9 13 27 4 58 - 5 74 3 5 74 3

84 B. Hofer et al.

The value-based model performs better than the abstract models w.r.t. their
diagnostic accuracy. For 22 spreadsheets, all models compute the same single
fault diagnoses. For 13 spreadsheets, value-based model computed fewer diag-
noses while the abstract models have the same single fault diagnoses. For two
spreadsheets, the comparison-based model computed fewer single fault diagnoses
than the value-based model.

An important question is whether the models are able to detect the true fault.
This information is given in Table 2 in the columns labeled ‘Fault found’. An ‘Y’
entry indicates that the fault was reported as diagnosis; a ‘P’ entry indicates that
only a part of the true fault (i.e. a subset) was reported as diagnosis, e.g. {D4}
was reported as diagnosis, but {D4, D5} is the true fault. This is no problem per
se, because all supersets of a diagnosis are also considered as diagnoses. However,
the exacter a diagnosis is, the more helpful it is for spreadsheet programmers. For
all spreadsheets with a single fault as true fault, the true fault has been reported
as diagnosis. For two of the spreadsheets with a double fault, the value-based and
the comparison-based models identified the true fault as one of the diagnoses,
while the dependency-based model detected a subset as diagnosis. For all other
spreadsheets with double faults, all models reported subsets of the true fault as
diagnosis. All models identified the true diagnosis only for one of the triple fault
spreadsheets, while they identified a subset of the true fault as diagnosis for all
other triple fault spreadsheets.

The columns ‘Obs.’ provide information about the observations used. The
‘F’-column indicates the number of non-input observations where the computed
value differs from the expected value; the ‘T’-column indicates the number of
non-input observations where the computed value is equal to the expected value.

To summarize, the second part of the empirical evaluation shows that model-
based diagnosis can be used to debug artificially created and real-life spread-
sheets when an abstract model is used. Unfortunately, the value-based model
requires too much runtime and therefore cannot be used in practice. The
comparison-based and the dependency-based models convince by their low com-
putation times of several milliseconds. These low computation times allow us
to use these models in real-life scenarios, where a user expects to obtain the
diagnosis candidates immediately after starting the diagnosis process. When
comparing the diagnostic accuracy, the abstract models nearly reach the results
of the value-based model. In practice, the slightly worse diagnostic accuracy is
a good tradeoff for the runtime performance gain.

4 Conclusions

Using models for localizing faults in spreadsheets is not novel. Jannach and
Engler [11] introduced the use of constraint solving for spreadsheet debugging
for the first time. Later the same authors presented an add-on for Excel, the
EXQUISITE debugging tool [12]. Abreu et al. [2] presented a similar approach.
In contrast to Jannach and Schmitz’s approach, this approach relies on a sin-
gle test case, and directly encodes the reasoning about the correctness of cells

AI for Localizing Faults in Spreadsheets 85

into the CSP. Hofer et al. [8,10] were the first proposing to use dependency-
based models for spreadsheet debugging. In contrast to this work, we – in addi-
tion – introduce a general framework for obtaining different models, discuss
the comparison-based model, and present a detailed empirical evaluation com-
paring the different models. Other approaches to fault localization not based
on model-based reasoning include Ruthruff et al. [18], Hofer et al. [9], and
Abraham and Erwig [1]. For more details about quality assurance methods, we
refer the interested reader to Jannach et al.’s survey paper [13], which provides an
exhaustive overview on different techniques and methods for detecting, localizing,
and repairing spreadsheets.

In this paper, we introduce a framework for fault localization based on mod-
els. In particular, we presented the underlying foundations and introduced an
algorithm that allows compiling spreadsheets directly into models represented
as set of constraints. Furthermore, we discussed three different types of models.
The value-based model directly represents the behavior of a spreadsheet. The
comparison-based model makes use of deviations between correct cell values and
the actual values. The dependency-based model only distinguishes faulty from
correct values occurring during computation. In addition, to the foundations and
models, we presented empirical results obtained using generated examples that
are parametrizable, and real-world spreadsheet programs comprising faults. The
parametrizable spreadsheet has a structure and behavior close to spreadsheets
occurring in practice. With the empirical evaluation we wanted to get answers
to the following two questions: (1) Which model provides a good runtime perfor-
mance? And, (2) whether the comparison-based model provides a good diagnosis
accuracy?

From the obtained runtime results we can conclude that the dependency-
based and the comparison-based model provide a good runtime performance
and provide diagnoses much faster than the value-based model. With the
dependency-based and the comparison-based model we are able to provide
diagnosis capabilities almost at real time. Regarding diagnosis accuracy, the
dependency-based and the comparison-based model are both weaker than the
value-based model, which served as reference model in this case. The comparison-
based model provides in some but not all cases a better diagnosis accuracy com-
pared to the dependency-based model. This holds especially in cases where more
than 1 output can be classified as faulty. Because of a similar runtime perfor-
mance and a slightly better diagnosis accuracy the comparison-based model can
be considered as superior to the dependency-based model.

Acknowledgments. The work described in this paper has been funded by the
Austrian Science Fund (FWF) project DEbugging Of Spreadsheet programs (DEOS)
under contract number I2144 and the Deutsche Forschungsgemeinschaft (DFG) under
contract number JA 2095/4-1.

86 B. Hofer et al.

References

1. Abraham, R., Erwig, M.: GoalDebug: a spreadsheet debugger for end users. In: 29th
International Conference on Software Engineering (ICSE), pp. 251–260 (2007)

2. Abreu, R., Hofer, B., Perez, A., Wotawa, F.: Using constraints to diagnose faulty
spreadsheets. Softw. Qual. J. 23(2), 297–322 (2015)

3. Ausserlechner, S., Fruhmann, S., Wieser, W., Hofer, B., Spork, R., Muhlbacher, C.,
Wotawa, F.: The right choice matters! SMT solving substantially improves model-
based debugging of spreadsheets. In: 13th International Conference on Quality
Software, pp. 139–148 (2013)

4. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
5. Fisher, M.I., Rothermel, G.: The EUSES spreadsheet corpus: a shared resource

for supporting experimentation with spreadsheet dependability mechanisms. ACM
SIGSOFT Softw. Eng. Notes 30(4), 1–5 (2005)

6. Gent, I.P., Jefferson, C., Miguel, I.: Minion: a fast, scalable, constraint solver.
In: Proceedings of the 17th European Conference on Artificial Intelligence (ECAI
2006) (2006)

7. Abreu, R., Außerlechner, S., Hofer, B., Wotawa, F.: Testing for distinguishing
repair candidates in spreadsheets – the mussco approach. In: El-Fakih, K., Barlas,
G., Yevtushenko, N. (eds.) ICTSS 2015. LNCS, vol. 9447, pp. 124–140. Springer,
Cham (2015). doi:10.1007/978-3-319-25945-1 8

8. Hofer, B., Hoefler, A., Wotawa, F.: Combining models for improved fault localiza-
tion in spreadsheets. IEEE Trans. Reliab. 66(1), 38–53 (2017)

9. Hofer, B., Perez, A., Abreu, R., Wotawa, F.: On the empirical evaluation of sim-
ilarity coefficients for spreadsheets fault localization. Autom. Softw. Eng. 22(1),
47–74 (2015)

10. Hofer, B., Wotawa, F.: Why does my spreadsheet compute wrong values? In:
Proceedings of the International Symposium on Software Reliability Engineering
(ISSRE), vol. 25, pp. 112–121 (2014)

11. Jannach, D., Engler, U.: Toward model-based debugging of spreadsheet programs.
In: 9th Joint Conference on Knowledge-Based Software Engineering (JCKBSE
2010), pp. 252–264 (2010)

12. Jannach, D., Schmitz, T.: Model-based diagnosis of spreadsheet programs - a
constraint-based debugging approach. Autom. Softw. Eng. 23(1), 105–144 (2016).
Springer

13. Jannach, D., Schmitz, T., Hofer, B., Wotawa, F.: Avoiding, finding and fixing
spreadsheet errors - a survey of automated approaches for spreadsheet QA. J.
Syst. Softw. 94, 129–150 (2014)

14. Nica, I., Pill, I., Quaritsch, T., Wotawa, F.: A route to success - a performance
comparison of diagnosis algorithms. In: Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI) (2013)

15. Nica, I., Wotawa, F.: Condiag - computing minimal diagnoses using a constraint
solver. In: Proceedings of the International Workshop on Principles of Diagnosis
(DX), pp. 185–191 (2012)

16. Panko, R.R.: Thinking is bad: implications of human error research for spreadsheet
research and practice. In: CoRR (2008)

17. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

http://dx.doi.org/10.1007/978-3-319-25945-1_8

AI for Localizing Faults in Spreadsheets 87

18. Ruthruff, J., Creswick, E., Burnett, M., Cook, C., Prabhakararao, S., Fisher II, M.,
Main, M.: End-user software visualizations for fault localization. In: Proceedings of
the 2003 ACM Symposium on Software Visualization (SoftVis 2003), pp. 123–132.
ACM (2003)

19. Wotawa, F.: On the use of qualitative deviation models for diagnosis. In: 29th
International Workshop on Qualitative Reasoning (QR), New York, July 2016

Test Derivation Methods

n-Complete Test Suites for IOCO

Petra van den Bos(B), Ramon Janssen, and Joshua Moerman

Institute for Computing and Information Sciences,
Radboud University, Nijmegen, The Netherlands

{petra,ramonjanssen,joshua.moerman}@cs.ru.nl

Abstract. An n-complete test suite for automata guarantees to detect
all faulty implementations with a bounded number of states. This
principle is well-known when testing FSMs for equivalence, but the prob-
lem becomes harder for ioco conformance on labeled transitions systems.
Existing methods restrict the structure of specifications and implementa-
tions. We eliminate those restrictions, using only the number of implemen-
tation states, and fairness in test execution. We provide a formalization,
a construction and a correctness proof for n-complete test suites for ioco.

1 Introduction

The holy grail of model-based testing is a complete test suite: a test suite that
can detect any possible faulty implementation. For black-box testing, this is
impossible: a tester can only make a finite number of observations, but for an
implementation of unknown size, it is unclear when to stop. Often, a so called
n-complete test suite is used to tackle this problem, meaning it is complete for
all implementations with at most n states.

For specifications modeled as finite state machines (FSMs) (also called Mealy
machines), this has already been investigated extensively. In this paper we
will explore how an n-complete test suite can be constructed for suspension
automata. We use the ioco relation [11] instead of equivalence of FSMs.

An n-complete test suite for FSM equivalence usually provides some way
to reach all states and transitions of the implementation. After reaching some
state, it is tested whether this is the correct state, by observing behavior which
is unique for that state, and hence distinguishing it from all other states.

Unlike FSM equivalence, ioco is not an equivalence relation, meaning that dif-
ferent implementations may conform to the same specification and, conversely,
an implementation may conform to different specifications. In this paper, we
focus on the problem of distinguishing states. For ioco, this cannot be done with
simple identification. If an implementation state conforms to multiple specifica-
tions states, those states are defined to be compatible. Incompatible states can
be handled in ways comparable to FSM-methods, but distinguishing compatible
states requires more effort.

P. van den Bos and R. Janssen—Supported by NWO project 13859 (SUMBAT).

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 91–107, 2017.
DOI: 10.1007/978-3-319-67549-7 6

92 P. van den Bos et al.

In this paper, we give a structured approach for distinguishing incompatible
states. We also propose a strategy to handle compatible states. Obviously, they
cannot be distinguished in the sense of incompatible states. We thus change the
aim of distinguishing: instead of forcing a non-conformance to either specification
state, we may also prove conformance to both. As our only tool in proving this
is by further testing, this is a recursive problem: during complete testing, we are
required to prove conformance to multiple states by testing. We thus introduce a
recursively defined test suite. We give examples where this still gives a finite test
suite, together with a completeness proof for this approach. To show an upper
bound for the required size of a test suite, we also show that an n-complete test
suite with finite size can always be constructed, albeit an inefficient one.

Related Work. Testing methods for Finite State Machines (FSMs) have been
analyzed thoroughly, and n-complete test suites are already known for quite
a while. A survey is given in [3]. Progress has been made on generalizing these
testing methods to nondeterministic FSMs, for example in [6,9]. FSM-based work
that more closely resembles ioco is reduction of non-deterministic FSMs [4].

Complete testing in ioco received less attention than in FSM theory on this
subject. The original test generation method [11] is an approach in which test
cases are generated randomly. The method is complete in the sense that any
fault can be found, but there is no upper bound to the required number and
length of test cases.

In [8], complete test suites are constructed for Mealy-IOTSes. Mealy-IOTSes
are a subclass of suspension automata, but are similar to Mealy machines as
(sequences of) outputs are coupled to inputs. This makes the transition from
FSM testing more straightforward.

The work most similar to ours [10] works on deterministic labeled transi-
tion systems, adding quiescence afterwards, as usual for ioco. Non-deterministic
models are thus not considered, and cannot be handled implicitly through deter-
minization, as determinization can only be done after adding quiescence. Some
further restrictions are made on the specification domains. In particular, all
specification states should be reachable without depending on choices for out-
put transitions of the implementation. Furthermore, all states should be mutu-
ally incompatible. In this sense, our test suite construction can be applied to
a broader set of systems, but will potentially be much less efficient. Thus, we
prioritize exploring the bounds of n-complete test suites for ioco, whereas [10]
aims at efficient test suites, by restricting the models which can be handled.

2 Preliminaries

The original ioco theory is defined for labeled transition systems, which may
contain internal transitions, be nondeterministic, and may have states with-
out outputs [11]. To every state without outputs, a self-loop with quiescence is
added as an artificial output. The resulting labeled transition system is then
determinized to create a suspension automaton, which is equivalent to the initial

n-Complete Test Suites for IOCO 93

labeled transition system with respect to ioco [13]. In this paper, we will con-
sider a slight generalization of suspension automata, such that our results hold
for ioco in general: quiescent transitions usually have some restrictions, but we
do not require them and we will treat quiescence as any other output. We will
define them in terms of general automata with inputs and outputs.

Definition 1. An I/O-automaton is a tuple (Q,LI , LO, T, q0) where

– Q is a finite set of states
– LI is a finite set of input labels
– LO is a finite set of output labels
– T : Q × (LI ∪ LO) ⇀ Q is the (partial) transition function
– q0 ∈ Q is the initial state

We denote the domain of I/O-automata for LI and LO with A(LI , LO).

For the remainder of this paper we fix LI and LO as disjoint sets of input and
output labels respectively, with L = LI ∪ LO, and omit them if clear from the
context. Furthermore, we use a, b as input symbols and x, y, z as output symbols.

Definition 2. Let S = (Q,LI , LO, T, q0) ∈ A, q ∈ Q, B ⊆ Q, μ ∈ L and
σ ∈ L∗. Then we define:

q after μ =

{
∅ if T (q, μ) = ⊥
{T (q, μ)} otherwise

B after μ =
⋃

q′∈B

q′ after μ

q after ε = {q}
q after μσ = (q after μ) after σ

S is output-enabled if ∀p ∈ Q : out(p) �= ∅
S is input-enabled if ∀p ∈ Q : in(p) = LI

B after σ =
⋃

q′∈B

q′ after σ

out(B) = {x ∈ LO | B after x �= ∅}
in(B) = {a ∈ LI | B after a �= ∅}
init(B) = in(B) ∪ out(B)

Straces(B) = {σ′ ∈ L∗ | B after σ′ �= ∅}
SA = {S′ ∈ A | S′ is output-enabled}
SAIE = {S′ ∈ SA | S′ is input-enabled}

We interchange singleton sets with its element, e.g. we write out(q) instead
of out({q}). Definitions on states will sometimes be used for automata as well,
acting on their initial states. Similarly, definitions on automata will be used for
states, acting on the automaton with that state as its initial state. For example,
for S = (Q,LI , LO, T, q0) ∈ A and q ∈ Q, we may write S after μ instead of q0
after μ, and we may write that q is input-enabled if S is input-enabled.

In this paper, specifications are suspension automata in SA, and implemen-
tations are input-enabled suspension automata in SAIE . The ioco relation for-
malizes when implementations conform to specifications. We give a definition
relating suspension automata, following [11], and the coinductive definition [7]
relating states. Both definitions have been proven to coincide.

Definition 3. Let S ∈ SA, and I ∈ SAIE. Then we say that I ioco S if ∀σ ∈
Straces(S) : out(I after σ) ⊆out(S after σ).

94 P. van den Bos et al.

Definition 4. Let S = (Qs, LI , LO, Ts, q
s
0) ∈ SA, and I = (Qi, LI , LO, Ti, q

i
0) ∈

SAIE. Then for qi ∈ Qi, qs ∈ Qs, we say that qi ioco qs if there exists a
coinductive ioco relation R ⊆ Qi × Qs such that (qi, qs) ∈ R, and ∀(q, p) ∈ R:

– ∀a ∈ in(p) : (q after a, p after a) ∈ R
– ∀x ∈ out(q) : x ∈ out(p) ∧ (q after x, p after x) ∈ R

In order to define complete test suites, we require execution of tests to be
fair : if a trace σ is performed often enough, then every output x appearing
in the implementation after σ will eventually be observed. Furthermore, the
implementation may give an output after σ before the tester can supply an
input. We then assume that the tester will eventually succeed in performing
this input after σ. This fairness assumption is unavoidable for any notion of
completeness in testing suspension automata: a fault can never be detected if an
implementation always chooses paths that avoid this fault.

3 Distinguishing Experiments

An important part of n-complete test suites for FSM equivalence is the dis-
tinguishing sequence, used to identify an implementation state. As ioco is not
an equivalence relation, there does not have to be a one-to-one correspondence
between specification and implementation states.

3.1 Equivalence and Compatibility

We first describe equivalence and compatibility relations between states, in order
to define distinguishing experiments. We consider two specifications to be equiv-
alent, denoted S1 ≈ S2, if they have the same implementations conforming to
them. Then, for all implementations I, we have I ioco S1 iff I ioco S2. For two
inequivalent specifications, there is thus an implementation which conforms to
one, but not the other.

Intuitively, equivalence relates states with the same traces. However, implicit
underspecification by absent inputs should be handled equivalently to explicit
underspecification with chaos. This is done by using chaotic completion [11].
This definition of equivalence is inspired by the relation wioco [12], which relates
specifications based on their sets of traces.

Definition 5. Let (Q,LI , LO, T, q0) ∈ SA. Define chaos, a specification to
which every implementation conforms, as X = ({χ}, LI , LO, {(χ, x, χ) | x ∈
L}, χ). Let QX = Q ∪ {χ}. The relation ≈ ⊆ QX × QX relates all equivalent
states. It is the largest relation for which it holds that q ≈ q′ if:

out(q) = out(q′) ∧ (∀μ ∈ init(q) ∩ init(q′) : q after μ ≈ q′ after μ)
∧ (∀a ∈ in(q)\in(q′) : q after a ≈ χ) ∧ (∀a ∈ in(q′)\in(q) : q′ after a ≈ χ)

n-Complete Test Suites for IOCO 95

For two inequivalent specifications, there may still exist an implementation
that conforms to the two. In that case, we define the specifications to be com-
patible, following the terminology introduced in [9,10]. We introduce an explicit
relation for compatibility.

Definition 6. Let (Q,LI , LO, T, q0) ∈ SA. The relation ♦ ⊆ Q × Q relates all
compatible states. It is the largest relation for which it holds that q ♦ q′ if:

(∀a ∈ in(q) ∩ in(q′) : q after a ♦ q′ after a)
∧ (∃x ∈ out(q) ∩ out(q′) : q after x ♦ q′ after x)

Compatibility is symmetric and reflexive, but not transitive. Conversely, two
specifications are incompatible if there exists no implementation conforming to
both. When q1 ♦ q2, we can indeed easily make an implementation which con-
forms to both q1 and q2: the set of outputs of the implementation state can
simply be out(q1)∩out(q2), which is non-empty by definition of ♦. Upon such
an output transition or any input transition, the two successor states are again
compatible, thus the implementation can keep picking transitions in this man-
ner. For example, in Fig. 1, compatible states 2 and 3 of the specification are
both implemented by state 2 of the implementation.

1 23

4 56

xa

a a

x

y
y

x
y

x

z

(a) Specification S with 2 ♦ 3.

1 23

4 56

xa

a a

x

y
y

x x

z

a

aa

(b) An implementation of S.

2 ∧ 3

4 ∧ 5 6

xa

y

z

(c) The merge of speci-
fication states 2 and 3.

Fig. 1. A specification, an implementation, and a merge of two states.

Beneš et al. [1] describe the construction of merging specifications. For spec-
ification states qs and q′

s, their merge is denoted qs ∧ q′
s. For any implementation

state qi, it holds that qi ioco qs ∧ qi ioco q′
s ⇐⇒ qi ioco (qs ∧ q′

s). Intuitively, a
merge of two states thus only allows behavior allowed by both states. Figure 1c
shows the merge of specification states 2 and 3. The merge of qs and q′

s can be
implemented if and only if qs ♦ q′

s: indeed, for incompatible states, the merge
has states without any output transitions, which is denoted invalid in [1].

3.2 Distinguishing Trees

When an implementation is in state qi, two incompatible specification states qs
and q′

s are distinguished by showing to which of the two qi conforms, assuming
that it conforms to one. Conversely, we can say that we have to show a non-
conformance of qi to qs or q′

s. Generally, a set of states D is distinguished by

96 P. van den Bos et al.

showing non-conformance to all its states, possibly except one. As a base case,
if |D| ≤ 1, then D is already distinguished. We will construct a distinguishing
tree as an input-enabled automaton which distinguishes D after reaching pass.

Definition 7. Let μ be a symbol and D a set of states. Then injective(μ,D) if
μ ∈

⋂
{in(q) | q ∈ D} ∪ LO ∧ ∀q, q′ ∈ D : q
= q′ ∧ μ ∈init(q)∩init(q′) =⇒ q

after μ
= q′ after μ. This is extended to sets of symbols Σ as injective(Σ,D) if
∀μ ∈ Σ : injective(μ,D).

Definition 8. Let (Q,LI , LO, T, q0) ∈ SA(LI , LO), and D ⊆ Q a set of mutu-
ally incompatible states. Then define DT (LI , LO,D) ⊆ A(LO, LI) inductively
as the domain of input-enabled distinguishing trees for D, such that for every
Y ∈ DT (LI , LO,D) with initial state t0:

– if |D| ≤ 1, then t0 is the verdict state pass, and
– if |D| > 1, then t0 has either

• a transition for a single input a ∈ LI to a Y ′ ∈ DT (LI , LO,D after a)
such that injective(a,D), and transitions to a verdict state reset for all
x ∈ LO, or

• a transition for every output x ∈ LO to a Y ′ ∈ DT (LI , LO,D after x)
such that injective(x,D).

Furthermore, pass or reset is always reached after a finite number of steps,
and these states are sink states, i.e. contain transitions only to itself.

A distinguishing tree can synchronize with an implementation to reach a
verdict state. As an implementation is output-enabled and the distinguishing
tree is input-enabled, this never blocks. If the tree performs an input, the imple-
mentation may provide an output first, resulting in reset: another attempt is
needed to perform the input. If no input is performed by the tree, it waits for
any output, after which it can continue. In this way, the tester is guaranteed to
steer the implementation to a pass, where the specification states disagree on
the allowed outputs: the implementation has to choose an output, thus has to
choose which specifications (not) to implement.

For a set D of mutually incompatible states, such a tree may not exist. For
example, consider states 1, 3 and 5 in Fig. 2. States 1 and 3 both lead to the
same state after a, and can therefore not be distinguished. Similarly, states 3
and 5 cannot be distinguished after b. Labels a and b are therefore not injective
according to Definition 7 and should not be used. This concept is similar in FSM
testing [5]. A distinguishing sequence always exists when |D| = 2. When |D| > 2,
we can thus use multiple experiments to separate all states pairwise.

Lemma 9. Let S ∈ SA. Let q and q′ be two states of S, such that q
♦ q′. Then
there exists a distinguishing tree for q and q′.

Proof. Since q
♦ q′, we know that:

(∃a ∈ in(q) ∩ in(q′) : q after a
♦ q′ after a)
∨ (∀x ∈ out(q) ∩ out(q′) : q after x
♦ q′ after x)

n-Complete Test Suites for IOCO 97

So we have that some input or all outputs, enabled in both q and q′, lead to
incompatible states, for which this holds again. Hence, we can construct a tree
with nodes that either have a child for an enabled input of both states, or
children for all outputs enabled in the states (children for not enabled outputs
are distinguishing trees for ∅), as in the second case of Definition 8. If this tree
would be infinite, then this tree would describe infinite sequences of labels. Since
S is finite, such a sequence would be a cycle in S. This would mean that q ♦ q′,
which is not the case. Hence we have that the tree is finite, as required by
Definition 8. ��

12345

z

b

a

x

z

ab
y

a

b

z

Fig. 2. No distinguishing tree exists for {1,3,5}.

3.3 Distinguishing Compatible States

Distinguishing techniques such as described in Sect. 3.2 rely on incompatibility
of two specifications, by steering the implementation to a point where the specifi-
cations disagree on the allowed outputs. This technique fails for compatible spec-
ifications, as an implementation state may conform to both specifications. Thus,
a tester then cannot steer the implementation to showing a non-conformance to
either.

We thus extend the aim of a distinguishing experiment: instead of showing a
non-conformance to any of two compatible states qs and q′

s, we may also prove
conformance to both. This can be achieved with an n-complete test suite for
qs ∧ q′

s; this will be explained in Sect. 4.1. Note that even for an implementation
which does not conform to one of the specifications, n-complete testing is needed.
Such an implementation may be distinguished, but it is unknown how, due to
compatibility. See for example the specification and implementation of Fig. 1.
State 2 of the implementation can only be distinguished from state 3 by observing
ax, which is non-conforming behavior for state 2. Although y would also be non-
conforming for state 2, this behavior is not observed.

In case that a non-conformance to the merged specification is found with an
n-complete test suite, then the outcome is similar to that of a distinguishing tree
for incompatible states: we have disproven conformance to one of the individual
specifications (or to both).

4 Test Suite Definition

The number n of an n-complete test suite T of a specification S tells how many
states an implementation I is allowed to have to give the guarantee that I ioco

98 P. van den Bos et al.

S after passing T (we will define passing a test suite later). To do this, we must
only count the states relevant for conformance.

Definition 10. Let S = (Qs, LI , LO, T, qs0) ∈ SA, and I = (Qi, LI , LO, Ti, q
i
0) ∈

SAIE. Then,

– A state qs ∈ Qs is reachable if ∃σ ∈ L∗ : S after σ = qs.
– A state qi ∈ Qi is specified if ∃σ ∈ Straces(S) : I after σ = qi. A transition

(qi, μ, q′
i) ∈ Ti is specified if qi is specified, and if either μ ∈ LO, or μ ∈

LI ∧ ∃σ ∈ L∗ : I after σ = qi ∧ σμ ∈ Straces(S).
– We denote the number of reachable states of S with |S|, and the number of

specified, reachable states of I with |I|.

Definition 11. Let S ∈ SA be a specification. Then a test suite T for S is
n-complete if for each implementation I: I passes T =⇒ (I ioco S ∨ |I| > n).

In particular, |S|-complete means that if an implementation passes the test
suite, then the implementation is correct (w.r.t. ioco) or it has strictly more
states than the specification. Some authors use the convention that n denotes
the number of extra states (so the above would be called 0-completeness).

To define a full complete test suite, we first define sets of distinguishing
experiments.

Definition 12. Let (Q,LI , LO, T, q0) ∈ SA. For any state q ∈ Q, we choose a
set W (q) of distinguishing experiments, such that for all q′ ∈ Q with q
= q′:

– if q
♦ q′, then W (q) contains a distinguishing tree for D ⊆ Q, s.t. q, q′ ∈ D.
– if q ♦ q′, then W (q) contains a complete test suite for q ∧ q′.

Moreover, we need sequences to access all specified, reachable implementation
states. After such sequences distinguishing experiments can be executed. We will
defer the explicit construction of the set of access sequences. For now we assume
some set P of access sequences to exist.

Definition 13. Let S ∈ SA and I ∈ SAIE. Let P be a set of access sequences
and let P+ = {σ ∈ P ∪ P · L | S after σ
= ∅}. Then the distinguishing test suite
is defined as T = {στ | σ ∈ P+, τ ∈ W (q0 after σ)}. An element t ∈ T is a test.

4.1 Distinguishing Experiments for Compatible States

The distinguishing test suite relies on executing distinguishing experiments. If
a specification contains compatible states, the test suite contains distinguishing
experiments which are themselves n-complete test suites. This is thus a recursive
construction: we need to show that such a test suite is finite. For particular
specifications, recursive repetition of the distinguishing test suite as described
above is already finite. For example, specification S in Fig. 1 contains compatible
states, but in the merge of every two compatible states, no further compatible
states remain. A test suite for S needs to distinguish states 2 and 3. For this

n-Complete Test Suites for IOCO 99

purpose, it uses an n-complete test suite for 2∧ 3, which contains no compatible
states, and thus terminates by only containing distinguishing trees.

However, the merge of two compatible states may in general again contain
compatible states. In these cases, recursive repetition of distinguishing test suites
may not terminate. An alternative unconditional n-complete test suite may be
constructed using state counting methods [4], as shown in the next section.
Although inefficient, it shows the possibility of unconditional termination. The
recursive strategy thus may serve as a starting point for other, efficient construc-
tions for n-complete test suites.

Unconditional n-complete Test Suites. We introduce Lemma 16 to bound
test suite execution. We first define some auxiliary definitions.

Definition 14. Let S ∈ SA, σ ∈ L∗, and x ∈ LO. Then σx is an ioco-
counterexample if S after σ
= ∅, x
∈out(S after σ).

Naturally, I ioco S if and only if Straces(I) contains no ioco-counterexample.

Definition 15. Let S = (Qs, LI , LO, Ts, q
0
s) ∈ SA and I ∈ SAIE. A trace σ ∈

Straces(S) is short if ∀qs ∈ Qs : |{ρ | ρ is a prefix of σ ∧ q0s after ρ = qs}| ≤ |I|.

Lemma 16. Let S ∈ SA and I ∈ SAIE. If I ��ioco S, then Straces(I) contains
a short ioco-counterexample.

Proof. If I ��ioco S, then Straces(I) must contain an ioco-counterexample σ. If
σ is short, the proof is trivial, so assume it is not. Hence, there exists a state
qs, with at least |I| + 1 prefixes of σ leading to qs. At least two of those prefixes
ρ and ρ′ must lead to the same implementation state, i.e. it holds that q0i after
ρ = q0i after ρ′ and q0s after ρ = q0s after ρ′. Assuming |ρ| < |ρ′| without loss
of generality, we can thus create an ioco-counterexample σ′ shorter than σ by
replacing ρ′ by ρ. If σ′ is still not short, we can repeat this process until it is. ��

We can use Lemma 16 to bound exhaustive testing to obtain n-completeness.
When any specification state is visited |I| + 1 times with any trace, then any
extensions of this trace will not be short, and we do not need to test them.
Fairness allows us to test all short traces which are present in the implementation.

Corollary 17. Given a specification S the set of all traces of length at most
|S| ∗ n is an n-complete test suite.

Example 18. Figure 3 shows an example of a non-conforming implementation
with a counterexample yyxyyxyyxyyx, of maximal length 4 · 3 = 12.

4.2 Execution of Test Suites

A test στ is executed by following σ, and then executing the distinguishing
experiment τ . If the implementation chooses any output deviating from σ, then
the test gives a reset and should be reattempted. Finishing τ may take several

100 P. van den Bos et al.

1

4

2

3

x

y
xy

x

y
y

(a) Specification S.

1

23

y

y

x

(b) Implementation I.

Fig. 3. A specification, and a non-conforming implementation.

executions: a distinguishing tree may give a reset, and an n-complete test suite
to distinguish compatible states may contain multiple tests. Therefore σ needs
to be run multiple times, in order to allow full execution of the distinguishing
experiment. By assuming fairness, every distinguishing experiment is guaranteed
to termininate, and thus also every test.

The verdict of a test suite T for specification S is concluded simply by check-
ing for observed ioco-counterexamples to S during execution. When executing
a distinguishing experiment w as part of T, the verdict of w is ignored when
concluding a verdict for T: we only require w to be fully executed, i.e. be reat-
tempted if it gives a reset, until it gives a pass or fail. For example, if σ leads
to specification state q, and q needs to be distinguished from compatible state
q′, a test suite T′ for q ∧ q′ is needed to distinguished q and q′. If T′ finds a
non-conformance to either q or q′, it yields fail. Only in the former case, T will
also yield fail, and in the latter case, T will continue with other tests: q and
q′ have been successfully distinguished, but no non-conformance to q has been
found. If all tests have been executed in this manner, T will conclude pass.

4.3 Access Sequences

In FSM-based testing, the set P for reaching all implementation states is taken
care of rather efficiently. The set P is constructed by choosing a word σ for
each specification state, such that σ leads to that state (note the FSMs are fully
deterministic). By passing the tests P · W , where W is a set of distinguishing
experiment for every reached state, we know the implementation has at least
some number of states (by observing that many different behaviors). By passing
tests P ·L·W we also verify that every transition has the correct destination state.
By extending these tests to P · L≤k+1 · W (where L≤k+1 =

⋃
m∈{0,··· ,k+1} Lm),

we can reach all implementation states if the implementation has at most k
more states than the specification. For suspension automata, however, things
are more difficult for two reasons: (1) A specification state may be reachable
only if an implementation chooses to implement a particular, optional output
transition (in which case this state is not certainly reachable [10]), and (2) if
the specification has compatible states, the implementation may implement two
specification states with a single implementation state.

Consider Fig. 4 for an example. An implementation can omit state 2 of the
specification, as shown in Fig. 4b. Now Fig. 4c shows a fault not found by a test

n-Complete Test Suites for IOCO 101

suite P · L≤1 · W : if we take y ∈ P , z ∈ L, and observe z ∈ W (3), we do not
reach the faulty y transition in the implementation. So by leaving out states, we
introduce an opportunity to make a fault without needing more states than the
specification. This means that we may need to increase the size of the test suite
in order to obtain the desired completeness. In this example, however, a test
suite P ·L≤2 ·W is enough, as the test suite will contain a test with yzz ∈ P ·L2

after which the faulty output y
∈ W (3) will be observed.

1

2 3

x y

y z

(a) Specification S.

y

z

(b) Conforming im-
plementation.

y

z

z

(c) Non-conforming
implementation.

Fig. 4. A specification with not certainly reachable states 2 and 3.

Clearly, we reach all states in a n-state implementation for any specification
S, by taking P to be all traces in Straces(S) of at most length n. This set P
can be constructed by simple enumeration. We then have that the traces in the
set P will reach all specified, reachable states in all implementations I such that
|I| ≤ n. In particular this will mean that P+ reaches all specified transitions.
Although this generates exponentially many sequences, the length is substan-
tially shorter than the sequences obtained by the unconditional n-complete test
suite. We conjecture that a much more efficient construction is possible with a
careful analysis of compatible states and the not certainly reachable states.

4.4 Completeness Proof for Distinguishing Test Suites

We let T be the distinguishing test suite as defined in Definition 13. As discussed
before, if q and q′ are compatible, the set W (q) can be defined using another
complete test suite. If the test suite is again a distinguishing test suite, complete-
ness of it is an induction hypothesis. If, on the other hand, the unconditional
n-complete test suite is used, completeness is already guaranteed (Corollary 17).

Theorem 19. Let S = (Qs, LI , LO, Ts, q
s
0) ∈ SA be a specification. Let T be a

distinguishing test suite for S. Then T is n-complete.

Proof. We will show that for any implementation of the correct size and which
passes the test suite we can build a coinductive ioco relation which contain the
initial states. As a basis for that relation we take the states which are reached by
the set P . This may not be an ioco relation, but by extending it (in two steps)
we obtain a full ioco relation. Extending the relation is an instance of a so-called
up-to technique, we will use terminology from [2].

102 P. van den Bos et al.

More precisely, Let I = (Qi, LI , LO, Ti, q
i
0) ∈ SAIE be an implementation

with |I| ≤ n which passes T. By construction of P , all reachable specified imple-
mentation states are reached by P and so all specified transitions are reached
by P+.

The set P defines a subset of Qi × Qs, namely R = {(qi0 after σ, qs0
after σ) | σ ∈ P}. We add relations for all equivalent states: R′ = {(i, s) |
(i, s′) ∈ R, s ∈ Qs, s ≈ s′}. Furthermore, let J = {(i, s, s′) | i ∈ Qi, s, s

′ ∈
Qs such that i ioco s ∧ i ioco s′} and Ri,s,s′ be the ioco relation for i ioco s ∧
i ioco s′, now define R = R′ ∪

⋃
(i,s,s′)∈J Ri,s,s′ . We want to show that R defines

a coinductive ioco relation. We do this by showing that R progresses to R.
Let (i, s) ∈ R. We assume that we have seen all of out(i) and that

out(i)⊆ out(s) (this is taken care of by the test suite and the fairness assump-
tion). Then, because we use P+, we also reach the transitions after i. We need
to show that the input and output successors are again related.

– Let a ∈ LI . Since I is input-enabled we have a transition for a with i after
a = i2. Suppose there is a transition for a from s: s after a = s2 (if not, then
we’re done). We have to show that (i2, s2) ∈ R.

– Let x ∈ LO. Suppose there is a transition for x: i after x = i2 Then (since
out(i)⊆out(s)) there is a transition for x from s: s after x = s2. We have to
show that (i2, s2) ∈ R.

In both cases we have a successor (i2, s2) which we have to prove to be in R. Now
since P reaches all states of I, we know that (i2, s′

2) ∈ R for some s′
2. If s2 ≈ s′

2

then (i2, s2) ∈ R′ ⊆ R holds trivially, so suppose that s2
≈ s′
2. Then there exists

a distinguishing experiment w ∈ W (s2) ∩ W (s′
2) which has been executed in i2,

namely in two tests: a test σw for some σ ∈ P+ with S after σ = s2, and a test
σ′w for some σ′ ∈ P with S after σ′. Then there are two cases:

– If s2
♦ s′
2 then w is a distinguishing tree separating s2 and s′

2. Then there is
a sequence ρ taken in w of the test σw, i.e. w after ρ reaches a pass state
of w, and similarly there is a sequence ρ′ that is taken in w of the test σ′w.
By construction of distinguishing trees, ρ must be an ioco-counterexample for
either s2 or s′

2, but because T passed this must be s′
2. Similarly, ρ′ disproves

s2. One implementation state can implement at most one of {ρ, ρ′}. This
contradicts that the two tests passed, so this case cannot happen.

– If s2 ♦ s′
2 (but s2
≈ s′

2 as assumed above), then w is a test suite itself for
s2 ∧ s′

2. If w passed in both tests then i2 ioco s2 and i2 ioco s′
2, and hence

(i2, s2) ∈ Ri,s′
2,s2

⊆ R. If w failed in one of the tests σw or σ′w, then i2 does
not conform to both s′

2 and s2, and hence w also fails in the other test. So
again, there is a counterexample ρ for s′

2 and ρ′ for s2. One implementation
state can implement at most one of {ρ, ρ′}. This contradicts that the two
tests passed, so this case cannot happen.

We have now seen that R progresses to R. It is clear that R′ progresses to R
too. Then, since each Ri,s,s′ is an ioco relation, they progress to Ri,s,s′ ⊆ R. And
so the union, R, progresses to R, meaning that R is a coinductive ioco relation.
Furthermore, we have (i0, s0) ∈ R (because ε ∈ P), concluding the proof. ��

n-Complete Test Suites for IOCO 103

We remark that if the specification does not contain any compatible states,
that the proof can be simplified a lot. In particular, we do not need n-complete
test suites for merges of states, and we can use the relation R′ instead of R.

5 Constructing Distinguishing Trees

Lee and Yannakakis proposed an algorithm for constructing adaptive distinguish-
ing sequences for FSMs [5]. With a partition refinement algorithm, a splitting
tree is build, from which the actual distinguishing sequence is extracted.

A splitting tree is a tree of which each node is identified with a subset of the
states of the specification. The set of states of a child node is a (strict) subset of
the states of its parent node. In contrast to splitting trees for FSMs, siblings may
overlap: the tree does not describe a partition refinement. We define leaves(Y)
as the set of leaves of a tree Y . The algorithm will split the leaf nodes, i.e. assign
children to every leaf node. If all leaves are identified with a singleton set of
states, we can distinguish all states of the root node.

Additionally, every non-leaf node is associated with a set of labels from L. We
denote the labels of node D with labels(D). The distinguishing tree that is going
to be constructed from the splitting tree is built up from these labels. As argued
in Sect. 3.2, we require injective distinguishing trees, thus our splitting trees only
contain injective labels, i.e. injective(labels(D),D) for all non-leaf nodes D.

Below we list three conditions that describe when it is possible to split the
states of a leaf D, i.e. by taking some transition, we are able to distinguish some
states from the other states of D. We will see later how a split is done. If the
first condition is true, at least one state is immediately distinguished from all
other states. The other two conditions describe that a leaf D can be split if after
an input or all outputs some node D′ is reached that already is split, i.e. D′ is
a non-leaf node. Consequently, a split for condition 1 should be done whenever
possible, and otherwise a split for condition 2 or 3 can be done. Depending on
the implementation one is testing, one may prefer splitting with either condition
2 or 3, when both conditions are true.

We present each condition by first giving an intuitive description in words,
and then a more formal definition. With Π(A) we denote the set of all non-trivial
partitions of a set of states A.

Definition 20. A leaf D of tree Y can be split if one of the following conditions
hold:

1. All outputs are enabled in some but not in all states.

∀x ∈ out(D) : injective(x,D) ∧ ∃d ∈ D : d after x = ∅

2. Some states reach different leaves than other states for all outputs.

∀x ∈ out(D) : injective(x,D) ∧ ∃P ∈ Π(D),∀d, d′ ∈ P :
(d
= d′ =⇒ ∀l ∈ leaves(Y) : l ∩ d after x = ∅ ∨ l ∩ d′ after x = ∅)

104 P. van den Bos et al.

3. Some states reach different leaves than other states for some input.

∃a ∈ in(D) : injective(a,D) ∧ ∃P ∈ Π(D),∀d, d′ ∈ P :
(d
= d′ =⇒ ∀l ∈ leaves(Y) : l ∩ d after a = ∅ ∨ l ∩ d′ after a = ∅)

Algorithm 1 shows how to split a single leaf of the splitting tree (we chose
arbitrarily to give condition 2 a preference over condition 3). A splitting tree is
constructed in the following manner. Initially, a splitting tree is a leaf node of
the state set from the specification. Then, the full splitting tree is constructed by
splitting leaf nodes with Algorithm 1 until no further splits can be made. If all
leaves in the resulting splitting tree are singletons, the splitting tree is complete
and a distinguishing tree can be constructed (described in the next section).
Otherwise, no distinguishing tree exists. Note that the order of the splits is left
unspecified.

Input: A specification S = (Q, LI , LO, T, q0) ∈ SA
Input: The current (unfinished) splitting tree Y
Input: A leaf node D from Y

1 if Condition 1 holds for D then
2 P := {D after x | x ∈ out(D)};
3 labels(D) := out(D);
4 Add the partition blocks of P as children of D;

5 else if Condition 2 holds for D then
6 labels(D) := out(D);
7 foreach x ∈ out(D) do
8 P := the finest partition for Condition 2 with D and x;
9 Add the partition blocks of P as children of D;

10 end

11 else if Condition 3 holds for D with input a then
12 P := the finest partition for Condition 3 with D and a;
13 labels(D) := {a};
14 Add the partition blocks of P as children of D;

15 return Y ;
Algorithm 1. Algorithm for splitting a leaf node of a splitting tree.

Example 21. Let us apply Algorithm 1 on the suspension automaton in Fig. 5a.
Figure 5b shows the resulting splitting tree. We initialize the root node to
{1, 2, 3, 4, 5}. Condition 1 applies, since states 1 and 5 only have output y
enabled, while states 2, 3 and 4 only have outputs x and z enabled. Thus, we
add leaves {1, 5} and {2, 3, 4}.

We can split {1, 5} by taking an output transition for y according to condition
2, as 1 after y = 4 ∈ {2, 3, 4}, while 5 after y = 1 ∈ {1, 5}, i.e. 1 and 5 reach
different leaves. Condition 2 also applies for {2, 3, 4}. We have that {2, 3} after
x = {2, 4} ⊆ {2, 3, 4} while 4 after x = 5 ∈ {5}. Hence we obtain children {4}

n-Complete Test Suites for IOCO 105

1 2

34

5

y

z

x

a
x a

z

z
a

x

y

(a) Example specification with
mutually incompatible states.

{1,2,3,4,5}: x, y, z

{1,5}: y

{1} {5}

{2,3,4}: x, z

{4} {2,3}: a

{2} {3}

{2} {3,4}: a

{3} {4}
(b) Splitting tree of Figure 5a.

Fig. 5. Specification and its splitting tree.

and {2, 3} for output x. For z we have that 2 after z = 1 ∈ {1} while {3, 4}
after z = {3, 4} ⊆ {2, 3, 4}, so we obtain children {2} and {3, 4} for z.

We can split {2,3} by taking input transition a according to condition 3,
since 2 after a = 4 and 3 after a = 2, and no leaf of the splitting tree contains
both state 2 and state 4. Note that we could also have split on output transitions
x and z. Node {3, 4} cannot be split for output transition z, since {3, 4} after
z = {3, 4} which is a leaf, and hence condition 2 does not hold. However node
{3, 4} can be split for input transition a, as 3 after a = 2 and 4 after a = 4.
Now all leaves are singleton, so we can distinguish all states with this tree.

A distinguishing tree Y ∈ DT (LI , LO,D) for D can be constructed from a
splitting tree with singleton leaf nodes. This follows the structure in Definition 8,
and we only need to choose whether to provide an input, or whether to observe
outputs. We look at the lowest node D′ in the split tree such that D ⊆ D′.

{1,2,3,4,5}

{2,4,5}

{4,5}

{5}
x

{1}
y

{3}
z

x

{1}
y

{1,3}

{2}
x

{4}
y

{4}
z

z

x

{1,4}

{5}
x

{4}
y

{3}
z

y

{1,3,4}

{2,5}

{4}
x

{1}
y

{1}
z

x

{4}
y

{3,4}

{2,4}

{4,5}

{5}
x

{1}
y

{3}
z

x

∅
y

{1,3}

{2}
x

{4}
y

{4}
z

z

a

reset

x

reset

y

reset

z

z

z

Fig. 6. Distinguishing tree of Fig. 5a. The states are named by the sets of states which
they distinguish. Singleton and empty sets are the pass states. Self-loops in verdict
states have been omitted, for brevity.

106 P. van den Bos et al.

If labels(D′) has an input, then Y has a transition for this input, and a transition
to reset for all outputs. If labels(D′) contains outputs, then Y has a transition for
all outputs. In this manner, we recursively construct states of the distinguishing
tree until |D| ≤ 1, in which case we have reached a pass state. Figure 6 shows
the distinguishing tree obtained from the splitting tree in Fig. 5b.

6 Conclusions

We firmly embedded theory on n-complete test suites into ioco theory, with-
out making any restricting assumptions. We have identified several problems
where classical FSM techniques fail for suspension automata, in particular for
compatible states. An extension of the concept of distinguishing states has been
introduced such that compatible states can be handled, by testing the merge
of such states. This requires that the merge itself does not contain compatible
states. Furthermore, upper bounds for several parts of a test suite have been
given, such as reaching all states in the implementation.

These upper bounds are exponential in the number of states, and may limit
practical applicability. Further investigation is needed to efficiently tackle these
parts of the test suite. Alternatively, looser notions for completeness may cir-
cumvent these problems. Furthermore, experiments are needed to compare our
testing method and random testing as in [11] quantitatively, in terms of efficiency
of computation and execution time, and the ability to find bugs, preferably on
a real world case study.

References

1. Beneš, N., Daca, P., Henzinger, T.A., Křet́ınskỳ, J., Ničković, D.: Complete compo-
sition operators for IOCO-testing theory. In: Proceedings of the 18th International
ACM SIGSOFT Symposium on Component-Based Software Engineering, pp. 101–
110. ACM (2015)

2. Bonchi, F., Pous, D.: Hacking nondeterminism with induction and coinduction.
Commun. ACM 58(2), 87–95 (2015)

3. Dorofeeva, R., El-Fakih, K., Maag, S., Cavalli, A.R., Yevtushenko, N.: FSM-based
conformance testing methods: a survey annotated with experimental evaluation.
Inf. Softw. Technol. 52(12), 1286–1297 (2010)

4. Hierons, R.M.: Testing from a nondeterministic finite state machine using adaptive
state counting. IEEE Trans. Comput. 53(10), 1330–1342 (2004)

5. Lee, D., Yannakakis, M.: Testing finite-state machines: state identification and
verification. IEEE Trans. Comput. 43(3), 306–320 (1994)

6. Luo, G., von Bochmann, G., Petrenko, A.: Test selection based on communicat-
ing nondeterministic finite-state machines using a generalized Wp-method. IEEE
Trans. Software Eng. 20(2), 149–162 (1994)

7. Noroozi, N.: Improving input-output conformance testing theories. PhD thesis,
Technische Universiteit Eindhoven (2014)

8. Paiva, S.C., Simao, A.: Generation of complete test suites from mealy input/output
transition systems. Form. Asp. Comput. 28(1), 65–78 (2016)

n-Complete Test Suites for IOCO 107

9. Petrenko, A., Yevtushenko, N.: Adaptive testing of deterministic implementa-
tions specified by nondeterministic FSMs. In: Wolff, B., Zäıdi, F. (eds.) ICTSS
2011. LNCS, vol. 7019, pp. 162–178. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24580-0 12

10. Simao, A., Petrenko, A.: Generating complete and finite test suite for ioco: is it
possible? In: Proceedings Ninth Workshop on Model-Based Testing, MBT 2014,
Grenoble, France, pp. 56–70 (2014)

11. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78917-8 1

12. Volpato, M., Tretmans, J.: Towards quality of model-based testing in the ioco
framework. In: Proceedings of the 2013 International Workshop on Joining Acad-
eMiA and Industry Contributions to Testing Automation, pp. 41–46. ACM (2013)

13. Willemse, T.A.C.: Heuristics for ioco-based test-based modelling. In: Brim, L.,
Haverkort, B., Leucker, M., van de Pol, J. (eds.) FMICS 2006. LNCS, vol. 4346,
pp. 132–147. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70952-7 9

http://dx.doi.org/10.1007/978-3-642-24580-0_12
http://dx.doi.org/10.1007/978-3-642-24580-0_12
http://dx.doi.org/10.1007/978-3-540-78917-8_1
http://dx.doi.org/10.1007/978-3-540-70952-7_9

Multiple Mutation Testing from Finite State
Machines with Symbolic Inputs

Omer Nguena Timo1(B), Alexandre Petrenko1, and S. Ramesh2

1 Computer Research Institute of Montreal, CRIM, Montreal, Canada
{omer.nguena-timo,petrenko}@crim.ca

2 GM Global R&D, Warren, MI, USA
ramesh.s@gm.com

Abstract. Recently, we proposed a mutation-testing approach from a
classical finite state machine (FSM) for detecting nonconforming mutants
in a given fault domain specified with a so-called mutation machine. In
this paper, we lift this approach to a particular type of extended finite
state machines called symbolic input finite state machine (SIFSM), where
transitions are labeled with symbolic inputs, which are predicates on
input variables possibly having infinite domains. We define a well-formed
mutation SIFSM for describing various types of faults. Given a mutation
SIFSM, we develop a method for evaluating the adequacy of a test suite
and a method for generating tests detecting all nonconforming mutants.
Experimental results with the prototype tool we have developed indicate
that the approach is applicable to industrial-like systems.

Keywords: Extended FSM · Symbolic inputs · Conformance testing ·
Mutation testing fault modelling · Fault model-based test generation ·
Constraint solving

1 Introduction

Detecting nonconforming implementations is a major challenge during the design
and the maintenance of systems, which motivates the elaboration of innovative
and efficient testing [16,23], model-checking [6] and runtime verification tech-
niques [12]. Testing techniques [23] not only aim at exercising a system with ade-
quate test cases to reveal failures and ideally to identify and to repair faults caus-
ing the failures. They may also target evaluating the adequacy of test cases and
the generation of test cases to cover artefacts that can conceal faults [2,4,5,11],
e.g., statements, branches, interfaces, requirements, mutants. Mutants which are
versions of a specification of a system seeded with undesired faults can be used
to generate test cases or to determine the adequacy of given test cases to reveal
the faults. A fault domain can be specified with a set of mutants and test cases
detecting the mutants which do not conform to the specification can be applied
to detect faulty implementations of a system. Classical FSM model is often used
in developing fault model based testing approaches for detecting nonconforming
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 108–125, 2017.
DOI: 10.1007/978-3-319-67549-7_7

Multiple Mutation Testing from Finite State Machines with Symbolic Inputs 109

implementations. Recently we proposed an approach for this model to evaluate
the adequacy of test cases in a given fault domain [19] and to generate test cases
detecting all nonconforming mutants [20].

In case the testers need to deal with inputs with infinite domains, the finite
input alphabets which is used in classical FSM to represent the inputs of a system
becomes ineffective along with FSM-based testing approaches. In the automo-
tive applications, the behaviors of some controllers [18] depend on the truth
values of predicates defined over input variables with infinite domains. Exten-
sions of FSMs with symbolic inputs and arithmetic operations on variables have
been proposed [3,14,21] to relax limitations of the classical FSM and used in
developing testing methods [9,14,21]. Following the same trend, our test gen-
eration method by constraint solving from FSM in [19,20] could be enhanced
to extended FSM. The work of [8] also uses an EFSM model and a mutation
machine to model transition and output faults. Test generation requires (partial)
unfolding of the specification, which we completely avoid. A test suite complete
for used defined faults can only be generated if they satisfy certain sufficient con-
ditions, which severely restrict types of detectable transition and output faults.
Moreover, faults in transition predicates are not considered, as opposed to our
approach.

In this paper, we lift the mutation testing approach from classical FSM
in [19,20] to symbolic input finite state machine (SIFSM). SIFSM [21] is an
extension of FSM with inputs specified with predicates on input variables pos-
sibly having infinite domains, which permits a more compact representation of
data, data-flow relations and control-flow for determining outputs depending on
the values of the predicates and states. Examples of realistic systems which can
be specified with SIFSM can be found in [10,18]. The contribution is three-fold.
First, we define mutation operations for building well-formed mutation machines
specifying mutants in fault domains. New mutation operations may change pred-
icates used in the specification or introduce new predicates. Secondly, we propose
a method for evaluating the completeness of a test suite, i.e., the adequacy of a
test suite to detect all nonconforming mutants. Finally we propose a method for
generating complete test suites. Following the ideas in our previous work [19,20],
the methods rely on building and resolving constraints specifying the mutants
undetected by given test cases. However, in this work the constraints differ from
those in our previous work; they are represented with Boolean expressions for
expressing both undetected mutants and the input-completeness property of the
mutants. The latter property is formalized with a notion of cluster for state. This
is needed because predicates cannot be mutated independently. We evaluate the
methods with a prototype tool applied to a SIFSM model of a component from
the automotive domain.

The remaining of the paper is organized as follows. Section 2 introduces muta-
tion SIFSM and mutation operations used for its creation. In Sect. 3 we present
an approach for determining the mutants undetected by a test, which leads to
a method for completeness checking of a given test suite in Sect. 4. In Sect. 5 we
develop a method for complete test suite generation. Section 6 reports some exper-
imental evaluation of the approach. We summarize our contributions in Sect. 7.

110 O. Nguena Timo et al.

2 Background

2.1 Preliminaries

Let G denote the universe of inputs that are predicates over variables in a fixed
set V for which a decision theory, e.g., an SMT solver, exists, excluding the
predicates that are always false. G∗ denotes the universe of input sequences and
ε denotes the empty sequence. Later in the paper, a test is just an input sequence.
Let IV denote the set of all the valuations of the input variables in the set V ,
called concrete inputs. A set of concrete inputs is called a symbolic input; both,
concrete and symbolic inputs are represented by predicates in G. Henceforth,
we use set-theoretical operations on inputs. In particular, we say that concrete
input x satisfies symbolic input g if x ∈ g. We also have that IV ⊆ G. A set of
inputs H is a tautology if each concrete input x ∈ IV satisfies at least one input
in it, i.e., {x ∈ g | g ∈ H} = IV .

We define some relations between input sequences in G∗. Given two input
sequences α, β ∈ G∗ of the same length k, α = g1g2 . . . gk, β = g′

1g
′
2 . . . g′

k, we
let α ∩ β = g1 ∩ g′

1 . . . gk ∩ g′
k denote the sequence of intersections of inputs in

sequences α and β; α and β are compatible, if for all i = 1, . . . , k, gi ∩ g′
i �= ∅. We

say that α is a reduction of β, denoted α ⊆ β, if α = α ∩ β. If α is a sequence
of concrete inputs as well as a reduction of β then it is called an instance of β;
given a finite set of input sequences E ⊆ G∗, a set of concrete input sequences is
called an instance of the set E, if it contains at least one instance for each input
sequence in E.

Given a finite set of outputs O, a trace is a sequence of input-output pairs
in (G × O)∗. A trace is concrete if every input in it is concrete; otherwise it is
symbolic. Given a trace β ∈ (G × O)∗, the input (resp. output) projection of β,
denoted β↓G (resp. β↓O), is a sequence obtained from β by erasing symbols in O
(resp. G).

We consider an extension of FSM called symbolic input finite state machine
(SIFSM) [21], which operates in discrete time as a synchronous machine reading
values of input variables and setting up the values of output variables. Output
variables are assumed to have a finite number of valuations and form a finite
output alphabet. On the other hand, the set of input valuations can be infinite.

Definition 1. A symbolic input finite state machine S (or machine, for short)
is a 5-tuple (S, s0, V,O, T), where

– S is a finite set of states with the initial state s0,
– V is a finite set of input variables over which inputs in G are defined,
– O is a finite set of outputs,
– T ⊆ S × G × O × S is a finite transition relation, (s, g, o, s′) ∈ T is a

transition.

The semantics of SIFSM is defined by a Mealy state machine with a possibly
infinite input set, where the state and output sets remain finite. The set of
transitions outgoing from state s is denoted by T (s). We say that input g is

Multiple Mutation Testing from Finite State Machines with Symbolic Inputs 111

defined in state s if g is the input of a transition in T (s). Then, G(s) denotes the
sets of all the inputs defined in s. We say that transition (s, g, o, s′) is triggered by
input g′ if g′ is a reduction of g. Several transitions in T (s) are nondeterministic
if they can be triggered by the same input. If a set of transitions T (s) includes
nondeterministic transitions, the set is said to be nondeterministic; otherwise it
is deterministic.

An execution of S from state s is a sequence of transitions t1t2 . . . tn forming
a path from s in the state transition diagram of S. A deterministic execution
is an execution such that its set of transitions is deterministic; otherwise, i.e.,
if for some state s and some transition in the execution there exists another
transition such that both transitions belong to T (s) and are triggered by an
identical input, the execution is nondeterministic. A symbolic trace of S in state
s is the projection of an execution from s on the input-output pairs in (G × O).
A trace obtained from a symbolic trace in s by substituting every inputs by an
instance of it is called a concrete trace of S in s. Let TrS(s) (resp. STrS(s)) denote
the set of all concrete (resp. symbolic) traces of S in state s and TrS (resp. STrS)
denote the set of concrete (resp. symbolic) traces of S in the initial state.

We say that an input sequence triggers an execution of S (in state s) if it is
a reduction of the input projection of a trace of the execution of S (in state s).
Given an input sequence α, let outS(s, α) denote the set of all output sequences
which can be produced by S in response to α at state s, that is outS(s, α) =
{β↓O | β ∈ STrS(s) and α ⊆ β↓G}. We observe that outS(s, α) = outS(s, γ)
whenever γ is a reduction of input α.

The machine S is deterministic (DSIFSM), if for every state s, T (s) is deter-
ministic; otherwise S is a nondeterministic SIFSM (NSIFSM). Clearly, a DSIFSM
has only deterministic executions, while an NSIFSM can have both. State s of
S is completely specified, if G(s) is a tautology, i.e., each concrete input x ∈ IV

satisfies at least one input defined at s. The machine S is completely specified,
if each state is completely specified. The machine S is initially connected, if for
any state s ∈ S there exists an execution from s0 to s. Henceforth, we assume
that all SIFSM are initially connected and completely specified.

We adapt several relations introduced in [19,20] for FSM to SIFSM and use
trace-based definitions of the relations introduced in [21]. Given states s1, s2
of a SIFSM S = (S, s0, V,O, T), s1 and s2 are (trace-) equivalent, s1 � s2, if
TrS(s1) = TrS(s2); s1 and s2 are distinguishable, s1 �� s2, if TrS(s1) �= TrS(s2);
s2 is trace-included into (is a reduction of) s1, s2 ≤ s1, if TrS(s2) ⊆ TrS(s1). S is
reduced if any pair of its states is distinguishable. Given two distinguishable states
s1 and s2, there exists a sequence α ∈ G∗ such that outS(s1, α) �= outS(s2, α);
α is called a distinguishing input sequence for states s1 and s2, this is denoted
s1 ��α s2.

We also use relations between machines. Given SIFSM S = (S, s0, V,O, T)
and P = (P, p0, V,O,N), P ≤ S if p0 ≤ s0; P � S if p0 � s0; P ��α S if p0 ��α s0
with α ∈ G∗ ; and P �� S if P ��α S for some distinguishing input sequence α for
p0 and s0. Later, we use equivalence relation between machines as a conformance
relation between implementation and specification machines.

112 O. Nguena Timo et al.

Given a NSIFSM S = (S, s0, V,O, T), a machine P = (P, p0, V,O,N) is a
submachine of S if p0 = s0, P ⊆ S and N ⊆ T .

2.2 Mutation Machine

Let S = (S, s0, V,O,N) be a DSIFSM, called the specification machine.

Definition 2. A NSIFSM M = (S, s0, V,O, T) is a mutation machine of S, if S
is a submachine of M.

Transitions of M that are also transitions of S are called unaltered, while the
others, in the set T \ N , are mutated transitions. A transition of M is suspicious
if it belongs to a nondeterministic set of transitions, let Susp(s) denote the set of
all suspicious transitions in state s and Susp(M) denote the set of all suspicious
transitions of M. An unaltered transition is trusted if it is not suspicious; other-
wise it is untrusted and belongs to the set Untr(S) = Susp(M) ∩ N . Given state
s, a subset of T (s) is called a cluster of s if it is deterministic and the inputs
of its transitions constitute a tautology, in other words, the transitions of the
cluster have a complete system of guards so that each concrete input enables
a transition. Let Z(s) denote the set of all clusters of s. State s is said to be
suspicious if |Z(s)| > 1. We use Ssusp to denote the set of all suspicious states
of M.

In a mutation machine, untrusted transitions can be seen as the result of
applying mutation operations transforming the specification into mutants. Muta-
tion operations may also be considered as fault seeding in the specification. For
an untrusted transition to belong to a mutant, it must participate in clusters. We
say that a mutation machine is well-formed if each of its suspicious transitions
belongs to a cluster. In what follows, we consider only well-formed mutation
machines.

We assume that only completely specified deterministic submachines of M

are possible implementation machines for the specification machine S. The set
of all such submachines is called a fault domain for S, denoted Sub(M). If M is
deterministic then Sub(M) contains just S. Since each implementation machine
in Sub(M) is deterministic, each state of an implementation machine has only
one cluster. The size of Sub(M) is the product of the sizes of the clusters of the
states, i.e., |Sub(M)| = ∏

s∈S |Z(s)|. A DSIFSM P ∈ Sub(M), such that P �= S, is
called a mutant. Each mutant P has all the trusted transitions of M and the set
of suspicious transitions Susp(P). It holds that for all P,P′ ∈ Sub(M), if P �= P′

then Susp(P) �= Susp(P′).
Figure 1 presents an example of an NSIFSM which is a well-formed mutation

machine with three Boolean input variables v1, v2 and v3 and two outputs in
{0, 1}. The mutation machine has five mutated transitions depicted with dashed
lines. The solid lines represent the unaltered transitions of the specification
machine. Identifiers of transitions are presented in brackets and parentheses for
mutated and unaltered transition, respectively. There are eight suspicious tran-
sitions t5, t6, t7, t8, t9, t10, t11 and t12; three of them t5, t9 and t10 are untrusted.

Multiple Mutation Testing from Finite State Machines with Symbolic Inputs 113

1 2 3

4

v1v3
(1)/0

v1 ∨ v3
(2)/0 v1v2

(4)/0

v1 ∨ v2
(3)/0

v2 ∨ v3
(9)/0

v 2
v 3
(5
) /0

v2 ∨ v3
[8]/1

v1v2v3
[7]/0

v1v2v3
[6]/0

v1v2
(13)/0

v
1 ∨

v
2 (10)

/1

(v1 ∨ v2)v3[11]/1

(v1 ∨ v2)v3[12]/1

Fig. 1. A mutation SIFSM, state 1 is initial.

The states 3 and 4 are suspicious. The four clusters of state 3 are {t5, t9}, {t5, t8},
{t6, t7, t9} and {t6, t7, t8}. The only two clusters for state 4 are {t10, t13} and
{t11, t12, t13}. The mutation machine includes seven mutants and the specifi-
cation machine. Execution t1t3t7t5 is nondeterministic because it includes two
nondeterministic transitions t7 and t5. Execution t1t3t7t6 is deterministic and
involves four mutants determined with the following sets of suspicious transitions
{t9, t7, t6, t10}, {t9, t7, t6, t11, t12}, {t8, t7, t6, t10} and {t8, t7, t6, t11, t12}.

Let e be an execution of M and Susp(e) denote the set of suspicious transitions
in e. We say that a (possibly nondeterministic or partially specified) submachine
P is involved in e if Susp(e) ⊆ Susp(P). An execution of any submachine of M
is an execution of M, but only deterministic executions of M are executions
of submachines in Sub(M). P ∈ Sub(M) is the only mutant involved in e if
Susp(e) = Susp(P).

Since the specification and mutants are completely specified and determinis-
tic SIFSM, we use equivalence as a conformance relation for testing. A mutant P
is nonconforming (faulty) if P �� S, otherwise, it is called a conforming mutant.
We say that a distinguishing input sequence α ∈ G∗ such that P ��α S detects or
kills the mutant P.

The tuple 〈S,�,Sub(M)〉 is a fault model following [19–21]. For a given spec-
ification machine S the equivalence partitions the set Sub(M) into conforming
implementations and nonconforming ones. In this paper, we do not require the
DSIFSM S to be reduced, this implies that a conforming mutant may have fewer
states than the specification S; on the other hand, we assume that no fault cre-
ates new states in implementations, hence mutants with more states than the
specification are not in Sub(M).

114 O. Nguena Timo et al.

2.3 Mutation Operations for Building Well-Formed Mutation
Machines

Mutation operations permit seeding different types of faults including output,
transition and other types of faults which cannot be represented with classi-
cal FSM. Considering for instance nondeterministic Simulink/Stateflow models,
priorities which are automatically assigned to transitions based on the graphical
layout may vary upon changes in the layout [22]. The variation of the priorities
causes transition faults which can be represented with mutated transitions. We
consider mutation operations adding mutated transitions to well-formed muta-
tion machines to build new well-formed mutation machines. Every mutated tran-
sition introduced by a mutation operation must belong to a cluster of a state.
Let M = (S, s0, V,O, T), M′ = (S, s0, V,O, T ′) be two well-formed mutation
machines, s ∈ S be a state, A ⊆ T (s) be a subset of unaltered transitions from
state s in M and B ⊆ T ′(s) be a subset of mutated transitions from state s in
M′. We say that M′ is a mutation of M w.r.t A and B if the following four con-
ditions hold: A ∩ B = ∅, T ′ = T ∪ B, the union of the inputs of the transitions
in A is equivalent to the union of the inputs of the transitions in B and there
are t ∈ A and t′ ∈ B having compatible guards but different outputs or target
states. We specify a mutation operation with a tuple (M, A,B) such that there
exists a mutation of M w.r.t. A and B. The set B can be obtained from the
transitions in A by changing target states or outputs, merging/splitting inputs
of transitions, replacing variables with default values, swapping occurrences of
variables in inputs, substituting a variable for another, modifying arithmetic/-
logical operations in guards. These operations introduce faults which cannot be
represented in classical FSM; some of these faults are considered in [2,4,11]. Any
well-formed mutation machine for a specification can be obtained by iterative
application of mutation operations on the specification.

3 Boolean Expressions Specifying Mutants (un)Detected
by Tests

Let 〈S,�,Sub(M)〉 be a fault model. In the context of testing SIFSM, we consider
that a test is just an input sequence. Tests detecting mutants can be determined
using a distinguishing automaton obtained by composing the transitions of the
specification and mutation machines as follows.

Definition 3. Given a DSIFSM S = (S, s0, V,O,N) and a mutation machine
M = (S, s0, V,O, T) of S, a finite automaton D = (D ∪ {∇}, d0, G,Θ,∇), where
D ⊆ S × S, ∇ is an accepting (sink) state and Θ ⊆ D × G × D is the transition
relation is the distinguishing automaton for S and M, if it holds that

– d0 = (s0, s0) is the initial state in D
– For any (s, t) ∈ D

• ((s, t), g ∩ h, (s′, t′)) ∈ Θ, if there exist (s, g, o, s′) ∈ N , (t, h, o′, t′) ∈ T ,
such that o = o′ and g ∩ h �= ∅

Multiple Mutation Testing from Finite State Machines with Symbolic Inputs 115

• ((s, t), g ∩ h,∇) ∈ Θ, if there exist (s, g, o, s′) ∈ N , (t, h, o′, t′) ∈ T , such
that o �= o′ and g ∩ h �= ∅

Fig. 2 presents the distinguishing automaton for the mutation and specification
machines in Fig. 1. Multiple transitions are represented with a single arc labeled
with multiple inputs.

An execution of D starting at the initial state d0 and ending at the sink
state ∇ is said to be accepted. The language of D, LD is the set of tests labeling
accepted executions of D. Any nonconforming mutant in Sub(M) can be detected
by a test in LD.

Theorem 1. Given the distinguishing automaton D for S and M, P �� S for
some P ∈ Sub(M) if and only if P ��α S for some α ∈ LD.

A test α ∈ LD triggers several executions in the distinguishing automaton
defined by executions of the specification and mutation machine M which are
the respective projections of the distinguishing automaton’s executions; a deter-
ministic execution of M defining an execution of the distinguishing automaton D

to the sink state is called α-revealing if it is triggered by any prefix of the test α.
An α-revealing execution may belong to several mutants. As discussed above,
given a deterministic execution e of M which has the set of suspicious transitions
Susp(e), a mutant P is involved in the execution e, if Susp(e) ⊆ Susp(P). Since
an α-revealing execution defines an accepted execution of the distinguishing
automaton, each involved mutant is killed. Thus the sets of suspicious transi-
tions in all α-revealing executions represent all the mutants killed by test α;
on the other hand, it does not detect mutants which are not involved in these
executions. To elaborate a mutant killing test generation procedure we need first
to determine all the sets of suspicious transitions of the revealing executions for
a given test. Let Eα be the finite set of α-revealing executions of M. We use
Boolean expressions for encoding of suspicious transitions of executions in Eα.
A solution of a Boolean expression c over a set of variables is an assignment
to True or False of every variable which makes c True. A solution of c can be
obtained with solvers [7,13] which return null in case c has no solution. Given the
set of suspicious transitions Susp(M), we introduce |Susp(M)| Boolean variables
each of which represents a suspicious transition of the mutation machine. From
now on we will use t to refer to both a suspicious transition and the variable
which represents it. Then the conjunction ce

def=
∧

t∈Susp(e) t of variables of tran-
sitions in Susp(e) specifies the submachines involved in the revealing execution e.
Moreover, the disjunction of conjunctions of all executions in Eα gives Boolean
expression cα

def=
∨

e∈Eα
ce specifying all the submachines which are involved

in all executions in Eα and killed by the test α. As usual, the disjunction over
the empty set is False and the conjunction over the empty set is True. Boolean
expression cα is satisfiable whenever Eα �= ∅, since an α-revealing execution of M
is a projection of the execution of the distinguishing machine. A witness solution
of cα provides all the variables evaluated to True and defines a corresponding
subset of Susp(M) which together with the trusted transitions of M determines
(the transition relation of) a submachine of M involved in α-revealing executions.

116 O. Nguena Timo et al.

Let α = (v1v2v3)(v1v2v3)(v1v2v3)(v1v2v3)(v1v2v3)(v1v2v3) be a test case. It
triggers four executions in the distinguishing automaton in Fig. 2. These exe-
cutions are defined by four executions of mutation machine in Fig. 1 including
e1 = t1t3t5t10t1t3, e2 = t1t3t5t11t1t3, e3 = t1t3t7t5 and e4 = t1t3t7t6. The exe-
cutions e3 and e4 are defined by the two executions to the sink state of the

11

12 1314

22

23 24

33

34

4344

∇1

∇2

∇3

∇4 ∇5

∇6

v1v3
(1).v1v3

(1)v1 ∨ v2
(3).v1 ∨ v2

(3)

v2 ∨ v3
(9).v2 ∨ v3

[8]

v2v3
(5).v2v3

(5)

v2v3
(5).v1v2v3

[6]

v2v3
(5).v1v2v3

[7]

v1v2
(13).v2v3

(5)

v1v2
(13).v2 ∨ v3

[8]

v1 ∨ v2
(10).v2 ∨ v3

[8]

v1 ∨ v2
(10).v2v3

(5)

v1 ∨ v2
(10).v1v2v3

[6]

v1 ∨ v2
(10).v2 ∨ v3

[8]

v1 ∨ v2
(10).v1 ∨ v2

(10)

v1 ∨ v2
(10).(v1 ∨ v2)v3

[11]

v1 ∨ v2
(10).(v1 ∨ v2)v3

[12]

v1 ∨ v3
(2).v1 ∨ v2

(10)

v1 ∨ v3
(2).(v1 ∨ v2)v3

[11]

v1 ∨ v3
(2).(v1 ∨ v2)v3

[12]

v1v3
(1).v1 ∨ v2

(10)

v1v3
(1).(v1 ∨ v2)v3

[11]

v1 ∨ v3
(2).v1 ∨ v2

(3)

v1v3
(1).v1 ∨ v2

(3)

v1 ∨ v3
(2).v2 ∨ v3

[8]

v1v3
(1).v2 ∨ v3

[8]

v1 ∨ v3
(2).v2v3

(5)

v1 ∨ v3
(2).v1v2v3

[6]

v1v3
(1).v1v2v3

[7]

v1v3
(1).v2 ∨ v3

(9)

v1v3
(1).v2v3

(5)

v1 ∨ v2
(3).v2 ∨ v3

[8]

v1v2
(4).v2 ∨ v3

[8]

v1v2
(4).v2v3

(5)

v1v2
(4).v1v2v3

[6]

v1 ∨ v2
(3).v2v3

(5)

v1 ∨ v2
(3).v2 ∨ v3

(9)

v1 ∨ v2
(3).v1v2v3

[7]

v1 ∨ v2
(3).(v1 ∨ v2)v3

[11]

v1v2
(4).(v1 ∨ v2)v3

[11]

v1 ∨ v2
(3).v1 ∨ v2

(10)

v1v2
(4).v1 ∨ v2

(10)

v1v2
(4).(v1 ∨ v2)v3

[12]

v1 ∨ v2
(3).(v1 ∨ v2)v3

[12]

v1 ∨ v2
(3).v1v2

(13)

v2 ∨ v3
(9).(v1 ∨ v2)v3

[11]

v2 ∨ v3
(9).v1 ∨ v2

(10)

v2 ∨ v3
(9).(v1 ∨ v2)v3

[12]

v2v3
(5).v1 ∨ v2

(10)

v2v3
(5).(v1 ∨ v2)v3

[11]

v
2
v
3
(5

) .
v
1
v
2
(1

3
)

Fig. 2. The distinguishing automaton for machines in Fig. 1, state 11 is initial.

Multiple Mutation Testing from Finite State Machines with Symbolic Inputs 117

distinguishing automaton. Execution e3 is not α-revealing because it is nonde-
terministic. Only execution e4 is α-revealing and includes the two suspicious
transitions in Susp(e4) = {t7, t6}. Thus ce4 = t7t6 and cα = ce4 . The solutions
of cα determine the submachines involved in e4.

We denote by Generate_a_submachine(c) a function which either determines
such a submachine from a solution of c it obtained after calling a solver or returns
null if c has no solution. Nondeterministic and partially specified submachines
are not mutants. To exclude such submachines as well as the specification from
any solution, clusters in suspicious states has to be considered.

Let s be a suspicious state, Z(s) = {Z1, Z2, . . . , Zn} be the set of its clusters.
Then the conjunction of variables of a cluster Zi expresses the requirement that
all these transitions must be present together to ensure that a submachine with
the cluster Zi is completely specified in state s. Moreover, since all mutants are
deterministic, only one cluster in Z(s) can be chosen, therefore, the transitions
are restricted by the expressions determining clusters. Each cluster Zi is exclu-
sively determined by Boolean expression zi

def= (
∧

t∈Zi
t)∧(

∨
t∈Susp(s)\Zi

t) which
permits the selection of all the suspicious transitions in Zi and the exclusion of
the remaining suspicious transitions leaving s, i.e., the exclusion of the other
clusters.

Lemma 1. Let Zi, Zj ∈ Z(s) be two clusters of state s. Every solution of zi is
not a solution of zj.

Then each state s in Ssusp yields the expression cs
def=

∨n
i=1 zi of which all the

solutions determine all the clusters in Z(s).

Lemma 2. Every solution of cs determines a cluster in Z(s) and every cluster
in Z(s) is determined by a solution of cs.

Each solution of
∧

s∈Ssusp
cs determines the set of clusters of suspicious states

either in the specification or in a mutant. Each such cluster in the specification
has at least one untrusted transition in Untr(S). Excluding the specification
can be expressed with the negation of the conjunction of the variables of all
the untrusted transitions

∧
t∈Untr(S) t. Any of its solutions excludes at least one

cluster in the specification and therefore cannot determine the specification. The
Boolean expression cclstr

def=
∧

s∈Ssusp
cs ∧ ∧

t∈Untr(S) t excludes nondeterministic
and partially specified submachines and the specification, which means that cclstr
specifies only all mutants in the fault domain Sub(M).

Considering the example mutation machine, we determine the Boolean
expressions for the suspicious states 3 and 4. For the four clusters of state 3
Z31 = {t5, t9}, Z32 = {t5, t8}, Z33 = {t6, t7, t9} and Z34 = {t6, t7, t8} we build
Boolean expressions z31 = t5t9(t6t7t8), z32 = t5t8(t6t7t9), z33 = t6t7t9(t5t8) and
z34 = t6t7t8(t5t9). Then c3 = (z31 ∨ z32 ∨ z33 ∨ z34). Similarly for state 4, we
build c4 = (z41 ∨ z42) where z41 = t10t13(t11t12) and z42 = t11t12t10t13. Finally,
cclstr = c3 ∧ c4 ∧ (t5 ∨ t9 ∨ t10).

A solution of cα ∧ cclstr defines a subset of Susp(M) which together with the
trusted transitions of M determines (a transition relation of) a mutant detected

118 O. Nguena Timo et al.

by α. All solutions thus determine all mutants detected by the test α. For a
non-trivial mutation machine, a sheer number of killed mutants makes their
enumeration impracticable. Hence, instead of determining killed mutants, we
determine a (conforming or nonconforming) mutant which survives the test α.
The negation of cα, cα determines the transition relations of not only all mutants
which survive α but also other submachines which are not mutants. Considering
the running example, a partially specified submachine having the suspicious
transitions t9 and t8 is determined by the solution of cα which assigns True t9
and t8; such a submachine is not a mutant and it does not belong to Sub(M).
To eliminate them as well as the specification, we use cclstr as before. Finally,
each mutant which survives test α is determined by a solution of the expression
cα ∧ cclstr.

Theorem 2. Test α ∈ G∗ does not detect a mutant P if and only if there is a
solution of cα ∧ cclstr which determines P.

4 Checking Completeness of a Test Suite

Given a fault model 〈S,�,M〉, a fault subdomain for S, FD is a subset of Sub(M).
A test suite, TS is a set of tests. TS is complete for fault subdomain FD if it
detects all the nonconforming mutants in FD. Let us define cTS

def=
∨

α∈TS cα,
a Boolean expression which determines the submachines involved in revealing
executions for the tests in TS. Procedure Build_expression for building cTS is
presented in Algorithm 1.

Let cfd be a Boolean expression specifying only all mutants in a fault subdo-
main FD. It can be formulated as the conjunction cclstr with another (possibly

Procedure Build_expression (TS,D);
Input : TS, a test suite
Input : D, the distinguishing automaton of mutation machine M and

specification S

Output : cTS, a Boolean expression defining submachines of M involved in
revealing executions for tests in TS

cTS := False;
for each α ∈ TS do

Using D, determine Eα, the set of α-revealing executions of M;
cα := False;
for each e ∈ Eα do

ce :=
∧

t∈Susp(e) t ;
cα := cα ∨ ce;

end
cTS := cTS ∨ cα;

end
Return cTS;

Algorithm 1. Building cTS

Multiple Mutation Testing from Finite State Machines with Symbolic Inputs 119

always True) Boolean expression over the variables of suspicious transitions,
which excludes mutants from Sub(M) to obtain FD. A fault subdomain can
always be refined with an expression specifying the mutants to be excluded.
Later, in checking the completeness of a test suite for a given FD, we will be
excluding conforming mutants.

Theorem 3. Test suite TS is complete for fault subdomain FD if and only
if cTS ∧ cfd has no solution or each of its solutions determines a conforming
mutant.

The fault domain Sub(M) is specified with cclstr, which leads to Corollary 1.

Corollary 1. Test suite TS is complete for Sub(M) if and only if cTS ∧ cclstr
has no solution or each of its solutions determines a conforming mutant.

Based on Theorem 3, checking the completeness of a test suite for a fault subdo-
main FD amounts to its iterative refinement by excluding conforming mutants
as solutions to cTS ∧ cfd while no nonconforming mutant is found. In particu-
lar, the negation of the conjunction of variables of all suspicious transitions of a
conforming mutant added to cfd excludes it from FD. This method is formalized
in Algorithm 2 which presents Procedure Check_completeness for checking the
completeness of a test suite TS for a fault subdomain specified by the input
parameter cfd which is refined each time a conforming mutant is generated. The
procedure Check_completeness also takes as inputs a test suite TS and the dis-
tinguishing automaton for the mutation and specification machines. It returns
a witness test detecting a mutant surviving TS in case TS is not complete; oth-
erwise the witness test is empty, which indicates that TS is complete. It also
returns an updated expression of cfd specifying a reduced fault domain which is
used to generate tests that make TS a complete test suite in Sect. 5. Procedure
Check_completeness proceeds as follows. It calls Build_expression for build-
ing cTS, the Boolean expression which determines the submachines involved in
revealing executions for tests in TS. Initialy, the fault domain is specified with
the conjunction of cfd with the negation of cTS which determines all mutants
surviving TS. The execution is iterative and each step consists in generating a
mutant surviving TS, checking the conformance of the mutant and removing
from the current fault domain the mutant in case it is conforming.

Procedure Check_completeness makes calls to Generate_a_submachine to
select a mutant in a fault domain specified with Boolean expression cfd.
Generate_a_submachine returns null in case the fault domain is empty. The
execution of Check_completeness stops when Generate_a_submachine returns a
nonconforming mutant or null. In case null is returned, the test suite is declared
complete and Check_completeness returns the empty test; otherwise the test
suite is declared incomplete and Check_completeness returns a non empty wit-
ness test detecting a nonconforming mutant. In both cases Check_completeness
returns an expression specifying the reduced fault domain at the end of the exe-
cution. In the next section, we will check the completeness of generated tests
(e.g., the witness tests) for the reduced fault domains in determining complete
test suites for fault domains specified with mutation machines.

120 O. Nguena Timo et al.

Procedure Check_completeness (cfd,TS,D);
Input/Output : cfd a boolean expression specifying a fault domain
Input : TS, a (possibly empty) test suite
Input : D, the distinguishing automaton of M and S

Output : α �= ε, a test case revealing a nonconforming mutant
surviving the test suite; α = ε, if TS is complete

cTS := Build_expression(TS,D);
cfd := cTS ∧ cfd;
cP := False;
α := ε;
repeat

cfd := cfd ∧ cP ;
P := Generate_a_submachine(cfd) ;
if P �= null then

Build DP , the distinguishing automaton of S and P ;
if DP has no sink state then

cP :=
∧

t∈Susp(P)

t ;

else
Set α to an input sequence in LDP

;
end

end
until α �= ε or P = null;
return (cfd, α)

Algorithm 2. Checking the completeness of a test suite for a fault domain

In checking the completeness of the initial test suite {α} for the example
mutation machine and test α, Check_completeness takes as input cfd = cclstr,
TS = {α} and the distinguishing automaton in Fig. 2. Then, it determines cTS =
cα = t7t6, sets cfd = cTS ∧ cclstr, cP = False and α = ε and starts executing the
loop. In the first iteration, the call of Generate_a_submachine with input cfd
has generated the mutant with the suspicious transitions t8, t11, t12. The mutant
is nonconforming and killed by the test β = (v1v3)(v1 ∨ v2)(v2 ∨ v3) labeling a
path to the sink state in the distinguishing automaton for the mutant. Then the
execution of Check_completeness terminates with outputs cfd and non empty
test β, which indicates that the test suite {α} is not complete.

5 Complete Test Suite Generation

In case an initial (possibly empty) test suite does not detect all the noncon-
forming mutants in a fault domain, we want to generate tests which together
with the initial tests constitute a complete test suite for the fault domain. This
can be done iteratively by adding a new test detecting a nonconforming mutant
surviving the incomplete test suite, obtaining a new test suite which in turn can
be augmented in case it is not complete. This complete test suite generation
method is formalized in Algorithm 3 with procedure Complete_test_gen which

Multiple Mutation Testing from Finite State Machines with Symbolic Inputs 121

Procedure Complete_test_gen (TSinit, 〈S, �,Sub(M)〉);
Input : TSinit, an initial (possibly empty) test suite
Input : 〈S, �,Sub(M)〉, a fault model
Output : TS, a complete test suite for 〈S, �,M〉
Compute cclstr, the boolean expression which determines all mutants in Sub(M);
Compute D the distinguishing automaton for S and M;
cfd := cclstr;
TS := ∅;
TScurr := TSinit;
repeat

TS := TS ∪ TScurr;
(cfd, α) := Check_completeness(cfd, TScurr, D);
TScurr := {α} ;

until (α = ε);
return TS is complete;

Algorithm 3. Generation of a complete test suite from initial test suite TSinit

takes as inputs an initial test suite TSinit and a fault domain represented with
a mutation machine. At every step, the procedure adds a current test suite to
the set TS of already analyzed tests and makes a call of Check_completeness to
analyze the completeness of a current test suite w.r.t. a current fault domain. In
case of completeness, Check_completeness returns the empty test, which trig-
gers the termination of Complete_test_gen with TS as a complete test suite
for the initial fault domain; otherwise, Check_completeness returns a witness
test detecting a nonconforming mutant and a reduced fault domain obtained by
removing the nonconforming mutant and possibly other conforming mutants, as
discussed in the previous section. Then Complete_test_gen proceeds to a next
iteration step after it has set the current fault domain and the current test suite
to the reduced fault domain and the witness test.

Theorem 4. Procedure Complete_test_gen always terminates and returns a
complete test suite for the fault domain specified with a fault model.

Procedure Complete_test_gen always terminates because the execution of its
only loop always terminates. This is because the initial fault domain consisting
of a finite number of mutants is reduced at every iteration step of the loop and
Check_completeness returns the empty test when executed with the empty fault
domain as an input.

Considering the running example, Table 1 summarizes data computed in exe-
cuting Complete_test_gen to generate a complete test suite from initial test suite
TSinit = {α}. The iteration step appears at the first column. Data are initial-
ized at the end of step init. In each step Complete_test_gen makes a call to
Check_completeness which computes the executions revealed by TScurr deter-
mined in the previous step and updates cfd . Three iteration steps were sufficient
to obtain the complete test suite {α, β, γ} having three tests for the detection
of the seven nonconforming mutants, which shows that the method permits

122 O. Nguena Timo et al.

Table 1. Execution of procedure Complete_test_gen with the initial test α.

In Check_completeness End of the step

step Revealing. Exec cTScurr cfd Surv. mut TS TScurr

init N/A N/A cclstr N/A ∅ α

1 t1t3t7t6 t7t6 cfd ∧ t7t6 t8, t11, t12 α β

2 t1t3t8 t8 cfd ∧ t8 t9, t11, t12 α, β γ

3 t1t3t5t12t3t5t10,
t1t3t5t10t1t3t8

(t5t11t12) ∨ (t5t8t10) cfd ∧ (t5t11t12) ∨ (t5t8t10) ∅ α, β, γ ε

α = (v1v2v3)(v1v2v3)(v1v2v3)(v1v2v3)(v1v2v3)(v1v2v3)

β = (v1v3)(v1 ∨ v2)(v2 ∨ v3)

γ = (v1v3)(v1∨v2)(v2v3)(v1v3∨v2v3)(v1v3)(v1v2v3)(v2v3)

generating fewer tests than the nonconforming mutants. Notice that we gen-
erate symbolic tests; their concrete instances should be used to execute against
black box implementations. In our working example, for simplicity, all input vari-
ables are Boolean, which however, can represent comparisons of integer variables
with some constants. The obtained concrete tests could then be just rewritten by
replacing every Boolean variable by an instance of the corresponding comparison.

Table 2. Experimental results with the prototype tool

#Mutants 8191 163839 1105919 9400319

#Tests 14 15 18 18
Time (sec.) 30 90 100 296

6 Prototype Tool and Experimental Results

We implemented in JAVA a prototype tool consisting of three main modules.
The first module for parsing mutation machines in text format was developed
using ANTLR 4.1 [15]. The second module is concerned with building clusters,
distinguishing automata and Boolean expressions for undetected mutants; it uses
as a back-end the solver Z3 [13] for solving of non Boolean expressions obtained
by combining predicates in building clusters and automata. We integrated the
solver in the tool using a Z3 API. The third module is responsible of solving
Boolean expressions for mutants, extracting mutants and generating new tests.
The module also uses solver Z3 though it may also use a SAT solver [7] since it
deals with the resolution of Boolean expressions only.

In our experiments, we use a desktop computer with the following set-
tings: 3.4Ghz Intel Core i7-3770 CPU, 16.0GB of memory (RAM), Windows 7
(64 bits).

We use the prototype on an industrial-like SIFSM model obtained by trans-
forming a Simulink/Stateflow model [18] of an automotive controller. To regu-
late the air quality in a vehicle, the controller sets an air source position to 0
or 1 depending on its current state and truth values of predicates on integer

Multiple Mutation Testing from Finite State Machines with Symbolic Inputs 123

and Boolean input variables. The transformation required flattening and deter-
minizing the original hierarchical Simulink/Stateflow model. The determiniza-
tion is based on priorities assigned to nondeterministic transitions as it is done
by Simulink [22]. We obtained a SIFSM with 13 states, 62 transitions and 22
input variables. Then we have manually introduced faults (transition faults, out-
put faults, swapping of variables, replacing variables with constants), obtaining
a mutation machine with 213 − 1 = 8191 mutants. Our tool generates, within 30
seconds, a complete test suite with 14 tests detecting the mutants. Finally, we
generate complete tests from automatically generated mutation machines with a
generator executing randomly selected mutation operations. Table 2 presents the
numbers of mutants in the mutation machines, the number of tests in the gener-
ated complete test suites. The maximal length of the tests is 8. We observed that
the test generation is fast when the mutation operations introduce a small num-
ber of nonconforming mutants, which is a realistic assumption [11] for applying
our method.

7 Conclusion

We lifted the multiple mutation testing approach developed for classical (Mealy)
FSM to symbolic input finite state machine (SIFSM). SIFSM extends classical
FSM with predicates defined over input variables with possibly infinite domains.

We defined well-formed mutation machines for SIFSM as a fault model for
compact representation of a fault domain consisting of several faulty implementa-
tions (mutants) of a specification machine. Then we defined mutation operations
for building well-formed mutation machines. Based on the machine equivalence
and distinguishability relations, we have defined tests detecting nonconform-
ing mutants and developed a multiple mutation testing approach from SIFSM.
The proposed approach leveraging on that developed for classical FSM includes
a method for checking the completeness of test suites, i.e., their adequacy to
detect all nonconforming mutants in a fault domain, and a method for complete
test suite generation avoiding mutant enumeration. The novelty of the proposed
approach is that it can analyze and enhance completeness of symbolic tests w.r.t.
user defined fault models for a specification with infinite input domains.

The experiments with a prototype tool we have developed indicate that our
methods can be applied to industrial-like models of systems.

Our current work focuses on extending the approach to FSM with outputs
determined by arithmetic operations over input and output variables [17], to
FSM extended with timing predicates [1,14] and to C program.

Acknowledgements. This work is supported in part by GM, NSERC of Canada and
MESI (Ministère de l’Économie, Science et Innovation) of Gouvernement du Québec.

References

1. Batth, S.S., Vieira, E.R., Cavalli, A., Uyar, M.Ü.: Specification of timed EFSM
fault models in SDL. In: Derrick, J., Vain, J. (eds.) FORTE 2007. LNCS, vol.
4574, pp. 50–65. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73196-2_4

http://dx.doi.org/10.1007/978-3-540-73196-2_4

124 O. Nguena Timo et al.

2. Bessayah, F., Cavalli, A., Maja, W., Martins, E., Valenti, A.W.: A fault injection
tool for testing web services composition. In: Bottaci, L., Fraser, G. (eds.) TAIC
PART 2010. LNCS, vol. 6303, pp. 137–146. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-15585-7_13

3. Cheng, K.T., Krishnakumar, A.S.: Automatic functional test generation using the
extended finite state machine model. In: 30th ACM/IEEE Design Automation
Conference, pp. 86–91 (1993)

4. Delamaro, M.E., Maldonado, J.C., Pasquini, A., Mathur, A.P.: Interface mutation
test adequacy criterion: an empirical evaluation. Empir. Softw. Eng. 6(2), 111–142
(2001)

5. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for
the practicing programmer. Computer 11(4), 34–41 (1978)

6. D’silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 27(7), 1165–1178 (2008)

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24605-3_37

8. El-Fakih, K., Kolomeez, A., Prokopenko, S., Yevtushenko, N.: Extended finite state
machine based test derivation driven by user defined faults. In: Proceedings of the
1st International Conference on Software Testing, Verification, and Validation, pp.
308–317 (2008)

9. El-Fakih, K., Yevtushenko, N., Bozga, M., Bensalem, S.: Distinguishing extended
finite state machine configurations using predicate abstraction. J. Softw. Eng. Res.
Dev. 4(1), 1 (2016)

10. Huang, W., Peleska, J.: Exhaustive model-based equivalence class testing. In:
Yenigün, H., Yilmaz, C., Ulrich, A. (eds.) ICTSS 2013. LNCS, vol. 8254, pp. 49–64.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-41707-8_4

11. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

12. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009)

13. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3_24

14. Nguena Timo, O., Rollet, A.: Conformance testing of variable driven automata.
In: Proceedings of 8th IEEE International Workshop on Factory Communication
Systems, pp. 241–248 (2010)

15. Parr, T.: The Definitive ANTLR 4 Reference, 2nd edn. Pragmatic Bookshelf, Dallas
(2013)

16. Păsăreanu, C.S., Visser, W.: A survey of new trends in symbolic execution for
software testing and analysis. Int. J. Softw. Tools Technol. Transf. 11(4), 339–353
(2009)

17. Petrenko, A.: Checking experiments for symbolic input/output finite state
machines. In: Workshops Proceedings of 9th International Conference on Software
Testing, Verification and Validation, pp. 229–237 (2016)

18. Petrenko, A., Dury, A., Ramesh, S., Mohalik, S.: A method and tool for test opti-
mization for automotive controllers. In: Workshops Proceedings of 6th IEEE Inter-
national Conference on Software Testing, Verification and Validation, pp. 198–207
(2013)

http://dx.doi.org/10.1007/978-3-642-15585-7_13
http://dx.doi.org/10.1007/978-3-642-15585-7_13
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-642-41707-8_4
http://dx.doi.org/10.1007/978-3-540-78800-3_24

Multiple Mutation Testing from Finite State Machines with Symbolic Inputs 125

19. Petrenko, A., Nguena Timo, O., Ramesh, S.: Multiple mutation testing from FSM.
In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp. 222–238.
Springer, Cham (2016). doi:10.1007/978-3-319-39570-8_15

20. Petrenko, A., Nguena Timo, O., Ramesh, S.: Test generation by constraint
solving and FSM mutant killing. In: Wotawa, F., Nica, M., Kushik, N. (eds.)
ICTSS 2016. LNCS, vol. 9976, pp. 36–51. Springer, Cham (2016). doi:10.1007/
978-3-319-47443-4_3

21. Petrenko, A., Simao, A.: Checking experiments for finite state machines
with symbolic inputs. In: El-Fakih, K., Barlas, G., Yevtushenko, N. (eds.)
ICTSS 2015. LNCS, vol. 9447, pp. 3–18. Springer, Cham (2015). doi:10.1007/
978-3-319-25945-1_1

22. Scaife, N., Sofronis, C., Caspi, P., Tripakis, S., Maraninchi, F.: Defining and trans-
lating a safe subset of simulink/stateflow into lustre. In: Proceedings of the 4th
ACM International Conference on Embedded Software, pp. 259–268. ACM (2004)

23. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verification Reliab. 22(5), 297–312 (2012)

http://dx.doi.org/10.1007/978-3-319-39570-8_15
http://dx.doi.org/10.1007/978-3-319-47443-4_3
http://dx.doi.org/10.1007/978-3-319-47443-4_3
http://dx.doi.org/10.1007/978-3-319-25945-1_1
http://dx.doi.org/10.1007/978-3-319-25945-1_1

From Passive to Active FSM Inference
via Checking Sequence Construction

Alexandre Petrenko1(&), Florent Avellaneda1, Roland Groz2,
and Catherine Oriat2

1 CRIM, Montreal, Canada
{Alexandre.Petrenko,Florent.Avellaneda}@crim.ca

2 Univ. Grenoble Alpes, LIG, Grenoble, France
{Roland.Groz,Catherine.Oriat}@imag.fr

Abstract. The paper focuses on the problems of passive and active FSM
inference as well as checking sequence generation. We consider the setting
where an FSM cannot be reset so that its inference is constrained to a single
trace either given a priori in passive inference scenario or to be constructed in
active inference scenario or aiming at obtaining checking sequence for a given
FSM. In each of the last two cases, the expected result is a trace representing a
checking sequence for an inferred machine, if it was not given. We demonstrate
that this can be achieved by a repetitive use of a procedure that infers an FSM
from a given trace (identifying a minimal machine consistent with a trace)
avoiding equivalent conjectures. We thus show that FSM inference and
checking sequence construction can be seen as two sides of the same coin.
Following an existing approach of constructing conjectures by SAT solving, we
elaborate first such a procedure and then based on it the methods for obtaining
checking sequence for a given FSM and inferring a machine from a black box.
The novelty of our approach is that it does not use any state identification
facilities. We only assume that we know initially the input set and a bound on
the number of states of the machine. Experiments with a prototype implemen-
tation of the developed approach using as a backend an existing SAT solver
indicate that it scales for FSMs with up to a dozen of states and requires
relatively short sequences to identify the machine.

Keywords: FSM testing � Machine inference � Machine identification � Active
learning � Checking experiments � Checking sequences

1 Introduction

Model-based testing from finite state models of systems, when it is only possible to
interact with the system through its input/output interfaces, relies on traversing tran-
sitions of the model and being able to check that states reached after transitions in the
system are consistent with those expected from the model. At the end of the test, the
goal is to be able to guarantee that the system under test behaves as expected in the
model. So the test must be built as a checking sequence of inputs that can uniquely
identify (up to equivalence) a given model machine.

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 126–141, 2017.
DOI: 10.1007/978-3-319-67549-7_8

Computing a checking sequence from a finite state model dates back to the very
early history of automata in computer science, starting with the work of Moore [14] and
many approaches have been proposed to generate checking sequences for various types
of models under various assumptions for the machine w.r.t determinism, completeness,
and the existence of specific sequences for a machine such as distinguishing sequences
[10], signatures [20], state identifiers [16] etc.

More recently, at the turn of the century, model-based approaches have led to an
interest in inference techniques. Instead of checking whether a system behaves as
specified by a model, it works the other way round: we try to build a model, called a
conjecture that will predict as accurately as possible the behaviour of a system. This
can be based on a corpus of given observed behaviours of the system (passive infer-
ence), or on the ability to submit test sequences (active inference). One key driver for
such approaches is that experience in industrial context have shown that building and
maintaining accurate and up-to-date models was complicated, and needed specific
expertise. Being able to derive models automatically relieves the burden of creating and
maintaining them.

Building a checking sequence can be seen as a top-down approach (from model to
implementation) and inference as bottom-up approach (from implementation to con-
jectured model). The two are in fact closely linked: in active inference, if a sequence is
built that uniquely identifies a machine, then this sequence is a checking sequence for
this machine. The main difference is in the starting point: for checking sequence
generation, we assume we know the (specification) machine to be identified. For
inference, the machine is unknown.

In this paper, we propose an iterative approach that alternates passive inference
with construction of checking experiments. Initially, an input sequence will be too short
to uniquely identify a machine. But one can exhibit one of many possible conjectures
that would match the observed input/output sequence (the running trace). So the idea is
to build a checking experiment that will distinguish among conjectures, and which is
appended to the current trace. Following this experiment, the set of potential conjec-
tures is reduced, and the process is iterated until we get to a point where the set is
reduced to a singleton, at which point the input projection of the observed trace is a
checking sequence.

Interestingly, this theoretical framework had already been envisioned by J. Kella, in
one of the early papers on passive inference [13]. Let us quote the end of his intro-
duction (our comments in brackets): “When the machine has no distinguishing
sequences the reducing technique can help in minimizing the length of the checking
experiment by iterative construction of the experiment. An initial sequence is applied to
the machine and the resulting input-output sequence is reduced [by state merging]; the
result will indicate a family of machines responding in the same way. An additional
sequence which eliminates nondesired machines is then applied and another reduction
is performed; by repeated application of the basic iteration the sequence will reduce
uniquely to the checked machine [up to the initial state]. This method of checking
experiment construction was tried for some examples but there is no proof yet to
whether it is more efficient than other methods [10] and whether it will converge in all
cases.”

From Passive to Active FSM Inference via Checking Sequence Construction 127

Our approach shows that it is indeed possible to uniquely identify a non-resettable
deterministic complete machine, while building a checking sequence for it, with no
priori knowledge apart from a bound on the number of states, and the input set of the
machine. Contrary to previous work [9], it does not require a characterization set or
another assumption on sequences to distinguish states in the machine.

Section 2 will provide precise definitions for our formal framework, while Sect. 3
will define the inference problems and checking sequence generation in our context, i.e.
from a single trace for a non-resettable machine, in relation with the state of the art.
Section 4 shows how passive inference, i.e. the computation of a conjecture from a
single trace can be encoded into a Boolean formula, so that a SAT solver can be used to
efficiently get a conjecture. Sections 5 and 6 present our iterative approaches, showing
the two sides of the coin: checking sequence generation and active inference. Section 7
presents experiments that show that the algorithms can work with middle-sized auto-
mata. Section 8 concludes.

2 Definitions

A Finite State Machine (FSM) M is a 5-tuple (S, s0, I, O, T), where S is a finite set of
states with an initial state s0; I and O are finite non-empty disjoint sets of inputs and
outputs, respectively; T is a transition relation T � S � I � O � S, (s, a, o, s′) 2 T is a
transition. When we need to refer to the machine M in a state s 2 S, we write M/s.

M is completely specified (complete) if for each tuple (s, a) 2 S � I there exists
transition (s, x, o, s′) 2 T. It is deterministic if for each (s, a) 2 S � I there exists at most
one transition (s, a, o, s′) 2 T, otherwise it is nondeterministic. We consider in this
paper only deterministic FSMs.

An execution of M/s is a sequence of transitions forming a path from s in the state
transition diagram of M. The machine M is initially connected, if for any state s 2
S there exists an execution from s0 to s. M is strongly connected, if the state transition
diagram of M is a strongly connected graph.

A trace of M/s is a string of input-output pairs which label an execution from s. Let
Tr(s) denote the set of all traces of M/s and TrM denote the set of traces of M/s0. For
trace x 2 Tr(s), we use s-after-x to denote the state M reached after the execution of x,
for an empty trace e, s-after-e = s. When s is the initial state then we write M-after-x
instead of M/s0-after-x.

Let also out(s, a) be an output sequence produced by the input sequence a 2 I* in
M/s. For input sequence a applied in state s, we let trs(a) denote the trace with the input
projection a; we will omit the subscript when no confusion occurs.

Given an input sequence a, states s, s′ 2 S are equivalent w.r.t. a, if out(s, a) = out
(s′, a), denoted s ≅ a s′, they are distinguishable by a, if out(s, a) 6¼ out(s′, a), denoted
s ≇a s′ or simply s ≇ s′. A distinguishing sequence of M is an input sequence a for
which the output sequence produced by M in response to a identifies the state of M: for
all s, s′ 2 S, out(s, a) 6¼ out(s′, a). A characterization set of M is a set input sequences
such that every s, s′ 2 S, there exists a sequence a in the set such that out(s, a) 6¼ out(s′,
a). States s and s′ are equivalent if they are equivalent w.r.t. all input sequences, thus
Tr(s) = Tr(s′), denoted s ≅ s′. The equivalence and distinguishability relations between

128 A. Petrenko et al.

FSMs is similarly defined. Two FSMs are equivalent if their initial states are equiva-
lent. A complete FSM is minimal, if it has no equivalent states.

Given two FSMs M = (S, s0, I, O, T) and M
0 ¼ ðS0

; s
0
0; I;O; T

0 Þ, their product M �
M′ is an FSM (P, p0, I, O, H), where p0 ¼ s0; s

0
0

� �
is such that P and H are the smallest

sets satisfying the following rule: If s; s
0� � 2 P, (s, x, o, t) 2 T, s

0
; x; o

0
; t

0� � 2 T
0
, and

o ¼ o
0
, then t; t

0� � 2 P and ððs; s0 Þ; x; o; ðt; t0 ÞÞ 2 H.

Lemma. If M and M′ are complete machines then they are equivalent iff the product
M � M′ is complete in the input set I.

Two complete FSMs M = (S, s0, I, O, T) and M
0 ¼ ðS0

; s
0
0; I;O; T

0 Þ are called
isomorphic if there exists a bijection f: S ! S′ such that f s0ð Þ ¼ s

0
0 and for all a 2 I, o 2

O, and s 2 S, f(s-after-ao) = f(s)-after-ao. Isomorphic FSMs are equivalent, but the
converse does not necessarily hold. Note that we do not require equivalent machines to
be minimal.

Given a trace x 2 (IO)* of length |x|, let Pref(x) be the set of all prefixes of x.
We define a linear FSM W = (X, x0, I, Dx), where Dx is a transition relation, such that
|X| = |x| + 1, and there exists a bijection f: X ! Pref(x), such that f(x0) = e, (xi, ao,
xi+1) 2 Dx iff f(xi)ao = f(xi+1) for all i = 0, …, |x| − 1, in other words, TrW = Pref(x).
We call it an x-machine W.

While the set of traces of the x-machine is Pref(x), there are many FSMs which
have the trace x among other traces. We restrict our attention to the class of FSMs with
at most n states and alphabets I and O, denoted ℑ(n, I, O). An FSM C = (S, s0, I, O, T),
C 2 ℑ(n, I, O) is called an x-conjecture, if x 2 TrC. Let ℑx(n, I, O) be the set of all
x-conjectures in the set ℑ(n, I, O). Clearly, the x-machine is also an x-conjecture, if
|x| < n.

The states of the x-machineW = (X, x0, I, Dx) and an x-conjecture C = (S, s0, I, O,
T), C 2 ℑx(n, I, O) are closely related to each other. A state of the x-machine reached
after any prefix of the trace x corresponds to a unique state of the x-conjecture that is
reached after that prefix. Formally, there exists a mapping l: X ! S, such that
l(x) = s0-after-f(x), the state reached by C when the trace f(x) 2 Pref(x) is executed.
The mapping l induces a partition pC on the set X such that x and x′ belong to the same
block of the partition pC, denoted x = pC x′, iff l(x) = l(x′).

Given an x-conjecture C with the partition pC, let D be an x′-conjecture with the
partition pD, such that x′ 2 Pref(x), we say that the partition pC is an expansion of the
partition pD, if its projection to x′ coincides with the partition pD; viz pD = {P \ X′| P
2 pC} where X′ = {xi 2 X | i � |x′|}.

An input sequence a 2 I* is a checking sequence for a complete FSM M with
n states if for each FSM N 2 ℑ(n, I, O), such that N ≅ a M/s, where s 2 S, it holds that
N ≅ M/s. The trace trs(a), where a is a checking sequence, is called a checking trace
of M. In this definition, we allow uncertainty in the initial state of M since it may have
other states which converge with the initial state on a checking trace (an example of
such an FSM can be found in Sect. 5).

Checking sequence is a special type of checking experiments for FSM, it is usually
considered for FSM based testing when a reset operation in FSM implementations is
unavailable or formidably costly to execute.

From Passive to Active FSM Inference via Checking Sequence Construction 129

3 Problem Statement and Related Work

We consider the following closely related problems, passive and active FSM inference
as well as checking sequence construction. Significantly, we restrict our setting to the
case where a FSM may not be reset, so that the definitions we give here refer to a single
trace. Actually, if a FSM can be reliably reset, the reset sequences can be included in
the trace, so the definitions below can cover the general case. We state the problems
using the definitions given above.

Passive inference is a classical problem whereby given a trace x we need to build
an x-conjecture with a minimal number of states [2, 6, 13].

Active inference, aka active automata learning, is another problem addressed in the
literature [5]. Restated in our FSM context, given a black box, which behaves as an
unknown minimal complete strongly connected FSM with the input alphabet I and the
number of states equal to n, infer the FSM, i.e. build an x-conjecture equivalent to the
FSM and its checking trace x.

The checking sequence problem differs from active inference in assuming that the
expected behavior of a black box with at most n states submitted for testing is given as
a strongly connected FSM M called a specification machine (which is unknown in
active inference) and we need to determine its checking trace x. The relation to passive
inference is direct, once x is constructed, any x-conjecture must be equivalent to M.

In this section, we briefly discuss the existing approaches addressing these prob-
lems which do not rely on the existence of a reset operation.

3.1 Passive Inference from a Single Trace

Passive FSM inference problem is stated by Kella in 1971 [13] as sequential machine
identification and later as system/automaton identification problem by Gold [6]. The
problem has been studied ever since. The problem is known to be computationally very
hard, nevertheless, numerous proposals have been made, mainly on developing state
merging techniques to transform an x-machine into an x-conjecture as small as pos-
sible, see, e.g., [13, 26] etc. The most recent approaches are based on satisfiability
(SAT) solvers [1, 11].

In Sect. 4, we propose an approach to build an x-conjecture within a bound on the
number of states using a SAT solver that avoids obtaining conjectures which were
already considered.

3.2 Checking Sequence Problem

The problem of checking sequence generation from an FSM has a long history starting
from work of Moore [14] and Hennie [10]. Almost all existing methods require a
machine be complete and minimal. Moreover, the vast majority of the proposed
methods only apply to FSMs which have distinguishing sequences or distinguishing
sets, see, e.g. [4, 7, 12, 21, 22, 25]. Not all FSMs possess these sequences and their
construction is a non-trivial problem. Only few methods can generate checking
sequence from complete and minimal FSM which has just characterization set and no
other distinguishing sets, see [10, 17, 18]. Moreover, they cannot be called efficient,

130 A. Petrenko et al.

since the size of a checking sequence generated by using characterization set grows
exponentially with the length and number of sequences in characterization set [24].

The problem of checking sequence generation without even checking the existence
of distinguishing sequences or finding an “optimal” or any other characterization set
remains open, to the best our knowledge. In Sect. 5 we propose an approach that does
not assume any distinguishing or characterization set computation.

3.3 Active Inference Without Reset

Active inference has most often been addressed in the context of learning from samples
and queries [5, 8], so that the problem of dealing with a single trace has not received a
lot of attention. An early attempt was proposed by [19], as an adaptation to Angluin’s
L* algorithm. It assumes that an external oracle can be queried to provide a coun-
terexample (hence an input sequence to distinguish the black box and the conjecture),
and starts with the knowledge of a homing sequence. More recently an approach was
proposed that does not require an external oracle, but still assumes knowledge of a
characterization set [9].

However, the assumptions about the existence of an external oracle, knowledge of
homing or state characterizing sequences, such as distinguishing sequences and char-
acterization sets, are not easy to justify in practice, therefore the problem of active
inference of FSMs with neither reset operation nor strong assumptions about a given
back box remains open. In Sect. 6 we propose an approach that does not require such
assumptions.

4 Passive Inference with SAT Solving

Since an x-machine is itself an x-conjecture, the minimization problem boils down to
merging states of the x-machine without introducing traces that would contradict the
trace x. Therefore by encoding a trace into a Boolean formula, and expressing state
merging possibilities in that formula, we may use a SAT solver to determine acceptable
mergers.

4.1 Problem Encoding

Here we present a procedure for encoding a trace into a Boolean formula, and at the
same time express a constraint on the number of states.

Let W = (X, x0, I, Dx) be an x-machine. To find an x-conjecture with at most
n states amounts to determine a partition p on the set of states X such that the number of
blocks does not exceed n. This problem can be casted as a constraint satisfaction
problem (CSP) [3]. Let X be {x0, …, x|x|}, so each integer variable represents a state of
the x-machine. Since the x-machine is deterministic, the state variables satisfy the
following constraint:

From Passive to Active FSM Inference via Checking Sequence Construction 131

8xi; xj 2 X :

if xi � xj then xi 6¼ xj and

if 9a 2 I s:t: outðxi; aÞ ¼ outðxj; aÞ ¼ o then xi ¼ xj) xi-after-ao ¼ xj-after-ao

ð1Þ

If the number of states in an x-conjecture to be constructed should be at most n then
each state variable xi 2 {0, …, n − 1}. Then an assignment of values to variables in
{x0, …, x|x|} such that the formula (1) is satisfied defines a mapping l: X ! S, where
S is the set of states of an x-conjecture, i.e., the mapping l defines a partition of X into
n blocks.

These formulas can be translated to SAT using unary coding for each integer
variable x 2 X, such that x is represented by n Boolean variables vx,0, …, vx,n−1. For
each x 2 X, we have the clause:

vx;0 _ . . . _ vx;n�1 ð2Þ

These clausesmean that each state of thex-machineW should be in at least one block.
For each state x 2 X and all i, j 2 {0, …, n − 1} such that i 6¼ j, we have the

clauses:

:vx;i _ :vx;j ð3Þ

The clauses mean that each state of the x-machine W should be in at most one
block.

Since a sought-after x-conjecture must be deterministic, the formula (1) is encoded
into the following clauses. First, distinguishable states of W should be in different
blocks, so for every x, y 2 X such that x ≇ y and all i 2 {0, …, n − 1}

:vx;i _ :vy;i ð4Þ

Second, states of W equivalent w.r.t. to some input if placed in the same block must
have their successors also in one block. Hence for all xi, xj 2 X such that out(xi, a) = out
(xj, a) = o and all i, j 2 {0, …, n − 1} we have a formula which can directly be
translated into clauses

ðvx;i ^ vx0;iÞ) ðvðx-after-aoÞ;i) vðx0-after-aoÞ;iÞ ð5Þ

To simplify learning that x = y for some x, y 2 X we further rewrite the clauses (4)
and (5) using auxiliary variables ex,y modeling the fact that x = y. For every x, y 2
X such that x ≇ y we have :ex;y ð6Þ

For all x, y 2 X such that out(x, a) = out(x, a) = o, we have

ex;y) ex-after-ao;y-after-ao ð7Þ

132 A. Petrenko et al.

The relation between auxiliary state variables is expressed in the following clauses.
For every x, y 2 X and all i 2 {0, …, n − 1}

ex;y ^ vx;i) vy;i ð8Þ
:ex;y ^ vx;i) :vy;i ð9Þ

The resulting Boolean formula is the conjunction of clauses (2), (3), (6), (7), (8) and
(9). To check its satisfiability one can use any of the existing solvers. If a solution exists
then we have an x-conjecture with n or fewer states. The latter is obtained from the
determined partition on X. In the context of passive inference, we are usually interested
in finding an x-conjecture as small as possible. This requires several trials with varying
values of n.

4.2 Passive Inference of Different (New) Conjectures

In the context of active inference as well as checking sequence construction we aim at
obtaining a single x-conjecture while avoiding constructing isomorphic conjectures.
A key building block will be provided by the following procedure to infer a conjecture
that differs from already considered conjectures. We identify isomorphic conjectures by
their common partition, hence we add as a constraint that we look for an x-conjecture
that does not expand a set of “forbidden” partitions. If such x-conjectures are found
they will be used in Sects. 5 and 6 to augment the trace x by adding suffixes that
eliminate distinguishable conjectures until only one remains.

5 Checking Sequence Construction

The idea of the proposed method for checking sequence (trace) generation is to find an
FSM that reacts as the given specification FSM to a current input sequence using passive
inference and eliminate it by extending the sequence with a suffix distinguishing the two
machines or forbidding the passive inference from further regeneration if they cannot be

From Passive to Active FSM Inference via Checking Sequence Construction 133

distinguished any further. This process iterates until no more conjectures distinguishable
from the given FSM can be found. The procedure is implemented in Algorithm 2.

Algorithm 2. Generating checking trace
Input: A complete strongly-connected FSM M with n states
Output: A checking trace ω

1. ω := ε
2. Π := ∅
3. while an ω-conjecture C is returned by Infer_conjecture(ω, n, Π) do
4. if C-after-ω × M-after-ω is complete then
5. Π := Π ∪ {πC}
6. else
7. Determine an input sequence βa such that β is a shortest transfer se-

quence from the state C-after-ω to a state with the undefined input a
in C-after-ω × M-after-ω

8. ω:= ωtr(βa), where tr(βa) is the trace of M-after-ω
9. end if

10. end while
11. return ω

Algorithm 2 calls Infer_conjecture(x, n, P), which in turn calls a SAT solver
constraining it to avoid solutions of already considered conjectures.

Note that the Boolean formula used by the SAT solver is built incrementally by
saving a current formula and adding only new clauses each time a trace x or a set of
partitions P is augmented.

Theorem 1. Given an FSM M with n states, Algorithm 2 returns a checking trace x.

Sketch of the proof. When Algorithm 2 terminates the resulting trace x is indeed a
checking one, since by the post-condition of Infer_conjecture no conjecture exists that
is distinguishable from the given FSM M, after having executed x. Note that all
complete conjectures equivalent to M are excluded because as soon as one if found
(including possibly M itself), according to the Lemma, its partition is added to P.
Algorithm 2 always terminates, because the number of all possible conjectures with the
fixed input alphabet within a given bound on the number of states n is finite.

Example. Consider the FSM in Fig. 1, it has no distinguishing sequence, its charac-
terization set is {a, b}.

0 1 2
b/0

a/0

b/1
a/0

b/0
a/1

Fig. 1. The FSM M

134 A. Petrenko et al.

This example is used in [17], where a method for checking sequence generation
from a minimal FSM without distinguishing sequence is proposed. Using this example
the authors of [17] compare their method with those of [10, 18] and report that the
length of checking sequence obtained by their method is 120, while that of [10] is 171
and 248 of [18].

Algorithm 1 implemented in a prototype tool presented in Sect. 6 returns the
checking sequence x = a0a1a0a1b0b1b0a0b0b1a0a1b0a0a1 of length 15. Figure 2
shows intermediate complete x-conjectures obtained executing Algorithm 1. Notice
that the last but one conjecture is actually the FSM M, though, the same trace is also
accepted by another conjecture, which is eliminated using the suffix b0a0a1.

Note that the algorithm does not require the FSM to be minimal, moreover, it can
be adapted to accept even a partial FSM. We are not aware of any method for checking
sequence construction for FSMs which are partially defined and have compatible states,
i.e., machines without characterization set. The only existing method which deals with
such machines is [16], but it relies on the usage of the reset operation, as opposed to the
approach proposed here.

0 1 2
a/0

b/0

b/0
a/0
a/1

0 1 2
a/1

a/0 b/0
b/0

b/1
a/0

ω = a0a1a0a1b0b1b0a0b0 ω = a0a1a0a1b0b1b0a0b0b1

ω = a0a1a0a1b0b1b0a0b0b1a0

0 1 2
b/0

a/0

b/1
a/0

b/0
a/1

0 1 2
a/1

a/0

b/0
a/0

b/1
b/0

ω = a0a1a0a1b0b1b0a0b0b1a0a1b0a0a1

0 1 2
a/0

b/0

a/0
a/1

b/0

ω = a0a1a0a1b0b1b0a0b0b1a0a1

Fig. 2. The x-conjectures generated by Algorithm 1 along with their versions of x; suffixes in
bold show how x grows.

From Passive to Active FSM Inference via Checking Sequence Construction 135

6 Active Inference Approach

The iterative approach of Algorithm 2, which relied on computing a checking exper-
iment for an x-conjecture that was consistent with the current prefix trace can be
adapted to active inference. The trick is to find a checking experiment not between the
reference FSM M and the x-conjecture, but between two possible x-conjectures and
retain the one that is consistent with the observations on the black box.

Given a black box BB, which behaves as an unknown minimal complete strongly
connected FSM with the input alphabet I and a number of states equal to n, Algorithm 3
infers the FSM and constructs its checking trace.

Algorithm 3. Inferring BB and determining its checking trace
Input A black box BB, input set I and integer n
Output A minimal complete ω-conjecture with n states and a checking trace ω
1: ω := ε
2: Π := ∅
3: C := Infer_conjecture(ω, n, Π)
4: while an ω-conjecture D is returned by Infer_conjecture(ω, n, Π) do
5: if D/D-after-ω × C/C-after-ω is complete in the input set I then
6: Π:= Π ∪ {πD}
7: else
8: Determine an input sequence βa such that β is a shortest transfer sequence

from the state C-after-ω to a state with the undefined input a in D/D-after-ω ×
C/C-after-ω

9: ω:= ωtr(βa), where tr(βa) is the trace obtained by applying βa to BB
10: if ω ∉ TrC then
11: C := Infer_conjecture(ω, n, Π)
12: end if
13: end if
14: end while
15: return C and ω

Theorem 2. If a black box behaves as a minimal complete strongly connected FSM
with the input alphabet I and the number of states equal to n, Algorithm 3 infers it and
constructs a checking sequence and trace for it.

Sketch of the proof. Algorithm 3 follows the steps of Algorithm 2, just replacing the
FSM M by a current conjecture. This does not influence its termination since it only
occurs when no more distinguishable conjecture can be found. And at some point,
because the black box behaves as a FSM with n states, it will be returned by
Infer_conjecture, so that the remaining conjecture is equivalent to the FSM of the black
box initialized in some state. The resulting trace accepted by that state is a checking
one, as in Theorem 1.

Example. Consider that the FSM M in Fig. 1 is a BB. Six intermediate complete
x-conjectures shown in Fig. 3 are obtained executing Algorithm 3. The last two
conjectures both accept x = a0a1a0b0b1b0b1a0a1b0a0a1a0a1. Both end up in state 2

136 A. Petrenko et al.

from which they cannot be distinguished. The algorithm returns x as a checking trace
and the last but one conjecture which is isomorphic to FSM M/2. The last conjecture is
isomorphic to FSM M/0. Indeed this trace is accepted by M in two states, 0 and 2.

The expected complexity of the proposed approach could be estimated by viewing
it as a mutation-based technique which kills mutants. In our approach at each iteration
only a mutant surviving a current trace can be generated and then killed, drastically
reducing the complexity of mutation-based techniques. A naive worst-case estimation
based on number of (potential) mutants would be grossly overestimated. This explains
why we provide in the next section experimental results on the observed complexity
with random machines.

7 Experiments

The prototype was developed on C++ depending only on a SAT Solver Cryptominisat
[23], as a backend. All the experiments were performed on a virtual machine (Vir-
tualBox) with 8 GiB of RAM and one CPU used. The computer has the processor
7-3770 and 16 GiB of RAM.

0 1 2
b/1

a/0

b/0
b/0

a/0
a/1

0 1 2
b/1

a/0 b/0

b/0

a/0
a/1

0 1 2
b

a/0 b/0
b/0

a/1
a/0

0 1 2
b/1

a/0 b/0
b/0

a/1
a/0

ω = a0a1a0b0b1b0 ω = a0a1a0b0b1b0b1a0

ω = a0a1a0b0b1b0b1a0a1b0a0 ω = a0a1a0b0b1b0b1a0a1b0a0a1

0 1 2
a/1

a/0

b/0
a/0

b/1
b/0

0 1 2
b/0

a/0

b/1
a/0

b/0
a/1

ω = a0a1a0b0b1b0b1a0a1b0a0a1a0a1

Fig. 3. The x-conjectures generated by Algorithm 3 along with their versions of x; suffixes in
bold show how x grows.

From Passive to Active FSM Inference via Checking Sequence Construction 137

Table 1 presents experimental results on randomly generated FSMs. The numbers
of inputs as well as outputs are fixed to two, while the number of state is varied. For
each state number, 101 complete strongly connected machines are generated; they are
not necessarily minimal, since the approach does not require any state distinguisha-
bility. Each generated machine playing role of a specification FSM is used to construct
checking sequence, and acting as a black box system is used for inference. Median
values are collected for the length of resulting checking sequences |x|, the number of
times the solver is called (#solver), and execution time in seconds. The prototype scales
for up to a dozen of states. This matches the state-of-the-art, see, e.g., [15].

To assess the performance of the prototype to various numbers of inputs and
outputs, another series of experiments reported in Table 2 were performed for
machines with five states. Our experiments by varying their numbers separately show,
unsurprisingly, that increasing number of inputs or outputs have opposite effects on the
effectiveness, the more inputs the more complex the solutions (the search space is
larger) but the more outputs the easier the solutions (more outputs increase
distinguishability).

In addition, we performed another series of experiments using randomly generated
lock machines (Table 3). A lock FSM (aka Moore lock, defined by him) with n states
has a unique “unlocking” input sequence of length n which executes the “remotest”
transition, the transitions not covered by this sequence all lead to the initial state
resetting the lock. We consider lock machines as ultimate test for active inference and
checking sequence generation methods. As before for each number of states we gen-
erate 101 random locks with two inputs and two outputs and collect the same
parameters as above. Clearly, for a fixed number of states, locks differ only in labelling
of unlocking sequences, which effects the performance of the prototype, since it
chooses inputs completing and distinguishing conjectures following the lexicographical
order.

Table 1. Experimental results with randomly generated FSMs with two inputs and outputs.

n RANDOM FSMs

Checking Inferring
|x| #solver time |x| #solver time

1 2 3 0.01 2 3 0.01
2 7 8 0.01 7 9 0.01
3 17 14 0.01 18 18 0.01
4 26 20 0.01 30 24 0.01
5 37 26 0.01 43 32 0.02
6 47 32 0.03 57 39 0.05
7 63 39 0.07 69 45 0.13
8 76 44 0.17 83 54 0.32
9 100 53 0.59 107 72 2.4
10 118 58 1.7 119 70 9.0
11 146 69 18.5 146 83 161

138 A. Petrenko et al.

It is interesting to notice that active inference and checking sequence construction
have comparable lengths of the resulting input sequences. After all, in both cases a
checking sequence for the same machine is generated.

We observe that the length of resulting sequences grows polynomially, the number
of times the solver is called linearly and time exponentially with the number of states.

8 Conclusions

We have presented a method that can infer a model of a non-resettable black box FSM
for which we only know an upper bound n on the number of states. It produces the
model along with the input sequence that was used for inferring it. The algorithm
terminates on a final model that is equivalent to the black-box FSM up to initialization,

Table 2. Experimental results with randomly generated arbitrary FSMs with five states.

#inputs = #outputs RANDOM FSMs

Checking Inferring
|x| #solver time |x| #solver time

2 37 26 0.01 43 32 0.02
3 51 40 0.03 57 47 0.05
4 68 53 0.04 70 58 0.09
5 74 62 0.05 81 71 0.12
6 88 73 0.07 95 85 0.2
7 101 83 0.09 109 99 0.3
8 113 95 0.12 121 111 0.38
9 121 102 0.12 127 122 0.5
10 138 114 0.18 145 136 0.72
20 257 212 0.63 276 261 3.2
30 377 312 1.3 425 391 10
40 525 412 2.5 517 571 22

Table 3. Experimental results with randomly generated lock FSMs.

n RANDOM LOCKs

Checking Inferring
|x| #solver time |x| #solver time

1 2 3 0.01 2 3 0.01
2 7 8 0.01 7 7 0.01
3 22 16 0.01 23 22 0.01
4 57 28 0.04 58 61 0.05
5 110 40 0.41 127 164 0.79
6 255 58 7.8 269 514 21
7 488 456 870 456 2202 970

From Passive to Active FSM Inference via Checking Sequence Construction 139

and since it identifies a unique machine such that the input sequence is a checking
sequence for this FSM.

The main benefit of this approach is that it only requires a bound on the number of
states, no other assumption is needed, and the system does not have to be reset. This
implies that it may have a wide spectrum of applications. The performance of active
inference methods is usually assessed through the number of interactions with a system
that are needed to infer it. Experiments have shown that the length of the input
sequence implied by our approach is quite good. Another issue comes from the internal
computations needed by the inference algorithm to build the model of the system. The
method relies on a SAT solver to propose conjecture FSMs that are consistent with an
observed trace. Unfortunately, this induces an exponential growth in the number of
states, and this has been the limiting factor in our experiments. However, being able to
infer state machines of up to a dozen states is in itself interesting for a large range of
applications (many systems have relatively small state-space for the control part of their
computations).

The approach seems promising, and can be improved in several directions. First, we
have encoded the constraints for passive inference in a straightforward way, which puts
a high burden on the constraint solver. It should be possible to encode the problem with
more elements from the trace and FSM-structure to help the solver, with some guid-
ance. Another direction we are investigating is to extract more information from pre-
vious conjectures and observations so as to reduce the number of calls to the solver to a
minimum. In many cases, the calls to the solver can be avoided because it is possible to
derive further checking experiments from the structure of the past conjecture(s). Instead
of calling the solver to identify a new conjecture, it could be possible to refine the
current conjecture.

Acknowledgements. This work was partially supported by MESI (Ministère de l’Économie,
Science et Innovation) of Gouvernement du Québec and NSERC of Canada.

References

1. Abel, A., Reineke, J.: MeMin SAT-based exact minimization of incompletely specified
mealy machines. In: IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 94–101 (2015)

2. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from samples of
their behavior. IEEE Trans. Comput. 100(6), 592–597 (1972)

3. Carbonnel, C., Cooper, M.C.: Tractability in constraint satisfaction problems: a survey.
Constraints 21(2), 115–144 (2016)

4. Boute, R.T.: Distinguishing sets for optimal state identification in checking experiments.
IEEE Trans. Comput. 23, 874–877 (1974)

5. De la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge
University Press, Cambridge (2010)

6. Gold, E.M.: Complexity of automaton identification from given data. Inf. Control 37(3),
302–320 (1978)

7. Gonenc, G.: A method for the design of fault detection experiments. IEEE Trans. Comput.
19, 551–558 (1970)

140 A. Petrenko et al.

8. Groz, R., Li, K., Petrenko, A., Shahbaz, M.: Modular system verification by inference,
testing and reachability analysis. In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T.
(eds.) FATES/TestCom -2008. LNCS, vol. 5047, pp. 216–233. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-68524-1_16

9. Groz, R., Simao, A., Petrenko, A., Oriat, C.: Inferring finite state machines without reset
using state identification sequences. In: El-Fakih, K., Barlas, G., Yevtushenko, N. (eds.)
ICTSS 2015. LNCS, vol. 9447, pp. 161–177. Springer, Cham (2015). doi:10.1007/978-3-
319-25945-1_10

10. Hennie, F.C.: Fault-detecting experiments for sequential circuits. In: Proceedings of the Fifth
Annual Symposium on Circuit Theory and Logical Design, pp. 95–110 (1965)

11. Heule, M.J.H., Verwer, S.: Exact DFA identification using SAT solvers. In: Sempere, José
M., García, P. (eds.) ICGI 2010. LNCS, vol. 6339, pp. 66–79. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-15488-1_7

12. Hierons, R.M., Ural, H.: Optimizing the length of checking sequences. IEEE Trans. Comput.
55, 618–629 (2006)

13. Kella, J.: Sequential machine identification. IEEE Trans. Comput. 100(3), 332–338 (1971)
14. Moore, E.F.: Gedanken experiments on sequential machines. Autom. Stud. Ann. Math. Stud.

34, 129–153 (1956)
15. Oliveira, A.L., Silva, J.P.M.: Efficient algorithms for the inference of minimum size DFAS.

Mach. Learn. 44(1), 93–119 (2001)
16. Petrenko, A., Yevtushenko, N.: Testing from partial deterministic FSM specifications. IEEE

Trans. Comput. 54(9), 1154–1165 (2005)
17. Porto, F.R., Endo, A.T., Simao, A.: Generation of checking sequences using identification

sets. In: Groves, L., Sun, J. (eds.) ICFEM 2013. LNCS, vol. 8144, pp. 115–130. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-41202-8_9

18. Rezaki, A., Ural, H.: Construction of checking sequences based on characterization sets.
Comput. Commun. 18, 911–920 (1995)

19. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. In:
Hanson, S.J., Remmele, W., Rivest, Ronald L. (eds.) Machine Learning: From Theory to
Applications. LNCS, vol. 661, pp. 51–73. Springer, Heidelberg (1993). doi:10.1007/3-540-
56483-7_22

20. Sabnani, K., Dahbura, A.: A protocol test generation procedure. Comput. Netw. 15, 285–297
(1988)

21. Simão, A., Petrenko, A.: Generating checking sequences for partial reduced finite state
machines. In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T. (eds.) FATES/TestCom -
2008. LNCS, vol. 5047, pp. 153–168. Springer, Heidelberg (2008). doi:10.1007/978-3-540-
68524-1_12

22. Simao, A., Petrenko, A.: Checking sequence generation using state distinguishing
subsequences. In: The IEEE ICST Workshops, pp. 48–56 (2009)

23. Soos, M.: CryptoMiniSat – a SAT solver for cryptographic problems (2009). http://www.
msoos.org/cryptominisat

24. Vasilevski, M.P.: Failure diagnosis of automata. Cybernetics, Plenum Publishing Corpo-
ration, New York, No 4, pp. 653–665 (1973)

25. Yannakakis, M., Lee, D.: Testing finite state machines: fault detection. J. Comput. Syst. Sci.
50, 209–227 (1995)

26. Yao, M., Petrenko, A., Bochmann, G.V.: Conformance testing of protocol machines without
reset. In: Proceedings of the IFIP Thirteenth International Symposium on Protocol
Specification, Testing and Verification, pp. 241–256. North-Holland Publishing Co. (1993)

From Passive to Active FSM Inference via Checking Sequence Construction 141

http://dx.doi.org/10.1007/978-3-540-68524-1_16
http://dx.doi.org/10.1007/978-3-319-25945-1_10
http://dx.doi.org/10.1007/978-3-319-25945-1_10
http://dx.doi.org/10.1007/978-3-642-15488-1_7
http://dx.doi.org/10.1007/978-3-642-41202-8_9
http://dx.doi.org/10.1007/3-540-56483-7_22
http://dx.doi.org/10.1007/3-540-56483-7_22
http://dx.doi.org/10.1007/978-3-540-68524-1_12
http://dx.doi.org/10.1007/978-3-540-68524-1_12
http://www.msoos.org/cryptominisat
http://www.msoos.org/cryptominisat

Safety and Security Testing

Safety-Complete Test Suites

Wen-ling Huang2 and Jan Peleska1,2(B)

1 Verified Systems International GmbH, Bremen, Germany
2 Department of Mathematics and Computer Science,

University of Bremen, Bremen, Germany
{huang,jp}@cs.uni-bremen.de

Abstract. In this paper, a novel safety-related variant of complete test
suites for finite state machines is introduced. Under certain hypotheses
which are similar to the ones used in the well-known W-Method or the
Wp-Method, the new method guarantees to uncover every safety viola-
tion, while erroneous outputs without safety-relevance may remain unde-
tected. In well-defined situations that can be precisely pre-determined
from the reference model, this leads to a substantial reduction of test
cases in comparison to the size of the analogous Wp-test suites. We advo-
cate this new test suite for situations, where exhaustive testing of the
complete system is too expensive. In these cases, strong guarantees with
respect to fault coverage should only be given for the errors representing
safety violations, while it is considered as acceptable if less critical errors
remain undetected.

Keywords: Model-based testing · Complete testing theories · Safety

1 Introduction

Motivation. Complete test suites guarantee to uncover all conformance viola-
tions of the implementation under test checked against a given reference model,
provided that certain hypotheses – typically captured in a fault model – are
fulfilled. This ideal test strength has attracted many researchers over the last 50
years, so that a large variety of contributions exists (a comprehensive overview
has been given in [4, Sect. 5]). On the other hand, the often infeasible size of
the test suites involved has frequently prevented their practical application. As
a result, there is a considerable interest in testing strategies allowing to focus
the effort on certain critical properties, while requiring lesser fault coverage for
non-critical ones; we name [7] as one example among a multitude of publications
in this field which is typically denoted as property-oriented testing.

Main Contributions. A novel contribution to property-oriented testing for
the domain of finite state machines is presented. Our approach modifies the
well-known Wp-Method in such a way, that complete coverage for output and

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 145–161, 2017.
DOI: 10.1007/978-3-319-67549-7 9

146 W. Huang and J. Peleska

transition faults (including addition of new states) is guaranteed, if these lead
to erroneous outputs representing safety-violations. To this end, an abstraction
concept for outputs is introduced, so that it can be formally captured whether
an erroneous replacement of another output for the expected one presents a
safety violation or just a non-critical deviation. In contrast to other publications
in this field, we formally prove that our strategy is complete with respect to
this safety-related fault coverage. We show by means of examples, that applying
this Safety-complete Wp-Method can lead to significantly reduced test suites in
comparison to the Wp-Method, though this is not guaranteed, but depends on
the nature of the reference model and its safety-related abstraction.

Overview. In Sect. 2, basic terms and concepts are introduced, so that this
paper remains sufficiently self-contained. In Sect. 3, the Safety-complete Wp-
Method is introduced, and its completeness properties are proven. In Sect. 4,
three small case studies are presented that provide some insight into the situa-
tions where the new method leads to a significant test case reduction. Section 5
presents the conclusion.

2 Notation and Technical Background

A deterministic finite state machine (DFSM) is a tuple M = (Q, q,ΣI , ΣO, h)
denoting the finite state space Q, initial state q ∈ Q, finite input and output
alphabets ΣI and ΣO, and the transition relation h ⊆ Q × ΣI × ΣO × Q. For
deterministic machines, pre-state q and input x uniquely determine the associ-
ated output y and the post-state q′, such that h(q, x, y, q′) holds. We assume
that all DFSMs are completely specified. This means that for every q and every
x, there exists y and q′ such that h(q, x, y, q′).

The after operator q-after-x maps a pre-state q and a finite sequence x of
inputs to the uniquely determined post-state q′ resulting from repetitive appli-
cation of h. The language of a DFSM is the set of finite input/output traces
x/y ∈ Σ∗

I × Σ∗
O resulting from applying all x ∈ Σ∗

I to the initial state q and
associating the output trace y which is uniquely determined by q, x, and h. Two
DFSMs are I/O-equivalent (M ∼ M ′) if they produce the same language. The
language of a state q is the set of x/y generated by applying all x ∈ Σ∗

I to q.
The prime machine prime(M) of a DFSM M is the minimal DFSM producing
the same language as M .

A test suite is a subset TS ⊆ Σ∗
I , each x ∈ TS is a test case. This simplified

notation is possible, since only deterministic machines are considered, so that the
input trace x uniquely determines the output trace to be expected according to
the reference DFSM. An implementation passes a test case x if the application
of this input sequence produces an output sequence y, such that x/y is in the
language of the reference DFSM.

For sets of input traces A,B ⊆ Σ∗
I , the expression A.B denotes the set of

all input traces resulting from concatenating a trace x ∈ A with a trace x′ ∈ B.
Given a collection of sets of input traces indexed over the states of a DFSM M ,

Safety-Complete Test Suites 147

say, Wq ⊆ Σ∗
I , q ∈ Q, the notation A ⊕ {Wq | q ∈ Q} is used to denote the set

of all input traces x.x′ where x ∈ A and x′ ∈ W(q-after-x). Σk
I denotes the set

of all input traces of length k ≥ 0. For input or output traces z = z1 . . . zk, the
following notation is used for trace sections.

z[i,j] = zi.zi+1 . . . zj where 1 ≤ i ≤ j ≤ k.

Given a reference DFSM M , the W-Method defines the test suite

W(M) = V.
m−n+1⋃

i=0

Σi
I .W,

where V is a state cover and W is a characterisation set. A state cover is a set
of input traces, such that every state of M can be reached by q-after-x for some
x ∈ V . V contains the empty trace ε which “reaches” the initial state of M . It is
assumed that prime(M) has n states and that the prime machine representing
the true behaviour of the SUT has at most m ≥ n states. A characterisation
set W contains input traces distinguishing all states of prime(M). This means
that for each pair of distinct states q, q′ of prime(M), there exists an x ∈ W
such that x applied to q produces an output trace which differs from the one
resulting from application of x to q′. It is shown in [1,10] that test suite W(M)
uncovers every violation of I/O-equivalence, provided that the prime machine
representing the true behaviour of the implementation does not have more than
m states.

The Wp-Method [2,8] is an alternative test strategy which has the same test
strength as the W-Method, but requires fewer test cases.

Wp(M) = V.W ∪ (
V.

m−n⋃

i=0

Σi
I .W

) ∪ (
V.Σm−n+1

I ⊕ {Wq | q ∈ Q(prime(M))})

Here V,W are defined as above. The state identification sets Wq are subsets of
W , such that each Wq contains sufficient input traces to distinguish q from every
other state in prime(M).

3 A Safety-Complete Wp-Method

3.1 Safety-Related Output Abstractions

Let M = (Q, q,ΣI , ΣO, h) be a deterministic completely specified FSM. Then
any reflexive and transitive relation ≤s⊆ ΣO×ΣO is called a safety-related output
abstraction. The intuition behind this definition is that y ≤s y′ indicates that an
erroneous output of y′ instead of an expected output y does not induce a safety
violation. Reflexivity just indicates that the occurrence of the output expected
according to the reference model M can never be a safety violation. Transitivity
implies that output z must also be a safe replacement of w, if w ≤s y ∧ y ≤s z
holds. Relation ≤s induces an equivalence relation ∼s on ΣO × ΣO by defining

y1 ∼s y2 ≡ y1 ≤s y2 ∧ y2 ≤s y1

148 W. Huang and J. Peleska

Example 1. Consider a train onboard controller which compares actual train
speed against the allowed speed and progressively outputs

ΣO = {ok, warning, ServiceBrakeTrigger, EmergencyBrakeTrigger},

depending on how much the train is overspeeding. The outputs ok and warning
are shown on the display unit of the train engine driver, whereas the outputs
ServiceBrakeTrigger and EmergencyBrakeTrigger directly act on the train’s
braking system. The service brake slows the train down with lower braking
force than the emergency brake, so that the latter is used only as the “last
resort”, when warnings and service brake interventions do not suffice. These
considerations induce a safety-related output abstraction ≤s as the reflexive and
transitive closure of

ok ≤s warning ≤s ServiceBrakeTrigger ≤s EmergencyBrakeTrigger

The intuition behind this definition is that a warning or even a braking inter-
vention performed by the controller is an acceptable substitute for an expected
ok-output from the safety perspective: the substitute output may be a nuisance
(a spurious warning when the speed is within range) or even a severe reduc-
tion of reliability (triggering the emergency brake without need), but it does not
introduce a safety threat. The same holds for situations where the service brake
should be triggered but instead, the emergency brakes are activated.

When an intervention by service brakes or emergency brakes is expected,
however, an output ok or warning would certainly be regarded as a safety hazard.

Next, suppose that the outputs to the train engine driver are extended by
status messages

Σ′
O = {s1, . . . , sn}.

Since these informative messages have no safety-relevance at all, we wish to
extend the relation ≤s in a way expressing that each status message can be
replaced by any other output of ΣO ∪ Σ′

O without causing any safety hazard.
This is achieved by extending ≤s according to the rules

s ∼s s′ for all s, s′ ∈ Σ′
O

s ≤s e for all s ∈ Σ′
O, e ∈ ΣO

Finally consider a design extension, where the onboard controller operates
in a de-centralised distributed train control environment, so that it switches its
own points

Σ′′
O = {p+i , p−

i | i = 1, . . . ,m}
along the route (such a system has been investigated, for example, in [3]). Nota-
tion p+i stands for switching point number i into the straight position, p−

i for
switching the point into the branching position. From the safety-perspective,
switching a point into the desired position cannot be replaced by any other
event without introducing a safety hazard. Therefore we extend ≤s this time as
follows.

Safety-Complete Test Suites 149

p ≤s p for all p ∈ Σ′′
O

s ≤s p for all s ∈ Σ′
O, p ∈ Σ′′

O ��
Given a safety-related output abstraction ≤s on ΣO, this is extended in the

natural way to a reflexive and transitive relation (again denoted by ≤s) on output
traces ι, π ∈ Σ∗

O by setting

ι ≤s π ≡ (
#ι = #π ∧ ∀i ∈ {1, . . . ,#ι} : ι(i) ≤s π(i)

)

for ι, π ∈ Σ∗
O.

Now let q, q′ be two states of the same state machine or of different state
machines over the same input/output alphabet (ΣI , ΣO). In the latter case, it
is assumed without loss of generality that their states come from disjoint sets
Q,Q′. Then it is possible to specify a joint output function ω : (Q ∪ Q′) × ΣI →
ΣO which is extended in the natural way to operate on sequences of inputs,
i.e. ω : (Q ∪ Q′) × Σ∗

I → Σ∗
O. Let x ∈ Σ∗

I be an input trace. We define

q′ x≤s q ≡ (
ω(q′, x) ≤s ω(q, x)

)
.

Intuitively speaking, q′ x≤s q states that applying input trace x to state q pro-
duces an output sequence ω(q, x) which is an admissible substitute to the output
sequence ω(q′, x) expected when applying the same input sequence to q′.

Relation
x≤s induces an equivalence relation on states by defining

q′ x∼s q ≡ (
q′ x≤s q ∧ q

x≤s q′)

These relations can be extended to sets of input traces in the natural way by
defining

q′ W≤s q ≡ (∀x ∈ W : q′ x≤s q
)

q′ W∼s q ≡ (∀x ∈ W : q′ x∼s q
)

for arbitrary W ⊆ Σ∗
I . Finally, the specific case where W = Σ∗

I is written in the
simplified notation

q′ ≤s q ≡ (
q′ Σ∗

I≤s q
)

q′ ∼s q ≡ (
q′ Σ∗

I∼s q
)
.

If q′ ∼s q holds, any input trace applied to q′ will lead to an output trace
which – regarded from the safety perspective – is an admissible replacement of
the outputs expected when applying the same inputs to q and vice versa. If the
initial states q and q′ of two state machines M,M ′ are s-equivalent (q′ ∼s q), we
denote this by M ′ ∼s M .

We call Ws ⊆ Σ∗
I an s-characterisation set of DFSM M , if and only if

q′ Ws∼s q ⇔ q′ ∼s q

150 W. Huang and J. Peleska

holds. For any q ∈ Q, Wsq
⊆ Ws is called an s-state identification set of q, if and

only if

∀q′ ∈ Q :
(
q′ Wsq∼s q ⇔ q′ ∼s q

)

holds. The sets of input traces in Ws and Wsq
, respectively, allow to distinguish

states from the perspective of their safety-relevant outputs. Conversely, different
states are indistinguishable by Ws and Wsq

, if their safety-relevant outputs are
equivalent, while the non-relevant outputs may differ for certain input traces.

Note that Ws and Wsq
coincide with the conventional characterisation sets

and state identification sets introduced in [8], if we choose ≤s to be the reflexive
and transitive relation defined by the diagonal of ΣO, that is,

≤s= diag(ΣO) = {(y, y) | y ∈ ΣO},

where every output is only comparable to itself.
The following lemma states an obvious but useful fact about the ≤s-relation,

input prefixes, and input suffixes.

Lemma 1. Let x = x1 . . . xk and 1 ≤ i < k. Let q, q′ ∈ Q∪Q′ satisfying q′ x≤s q.
Define states

qi = q-after-x[1,i]

q′
i = q′-after-x[1,i]

Then q′
i

x[i+1,k]

≤s qi holds. ��

3.2 A Safety-Complete Variant of the Wp-Method

Throughout this section, let M = (Q, q,ΣI , ΣO, h), M ′ = (Q′, q′, ΣI , ΣO, h′)
be completely specified, deterministic, and minimised FSMs over the same
input/output alphabet Σ = ΣI × ΣO with |Q| = n, |Q′| ≤ m and m ≥ n.

Definition 1 (Safety-related Fault Model). Let ≤s⊆ ΣO ×ΣO be a safety-
related output abstraction with associated equivalence relation ∼s. A safety-
related fault model

F = (M,∼s,D(m))

is composed of

1. the reference model M ,
2. the conformance relation ∼s, and
3. the fault domain D(m) consisting of all finite, completely specified, determin-

istic, and minimised state machines M ′ over input/output alphabet Σ, such
that |Q′| ≤ m and m ≥ n. ��

Safety-Complete Test Suites 151

Definition 2 (Safety-complete Test Suite). With the definitions above, let
TS ⊆ Σ∗ be a test suite.

1. TS is called sound w.r.t. fault model F , if and only if every member M ′ ∈
D(m) which is I/O-equivalent to M (M ′ ∼ M) passes the test suite.

2. TS is called safety-exhaustive w.r.t. fault model F , if and only if every mem-
ber M ′ ∈ D(m) which is not safety-equivalent to M (M ′ �∼s M) fail at least
one test case in TS.

3. TS is called safety-complete w.r.t. fault model F , if it is both sound and
safety-exhaustive. ��

Theorem 1. Let M = (Q, q,ΣI , ΣO, h), M ′ = (Q′, q′, ΣI , ΣO, h′) be two com-
pletely specified, deterministic, mimimal FSMs with |Q| = n, |Q′| ≤ m and
m ≥ n. Let ≤s⊆ ΣO × ΣO be a safety-related output abstraction. Suppose that

1. ε ∈ V ⊆ Σ∗
I is a state cover of M ,

2. W ⊆ Σ∗
I is a characterisation set of M , and

3. Ws ⊆ Σ∗
I is an s-characterisation set of M .

Define

A = V.W and B = V.

m−n+1⋃

i=0

Σi
I .Ws

Then
q′ A∼ q ∧ q′ B∼s q

implies q′∼sq and therefore M ′ ∼s M .

Proof. We prove by induction over |x| that for any x ∈ Σ∗
I ,

1. q′ x∼s q.

2. q′-after-x Ws∼s q-after-x

Statement 2 is an auxiliary assertion needed to prove Statement 1. The latter
directly implies the statement of the theorem.

Induction Base. Statements 1 and 2 trivially hold for x = ε.

Induction Hypothesis. Suppose that Statements 1 and 2 are true for some
k ≥ 0.

Induction Step. Let x.x ∈ Σ∗
I be any input trace with |x| = k and x ∈ ΣI .

Let
q = q-after-x/y, q1 = q-after-(x/y).(x/y)

and
q′ = q′-after-x/y′, q′

1 = q′-after-(x/y′).(x/y′).

152 W. Huang and J. Peleska

From induction hypothesis we have q′ Ws∼s q.
Since q′ V.W∼ q and since W is a characterisation set of M , the set

{q′-after-x | x ∈ V }

contains n = |M | states of M ′. Consequently,

V ′ = V.
m−n⋃

i=0

Σi
I

is a state cover of M ′. Therefore, there exists some input trace π ∈ V ′ such
that q′-after-π = q′ (note that it is not necessarily the case that x ∈ V ′). Let

q2 = q-after-π. We wish to show that q
Ws∼s q2 holds.

Assume that π ∈ V.Σi
I for some i ∈ {0, . . . , m − n}. Now assumption q′ B∼s q

of the theorem, together with Lemma 1 implies again that q′ Ws∼s q2.
This fact is now combined with the induction hypothesis which implies that

q′ Ws∼s q. From these facts we can conclude that q
Ws∼s q2. Now Ws is an s-

characterisation set of M , so q
Ws∼s q2 implies q ∼s q2.

Let q3 = q2-after-(x/y1). Then q ∼s q2, ω(q, x) = y, and ω(q2, x) = y1
implies y ∼s y1. From Lemma 1 we have q1 = q-after-x ∼s q3 = q2-after-x.
Since π.x ∈ V.

⋃m−n+1
i=1 Σi

I we have q′
1

Ws∼s q3 and y ∼s y′. Hence we have

q′ x.x∼s q and q′-after-(x.x) Ws∼s q-after-(x.x), which proves the induction step. ��
Theorem 2. Let M = (Q, q,ΣI , ΣO, h), M ′ = (Q′, q′, ΣI , ΣO, h′) be two com-
pletely specified, deterministic, minimal FSMs with |Q| = n, |Q′| ≤ m and
m ≥ n. Let ≤s⊆ ΣO × ΣO be a safety-related output abstraction. Suppose that

1. ε ∈ V ⊆ Σ∗
I is a state cover of M ,

2. W ⊆ Σ∗
I is a characterisation set of M ,

3. Ws ⊆ Σ∗
I is an s-characterisation set of M , and

4. Wsq
⊆ Ws are s-identification sets of M for all q ∈ Q.

Define

A = V.W, C = V.

m−n⋃

i=0

Σi
I .Ws, and D = V.Σm−n+1

I ⊕ {Wsq
| q ∈ Q}.

Then
q′ A∼ q ∧ q′ C∼s q ∧ q′ D∼s q

implies q′∼sq, and therefore M ′ ∼s M .

Proof. From Theorem 1 we conclude that it suffices to prove that the assump-
tions of Theorem 2 imply the validity of q′ B∼s q, with B = V.

⋃m−n+1
i=0 Σi

I .Ws

Safety-Complete Test Suites 153

as specified in Theorem 1. Since Theorem 2 is already based on the assumption
q′ C∼s q, it suffices to prove that

q′ V.Σm−n+1
I .Ws∼s q

holds.
Let x ∈ V.Σm−n+1

I and define q = q-after-x and q′ = q′-after-x. We need to

show that q′ Ws∼s q follows from the assumptions of the theorem.

From assumption q′ D∼s q and Lemma 1, we already have q′ Wsq∼s q. Since
V ′ = V.

⋃m−n
i=0 Σi

I is a state cover of M ′ (this has been established in the proof of
Theorem 1), there is some x′ ∈ V ′ such that q′-after-x′ = q′. Let q2 = q-after-x′.

Then q′ Ws∼s q2 follows from assumption from q′ C∼s q (this has also been shown in

detail in the proof of Theorem 1). Since Wsq
⊆ Ws, the fact that q′ Ws∼s q2 holds

implies that q′ Wsq∼s q2 holds as well. In combination with q′ Wsq∼s q, this implies

q2
Wsq∼s q, Therefore, q2∼sq and q2

Ws∼s q. From q′ Ws∼s q2 and q2
Ws∼s q, we conclude

that q′ Ws∼s q. This completes the proof. ��
The theorem above induces a safety-complete test suite, this time it is based

on the original Wp-Method.

Corollary 1 (Safety-complete Wp-Method). Let M = (Q, q,ΣI , ΣO, h)
be a completely specified, deterministic, minimal FSM with |Q| = n, and let m
be a fixed integer satisfying m ≥ n. Let ≤s⊆ ΣO × ΣO be a safety-related output
abstraction. Using the notation and terms introduced in Definitions 1 and 2, and
Theorem 2. Then the test suite

TS = V.W ∪ (
V.

m−n⋃

i=0

Σi
I .Ws

) ∪ (
V.Σm−n+1

I ⊕ {Wsq
| q ∈ Q})

is safety-complete with respect to fault model F = (M,∼s,D(m)). ��

3.3 Implementation

For implementing an algorithm calculating the safety-complete test suite accord-
ing to Corollary 1, we proceed as follows.

FSM Abstraction. Given a completely specified, deterministic, minimal FSM
M = (Q, q,ΣI , ΣO, h), every safety-related output abstraction ≤s⊆ ΣO × ΣO

induces an abstraction αs of the alphabet by mapping each output y ∈ ΣO to
the set of outputs y′ ∈ ΣO that are greater or equal to y according to ≤s.

αs : ΣO → P(ΣO); y �→ {y′ ∈ ΣO | y ≤s y′}

154 W. Huang and J. Peleska

The image Σs
O = αs(ΣO) is again finite, therefore it can be used as a new output

alphabet of a state machine Ms which is an abstraction of M with respect to
≤s in the following sense.

Ms = prime(Q, q,ΣI , Σ
s
O, hs)

hs = {(q, x, αs(y), q′) | (q, x, y, q′) ∈ h}
Though M is assumed to be already minimised, the abstracted machine

(Q, q,ΣI , Σ
s
O, hs) will not be minimised in general, because the output abstrac-

tion may result in fewer states of Q being distinguishable. Therefore Ms is spec-
ified as the prime machine of (Q, q,ΣI , Σ

s
O, hs).

By construction, two different states (q, q′) in Ms produce outputs for certain
input traces that differ in Σs

O. As a consequence, q �∼s q′ holds. Therefore, the
characterisation set of Ms equals the s-characterisation set Ws of M , as specified
in Sect. 3.1. Analogously, the state identification sets of Ms are exactly the s-
state identification sets of M . As a consequence, s-characterisation sets and
s-state identification sets can be calculated by using the existing algorithms for
characterisation sets and state identification sets, but the calculation needs to
be performed on the abstracted FSM M2.

Algorithm. With the FSM abstraction at hand, the algorithm for calculating
the safety-complete test suite works as follows.

1. Input 1. Reference model M = (Q, q,ΣI , ΣO, h) with |Q| = n.
2. Input 2. Integer m satisfying m ≥ n.
3. Input 3. Deterministic, completely specified, minimised FSM

Ms = (Qs, qs
, ΣI , Σ

s
O, hs) resulting from the abstraction of M with respect

to ≤s.
4. Output. Test suite TS which is safety-complete with respect to fault model

F = (M,∼s,D(m)).
5. Calculate state cover V from M .
6. Calculate characterisation set W from M .
7. Calculate characterisation set Ws from Ms.
8. For all q ∈ Qs, calculate state identification sets Wsq

from Ms.
9. Calculate V.Σm−n+1

I ⊕ {Wsq
| q ∈ Qs} from Ms.

10. Set

TS = V.W ∪ (
V.

m−n⋃

i=0

Σi
I .Ws

) ∪ (
V.Σm−n+1

I ⊕ {Wsq
| q ∈ Qs}

)

11. Remove test cases from TS that are prefixes of longer test cases.
12. Return TS.

FSM Open Source Library. We have published the open source C++ library
fsmlib-cpp1 which contains all algorithms needed for implementing the algo-
rithm above. This library also provides essential methods for minimising DFSMs
1 https://github.com/agbs-uni-bremen/fsmlib-cpp.git.

https://github.com/agbs-uni-bremen/fsmlib-cpp.git

Safety-Complete Test Suites 155

and for making nondeterministic FSMs observable. Moreover, a generator main
program is provided which uses these methods to calculated W-Method, Wp-
Method, and Safety-complete Wp-Method test suites. An overview over this
library is given in the lecture notes [9, Appendix B].

4 Case Studies and Strategy Evaluation

4.1 Control of Fasten Seat Belt and Return-to-Seat Signs in the
Aircraft Cabin

Application. The following example is a (slightly simplified) real-world exam-
ple concerning safety-related and uncritical indications in an aircraft cabin. A
cabin controller in a modern aircraft switches the fasten seat belt (FSB) signs
located above the passenger seats in the cabin and the return to seat (RTS) signs
located in the lavatories according to the rules modelled in the DFSM shown in
Table 1.

As inputs, the cabin controller reads the actual position of the fasten seat
belts switch in the cockpit, which has the position f0 (OFF), f1 (ON), and f2
(AUTO). Further inputs come from the cabin pressure control system which
indicates “cabin pressure low” by event d1 and “cabin pressure ok” by d0. This
controller also indicates “excessive altitude” by e1 or “altitude in admissible
range” by e0. Another sub-component of the cabin controller determines whether
the so-called AUTO condition is true (event a1) or false (a0).

The cabin controller switches the fasten seat belt signs and return to seat
signs on and off, depending on the actual input change and its current internal
state. As long as the cabin pressure and the cruising altitude are ok (after initial-
isation of the cabin controller or if last events from the cabin pressure controller
were d0, e0), the status of the FSB and RTS signs is determined by the cockpit
switch and the AUTO condition: if the switch is in the ON position, both FSB
and RTS signs are switched on (output 11 in Table 1). Turning the switch into
the OFF position switches the signs off. If the switch is in the AUTO position,
both FSB and RTS signs are switched on if the AUTO condition becomes true
with event a1, and they are switched off again after event a0. The AUTO con-
dition may depend on the status of landing gears, slats, flaps, and oil pressure,
these details are abstracted to a1, a0 in our example.

As soon as there occurs a loss of pressure in the cabin (event d1) or an
excessive altitude is reached, the FSB signs must be switched on and remain in
this state, regardless of the actual state of the cockpit switch and the AUTO
condition. The RTS signs, however, need to be switched off, because passengers
should not be encouraged to leave the lavatories in a low pressure or excessive
altitude situation.

After the cabin pressure and the altitude are back in the admissible range,
the FSB and RTS signs shall automatically resume their state as determined by
the “normal” inputs from cockpit switch and AUTO condition.

156 W. Huang and J. Peleska

Table 1. State-transition table of DFSM specifying the control of FSB signs and RTS
signs in an aircraft cabin.

f0 f1 f2 d1 d0 e1 e0 a1 a0

s0 s0/00 s1/11 s2/00 s3/10 s0/00 s6/10 s0/00 s12/00 s0/00

s1 s0/00 s1/11 s2/00 s4/10 s1/11 s7/10 s1/11 s13/11 s1/11

s2 s0/00 s1/11 s2/00 s5/10 s2/00 s8/10 s2/00 s14/11 s2/00

s3 s3/10 s4/10 s5/10 s3/10 s0/00 s9/10 s3/10 s15/10 s3/10

s4 s3/10 s4/10 s5/10 s4/10 s1/11 s11/10 s4/10 s16/10 s4/10

s5 s3/10 s4/10 s5/10 s5/10 s2/00 s11/10 s5/10 s17/10 s5/10

s6 s6/10 s7/10 s8/10 s9/10 s6/10 s6/10 s0/00 s18/10 s6/10

s7 s6/10 s7/10 s8/10 s10/10 s7/10 s7/10 s1/11 s19/10 s7/10

s8 s6/10 s7/10 s8/10 s11/10 s8/10 s8/10 s2/00 s20/10 s8/10

s9 s9/10 s10/10 s11/10 s9/10 s6/10 s9/10 s3/10 s21/10 s9/10

s10 s9/10 s10/10 s11/10 s10/10 s7/10 s10/10 s4/10 s22/10 s10/10

s11 s9/10 s10/10 s11/10 s11/10 s8/10 s11/10 s5/10 s23/10 s11/10

s12 s12/00 s13/11 s14/11 s15/10 s12/00 s18/10 s12/00 s12/00 s0/00

s13 s12/00 s13/11 s14/11 s16/10 s13/11 s19/10 s13/11 s13/11 s1/11

s14 s12/00 s13/11 s14/11 s17/10 s14/11 s20/10 s14/11 s14/11 s2/00

s15 s15/10 s16/10 s17/10 s15/10 s12/00 s21/10 s15/10 s15/10 s3/10

s16 s15/10 s16/10 s17/10 s16/10 s13/11 s22/10 s16/10 s16/10 s4/10

s17 s15/10 s16/10 s17/10 s17/10 s14/11 s23/10 s17/10 s17/10 s5/10

s18 s18/10 s19/10 s20/10 s21/10 s18/10 s18/10 s12/00 s18/10 s6/10

s19 s18/10 s19/10 s20/10 s22/10 s19/10 s19/10 s13/11 s19/10 s7/10

s20 s18/10 s19/10 s20/10 s23/10 s20/10 s20/10 s14/11 s20/10 s8/10

s21 s21/10 s22/10 s23/10 s21/10 s18/10 s21/10 s15/10 s21/10 s9/10

s22 s21/10 s22/10 s23/10 s22/10 s19/10 s22/10 s16/10 s22/10 s10/10

s23 s21/10 s22/10 s23/10 s23/10 s20/10 s23/10 s17/10 s23/10 s11/10

First column defines the states (initial state s0)
First row defines the inputs
Fields s/y denote ‘Post-state/Output’

Inputs:
f0, f1, f2 : FSB switch in position OFF, ON, AUTO
d1, d0 : Cabin decompression true, false
e1, e0 : Excessive altitude true, false
a1, a0 : Auto condition true, false
Outputs:
00 denotes (FSB,RTS)=(0,0)
11 denotes (FSB,RTS)=(1,1)
10 denotes (FSB,RTS)=(1,0)

Safety-Complete Test Suites 157

Safety Considerations. Analysing the outputs

(FSB,RTS) ∈ ΣO = {00, 10, 11, 01}

from the safety-perspective, leads to the identification of one safety-critical out-
put (FSB,RTS) = (1, 0), which should be set whenever cabin decompression or
excessive altitude occurs. If the other outputs {00, 11, 01} are changed due to an
application error, this is certainly undesirable, but does not represent a safety
hazard. Note that the output combination 01 should never occur at all.

These considerations lead to an abstraction function

αs : ΣO → P(ΣO)
00 �→ {00, 10, 11, 01}
11 �→ {00, 10, 11, 01}
01 �→ {00, 10, 11, 01}
10 �→ {10}

as introduced in Sect. 3.3, and the abstracted FSM described there is obtained by
replacing outputs 00, 11 by YY = {00, 10, 11, 01}, while leaving every occurrence
of output 10 unchanged.

Comparison Wp-Method Versus Safety-Complete Wp-Method. The
reference FSM with 24 states as specified in Table 1 is already minimal, and a
characterisation set has 4 elements. The minimised version of the FSM abstrac-
tion only has 4 states and a characterisation set with 3 elements.

These figures motivate why the Wp-Method requires 549 test cases if the
minimised machine representing the implementation has the same number of
states as the reference model (m = n). The Safety-complete Wp-Method only
requires 468 test cases in this situation; this corresponds to a test case reduction
of approx. 15%.

4.2 Synthetic Example

Application. The following example does not come from a practical applica-
tion, but has been constructed to illustrate that the reduction of test cases in
comparison to the original Wp-Method can be quite significant. The reference
state machine is shown in Table 2.

Safety Considerations. We assume that outputs 1 and 2 can be considered
as non-critical, so that they can be abstracted to a single output Y . Output 0 is
considered as critical.

158 W. Huang and J. Peleska

Table 2. Example showing the effectiveness of the safety-complete Wp-Method

a b c d e

s0 s1/1 s3/2 s2/0 s4/1 s5/1

s1 s1/1 s3/1 s2/0 s4/2 s5/1

s2 s1/1 s3/1 s2/0 s4/1 s5/1

s3 s1/2 s3/2 s1/0 s4/1 s5/1

s4 s1/2 s3/2 s2/0 s4/1 s5/1

s5 s1/0 s3/1 s0/0 s4/1 s6/1

s6 s1/0 s3/1 s2/0 s4/1 s5/1

First column defines the states (initial state s0)
First row defines the inputs
Fields s/y denote ‘Post-state/Output’

Comparison Wp-Method Versus Safety-Complete Wp-Method. The
reference machine in Table 2 with its 7 states is already minimal, but the min-
imised abstracted FSM only has 2 states. As a consequence, both characterisa-
tion set and state identification sets of the abstracted machine are significantly
smaller. Therefore, the Wp-Methods with assumption m = n requires 87 test
cases, while the Safety-complete Wp-Method only requires 41, this corresponds
to a test case reduction of approx. 53%.

While this example is of no practical value, it illustrates effectively that test
case reductions to less than half of the cases required for the Wp-Method are
possible when using the Safety-complete Wp-Method.

4.3 Garage Door Controller

Application. This example has been originally proposed in [6]. We use it here
as a negative example: it is not guaranteed that the Safety-complete Wp-Method
will always require fewer test cases than the Wp-Method, though the former has
lesser test strength than the latter. Therefore it is important to compare the
required test case numbers beforehand – for example, by using the algorithms
made available in the FSM Library described in [9, Appendix B] – before deciding
which test suites to run against the system under test.

The garage door controller uses inputs from a remote control, two sensors
indicating whether the door has reached the up position or the down position,
respectively, and a light sensor indicating whether the door area is crossed while
the door is closing or opening. The controller commands the motor to go down,
up, stop, or to reverse the down direction to the up direction. Its detailed behav-
iour is specified in Table 3.

Safety-Complete Test Suites 159

Safety Considerations. The only output considered as safety-critical is the
command to reverse the down-direction to the up direction. All other outputs
can be abstracted to some value Y .

Comparison Wp-Method Versus Safety-Complete Wp-Method. Both
the reference model in Table 3 and its abstraction are not minimal. It turns
out, however, that the minimised abstracted model still has as many states as
the minimised reference model. Moreover, the characterisation set and the state
identification sets of the abstracted model are larger than the equivalent sets
derived from the minimised reference model.

As a consequence, the Wp-Method requires only 17 test cases for m = n,
while the Safety-complete Wp-Method requires 33 cases.

Table 3. DFSM modelling the garage door controller.

e1 e2 e3 e4

DU DC/a1 DU/a3 DU/a3 DU/a3

DD DO/a2 DD/a3 DD/a3 DD/a3

DSD DC/a1 DSD/a3 DSD/a3 DSD/a3

DSU DO/a2 DSU/a3 DSU/a3 DSU/a3

DC DSD/a3 DD/a3 DC/a1 DO/a4

DO DSU/a3 DO/a2 DU/a3 DO/a2

Inputs:
e1 : Remote control has been pressed
e2 : Sensor indicates “door reaches down position”
e3 : Sensor indicates “door reaches up position”
e4 : Sensor indicates “light beam crossed”
Outputs:
a1 : Command “start down movement” to motor
a2 : Command “start up movement” to motor
a3 : Command “stop movement” to motor
a4 : Command “reverse down movement to up” to motor
States:
DU : Door is in up position
DD : Door is in down position
DSD : Door is stopped while going down
DSU : Door is stopped while going up
DC : Door is closing
DO : Door is opening

160 W. Huang and J. Peleska

5 Conclusion

We have presented a testing strategy which guarantees to uncover every safety
violation when testing an implementation against a deterministic finite state
machine reference model. These guarantees hold under the assumption that the
true behaviour of the implementation, when expressed by a minimised state
machine, does not exceed a certain maximum of states m, in comparison to the
number n of states in the minimised reference model. Safety criticality has been
modelled by means of a safety-related output abstraction which allows to express
that certain outputs can be exchanged by certain others without introducing a
safety violation. The new strategy has been derived from the well-known Wp-
Method. A proof has been presented which shows that – while no longer guaran-
teeing to uncover every violation of input/output equivalence – the strategy will
uncover every failure which ends in an erroneous output representing a safety
violation.

First experiments have shown that this Safety-complete Wp-Method may
require significantly fewer test cases than the Wp-Method (reductions between
15% and 50% have been observed). It has been indicated by another example,
however, that this reduction is not guaranteed.

The concept described here can be extended to more complex systems whose
behaviour can be represented by a certain class of Kripke structures over infinite
input domains, but with finite domains for internal states and outputs. It has
been shown in [5] that a specific input equivalence class construction technique
can be applied, so that any complete testing theory valid for FSMs can be
translated to a likewise complete equivalence class partition testing strategy for
these systems with Kripke semantics.

References

1. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Software Eng. 4(3), SE-178–186 (1978)

2. Fujiwara, S., Bochmann, G.V., Khendek, F., Amalou, M., Ghedamsi, A.: Test
selection based on finite state models. IEEE Trans. Software Eng. 17(6), 591–603
(1991)

3. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed
railway control system. IEEE Trans. Softw. Eng. 26(8), 687–701 (2000)

4. Huang, W., Peleska, J.: Complete model-based equivalence class testing. STTT
18(3), 265–283 (2016). http://dx.doi.org/10.1007/s10009-014-0356-8

5. Huang, W.I., Peleska, J.: Complete model-based equivalence class testing for
nondeterministic systems. Formal Aspects Comput. 29(2), 335–364 (2017).
http://dx.doi.org/10.1007/s00165-016-0402-2

6. Jorgensen, P.C.: The Craft of Model-Based Testing. CRC Press, Boca Raton (2017)
7. Li, S., Qi, Z.: Property-oriented testing: An approach to focusing testing efforts on

behaviours of interest. In: SOQUA/TECOS (2004)
8. Luo, G., von Bochmann, G., Petrenko, A.: Test selection based on commu-

nicating nondeterministic finite-state machines using a generalized wp-method.
IEEE Trans. Software Eng. 20(2), 149–162 (1994). http://doi.ieeecomputersociety.
org/10.1109/32.265636

http://dx.doi.org/10.1007/s10009-014-0356-8
http://dx.doi.org/10.1007/s00165-016-0402-2
http://doi.ieeecomputersociety.org/10.1109/32.265636
http://doi.ieeecomputersociety.org/10.1109/32.265636

Safety-Complete Test Suites 161

9. Peleska, J., Huang, W.l.: Test Automation - Foundations and Applications of
Model-based Testing. University of Bremen (2017). Lecture notes http://www.
informatik.uni-bremen.de/agbs/jp/papers/test-automation-huang-peleska.pdf

10. Vasilevskii, M.P.: Failure diagnosis of automata. Kibernetika (Transl.) 4, 98–108
(1973)

http://www.informatik.uni-bremen.de/agbs/jp/papers/test-automation-huang-peleska.pdf
http://www.informatik.uni-bremen.de/agbs/jp/papers/test-automation-huang-peleska.pdf

Testing TLS Using Combinatorial Methods
and Execution Framework

Dimitris E. Simos1, Josip Bozic2(B), Feng Duan3, Bernhard Garn1,
Kristoffer Kleine1, Yu Lei3, and Franz Wotawa2

1 SBA Research, 1040 Vienna, Austria
{dsimos,bgarn,kkleine}@sba-research.org

2 Institute for Software Technology, Graz University of Technology,
8010 Graz, Austria

{jbozic,wotawa}@ist.tugraz.at
3 University of Texas at Arlington, Arlington 76019, USA

feng.duan@mavs.uta.edu, ylei@cse.uta.edu

Abstract. The TLS protocol is the standard for secure Internet com-
munication between two parties. Unfortunately, there have been recently
successful attacks like DROWN or BREACH that indicate the necessity
for thoroughly testing TLS implementations. In our research work, we
focus on automated test case generation and execution for the TLS secu-
rity protocol, where the aim is to make use of combinatorial methods for
providing test cases that ideally also reveal previously unknown attacks.
This is made feasible by creating appropriate input parameter models
for different messages that can appear in a TLS message sequence. In
this paper, we present the resulting test case generation and execution
framework together with the corresponding testing oracle. Furthermore,
we discuss first empirical results obtained using different TLS implemen-
tations and their releases.

Keywords: Combinatorial testing · Security testing · Security
protocols · TLS

1 Introduction

Software implementations of the Transport Layer Security (TLS) protocol spec-
ification are a critical component for the security of the Internet communica-
tions and beyond. Software bugs and attacks, such as Heartbleed, DROWN,
BREACH and POODLE, still surface in implementations of the TLS protocol,
despite many years of analysis (at least for open-source implementations). This
can be attributed to the complexity of the protocol and its very high number of
interactions.

In this paper, we describe a security testing technique for the TLS protocol.
Since the TLS handshake protocol is one of the most important components of
TLS, our approach focuses on this part of the protocol in order to test TLS
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 162–177, 2017.
DOI: 10.1007/978-3-319-67549-7 10

Testing TLS Using Combinatorial Methods and Execution Framework 163

implementations for potential security leaks. After providing some basic defini-
tions, we describe the input model for combinatorial test case generation. Note
that this is the first time where combinatorial testing is applied to the testing of
the TLS protocol.

For this approach, three different input models are constructed, each for one
client-side TLS event, respectively. Every of these events encompasses a specific
set of possible parameters and values. In addition to the modelling part, the
practical part deals with the implementation of a test execution framework. This
has the possibility to communicate, and thus, to attack TLS implementations in
an automated manner. The framework comprehends all TLS events according
to the TLS standard and can execute a handshake for this purpose.

In particular, the paper is structured as follows: Sect. 2 describes related work
while Sect. 3 defines preliminary concepts for the methodology developed in this
paper. In Sect. 4 we depict a combinatorial approach for testing TLS which was
made feasible by developing the necessary input models and give examples of the
generated test sets. Moreover, Sect. 5 describes the test execution framework we
have developed for TLS together with a test oracle. Finally, Sect. 6 presents the
results of the executions followed by a detailed evaluation and Sect. 7 concludes
the paper.

2 Related Work

New activities in security testing were sparked by [11], in which the authors
found several critical vulnerabilities in commonly used TLS implementations.
The identified bugs were classified as state machine bugs and this put the internal
state machines of TLS implementations into the focus, next to and on the same
level of criticality as the implementation of pure cryptographic functionality. The
systematic testing of TLS implementations based on the principles of these kind
of state machine bugs with a tool was presented in [32] and offers the user the
possibility to create custom TLS message flows and arbitrarily modify message
contents. The strategy for testing of TLS implementations via the exchange of
modified messages or injection attacks was also followed in [28] and [12].

The works [11,30] follow a model-based approach for testing TLS implemen-
tations, using [29] to extract the respective state machines.

The certificate validation logic in SSL/TLS implementations was tested in
[16], and a cross-protocol attack was presented in [26]. Attacks on authentication
were presented in [13] and [14]. A plaintext recovery attack was given in [9]. The
usage of invalid curves can lead to practical attacks as shown in [21], and new
Bleichenbacher side channels and attacks were presented in [27]. A systematic
analysis of the security of TLS can be found in [22].

Testing of the newly proposed TLS 1.3 [7] was discussed in [18]. Finally, care
has to be taken to compare in detail the security properties that TLS provides
and the requirements of any application using it [10].

164 D.E. Simos et al.

3 Preliminaries

In this section we detail some preliminary concepts needed for the work carried
out in this paper. In particular, we link expressions from the domain of soft-
ware testing to expressions from the domain of protocol specification. Regarding
terminology for protocol specification, we use and refer to RFC 5246, “The
Transport Layer Security (TLS) Protocol, Version 1.2” [4].

In their union collectively simply referred to as the TLS protocol 1.2, its
specification [4] actually defines multiple protocols, some of which operate on
top of each other. In this paper, we focus on the Handshake Protocol, a member
of the TLS Handshaking Protocols. The semantics encapsulated in the Handshake
Protocol are coded in the exchange of messages between a client and a server. If a
client initially connects to a server and wants to establish a secure connection, it
will follow the Handshake Protocol and start by sending a ClientHello message.
According to the specification, the protocol semantics translate into an ordered
sequence of Handshake messages that allow a client and server to establish a
secure connection and start exchanging application data.

The software testing view on the Handshake protocol is that it regards these
messages as abstract events, which appear as ordered sequences in practice.
Handshake messages appear in practice with all of their values instantiated dur-
ing the execution of the Handshake protocol. We only consider protocol com-
pliant sequences of abstract messages. To be able to execute derived test cases
from these abstract events, it is necessary to define an input model for these
abstract events corresponding to Handshake messages. We aim to develop such
input models using combinatorial methods for each of these abstract events (see
Sect. 4.2), which will be used to instantiate concrete Handshake messages.

We model each abstract event independently and also want to test them indi-
vidually, but nevertheless we are interested in always continuing the Handshake
protocol as long as possible, trying to do a complete Handshake. To that end, we
define a standard instantiated Handshake message for each considered client-side
Handshake message. These intentionally “harmless” Handshake messages will be
used create as complete as possible concrete sequences of Handshake messages.
In other words, during our testing it is necessary to distinguish between Hand-
shake messages populated with values chosen for testing one specific Handshake
message (whose purpose is to disrupt the normal execution work flow via their
values) and template Handshake messages (whose single purpose is to move the
current status of Handshake during protocol execution to a particular state).
Please note that in any sequence there appears exactly one message, which is
derived from the abstract model, while all other messages are template messages
(see also Sect. 6). To sum up, we are only actively sending non-standard client
messages, and as a result we are testing the server side of the two communicating
parties.

Testing TLS Using Combinatorial Methods and Execution Framework 165

4 Combinatorial Testing

Combinatorial Testing (CT) is a widely applicable methodology and technology
for software testing. In a combinatorial test plan, all interactions between para-
meters up to a certain level are covered. For example, in pairwise testing, for
every pair of parameters, every pair of values will appear at least once. Further-
more, a CT strategy, called t-way testing, requires every combination of values
of any t parameters to be covered by at least one test, where t is referred to as
the strength of coverage and usually takes a small value (1 to 6) [24]. Each com-
bination of values of a set of parameters is considered to represent one possible
interaction among these parameters.

4.1 Application to Testing of TLS

Even though combinatorial testing is a proven methodology for security testing
[31], this is the first time where such a combinatorial approach is being used to
test the TLS protocol.

When applying CT to testing TLS, we focus on the possible interactions
among parameters of TLS messages. An interaction may accur among those
parameters in the same TLS message, or among parameters in different TLS mes-
sages. Given a sequence of TLS messages, to capture these interactions among
its parameters, we first considered a naive approach: flat CT. It means all para-
meters of these messages are listed in one model flatly, and every combination
of values of any t parameters will be covered. This approach is simple, however,
when TLS event sequence is changed, it requires to modify the whole model of
flat CT and redo test case generation.

In order to make CT more flexible for multiple TLS event sequences, here
we choose another approach: hierarchical CT. That is to say, there are two
levels for CT test case generation: intra-message level (lower level) and inter-
message level (upper level). On intra-message level, CT will generate t-way test
cases for parameters of a single message (client-side). For each type of message,
an intra-message t-way test set will be generated from its model separately.
On inter-message level, each type of message is expressed as a parameter, and
its intra-message t-way test cases are expressed as parameter values. Given a
sequence of TLS messages, its messages as parameters and their intra-message
t-way test cases as parameter values will then be used to generate inter-message
t’ -way test cases. Note that, t’ can be different from t, e.g., by now, we use 1-way
on inter-message level which means CT only be applied on single message.

4.2 Input Parameter Modeling

Since CT creates test cases by selecting values for input parameters and by
combining these values, Input Parameter Modeling (IPM) is required to cap-
ture the input test space for real-life applicability of CT. IPM mainly works on
identifying the parameters, values, and the relations of parameters. According
to [17,20], a list of TLS messages can be cataloged, and IPM based on their

166 D.E. Simos et al.

data structures can be made. In TLS protocol, each message is constructed from
two layers: TLS Record Layer (bottom layer), and Protocol Message Layer (top
layer, as shown in Table 1, note that Message Body only exists for Handshake
Protocol Messages). Since other attributes in these two layers will be determined
by values in Message Body, we only need to do IPM on attributes in Message
Body for handshake protocol messages.

Table 1. Protocol message layer (Handshake Protocol)

Handshake protocol message

Message type (1byte,
0x00-0xFF)

Length of message body
(3bytes, uint24)

Message body

hello request(0) 0 empty

client hello(1) the length of message body
in bytes

ClientHello

server hello(2) the length of message body
in bytes

ServerHello

certificate(11) the length of message body
in bytes

Certificate

server key exchange(12) the length of message body
in bytes

ServerKeyExchange

certificate request(13) the length of message body
in bytes

CertificateRequest

server hello done(14) 0 empty

certificate verify(15) the length of message body
in bytes

CertificateVerify

client key exchange(16) the length of message body
in bytes

ClientKeyExchange

finished(20) the length of message body
in bytes

Finished

(255)

In this paper, since we only test TLS implementation from client side, IPM
is only applied on client-side handshake messages. For example, we do IPM on
ClientHello message, but not on ServerHello message. Here, we list general
TLS messages as Table 2, which are used for handshake procedure in Fig. 1. And
among all nine messages, only M1, M5, M6 and M7 are client-side messages.
Note that M6 is CCS protocol message, not Handshake. According to that, we
only have to do IPM on the parameters of M1, M5 and M7.

Testing TLS Using Combinatorial Methods and Execution Framework 167

Table 2. General TLS messages

M1 ClientHello

M2 ServerHello

M3 ServerCertificate

M4 ServerHelloDone

M5 ClientKeyExchange

M6 ClientChangeCipherSpec

M7 ClientFinished

M8 ServerChangeCipherSpec

M9 ServerFinished

Based on the TLS protocol specification, we can derive parameters and
possible values for M1, M5 and M7. In practical terms, parameter values
may be abstracted and limited in domain size, while some parameters should
be subdivided into meta-parameters. For example, in M1, a ClientUnixTime
meta-parameter is extracted from “client random” parameter, and assigned
RealT ime ± x as part of its abstract values, for detecting potential vulnera-
bility on time processing mechanism of TLS implementations.

A challange is that TLS involves a lot of cipher/compression/Hash/PRF
functions. When a handshake message includes a collection (list) of these options,
some parameters cannot enumerate all their possible values but only give some
representative values. For example, cipher suites of ClientHello message can be
any list of the cryptographic options supported by the client. In order to avoid
unnecessarily huge domain size for the cipher suites parameter, here we only use
single cipher suites as its values, but not non-singular lists of suites. Note that,
this shortcut may miss some potential interactions since parameter values are
limited.

As mentioned earlier, for any TLS standard sequence containing client-side
messages: M1, M5 and M7, we first conduct an IPM on these messages, and then
create input model for a system under test into the ACTS tool [33]. ACTS is a
widely-used tool for generating CT test cases which supports multi-way coverage
[25], constraints [23,34], and is well optimized [19].

The input model of M1 can be listed as follows:

Protocol Version: TLS10 ,TLS11 ,TLS12 ,DTLS10 ,DTLS12
Client Unix Time: RealTime ,RealTime -x,RealTime+x
Client Random: 28-byteRand
Session ID: NULL ,32- byteID
Supported Cipher Suites: TLS_FALLBACK_SCSV ,

TLS_NULL_WITH_NULL_NULL ,TLS_RSA_WITH_NULL_SHA256 ,
TLS_RSA_WITH_AES_128_CBC_SHA256 ,
TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA

Supported Compression Methods: NULL ,DEFLATE ,LZS

168 D.E. Simos et al.

Similarly, the input model of M5 can be listed as follows:

KeyExchangeAlgorithm: rsa ,dhe_dss ,dhe_rsa ,dh_dss ,
dh_rsa ,dh_anon

ClientProtocolVersion: TLS10 ,TLS11 ,TLS12 ,DTLS10 ,
DTLS12

ClientRandom: 46-byteRand
PublicValueEncoding : implicit ,explicit
Yc: empty ,ClientDiffie -HellmanPublicValue

Note that, if KeyExchangeAlgorithm is rsa, an EncryptedPreMasterSecret
key will be concreted by ClientProtocolVersion and ClientRandom; otherwise, a
ClientDiffieHellmanPublic value will be concreted when PublicValueEncoding is
explicit.

Also, the input model of M7 can be listed as follows:

master_secret: empty ,half ,default ,changebyte ,multiply
finished_label : client finished
Hash: empty ,half ,default ,changebyte ,multiply

Both master secret and Hash meta-parameters have the same values. These
abstract values represent operations to be performed on already dynamically cal-
culated values (from thepreviousmessage flow),which are required for concreting a
real value for “verify data“ parameter. More details are mentioned in next section.

4.3 Pairwise Test Suites for TLS Testing

With input models for M1, M5 and M7, ACTS can easily generate intra-message
test cases for each message, e.g., pairwise (2-way) test cases of M1 are shown
in Table 3. For brevity, we only show 10 tests in table, while there are total

Table 3. Pairwise test cases of M1

Protocol
version

Client unix
time

Client random Session ID Supported cipher suites Supported
compression
methods

TLS10 RealTime-x 28-byteRand 32-byteID TLS FALLBACK SCSV DEFLATE

TLS10 RealTime+x 28-byteRand NULL TLS NULL WITH NULL NULL LZS

TLS10 RealTime 28-byteRand 32-byteID TLS RSA WITH NULL SHA256 NULL

TLS10 RealTime-x 28-byteRand NULL TLS RSA WITH AES 128 CBC SHA256 LZS

TLS10 RealTime+x 28-byteRand 32-byteID TLS DHE RSA WITH CAMELLIA 128 CBC SHA NULL

TLS11 RealTime 28-byteRand NULL TLS FALLBACK SCSV LZS

TLS11 RealTime-x 28-byteRand 32-byteID TLS NULL WITH NULL NULL NULL

TLS11 RealTime+x 28-byteRand NULL TLS RSA WITH NULL SHA256 DEFLATE

TLS11 RealTime 28-byteRand 32-byteID TLS RSA WITH AES 128 CBC SHA256 DEFLATE

TLS11 RealTime-x 28-byteRand NULL TLS DHE RSA WITH CAMELLIA 128 CBC SHA LZS

.

Testing TLS Using Combinatorial Methods and Execution Framework 169

25 pairwise tests for input model of M1. By using ACTS, we also generate 30
pairwise tests for M5 and 25 pairwise tests for M7. Note that, pairwise test set
may not be able to trigger all possible failures during message processing, but it
is a good starting point for applying CT on TLS.

5 Execution Framework

In this section we give an overview about the execution framework for security
testing of TLS implementations. In order to execute the test cases, we developed
a framework that reads the generated test sets and executes them against any
implementation of TLS. The result is an execution method that offers the ability
to configure and execute test cases in an automated manner.

The framework itself builds upon TLS-Attacker [6], an implementation for
analyzing TLS libraries. The initial implementation encompasses the possibil-
ity to establish a TLS handshake and to specify individual parameters for this
purpose. However, in our case we adapted the framework in order to test TLS
implementations according to concrete values coming from combinatorial testing.

Figure 1 depicts one handshake procedure of the TLS protocol. It encom-
passes a set of client and server side messages that are exchanged between the
peers. Each messages is called a TLS event. During the translation process from
abstract to concrete test cases, several values are generated dynamically, whereas
other values is prespecified. If no “unexpected” behavior is encountered during
the handshake, a hopefully secure connection is established.

Fig. 1. TLS handshake and tested messages.

170 D.E. Simos et al.

However, since the intention in our approach lies on detecting abnormal
behavior of TLS implementations, two different approaches can be taken. First,
the order of TLS events can be manipulated, thus deviating from the default
sequence. This approach was demonstrated in a simple example in [15]. Another
option would be to check the default sequence by manipulating the concrete
parameter values of some of the individual TLS events. In this way, we might
provoke a reaction from the server, which could lead to different behavior of the
tested SUTs.

In this paper, parameter values of client-side TLS events are changed dynam-
ically. An abstract overview of the functionality of the implementation is given
in Fig. 2. First, the generated concrete values are read by the test execution
framework (TEF). Actually, we execute the TLS handshake as one test case. In
addition to the message flow, one specific type of client-side message is tested
per test case. For example, first we test whether manipulating the ClientHello
message, but keeping the default dynamically generated values of the other mes-
sages will result on a termination of the handshake procedure. Then, values for
ClientKeyExchange are manipulated while all other TLS events are processed
via standard messages (see Sect. 3). Finally, client’s Finished message reads the
generated values from the combinatorial test sets.

Fig. 2. The test execution framework and its environment.

Testing TLS Using Combinatorial Methods and Execution Framework 171

5.1 Test Oracle

Constructing the test oracle for security testing of protocols has been realized
in the following way. Specifying an expected output value on the concrete level
is hard to define because of the complexity of the TLS protocol in general.
Moreover, every TLS implementation has its own mechanisms and could react
in a different way to the same input values. Because of this, our approach defines
the oracle on an abstract level. Since the message flow of the TLS handshake
is known, we define the oracle based on the flow of TLS events of a reference
implementation. For this cause we have selected as reference implementation
the miTLS, where some security properties have been proven correct. Every
test set is executed against miTLS, where all sent and received messages are
recorded. Afterwards, the same test set is used on the individual SUTs, thereby
recording their corresponding replies. In the aftermath, as depicted in Fig. 2,
we compare execution traces from both the reference implementation and the
individual SUT.

5.2 Testing Procedure

In order to give a demonstration, let’s discuss a test case where we test
ClientHello. As mentioned, the concrete values can be read in their current
form or they represent an operation that needs to be processed on a parameter.
The first test case from the pairwise test set for M1 (see Table 3) reads as follows:

TLS10,RealTime-x,28-byteRand,32-byteID,TLS_FALLBACK_SCSV,DEFLATE

The values indicate that the client offers TLS 1.0 as its supported protocol,
whereas TLS FALLBACK SCSV and DEFLATE are picked as the cipher suite and
compression method, respectively. On the other hand, the value for Unix time
indicates an operation on a value. Here the current real-time is subtracted by
the value x, i.e. an amount of 10, which stands for years. Additionally, the values
28-byteRand and 32-byteID instruct not to make any changes but to use the
agreed values for the random number and session ID. Finally, the framework
generates the following message according to the values:

Protocol Version: TLS10
Client Unix Time: Sat Jun 09 04:33:32 CEST 2007
Client Random: 01 4B ...
Session ID:
Supported Cipher Suites: 56 00
Supported Compression Methods: 01

172 D.E. Simos et al.

In our execution framework, each of the parameters is dealt with individu-
ally. This means that the program can distinguish between assigned values and
operations. As depicted above, the cipher suite and compression methods are
defined in their unique hexadecimal form of their byte representations.

The functionality of ClientKeyExchange is different from M1 in the sense
that more of their values are generated in run-time. Take an example from the
first row in M5:

rsa,TLS10,46-byteRand,explicit,ClientDiffie-HellmanPublicValue

This IPM differs from the others with regard to the fact that it does not
encompass one fixed type of message. According to the chosen key exchange
algorithm either a RSA-encrypted premaster secret message or Diffie-Hellman
public value. Both message types have specific parameters. Whereas the first cov-
ers the client protocol version and random value for the pre-master secret, the
second encompasses the public value Yc. In case that the client has already sent
the public value in the certificate, the public value encoding is implicit. Oth-
erwise, explicit instructs to send Yc inside the new message. A RSA-encrypted
message with the previous value for KeyExchangeAlgorithm might have the fol-
lowing looks:

KeyExchangeAlgorithm: rsa
ClientProtocolVersion: TLS10
ClientRandom: C5 FE ...

In contrast to both examples above, Finished is fully generated according
to run-time values. By reading the values from the M7’s IPM we get:

half,client finished,changebyte

Usually the master secret represents a 48-byte value that is calculated during
the handshake. The Hash is calculated on-the-fly as well by taking into consid-
eration previous TLS events, thus producing a 32-byte value. The finished label
will always remain the same. In order to give an example, let’s assume that the
obtained master secret looks the following way:

59 7A E7 37 A6 C9 18 90 C9 C7 99 44 57 FE 06 BC
CF 20 A3 DE 12 56 3B DE 12 AE 10 B4 2E CB 06 61
8C DC 96 FE 77 07 37 B7 E9 73 D5 93 32 E6 9E 9D

The 32-byte value of Hash looks like:

C5 11 5E C7 56 7\,A 9A E2 2A 1F 9B F3 38 5D FB 08
38 D0 31 B5 D3 B7 35 42 13 F2 64 58 12 26 92 A9

Testing TLS Using Combinatorial Methods and Execution Framework 173

The concrete values indicate that the first byte array has to be cut in half, i.e.
using only half of its value further. On the other hand, changebyte will perform
an operation where the first byte of the calculated hash will be exchanged by
the byte 0xFF. Finally, the resulting message will have the following values:

master_secret:
59 7A E7 37 A6 C9 18 90 C9 C7 99 44 57 FE 06 BC
CF 20 A3 DE 12 56 3B DE

finished_label : client finished
Hash:

FF 11 5E C7 56 7\,A 9A E2 2A 1F 9B F3 38 5D FB 08
38 D0 31 B5 D3 B7 35 42 13 F2 64 58 12 26 92 A9

By changing these two values we intend to surprise the system by submitting
similar but malformed expected values. In such way, the SUT might be tricked
into unexpected behaviour.

6 Evaluation

Since the execution framework is meant for testing of TLS implementations, five
different programs have been installed for this purpose. As already mentioned,
the reference implementation is miTLS ver. 0.9 [2], whereas the other tested
SUTs are OpenSSL ver. 1.0.1e [3], wolfSSL ver. 3.10.2 [8], mbed TLS ver 2.4.2
[5] and GnuTLS ver 3.5.9 [1]. As noted before, three client-side messages have
been tested with 25, 30 and 25 inputs, respectively. The obtained results are
depicted in Table 4. The results show the results from three different SUT, which
are categorized according to three types of outputs. The first column depicts
how many times a complete handshake (comp) could be established between
the framework and the SUT. Additionally, we can see how many times the
attempt was fully rejected (reject), i.e. by getting no or only one response (for
example an alert message) from the server. Finally, the number of incomplete
handshakes (incomp) depicts the situation where no handshake was established
but the attempt was not initially rejected either.

Table 4. Evaluation results

SUT miTLS OpenSSL mbed TLS

comp reject incomp comp reject incomp comp reject incomp

M1 0 25 0 1 24 0 1 17 7

M5 0 30 0 0 0 30 0 0 30

M7 0 25 0 1 0 24 1 0 24

174 D.E. Simos et al.

The goal of the framework is to offer an automated linkage between com-
binatorial testing and protocol testing, i.e. it should be able to test any TLS
implementation by requiring only minor tester interaction. Usually only the port
is changed in order to access another SUT. As explained before, the default TLS
handshake is executed by manipulating values of the emphasized client-side mes-
sages. No additional preferences are set. We want to examine whether for the
same inputs, different output traces will be achieved.

The testing proceeds in the following way. As mentioned earlier, there are
three test scenarios and in each of them we want to execute the entire TLS
handshake. When testing M1, the values from its IPM will be used, whereas
M5 and M7 will have standard on-the-fly generated values. Also, when testing
M5, we use standard messages for M1 and M7. Finally, for M7 the framework
does not make use of the IPM for M1 and M5 since it uses similarly standard
messages for M1 and M5. This means that we are testing the whole handshake in
each scenario but change values only for one TLS event. In such way, we want to
see how the manipulation of one single TLS event affects the overall handshake.

When testing M1, OpenSSL does not continue with the handshake procedure
for any of the submitted values by throwing a decode error. This may happen
because of protocol version or cipher suite negotiation. However, mbed TLS does
return more results, even succeeding in establishing a handshake between both
peers. In other cases, a BAD RECORD MAC is thrown after the client’s Finished
message. This leads to the conclusion that because of specific concrete values for
M1 a different behavior from the recorded one for miTLS is triggered after a few
messages. Investigating these values might be of interest for the tester. In other
cases, the execution terminates after the ServerHelloDone message. The rest of
the results usually indicates cipher suite negotiation failures and terminates the
execution. This is as well the case with wolfSSL, where the handshake usually
breaks up with a SSL accept failed error. This is the same case with miTLS and
GnuTLS, which fail because of diverse HANDSHAKE FAILUREs or message MAC
verification failures. In general, it seems that miTLS resists handshake attempts
by far more than all other applications, as we expected it should.

For M5, OpenSSL as well as mbed TLS an error is thrown after server’s hello
done message. Also, wolfSSL cannot match any cipher suite, whereas GnuTLS
throws HANDSHAKE FAILUREs. The reasons for the results from the first tested
SUTs are problems with the specific key exchange messages. In some cases,
errors are triggered because the SUT expects a RSA-encrypted message. This
usually leads to the termination of the handshake procedure. In summary, testing
for M5 seems to produce most difficulties for all SUTs.

Finally, the test results for M7 are as follows. OpenSSL usually reaches a state
where client’s Finished message is received, after which an alert terminates
the execution. The operations done on the dynamically generated values for
master secret and Hash are detected by the SUT, which causes the breakup.
However, in one case a handshake was finalized successfully. Similar results are
obtained for mbed TLS. On the contrary, miTLS and wolfSSL do not conclude
any handshake, which is the case with GnuTLS as well.

Testing TLS Using Combinatorial Methods and Execution Framework 175

In general, some of the obtained results are similar. For example, two different
SUTs behave similar when rejecting the same input. Whereas miTLS rejects any
further communication with an exception, OpenSSL sends an additional alert
message. Although the behavior is not quite the same, it can be concluded that
both applications react slightly different when making the same decision.

7 Conclusion

In this paper we generated combinatorial test sets which include dynamically
assigned values of individual TLS events. During execution, several abstract
messages are generated on-the-fly and populated with concrete data using com-
binatorial (testing) strategies. During the testing process, the framework tests
different SUTs by focusing separately on three of the TLS handshake messages.
Every of these events is tested as part of the standard handshake procedure
but with manipulated values according to the combinatorial input model. Then,
we compared the resulting execution traces to the submitted input and to the
results of other SUTs.

The framework was able to test TLS implementations in an automated man-
ner. Also, different test results have been achieved with regards to concrete input
values. The analysis of these results and the causes for misbehavior represents an
issue for the tester in order to track whether a vulnerability could be detected.
In general, we were able to identify test cases that led to non-uniform behavior
of TLS implementations. Generating more of such test cases would represent a
promising task for the future.

We draw the conclusion that the developed framework and oracle is strong
enough to distinguish different behavior among TLS implementations. The
obtained results require more investigation in order to track the cause of this
behavior and examine whether security leaks have occurred.

However, in order to reach more fine-grained testing results, more effort has
to be put in the strengthening the test oracle and generating test cases according
to a higher combinatorial strength. In this case, more diverse test cases would
be generated that could lead to more thorough testing and make another step
towards security testing of TLS. As future work, we plan the framework to be
extended further to ease the usability for a tester and provide feedback on the
internal processing during execution.

Acknowledgement. The research presented in the paper has been funded in part by
the Austrian Research Promotion Agency (FFG) under grant 851205 (Security Proto-
coL Interaction Testing in Practice - SPLIT) and the Austrian COMET Program (FFG).

References

1. The gnutls transport layer security library. http://www.gnutls.org/. Accessed 07
June 2017

2. mitls: A verified reference implementation of tls. https://mitls.org/. Accessed 07
June 2017

http://www.gnutls.org/
https://mitls.org/

176 D.E. Simos et al.

3. Openssl. https://www.openssl.org/. Accessed 07 June 2017
4. Rfc 5246. https://tools.ietf.org/rfc/rfc5246.txt. Accessed 31 May 2017
5. Ssl library mbed tls / polarssl. https://tls.mbed.org/. Accessed 07 June 2017
6. Tls-attacker. https://github.com/RUB-NDS/TLS-Attacker. Accessed 04 Dec 2016
7. The transport layer security (tls) protocol version 1.3. https://tools.ietf.org/html/

draft-ietf-tls-tls13-07. Accessed 31 May 2017
8. wolfssl. https://www.wolfssl.com/. Accessed 07 June 2017
9. AlFardan, N., Paterson, K.G.: Plaintext-recovery attacks against datagram tls. In:

Network and Distributed System Security Symposium (NDSS 2012) (2012)
10. Berbecaru, D., Lioy, A.: On the robustness of applications based on the SSL and

TLS security protocols. In: Lopez, J., Samarati, P., Ferrer, J.L. (eds.) EuroPKI
2007. LNCS, vol. 4582, pp. 248–264. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-73408-6 18

11. Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Kohlweiss, M.,
Pironti, A., Strub, P.Y., Zinzindohoue, J.K.: A messy state of the union: taming
the composite state machines of tls. In: Proceedings of the 36th IEEE Symposium
on Security and Privacy (2015)

12. Beurdouche, B., Delignat-Lavaud, A., Kobeissi, N., Pironti, A., Bhargavan, K.:
Flextls: a tool for testing tls implementations. In: 9th USENIX Workshop on Offen-
sive Technologies (WOOT 2015) (2015)

13. Bhargavan, K., Lavaud, A.D., Fournet, C., Pironti, A., Strub, P.Y.: Triple hand-
shakes and cookie cutters: breaking and fixing authentication over tls. In: 2014
IEEE Symposium on Security and Privacy (SP), pp. 98–113. IEEE (2014)

14. Bhargavan, K., Leurent, G.: Transcript collision attacks: Breaking authentication
in tls, ike, and ssh. In: Network and Distributed System Security Symposium-NDSS
2016 (2016)

15. Bozic, J., Kleine, K., Simos, D.E., Wotawa, F.: Planning-based security testing
of the ssl/tls protocol. In: Proceedings of the IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW) (2017)

16. Brubaker, C., Jana, S., Ray, B., Khurshid, S., Shmatikov, V.: Using frankencerts for
automated adversarial testing of certificate validation in ssl/tls implementations.
In: Proceedings of the 2014 IEEE Symposium on Security and Privacy (2014)

17. Dierks, T., Rescorla, E.: Rfc 5246: The transport layer security (tls) protocol. The
Internet Engineering Task Force (2008)

18. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of
the tls 1.3 handshake protocol candidates. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pp. 1197–1210.
ACM (2015)

19. Duan, F., Lei, Y., Yu, L., Kacker, R.N., Kuhn, D.R.: Optimizing ipog’s vertical
growth with constraints based on hypergraph coloring. In: 2017 IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW),
pp. 181–188. IEEE (2017)

20. Hollenbeck, S.: Transport layer security protocol compression methods (2004)
21. Jager, T., Schwenk, J., Somorovsky, J.: Practical invalid curve attacks on TLS-

ECDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS,
vol. 9326, pp. 407–425. Springer, Cham (2015). doi:10.1007/978-3-319-24174-6 21

22. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 429–448. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 24

23. Kuhn, D.R., Bryce, R., Duan, F., Ghandehari, L.S., Lei, Y., Kacker, R.N.: Chapter
one-combinatorial testing: theory and practice. Adv. Comput. 99, 1–66 (2015)

https://www.openssl.org/
https://tools.ietf.org/rfc/rfc5246.txt
https://tls.mbed.org/
https://github.com/RUB-NDS/TLS-Attacker
https://tools.ietf.org/html/draft-ietf-tls-tls13-07
https://tools.ietf.org/html/draft-ietf-tls-tls13-07
https://www.wolfssl.com/
http://dx.doi.org/10.1007/978-3-540-73408-6_18
http://dx.doi.org/10.1007/978-3-540-73408-6_18
http://dx.doi.org/10.1007/978-3-319-24174-6_21
http://dx.doi.org/10.1007/978-3-642-40041-4_24

Testing TLS Using Combinatorial Methods and Execution Framework 177

24. Kuhn, R., Lei, Y., Kacker, R.: Practical combinatorial testing: beyond pairwise.
IT Professional 10(3), 19–23 (2008)

25. Lei, Y., Kacker, R., Kuhn, D.R., Okun, V., Lawrence, J.: Ipog/ipog-d: efficient test
generation for multi-way combinatorial testing. Softw. Test. Verification Reliab.
18(3), 125–148 (2008)

26. Mavrogiannopoulos, N., Vercauteren, F., Velichkov, V., Preneel, B.: A cross-
protocol attack on the tls protocol. In: ACM CCS 12: 19th Conference on Computer
and Communications Security (2012)

27. Meyer, C., Somorovsky, J., Weiss, E., Schwenk, J., Schinzel, S., Tews, E.: Revisiting
ssl/tls implementations: new bleichenbacher side channels and attacks. USENIX
Secur. 14, 733–748 (2014)

28. Morais, A., Martins, E., Cavalli, A., Jimenez, W.: Security protocol testing using
attack trees. In: CSE (2), IEEE Computer Society, pp. 690–697 (2009)

29. Raffelt, H., Steffen, B., Berg, T.: Learnlib: A library for automata learning and
experimentation. In: Proceedings of the 10th International Workshop on Formal
Methods for Industrial Critical Systems (FMICS 2005), pp. 62–71 (2005)

30. de Ruiter, J., Poll, E.: Protocol state fuzzing of tls implementations. In: 24th
USENIX Security Symposium (USENIX Security 15), pp. 193–206 (2015)

31. Simos, D.E., Kuhn, R., Voyiatzis, A.G., Kacker, R.: Combinatorial methods in
security testing. IEEE Comput. 49, 40–43 (2016)

32. Somorovsky, J.: Systematic fuzzing and testing of tls libraries. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security
(CCS 2016) (2016)

33. Yu, L., Lei, Y., Kacker, R.N., Kuhn, D.R.: Acts: A combinatorial test generation
tool. In: 2013 IEEE Sixth International Conference on Software Testing, Verifica-
tion and Validation (ICST), pp. 370–375. IEEE (2013)

34. Yu, L., Lei, Y., Nourozborazjany, M., Kacker, R.N., Kuhn, D.R.: An efficient algo-
rithm for constraint handling in combinatorial test generation. In: 2013 IEEE Sixth
International Conference on Software Testing, Verification and Validation (ICST),
pp. 242–251. IEEE (2013)

Using Data Integration for Security Testing

Sébastien Salva(B) and Loukmen Regainia

LIMOS CNRS UMR 6158, Clermont Auvergne University,
Clermont-ferrand, France

{sebastien.salva,loukmen.regainia}@uca.fr

Abstract. The explosion of digitisation makes a plethora of security
data publicly available for developers. These numerous (often complex)
documents expose them to the difficulty of choosing the most appropri-
ate solution for securing their applications. We propose in this paper a
method based upon data acquisition and integration, which assists devel-
opers in the Threat modelling stage and in the security test case execu-
tion. The method firstly helps devise Attack Defense Trees by means of
a data-store. These trees show attacks, steps and defenses given under
the form of security patterns, which are re-usable solutions to design
more secure applications. These trees are then used for the test case
generation. The data-store integrates test case stubs, which make this
generation easier and developers more efficient. We evaluate our app-
roach on 24 participants and show encouraging results on the use of data
integration in software engineering.

Keywords: Security · Security patterns · Attack Defense Trees · Test
case generation

1 Introduction

Since a decade, it is well admitted that software security is essential and has to be
considered through all the software life cycle. Many developers, researchers and
organisations have hence made security their hobby-horse and brought several
improvements with the proposal of numerous digitised security bases and docu-
ments. These take security into consideration at different stages of the software
life cycle and are presented with different viewpoints, abstraction levels or con-
texts. This plethora of diverse documents makes difficult the choices of security
solutions and afterwards their validations. Indeed, developers cannot be experts
in any field and they clearly lack guidance for conceiving and implementing both
secure software and tests.

This work focuses on this issue and studies the possibility of using publicly
available security resources for helping developers devise more secure applica-
tions. We propose a method, which aims at assisting developers in the Threat
modelling stage and in the test case generation and execution. More precisely,
the contributions of this paper are highlighted in the following points:
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 178–194, 2017.
DOI: 10.1007/978-3-319-67549-7 11

Using Data Integration for Security Testing 179

– we present a security data acquisition and integration method, which extracts
data from various Web and publicly accessible sources to conceive a data-store
storing relationships among attacks, security principles, security patterns and
test case parts written with the Given When Then (GWT for short) template.
The security pattern intuitively relates countermeasures to threats and attacks
in a given context [8]. These security re-usable solutions often are presented
textually or with UML schema and are characterised by a set of structural
and behavioural properties;

– from the data-store, our method helps in the generation of Attack Defense
Trees (ADTrees [3]) showing the attacker possibilities to compromise an appli-
cation and the defenses that may be put in place to prevent attacks. We
have chosen the ADTree model because it offers the advantage of being easy
to understand even for novices in security. These ADTrees are composed of
defenses given under the form of security pattern combinations;

– ADTrees serve here to the test case generation. These test cases aim to
check whether an application is vulnerable against the attacks exposed in an
ADTree and whether security pattern consequences are observed in the appli-
cation behaviour. Pattern consequences are observable events resulting from
the good contextualisation and implementation of the pattern in an applica-
tion. From an ADTree, our method extracts attack scenarios, GWT test case
stubs and related procedures composed of comments or blocks of code, which
aim at guiding the developer in the test case completion. As ADTrees can be
formalised with formal expressions, called ADTerms, we strictly define the
test case generation and execution.

Besides, we concentrated our attention on quality criteria and on education
while the design of this method. ADTrees are indeed constructed with concrete
data extracted from the CAPEC base1. ADTrees also express security pattern
combinations with respect to several criteria, i.e., Unambiguity, Navigability
and Comprehensibility, which are quality criteria proposed in [1], the last two
respectively related to: the ability to direct a software designer among collab-
orative and related patterns; the ease to understand patterns by both a novice
and expert developer. Test case stubs are also structured to ease Readability and
Re-usability and to try to increase Effectiveness.

We have generated a data-store specialised to the context of Web applica-
tions (Web sites), which is composed of 215 CAPEC attacks, 26 security patterns
and 669 test case parts. We employed this data-store to evaluate on 24 human
subjects the benefits of using the notion of data acquisition and integration in
the software life cycle. This evaluation shows encouraging results about Com-
prehensibility and Effectiveness.

The remainder of the paper is organised as follows: Sect. 2 presents some
related work. The data integration step is shortly presented in Sect. 3. The next
section shows how ADTrees are generated by means of the data-store. Section 5
addresses the test case generation and execution. We present our evaluation in
Sect. 6 and finally conclude in Sect. 7.
1 https://capec.mitre.org/

https://capec.mitre.org/

180 S. Salva and L. Regainia

2 Related Work

A plethora of papers deals with model-based security testing. Due to lack of
room, we only present some of them related to our work, which consider models
not to describe the implementation behaviour but rather to express the attacker’s
goals or the vulnerability causes of the system [4–6,9]. Some authors focused on
trees (Attack trees, Security Activity Graphs, etc.), which express the treats or
attacks or vulnerability causes that should be prevented in systems. From these
models, test cases are then written to check whether attacks can be successfully
executed. Morais et al. introduced a security testing approach specialised for
protocols [6]. Attack scenarios are extracted from an Attack tree and are con-
verted to Attack patterns and UML specifications. From these, attack scripts
are manually written and are completed with the injection of (network) faults.
In [5], data flow diagrams are converted into Attack trees from which sequences
are extracted. These sequences are composed of events combined with parame-
ters related to regular expressions allowing the generation of concrete values.
These events are then replaced with blocks of code to produce test cases. In
[4], test cases are generated from Threat trees. The latter are completed with
parameters associated to regular expressions. Security scenarios are extracted
from the Threat trees and are manually converted to executable test scripts.
Shahmehri et al. proposed a passive testing approach to detect vulnerabilities
[9]. The undesired vulnerabilities are modelled with models called SGMs, which
are specialised DAGs showing security goals, vulnerabilities and eventually mit-
igations. Detection conditions are then semi-automatically extracted and given
to a monitoring tool, which returns test verdicts.

These works take Threat models as inputs, which are manually written. If
these lack of details (parameters, attack steps, etc.), the final test cases will be too
abstract as well. Furthermore, these methods do not give any recommendation on
how to write tests and on how to structure them. Hence, developers lack guidance
to write tests and to reuse them. This paper proposes a method, which semi-
automatically infer Attack Defense Trees, composed of attacks steps, techniques
and defenses. To ease the understanding and readability of the generated test
case stubs, we associate in our data-store every attack and defense step to some
test case sections, which are classified w.r.t. an application context and to an
attack step or security pattern.

Few works tackled the testing of security patterns, which is another topic of
this paper. Yoshizawa et al. introduced a method for testing whether behavioural
and structural properties of patterns can be observed in the traces of instrumented
applications [10]. Given a security pattern, two test templates (OCL expressions)
are written, one to specify the pattern structure and another to describe its
behaviour. Then, developers have to make templates concrete by writing Sele-
nium scripts for experimenting the application. The latter returns traces on which
the OCL expressions are verified. In contrast to the previous paper, our inferred
ADTrees firstly help developers choose for every attack, the combinations of pat-
terns that can be used as countermeasures. Then, our testing approach aims at

Using Data Integration for Security Testing 181

testing the security pattern consequences. We do not check the structure of the
patterns. Hence, our approach is complementary to the previous one.

We also proposed a semi-automatic data integration method in [7], in order
to extract a pattern classification. We took inspiration from this paper to infer
pattern combinations. In contrast, the notion of data-store, its architecture, the
considered security properties and the test case generation and execution are
new contributions.

3 Data Integration

3.1 Data-Store Architecture Presentation

Figure 1(a) exposes the meta-model of the first part of the data-store used to inte-
grate relationships among attacks, attack steps, techniques, security principles
and security patterns. The entities of Fig. 1(a) refer to these security properties.
To increase the precision of the relations, we chose to decompose attacks into sub-
attacks, and into attack steps. These steps are associated to countermeasures,
allowing to prevent or counter attack steps. We also decompose security patterns
into strong points, which are sub-properties expressing pattern key design fea-
tures. Relying on a hierarchical organisation of security principles, the method
maps countermeasure clusters to principles and strong points to principles. As
countermeasures usually are detailed properties, we gather them into clusters
(groups) to reach about the same abstraction levels as those of the security
principles.

The meta-model of Fig. 1(a) is extended with new entities and relations,
which are required for the testing process. This extension is depicted in Fig. 1(b).
An attack step is also associated to a Test architecture and to one Application
context. The context refers to an application family, e.g., Android applications,
or Web sites. The “Test Architecture” entity refers to textual paragraphs explain-
ing the points of observation and control, testers or tools required to execute the

(a) Data-store meta-model (b) Data-store extension

Fig. 1. Datastore Metamodels

182 S. Salva and L. Regainia

attack step on an application, which belongs to an Application context. Next, we
map attack steps onto GWT test case sections. For readability and re-usability
purposes, we chose to consider the “Given When Then” pattern to break up test
cases into several parts:

– the Given section aims at putting an application under test in a known state;
– the When section triggers some actions;
– the Then section is used to check whether the conditions of success of the test

case are meet (assertions). In our context, we suppose that a Then section
returns “Passst” if an attack step st has been successfully executed on an
implementation and “Failst” otherwise.

Likewise, we map security pattern consequences onto Then sections to check
whether the consequences of the pattern can be observed in the application
traces. We assume that a Then section returns “Failsp” if a consequence of the
security pattern sp is not observed from the implementation. For instance, if
an application is conceived with the “Input Guard” pattern, then unexpected
inputs should bring the application to a quiescent state (no output) or outputs
reflecting errors should be observed.

Each test case section is linked to one procedure stored in the Procedure
table of the data-store, which implements the section. A Given, When or Then
section can be reused with several attack steps or security patterns. With regard
to the meta-model given in Fig. 1(b), a GWT test case section (and procedure)
is classified according to one application context and one attack step or pattern
consequence.

In some specific application contexts, the procedures can be completed with
comments or with blocks of code to ease the test case development. When the
procedure content can be reused with any application in a precise context, we
call it Generic procedure:

Definition 1 (Generic procedure). Let C be an Application context. A
Generic procedure is a block of code, related to a Given, When or Then test
case section, that can be used with any application of C;

The data-store must only contain Generic procedures related to an applica-
tion context. It worth mentioning that an empty procedure is generic.

3.2 Security Data Acquisition and Integration

This section summarises a data integration example for the Web application
(Web sites) context. We chose to focus on the CAPEC base to extract informa-
tion about security attacks. The CAPEC base offers an open and rich catalogue
of attacks in a comprehensive schema. We conceived a tool for data acquisi-
tion and extraction, based on text mining and on the ELT (Extraction, Load,
Transform) tool Talend2. With it, we automatically scanned all the CAPEC

2 https://talend.com/

https://talend.com/

Using Data Integration for Security Testing 183

base (Version 2.8) and collected 215 attacks, 209 steps, 448 techniques and 217
countermeasures, knowing that attacks can share steps, attack techniques and
countermeasures. Among these, we gathered 75 attacks and 142 attack steps
specialised for the context of Web sites.

As security patterns are described in an abstract manner with texts, we
manually collected security patterns, their strong points and consequences from
the catalogue given in [12]. We gathered 26 security patterns, 43 consequences
and 36 strong points. We also integrated the inter-pattern relations given in
[11]. We organised 66 security principles found in the literature into a hierarchy
composed of four levels, from the most abstract to the most concrete principles.

The data integration of the GWT test case sections was automatically per-
formed. For a given attack, the CAPEC base provides two text sections called
“Attack Prerequisites” and “Resources Required”. We automatically scanned
these paragraphs and completed 209 procedures including comments composed
of the two previous paragraphs. Each procedure is associated to one Given test
case section (one section for each attack step). For every step st, we added one
When test case section and one procedure composed of comments listing the
techniques related to st. Still in the CAPEC documents, the paragraphs “Indi-
cators” and “Outcomes” provide some directives and conditions on an attack
step realisation. In the same way as previously, we automatically scanned these
paragraphs and, for every attack step, we completed the data-store with one
Then section associated to one procedure, itself composed of the two previous
paragraphs of the CAPEC base given as comments. In this way, we generated
627 GWT test case sections. For every security pattern consequence found in the
data-store, a Then test case section and its related procedure are also automati-
cally inserted. The procedure is composed of comments listing the consequence,
which have to be observed from the application traces. In the context of Web
applications, we observed that several procedures can be completed with blocks
of code calling penetration testing tools. We completed 32 procedures, which
cover 43 attack steps. We used the tools Selenium and ZAProxy3, which is a
penetration testing tool covering various Web vulnerabilities.

This data-store is available here4.

4 Threat Modelling

Before presenting how our method assists developers in threat modelling, we
recall some notions about the ADTree model.

4.1 Attack Defense Trees (ADTrees)

ADTrees are graphical representations of possible measures an attacker might
take in order to attack a system and the defenses that a defender can employ

3 https://www.owasp.org/index.php/OWASP Zed Attack Proxy Project
4 http://regainia.com/research/companion.html

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
http://regainia.com/research/companion.html

184 S. Salva and L. Regainia

to protect the system [3]. As illustrated in Figs. 3(a) and 3(b), ADTrees have
two different kinds of nodes: attack nodes (red circles) and defense nodes (green
squares). A node can be refined with child nodes and can have one child of the
opposite type (linked with a dashed line). Node refinements can be disjunctive
(like in Fig. 3(a)) or conjunctive. The former is recognisable by edges going from a
node to its children. The latter is graphically distinguishable by connecting these
edges with an arc. We extend these two refinements with the sequential conjunc-
tive refinement of attack nodes, defined by the same authors in [2]. This operator
expresses the execution order of child attack nodes. Graphically, a sequential con-
junctive refinement is depicted by connecting the edges, going from a node to
its children, with an arrow. For instance, the node “Attack Step” in Fig. 3(b)
is refined with a sequence of others steps. Alternatively, an ADTree T can be
formulated with an algebraic expression called ADTerm and denoted ι(T). In
short, the ADTerm syntax is composed of operators having types given as expo-
nents in {o, p} with o modelling an opponent and p a proponent. ∨s,∧s,

−→∧ s,
with s ∈ {o, p} respectively stand for the disjunctive refinement, the conjunctive
refinement and the sequential conjunctive refinement of a node. A last operator
c expresses counteractions (dashed lines in the graphical tree).

4.2 Attack Defense Tree Generation

The first stage of our method takes place in the Threat modelling phase of the
software life cycle, which occurs while the requirement analysis. Threat mod-
elling is a process consisting in identifying and describing the attacker’s goals
and capabilities, as well as identifying the potential threats of an application.
Different methods can be followed, e.g., DREAD, or STRIDE. Our method
starts to semi-automatically generate an ADTree by means of the data-store.
The ADTree generation is illustrated in the the fourth first steps of Fig. 2.
We present them below.

Fig. 2. Threat modelling and security testing steps

Using Data Integration for Security Testing 185

Step 1: Initial ADTree design
The developer initially establishes a first ADTree T whose root node repre-

sents the attacker’s goal, which may be refined with child nodes. The ADTree T
describes attack combinations, which can be applied on the application. We here
assume that T at least has leaves labelled by attacks kept in the data-store. Oth-
erwise, a semantic alignment may be required to replace some labels by similar
attack names.

Figure 3(a) depicts an ADTree example: the goal, given in the root node, is to
inject malicious code into an application. This node is disjunctively refined with
two children expressing two more concrete attacks, CAPEC-66: SQL Injection
and CAPEC-244: Cross-Site Scripting via Encoded URI Schemes.

(a) Initial ADTree example (b) ADTree general form

Fig. 3. ADTrees examples

Step 2: ADTree generation
Usually, yhe ADTree T does not include enough details on how the attack is

sequenced and on the defenses expressing how the application can be protected.
Implementing a secure application and deriving test cases from this kind of tree
remains a tedious task. The data-store can be used to augment T . For every
node labelled with an attack Att, we automatically generate an ADTree denoted
T (Att). The architecture of the data-store leads to the generation of ADTrees
having the general form illustrated in Fig. 3(b). The root of an ADTree T (Att) is
labelled by Att. This node may have children expressing more concrete attacks
and so forth. The most concrete attacks have step sequences (edges connected
with an arrow). These steps are connected to techniques with a disjunctive refine-
ment. The lowest attack steps in the ADTree are also linked to defense nodes,
which may be the roots of sub-trees expressing security pattern combinations
whose purpose is to counteract the attack step.

186 S. Salva and L. Regainia

We implemented the ADTree generation with a tool, which takes attacks of
the data-store and yields XML files. These can be edited with the tool ADTool
[3]. For instance, Fig. 4 depicts the ADTree of the attack CAPEC-66, which was
exported from ADTool. Each lowest attack step has a defense node expressing
pattern combinations. Step 2.1, which identifies the possibilities to inject mali-
cious code through the application inputs, requires more patterns than the other
steps to filter these inputs. Some of them have relations: for instance “Applica-
tion Firewall” can be replaced by “Input Guard” with “Output Guard”.

Fig. 4. ADTree of the Attack CAPEC-66

Step 3: Security pattern choice
The developer can now edit the ADTrees T (Att) to keep or remove attack

steps w.r.t. the application context. He or she also has to choose the security
patterns that have to be contextualised and implemented in the application.
After this step, we assume that a defense node either is labelled by a security
pattern (it does not have children) or has a conjunctive refinement of nodes
labelled by security patterns. The lowest nodes labelled by attack steps, must
be linked to a defense node.

As a result of the steps 2 and 3, the generated ADTrees have specific forms
and are expressed with specific ADTerms:

Proposition 1. An ADTree T (Att) achieved by the previous steps has an
ADTerm ι(T (Att)) having one of these forms:

Using Data Integration for Security Testing 187

1. ∨p(t1, . . . , tn) with ti(1 ≤ i ≤ n) an ADTerm also having one of these forms:
2. −→∧ p(t1, . . . , tn) with ti(1 ≤ i ≤ n) an ADTerm having the form given in (2)

or (3);
3. cp(st, sp), with st an ADTerm expressing an attack step and sp an ADTerm

modelling a security pattern combination.

The first ADTerm expresses children nodes labelled by more concrete attacks.
The second one represents sequences of attack steps. The last expression is com-
posed of an attack step st refined with techniques, which can be counteracted
by a security pattern combination sp. In the remainder of the paper, we call the
last expression Basic Attack Defence Step, shortened as BADStep. These shall
be particularly useful to build GWT test case stubs:

Definition 2 (Basic Attack Defence Step (BADStep)). A BADStep b is
an ADTerm of the form cp(st, sp), where st is an ADTerm modelling an attack
step and sp an ADTerm of the form sp1 or ∧o(sp1, . . . , spm) modelling a security
pattern conjunction.
defense(b) = {sp1 | b = cp(st, sp1)} ∪ {sp1, . . . , spm | b = cp(st,∧o(sp1, . . . , spm))}

Step 4: Final ADTree generation
In the initial ADTree T , each attack node labelled by Att is now automatically

replaced with the ADTree T (Att). This can be done by substituting every term
Att in the ADTerm ι(T) by ι(T (Att)). We denote Tf the resulting ADTree. It
depicts a logical breakdown of the various options available to an adversary and
the defences, materialised with security patterns, which have to be inserted into
the application model.

In this step, we also extract from the data-store a description of the test
architecture required to run the attacks on the application under test and to
observe its reactions.

5 Test Suite Generation

The semantics of an ADTree can be defined in terms of attack-defense scenarios.
In general terms, a scenario is a minimal combination of events leading to the
root attack, minimal in the sense that, if any event is omitted from the attack
scenario, then the root goal will not be achieved. The semantics of an Adtree
Tf , i.e. its scenario set, can be extracted from its ADTerm ι(Tf):

Definition 3 (Attack scenarios). Let Tf be an ADTree and ι(Tf) be its
ADTerm. The set of Attack scenarios of Tf , denoted SC(Tf) is the set of clauses
of the disjunctive normal form of ι(Tf) over BADStep(Tf).

An attack scenario s of SC(Tf) is an ADTerm over BADSteps. BADStep(s)
denotes the set of BADSteps of s. We also denote SP (s) the security pattern set
found in s: SP (s) = {sp | ∃b ∈ BADStep(s) : sp ∈ defense(b)}. By extension,
BADStep(Tf) stands for the set of BADSteps found in ι(Tf); SP (Tf) is the
security pattern set of ι(Tf), found in all its scenarios.

188 S. Salva and L. Regainia

Step 5: Test suite generation
Let us consider a security scenario s ∈ SC(Tf). Given a BADStep b =

cp(st, sp) ∈ BADStep(s), we generate the GWT test case TC(b), which aims
at checking whether the application under test I is vulnerable to the attack
step st and whether the consequences of the security patterns in defense(b) can
be observed from I. TC(b) is assembled from the data-store by means of the
following steps:

1. the data-store provides for st, with the relations testG, testW and testT ,
one Given section, one When section and one Then section, each related to
one procedure. The Then section aims to assert whether the application is
vulnerable to the attack step st;

2. the data-store provides from the security pattern set defense(b) a set of other
Then sections, each related to procedures. These Then sections aim to check
whether the security pattern consequences can be observed from the applica-
tion behaviours;

3. all these sections are assembled to make up the GWT test case stub TC(b).

By applying these steps on all the scenarios of SC(Tf), we obtain the test
suite TS with TS = {TC(b) | b = cp(st, sp) ∈ BADStep(s) and s ∈ SC(Tf)}.

We implemented these steps to yield GWT test case stubs compatible with
the Cucumber framework5, which supports a large number of languages. Figure 5
gives a test case stub example obtained with our tool from the first step of the
attack CAPEC-66 depicted in Fig. 4. The test case lists the Given When Then
sections in a readable manner. Every section is associated to a Generic procedure
stored into another file. The procedure related to the When section is given in
Fig. 6. The comments comes from the data-store and are extracted from the
CAPEC base. This procedure includes a generic block of code; the “getSpider()”
method relates to the call of the ZAProxy tool, which crawls a Web application
to get its URLs. In this example, it only remains for the developer to complete
the initial URL before testing whether the application can be explored.

Feature: CAPEC-66: SQL Injection
#1. Explore
Scenario: Step1.1 Survey application
#The attacker first takes an inventory of the functionality exposed by the application.
Given a new scanning session
When spider the application
Then the application is spidered
#assertions for security pattern testing
Then Output Guard security pattern is present
Then Input Guard security pattern is present

Fig. 5. A GWT test case example

5 https://cucumber.io/

https://cucumber.io/

Using Data Integration for Security Testing 189

@When("^spider the application")
public void theApplicationIsSpidered() {
// Try one of the following techniques :
// 1. Spider web sites for all available links
// 2. Sniff network communications with application using a utility such as WireShark.
getSpider().setMaxDepth(10);
url = "URL to be scanned";
try { spider(url);
} catch (InterruptedException e) {e.printStackTrace();}
waitForSpiderToComplete();}

Fig. 6. The procedure related to the When section of Fig. 5

Step 6: Test case stub completion
Now, the developer has to complete the previous GWT test case stubs. We

believe that the decomposition of the test case and its link to the ADTree Tf

(associations among steps, security patterns and procedures) make this step eas-
ier. In addition, the Generic procedures, composed of comments or blocks of code
should make him or her more effective in the test case writing.

Step 7: Test suite execution
Once the GWT test case stubs are completed, these can be executed on the

application under test I. The test architecture allowing the experimentation of
I is described in the report provided by Step 4.

After the execution of one test case TC(b) on I, denoted TC(b)||I, we obtain
sets of verdict messages of the form “Passst”, “Failst” or “Failsp”, resulting
from its assertions (see Sect. 3.1):

Definition 4 (Test verdict sets). Let I be an application under test, b =
cp(st, sp) ∈ BADStep(Tf) with defense(b) = {sp1, . . . , spm}(m > 0) and
TC(b) ∈ TS be a test case. The execution of TC(b) on I leads to a verdict
set, denoted Verdict(TC(b)||I), which can be:

– {Failst} (resp. {Passst}) means I is (resp. does not appear to be) vulnerable
to the attack step st and that the consequences of the security patterns are
observed;

– {Passst, Failsp1 , ..., Failspk
} means I does not appear to be vulnerable to the

attack step st but some consequences of the security patterns sp1, . . . , spk are
not observed;

– {Failst, Failsp1, ..., Failspk
} means I is vulnerable to the attack step st and

that some consequences of the security patterns sp1, . . . , spk are not observed.

From these verdict messages, we define two first relations. The first relation
vulnerable defines that an application I is vulnerable to a BADStep b if the
message Failst belongs to the verdict set Verdict(TC(b)||I). The relation unsatc

defines that I does not satisfies the consequences of the pattern sp if the message
Failsp belongs to Verdict(TC(b)||I):

Definition 5 (Test case verdicts). Let I be an implementation, Tf be an
ADTree, b = cp(st, sp) ∈ BADStep(Tf) and TC(b) ∈ TS be a test case.

190 S. Salva and L. Regainia

1. I vulnerable b = true if {Failst} ∈ Verdict(TC(b)||I), false otherwise;
2. I unsatc sp if sp ∈ defense(b) and Failsp ∈ Verdict(TC(b)||I).

We now define the relation effective on a scenario s ∈ SC(Tf), composed of
the BADSteps b1, . . . , bn and on I to formally state whether s detects vulnera-
bilities on I. The relation effective is evaluated by substituting every BADStep
term bi with the evaluation of I vulnerable bi. These relations help define and
evaluate the final implementation relations.

Definition 6 (Implementation relations). Let I be an implementation, Tf

be an ADTree, and s ∈ SC(Tf), with BADStep(s) = {b1, . . . , bn}.

1. σ : BADStep(s) → {true, false} is a substitution {b1 → (I vulnerable
b1), . . . , bn → (I vulnerable bn)};

2. s effective I, if the evaluation of the result sσ of applying σ to s returns true;
3. I vulnerable Tf ⇔def ∃s ∈ SC(Tf) s effective I;
4. I unsatc SP (Tf) ⇔def ∃sp ∈ SP (Tf), I unsatc sp.

6 Evaluation

We empirically studied two scenarios on 24 participants to assess whether devel-
opers can take profit of our approach. The duration of each scenario was set at
most to one hour and half. The participants are third to fourth year computer
science undergraduate students, having good skills in the development and test
of Web applications.

The participants were given the task of choosing security pattern combina-
tions to prevent two attacks, CAPEC 244: Cross-Site Scripting via Encoded URI
Schemes, and CAPEC 66: SQL Injection, on two deliberately vulnerable Web
sites, RopeyTasks and The Bodgeit Store. We also asked the participants to write
test cases with the tool Selenium in order to: show that both Web sites are vul-
nerable to the two attacks, show that the application behaviours do not include
at least one consequence of the security pattern “Input Guard” and at least one
consequence of “Output Guard”.

In the first scenario, denoted Part 1, we supplied the CAPEC base, two
concrete attack examples, the detailed steps showing how to manually perform
them along with the expected outcomes and the security pattern catalogue given
in [12]. In the second scenario, denoted Part 2, we also supplied the ADTrees of
the two attacks (Fig. 4 is one of them) along with the generated GWT test case
stubs for each attack step. At the end of each scenario, the students were invited
to fill in a form listing ten questions. Due to lack of room, we only present the
questions and results concerning the test case generation:

– Q7: Was it easy to write test cases?
– Q8: How long did you take for writing test cases?
– Q9: How confident are you about your test cases?
– Q10: Provide your test cases (or suites).

Using Data Integration for Security Testing 191

These questions was asked in order to evaluate the following criteria:

– C1: Comprehensibility: does our method ease the test case development?
– C2: Effectiveness: can the test cases detect defects?
– C3: Efficiency: does our method help reduce the time needed to write tests?

6.1 Experiment Results

We extracted the following results from the forms returned by the participants
(available here6). We collected the answers of Question Q7, proposing this four-
valued scale: easy, fairly easy, difficult, very difficult. Figure 7 depicts the distri-
bution of the participant opinions.

Fig. 7. Response rates for Question Q7

We collected the time spent by the participants for writing test cases. The
participants needed between 15 and 70 min in Part 1, while they took between
20 min and 86 min in Part 2. On average, they spent 46 min in Part 1 and 60 min
in Part2. The levels of confidence of the participants is estimated with Question
Q9. The possible answers were for both scenarios: very sure, sure, fairly sure,
not sure.

We finally analysed the test cases given by the participants and evaluated
their correctness with regard to four aspects: 1&2: detection (with at least one
test case) that both applications are vulnerable to the attacks CAPEC 66 and
CAPEC 244; 3&4: detection that the application behaviours do not include
the consequences of the patterns “Input Guard” and “Output Guard”. As we
considered this last aspect as difficult for students, we expected at least one Then
test case section for every pattern. Figure 8 presents the number of participants
who meet these aspects.

6 http://regainia.com/research/companion.html

http://regainia.com/research/companion.html

192 S. Salva and L. Regainia

Fig. 8. Test case correctness (Question Q10)

6.2 Result Interpretation

C1 Comprehensibility: we chose this criteria to evaluate whether our method
makes testing easier. Figure 7 shows that one quarter of the students found easier
the test case writing with our test case stubs. After discussion, it turned out that
the test case structure with the GWT template made test cases more readable
and that the links between test case sections and Attack steps helped students
understand what to develop. In the meantime, Question Q9 reveals that the
confidence level of the participants about their test cases increases by 20, 83%.

C2 Effectiveness: Figure 8 depicts the results about the test case correct-
ness. The columns “SQLi” and “XSS” provide the number of test cases allowing
to reveal that the attacks can be successfully executed on the applications. In
Part 1, few participants developed complete test cases despite the detailed steps
we provided (assertions were missing or incorrect in most of the test cases).
The number of correct test cases strongly increases in Part 2 thanks to the com-
ments the participants found in the procedures. The columns “Input Guard” and
“Output Guard” give the number of Then sections (and procedures) allowing
to show that the consequences of these security patterns are not observed from
the application behaviours. This task was much more difficult for the students
as they are not yet expert in security patterns. Hence, it is not surprising to see
that only one student was able to write at least an assertion showing that the
Input Guard consequences are not present. The number of correct Then sections
rises to 14 (58, 3%) in Part 2. With the pattern “Output Guard”, the number
of correct Then sections rises from 0 to 23 in Part 2. We can conclude that the
test case correctness strongly increases with our approach.

C3 Efficiency: on average, the participants took 46 min for writing test
cases from scratch and 60 min with the use of our method. The additional time
spent in Part 2 can be explained when we alongside focus on Effectiveness and
Comprehensibility. Indeed, after discussion with the participants, we deduced

Using Data Integration for Security Testing 193

that they took more time to follow and analyse the ADTrees, to read the com-
ments in procedures, etc. As a result, almost all the test cases are correct in Part
2 (more assertions, etc.).

7 Conclusion

We have presented a method taking advantage of data integration for guiding
developers devise more secure applications from the Threat modelling stage to
the testing one. The method generates ADTrees and test case stubs allowing to
check whether an application is vulnerable to attacks and whether security pat-
tern consequences are observable from the application behaviour. We conducted
an evaluation of the method, which shows it makes the participants more effective
on security testing. But, several issues remain open. For instance, our method
does not take into consideration the size of the ADTrees in the Threat modelling
stage. This is a strong limitation since large trees are usually unreadable, which
contradicts the method purposes. The ADTree reduction could be a first solu-
tion on this problem. But, the literature does not yet provide a generic method
for this kind of reduction. Besides the tree structure, the node meaning must
be taken into account in the node aggregating process, which must preserve the
semantics of the ADTree.

References

1. Alvi, A.K., Zulkernine, M.: A comparative study of software security pattern clas-
sifications. In: 2012 Seventh International Conference on Availability, Reliability
and Security, pp. 582–589 (2012)

2. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack
trees with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC
2015. IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). doi:10.1007/
978-3-319-18467-8 23

3. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack-defense trees. J. Logic
Comput. 24(1), 55–87 (2014). Oxford Journals

4. Marback, A., Do, H., He, K., Kondamarri, S., Xu, D.: A threat model-based app-
roach to security testing. Softw. Pract. Exp. 43(2), 241–258 (2013)

5. Marback, A., Do, H., He, K., Kondamarri, S., Xu, D.: Security test generation
using threat trees. In: ICSE Workshop on Automation of Software Test, pp. 62–69,
May 2009

6. Morais, A., Martins, E., Cavalli, A., Jimenez, W.: Security protocol testing using
attack trees. In: International Conference on Computing Science and Engineering,
vol. 2, pp. 690–697, August 2009

7. Regainia, L., Salva, S.: A methodology of security pattern classification and of
attack-defense tree generation. In: Proceedings of the 3rd International Confer-
ence on Information Systems Security and Privacy (ICISSP). SciTePress, Porto,
February 2017

8. Schumacher, M.: Security Engineering with Patterns: Origins, Theoretical Models,
and New Applications. Springer-Verlag, New York (2003)

http://dx.doi.org/10.1007/978-3-319-18467-8_23
http://dx.doi.org/10.1007/978-3-319-18467-8_23

194 S. Salva and L. Regainia

9. Shahmehri, N., Mammar, A., Montes De Oca, E., Byers, D., Cavalli, A., Ardi, S.,
Jimenez, W.: An advanced approach for modeling and detecting software vulner-
abilities. Inf. Softw. Technol. 54(9), 997–1013 (2012)

10. Yoshizawa, M., Kobashi, T., Washizaki, H., Fukazawa, Y., Okubo, T., Kaiya, H.,
Yoshioka, N.: Verifying implementation of security design patterns using a test
template. In: 9th International Conference on Availability, Reliability and Security,
pp. 178–183, September 2014

11. Yskout, K., Heyman, T., Scandariato, R., Joosen, W.: A system of security patterns
(2006)

12. Yskout, K., Scandariato, R., Joosen, W.: Do security patterns really help design-
ers?. In: Proceedings of the 37th International Conference on Software Engineering
ICSE 2015, vol. 1, pp. 292–302. IEEE Press, Piscataway (2015)

Test Selection and Quality Estimation

A “Strength of Decision Tree
Equivalence”-Taxonomy and Its Impact on Test

Suite Reduction

Hermann Felbinger(B), Ingo Pill, and Franz Wotawa

Institute for Software Technology,
Graz University of Technology, Graz, Austria
{felbinger,ipill,wotawa}@ist.tugraz.at

Abstract. Being able to reduce test suites without having to execute
them for assessing the effects on their fault detection capabilities is quite
appealing. In this direction, we proposed recently to characterize test
suites via inferred decision trees and use these for comparisons in a reduc-
tion process. The equivalence relation underlying the comparisons plays
obviously a significant role for the effectiveness achieved and efficiency
experienced. In this paper, we explore five such relations that take dif-
ferent aspects into account and investigate their impact on test suite
reduction, their effectiveness in fault detection, and computation time.
We report corresponding results, and show as well as prove that the
equivalence relations build a taxonomy.

Keywords: Test suite reduction · Decision tree equivalence

1 Introduction

Today, our software tends to be improved and extended almost constantly dur-
ing its life cycle. Correspondingly, also the test suites we use for their validation
tend to grow with new product features, the isolation of faults to be avoided
in the future, and with the advent of new concepts for generating tests effec-
tive at unveiling specific software issues. The impact of software testing on the
overall development costs, however, demands keeping test suites as small as pos-
sible while preserving their fault detection capabilities. Consequently, we need
effective test suite reduction approaches in order to manage resources and costs
related to a test suite’s execution, validation, and management.

Even when focusing on predefined faults (like for mutation testing [9]) such
that we knew exactly which faults some test case t can identify, finding a min-
imum sized test suite able to identify a maximum of faults, is an instance of
the set cover problem that is one of Karp’s 21 NP-complete problems [19]. Still,
drawing on effective heuristics, researchers faced the challenge and proposed var-
ious strategies to tackle the problem, e.g., [4,12,13,15,22,24]. Known strategies
rely, e.g., on existing links between requirements and test cases, on analyzing

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 197–212, 2017.
DOI: 10.1007/978-3-319-67549-7 12

198 H. Felbinger et al.

execution traces that can cover others, or on preserving coverage and mutation
scores as indicators for a test suite’s effectiveness.

An attractive feature of the approach introduced by Felbinger et al. in [10]
is that we do not need to execute the program under test for assessing the fault
detection capabilities when removing a test case. The underlying idea was that
every test suite T should at least partially capture the behavior of the program
under test in a sufficient way. The strategy then is to use machine learning for
model extraction, in order to derive representative characterizations from T and
a reduced test suite T ′. We proposed in [10] the following reduction process:
Initially, we learn a characterizing decision tree from T , and when successively
trying to remove test cases t ∈ T , we infer for each potential removal another
decision tree from the updated test suite T ′. If the decision tree for T ′ is equiv-
alent to the initial one, we assume that the fault detection capabilities were not
affected, and proceed with trying to remove further test cases. Otherwise, we go
back one step and re-add t. The reduction terminates after a preconfigured num-
ber of unsuccessful, random tries to remove a further test case. With avoiding
to execute T , we still could achieve reductions from 60 to 99% in our evaluation.
Our approach for decision tree learning is limited to test cases t represented as
some vector t = 〈x1, .., xk, out〉 of k input values and an expected output value
out. The inputs are either numeric of an infinite domain, numeric of a finite
domain, or discrete strings or numbers. The output type has to be of a finite
domain, whose values then build the labels of the decision trees’ leaf nodes.

Since such a test suite reduction depends on an equivalence relation for deci-
sion trees, the following questions arise immediately: Which methods are there
for determining equivalence? Are there more than structural and misclassifica-
tion equivalence as discussed and used in [10] (coined syntactic and semantic
equivalence there), and is there a relation between them? What is their impact
on the efficiency and effectiveness of the reduction process?

Imagining variants, one has to take the characteristics of the derived trees
into account. According to [17], optimizing a decision tree to a minimal number
of nodes which would allow us to compare minimal or canonical ones, is in NP.
Thus, the algorithm used to infer the decision trees in [10] is based on a statis-
tical measure (the information gain of variables) and does not stringently build
optimal decision trees. Consequently, trees inferred from different test suites
might appear different in respect of their strict structure. Exploring flexibility
in this respect, we consider five variants for checking some trees’ equivalence.
In particular, we consider in Sect. 4 structural (≡), spine (=s), decision (=d),
table (=t), and misclassification (=m) equivalence aiming to cover and explore
various decision tree aspects. We show and prove that these variants build a
taxonomy as shown in Fig. 1 in respect of their strength. We report in Sect. 5 on
our corresponding experiments, considering computation time and the achieved
reductions as well as the impact on fault detection capabilities. In Sect. 6 we
conclude on our findings and line out future work.

A “Strength of Decision Tree Equivalence”-Taxonomy and Its Impact 199

Fig. 1. Taxonomy of equivalence relation in respect of their strength.

2 Related Work

Safavian and Landgrebe provide a survey of decision tree classifiers in [26]. They
address the design, search strategies, issues like missing values and robustness,
and potential problems of decision trees in their survey. In [21] Moret pro-
vides a common framework of definitions and notations for decision trees. In [7]
Dattatreya and Kanal introduce the usage of decision trees in pattern recogni-
tion. In this context they define pattern recognition as “the assignment of a phys-
ical object or an event to one of the prespecified categories”. They consolidate
the major methodologies for decision tree design, bring out those methodologies’
commonalities, provide insight into multistage classification, explode the myth
that decision trees are always simple to design and use, mention areas of appli-
cations of decision trees, and aid a decision tree designer to select an appropriate
technique for the particular problem of interest.

Cockett introduces in [6] different notions of decision tree equivalence. These
notions are structural, decision, and transposition equivalence that are similar
to some of the notions we use in this work, which are structural, spine, and deci-
sion equivalence, but Cockett uses the notion of coalgebras to describe decision
trees and the equivalence relations. In [28] Zantema presents a simple efficient
algorithm to establish whether two decision trees are equivalent or not. This
algorithm is an axiomatization for decision equivalence as we use it in this work.
The complexity of this algorithm is bounded by the product of the number of
nodes n and m of both decision trees (O(n ∗ m)). The algorithm only processes
decision trees representing discrete valued variables as decision nodes. In our
work we also cover numeric inputs, which are handled by binary splits. The
authors in [5] present an algorithm that reduces a decision tree by replacing the
decision tree with a smaller equivalent decision tree. To find an irreducible tree
using the reduction algorithm they also use decision and transposition equiva-
lence. In [29] the authors address the question, whether for a given decision tree,
a decision tree decision equivalent to the given one can be found, for which no
decision equivalent decision tree of smaller size exists. Breslow and Aha provide
an overview over methods how to simplify a decision tree in [2].

200 H. Felbinger et al.

The underlying idea that a model inferred from a test suite can be used to
indicate the fault detection effectiveness of the test suite was initially published
in [11]. In [11] Felbinger et al. show that a linear correlation between model infer-
ence based test suite quality assessment without executing the program under
test might depend on the structural properties, the types of inputs, and the num-
ber of discrete outputs of the program under test. Some initial results of test
suite reduction without executing the program under test are provided in [10].
The promising results in [10], where reductions of 60–99% were possible, while
still keeping coverage and mutation score almost the same, led to this work,
where we used the same reduction algorithm. In [10] structural and misclassi-
fication equivalence were used to obtain the results. Briand et al. [3] describe
a test suite refinement approach that relies on the black box testing technique
Category-Partition [23] and machine learning. They use categories and choices
to define the functional properties of a program under test, where categories are
associated with choices. E.g. a category representing an inequality relation has
two choices of an inequality relation that are either greater than or less than.
Based on these categories they transform test cases into abstract test cases.
These abstractions are tuples of choices and an expected output value or an
equivalence class of expected output values. Like in our work, they use the C4.5
algorithm [25] to learn a decision tree in [3]. But in contrast to our work, where
we learn a decision tree from the raw values in a test suite, they learn decision
trees from the abstractions obtained by category-partitioning.

Since test suite reduction has been of interest for decades, there is a tremen-
dous amount of further related work. We refer the interested reader to [1,27] for
detailed overviews.

3 Preliminaries

In our work, we infer a decision tree D from a test suite T via the well-known
algorithm C4.5 [25]. Such a decision tree is a directed tree D = (V,E) having
nodes V and directed edges E connecting nodes. V can be split into decision
nodes and leaf nodes, where a decision node has outgoing edges and represents a
decision (i.e., a relational equation) like x > 0 (see Fig. 2) for some numeric input
x, or x equals 〈discrete value〉 for discrete inputs. A leaf node is a terminal one
and offers a discrete classification. An edge (v, v′) is a pair of nodes (v, v′ ∈ V),
where v is parent of v′. For simplicity, we assume a function ρ: DT → V that
returns the root node of a decision tree, with the universe of decision trees DT
under consideration as input domain. Further we assume a function λ: V →
J ∪ C that returns the content of a node, with the union of the set of decisions
J and the set of classifications C as range. The decision trees in this work are
binary such that each decision node has exactly two outgoing edges. The answer
of a decision, e.g., whether we have x > 0, is represented by an edge label that
can be accessed via a function γ: E → {T, F}. In our decision trees, paths are
sequences containing nodes and connecting edges, starting from the root node,
following down the tree, and ending at a leaf node. We define a path Π in a
decision tree as follows:

A “Strength of Decision Tree Equivalence”-Taxonomy and Its Impact 201

Definition 1 (Path). A path Π of length |Π| = l in a decision tree D is
a sequence of nodes v0...vl−1 such that there is an edge from vi to vi+1 for
0 ≤ i < l − 1, starting with v0 = ρ(D) and ending at a leaf node vl−1.

With C4.5, decision trees are constructed top down, where decision nodes get
selected using a statistical property called information gain that measures how
well a decision separates the t ∈ T according to their expected outcome [20]. A
test case t is classified in a decision tree by following the decision nodes from the
root node, down the tree to some leaf node, according to the values in t. Not
necessarily all input variables appear in a decision tree, but numeric variables
can occur also multiple times in different decision nodes, even in the same path.
We define equivalence for decision trees as follows:

Definition 2 (Equivalence Relation). Decision Tree Equivalence is a reflex-
ive, symmetrical, and transitive binary relation R between two decision trees D1

and D2 from the universe of decision trees DT , such that:

reflexivity: ∀D ∈ DT : D R D
symmetry: ∀D1,D2 ∈ DT : D1 R D2 → D2 R D1

trans.: ∀D1,D2,D3 ∈ DT : D1 R D2 ∧ D2 R D3 → D1 R D3

In our work, we consider the equivalence of decision trees when reducing
test suites. When trying to remove test cases from a test suite T without effect-
ing changes in the decision tree, the achieved reduction is an indicator of the
reduction process’ effectivity:

Definition 3 (Reduction). Given a test suite T and a reduced test suite T ′ ⊆
T , the achieved reduction is defined via the difference in their sizes:

reduction =
|T | − |T ′|

|T | (1)

When we infer a decision tree, we derive a hypothesis h regarding an approx-
imation of a function f that we can use to predict f ’s outcome for future input
values. Strategies for estimating the accuracy of such a hypothesis include k-folds
cross validation [16], or assessment with additional input and output values [20].
In principle, for evaluating a hypothesis h, we can use the function error(h, S)
as given in Eq. 2 in order to obtain a result in the range 0..1:

error(h, S) =
1

|S|
∑

t∈S

δ(f(t), h(t)) (2)

Equation 2 requires three parts: First, some set S that should be different to
T (from which the hypothesis was learned) containing vectors t of input values
and an expected output. Second, the target function f : Ik → O, where I is the
type of the k inputs and O represents the set of all possible outputs. Third, a
function δ that detects deviating outcomes of f and h–returning 1 if f(t)
= h(t)
for some t ∈ S and 0 otherwise.

202 H. Felbinger et al.

4 Equivalence Taxa

For our investigation, we considered five decision tree equivalence relations, rang-
ing from structural equivalence to misclassification equivalence. Before show-
ing at the end of this section that they form a taxonomy in respect of their
strength, let us formally introduce them for the decision trees D1 = (V1, E1)
and D2 = (V2, E2) first.

Structural Equivalence (≡): Two decision trees D1 and D2 are structurally
equivalent, if and only if each node v1 ∈ V1 has a corresponding node v2 ∈ V2 and
each edge e1 ∈ E1 has a corresponding edge e2 ∈ E2 connecting an equivalent
pair of nodes. Structural equivalence can be represented using a function equal:
V × V → {True,False}, which we define recursively as follows: For two decision
trees D1, D2, and nodes v1 ∈ V1, v2 ∈ V2, equal returns True, if and only if:

1. λ(v1) = λ(v2)
2. ∀(v1, vi) ∈ E1, ∃(v2, vj) ∈ E2, 0 ≤ i, j < 2|

γ(v1, vi) = γ(v2, vj) ∧ equal(vi, vj) (and vice versa)

Using this function, we define structural equivalence of two decision trees as
follows:

Definition 4 (Structural equivalence). Two given decision trees D1, D2 are
structurally equivalent if and only if the function equal(ρ(D1), ρ(D2)) returns
True.

EQUAL terminates if it detects different node contents or different edge
labels, or if all nodes have been visited.

Example 1 (Structural equivalence). Figure 2 shows two structurally equivalent
decision trees where decision nodes, leaf nodes, and edges are equivalent and on
the same position in both decision trees.

Spine Equivalence (=s): A decision tree consists of a set of spines SP. A spine
(Π, c) ∈ SP is described by a path Π to a leaf node v, such that c = λ(v). Spine
equivalence requires bag equivalence to hold, which is defined as:

Definition 5 (Bag equivalence). Two paths Π1 and Π2 are equivalent as
bags, if except for the ordering they contain nodes with precisely the same content
and with equivalently labelled outgoing edges, such that for all v1 ∈ Π1 there
exists an equivalent node v2 ∈ Π2 and vice versa, where λ(v1) = λ(v2) and
γ(v1, vi) = γ(v2, vj).

From the definitions of a path and bag equivalence, we define spine
equivalence as:

Definition 6 (Spine equivalence). Two decision trees D1 and D2 are spine
equivalent if for the respective sets of spines SP1 and SP2, for every spine
(Π1, c1) ∈ SP1 there exists a spine (Π2, c2) ∈ SP2 and vice versa, such that
Π1 and Π2 are bag equivalent and c1 = c2.

A “Strength of Decision Tree Equivalence”-Taxonomy and Its Impact 203

Fig. 2. Structurally (left), spine- (middle), and decision-equivalent (right) trees.

Example 2 (Spine equivalence). Figure 2 shows two spine equivalent decision
trees where the order of decision nodes in the paths differ, but the spines are
equivalent. However, these decision trees are not structurally equivalent.

Decision Equivalence (=d): A constraint built from a spine’s path is a con-
junction of equivalence relations that contain a decision node’s content and its
outgoing edge’s label for all decision nodes in the path. Satisfying a constraint
classifies the inputs to that spine’s c. In a decision tree, there may be multi-
ple spines for some c. For decision equivalence, we thus build a summarizing
constraint for each c as a disjunction of the corresponding conjunctions of the
individual spines for c. E.g., from the top right decision tree in Fig. 2, a con-
straint ψ of paths from spines with c = 1 is (x > 0 = F ∧ x < 0 = T) ∨ (x > 0 =
T ∧ x > 1 = T). More formally, we define decision equivalence as:

Definition 7 (Decision equivalence). Two decision trees D1 and D2 are
decision equivalent, if for all leaf nodes v1 ∈ V1 an equivalent leaf node v2 ∈ V2

exists, and for each constraint ψ1 of D1 there exists a constraint ψ2 in D2 where
the following equation holds:

ψ1 equals ψ2 (3)

Equation 3 is true, if no valuation exists for which ψ1 is satisfiable and ψ2 is
unsatisfiable, and vice versa.

Example 3 (Decision equivalence). Figure 2 shows two decision equivalent deci-
sion trees that do not contain the same decision nodes and are therefore not
spine equivalent.

204 H. Felbinger et al.

Table Equivalence (=t): A decision tree D classifies all test cases t ∈ T
according to the input values in t to a leaf node, as introduced in Sect. 3. A test
case t is misclassified, if λ(v) for the leaf node v to which t was classified and
the value out of t differ. Otherwise t is classified correctly. These principle is
also used in hypothesis evaluation as introduced in Sect. 3, where the function
h(t) returns the content of the leaf node to which t was classified, but unlike for
hypothesis evaluation, here the outcome of the target function f(t) is the value
of out that is already included in t. We create a set M of pairs (h(t), out) that
contains for each t ∈ T the content of the leaf node to which t was classified
and the value out of t. Note that we have |M | = |T |. Two sets M1 and M2 are
equivalent, if for each pair (h(t)1, out1) ∈ M1 there is a pair (h(t)2, out2) ∈ M2

such that h(t)1 = h(t)2 and out1 = out2, and vice versa. Consequently, we define
table equivalence as:

Definition 8 (Table Equivalence). Two decision trees D1 and D2 are table
equivalent, when classifying a test suite T yields two equivalent sets M1 for D1

and M2 for D2.

Example 4 (Table equivalence). Figure 3 shows two decision trees that are table
equivalent if T does not contain a test case t = 〈1, 1, 1〉, because then h(t)
= out
only for the lower decision tree. These decision trees are not decision equivalent.

Fig. 3. Table (left) and misclassification-equivalent (right) trees.

Misclassification Equivalence (=m): Two decision trees D1 and D2 are
equivalent regarding their misclassification rate error(D,T), if the following two
conditions hold:

A “Strength of Decision Tree Equivalence”-Taxonomy and Its Impact 205

1. error(D2, T) = error(D1, T).
2. For all distinct contents in the leaf nodes C1 ⊂ V1 an equivalent classification

exists in the leaf nodes C2 ⊂ V2 and vice versa.

Definition 9 (Misclassification equivalence). A decision tree D2 is mis-
classification equivalent to a reference decision tree D1, when classifying T , if
the following equation holds:

error(D2, T) = error(D1, T) ∧
∀v1 ∈ C1,∃v2 ∈ C2|v1 = v2 (and vice versa) (4)

Example 5 (Misclassification equivalence). Figure 3 shows two decision trees
where the same classifications exist in both decision trees as visualized by the leaf
nodes. If T contains two test cases t1 = 〈0, 0, 2〉 and t2 = 〈1, 2, 2〉, the decision
trees are misclassification equivalent, but not table equivalent.

Theorem 1. The five defined methods to determine equivalence of decision trees
can be presented in a subset order, where for a decision tree D inferred from a
test suite T , subsets DT≡ ⊂ DT , DT=s ⊂ DT , DT=d ⊂ DT , DT=t ⊂ DT ,
and DT=m ⊂ DT from the universe of decision trees DT exist, which contain
decision trees that were inferred from a test suite T ′ ⊆ T , and are equivalent to
D. These subsets are ordered as

DT≡ ⊆ DT=s ⊆ DT=d ⊆ DT=t ⊆ DT=m , for subsets,
DT≡ ⊂ DT representing structural equivalent decision trees,
DT=s ⊂ DT representing spine equivalent decision trees,
DT=d ⊂ DT representing decision equivalent decision trees,
DT=t ⊂ DT representing table equivalent decision trees, and
DT=m ⊂ DT representing misclassification equivalent decision trees.

Proof (sketch). Structural equivalence implies that all paths are equivalent. If
all paths are equivalent, spine equivalence is ensured. If paths in two decision
trees only have different orders of nodes, the decision trees are spine equivalent,
but not structurally equivalent. Spine equivalence implies that all nodes contain
the same content. Building constraints from the paths in spines ensures that
the constraints are equivalent, because they contain the same contents of nodes
and the same outgoing edges of the decision nodes. If a node is missing or
redundant in a path of two decision equivalent decision trees, this contradicts
spine equivalence. Decision equivalence implies that each possible input valuation
leads to an equivalent classification or misclassification. Equivalent classifications
for all possible input values ensure table equivalence, because table equivalence
depends only on the classification of a test suite T , which contains only a subset
of all possible input values. If a pair of decision trees is table equivalent, but test
cases are missing for boundary values of the decisions, different decision nodes in
a path lead to equivalent classifications for a test suite T , but not for each possible
input valuation. This fact contradicts decision equivalence. Table equivalence
implies that two decision trees provide equivalent classifications for a test suite T ,

206 H. Felbinger et al.

independently of whether a test case was correctly classified or misclassified. If all
test cases in T are equally classified or misclassified, misclassification equivalence
is given. A misclassification equivalent pair of decision trees where classifying a
test suite T yields the same misclassification rate, but different test cases from
T are misclassified, violates table equivalence. �

As stated in Theorem 1, structural equivalence is the strongest method to deter-
mine equivalence of two decision trees, meaning that even if the four other equiv-
alence check methods evaluate to true, structural equivalence can be false. Deci-
sion equivalence is the costliest method due to the NP-completeness of deter-
mining inequality of two constraints. Misclassification equivalence is the weakest
method to determine equivalence of two decision trees, because it neither con-
siders the structure of the decision tree nor the relation of inputs to outputs.

5 Experimental Evaluation

We used three different Java programs for our proof-of-concept experiments,
generated combinatorial test suites using the tool ACTS1, and evaluated the
reduced test suites’ fault detection effectiveness via their mutation score. For
generating mutants, we used the Major mutation framework [18].

5.1 Results

The three examples are Triangle, TCAS, and UTF8, as introduced in [10]. For
test suite reduction, we implemented the REDUCE algorithm from [10] in Java
and instantiated the equals method in REDUCE at line 12 by all 5 equivalence
methods introduced in Sect. 4. The input values for iterations and retries of
REDUCE were set to 2 and |T |

10 respectively, since the results in [10] show that
these values allow high reductions. To infer decision trees from a test suite, we
used the Java library Weka [14] and its implementation J48 of the algorithm
C4.5. In the configuration options of Weka, we disabled pruning and set the
minimum number of leaf nodes to 1. The expected outcome for a test case was
derived with the original program. We obtained test suites of size 343 (Triangle),
1840 (UTF8), and 11021 (TCAS), and generated 35 (Triangle) and 147 (UTF8)
mutants. For the TCAS example, we used the 41 existing mutants2. In order to
determine decision equivalence, we applied the SMT-solver Z3 [8] that provides
a Java-API. For calculating the misclassification rate, we used the decision tree
evaluation method integrated in the Weka library. Since the REDUCE algorithm
selects potentially redundant test cases randomly, we executed the algorithm for
each example 10 times per equivalence method and plot the execution time and
the resulting reduction for each execution. All experiments ran on a MacBook
Pro with an Intel Core i5 2.7 GHz CPU, 16 GB RAM, an SSD, and OS X 10.11.6.
The resulting reductions and the runtime to obtain these reductions for the
1 http://csrc.nist.gov/groups/SNS/acts.
2 http://sir.unl.edu/portal/bios/tcas.php.

http://csrc.nist.gov/groups/SNS/acts
http://sir.unl.edu/portal/bios/tcas.php

A “Strength of Decision Tree Equivalence”-Taxonomy and Its Impact 207

Triangle example are shown in Fig. 4. The results in Fig. 4 show that decision
equivalence is multiple times slower than other equivalence methods. Structural
equivalence is fastest, misclassification and table equivalence allow the highest
reductions. Reductions of structural equivalence are lowest. The results in Fig. 5
for the UTF8 example show that structural and spine equivalence are fastest, but
the reductions are around 30% lower than for the other equivalence methods.
Also for the UTF8 example decision equivalence was slowest. For the TCAS
example the results in Fig. 6 show that all reductions only vary in a range of
around 10%. Also for TCAS, structural and spine equivalence are fastest and
decision equivalence is slowest on average. The highest reductions were obtained
by table and misclassification equivalence.

65 70 75 80 85 90 95

1
2

3
4

5

re
du

ct
io

n
tim

e
in

 s
ec

reduction in %

structural
spine
decision
table
misclassification

Fig. 4. Triangle results.

5.2 Discussion

Our results suggest that structural equivalence, whose complexity is linear in the
number of nodes in a decision tree, is the fastest and decision equivalence is the
slowest equivalence method. Deciding decision equivalence is an NP-complete
problem and each pair of equivalent constraints in two decision trees gives the
worst case. When using misclassification equivalence, which allows the highest
reductions, the time to reduce T was slightly higher than for structural equiv-
alence. For evaluating a potential loss of the test suite’s fault detection effec-
tiveness, we derived the mutation score for all reduced test suites as reported
in Fig. 7. The mutation score of the initial test suites was 1 for each example.
For each example in Fig. 7, the equivalence methods are ordered according to

208 H. Felbinger et al.

10
15

20
25

re
du

ct
io

n
tim

e
in

 s
ec

60 70 80 90 100
reduction in %

structural
spine
decision
table
misclassification

Fig. 5. UTF8 results.

10
0

15
0

20
0

25
0

30
0

35
0

re
du

ct
io

n
tim

e
in

 s
ec

88 90 92 94 96 98
reduction in %

structural
spine
decision
table
misclassification

Fig. 6. TCAS results.

their strength from left to right, starting on the left with the strongest one.
The results show that for the strongest equivalence method there was almost no
decline of mutation score, but for weaker methods the mutation score decreased.
In particular for the UTF8 example, the median mutation score dropped to val-
ues in the range 0.6 to 0.7 for decision, table, and misclassification equivalence.

A “Strength of Decision Tree Equivalence”-Taxonomy and Its Impact 209

Triangle UTF8 TCAS

0.5

0.6

0.7

0.8

0.9

1.0

st
ru

ct
ur

al

sp
in

e

de
ci

si
on

ta
bl

e

m
is

cl
as

s.

st
ru

ct
ur

al

sp
in

e

de
ci

si
on

ta
bl

e

m
is

cl
as

s.

st
ru

ct
ur

al

sp
in

e

de
ci

si
on

ta
bl

e

m
is

cl
as

s.

equivalence

m
ut

at
io

n
sc

or
e

Fig. 7. Mutation score of reduced test suites.

These weak mutation scores origin in the fact that the initial test suite contained
test cases with unknown values, which were approximated automatically while
inferring a tree by the C4.5 algorithm. These approximations increased potential
uncertainties of the tree to predict future outputs for additional input values.
The dots in the plots for Triangle, UTF8, and TCAS represent outliers from the
obtained results.

Using structural or spine equivalence provided similar reductions at similar
costs. Although decision equivalence allowed high reductions, the computation
time was highest from all equivalence methods. Table and misclassification equiv-
alence provided the highest reduction results for our examples, consuming more
time than structural and spine equivalence (but in most cases less time than deci-
sion equivalence). The mutation score results suggest the highest loss of fault
detection effectiveness to occur when using table or misclassification equivalence.
Therefore, if the execution time of the tests in the finally reduced test suite is
low, structural equivalence should be chosen. If keeping the fault detection capa-
bilities as high as possible for a reduced test suite, also structural equivalence
should be chosen. In all other cases the results suggest that misclassification
equivalence is an educated choice. Promising results of an empirical evaluation
of structural and misclassification equivalence were provided in [10]. With our
results, we clarify that the runtime of the reduction approach depends on three
parts. First, the runtime depends on the size of the test suite and the domain

210 H. Felbinger et al.

sizes of the inputs. The latter affects the run-time spent for the algorithm C4.5,
since we have to learn a decision tree for each potentially removable test case.
Second, as we surmised, the runtime depends on the complexity of the equiva-
lence relation used. Last, but not least, we saw that the runtime increases also
with the achieved reduction.

6 Conclusion

In this paper, we introduce a “strength of decision tree equivalence”-taxonomy
of five different equivalence relations. Decision tree equivalence is a crucial part
of a recently introduced test suite reduction approach that does not require to
execute the program under test. We came up with five different methods to
determine this equivalence and provide a theorem and a corresponding proof
that these methods form a taxonomy in respect of their strength. As a proof of
concept, our experiments show that the equivalence method indeed has a high
impact on the effectiveness and efficiency when reducing a test suite. The results
yield structural and spine equivalence as the methods with the lowest costs, but
also with the smallest reduction. Decision equivalence is the costliest in respect of
computation time, but achieves high reductions. When determining equivalence
with table and misclassification equivalence, the reductions are very high, but
suffer from the highest decrease in fault detection effectiveness.

Underpinning the reduction approach itself and the selection of the most
appropriate equivalence relation will require an evaluation with additional, real-
istic scenarios. If some T does not contain redundancies, no reduction is possible.
For detecting that T does not contain redundancies structural equivalence should
be chosen, because it is the least time consuming relation to determine. Since
the structure (control flow, data flow, lines of code, etc.) of the program under
test affects the reduction, with more examples possibly a classification can be
created such that we could derive from the program structure in combination
with background information on how T was generated which equivalence method
would be best suited.

For our current experiments, we used first order mutants for evaluating the
effectiveness in fault detection, but towards applicability of the reduction app-
roach in practice, an examination with higher order mutants shall be part of
future work. In future work we will extend also our empirical evaluation, consid-
ering more examples from application domains like automotive control software.
Here an open research question is also how such a program’s structure affects
the test suite reduction approach of [10] in general.

Acknowledgment. We thank the ECSEL Joint Undertaking (supported by the EU
Horizon 2020 programme and the ECSEL member states) for funding this work under
grant agreement 662192 (3Ccar). This Joint Undertaking receives support from the
European Union’s Horizon 2020 research and innovation programme and the ECSEL
member states.

A “Strength of Decision Tree Equivalence”-Taxonomy and Its Impact 211

References

1. Biswas, S., Mall, R., Satpathy, M., Sukumaran, S.: Regression test selection tech-
niques: a survey. Informatica 35(3), 289–321 (2011)

2. Breslow, L.A., Aha, D.W.: Simplifying decision trees: a survey. Knowl. Eng. Rev.
12(1), 1–40 (1997)

3. Briand, L.C., Labiche, Y., Bawar, Z.: Using machine learning to refine black-box
test specifications and test suites. In: 8th International Conference on Quality
Software, pp. 135–144 (2008)

4. Chen, T.Y., Lau, M.F.: Dividing strategies for the optimization of a test suite. Inf.
Process. Lett. 60(3), 135–141 (1996)

5. Cockett, J.R.B., Herrera, J.A.: Decision tree reduction. J. ACM 37(4), 815–842
(1990)

6. Cockett, J.: Discrete decision theory: manipulations. Theor. Comput. Sci. 54(2),
215–236 (1987)

7. Dattatreya, G., Kanal, L.: Decision trees in pattern recognition. In: Progress in
Pattern Recognition 2, pp. 189–240. Elsevier Science Publishers B.V. (1985)

8. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

9. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for
the practicing programmer. Computer 11(4), 34–41 (1978)

10. Felbinger, H., Wotawa, F., Nica, M.: Test-suite reduction does not necessarily
require executing the program under test. In: International Conference on Software
Quality, Reliability and Security Companion, pp. 23–30 (2016)

11. Felbinger, H., Wotawa, F., Nica, M.: Empirical study of correlation between muta-
tion score and model inference based test suite adequacy assessment. In: 11th
International Workshop on Automation of Software Test, pp. 43–49 (2016)

12. Fraser, G., Wotawa, F.: Redundancy based test-suite reduction. In: Dwyer, M.B.,
Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 291–305. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-71289-3 23

13. Gotlieb, A., Marijan, D.: Flower: Optimal test suite reduction as a network max-
imum flow. In: 2014 International Symposium on Software Testing and Analysis
(ISSTA), pp. 171–180 (2014)

14. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

15. Harrold, M.J., Gupta, R., Soffa, M.L.: A methodology for controlling the size of a
test suite. ACM Trans. Softw. Eng. Methodol. (TOSEM) 2(3), 270–285 (1993)

16. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learn-
ing. Springer Series in Statistics. Springer, New York (2009). doi:10.1007/
978-0-387-84858-7

17. Hyafil, L., Rivest, R.: Constructing optimal binary decision trees is NP-complete.
Inf. Process. Lett. 5(1), 15–17 (1976)

18. Just, R.: The major mutation framework: efficient and scalable mutation analysis
for Java. In: Proceedings of the 2014 International Symposium on Software Testing
and Analysis, pp. 433–436. ACM (2014)

19. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). doi:10.
1007/978-1-4684-2001-2 9

http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-71289-3_23
http://dx.doi.org/10.1007/978-0-387-84858-7
http://dx.doi.org/10.1007/978-0-387-84858-7
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1007/978-1-4684-2001-2_9

212 H. Felbinger et al.

20. Mitchell, T.M.: Machine Learning, vol. 8. McGraw-Hill, Boston (1997)
21. Moret, B.M.: Decision trees and diagrams. ACM Comput. Surv. (CSUR) 14(4),

593–623 (1982)
22. Offutt, A.J., Pan, J., Voas, J.M.: Procedures for reducing the size of coverage-

based test sets. In: Proceedings of the 12th International Conference on Testing
Computer Software, pp. 111–123. ACM (1995)

23. Ostrand, T.J., Balcer, M.J.: The category-partition method for specifying and
generating fuctional tests. Commun. ACM 31(6), 676–686 (1988)

24. Polo Usaola, M., Reales Mateo, P., Pérez Lamancha, B.: Reduction of test suites
using mutation. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212,
pp. 425–438. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28872-2 29

25. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers Inc., San Francisco (1993)

26. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology.
IEEE Trans. Syst. Man Cybern. 21(3), 660–674 (1991)

27. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
a survey. Softw. Test. Verif. Reliab. 22(2), 67–120 (2012)

28. Zantema, H.: Decision trees: equivalence and propositional operations. In: 10th
Netherlands/Belgium Conference on AI (NAIC), pp. 157–166 (1998)

29. Zantema, H., Bodlaender, H.L.: Finding small equivalent decision trees is hard.
Int. J. Found. Comput. Sci. 11(2), 343–354 (2000)

http://dx.doi.org/10.1007/978-3-642-28872-2_29

Quality Estimation of Virtual Machine
Placement in Cloud Infrastructures

Jorge López(B), Natalia Kushik, and Djamal Zeghlache

SAMOVAR, CNRS, Télécom SudParis/Université Paris-Saclay,
9 Rue Charles Fourier, 91000 Évry, France

{jorge.lopez,natalia.kushik,djamal.zeghlache}@telecom-sudparis.eu

Abstract. A virtual machine (VM) placement module is a compo-
nent/part of a cloud (computing) infrastructure, which chooses the best
host(s) to allocate the requested VMs. In the literature, skewed or biased
criteria are often used to determine the correctness of a placement mod-
ule. Therefore, the quality of existing placement solutions is not always
assessed adequately. In this paper, we propose a distance function that
estimates the quality of the placement by comparing it with an optimal
solution. We show how this distance function is utilized for testing and
monitoring the behavior of VM placement implementations. To validate
our approach a simulator has been developed and used for estimating
the quality of different placement modules running under various sce-
narios. Preliminary experimental results on VM placement algorithms
implemented in widely used platforms, such as OpenStack show that
very often VMs are placed very far from the optimal solutions.

Keywords: Quality estimation · Distance functions · Integer linear
programming · Virtual machine placement · Testing · Monitoring

1 Introduction

Cloud computing is a computer paradigm, which is based on sharing physical
resources. Physical resource sharing enables flexibility, robustness, fast provision-
ing, fast resource (re-)allocation, etc. Corresponding applications have grown in
usage and in demand in recent years; state-of-the-art applications must guaran-
tee fast provisioning (see, for example [17]), and cloud computing aids to achieve
such goals. Essentially all planning concerning the resource distribution and vir-
tualization is performed by a corresponding cloud manager, which needs to be
thoroughly tested and verified. One of the principal tasks of a cloud manager
is the proper placement of VMs, i.e., choosing the best host for a given VM. In
the literature, many placement algorithms have been proposed (see, for example
[11]); in particular, Masdari et al. presented a comprehensive survey on these
algorithms [15].

As VM placement is one of the main tasks of cloud managers, it is critical to
properly test the implementations of the corresponding placement algorithms.
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 213–229, 2017.
DOI: 10.1007/978-3-319-67549-7 13

214 J. López et al.

Currently, researchers mainly focus on evaluating the placement algorithms with
respect to specific criteria rather than testing/monitoring their implementations.
Some algorithms are shown to have better performance than others, i.e., they
are known to find a corresponding list of hosts for a given set of virtual machines
faster. However, such evaluations can be subjective, and moreover optimization
criteria can contradict each other. It is arguable if the allocation speed can be
considered as a good way to assess the overall correctness of a given placement
algorithm. Therefore, the question arises: what is the correct way to assess a
virtual machine placement algorithm and corresponding implementation? As
mentioned above, in the literature, little attention is paid to this problem. The
latter motivates us to propose novel techniques for the placement algorithm
assessment as well as for testing its implementation under the assumptions that
(i) placement requests are sequentially applied, (ii) the total number of VMs
remains unknown, and (iii) limits of the physical resources are finite and known
in advance. Assuming a good assessment technique can be found, yet another
important question that arises is the following: How to properly verify and mon-
itor the implementation correctness and how to generate good test suites for
checking the behavior of a given virtual machine placement module?

Therefore, the problem statement is as follows: Given a VM environment,
i.e., physical resource limits and VM configurations, and a VM initial place-
ment algorithm to manage the VM placement on this VM environment together
with its implementation, one has to (i) assess the correctness/efficiency of the
algorithm, (ii) provide methods for the run-time monitoring of the placement
implementation, and (iii) derive test suites for the effective assessment of the
optimality of the placement implementation. Note that the scope of this work
focuses on the initial placement problem, and not in re-allocation/migration
or other placement-related problems, such as the selection of the correct
overcommit ratio.

To tackle the stated problems, we present a distance function in order to
assess the quality of the virtual machine placement algorithm by calculating the
distance of the algorithm’s solution to the optimal one. The introduced distance
or metric is further utilized for effective test generation. In fact, we propose
to generate the input data for placing so that the VM environment’s resource
utilization is maximal. To obtain this configuration a proper Integer Linear Pro-
gramming (ILP) [20] problem is formally stated and solved. Namely, the VM
environment information is used to describe an Integer Linear Program that
maximizes the VM resource utilization given the cloud infrastructure and VM
configuration setup; this can be considered a boundary testing approach [16]. We
discuss the use of the distance function to statically verify that a given placement
algorithm always returns a result close enough to the optimal one. Likewise, we
analyze the use of this function to monitor placement implementations with lim-
ited controllability. Finally, in order to show the validity of our approach, we
present experimental results that follow a simulation process for different VM
environments and placement algorithms.

Quality Estimation of Virtual Machine Placement in Cloud Infrastructures 215

The paper is structured as follows. Section 2 introduces the required back-
ground and the addressed problem. Section 3 contains the related work. Section 4
presents the assessment of a placement module quality by introducing a distance
function, while Sect. 5 is devoted to testing and monitoring placement imple-
mentations. Section 6 contains the experimental evaluation, and finally Sect. 7
concludes the paper.

2 Background

In this section, we briefly describe the necessary concepts used throughout the
paper.

2.1 Virtual Machine Placement in Cloud Infrastructures

In the context of cloud computing, a host machine or simply a host is a physical
computing device that provides its resources to isolated computing components,
i.e., virtual machines. A cloud infrastructure is composed of a set of heteroge-
neous interconnected hosts with different resource capacities; usually, such hosts
are commodity hardware. When hosts have a shared and common storage, a
virtual machine (VM) can be executed in any of such hosts or migrated from
one to another. A cloud infrastructure typically contains a cloud manager or
orchestrator; the cloud manager is composed of distinct management modules,
including, the placement module, which assigns the VMs to the appropriate
hosts. A simplified cloud infrastructure is depicted in Fig. 1.

Cloud
Infrastructure

Storage

Host 1

. . .
Host m

Cloud manager

Placement

VM1
. . . VMj VM1

. . . VMj′

Fig. 1. Cloud computing infrastructure

Hosts and VMs have different limits on physical/virtual resources (or resource
parameters). We assume that each VM has the same set of resource parameters as
the physical resource parameters of the host executing that VM. For instance,
a given host might have 64 CPUs, 96 GB of RAM, and 1 Gbps of available

216 J. López et al.

(network) bandwidth. Note that we consider a coupled architecture, i.e., the
VM resources cannot be taken from diverse hosts, such as taking RAM from one
host, and CPU from another.

In Fig. 2 we depict an example of a cloud infrastructure, which is occupied
by different types of virtual machines. This cloud infrastructure is later used as
our running example. Consider the arrangement of VMs in the depicted cloud
infrastructure, performed by a placement module. If a new request to allocate
a VM with 2 CPUs and 2 GB of RAM comes, there is no possibility to com-
plete the request without performing a rearrangement of the VMs in the cloud
infrastructure. In fact, VM migrations are considered to be very expensive. Con-
sequently, we consider that a placement algorithm rejects the placement of the
VM if migrations are necessary. Further, we consider placement and migrations
as different tasks. A placement module is in charge of finding the best host(s)
in the cloud infrastructure to allocate the requested VMs (without migration).

cp
u

ra
m

0
1
2
3

re
so

u
rc

e
u
n
it

s

host 1

cp
u

ra
m

0
1
2
3

host 2

cp
u

ra
m

0
1
2
3

host 3

type 1 (3,2) type 2 (2,3) type 3 (2,2) type 4 (1,1) free

Fig. 2. Cloud computing infrastructure placement/usage

2.2 Integer Linear Programming

In this paper, we provide different techniques for assessing the VM placement
algorithm by comparing the solution provided by an Implementation Under
Test (IUT) with an optimal one. The latter can be found through a corre-
sponding optimization problem. In this paper, we refer to an Integer Linear
Programming (ILP) problem which has the following general form [20]:

maximize cTx

subject to Ax ≤ b,

x ≥ 0,

x ∈ Zn

Where x is a vector of n non-negative integers, c and b are integer vectors, and
A is an integer matrix. The function to maximize is the cost function repre-
senting the objective (or goal) of the optimization problem. The remainder of
the problem formulation presents the constraints of the problem, i.e., what the
maximization of the cost function is subject to. Finally, the ILP problem rep-
resents in most cases a typical combinatorial optimization problem; the latter

Quality Estimation of Virtual Machine Placement in Cloud Infrastructures 217

means that there exists a finite number of possible solutions, and the solutions
must be integer-valued. A given instance of the optimization problem is the tuple
(F, c), where F is a domain of feasible points, and c is a cost function such that
c : F �→ Z+. The solution of the optimization problem is to find f ∈ F such that
c(f) ≥ c(y);∀y ∈ F ; in this case, the point f is a globally optimal solution.

In the literature, algorithms to solve linear programming problems have been
studied since the 1940s. One of most popular ones is the Dantzig’s Simplex
algorithm [7]. Correspondingly, to solve ILP problems, the cutting plane meth-
ods based on Gomory’s algorithm [10] can be applied. Modern tools for solving
instances of ILP problems as Gurobi [19], use such cutting plane methods and
others. It is important to mention that even if the ILP problem is NP-hard, in
practice, problems with hundreds or thousands of variables can be easily solved
in a few seconds.

3 Related Work

In this section, we briefly discuss the existing criteria and methodologies to
determine the quality of a virtual machine placement module, i.e., IUT. To some
extent, all VM placement schemes found in the literature try to assess the qual-
ity of the proposed algorithm with respect to a number of criteria, commonly
favoring their implementation. A large number of research papers proposing
novel algorithms tend to focus on the execution time. The approaches typically
model the VM placement problem as the known bin-packing problem (or simi-
lar) [1,3,8], which is NP-hard. The objective of bin packing is to minimize the
number of containers of size V necessary to pack a fixed number of objects of dif-
ferent sizes. However, in a cloud infrastructure, VM (allocation) requests come at
different time instances and the requested VM types are not known in advance.
Therefore, solving the bin packing problem for a batch of requested machines
guarantees optimality in resource utilization for the allocated batch, not guar-
anteeing the overall optimality in the resource utilization. For that reason, many
researchers have devoted their efforts to propose approximation algorithms [22]
and they estimate the quality of their algorithms with respect to their time com-
plexity. The latter overlooks any other quality measures, including the optimality
of the resource utilization.

Nonetheless, works devoted to categorizing the algorithms with respect to
their optimization goals have also been published. Such works are mostly sur-
veys, an interested reader can refer to some comprehensive works in [15,21]. The
categories used to classify the papers, i.e., the optimization goals provide a good
notion of the important aspects to evaluate a VM placement IUT. Resource
utilization and energy consumption are among the most common criteria used
to evaluate a placement implementation, aside from the time/performance dis-
cussed above. Nonetheless, due to the nature of such works the quality estima-
tion is not the target of their research. Therefore, little attention is paid to the
quality estimation and comparison of different placement algorithms. As a con-
sequence, such works do not consider how to effectively test any VM placement
implementation.

218 J. López et al.

In [9], the authors describe in detail what are the relevant criteria to do
a comparative analysis of VM placement algorithms, their classification, and
conclude about their advantages. The discussion (Sect. 8 of their work) entitled
“Comparison of VMP techniques” is interesting as the authors make conclusions
based on the characteristics and properties of the proposed solutions. However,
even if the conclusions are convincing, there is no formal proof nor experimental
evaluation to support the statements. Furthermore, the discussion focuses only
on a small number of VM placement schemes.

Finally, there exist some works, which aim to evaluate the quality of the place-
ment algorithms using a set of metrics over the resulting configurations of a given
set of inputs, similar to our proposal. In [5,14], the authors employ CloudSim
[2,4], a toolkit for the simulation of cloud computing environments. Both of
the previously mentioned works use a similar set of metrics: (i) SLA violation,
the average percentage of time which a host CPU utilization was over 100%;
(ii) Performance degradation due to VM migrations, and finally (iii) Energy
consumption (proposed only in [14]). Another common characteristic of both
works is the fact that they employ existing data sets and do not focus on test
generation.

To the best of our knowledge, there exists no work in the literature that
presents different methods for the quality estimation of a VM placement module
based on measuring the distance from an optimal solution. Furthermore, we
are not aware of the methods for effective test suite generation which can be
used in conjunction to the metrics/distance functions; similarly, no methods
to derive properties for monitoring and verification of the IUT at run-time are
known to the authors. Finally, when evaluating the quality of placement IUT, the
approaches assume a fixed number (usually 2 or 3) of virtual machine parameters,
e.g., they consider only CPU and RAM, differently from our approach, which
generalizes the notion to multidimensional vectors.

4 Virtual Machine Placement Quality Estimation

In this section, we present an approach to evaluate the quality of a virtual
machine placement module in a given cloud infrastructure. The approach is
based on distance functions. The introduced distances or metrics can be further
used for checking functional properties of the VM placement modules.

4.1 Definitions and Notations

Let h be a host in a cloud infrastructure. We represent h as a tuple referring to
its physical resource limits, i.e., h ∈ Z

p
+, where p is the total number of physical

resource parameters. We assume each physical resource parameter of a host
is expressed as a multiple of an elementary resource unit (CPU, RAM, storage,
etc., are multiples of their respective elementary resource unit), i.e., the elements
are normalized by their respective reference unit. As an example, a host with 3

Quality Estimation of Virtual Machine Placement in Cloud Infrastructures 219

CPUs and 1GB of RAM whose minimal unit values are 1 CPU 1 and 512MB of
RAM, can be represented as the pair (3, 2). In practice, virtual infrastructure
managers overuse the available physical resources under the assumption that not
all virtual machines use all available resources at all time [18]. We assume that the
overcommit factor is taken into consideration for all values of all hosts’ physical
resource parameters. Consider the previous host (3, 2), virtual infrastructure
managers might consider overusing the RAM of this host by a factor of two, in
this case, the host’s physical limits are (3, 4).

As previously stated, a VM is assumed to have the same virtual resource para-
meters as the physical resource parameters of the cloud infrastructure. Therefore,
we define a VM in the same manner as a host. Let vm be a virtual machine rep-
resented as a tuple of its virtual resource limits, i.e., vm ∈ Z

p
+, where p is the

total number of physical resource parameters.
A cloud infrastructure CI being a collection of hosts is represented as a

tuple CI = 〈h1, h2, . . . , hm〉, where hi = (hi1 , hi2 , . . . , hip) ∈ Z
p
+ and m rep-

resents the total number of hosts in the cloud infrastructure. As an example,
consider the cloud infrastructure with CPU and RAM parameters depicted
in Fig. 2. The cloud infrastructure can be represented as the following object:
CI = 〈(3, 2), (3, 3), (3, 2)〉.

Each cloud infrastructure has an associated and finite number of possi-
ble VM configurations, i.e., a fixed amount of possible VMs with different
virtual resource requirements. We denote the VM configuration setup (VC)
of n different configuration types, similarly to a cloud infrastructure: let V C
be a virtual machine configuration setup referred to as a tuple of n ele-
ments, where each element is a VM, i.e., V C = 〈vm1, vm2, . . . , vmn〉, where
vmj = (vmj1 , vmj2 , . . . , vmjp) ∈ Z

p
+, and ∀j, j′, vmj
= vmj′ if j
= j′, n is the

number of distinct possible VM configurations (often also seen as VM types). As
an example, consider the VM configuration setup depicted in Fig. 2, this config-
uration is represented by the following object: V C = 〈(3, 2), (2, 3), (2, 2), (1, 1)〉.

Given a virtual machine configuration, and a cloud infrastructure, a place-
ment configuration represents which type of virtual machines are allocated at
each given host. Formally, we denote a Placement Configuration PC in the fol-
lowing manner: PC can be represented by the matrix PCm×n, pcij ∈ N ∪ {0},
where pcij represents the number of VMs with a vmj configuration placed on
the hi host.

As an example, consider the cloud infrastructure and virtual machine con-
figuration setup depicted in Fig. 2, the matrix PCm×n =

(
0 0 0 1
0 0 1 0
1 0 0 0

)
can be inter-

preted as: in the first host h1 = (3, 2) one VM of the fourth configuration type,
i.e., vm4 = (1, 1) is allocated; in the second host h2 = (3, 3) one VM of the third
configuration type, i.e. vm3 = (2, 2) is placed (or allocated), and finally, on the
third host h3 = (3, 2) a VM of the first configuration type vm1 = (3, 2) is placed.

A virtual machine placement request is a batch or list of VMs of different
configuration types. Formally a request r can be denoted as follows. Let V C be

1 Number of cores in compute-centric applications.

220 J. López et al.

a virtual machine configuration setup. A virtual machine placement request r is
a tuple of n elements, in which each element represents the requested number of
VMs of the corresponding type in V C. Particularly, r = 〈q1, q2, . . . , qn〉, where
qj ∈ N ∪ {0}; r represents a request for a collection of VMs, where qj is the
number of VMs of the type vmj , for j = 1, 2, . . . , n. In a straightforward manner,
a request can be extended to a request sequence α = r1r2 . . . rl. Given a request
sequence α, αij denotes the requested quantity of VMs of the type j in the i-th
request. As an example, a virtual machine placement request 〈0, 0, 0, 2〉 for the
VM configuration setup V C = 〈(3, 2), (2, 3), (2, 2), (1, 1)〉 as depicted in Fig. 2, is
a request for two VMs of the fourth type, i.e. vm4 = (1, 1).

A placement algorithm A takes as inputs a cloud infrastructure CI, a vir-
tual machine configuration setup V C, an initial placement configuration PC, a
request r, and produces as an output a new placement configuration PC ′. The
behavior of A can be extended to request sequences by considering the output
of A as the initial configuration PC for the next request in the sequence α.

4.2 Placement Quality Evaluation

As mentioned in Sect. 3, there exist some works [5,9,14], which propose different
criteria to evaluate the quality of placement implementations. To some extent, we
question some of the criteria, for instance, SLA violation reflects not an incorrect
placement, but an incorrect definition of the limits of the hosts. Then, what is
a good criterion to determine the quality of a placement algorithm? From the
functional point of view an efficient resource-aware placement scheme tries to
optimally place VMs on the PMs (Physical Machines i.e., hosts) such that the
overall resource utilization is maximized [15]. From the previous statement three
important conclusions can be made: (i) the optimal placement maximizes the
resource utilization, (ii) the quality of the placement implementation decreases
as it moves away from the optimal placement, and (iii) the correctness of an
algorithm can be measured with respect to its optimality.

To define a proper distance function, we first introduce the concept of overall
resource utilization. For the lack of a proper definition, we define it as follows:
the overall resource utilization measures the total number of resource units taken
by the allocated virtual machines in the cloud infrastructure.

Definition 1. Given a cloud infrastructure, a virtual machine configuration and
a placement configuration, the overall resource utilization f is a function defined
as: f(CI, V C, PC) =

∑m
i=1

∑n
j=1 (pcij ∗ ∑p

k=1 vmjk). Note that the image of f
is the set of natural numbers (including zero) N ∪ {0}.

An intuitive explanation of the construction of f is the following. The
overall resource utilization is the sum of all resources utilized in all hosts
of the infrastructure CI, i.e. f(CI, V C, PC) =

∑m
i=1 f ′(hi, V C, PC), where

f ′(hi, V C, PC) is the resource utilization on the host i. The resource utiliza-
tion on the host i is the sum of all resources taken by all VMs of all differ-
ent types allocated in the host, i.e., f ′(hi, V C, PC) =

∑n
j=1 f

′′
(hi, vmj , PC).

Quality Estimation of Virtual Machine Placement in Cloud Infrastructures 221

The sum of all resources taken by a VM is
∑p

k=1 vmjk and correspondingly
the quantity of VMs of a type vmj allocated in a host hi is pcij . Therefore,
f ′′(hi, vmj , PC) = pcij ∗ ∑p

k=1 vmjk .
An important remark is that a placement configuration can be obtained from

the simulation of an implementation of A and a request sequence α. Given α,
we denote the placement configuration obtained from the simulation of A as
PC = sim(A, α).

As mentioned above, the distance for the algorithm assessment depends on an
optimal placement. We define an optimal solution with respect to the maximal
resource utilization in the following manner:

Definition 2. The algorithm O is optimal with respect to the overall resource
allocation, if it holds that f(CI, V C, sim(O, α)) ≥ f(CI, V C, sim(A, α)), ∀A ∈
P, where P is the set of all possible placement algorithms.

To measure the distance between the overall resource utilization of a given
algorithm or its implementation and an optimal resource utilization, we define
the distance as a simple Euclidean distance2, namely:

Definition 3. A resource utilization distance d is defined as the metric d : N ∪
{0}×N ∪{0} �→ N ∪{0}, d(x, y) = |x − y|, where x is the resource utilization of a
given implementation and y is the resource utilization of an optimal algorithm O.

Intuitively, this distance expresses how far the overall resource utilization is
from an optimal solution. In the following sections, we highlight the usefulness
of this definition.

5 Testing, Monitoring, and Validating Placement
Modules

In this section, we discuss how the proposed VM placement quality evaluation
approach can be used when testing placement modules in cloud infrastructures.
In this case, the corresponding placement module represents the implementation
under test (IUT) and the conclusion about its quality is made based on the value
of the distance d from an optimal solution.

5.1 Boundary Test Case Generation for Placement Modules

Given an IUT (a placement module), we propose deriving a series of requests that
produce the maximum possible resource utilization for the given cloud infrastruc-
ture (and VM configuration). To achieve this, an appropriate ILP problem can
be formulated and solved to find the corresponding values bringing the value of
the function f to its maximum. In this case, the ILP formulation is somewhat

2 The obtained overall resource utilization is a natural number, therefore Euclidean
or other metrics can be considered.

222 J. López et al.

straightforward. The cost function to optimize is the resource utilization func-
tion f , and the goal is the maximization of that function. The constraints are
the limits of the hosts in the cloud infrastructure. The unknowns are the number
of VMs of different types on each host, representing the placement configuration
matrix. The general form of the problem is the following:

maximize f =
m∑
i=1

n∑
j=1

(
pcij ∗

p∑
k=1

vmjk

)

subject to
n∑

j=1

vmjk ∗ pcij ≤ hik ;∀i = 1, . . . , m; k = 1, . . . , p,

PC ≥ 0,

pcij ∈ Z,∀i = 1, . . . , m; j = 1, . . . , n

For the cloud infrastructure and VM configuration setup of the running
example, the solution of the following ILP problem provides maximal resource
utilization:

maximize f = 5pc11 + 5pc12 + 4pc13 + 2pc14 + 5pc21 + 5pc22 + 4pc23 + 2pc24+

5pc31 + 5pc32 + 4pc33 + 2pc34

subject to

3pc11 + 2pc12 + 2pc13 + 1pc14 ≤ 3 (Max CPU host 1),

2pc11 + 3pc12 + 2pc13 + 1pc14 ≤ 2 (Max RAM host 1),

3pc21 + 2pc22 + 2pc23 + 1pc24 ≤ 3 (Max CPU host 2),

2pc21 + 3pc22 + 2pc23 + 1pc24 ≤ 3 (Max RAM host 2),

3pc31 + 2pc32 + 2pc33 + 1pc34 ≤ 3 (Max CPU host 3),

2pc31 + 3pc32 + 2pc33 + 1pc34 ≤ 2 (Max RAM host 3),

pc11, pc12, pc13, pc14, pc21, pc22, pc23, pc24, pc31, pc32, pc33, pc34 ≥ 0,

pc11, pc12, pc13, pc14, pc21, pc22, pc23, pc24, pc31, pc32, pc33, pc34 ∈ Z

A solution to the ILP problem (arranged as a matrix) is:
(

1 0 0 0
0 0 0 3
1 0 0 0

)
.

As mentioned above, we are interested in maximizing the resource utilization
for the given CI and V C. For this reason, we provide a test sequence (or a
test suite) that leads to the maximal resource utilization of a particular cloud
infrastructure, i.e., when no more VMs can fit. We furthermore assume that such
test generation technique can be treated as a boundary [16] one, by assigning
the boundary values on the maximal resource utilization.

Once the fullest placement configuration is obtained, a test suite needs to
be derived from this placement configuration. A test sequence, in this case, is a
request sequence α. To determine the order and the grouping of VMs on each
request, we introduce the in-order conjecture.

In-order conjecture: Given a sequential list of individual elements (or VMs)
with different resource utilization to allocate into the containers (or hosts),

Quality Estimation of Virtual Machine Placement in Cloud Infrastructures 223

sequentially allocating the elements in the list sorted in ascending order by their
overall resource utilization is the most difficult arrangement to allocate.

The reasoning behind the in-order conjecture is that as the containers fill
up available resources, independently from the allocation strategy. As a conse-
quence, allocating the largest elements at the end is only possible if the allocation
chooses the best configuration. As a support to this claim, it can be seen that
heuristic methods for greedy allocation algorithms obtain their best results when
allocating in reverse order [6,12].

Due to the in-order conjecture, to thoroughly test the placement modules
under stressful conditions, each request contains a single VM and the requests
are arranged in ascending order with respect to their overall resource utilization,
namely u(vmj) =

∑p
k=1 vmjk .

In the running example, α = 〈0, 0, 0, 1〉〈0, 0, 0, 1〉〈0, 0, 0, 1〉〈1, 0, 0, 0〉〈1, 0, 0, 0〉
is a test suite of one sequence. This is a request for three VMs of type 4, and two
VMs of type 1. This test suite can be further applied to an IUT of an algorithm A,
and the verdict about its quality can be made based on the distance function d.
As the optimal algorithm/implementation O we consider an idealized algorithm
(oracle) that provides the solution PC to the ILP problem.

The set of constraints for the ILP problem can differ. In particular, two cases
are possible: (i) all the hosts are empty when the test sequence represented by a
set of VM placement requests, is applied; (ii) the IUT has an initial placement
configuration which corresponds to already executed sequences of requests. In
case (i), we in fact assume that the VM placement implementation is initialized,
i.e., before any test sequence we are allowed to apply a corresponding reliable
RESET. If that is the case, then the test sequence that brings the IUT to full
hosts’ resource utilization should be applied. In case (ii), the VM placement
module works with an initial placement configuration PCI. In other words, the
hosts or containers are currently executing (hosting) VMs. This fact can be
interpreted by an absence of the corresponding RESET input. In other words,
the IUT is not switched off nor tested in a complete isolation. In fact, it receives
the boundary test suite given its current configuration (PCI). The latter means
that the user requests that have been previously implemented, are not lost. In
order to derive the proper test sequence one can adapt the set of constraints
listed above. We still maximize the function f , however we now assume that
some of the unknowns of the ILP are bounded by a positive integer. This fact
can be expressed by the following system of linear constraints:

pcij ≥ pciij ;∀i = 1, . . . ,m; j = 1, . . . , n

In order to obtain a test suite, the placement configuration to be considered is
the matrix PC −PCI, where PC is the matrix obtained from the solution of the
ILP problem. Consider the placement in the running example, assume that the
initial configuration is exactly as shown. PC − PCI =

(
0 0 0 2
0 0 1 1
1 0 0 0

)
−

(
0 0 0 1
0 0 1 0
1 0 0 0

)
=(

0 0 0 1
0 0 0 1
0 0 0 0

)
. The obtained test sequence is the following: αI = 〈0, 0, 0, 1〉〈0, 0, 0, 1〉.

224 J. López et al.

5.2 Static Code/algorithm Analysis

Given the resource utilization function f together with the distance d measuring
the optimality of a given solution, one can use various static code/algorithm
analysis techniques in order to estimate their quality. Such analysis can, on one
hand include a random simulation of the placement algorithm A, and on the
other hand can allow to perform the backtracking to discover if a given value
v of a distance can eventually be reached. In particular, given the algorithm A
that is implemented in the VM placement module under test, the value v of the
distance d between the computed resource utilization for the output of algorithm
A and the optimal algorithm O that corresponds to the proper ILP solution, the
question arises: does there exist an input α to the algorithms A and O, such
that d(f(CI, V C, sim(A, α)), f(CI, V C, sim(O, α)) ≥ v. This problem can be
represented as a formal verification or model checking issue and the possibility
and complexity of solving such issue essentially depend on the definition of the
functions d and f . In our case, the way that the distance from an optimal solution
as well as the resource utilization function are defined, allows to reduce the
problem to a simpler one, using the following system of linear inequalities over
the natural numbers:

m∑

i=1

n∑

j=1

(
(pcij − pcoij) ∗

p∑

k=1

vmjk

)
≥ v Or

m∑

i=1

n∑

j=1

(
(pcij − pcoij) ∗

p∑

k=1

vmjk

)
≤ −v

Here, sim(O, α) = PCO and sim(A, α) = PC.
If this problem has a solution then there exists a set of requests taking the

cloud infrastructure from the initial configuration to that one where the distance
between the current solution and an optimal one is greater or equal to v.

5.3 Dynamic VM Placement Execution

We assume that dynamic VM placement quality estimation involves the execu-
tion of the system under test, i.e., the placement module itself. In this case, the
distance function d can serve as an oracle that allows either to take the deci-
sion about the optimality of the system under test, or can help to provide an
appropriate alarm during the system monitoring.

The distance function d can also be used when the IUT, i.e., the VM place-
ment module, has a limited controllability. Consider the case when no inputs can
be applied to the IUT and the tester can only observe the user VM placement
requests as well as the resulting configurations. Whenever an input sequence
α = r1 . . . rl is observed, one can compute the value of the f function for the
current resource utilization, after the last request rl was processed. In this case,
for the given input α = r1 . . . rl the optimal solution of O can be calculated.
Together with that, the distance between the resource utilization of the pro-
vided solution f(V I, V C, sim(A, α)) that is observed by the tester and the opti-
mal solution f(V I, V C, sim(O, α)) can be computed via the application of the

Quality Estimation of Virtual Machine Placement in Cloud Infrastructures 225

function d. Similar to the first case (Sect. 5.2), given the constant v representing
the largest allowed distance, whenever the computed distance is greater or equal
to v an alarm signaling this fact can be produced.

We note that for optimization and scalability reasons some additional calcu-
lations can be performed in advance, before the monitoring itself. For example,
one can collect specific critical input sequences for which the resulting value of
the d function must be computed at run-time. For the set of such user requests,
a tester can pre-calculate the optimal solutions and the corresponding values of
the function f . Whenever such request sequence is observed, the tester only com-
pares the value v with the given distance and signals when the VM placement
produces the solution farther than required. If the value v remains constant,
one can use a combination between the approaches from Sects. 5.2 and 5.3. If
the verification analysis can return all possible user requests that lead to the
result which is very far from the optimal solution, w.r.t. the defined f and d
functions, these sequences of requests can be stored additionally. Whenever a
preamble of any of such sequence is observed during the monitoring, a proper
warning can be produced regarding the distance to the optimal resource uti-
lization. Consider the running example for v = 4, where the request sequence
α = 〈0, 0, 0, 1〉〈0, 0, 1, 0〉〈1, 0, 0, 0〉 has been observed. If a new request 〈1, 0, 0, 0〉
is observed, f(V I, V C, sim(A, α)) = 11. However, f(V I, V C, sim(O, α)) = 16
and thus, a monitoring alert is produced.

Finally, a heuristic to compute the optimal resource utilization can be used
in order to provide verdicts at run-time. Adding constraints similar to the non-
initialized resource utilization, but over the sum of all different requested types
of VMs makes the maximal resource utilization equals the sum of all requested
resources. Thus, the usage of this heuristic can essentially improve the monitoring
by reducing the complexity of the corresponding ILP problem.

6 Experimental Evaluation

In order to validate our approach experimental evaluation is presented. We pro-
pose a methodology, which is based on three stages, namely: (i) The generation
of test suites for different cloud infrastructures and VM configuration setups
using the boundary testing approach; (ii) The simulation of the obtained test
suite as a request sequence for different placement algorithm implementations
(IUTs); and finally (iii) Evaluating the quality of the IUTs using the defined
distance function d.

Experimental Setup. To generate the test suites, the Gurobi [19] tool was
employed for solving the ILP problems. After obtaining the proper values for the
placement configuration semi-manual processes were involved, namely translat-
ing the solutions into the test suites and executing the simulator against them.

In this work, the simulator has been developed in order to perform the exper-
imental evaluation. It is an ad-hoc simulator written in Java. More information
about the tool, including its source code can be found in [13]. Currently, the sim-
ulator implements two algorithms. The first algorithm is a greedy first fit (FF)

226 J. López et al.

algorithm. The FF algorithm places the requested VM into the first host that
is able to fit it. The second algorithm is an available random (AR) algorithm.
The AR algorithm pre-filters the hosts in the cloud infrastructure. The resulting
list of hosts from the AR algorithm contains the hosts that can fit the requested
VM. Later on, the selection of the host is done with a uniformly distributed
random choice. An interesting note on the AR algorithm is that AR with addi-
tional filters is the algorithm used in the placement module of the well-known
OpenStack virtualization platform [18]. Due to the fact that random algorithms
might generate different placement configurations, thus different distances can
be obtained, our simulator runs each simulation 100 times and computes the
average distance. Since we focus on the initial placement problem and not on re-
allocation/migration, when an unfulfillable request comes the algorithms reject
the request, and continue accepting the following requests (if any).

Experimental Results. To present our obtained results, we first summarize
the test cases generated using the Gurobi software (Table 1). As it can be seen,
the test suite generation is quite fast. All the test cases have been introduced
into the simulator. All simulations and test generation were run on a MacBook
Pro with a 2.3 GHz Intel Core i5 CPU, and 16 GB of RAM @ 1333 MHz DDR3.

Table 1. Test cases

TC Environment ILP details Sol. time Comments

1 m = 2, n = 4, p = 2 8 unknowns,
4 constraints

0 m 0.018 s A very small example

2 m = 3, n = 4, p = 2 12 unknowns,
6 constraints

0 m 0.017 s The paper’s running exam-
ple. Gurobi input and solution
files available in [13]

3 m = 3, n = 4, p = 2 12 unknowns,
6 constraints

0 m 0.020 s Increased hosts’ capacity, con-
sidering real server capacity

4 m = 9, n = 4, p = 2 36 unknowns,
18 constraints

0 m 0.048 s Real hosts’ capacity, bigger
cloud infrastructure

In Table 2, we summarize the simulation results. It can be clearly seen that
the distances (from an optimal) of the FF algorithm are smaller than the dis-
tances of the AR algorithm for all test cases. Further, the simulation is also
performed faster. These results are in fact expected since the FF algorithm does
not perform any pre-selection of hosts. As a conclusion, the quality of the algo-
rithm used in the widespread OpenStack placement module is lower than a very
simple first fit algorithm.

Quality Estimation of Virtual Machine Placement in Cloud Infrastructures 227

Table 2. Simulation results

TC |α| FF Avg. d AR Avg. d FF Sim. time AR Sim. time

1 4 0 4.45 0 m 0.005 s 0 m 0.025 s

2 5 5 5.5 0 m 0.007 s 0 m 0.018 s

3 78 35 79.25 0 m 0.07 s 0 m 0.087 s

4 270 210 230.95 0 m 0.219 s 0 m 0.443 s

7 Conclusions

In this paper, we have proposed a distance function, which allows to effectively
assess the quality of a placement module implementation. The metric being
introduced measures the distance between the IUT resource utilization and an
optimal resource utilization. Furthermore, different approaches for testing, mon-
itoring, and verification of the IUT, represented by a VM placement module
in a cloud infrastructure, have been proposed; these approaches are coherent
with the proposed distance. In order to validate our approach, a simulator of
such infrastructures has been developed. Interesting results have been obtained,
including the assessment of the placement algorithm used in the widespread
OpenStack platform, which is very far from the optimal with respect to resource
utilization.

This paper presents an initial approach to effectively assess the quality of
placement modules. Different aspects of our approach can be improved and
extended. First, we plan to generate test suites for real case studies to further
validate our approach. Also, our simulator can be expanded to (i) parse the cloud
infrastructure and VM configuration setup from a defined file format, and (ii)
based on the configurations, automatically generate the test suites and simulate
the results by integrating the ILP solution into our tool. Furthermore, we intend
to study other criteria for the placement optimality, for example, energy con-
sumption, performance, etc., and propose and calculate the distances for them.
One of the interesting questions is in fact the study of multi-criteria evaluation of
the optimality using the listed parameters. The previously mentioned extensions
and enhancements represent the future work for the short term.

Acknowledgments. The authors would like to thank Professor Nina Yevtushenko
for fruitful discussions. The results obtained in this work were partially funded by
the Celtic-Plus European project SENDATE, ID C2015/3-1; French National project
CARP (FUI 19); Bilateral contracts with Orange Labs.

228 J. López et al.

References

1. Babu, K.R.R., Samuel, P.: Virtual machine placement for improved quality in IAAS
cloud. In: 2014 Fourth International Conference on Advances in Computing and
Communications, pp. 190–194, August 2014

2. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive
heuristics for energy and performance efficient dynamic consolidation of virtual
machines in cloud data centers. Concurrency Comput. Pract. Exp. 24(13), 1397–
1420 (2012). http://dx.doi.org/10.1002/cpe.1867

3. Bonde, D.: Techniques for Virtual Machine Placement in Clouds. Master’s thesis,
Indian Institute of Computer Science and Engineering (2010)

4. Calheiros, R.N., Ranjan, R., Beloglazov, A., De-Rose, C.A.F., Buyya, R.:
Cloudsim: a toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50
(2011). http://dx.doi.org/10.1186/s13677-015-0045-5

5. Chowdhury, M.R., Mahmud, M.R., Rahman, R.M.: Implementation and perfor-
mance analysis of various VM placement strategies in cloudsim. J. Cloud Comput.
4(1), 20 (2015). http://dx.doi.org/10.1186/s13677-015-0045-5

6. Culberson, J.C., Luo, F.: Exploring the k-colorable landscape with iterated greedy.
Cliques, coloring, and satisfiability: second DIMACS implementation challenge, pp.
245–284 (1996)

7. Dantzig, G.: Linear Programming and Extensions. Princeton University Press,
Princeton (1963)

8. Fei, M., Feng, L., Zhen, L.: Multi-objective optimization for initial virtual machine
placement in cloud data center. J. Inf. Comput. Sci. 9(16), 5029–5038 (2012)

9. Gohil, B., Shah, S., Golechha, Y., Patel, D.: A comparative analysis of virtual
machine placement techniques in the cloud environment. Int. J. Comput. Appl.
156(14), 12–18 (2016)

10. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs.
Bull. Am. Math. Soc. 64(5), 275–278 (1958)

11. Khebbache, S., Hadji, M., Zeghlache, D.: Scalable and cost-efficient algorithms for
VNF chaining and placement problem. In: 2017 20th Conference on Innovations in
Clouds, Internet and Networks (ICIN), pp. 92–99, March 2017

12. Lewis, R.: A general-purpose hill-climbing method for order independent minimum
grouping problems: a case study in graph colouring and bin packing. Comput. Oper.
Res. 36(7), 2295–2310 (2009)

13. López, J.: Vmplacementsim. Web Resource. https://github.com/jorgelopezcoro
nado/VMPlacementSim

14. Mann, Z.A., Szabó, M.: Which is the best algorithm for virtual machine placement
optimization? Concurrency Comput. Pract. Exp. 29(10), e4083-n/a (2017). e4083
cpe.4083

15. Masdari, M., Nabavi, S.S., Ahmadi, V.: An overview of virtual machine placement
schemes in cloud computing. J. Netw. Comput. Appl. 66, 106–127 (2016)

16. Mathur, A.P.: Foundations of Software Testing, 1st edn. Addison-Wesley
Professional, Indianapolis (2008)

17. Mechtri, M., Benyahia, I.G., Zeghlache, D.: Agile service manager for 5G. In:
NOMS 2016–2016 IEEE/IFIP Network Operations and Management Symposium,
pp. 1285–1290, April 2016

18. OpenStack: Deep dive: virtual machine placement in openstack: web resource.
https://platform9.com/blog/virtual-machine-placement-openstack/

http://dx.doi.org/10.1002/cpe.1867
http://dx.doi.org/10.1186/s13677-015-0045-5
http://dx.doi.org/10.1186/s13677-015-0045-5
https://github.com/jorgelopezcoronado/VMPlacementSim
https://github.com/jorgelopezcoronado/VMPlacementSim
https://platform9.com/blog/virtual-machine-placement-openstack/

Quality Estimation of Virtual Machine Placement in Cloud Infrastructures 229

19. Optimization, G., et al.: Gurobi optimizer reference manual. 2, 1–3 (2012). http://
www.gurobi.com

20. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall Inc., Upper Saddle River (1982)

21. Pires, F.L., Barán, B.: Virtual machine placement literature review. CoRR
abs/1506.01509 (2015). http://arxiv.org/abs/1506.01509

22. Vazirani, V.V.: Approximation Algorithms. Springer-Verlag New York Inc., New
York (2001)

http://www.gurobi.com
http://www.gurobi.com
http://arxiv.org/abs/1506.01509

Homing Sequence Derivation with Quantified
Boolean Satisfiability

Hung-En Wang1, Kuan-Hua Tu1, Jie-Hong R. Jiang1,2(B),
and Natalia Kushik3,4

1 Graduate Institute of Electronics Engineering,
National Taiwan University, Taipei, Taiwan

jhjiang@ntu.edu.tw
2 Department of Electrical Engineering,

National Taiwan University, Taipei, Taiwan
3 SAMOVAR, CNRS, Télécom SudParis, Université Paris-Saclay, Évry, France

4 Tomsk State University, Tomsk, Russia

Abstract. Homing sequence derivation for nondeterministic finite state
machines (NFSMs) has important applications in system testing and
verification. Unlike prior methods based on explicit tree based search,
in this work we formulate the derivation of a preset homing sequence in
terms of a quantified Boolean formula (QBF). The formulation allows
implicit NFSM representation and compact QBF encoding for effective
computation. Different encoding schemes and QBF solvers are evaluated
for their suitability to homing sequence derivation. Experimental results
show the generality and feasibility of the proposed method.

1 Introduction

Model based testing techniques rely on formal specifications of the system under
test. Whenever such systems are reactive, i.e., are working in a request-response
mode, one of the appropriate formal models to describe the system behaviour
is the finite state machine (FSM). Therefore, a significant branch of research in
model based testing is devoted to FSM based testing.

Classical FSM based testing techniques, which are known to start with the
W-method [4,18] are mostly based on three main assumptions/steps: (1) to reach
a given state from the initial one, (2) to traverse the transitions under each input,
and (3) to distinguish the state that was reached from all other FSM states. The
derivation of the corresponding test sequences in this case is based on solving
state identification problems for the specification FSM [11].

FSM state identification is performed via an application of either distinguish-
ing (for the initial state) or homing/synchronizing (for the current or final FSM
state) sequences. The length of these sequences as well as the complexity of
their derivation significantly depend on the type of the specification FSM. For
distinguishing sequences (DSs), even for complete and deterministic machines
the decision problem of DS existence is PSPACE-complete. However, for homing

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 230–242, 2017.
DOI: 10.1007/978-3-319-67549-7 14

Homing Sequence Derivation with Quantified Boolean Satisfiability 231

and synchronizing sequences (HSs and SSs) for deterministic complete machines
the upper bounds on the corresponding length are known to be polynomial [14].

For nondeterministic FSMs, the complexity upper bounds rise higher. The
existence check becomes PSPACE-complete while the length of the shortest HS
or SS for the machine is exponential with respect to the number of states. Devel-
opment of complex (embedded) systems that can have nondeterministic behav-
iour due to various reasons, such as limited controllability and observability,
therefore motivates studying the possibilities for reducing the complexity, at
least for specific FSM classes [19].

In this paper, we consider non-initialized complete nondeterministic FSMs
and we propose to improve the performance of HS existence checking and deriva-
tion using scalable FSM representation. We note that existing solutions for this
problem mostly rely on the derivation of the homing tree which is built based on
the successor tree [8] with the proper usage of truncating/termination rules [14].
For nondeterministic machines, not only the width but the height of this tree
can grow exponentially before the nodes are truncated and thus, any search of
the shortest HS in the homing tree is either length-bounded or requires exponen-
tial number of steps. Note that in this case, one of the most costly operations
is shown to be the computation of the set of successors of a subset of FSM
states [5]. In this paper, we circumvent deriving the homing tree and computing
successor state sets.

The enabling technology of our computation is quantified Boolean formula
solving, which has been advanced in recent years [6,12,17]. Quantified Boolean
formulas (QBFs) are an extension to propositional formulas for their allowance of
universal and existential quantification over variables. The additional quantifiers
make QBFs exponentially more succinct than quantifier-free formulas in encoding
many decision problems. Essentially, quantified Boolean satisfiability (QSAT) is
PSPACE-complete in contrast to the NP-completeness of its Boolean satisfiability
(SAT) counterpart. The generality of QBF and advancement of QSAT motivate
our study of HS existence checking and derivation with QBF solving.

We implicitly represent the specification FSM as a Boolean circuit/formula.
The HS existence checking and derivation can thereby be reduced to the corre-
sponding QBF solving. In addition, we propose several techniques to enhance
the scalability for QBF solving of homing sequences. Experimental results show
promising applicability of our method.

The rest of this paper is organized as follows. After introducing backgrounds
of homing sequence and QBF in Sect. 2, we present the QBF encoding of homing
sequence computation in Sect. 3. We discuss some crucial implementation issues
in Sect. 4. Experimental evaluation is then given in Sect. 5. Finally, we conclude
this paper and outline future work in Sect. 6.

2 Preliminaries

2.1 Finite State Machine and Homing Sequence

A finite state machine (FSM) is a five tuple M = (Q,Qinit , I, O, T), where Q is
a finite set of states, Qinit ⊆ Q is the set of initial states, I is the input alphabet,

232 H.-E. Wang et al.

O is the output alphabet, and T ⊆ Q × I × O × Q is the transition relation.
In the sequel, we assume an FSM is uninitialized, that is, Qinit = Q. Since the
initial state set is assumed to be all possible states, we omit specifying Qinit in
the sequel. We write |Q| to denote the cardinality of the state set Q; we write |I|
and |O| to denote the sizes of the input and output alphabets, respectively; we
write |T | to denote the number of transitions in T . A trace is a sequence of the
form q0, i1, o1, q1, i2, o2, . . . , qn, such that (qk−1, ik, ok, qk) ∈ T for all 1 ≤ k ≤ n.

A deterministic FSM (DFSM) is an FSM, where for each current-state input
pair (q, i) ∈ Q×I, there exists at most one output next-state pair (o, q′) ∈ O×Q
such that (q, i, o, q′) ∈ T . Otherwise, the machine is a nondeterministic FSM
(NFSM). A finite state machine is complete if for each current-state input pair
(q, i), there exists at least one output next-state pair (o, q′) such that (q, i, o, q′) ∈
T . A finite state machine is called (fully) observable if for each current-state
input output triple (q, i, o), there exists at most one next-state q′ such that
(q, i, o, q′) ∈ T .

Given an FSM, a homing sequence (HS) is an input sequence such that after
running the machine under this input sequence, by observing the corresponding
output response, the final state after the execution can be uniquely determined.
A homing sequence can be either nonadaptive (or called preset), which is a
fixed input strategy regardless of the output response, or adaptive, which is
an input strategy that determines the next input symbol based on the so-far
observed output response. In this work, we consider the problem of finding a
preset homing sequence for a complete NFSM.

An uninitialized complete NFSM has the following property.

Proposition 1. Given an uninitialized complete NFSM, if there exists a homing
sequence of length n, then there exists a homing sequence of length n + 1.

It is because given an uninitialized complete NFSM, with a homing sequence of
length n, we can easily extend it to a length n+1 homing sequence by adding an
arbitrary input symbol to the head of the sequence. After taking the first state
transition, the possible current states are a subset of all states. Hence, applying
the original homing sequence of length n, the final state can be determined by
observing the output sequence.

Note that Proposition 1 is especially interesting for non-observable FSMs for
which a prolongation of a homing sequence is not necessarily a homing sequence
itself. However, it shows that any prefix can be added to a given homing sequence
without ruining the property of the final state identification via the observation
of an output response.

2.2 Quantified Boolean Formula

A Boolean variable takes a value in the Boolean domain B = {⊥,�}, with ⊥
and � representing false and true, respectively. A Boolean formula φ con-
sists of Boolean variables and Boolean connectives, which we denote negation,
conjunction, disjunction, implication, and equivalence by symbols ¬, ∧, ∨, →,
and ↔, respectively. A vector of Boolean variables is denoted by a letter in

Homing Sequence Derivation with Quantified Boolean Satisfiability 233

bold, such as x of variables (x1, x2, . . . , xn). Given two vectors of Boolean vari-
ables x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), we use “x = y” to denote∧n

i=1 xi ↔ yi, the bit-wise equivalence between x and y.
For a Boolean formula φ and a Boolean variable x, we use φ|x to denote the

induced formula obtained from φ by assigning variable x to �. Similarly, φ|¬x

denotes the formula obtained from φ by assigning variable x to ⊥. A satisfying
assignment is a complete assignment of truth values to each variable that makes
the formula evaluate to �. The on-set of a Boolean formula φ is the collection
of its satisfying assignments to φ.

A literal � is either a Boolean variable x or its negation ¬x. A clause is
a disjunction of literals. A Boolean formula is in the conjunctive normal form
(CNF) if it is a conjunction of clauses.

A quantified Boolean formula (QBF) Φ can be expressed in a prenex form as
follows.

Q1x1, . . . , Qkxk.φ, (1)

where Qi ∈ {∃,∀} is the quantifier over variable xi, and φ is a quantifier-free
Boolean formula over variables x1, . . . , xk. A variable xi with Qi = ∃ (respec-
tively Qi = ∀) is referred to as an existential variable (respectively a universal
variable). We call Q1x1, . . . , Qkxk the prefix of Φ, denoted Φ.pfx, and call the
quantifier-free formula φ the matrix of Φ, denoted Φ.mtx. A prenex-form QBF is
called in the prenex conjunctive normal form (PCNF) if the matrix is expressed
as a CNF formula. In the sequel, unless otherwise said, we assume a QBF is
expressed in PCNF.

Given the QBF Φ of (1), the quantification level of variable xi is defined to
be the number of quantifier alternations between the quantifiers ∃ and ∀ from
left (outer) to right (inner) plus one. A QBF is of l quantification levels if the
number of quantifier alternations between ∃ and ∀ from Q1 to Qk is l − 1. In
this work, our considered QBFs are of quantification levels 2 or 3.

The QBF ∃x1, Q2x2, . . . , Qkxk.φ is true if one of Q2x2, . . . , Qkxk.φ|x1 and Q2

x2, . . . , Qkxk.φ|¬x1 is true. On the other hand, the QBF ∀x1, Q2x2, . . . , Qkxk.φ
is true if both Q2x2, . . . , Qkvk.φ|x1 and Q2x2, . . . , Qkvk.φ|¬x1 are true. A QBF Φ
is true if there exist Skolem functions for the existential variables of Φ such that
substituting the existential variables with their corresponding Skolem functions
in Φ.mtx makes the resultant formula a tautology. By duality, a QBF Φ is false
if there exist Herbrand functions for the universal variables of Φ such that sub-
stituting the universal variables with their corresponding Herbrand functions in
Φ.mtx makes the resultant formula unsatisfiable. A detailed exposition of Skolem
and Herbrand functions can be found in [1].

3 QBF for Bounded-Length Homing Sequence Existence
Checking and Derivation

Given a uninitialized complete NFSM M = (Q, I,O, T), we aim at finding a
shortest homing sequence. We search from length 1 to the theoretical upper

234 H.-E. Wang et al.

bound 2(
|Q|
2) − 1 of a shortest homing sequence [10]. We present the QBF for-

mulation of the bounded homing sequence checking as follows.
Since Q, I, O are all finite, we perform Boolean encoding on the states, input

symbols, and output symbols with current-state variables s, next-state variables
s′, input variables x, and output variables y. Then the transition relation T
of the machine can be represented by the characteristic function T (s,x,y, s′)
in terms of the encoding Boolean variables. In our QBF formulation, we rely
on time-frame expansion and denote the variables at the tth time-frame with a
superscript index t.

Then the QBF corresponding to the existence of homing sequence of length
n can be expressed as follows.

∃X,∀Y ,∀S,∀S∗.[Δ(n)(X,Y ,S) ∧ Δ(n)(X,Y ,S∗) → (sn = s∗n)], (2)

where variables S = (s0, . . . , sn), X = (x1, . . . ,xn), Y = (y1, . . . ,yn), S∗ =
(s∗0, . . . , s∗n), and Δ(n) is the conjunction of the transition relation of n time-
frames, i.e., Δ(n)(X,Y ,S) =

∧n
k=1 T (sk−1,xk,yk, sk) and Δ(n)(X,Y ,S∗) =

∧n
k=1 T (s∗k−1,xk,yk, s∗k). In the expression, the variables s∗ are fresh variables

as the instantiated versions of their counterparts s.
The formula asks whether there exists an input sequence of length n, such

that for any two traces with same output response, we can always conclude that
the final states of the two traces are the same. Clearly, an input sequence satisfies
such a constraint if and only if it is a homing sequence.

Proposition 2. Formula (2) is true if and only if the underlying NFSM has a
homing sequence of length n.

Proposition 3. If Formula (2) is true, then the Skolem functions for variables
X correspond to a homing sequence of the underlying NFSM.

4 Implementation

In this section, we discuss some implementation details in generating Formula (2)
for QBF solving.

4.1 Input Symbol Encoding

The size of input alphabet may not necessarily be in the form of 2j for some
j. If some binary code is unused in representing any input symbol, the QBF
solver may assign the unused code for the existential variables. In this case, the
solver can falsify the transition relation and make Formula (2) true. However,
the unused code does not correspond to any input symbol and cannot form a
‘legal’ homing sequence. Hence unused codes for input symbol encoding should
be avoided.

There are two methods to eliminate unused input codes. The first one is to
modify the matrix of Formula (2) by restricting xt, for t = 1, . . . , n, in For-
mula (2) to only used codes. Essentially, the characteristic functions expressing

Homing Sequence Derivation with Quantified Boolean Satisfiability 235

the used codes of x1, . . . , xn are conjuncted with Formula (2). The second one
is to assign two or more codes to the same input symbol to make all codes
used, which can avoid adding more clauses to Formula (2), and gain flexibility
in circuit minimization.

In our implementation, we used
log2 |I|� bits to encode the input symbols.
Consider the input alphabet I with j symbols. It requires
log2 j� bits for the
encoding. We let each of the first 2�log2 j� − j symbols be associated with two
consecutive codes, and let each of the rest be associated with one of the remain-
ing codes. For instance, if the input alphabet is {a, b, c}, both codes “00” and
“01” are associated with ‘a’, and “10” and “11” are associated with ‘b’ and ‘c’,
respectively.

4.2 Minimization of Transition Relation

To improve the efficiency of QBF solving, it is desirable to simplify the matrix
of a QBF. Therefore, minimizing the transition relation of the NFSM under
homing sequence derivation helps to simplify Formula (2) and improve QBF
solving efficiency.

The characteristic function of the transition relation can be naively built by
the on-set of T , i.e., by disjoining the characteristic function of each transition,
which corresponds to a conjunction of literals of state, input, and output vari-
ables. It can be represented as a Boolean formula or a logic circuit. Two-level
or multi-level logic minimization algorithms can be applied to reduce the size of
the formula/circuit.

To simplify the QBF matrix, one may also exploit different state encoding
methods. In our implementation, we study the effects of binary encoding and
onehot encoding1. The empirical results on our generated benchmark instances
are shown in Table 1, where Column “|T |” shows the number of transitions in T
of each NFSM, Columns “#gates (bin)” and “#gates (1hot)” show the numbers
of gates in the final simplified circuits under binary state encoding and onehot
encoding, respectively, and Column “ratio (bin/1hot)” shows the ratio of the gate
count of binary encoding to the gate count of onehot encoding. In the experi-
ments, the input encoding method described at the end of Sect. 4.1 is applied,
with the same encoding strategy applied on output symbols. Also, circuit mini-
mization is applied on each case. Note that unlike input encoding, unused state
codes do not affect the correctness of QBF analysis. We do not assign multiple
codes for one state; otherwise, this encoding may introduce state equivalence in
our formula and complicate the homing sequence derivation. Encoding for output
symbols has no such an unused code problem, too. In the experiment, however,
output is encoded in the same way as the input. As can be seen, binary encoding
yields gate counts about 70% to 90% of those yielded by onehot encoding.

1 By onehot encoding, n states q1, q2, . . . , qn are encoded with n bits b1, b2, . . . , bn, one
for each state, such that state qi, i ∈ {1, . . . , n}, is coded with bi = 1 and bj = 0 for
j �= i.

236 H.-E. Wang et al.

Table 1. Gate count comparison under different state encodings

Case |Q|/|I|/|O| |T | #gates (bin) #gates (1hot) Ratio (bin/1hot)

0 5/2/2 13 43 64 0.67

1 5/2/2 17 39 60 0.65

2 5/2/2 18 50 76 0.66

3 5/2/2 17 38 54 0.70

4 5/2/2 14 37 58 0.64

5 10/5/5 153 480 531 0.90

6 10/5/5 139 466 566 0.82

7 10/5/5 147 451 527 0.86

8 10/5/5 154 475 591 0.80

9 10/5/5 142 459 536 0.86

10 13/7/7 371 1071 1169 0.92

11 13/7/7 385 1092 1214 0.90

12 13/7/7 384 1067 1197 0.89

13 13/7/7 381 1046 1172 0.89

14 13/7/7 394 1073 1200 0.89

15 15/8/8 517 1435 1758 0.82

16 15/8/8 567 1507 1760 0.86

17 15/8/8 528 1463 1677 0.87

18 15/8/8 539 1421 1723 0.82

19 15/8/8 523 1451 1700 0.85

20 20/10/10 1087 3211 3563 0.90

21 20/10/10 1147 3243 3539 0.92

22 20/10/10 1071 3130 3692 0.85

23 20/10/10 1094 3101 3482 0.89

24 20/10/10 1116 3234 3637 0.89

4.3 QBF Negation for Quantification Level Minimization

Simplifying transition relation is in general desirable. It is unclear, however,
whether to represent the transition relation in two-level or multi-level circuits,
especially when Tseitin transformation [16] is applied to convert a circuit into a
CNF formula for PCNF-based QBF solvers. Tseitin transformation2 uses inter-

2 In Tseitin transformation, an intermediate variable is introduced for each internal
gate output, and a number of clauses are generated to characterize the relation of
consistent valuations between input and output variables of each gate. For example,
the circuit in Fig. 1(a) can be converted into the CNF formula (x∨ ¬u) ∧ (y ∨ ¬u) ∧
(¬x∨¬y∨u)∧(¬u∨w)∧(¬z∨w)∧(u∨z∨¬w), in which two intermediate variables
u and w are used and the first (resp. last) three clauses describe u ↔ (x ∧ y) (resp.
w ↔ (u ∨ z)).

Homing Sequence Derivation with Quantified Boolean Satisfiability 237

mediate variables in circuit-to-CNF conversion. It makes the final QBF having
an extra innermost layer of existential quantification over these intermediate
variables. That is, Formula (2), which is of two quantification levels, will become
a QBF with three quantification levels of the following form

∃X,∀Y ,∀S,∀S∗,∃Z.φ, (3)

where φ is a CNF formula converted from a circuit representing [Δ(n)(X,Y ,S)∧
Δ(n)(X,Y ,S∗) → (sn = s∗n)] and variables Z are the intermediate variables
introduced in the CNF conversion. Having many such intermediate variables
introduced by Tseitin transformation for each internal gate output of the logic
circuit may degrade QBF solving performance.

Fig. 1. (a) A logic circuit implementing function (x ∧ y) ∨ z. (b) An AIG representing
the circuit in (a), with each circle representing an AND gate, and a bubble on an edge
representing an inverter.

The minimization procedure represents the transition relation in terms of an
and-inverter graph (AIG) [13], which consists of 2-input AND gates and invert-
ers. Figure 1(b) shows an example of AIG of the circuit in Fig. 1(a), where a
circle represents a 2-input AND gate and a bubble on an edge represents an
inverter. AIGs allow compact representation of Boolean circuits and are widely
used in logic synthesis and verification [7]. As shown in Table 1, since the number
of gates in the minimized circuit (AIG) is about three times the number |T | of
transitions, the introduced extra variables will be more than those of the on-set
approach. To be seen in the experiments in Sect. 5, the naive on-set representa-
tion of the transition relation, which corresponds to a circuit consisting of |T |
multi-input AND gates and 1 multi-input OR gate, has only |T | intermediate
variables and sometimes makes QBF solving more efficient.

It has been observed that a QBF and its negation often exhibit different
solving characteristics [1]. Negating Formula (2) through Tseintin transformation
yields

∀X,∃Y ,∃S,∃S∗,∃Z.ψ, (4)

where ψ is a CNF formula converting from the circuit representing
¬[Δ(n)(X,Y ,S)∧Δ(n)(X,Y ,S∗) → (sn = s∗n)] and variables Z are the inter-
mediate variables by the Tseitin conversion. Observe that Formula (4) has only
two quantification levels, in contrast to the three quantification levels of For-
mula (3). The experimental comparison will be shown in Sect. 5.

238 H.-E. Wang et al.

5 Experimental Results

The proposed QBF method is tested on a Linux machine with Intel Xeon E5-
2630 CPU (2.3 GHz) and 200 GB RAM. Several state-of-the-art QBF solvers are
tested and compared, including DepQBF [12], RAReQS [6], QELL [17], and the
2QBF solver in Berkeley ABC [2,3]. We randomly generated 25 test cases by the
tool FSMTest-1.0 [15] for performance evaluation.3 Binary encoding is applied,
and for input encoding, all the codes are used as discussed in Sect. 4.1. Circuit
minimization is also applied to minimize the transition relation of each case.
Then Tseitin transformation is applied to convert the formulas into PCNF for
DepQBF, RAReQS, and QELL. For each case, its potential homing sequences
of length k, for k = 1, . . . , 1023, are tested under a timeout limit of 7200 s.
In the experiments, we find a homing sequence by iteratively increasing the
length k by one and solving the corresponding formula. This searching strategy
ensures that the derived homing sequence is of the minimum length. For the cases
where no-homing sequence is found, this searching strategy also guarantees that
there exists no homing sequence of length up to the longest length k successfully
checked before timeout. Note that one may exploit Proposition 1 to have a binary
search-like strategy starting with some k > 1. If it finds a homing sequence under
k, one can decrease k to look for a shorter homing sequence. Otherwise, one can
increase k by some number to look for a longer homing sequence.

Table 2 shows the statistics of different QBF solvers on solving the 25 test cases.
The number of states, and the sizes of input and output alphabets of each case are
listed in Column “|Q|/|I|/|O|”. For each solver, Columns “result” show the final
answer, which is one of the three outcomes: “SAT” indicating homing sequence
found, “UNSAT” indicating no homing sequence exists, and “TO” indicating time-
out on testing homing sequence existence under a length greater than the number
reported in Columns “len”. Columns “time” show the total solving time (in sec-
onds) of each solver up to the length reported in Columns “len”. Columns “len”
show the longest sequence length successfully checked before termination, which is
the length of the found homing sequence for the SAT case, the length upper bound
for the UNSAT case, and the last verified length for the TO case.

3 We note that the process of FSM generation can be seen as a simple task. However,
deriving an FSM with the corresponding properties such as observability, degree of
non-determinism, etc., makes this task more complex. In the FSM generation process
in [15], a machine that is not observable was automatically dropped to generate
another machine with the same cardinality of input/output alphabet and the same
number of states, which is observable. Note that our QBF formulation is not limited
to observable NFSMs. We experimented with observable FSMs only as even in the
observable case the exponential upper bound on the length of homing sequence is
known to be attainable. On the other hand, for simplicity, the number of outputs was
chosen to be equal to the number of FSM inputs. In total, we generated 25 machines
for which the number of inputs varied from 2 to 10 and the number of states was
in the range from 5 to 20, correspondingly. Note that, in most of the cases, neither
the number of states nor the number of inputs can be represented by an appropriate
power of two. The latter allows to better experiment with our heuristics proposed
for input/state encoding.

Homing Sequence Derivation with Quantified Boolean Satisfiability 239

Table 2. Performance comparison of different QBF solvers

DepQBF RAReQS QELL ABC

Case |Q|/|I|/|O| Result Time Len Result Time Len Result Time Len Result Time Len

0 5/2/2 SAT 0.07 3 TO 7200 2 SAT 0.04 3 SAT 0.28 3

1 5/2/2 TO 7200 560 TO 7200 2 TO 7200 70 TO 7200 53

2 /2/2 SAT 11.32 5 TO 7200 2 SAT 0.15 5 SAT 0.41 5

3 5/2/2 TO 7200 9 TO 7200 2 TO 7200 133 UNSAT 5503 1023

4 5/2/2 TO 7200 7 TO 7200 2 TO 7200 13 TO 7200 13

5 10/5/5 TO 7200 4 TO 7200 1 TO 7200 5 TO 7200 6

6 10/5/5 TO 7200 4 TO 7200 1 TO 7200 5 SAT 818 6

7 10/5/5 TO 7200 4 TO 7200 1 TO 7200 5 TO 7200 6

8 10/5/5 TO 7200 4 TO 7200 1 TO 7200 5 SAT 5293 7

9 10/5/5 TO 7200 4 TO 7200 1 SAT 1122 5 SAT 30.18 5

10 13/7/7 TO 7200 3 TO 7200 1 TO 7200 4 TO 7200 5

11 13/7/7 TO 7200 3 TO 7200 1 TO 7200 4 TO 7200 5

12 13/7/7 TO 7200 3 TO 7200 1 TO 7200 4 TO 7200 5

13 13/7/7 TO 7200 3 TO 7200 1 TO 7200 4 TO 7200 5

14 13/7/7 TO 7200 3 TO 7200 1 TO 7200 4 TO 7200 5

15 15/8/8 TO 7200 3 TO 7200 1 TO 7200 3 TO 7200 4

16 15/8/8 TO 7200 3 TO 7200 1 TO 7200 3 TO 7200 4

17 15/8/8 TO 7200 3 TO 7200 1 TO 7200 3 TO 7200 4

18 15/8/8 TO 7200 3 TO 7200 1 TO 7200 3 TO 7200 4

19 15/8/8 TO 7200 3 TO 7200 1 TO 7200 3 TO 7200 4

20 20/10/10 TO 7200 2 TO 7200 1 TO 7200 3 TO 7200 4

21 20/10/10 TO 7200 2 TO 7200 1 TO 7200 3 TO 7200 4

22 20/10/10 TO 7200 2 TO 7200 1 TO 7200 3 TO 7200 4

23 20/10/10 TO 7200 2 TO 7200 1 TO 7200 3 TO 7200 4

24 20/10/10 TO 7200 2 TO 7200 1 TO 7200 3 TO 7200 4

As can be seen from Table 2, most cases are reported timeout for each solver,
with no homing sequence found within length 6 for the 10-state cases to length
4 for the 20-state cases. We observed that for the cases with 5 states, each solver
seems to show its own strength. DepQBF performs very well on case 1; ABC
performs well on case 3; QELL yields a more balanced result compared to the
other solvers. In overall performance, ABC outperforms other solvers, with at
least one more length verified in each of the larger cases. The only one UNSAT
case, reported by ABC, has no homing sequence within length upper bound 1023,
and this is in fact the theoretical upper bound of shortest homing sequence [10]
for a 5-state NFSM. The outstanding performance of ABC is not surprising as
the homing sequence QBFs favor a circuit-based solver due to its natural circuit
representation of transition relation.

Note that although all solvers timed out on all the cases with 13 and more
states, the scalability of the proposed method can still be seen through the
longest lengths that successfully verified before timeout in these cases from
Table 2. For most of the cases, the successfully checked lengths seem to be

240 H.-E. Wang et al.

small. It suggests that computing homing sequence for NFSM is challenging.
In fact, there are exponentially many input sequences of a given length, and for
a NFSM the problem of checking whether an input sequence is homing is known
to belong to the PSPACE complexity class [9]. The complexity of checking if a
given sequence is homing for nondeterministic machine is “hidden” in the costly
operation of an i-successor [9] of a given state subset. Moreover, the higher is
the nondeterminism degree of the machine, the slower is the check that for each
state pair and each common output response at these states, the final state is
unique. The latter makes it unpromising to directly apply any brute force search
or even truncated successor tree approach in a large scale. In this paper, we
discuss possible heuristics how this complexity can be reduced via the usage of
FSM scalable representations and corresponding QBF solvers.

Table 3. Performance comparison under different formula construction methods

DepQBF RAReQS QELL

Case |Q| m o m+c o+c o+b m o m+c o+c o+b m o m+c o+c o+b

1 5 560 14 1023 22 14 2 5 20 20 5 70 25 19 19 25

3 5 9 14 21 22 14 2 6 20 20 6 133 38 19 19 39

11 13 3 2 6 6 2 1 2 6 6 2 4 5 5 6 5

13 13 3 2 6 6 2 1 2 6 6 2 4 5 5 6 5

21 20 2 2 4 4 2 1 2 4 5 2 3 4 4 4 4

23 20 2 2 4 4 2 1 2 4 5 2 3 4 4 4 4

As discussed in Sect. 4, there can be different options in formula generation.
Solver performance may also be affected by the chosen options, especially the
PCNF-based solvers, DepQBF, RAReQS, and QELL. In Table 3, we compare
solver performance in five different options of formula generation. Six test cases
in the above experiment are selected, including two small ones with 5 states,
two medium ones with 13 states, and two large ones with 20 states. The three
PCNF-based solvers, DepQBF, RAReQS and QELL are compared. Since the
2QBF solver in ABC takes an AIG as its input, it does not need Tseitin trans-
formation and the methods mentioned in Sect. 4 seem not affecting much the
ABC performance. So ABC is excluded in this comparison.

In Table 3, each entry shows the verified length before the timeout, Columns
“m” show the result of applying circuit minimization on transition relation with-
out complementing the formula. They are also the results shown in the above
experiment. Columns “o” show the results using the on-set of transition relation
without minimization and having no formula negation. Columns “m+c” show
the results using minimized circuits and applying formula negation. Columns
“o+c” show the results using the on-set of transition relation without minimiza-
tion, but with formula negation. Each of “m”, “o”, “m+c”, “o+c” uses all codes
for input and output encodings. On the other hand, Columns “o+b” do not use
all codes for encoding, and clauses are added to constrain inputs to legal code

Homing Sequence Derivation with Quantified Boolean Satisfiability 241

assignments. Both circuit minimization and formula negation are not applied in
Columns “o+b”.

It can be seen that for DepQBF, transition relation minimization is beneficial
in most cases. Also, formula negation substantially improves the performance,
with the verified lengths doubled within timeout, and even case 1 reached the
pre-specified upper bound 1023 before timeout (about 1542 s for solving case
(1). On the other hand, for RAReQS, using the onset of transition relation
without circuit minimization is better in most of the cases. Moreover, solving the
negated formula is also much faster than solving the original formula, with the
verified lengths increased to at least 2.5 times. As for QELL, transition relation
minimization or solving negated formula significantly improves the solving of
the 5-state cases, but the verified lengths slightly drops in the larger cases.
Comparing Column “o” and Column “o+b” in any of the three solvers, we
see that the ways of handling unused codes in input encoding seem not having
notable effects on the solver performance.

6 Conclusions

We have formulated the problem of finding preset homing sequence of an unini-
tialized NFSM as QBF solving. Different implementation issues in formula con-
struction have been discussed. Experiments have been done comparing differ-
ent QBF solvers on existence checking and derivation of homing sequences for
NFSMs. The effects of circuit minimization and formula negation have been stud-
ied. The results have suggested that circuit-based QBF solver ABC is the most
powerful one in our applications, while other solvers may not be as effective due
to the Tseitin transformation overhead. On the other hand, for PCNF-based
solvers, complementing Formula (2), which reduces the number of quantifica-
tion levels, tends to improve solving efficiency. Moreover, different PCNF-based
solvers may have their preferred encoding methods. We believe that the app-
roach proposed in the paper should outperform the classical ones, based on the
derivation of the truncated successor tree, but the comparison remains to be
done.

For future work, we plan to conduct experiments comparing our approach
against the classical methods. We will extend our formulation to finding adaptive
homing sequences and to consider initialized NFSMs under partial observability.
Moreover, it would be interesting to study how our proposed approach performs
on ‘hard’ FSMs that are known to have the homing sequence but of an expo-
nential length, i.e., to stress-test the QBF solvers over the machines for which
the exponential upper bound is reachable. We therefore plan to implement the
derivation of such machines, using for example an algorithm given in [10].

Acknowledgements. The authors are grateful to Prof. Nina Yevtushenko for initi-
ating this work and for valuable discussions. This work was supported in part by the
joint project between the Ministry of Science and Technology (MOST) of Taiwan and
Russian Science Foundation (RSF) of Russia under grants MOST 105-2923-E-002-016-
MY3 and RSF 16-49-03012.

242 H.-E. Wang et al.

References

1. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. For-
mal Methods Syst. Des. 41(1), 45–65 (2012)

2. Balabanov, V., Jiang, J.-H.R., Scholl, C., Mishchenko, A., Brayton, R.K.: 2QBF:
challenges and solutions. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS,
vol. 9710, pp. 453–469. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2 28

3. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6 5

4. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng. 4(3), 178–187 (1978)

5. Haddad, A.R.: Efficient Algorithms for Constructing Preset Distinguishing
Sequences for Nondeterministic Finite State Machines. Master’s thesis, American
University of Sharjah (2016)

6. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with
counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT
2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31612-8 10

7. Jiang, J.H.R., Devadas, S.: Logic synthesis in a nutshell. In: Wang, L.T., Chang,
Y.W., Cheng, K.T. (eds.) Electronic Design Automation: Synthesis, Verification,
and Test. Elsevier (2009)

8. Kohavi, Z.: Switching and Finite Automata Theory. McGraw-Hill, New York (1978)
9. Kushik, N.G., Kulyamin, V.V., Evtushenko, N.V.: On the complexity of existence

of homing sequences for nondeterministic finite state machines. Program. Comput.
Softw. 40(6), 333–336 (2014)

10. Kushik, N., Yevtushenko, N.: On the length of homing sequences for nondeter-
ministic finite state machines. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol.
7982, pp. 220–231. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39274-0 20

11. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
a survey. Proc. IEEE 84(8), 1090–1123 (1996)

12. Lonsing, F., Biere, A.: DepQBF: a dependency-aware QBF solver. J. Satisfiability,
Boolean Model. Comput. 7(2–3), 71–76 (2010)

13. Mishchenko, A., Chatterjee, S., Jiang, J.H.R., Brayton, R.K.: FRAIGs: a unifying
representation for logic synthesis and verification. In: ERL Technical report. UC
Berkeley (2005)

14. Sandberg, S.: 1 homing and synchronizing sequences. In: Broy, M., Jonsson, B.,
Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005). doi:10.1007/
11498490 2

15. Shabaldina, N., Gromov, M.: FSMTest-1.0: a manual for researches. In: EWDTS.
pp. 1–4 (2015)

16. Tseitin, G.: On the complexity of derivation in propositional calculus. In: Studies
in Constructive Mathematics and Mathematical Logic, pp. 466–483 (1970)

17. Tu, K.-H., Hsu, T.-C., Jiang, J.-H.R.: QELL: QBF reasoning with extended
clause learning and levelized SAT solving. In: Heule, M., Weaver, S. (eds.)
SAT 2015. LNCS, vol. 9340, pp. 343–359. Springer, Cham (2015). doi:10.1007/
978-3-319-24318-4 25

18. Vasilevskii, M.: Failure diagnosis of automata. Kibernetika 4, 98–108 (1973)
19. Yenigün, H., Yevtushenko, N., Kushik, N.: Some classes of finite state machines

with polynomial length of distinguishing test cases. In: SAC, pp. 1680–1685 (2016)

http://dx.doi.org/10.1007/978-3-319-40970-2_28
http://dx.doi.org/10.1007/978-3-642-14295-6_5
http://dx.doi.org/10.1007/978-3-642-31612-8_10
http://dx.doi.org/10.1007/978-3-642-31612-8_10
http://dx.doi.org/10.1007/978-3-642-39274-0_20
http://dx.doi.org/10.1007/11498490_2
http://dx.doi.org/10.1007/11498490_2
http://dx.doi.org/10.1007/978-3-319-24318-4_25
http://dx.doi.org/10.1007/978-3-319-24318-4_25

Synchronizing Heuristics: Speeding
up the Slowest

Ömer Faruk Altun1, Kamil Tolga Atam1, Sertaç Karahoda1(B),
and Kamer Kaya1,2

1 Computer Science and Engineering, Faculty of Engineering and Natural Sciences,
Sabanci University, Tuzla, Istanbul, Turkey

{ofarukaltun,atam,skarahoda,kaya}@sabanciuniv.edu
2 Department Biomedical Informatics, The Ohio State University,

Columbus, OH, USA

Abstract. Computing a shortest synchronizing word of an automaton
is an NP–hard problem. Therefore, heuristics are used to compute short
synchronizing words. SynchroP is among the best heuristics in the lit-
erature in terms of word lengths. The heuristic and its variants such
as SynchroPL have been frequently used as a baseline to judge the
quality of the words generated by the new heuristics. Although, its qual-
ity is good, the heuristics are significantly slow especially compared to
much cheaper heuristics such as Greedy and Cycle. This makes them
infeasible for large-scale automatons. In this paper, we show how one can
improve the time performance of SynchroP and its variants by avoiding
unnecessary computations which makes these heuristics more competi-
tive than they already are. Our experimental results show that for 2500
states, SynchroP can be made 70–160× faster, via the proposed opti-
mizations. In particular, for 2500 states and 32 letters, the SynchroP
execution reduces to 66 s from 4745 s. Furthermore, the suggested opti-
mizations become more effective as the number of states in the automata
increase.

Keywords: Finite state automata · Synchronizing words · Synchronizing
heuristics

1 Introduction

A synchronizing word w for an automaton A is a sequence of inputs such that no
matter at which state A currently is, if w is applied, A is brought to a particular
state. Such words do not necessarily exist for every automaton. An automaton
with a synchronizing word is called synchronizing automaton.

Synchronizing automata have practical applications in many areas. For exam-
ple in model based testing [1] and in particular for finite state machine based
testing [2], test sequences are designed to be applied at a particular state. Note

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 243–256, 2017.
DOI: 10.1007/978-3-319-67549-7 15

244 Ö.F. Altun et al.

that a finite state machine given as the specification can be viewed as an automa-
ton by omitting the output symbols labeling the transitions of the finite state
machine. The implementation under test can be brought to the desired state by
using a synchronizing word. Similarly, synchronizing words are used the gener-
ate test cases for synchronous circuits with no reset feature [3]. Even when a
reset feature is available, there are cases where reset operations are too costly
to be applied. In these cases, a synchronizing word can be used as a compound
reset operation [4]. Natarajan puts forward another surprising application area,
part orienters, where a part moving on conveyor belt is oriented into a partic-
ular orientation by the obstacles placed along the conveyor belt [5]. The part
is in some unknown orientation initially, and the obstacles should be placed in
such a way that, regardless of the initial orientation of the part, the sequence
of pushes performed by the obstacles along the way makes sure that the part
is in a unique orientation at the end. Volkov presents more examples for the
applications of synchronizing words together with a survey of theoretical results
related to synchronizing automata [6].

As noted above, not every automaton is synchronizing. As shown by [7],
checking if an automaton with n states and p letters is synchronizing can be
performed in time O(pn2). For a synchronizing automaton, finding a shortest
synchronizing word (which is not necessarily unique) is of interest from a prac-
tical point of view for obvious reasons (e.g., shorter test sequences in testing
applications, or less number of obstacles for parts orienters, etc.).

The problem of finding the length of a shortest synchronizing word for a
synchronizing automaton has been a very interesting problem from a theoretical
point of view as well. This problem is known to be NP-hard [7], and coNP-hard [8].
Another interesting aspect of the problem is the following. It is conjectured that
for a synchronizing automaton with n states, the length of the shortest synchro-
nizing sequence is at most (n − 1)2, which is known as the Černý Conjecture in
the literature [9,10]. Posed half a century ago, the conjecture is still open and
claimed to be one of the longest standing open problem in automata theory. The
best upper bound known for the length of a synchronizing word is (n3 − n)/6 as
provided by [11].

Due to the hardness results given above for finding shortest synchronizing
words, there exist heuristics in the literature, known as synchronizing heuristics,
to compute short synchronizing words. Among such heuristics are Greedy [7],
Cycle [12], SynchroP [13], SynchroPL [13], and FastSynchro [14]. In
terms of complexity, these heuristics are ordered as follows: Greedy/Cycle
with time complexity O(n3+pn2), FastSynchro with time complexity O(pn4),
and finally SynchroP/SynchroPL with time complexity O(n5 + pn2) [13,14],
where n is the number of states and p is the size of the alphabet. This ordering
with respect to the worst case time complexity is the same if the actual perfor-
mance of the algorithms are considered (see for example [14,15] for experimental
comparison of the performance of these algorithms).

The SynchroP heuristic and its variants such as SynchroPL have been
commonly used as a baseline to evaluate the performance of new heuristics in

Synchronizing Heuristics: Speeding up the Slowest 245

terms of synchronizing word length. However, since these heuristics are slow, a
limited experimental setting with small-scale automata is usually employed for
comparison purposes. For this reason, there exist attempts to improve the per-
formance; for instance, a faster variant FastSynchro of SynchroP has been
proposed in the literature. FastSynchro proposes a cheaper way to choose path
to follow while generating the synchronizing words. However, the performance
improvement comes with an increase on the average length of the synchronizing
words [13,14].

In this work, we propose a set of techniques to make SynchroP much faster
without changing its nature. Hence, the synchronizing words generated by the
heuristic will be the same. The impact of the proposed techniques is two-fold:
first, the SynchroP heuristic becomes more competitive to be used as a stronger
benchmark for the new heuristics; our experimental results show that for 2500
states, SynchroP can be made 70–160× faster with our optimizations. Sec-
ond, the heuristic becomes feasible to be used in practice; for instance, with
2500 states and 32 letters in the automaton, the execution time of the heuristic
reduces to 66 s from 4745 s. Furthermore, the experiments reveal that suggested
optimizations become more effective as the size of the automaton increases. As
we will discuss later, it is straightforward to apply some of the proposed tech-
niques to SynchroPL.

The rest of the paper is organized as follows: In Sect. 2, we introduce the
notation used in the paper and explain SynchroP in detail. The proposed
optimizations are introduced at Sect. 3 and experimental results are given in
Sect. 4. Section 5 discusses threats to validity and Sect. 6 concludes the paper.

2 Background and Notation

A (complete and deterministic) automaton is defined by a triple A = (S,Σ, δ)
where S = {1, 2, . . . , n} is a finite set of n states, Σ is a finite alphabet consisting
of p input letters (or simply letters). δ : S × Σ → S is a transition function.

An element of the set Σ� is called a word. For a word w ∈ Σ�, we use |w|
to denote the length of w, and ε is the empty word. We extend the transition
function δ to a set of states and to a word in the usual way. We have δ(i, ε) = i,
and for a word w ∈ Σ� and a letter x ∈ Σ, we have δ(i, xw) = δ(δ(i, x), w). For
a set of states C ⊆ S, we have δ(C,w) = {δ(i, w)|i ∈ C}.

For a set of states C ⊆ S, let C2 = {〈i, j〉|i, j ∈ C} be the set of all multisets
with cardinality 2 with elements from C, i.e. C2 is the set of all subsets of C
with cardinality 2, where repetition is allowed. An element 〈i, j〉 ∈ C2 is called a
pair. Furthermore, it is called a singleton pair (or an s–pair) if i = j, otherwise
it is called a different pair (or a d–pair). The set of s–pairs and d–pairs in C2

are denoted by C2
s and C2

d respectively.
A word w is said to be a merging word for a pair 〈i, j〉 ∈ S2 if δ({i, j}, w) is

singleton. Note that, for an s-pair 〈i, i〉, every word (including ε) is a merging
word. A word w is called a synchronizing word for an automaton A = (S,Σ, δ) if
δ(S,w) is singleton. An automaton A is called synchronizing if there exists a syn-
chronizing word for A. In this paper, we only consider synchronizing automata.

246 Ö.F. Altun et al.

As shown by [7], deciding if an automaton is synchronizing can be performed
in time O(pn2) by checking if there exists a merging word for 〈i, j〉, for all
〈i, j〉 ∈ S2.

We use the notation δ−1(i, x) to denote the set of those states with a tran-
sition to state i with letter x. Formally, δ−1(i, x) = {j ∈ S|δ(j, x) = i}. We also
define δ−1(〈i, j〉, x) = {〈k, �〉 | k ∈ δ−1(i, x) ∧ � ∈ δ−1(j, x)}.

2.1 The SynchroP heuristic

SynchroP is composed of two phases. In the first phase, which is common to
almost all existing heuristics, a shortest merging word τ〈i,j〉 for each 〈i, j〉 ∈ S2

is computed by using a breadth first search such as the one given in Algorithm 1.

Algorithm 1. Computing shortest merging words for state pairs (Phase 1)

input : An automaton A = (S, Σ, δ)
output: A shortest merging word τ〈i,j〉 for all 〈i, j〉 ∈ S2

1 let Q be an initially empty queue; // Q: BFS frontier

22 P = ∅; // P: the set of nodes in the BFS forest constructed so far

3 foreach 〈i, i〉 ∈ S2
s do push 〈i, i〉 onto Q, insert 〈i, i〉 into P , and set τ〈i,i〉 = ε;

4 while P �= S2 do // we still have some more pairs to discover

5 〈i, j〉 = pop the next item from Q;
6 foreach x ∈ Σ do
7 foreach 〈k, �〉 ∈ δ−1(〈i, j〉, x) do
8 if 〈k, �〉 �∈ P then
9 τ〈k,�〉 = xτ〈i,j〉;

10 push 〈k, �〉 onto Q;
11 P = P ∪ {〈k, �〉};

Algorithm 1 performs a breadth first search (BFS), and therefore constructs
a BFS forest, rooted at s–pairs 〈i, i〉 ∈ S2

s , where these s–pair nodes are the
nodes at level 0 of the BFS forest. A d–pair 〈i, j〉 appears at level k of the BFS
forest if |τ〈i,j〉| = k.

In almost all synchronizing heuristics, a second phase generates a synchro-
nizing word in a constructive, step-by-step fashion. The heuristics keep track of
the current set C of states, which is initially the entire set of states S. At each
iteration, the cardinality of C is reduced at least by one. This is accomplished
by picking a d-pair 〈i, j〉 ∈ C2

d , and considering δ(C, τ〈i,j〉) as the next active set
in the next iteration. Since τ〈i,j〉 is a merging sequence for (at least) the states
i and j, the cardinality of δ(C, τ〈i,j〉) is guaranteed to be smaller than that of
C. The synchronizing heuristics differ from each other in the way they pick the
d-pair 〈i, j〉 ∈ C2

d to be used at each iteration.
For a set of states C ⊆ S, let the cost φ(C) of C be defined as

φ(C) =
∑

i,j∈C

|τ〈i,j〉|

φ(C) is a heuristic indication of how hard it is to bring the set C to a singleton.
The intuition here is that, the larger the cost φ(C) is, the longer a synchronizing
word would be required to bring C to a singleton set.

Synchronizing Heuristics: Speeding up the Slowest 247

During the iterations of SynchroP, the selection of 〈i, j〉 ∈ C2
d that will

be used is performed by favoring the pair with the minimum possible cost
δ(C, τ〈i,j〉). Based on this cost function, the second phase of SynchroP is given
in Algorithm 2.

Algorithm 2. Computing a synchronizing word (Phase 2 of SynchroP)

input : An automaton A = (S, Σ, δ) and τ〈i,j〉 for all 〈i, j〉 ∈ S2

output: A synchronizing word Γ for A
1 C = S; // C: current state set

2 Γ = ε; // Γ: synchronizing word to be constructed, initially empty

3 while |C| > 1 do // still not a singleton

4 minCost = ∞
5 foreach d–pair 〈i, j〉 ∈ C2

d do
6 thisPairCost = φ(δ(C, τ〈i,j〉))
7 if thisPairCost < minCost then
8 minCost = thisPairCost
9 τ ′ = τ〈i,j〉

10 Γ = Γ τ ′; // append τ ′ to the synchronizing word

11 C = δ(C, τ ′); // update current state set with τ ′

3 Speeding up SynchroP and its Variants

In this section, we will introduce three improvements for increasing the perfor-
mance of SynchroP. The first improvement explained in Sect. 3.1 precomputes
the cost of δ(C, τ〈i,j〉) under certain conditions to eliminate some redundant cost
computations. The improvement explained in Sect. 3.2 is in fact an improvement
over the approach given in Sect. 3.1 where the precomputations are delayed until
they are necessary. Finally in Sect. 3.3, we explain a particular improvement that
can accelerate the first iteration of SynchroP, which in practice is the most
expensive iteration of SynchroP.

3.1 Eliminating Redundant Cost Computations

The first improvement is based on the following observation. For each d–pair
〈i, j〉 ∈ C2

d , the cost φ(δ(C, τ〈i,j〉)) is calculated at line 6 of Algorithm 2. Suppose
that for two different d–pairs 〈i, j〉, 〈i′, j′〉 ∈ C2

d , we have τ〈i,j〉 = τ〈i′,j′〉. In this
case, we surely have δ(C, τ〈i,j〉) = δ(C, τ〈i′,j′〉). Therefore, computing the cost
φ(δ(C, τ〈i,j〉)) and φ(δ(C, τ〈i′,j′〉)) separately is a redundant work.

One approach to eliminate these redundant cost computations can be the
following. For an integer k ≥ 1, consider the set of non–empty words Σ≤k of
length at most k. Formally, Σ≤k = {σ | σ ∈ Σ�, 1 ≤ |σ| ≤ k}. In each iteration of
SynchroP, one can precompute the cost φ(δ(C, σ)) for all σ ∈ Σ≤k. For any d–
pair 〈i, j〉 ∈ C2

d , one can then simply look up the precomputed cost φ(δ(C, τ〈i,j〉))
when |τ〈i,j〉| ≤ k. For a word σ ∈ Σ≤k, let Φ(σ) be this precomputed cost of
φ(δ(C, σ)) for the current iteration with the active state set C. Although, the

248 Ö.F. Altun et al.

values of φ(δ(C, σ)) and Φ(σ) are the same, the main difference is that φ is an
expensive function and Φ is a data structure that stores a set of precomputed
values of φ. Using the precomputed cost Φ(σ) for all σ ∈ Σ≤k, the second phase
of SynchroP can be modified as shown in Algorithm 3.

Algorithm 3. Computing a synchronizing word (modified Phase 2 of

SynchroP)

input : An automaton A = (S, Σ, δ) and τ〈i,j〉 for all 〈i, j〉 ∈ S2, an integer
k ≥ 1

output: A synchronizing word Γ for A
1 C = S; // C: current state set

2 Γ = ε; // Γ: synchronizing word to be constructed, initially empty

3 while |C| > 1 do // still not a singleton

4 foreach σ ∈ Σ≤k do Φ(σ) = φ(δ(C, σ)); // precompute Φ(σ)
5 minCost = ∞
6 foreach d–pair 〈i, j〉 ∈ C2

d do
7 if |τ〈i,j〉| ≤ k then
8 thisPairCost = Φ(τ〈i,j〉)

9 else
10 thisPairCost = φ(δ(C, τ〈i,j〉))

11 if thisPairCost < minCost then
12 minCost = thisPairCost
13 τ ′ = τ〈i,j〉

14 Γ = Γ τ ′; // append τ ′ to the synchronizing word

15 C = δ(C, τ ′); // update current state set with τ ′

Although the improvement is always useful for eliminating duplicate com-
putations in theory, one needs to be careful in practice. Indeed, the larger the
value of k is, the more benefit one can obtain by eliminating such computations.
However, the number of precomputed costs, and hence, the amount of mem-
ory to store the results of these computations also increase exponentially with
k. Formally, for a given k, the number of different sequences whose costs are
precomputed is equal to

K =
k∑

�=1

p� =
pk+1 − 1

p − 1
− 1

where p is the alphabet size. We need to use Θ(K) space to store the precomputed
costs. Let C be the active state set for the current iteration; each sequence τ can
be applied with Θ(|C|× |τ |) automata accesses and the cost of the new state set
δ(C, τ) can be computed in O(|C|2) time and O(|C|) extra memory to store the
next active state set. Since there are K possible sequences in total, the overall
cost of the precomputation phase for a single iteration is

O

(
|C|

k∑

�=1

�p� + |C|2K
)

= O
(
|C|p−(k+1)pk+1+kpk+2

(p−1)2 + |C|2K
)

.

Synchronizing Heuristics: Speeding up the Slowest 249

To avoid the first part, we interleaved the automata accesses and cost com-
putations; since Φ(σ) is computed for all σ ∈ Σ≤k, the state set δ(C, σ) can be
stored and used to compute δ(C, σx) with only O(|C|) automata accesses for
all x ∈ Σ and σ ∈ Σ<k. Overall, this yields O(|C|K) automata accesses and
O(|C|2K) time complexity for a single iteration. This implementation requires
O(|C|k) extra space to store the intermediate active state sets.

3.2 Lazy Computation of Sequence Costs

The approach explained in Sect. 3.1 precomputes Φ(σ) for all σ ∈ Σ≤k. However
in an iteration of Algorithm 3, the only Φ(σ) values that we benefit from are the
ones for which σ = τ〈i,j〉 for some 〈i, j〉 ∈ C2

d . Therefore, rather than precom-
puting Φ(σ) for all σ ∈ Σ≤k, it is better if we could precompute Φ(σ) for only
those σ ∈ Σ≤k such that σ = τ〈i,j〉 for some 〈i, j〉 ∈ C2

d .
One way of accomplishing this is to use a lazy computation approach to

construct the data structure Φ. More explicitly, one can compute Φ(σ) for a
σ = τ〈i,j〉 the first time it is used in the iteration, and then store it for further
uses in the same iteration. Algorithm 4 given below implements this approach.

Algorithm 4. Computing a synchronizing word (modified Phase 2 of Syn-

chroP with lazy Φ(σ) computation

input : An automaton A = (S, Σ, δ) and τ〈i,j〉 for all 〈i, j〉 ∈ S2, an integer
k ≥ 1

output: A synchronizing word Γ for A
1 C = S; // C: current state set

2 Γ = ε; // Γ: synchronizing word to be constructed, initially empty

3 while |C| > 1 do // still not a singleton

4 foreach σ ∈ Σ≤k do Φ(σ) = ∞;
5 minCost = ∞;
6 foreach d–pair 〈i, j〉 ∈ C2

d do
7 if |τ〈i,j〉| ≤ k then
8 if Φ(τ〈i,j〉) = ∞ then
9 Φ(τ〈i,j〉) = φ(δ(C, τ〈i,j〉))

10 thisPairCost = Φ(τ〈i,j〉)

11 else
12 thisPairCost = φ(δ(C, τ〈i,j〉))

13 if thisPairCost < minCost then
14 minCost = thisPairCost
15 τ ′ = τ〈i,j〉

16 Γ = Γ τ ′; // append τ ′ to the synchronizing word

17 C = δ(C, τ ′); // update current state set with τ ′

Similar to the improvement described above, the space complexity for this
improvement is also Θ(K) when a simple vector/array is used for Φ and the
sequences are indexed and queried based on their ordered letters. Let C be the
active state set in the current iteration. With lazy computation, the number of

250 Ö.F. Altun et al.

different sequences, and hence, the number of cost computations, is bounded by
the number of state pairs 〈i, j〉 ∈ C2

d . Considering C = O(n), this yields a space
complexity of O(min(K,n2)). This complexity can be easily obtained with a set
or better with a hash table. Obviously, using such data structures will increase
the query costs to the precomputed values. In our implementation, we use a
simple vector for Φ that implies a Θ(K) complexity. However, we also select k
in a way that makes K = O(n2) as described below.

Lazy computation does not have an impact on theoretical time complexity
since all the cost computations are already meant to be done by the original
SynchroP. That is there is no redundant cost computation incurred by the
improvement. However, the k value still needs to be set to have a better memory
utilization. To restrict the memory usage in a judicious way, we use the largest
integer that satisfies

∣∣{〈i, j〉 ∈ S2
d : τ〈i,j〉 ∈ Σ≤k}∣∣ ≥

k∑

�=1

p�.

The right-hand of the inequality is the amount of memory that will be used
and the left-hand side is the number of pairs in S2

d that can benefit from the
improvement with maximum sequence length k. Since the left-hand side is O(n2),
the memory complexity follows.

3.3 Accelerating the First Iteration

The final improvement that will be suggested in this paper is based on the
following observation.

Lemma 1. Let C ⊆ S be a subset of states and 〈i, j〉, 〈i′, j′〉 ∈ C2
d be two d–pairs

such that τ〈i,j〉 = στ〈i′,j′〉 for some σ ∈ Σ�. If δ(C, σ) ⊆ C then φ(δ(C, τ〈i,j〉)) ≤
φ(δ(C, τ〈i′,j′〉)).

Proof. We have δ(C, τ〈i,j〉) = δ(δ(C, σ), τ〈i′,j′〉) ⊆ δ(C, τ〈i′,j′〉), where the last
step is due to the fact that δ(C, σ) ⊆ C. Since δ(C, τ〈i,j〉) ⊆ δ(C, τ〈i′,j′〉), we
have φ(δ(C, τ〈i,j〉)) ≤ φ(δ(C, τ〈i′,j′〉)).

Lemma 1 suggests that in an iteration of SynchroP if we have a set C,
d–pairs 〈i, j〉, 〈i′, j′〉 ∈ C2

d satisfying the preconditions stated in Lemma 1, then
we can eliminate the consideration of the d–pair 〈i′, j′〉 in that iteration, since
we will always have φ(δ(C, τ〈i,j〉)) ≤ φ(δ(C, τ〈i′,j′〉)). Although it may feel highly
unlikely to fulfill the preconditions of Lemma 1, Corollary 1 given below explains
how Lemma 1 can easily be used in the first iteration of SynchroP.

Corollary 1. For two d–pairs 〈i, j〉, 〈i′, j′〉 ∈ S2
d if τ〈i,j〉 = στ〈i′,j′〉 for some

σ ∈ Σ�, then φ(δ(S, τ〈i,j〉)) ≤ φ(δ(S, τ〈i′,j′〉)).

Proof. Consider Lemma 1 when C = S.

Synchronizing Heuristics: Speeding up the Slowest 251

Corollary 1 gives us the following improvement opportunity. In the first itera-
tion of SynchroP, it is sufficient to consider only those d–pairs 〈i, j〉 ∈ S2

d such
that τ〈i,j〉 is not a suffix of τ〈i′,j′〉 for any other d–pair 〈i′, j′〉 ∈ S2

d . Notice how
Algorithm 1 constructs the shortest merging sequences by using other shortest
merging sequences as suffix at line 9.

3.4 Speeding up SynchroPL

The proposed techniques can be exploited also for SynchroP variants such as
SynchroPL and FastSynchro. Let C ⊆ S be the current active state set. For
a sequence σ ∈ Σ∗, SynchroPL uses the cost function

φPL(δ(C, σ)) = φ(δ(C, σ)) + f(σ) =
∑

i,j∈C

|τ〈i,j〉| + f(σ)

where f(.) is a function used to make the shorter sequences more preferable.
It is suggested to use f(σ) = |σ| where |σ| denotes the length of the sequence
σ [13]. The improvements based on precomputation and lazy computation can
be easily adapted for this cost function. However, applying the last improvement
is not straightforward since we omit the suffix sequences which are shorter than
the sequences the improvement takes into account.

Using the proposed techniques with other cost functions such as the cardi-
nality of active state sets, i.e., φ′(δ(C, σ)) = |δ(C, σ)|, is also possible. However,
the speedups for cheaper heuristics may not be as much as the ones that we
obtain for SynchroP which we will show in the next section.

4 Experimental Results

All the experiments in the paper are performed on a single machine running
on 64 bit CentOS 6.5 equipped with 64 GB RAM and a dual-socket Intel Xeon
E5-2620 v4 clocked at 2.10 GHz where each socket has 8 cores (16 in total)
and 20 MB cache. We only used a single core and all the speedups are obtained
with no parallelization. The codes are compiled with gcc 4.9.2 with the -O3
optimization flag enabled.

To measure the impact of the proposed techniques, we used randomly gener-
ated automatons1 with n ∈ {500, 1000, 1500, 2000, 2500} states and p ∈ {2, 8, 32}
inputs. For each (n, p) pair, we randomly generated 5 different automata and exe-
cuted each algorithm on them. The values in the figures and the tables are the
averages of these 5 executions for each configuration.

4.1 Selecting the Target to Optimize

As described above, SynchroP has two phases where the first is common to
many other synchronizing heuristics. In a previous study, we proposed algorithms
1 For each state s and input x, δ(s, x) is randomly assigned to a state s′ ∈ S.

252 Ö.F. Altun et al.

to parallellize the first phase on a shared-memory multicore system [16]. The
second phase is the one which makes SynchroP recognized as one of the slowest
heuristics in the literature. This is why we, in this study, targeted this phase. We
measured the execution times of the phases individually to observe the impact
of the second phase’s execution time to the overall execution time. As Table 1
shows, the second phase is responsible for almost all the execution time of the
heuristic.

Table 1. The ratio of the execution time of Phase 2 (Algorithm 2) to the overall
execution time of SynchroP, i.e., Phase 1 (Algorithm 1) + Phase 2.

n: number of states

500 1000 1500 2000 2500

p 2 0.991 0.997 0.999 0.999 0.999

8 0.991 0.998 0.999 0.999 1.000

32 0.982 0.995 0.998 0.999 0.999

4.2 Impact of the Proposed Techniques

To measure the impact of the proposed techniques, we run them on the ran-
dom automata we generated as explained above. Table 2 shows the results of
these experiments. The timings in the table are for the whole heuristic, Phase 1
and Phase 2, for each variant. As the results show, the proposed improvements,
especially lazy cost computation, reduce the runtime of SynchroP significantly
and more than 100 speedups are obtained for some automata type. For each n
and p, the exact speedups for each variant are given in Fig. 1. As the trend of
each subfigure shows, the impact of the proposed techniques increase with n.
Although, the speedups seem to decrease with increasing p, the absolute differ-
ence between the naive SynchroP’s execution time and those of the proposed
variants increase.

As expected, each of the proposed techniques increases the performance, but
with different amounts; the lazy cost computation is proven to be the most use-
ful one. We later target the first iteration and added the third one described
in Sect. 3.3 on top of lazy computation. Although its impact is not significant
in practice, we were expecting more. Because, when the execution times of the
Phase 2 iterations for the proposed lazy computation variant are measured, as
Fig. 2 shows, the first one dominates the overall execution time. Here the figure
shows only the case for n = 2500. However, the same trend can be obtained for
other automata sizes. We show the trend here for completeness and point out the
bottleneck of our implementation for future studies. To overcome this bottleneck,
other suffix or subset-based improvements can be applied. A promising one is
representing an active state set with an unknown cost as a union/difference
of other active sets whose costs are precomputed. This representation, with
an efficient implementation, can be a great tool to reduce the number of cost
computations.

Synchronizing Heuristics: Speeding up the Slowest 253

Table 2. The execution times of the SynchroP variants (in seconds) for n ∈
{500, 1000, 1500, 2000, 2500} and p ∈ {2, 8, 32}. The first row for each p value is the
baseline implementation from [15] and the second one is our baseline implementation.
The next two rows are the variants with precomputation and lazy cost computation,
respectively. The fifth and the last row is the one with additional first iteration opti-
mization on top of lazy computation. Each value is average of five executions.

Algorithm n: number of states

500 1000 1500 2000 2500

p = 2 Baseline [15] 6.2 72.0 324.5 969.1 2309.3

Naive 2.6 30.4 133.3 382.5 881.7

Precompute 1.3 10.0 67.5 108.6 308.7

Lazy 0.2 0.9 2.1 4.3 7.7

First Iter. 0.1 0.6 1.6 3.2 5.4

p = 8 Baseline [15] 9.5 123.1 682.8 2179.7 5440.8

Naive 6.3 90.4 418.5 1247.3 2946.0

Precompute 1.8 42.4 93.1 164.4 1687.2

Lazy 0.3 1.7 8.6 19.9 33.1

First Iter. 0.3 1.6 7.9 18.6 31.2

p = 32 Baseline [15] 12.9 162.5 785.3 2438.3 6085.4

Naive 9.7 140.4 658.2 2008.7 4745.6

Precompute 3.0 11.8 625.0 1113.9 1691.9

Lazy 0.9 8.4 22.4 43.4 68.3

First Iter. 0.9 8.2 22.0 42.1 66.7

5 Threats to Validity

We consider several threats to validity of the methods suggested in this paper.
First of all, to eliminate any implementation errors we may have in the new
algorithms, we always check if a word w found by our implementations is a
synchronizing word or not, by checking if δ(S,w) is singleton or not.

At each iteration, SynchroP selects a pair with minimum cost. Therefore
the computed synchronizing sequence may change by picking a different pair with
same cost. Algorithms 3 and 4 search the pair as in Algorithm 2, i.e. they pick the
same pair by avoiding redundant computation. We also carefully implemented
the variants in such a way that even the tie-breaking mechanisms become the
same for all variants. In this way, we are able to check if the synchronizing words
are the same for each variant which was the case in our experiments. On the other
hand, the use of Corollary 1 can possibly eliminate some pairs with a minimum
cost. Hence the algorithm may pick different pair with same cost. However we
observed the same synchronizing sequences in our experiments (Table 3).

Since we consider the speed ups over our naive SynchroP implementa-
tion, we need to be sure that our baseline implementation is competitive in

254 Ö.F. Altun et al.

Fig. 1. The speedup values normalized w.r.t. the naive SynchroP baseline for n ∈
{500, 1000, 1500, 2000, 2500} and p ∈ {2, 8, 32}.

terms of performance and word lengths. In this respect, we compared the syn-
chronizing word lengths of our naive implementation and those of [15] for 75
automata used in our experiments; the average ratio of the former to the latter
is 1.01 for SynchroP, with a standard deviation of 0.02. In order to judge the
time performance of our naive variant objectively, we also compared our naive

Synchronizing Heuristics: Speeding up the Slowest 255

Fig. 2. The execution times of the iterations of the Lazy variant for n = 2500.

Table 3. The length of the synchronizing sequences for n ∈ {500, 1000, 1500, 2000,
2500} and p ∈ {2, 8, 32}.

p n: # automata states

500 1000 1500 2000 2500

2 78.6 111.2 147.4 160.6 192.8

8 45.4 70.2 85.6 98.6 111.2

32 37.8 54.8 66.6 78.2 88.0

implementation to the one in [15] as shown in Table 2. The comparison shows
that our naive implementation is comparable to the state-of-the-art used in the
literature.

6 Conclusion and Future Work

In this work, we proposed techniques to speedup SynchroP which is shown
to produce shorter synchronizing words compared to cheaper heuristics such
as Greedy and Cycle. Using various optimizations, we obtained order(s) of
magnitude speed up for SynchroP. The techniques suggested in this paper
become more effective as the size, i.e., the number of states, of the automata
increases. With these improvements, SynchroP is more scalable and is highly
practical even for automata with thousands of states.

Acknowledgments. This work was supported by The Scientific and Technological
Research Council of Turkey (TÜBİTAK) [grant number 114E569].

We would like to thank the authors of [15] for providing their heuristics imple-
mentations, which we used to compare our naive baseline implementation as given in
Table 2.

256 Ö.F. Altun et al.

References

1. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-
Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)

2. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines-a
survey. Proc. IEEE 84(8), 1090–1123 (1996)

3. Cho, H., Jeong, S.-W., Somenzi, F., Pixley, C.: Multiple observation time single
reference test generation using synchronizing sequences. In: Proceedings of the 4th
European Conference on Design Automation, 1993, with the European Event in
ASIC Design, pp. 494–498. IEEE (1993)

4. Jourdan, G.-V., Ural, H., Yenigün, H.: Reduced checking sequences using unreliable
reset. Inf. Process. Lett. 115(5), 532–535 (2015)

5. Natarajan, B.K.: An algorithmic approach to the automated design of parts orien-
ters. In: 27th Annual Symposium on Foundations of Computer Science, Toronto,
Canada, 27–29 October 1986, pp. 132–142. IEEE Computer Society (1986)

6. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-88282-4 4

7. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19(3),
500–510 (1990)

8. Olschewski, J., Ummels, M.: The complexity of finding reset words in finite
automata. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp.
568–579. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15155-2 50

9. Černỳ, J.: Poznámka k homogénnym experimentom s konečnỳmi automatmi.
Matematicko-fyzikálny časopis 14(3), 208–216 (1964)

10. Černỳ, J., Pirická, A., Rosenauerová, B.: On directable automata. Kybernetika
7(4), 289–298 (1971)

11. Pin, J.-E.: On two combinatorial problems arising from automata theory. North-
Holland Math. Stud. 75, 535–548 (1983)

12. Trahtman, A.N.: Some results of implemented algorithms of synchronization. In:
10th Journees Montoises d’Inform (2004)

13. Roman, A.: Synchronizing finite automata with short reset words. Appl. Math.
Comput. 209(1), 125–136 (2009)

14. Kudlacik, R., Roman, A., Wagner, H.: Effective synchronizing algorithms. Expert
Syst. Appl. 39(14), 11746–11757 (2012)

15. Roman, A., Szykula, M.: Forward and backward synchronizing algorithms. Expert
Syst. Appl. 42(24), 9512–9527 (2015)

16. Karahoda, S., Erenay, O.T., Kaya, K., Türker, U.C., Yenigün, H.: Paralleliz-
ing heuristics for generating synchronizing sequences. In: Wotawa, F., Nica, M.,
Kushik, N. (eds.) ICTSS 2016. LNCS, vol. 9976, pp. 106–122. Springer, Cham
(2016). doi:10.1007/978-3-319-47443-4 7

http://dx.doi.org/10.1007/978-3-540-88282-4_4
http://dx.doi.org/10.1007/978-3-642-15155-2_50
http://dx.doi.org/10.1007/978-3-319-47443-4_7

Testing Timed and Distributed Systems

GREP: Games for the Runtime Enforcement
of Properties

Matthieu Renard1, Antoine Rollet1(B), and Yliès Falcone2

1 LaBRI, Bordeaux INP, University of Bordeaux, Bordeaux, France
{matthieu.renard,antoine.rollet}@labri.fr

2 Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France
ylies.falcone@univ-grenoble-alpes.fr

Abstract. We present GREP, a tool for the runtime enforcement of
(timed) properties. GREP takes an execution sequence as input (stdin),
and modifies it (stdout) as necessary to enforce the desired property,
when possible. GREP can enforce any regular timed property described
by a deterministic and complete Timed Automaton. The main novelties
of GREP are twofold: it uses game theory to improve the synthesis of
enforcement mechanisms, and it accounts for uncontrollable events, i.e.
events that cannot be controlled by the enforcement mechanisms and
thus have to be released immediately. We present an overview of GREP
and validate its usability with a performance evaluation.

1 Runtime Enforcement of Timed Properties
with Uncontrollable Events

Runtime Verification (RV, [5,10,12]), also referred to as passive testing [2,8],
consists in checking if the execution of a running system satisfies some given
specification. Unlike static verification, RV studies a real execution of a sys-
tem, possibly after deployment. This paper deals with runtime enforcement (RE,
[6,11,13,19]), an extension of runtime verification where executions are corrected
when they violate the desired property (see [9] for an overview). An enforcement
mechanism (EM) modifies the execution of a running system: it takes an execu-
tion as input and outputs a possibly-different execution. One of the advantages
of RE is that the whole specification of the system under scrutiny is not neces-
sary to generate an EM, only a property that should be satisfied by its output
is needed. The general scheme is given in Fig. 1.

We distinguish two categories of actions: controllable actions which can
be modified by an enforcement mechanism, and uncontrollable actions which
can only be observed by the enforcement mechanism. Enforcement mechanisms
should be sound, compliant and optimal, meaning that the output should satisfy
the specification when possible, the output should be as close to the input as
possible, and the output should be maximal, respectively. In [16,17], we intro-
duce runtime enforcement for timed properties with uncontrollable events, and
we propose a game approach for generating the EM in [18]. A comparison of this
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 259–275, 2017.
DOI: 10.1007/978-3-319-67549-7 16

260 M. Renard et al.

Fig. 1. Schematic description of an enforcement mechanism E, modifying the execution
σ of the system S to E(σ), so that it satisfies the property ϕ.

approach with related work may also be found in [16]. GREP implements the
game approach of [18] extended to timed properties.

1.1 Timed Properties and Automata

In this paper, properties are modelled with regular timed properties described
by Timed Automata (TA) [4]. Consider the following property on a simple
shared storage device: after authentication, a user can write a value only if
the storage has been unlocked for at least 2 time units. (Un)locking the device
is decided by another party, meaning that it is not controllable by the user.
This property is formalised by the TA ϕt given in Fig. 2, with the alphabet of
uncontrollable actions {LockOn,LockOff,Auth}. In ϕt, the set of locations is
L = {l0, l1, l2, l3}; the initial location is l0; the set X = {x} made of a single
clock x is used to model time; the alphabet of all actions is Σ = {Auth,LockOn,
LockOff,Write}; the set of accepting locations is G = {l1, l2}; and the set of
transitions Δ contains, for example, (l1, x ≥ 2,Write, ∅, l1). A transition is com-
posed of an initial location, a guard, an action, a set of clocks to reset, and a
target location. For instance, the transition (l1, x ≥ 2,Write, ∅, l1) means that
location l1 is reached from location l1 if the Write action occurs when clock x is
greater than or equal to 2, with no clock to reset; and (l2,�,LockOff, {x}, l1),
means that l1 is reached from l2 when the LockOff action occurs, resetting
clock x while taking the transition.

Fig. 2. Property ϕt modelling writes on a shared storage device [17]

GREP: Games for the Runtime Enforcement of Properties 261

1.2 Description of the Approach

The strategy of GREP is based on the enforcement approach proposed in [16,18].
As shown in Fig. 1, an EM may be seen as a function from timed words to timed
words, with the ability to delay some controllable actions using a memory, but
with no possibility to act on uncontrollable actions. This mechanism should
ensure the correctness of the output sequence (soundness), that the order of
controllable actions is preserved and that uncontrollable actions are immediately
released (compliance), and that the output is maximal (optimality). All these
definitions, as well as the proofs of correctness and details of the EM generation,
at two levels of abstraction (functional and operational), are provided in [16].
Notice that unlike the approach in [15], there could be some situations where
the property may not be enforceable, since uncontrollable actions cannot be
retained.

Let us provide the intuition on the approach using an example. Consider
property ϕt given in Fig. 2, and the input sequence (1,Auth) (1,LockOn)
(2,Write) (1,LockOff) (1,LockOn) (1,Write) (1,LockOff). Table 1 gives
the evolution of the system at different time instants, providing the output of the
EM at a given date, its complete expected output if no other event is received
(the output at an infinite date), and the state of the memory (the stored con-
trollable actions) at an infinite date. At t = 1 and t = 2 respectively, Auth and
LockOn actions are received. Since they are uncontrollable actions, they are
released immediately. At t = 4, action Write is received. Since it is controllable
and to prevent reaching a bad state a bad state, it is stored in the memory. At
t = 5, the uncontrollable action LockOff is received and immediately released.
Now it is possible to emit the stored Write action, but only after 2 time units.
For this reason, (2,Write) is added at the end of σs meaning that Write should
be emitted in 2 time units, and it is removed from σc. At t = 6, another uncon-
trollable LockOn action is received and immediately released. At this step, it is
not possible to emit Write anymore, then it is removed from the end of σs and
put back at the beginning of σc. At t = 7, another controllable Write action is
received and stored (added at the end of σc). At t = 8, the last uncontrollable
LockOff action is received, allowing to emit the two Write actions after 2
time units. Thus, they are placed at the end of σs and removed from σc. Since
no other action is received afterwards, the two Write actions are released at
t = 10.

1.3 Games

In order to improve the computation time of the EM at runtime, it is possible
to pre-compute the behaviour of the EM ahead of the execution and storing it.
For this purpose, we use game theory. GREP builds a two-player game graph
representing the possible actions of the EM and the system under scrutiny (that
acts as the environment). Each vertex of the graph belongs to one of these two
players, and each edge represents a possible action of the player that owns the
source vertex. GREP then solves a Büchi game by computing a set of nodes

262 M. Renard et al.

Table 1. Table showing the evolution of the enforcement mechanism with input
(1,Auth) (1,LockOn) (2,Write) (1,LockOff) (1,LockOn) (1,Write) (1,LockOff)
over time.

t Output Complete expected output Buffer

1 (1, Auth) (1, Auth) ε

2 (1, Auth) (1, LockOn) (1, Auth) (1, LockOn) ε

4 (1, Auth) (1, LockOn) (1, Auth) (1, LockOn) Write

5 (1, Auth) (1, LockOn) (3, LockOff) (1, Auth) (1, LockOn) (3, LockOff)
(2, Write)

ε

6 (1, Auth) (1, LockOn) (3, LockOff)
(1, LockOn)

(1, Auth) (1, LockOn) (3, LockOff)
(1, LockOn)

Write

7 (1, Auth) (1, LockOn) (3, LockOff)
(1, LockOn)

(1, Auth) (1, LockOn) (3, LockOff)
(1, LockOn)

Write Write

8 (1, Auth) (1, LockOn) (3, LockOff)
(1, LockOn) (2, LockOff)

(1, Auth) (1, LockOn) (3, LockOff)
(1, LockOn) (2, LockOff) (2, Write)
(0, Write)

ε

10 (1, Auth) (1, LockOn) (3, LockOff)
(1, LockOn) (2, LockOff) (2, Write)
(0, Write)

(1, Auth) (1, LockOn) (3, LockOff)
(1, LockOn) (2, LockOff) (2, Write)
(0, Write)

ε

of the graph from which there exists a winning strategy. More details may be
found in [18]. Using this approach allows us to avoid the exploration of the whole
execution tree at runtime.

More precisely, GREP proceeds in three steps: first, it computes a symbolic
graph, which is a finite abstraction of the (infinite) semantics of the TA; then it
computes the game graph and the winning strategy for the EM; finally the EM
follows the strategy to enforce the property.

The symbolic graph abstracting the semantics of the TA is similar to the
usual zone graph used to compute reachability on TAs (see for example [7]),
except that the successor relation is more constraining. In the usual zone graph,
it is only required that a state in a vertex (vertices can be seen as sets of states
of the semantics of the TA that share the same location) can reach a state in the
successor vertex, whereas for our purpose it is required that all the states in a
vertex can reach a state in the successor vertex. This holds for delay transitions
(transitions representing elapse of time) and action transitions (representing a
transition in the TA) which are built in the same way. We also require that each
vertex has at most only one time successor (i.e. a node reached by letting time
elapse, as opposed to nodes reached by outputting events (action successors)).
An algorithm to compute such a graph is given in [3], for example.

The game graph is then built upon this symbolic abstraction graph. Each
vertex of the symbolic abstraction graph is duplicated, one of the resulting ver-
tices belongs to player 0 (the EM), and the other to player 1 (the environment).
Each of these vertices is then associated with words taken from a finite, prefix-
closed set of controllable words, each vertex being duplicated again for every
word from this set. This set of controllable words is computed to ensure that the
strategy is always the best one (the one outputting the maximal word) using only

GREP: Games for the Runtime Enforcement of Properties 263

these vertices. For a formal description of this set in case of untimed properties,
see [18]. The edges of the game graph represent the actions of the player: an edge
leaving a node belonging to player 0 represents either the emission of the first
event of the associated word (which represents the stored controllable actions),
leading to a vertex belonging to player 0 again, since an EM can output multiple
events at the same time, or to the same node which belongs to player 1, meaning
that the EM decides not to emit for the moment and lets the environment play.
An edge leaving a vertex belonging to player 1 leads to a vertex belonging to
player 0, and represents either the reception of an uncontrollable event (chang-
ing the symbolic state to an action successor), the reception of a controllable
event (changing the associated word), or the elapse of time (changing the sym-
bolic state to the time successor). Nodes that are their own time successor (i.e.
that contain all the valuations reached by letting time elapse) have their cor-
responding edge replaced by an edge leading to the same vertex which belongs
to player 0. This corresponds to receiving no more event, thus allowing us to
consider finite inputs, but with infinite plays over the graph (since there will be
a loop between a node belonging to player 0 where the EM will decide not to
emit anything, and the environment not receiving any event and being stable by
elapse of time). A formal definition of the game graph for untimed properties
can be found in [18] too. GREP builds a game graph which is similar, except
that some nodes have time successors.

After having constructed the game graph, GREP computes the winning set
of nodes of the Büchi game with Büchi nodes (the nodes to be always reachable)
defined as all the vertices of the game graph whose symbolic location of a vertex
is an accepting location of the TA for player 0.

Then, GREP can follow a real execution on the game graph, by watching
the node that has been reached so far by its output, and the nodes that can be
reached by emitting stored controllable actions (i.e. following the corresponding
edges in the game graph). Whenever a winning node is reached by player 0, the
strategy is to emit as many events as possible, remaining in a winning node all the
time. Since the winning nodes are winning a Büchi game, it is always possible
for player 0 to stay in a winning node whenever one is reached. Whenever a
winning node is reached, the output of the EM is then guaranteed to satisfy the
property.

An example of game graph associated with property ϕt given in Fig. 2 is
provided in Fig. 3. In this graph, nodes are labelled with a tuple (l, z, w, p),
where l is the location of the TA associated with the node, z is the zone (set of
clock constraints), w is the word of controllable actions as described previously,
and p is the player: 0 for the enforcement mechanism, and 1 for the environment.
The square node is the initial node, the blue (rectangular) ones are the winning
nodes, and the nodes that are double-circled are the nodes whose locations are
accepting. Note that in our example, all the accepting nodes (double-circled)
are winning (blue, rectangular). The edges have different colours and heads,
depending on their role: green edges (filled triangular heads) correspond to the
EM emitting its first stored controllable action, blue ones (empty triangular

264 M. Renard et al.

heads) to the EM not emitting (thus letting the environment play), red (filled
diamond heads) and orange (empty diamond heads) edges correspond to the
reception of an uncontrollable event and a controllable one, respectively, and
purple (“vee” heads) edges represent the elapse of time (they lead to the time
successor).

Fig. 3. Game graph associated with property ϕt (Color figure online)

GREP: Games for the Runtime Enforcement of Properties 265

2 General Description of GREP

GREP is a tool of about 6,000 lines of code1 developed using the C language,
available at https://github.com/matthieurenard/GREP. GREP is essentially
composed of 2 modules (cf Fig. 4): Symbolic Computing Module (SCM) and
Enforcement Monitor Module (EMM). It loads a TA file describing the desired
property, and reads the inputs directly from stdin. The output of the EM is sent
to stdout. This approach allows one to use GREP with off-the-shelf applications.

Fig. 4. General architecture of GREP

2.1 Symbolic Computing Module (SCM)

The Symbolic Computing Module is composed of three main components: a TA
loader, the zone graph generator, and the game graph generator.

TA Loader. The TA loader is the component that parses a file containing the
description of a timed automaton and loads it into a C structure. The file of
the automaton is a textual description following a grammar designed for this
purpose. The automaton must be also deterministic and complete (see [4]). If
the automaton is not deterministic, the behaviour is undefined. Once the timed
automaton is loaded, a symbolic graph is computed by the Zone Graph Generator
to abstract its infinite semantics into a finite graph.

Zone Graph Generator. From the timed automaton, a symbolic graph is
constructed using zones. Compared to a classical zone graph (used to compute
reachability), this symbolic graph satisfies additional constraints. (A zone graph
usually requires that, between a node and its successor, there exists a state of
1 Calculated with cloc (https://github.com/AlDanial/cloc).

https://github.com/matthieurenard/GREP
https://github.com/AlDanial/cloc

266 M. Renard et al.

the semantics of the timed automaton in the first node that leads to a state in its
successor). In this symbolic graph, all states in a node must lead to the successor.
An algorithm to compute this symbolic graph satisfying these constraints is given
in [3]. This algorithm has been implemented to compute the symbolic graph in
this module. In GREP, zones are represented by Difference Bound Matrices
(DBMs), using the UPPAAL DBM library (udbm, [1]), and its C API. The
algorithm requires some functionality that is not provided by this C API (some
of them exist in some higher-level wrappers), such as complementing zones into a
list of zones. This functionality was added to our own wrapper of udbm. No other
third-party library was needed to compute the symbolic graph. This symbolic
graph is used to build the final game graph, that will be used by the enforcement
monitor.

Game Graph Generator. Using the symbolic graph, the Game Graph Gener-
ator builds a graph over which to play a Büchi game whose strategy is the one to
be followed by the enforcement monitor. The graph is constructed as described
in [18], adding some edges to represent the elapse of time (that changes zones).
Once the graph is constructed, the Büchi game is solved for player 0 (the enforce-
ment monitor), with the set of Büchi nodes being the set of nodes whose location
is accepting. The winning nodes are the nodes from which the enforcement mon-
itor ensures that its output will satisfy the property. Following a path of winning
nodes in the graph gives a strategy to follow such that the final output satisfies
the property. This is how the EM uses the graph to actually enforce the property.

2.2 Enforcement Monitor Module (EMM)

The EMM module uses the SCM module to compute the output for a given input.
It has five main public functions: init(G), getStrat(), delay(t), eventRcvd(e), and
emit(). Function init(G) initialises the EMM following the strategy from graph
G. Function getStrat() gives the strategy to follow, i.e. whether the first action
of the buffer should be output or not. Since time is abstracted by the zone graph
for SCM, SCM needs to be notified that some time has passed, which is done by
using function delay(t), where t is the number of time units that have elapsed
since the last call to delay, or the creation of the enforcement mechanism for
the first call. Time units only need to be consistent with the ones used in the
property. Function eventRcvd(e) is used to inform the EMM that an event e
has been read from the input. In this case, the EMM acts differently depending
on the controllability of the event. Function emit() is used to output the first
action of the buffer (uncontrollable events are output by function eventRcvd(),
as required by compliance).

Note that these functions allow one to use the EMM in both the online (real-
time) and offline (with a trace as input) settings. All these functions, except
function getStrat(), return the number of time units required to reach the time
successor of the current node (∞ if there is no time successor). It is the number
of time units given to function delay() if no event is received before and the
strategy is not to emit.

GREP: Games for the Runtime Enforcement of Properties 267

input : The game graph G, the input sequence of events, through function
read ()

output: The output of the enforcer mechanism, through function emit()

1 init(G);
2 del ← ∞;
3 while The input sequence has not been read entirely do
4 (δ, a) ← read();
5 while del ≤ δ do
6 δ ← δ − del;
7 del ← delay(del);
8 while getStrat() = EMIT do
9 emit();

10 end

11 end
12 delay(δ);
13 del ← eventRcvd(a);

14 end
15 while del < ∞ or getStrat() = EMIT do
16 while getStrat() = EMIT do
17 emit();
18 end
19 if del < ∞ then
20 del ← delay(del);
21 end

22 end

Algorithm 1. Main algorithm to enforce a property in offline mode

Thus, the general algorithm to use EMM in the offline setting is given in
Algorithm 1. Basically, EMM follows a path in the game graph. Thus, it con-
siders the current node as the node reached by its output, and explores the
strategy tree from this node. EMM also stores the controllable actions that have
not been output yet, and uses them to compute the possible output. Since the
output should be the longest possible, with minimal possible delays, computing
the strategy requires to explore the tree of all possible strategies. This is done by
exploring the game graph, simulating the emission of the controllable actions of
the buffer at all possible time instants. In each node belonging to player 0, if the
successor by emitting (green, empty triangular head arrow in the game graph)
is winning, then it is explored, and if the time successor is also winning, it is
explored as well, since waiting before emitting could allow the EMM to output
more events. Each node is then associated with a score, corresponding to the
number of actions that have been emitted to reach the node. Then, EMM stores
the node that has the biggest score, and the strategy to follow to reach it. If two
nodes have the same score, then the lowest common ancestor is computed, and
the one node that can be reached by emitting from this ancestor (the other node
can be reached from this ancestor by waiting) is kept as the node to reach (this

268 M. Renard et al.

corresponds to computing the lexicographical order). This process is repeated
for each node with the same score, with the previous stored node, such that in
the end the stored node is the minimal node (for the lexicographic order) of all
the nodes with the highest score.

Note that computing an output such that all actions are emitted whenever it
is possible to emit them does not require to explore the strategy tree. Depending
on the property, the two outputs could be the same (i.e. if the property is such
that letting time elapse never enables a transition that eventually allows the
EMM to output more events), thus the EMM can work faster by using an opti-
misation that does not compute any tree, but outputs actions whenever possible
(i.e. when the successor node by emitting is winning) if it is specified to do so.

2.3 User Interface

GREP is shipped with two executables: one to use the enforcement mechanism
in offline mode, and the other in the online mode. Both of them take their input
on the standard input. In the offline mode, the input is composed of events in
the form (t, a), where t is a date and a is an action, controllable or uncontrol-
lable. In the online mode, only the action is given, the date is computed from
the real time through a call to gettimeofday(). Note that these executa-
bles may build only on UNIX-like systems because of some system calls such
as gettimeofday() and clock gettime(). Excepting this, the tool is not
system-dependent. The output (events with their dates) is printed on the stan-
dard output. Several options may be used:

– One of the two options -a <automatonFile> or -g <graphFile> must
be passed to specify the property. The file <automatonFile> should be in
the same format as the file shown in appendix A. The file <graphFile>
should be a file saved by this executable (see option -s), loading this kind
of file should be faster than loading an automaton file since it contains the
graph, which does not need to be computed again.

– -s <graphFile> saves the game graph in <graphFile>, to be loaded in
another execution (see option -g).

– -z <zoneGraphFile> draws the zone graph using graphviz and store it
(as PDF) in <zoneGraphFile>.

– -d <gameGraphFile> draws the game graph using graphviz and store it
(as PDF) in <gameGraphFile>.

– -t <timeFile> logs times between the reception of two events in the file
<timeFile>. This option is used to benchmark the program.

– -l <logFile> prints all the logs in <logFile>.
– -f (fast) use the optimised version, where actions are output whenever

they can be instead of outputting the longest word possible with minimal
dates.

If options -s, -z, -d, or -t are not given, then the corresponding action will
just not happen. For example, without -z, the zone graph will not be saved. If

GREP: Games for the Runtime Enforcement of Properties 269

none of the options among -a and -g is given, the program will print an error
and abort. If both are given, then the automaton file is used. If option -l is
not given, then the standard error is used as log file, which is not recommended
(we recommend always using the option -l). If the option -f is not given, then
the enforcement mechanism will output as many events as possible, with the
lowest possible dates; enabling the option will make it output actions if it is
possible (i.e. if the node of the game graph reached by outputting is winning).
Using option -f is usually faster, but the outputs might differ depending on the
property. Example usage:
game enf offline -a phiext.tmtn -l log \

-d gameGraph.pdf < input
will enforce the property described in the file phiext.tmtn, logging in the file
log, reading its events from the file input. It will also draw the game graph in
the file gameGraph.pdf.

The enforcement mechanism logs the mode in which it runs (default or fast)
at the beginning, and when it stops, it logs the input, its output, the controllable
actions that have not been output (what remains in its buffer), and a verdict that
is WIN if its output satisfies the property, or LOSS otherwise (some properties
might not be enforced as explained in [17]).

Enforcer i n i t i a l i z e d in d e f au l t mode .
Shutt ing down the enforcement mechanism . . .
Summary o f the execut ion :
Input : (0 , Write) (1 , Auth) (2 , Write) (3 , LockOn)

(4 , Write) (5 , LockOff) (6 , LockOn) (7 , LockOff)
Output : (1 , Auth) (2 , Write) (2 , Write) (3 , LockOn)

(5 , LockOff) (6 , LockOn) (7 , LockOff) (9 , Write)
Remaining events in the bu f f e r :
VERDICT: WIN
enforcement mechanism shutdown .

Listing 1.1. Example log file produced by GREP

For example, considering that phiext.tmtn is the file given in appendix
A, the previous command with the input file containing the sequence:
(0,Write) (1,Auth) (2,Write) (3,LockOn) (4,Write) (5,LockOff)
(6,LockOn) (7,LockOff), produces the output:
(1,Auth) (2,Write) (2,Write) (3,LockOn)
(5,LockOff) (6,LockOn)(7,LockOff) (9,Write). The produced log file is
given in Listing 1.1.

3 Performance Evaluation

The performance of GREP has been evaluated on three properties that come
along with TiPEX, the tool to which we compare. TiPEX (see [14]) is, to our
knowledge, the only other tool that acts as an enforcement mechanism for timed
regular properties. These properties are described in Fig. 5. The safety property

270 M. Renard et al.

states that there should always be 5 time units between two r actions. The co-
safety property states that the first r action should be followed by a g action,
with a delay of at least 6 time units. The response property states that every
grant (g) action should be followed by a release (r) action within 15 to 20 time
units, without any grant action occurring between them.

Fig. 5. Properties used to benchmark GREP

For each of these properties, GREP has been run 100 times on every
input among 100 inputs of 1000 events randomly generated. The time between
the reception of two events has been saved for all of these executions. The
same times have been computed for TiPEX2, reducing the number of inputs
and iterations to have the benchmarks run in a reasonable amount of time.
Figures 6 and 7 give a graphical visualisation of the performances of GREP and
TiPEX.

Figures 6 and 7 are obtained as follows: each input is iterated several times
(100 for GREP, less for TiPEX), and the computation times of the tool between
the reads of two consecutive events of the input are stored. Then, the median
time is computed for each of these times between all the iterations. We then plot
the logarithm (in base 10) of these times against the reads of the events. We
use a logarithmic scale in nanoseconds because many values are low, and they
would be merged in a line when using a linear scale. The results for GREP with
option -f are given only for the safety property because they are similar to the
results without the option for the two other properties. We can see that GREP is
faster than TiPEX by several orders of magnitude. GREP outputs many events
in less than 10μs (4 on the graphs), whereas TiPEX takes at least 1 ms (6 on the
graph) to output them. For the safety property, we can see that for some inputs,
GREP takes an increasing amount of time to compute the strategy. This is due
to the exploration of the strategy tree, which grows with the number of stored

2 We patched TiPEX to retrieve the times as we do in our tool, only modifying it to
get times properly, and did not change the behaviour inside the part that is being
measured.

GREP: Games for the Runtime Enforcement of Properties 271

0 200 400 600 800 1000

3
4

5
6

(a) GREP - safety
0 200 400 600 800 1000

3
4

5
6

(b) GREP fast - safety

0 200 400 600 800 1000

6.
4

6.
5

6.
6

6.
7

6.
8

6.
9

7.
0

(c) TiPEX - safety

Fig. 6. Comparison of timings of GREP and TiPEX on the safety property. “GREP
fast” means that option -f is used. The x axis corresponds to the events of the input
(from 1 to 1000), and the y axis corresponds to the logarithm of the timings (in nanosec-
onds) between the reads of the events.

controllable actions. Using the optimised setting (-f) allows GREP to compute
its output faster, as shown in Fig. 6b. The last vertical line has also many high
values, because it represents the time to emit all the remaining actions after the
last event from the input was read. For the co-safety and response properties,
GREP is less variable than for the safety property, mainly because its strategy
is simpler: it consists in either emitting everything in the co-safety (once state
s3 is reached) or emitting nothing for the response property, if the first stored
controllable is an r while in state s1. TiPEX, on the other hand, takes a linearly-
increasing amount of time to emit some events.

4 Discussion and Concluding Remarks

As shown in Sect. 3, GREP provides better computing times than TiPEX. There
are several factors that can explain this. The implementation language is one of
these factors: GREP is implemented in C, which produces assembly code that

272 M. Renard et al.

0 200 400 600 800 1000

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

3.
8

4.
0

(a) GREP - co-safety
0 200 400 600 800 1000

6.
5

7.
0

7.
5

8.
0

8.
5

9.
0

9.
5

(b) TiPEX - co-safety

0 200 400 600 800 1000

3.
0

3.
5

4.
0

(c) GREP - response
0 200 400 600 800 1000

6.
5

7.
0

7.
5

8.
0

8.
5

9.
0

9.
5

(d) TiPEX - response

Fig. 7. Timings of GREP and TiPEX on the response and co-safety properties. The x
axis corresponds to the events of the input (from 1 to 1000), and the y axis corresponds
to the logarithm of the timings (in nanoseconds) between the reads of the events.

is fast to execute, whereas TiPEX is implemented in Python, which is a higher-
level language that can introduce some overhead in the execution time. Another
factor is the use of games to enforce the properties, that allows the EMM to
compute the output faster. Indeed, the game graph allows us to know if a node
is winning in very little time, where the same computation not using graph needs
to consider all the reachable states with the buffer.

Note that our tool was designed primarily to handle uncontrollable events.
The properties used in our evaluation/comparison do not feature uncontrollable
events because TiPEX only supports controllable events. To our knowledge, there
is no other tool that acts as an enforcement mechanism for timed properties
with uncontrollable events. We initially used games to precompute (with the
game graph) the behaviour of the enforcement mechanism upon the reception
of uncontrollable events, but it has also improved the computation time of the
output even without any uncontrollable event.

GREP: Games for the Runtime Enforcement of Properties 273

Depending on the property, there could be an exponential blow-up in the
number of nodes that have to be visited. The -f option allows the enforcement
mechanism to use a strategy (where each event is output as soon as possible)
that prevents this blow-up. To further improve the performance of GREP and
avoid the blow-up when using the strategy outputting the longest words, we aim
at i) computing a better set of controllable words to be associated with nodes,
and having a better representation of controllable words. A (more theoretical)
possible extension to this work is to determine under which conditions the two
strategies (using the optimised version or not) are equivalent.

A Automaton File

The automaton file describing ϕt (see Fig. 2) follows:

automaton {
cont {Write}
uncont {Auth , LockOn , LockOff}
nodes {

l 0 [i n i t i a l] ;
l 1 [accepting] ;
l 2 [accepting] ;
l 3 ;

}
clocks {x}
edges {

l 0 −>{Auth}{}{} l 1 ;
l 0 −>{Write }{}{} l 3 ;
l 0 −>{LockOn}{}{} l 3 ;
l 0 −>{LockOff }{}{} l 3 ;
l 1 −>{LockOn}{}{} l 2 ;
l 1 −>{Write }{}{x >= 2} l 1 ;
l 1 −>{LockOff }{x}{} l 1 ;
l 1 −>{Auth}{}{} l 1 ;
l 1 −>{Write }{}{x < 2} l 3 ;
l 2 −>{Auth}{}{} l 2 ;
l 2 −>{LockOn}{}{} l 2 ;
l 2 −>{LockOff }{x}{} l 1 ;
l 2 −>{Write }{}{} l 3 ;
l 3 −>{Write }{}{} l 3 ;
l 3 −>{Auth}{}{} l 3 ;
l 3 −>{LockOn}{}{} l 3 ;
l 3 −>{LockOff }{}{} l 3 ;

}
}

274 M. Renard et al.

References

1. Uppaal DBM Library. http://people.cs.aau.dk/∼adavid/UDBM/. Accessed 27 Apr
2017

2. Alcalde, B., Cavalli, A., Chen, D., Khuu, D., Lee, D.: Network protocol system
passive testing for fault management: a backward checking approach. In: de Frutos-
Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235, pp. 150–166. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30232-2 10

3. Alur, R., Courcoubetis, C., Halbwachs, N., Dill, D., Wong-Toi, H.: Minimization of
timed transition systems. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol.
630, pp. 340–354. Springer, Heidelberg (1992). doi:10.1007/BFb0084802

4. Alur, R., Dill, D.: The theory of timed automata. In: Bakker, J.W., Huizing, C.,
Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp. 45–73. Springer,
Heidelberg (1992). doi:10.1007/BFb0031987

5. Bartocci, E., Falcone, Y., Bonakdarpour, B., Colombo, C., Decker, N., Havelund,
K., Joshi, Y., Klaedtke, F., Milewicz, R., Reger, G., Rosu, G., Signoles, J., Thoma,
D., Zalinescu, E., Zhang, Y.: First international competition on runtime verifica-
tion: rules, benchmarks, tools, and final results of CRV 2014. Int. J. Softw. Tools
Technol. Transf., 1–40 (2017)

6. Basin, D., Jugé, V., Klaedtke, F., Zălinescu, E.: Enforceable security policies revis-
ited. ACM Trans. Inf. Syst. Secur. 16(1), 3:1–3:26 (2013)

7. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-27755-2 3

8. Cavalli, A., Gervy, C., Prokopenko, S.: New approaches for passive testing using an
extended finite state machine specification. Inf. Softw. Technol. 45(12), 837–852
(2003)

9. Falcone, Y.: You should better enforce than verify. In: Barringer, H., Falcone, Y.,
Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N.
(eds.) RV 2010. LNCS, vol. 6418, pp. 89–105. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-16612-9 9

10. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. In: Engi-
neering Dependable Software Systems, pp. 141–175 (2013)

11. Falcone, Y., Mounier, L., Fernandez, J., Richier, J.: Runtime enforcement moni-
tors: composition, synthesis, and enforcement abilities. Formal Methods Syst. Des.
38(3), 223–262 (2011)

12. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr.
Program. 78(5), 293–303 (2009)

13. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies.
ACM Trans. Inf. Syst. Secur. 12(3), 19:1–19:41 (2009)

14. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H.: TiPEX: a tool chain for timed
property enforcement during eXecution. In: Bartocci, E., Majumdar, R. (eds.)
RV 2015. LNCS, vol. 9333, pp. 306–320. Springer, Cham (2015). doi:10.1007/
978-3-319-23820-3 22

15. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A., Nguena Timo, O.L.:
Runtime enforcement of timed properties. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 229–244. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35632-2 23

16. Renard, M., Falcone, Y., Rollet, A., Jéron, T., Marchand, H.: Optimal enforce-
ment of (timed) properties with uncontrollable events. Mathematical Structures in
Computer Science, pp. 1–46 (2017)

http://people.cs.aau.dk/~adavid/UDBM/
http://dx.doi.org/10.1007/978-3-540-30232-2_10
http://dx.doi.org/10.1007/BFb0084802
http://dx.doi.org/10.1007/BFb0031987
http://dx.doi.org/10.1007/978-3-540-27755-2_3
http://dx.doi.org/10.1007/978-3-642-16612-9_9
http://dx.doi.org/10.1007/978-3-642-16612-9_9
http://dx.doi.org/10.1007/978-3-319-23820-3_22
http://dx.doi.org/10.1007/978-3-319-23820-3_22
http://dx.doi.org/10.1007/978-3-642-35632-2_23
http://dx.doi.org/10.1007/978-3-642-35632-2_23

GREP: Games for the Runtime Enforcement of Properties 275

17. Renard, M., Falcone, Y., Rollet, A., Pinisetty, S., Jéron, T., Marchand, H.: Enforce-
ment of (Timed) properties with uncontrollable events. In: Leucker, M., Rueda, C.,
Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399, pp. 542–560. Springer, Cham
(2015). doi:10.1007/978-3-319-25150-9 31

18. Renard, M., Rollet, A., Falcone, Y.: Runtime enforcement using Büchi games. In:
Proceedings of Model Checking Software - 24th International Symposium, SPIN
2017, Co-located with ISSTA 2017, Santa Barbara, USA, pp. 70–79. ACM Press,
July 2017

19. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

http://dx.doi.org/10.1007/978-3-319-25150-9_31

Constraint-Based Oracles
for Timed Distributed Systems

Nassim Benharrat1,3(B), Christophe Gaston1, Robert M. Hierons2,
Arnault Lapitre1, and Pascale Le Gall3

1 CEA, LIST, Laboratory of Model Driven Engineering for Embedded Systems,
P.C. 174, Gif-sur-Yvette 91191, France

{nassim.benharrat,christophe.gaston,arnault.lapitre}@cea.fr
2 Brunel University London, Uxbridge, Middlesex UB8 3PH, UK

rob.hierons@brunel.ac.uk
3 Laboratoire MICS, CentraleSupélec, Université Paris-Saclay,

92295 Châtenay-Malabry, France
{nassim.benharrat,pascale.gall}@centralesupelec.fr

Abstract. This paper studies the situation in which the system under
test and the system model are distributed and have the same structure;
they have corresponding remote components that communicate asyn-
chronously. In testing, a component with interface Ci has its own local
tester that interacts with Ci and this local tester observes a local trace
consisting of inputs, outputs and durations as perceived by Ci. An obser-
vation made in testing is thus a multi-trace: a tuple of (timed) local
traces, one for each Ci. The conformance relation for such distributed
systems combines a classical unitary conformance relation for localised
components and the requirement that the communication policy was sat-
isfied. By expressing the communication policy as a constraint satisfac-
tion problem, we were able to implement the computation of test verdicts
by orchestrating localised off-line testing algorithms and the verification
of constraints defined by message passing between components. Lastly,
we illustrate our approach on a telecommunications system.

Keywords: Model-based testing · Distributed testing · Timed input
output transition systems · Off-line testing · Constraint-based testing

1 Introduction

Distributed systems can be seen as collections of physically remote reactive sys-
tems communicating through communication media. The classical approach to
testing such systems involves placing a local tester at each localised interface,
with each local tester only observing the events at its interface. If testers do not
exchange synchronisation messages and there is no global clock, this corresponds
to the ISO standardised distributed test architecture [11]. The result of test exe-
cution can be modelled as a collection of logs (local traces); each is a sequence
of messages involving a given localised system.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 276–292, 2017.
DOI: 10.1007/978-3-319-67549-7 17

Constraint-Based Oracles for Timed Distributed Conformance Testing 277

Model-Based Testing (MBT) [8,17,21] aims to automate three central
processes in testing, namely: the test generation process whose purpose is to
extract test cases from a behavioural model of the System Under Test (SUT),
the test execution process whose purpose is to orchestrate the stimulation of the
SUT with input test data and the collection of the SUT’s reactions and finally,
the verdict (oracle) computation phase whose purpose is to analyse the results
of test case executions, given as execution traces, in order to identify faults by
checking traces against the model1. This comparison is based on a conformance
relation that relates traces of SUTs and traces of their associated models.

MBT was first explored in a centralised context but extensions to distributed
SUTs have been defined, initially motivated by protocol conformance testing [19].
This includes work that uses Input Output Transition System (IOTS) as the
modelling formalism [3,9,10]. In the context of distributed testing from Timed
IOTS (TIOTS), in [6], we extended the tioco conformance relation [14,15,20] to
define a conformance relation dtioco for timed distributed testing. The model of a
distributed SUT is given as a tuple of TIOTSs, each modelling one of the localised
subsystems of the SUT. The result of test case execution is a tuple of timed
traces (a timed trace is a trace in which delays between consecutive interactions
of the tester with the localised SUT are recorded). Under the hypothesis that
localised systems communicate in a multi-cast mode, we have shown that the
verdict computation process can be conducted by combining centralised MBT
techniques for each localised system, using the tioco conformance relation, and a
step-by-step algorithm whose purpose is to check that the tuple of timed traces
is consistent with the underlying communication hypothesis [6].

The goal of this paper is twofold. First, we propose an improvement of the
algorithm presented in [6] by formulating the oracle problem as a constraint
solving problem. While the previous algorithm analyses a multi-trace by mim-
icking step by step emissions and receptions of messages, as well as the passage
of time, in this article, we reformulate the verification of message passing as a set
of inequality constraints that can be supported by a constraint solver. Compared
to the one introduced in [6], the new algorithm treats durations between commu-
nication actions as real numbers. In [6] those durations had to be representable
as multiples of a basic time unit, which only allowed us to consider durations
in a set isomorphic to the set of natural numbers. The previous approach also
included backtracking. In the new algorithm, durations may be any real number
that falls in the theory addressed by the considered solver. Second, we present
the tool that solves the oracle problem using both a localised verdict computa-
tion approach for tioco (presented in [1]) and the verification of constraints to
check internal communications between localised systems. We consider a case
study modelling a telecommunication system, named PhoneX [18] specified as
a collection of Timed Input Output Symbolic Transition Systems (TIOSTS),
which are symbolic representations of TIOTS.

Section 2 introduces the types of models used and Sect. 3 presents the PhoneX
case study. Section 4 recalls the testing framework and introduces the verification

1 When the processes are intertwined testing is on-line; otherwise it is off-line.

278 N. Benharrat et al.

of message passing using constraints. Section 5 describes a scalability study,
based on the PhoneX example, that applied mutation techniques to generate
correct and faulty trace tuples. Section 6 discusses related works and Sect. 7
gives concluding remarks.

2 Modelling Framework

2.1 TIOSTS

Timed Input Output Symbolic Transition Systems (TIOSTS) are symbolic
automata built over a signature Σ = (Ω,A, T,C) where Ω = (S, F) is an equa-
tional logic signature with S a set of types and F a set of functions provided
with an arity. The functions are interpreted in a model M as usual. A is a set
of data variables used to store input values, to denote system state evolutions
and to define guards. T is a set of clocks, which are variables whose values are
elements of a set D isomorphic to non-negative real numbers and that are used
to denote durations. D+ will denote D \ {0}. M is supposed to contain D. Vari-
ables in A∪T are assigned values by interpretations of the form ν : A∪T → M ;
MA∪T is the set of all interpretations. Finally, C is a set of channels parti-
tioned as Cin

∐
Cout where elements of Cin (resp. Cout) are input (resp. output)

channels. The set of terms TΩ(A) over Ω and A is inductively defined as usual
and variable interpretations are canonically extended to terms. The set of sym-
bolic actions Act(Σ) is I(Σ) ∪ O(Σ) with I(Σ) = {c?x | x ∈ A, c ∈ Cin} and
O(Σ) = {c!t | t ∈ TΩ(A), c ∈ Cout}. In order to simplify the exposition, at
the level of our modelling framework, we consider messages that contain only a
single piece of data. However, at the tooling level, without adding any particular
difficulties, messages contain 0 (signals c! or c?), 1 or n data (c!(t1, . . . , tn) or
c?(x1, . . . , xn), the xi being different variables of A).

A TIOSTS is a triple G = (Q, q0, T r) where Q is a set of states, q0 is a
distinguished element of Q called the initial state, and Tr is a set of labeled
transitions. A transition is defined by a tuple (q, φ, ψ,T, act, ρ, q′) where q (resp.
q′) is the source (resp. target) state of the transition, φ is a formula, called time
guard, of the form z ≤ Cst or z ≥ Cst where z ∈ T and Cst is a constant
interpreted in D (φ constrains the delay at which the action act occurs), ψ
is an equational logic formula, called data guard (ψ is a firing condition on
attribute variables), T ⊆ T is a set of time variables (to be reset to 0 when the
transition is executed), act is a communication action and ρ assigns terms of
TΩ(A) to variables in A in order to represent state evolutions. In the sequel, we
use M |=ν ϕ to say that ϕ holds for interpretation ν. The set of paths of G

contains the empty sequence ε and all sequences tr1. · · · .trn of transitions of Tr
such that source(tr1) = q0 and for all i < n, target(tri) = source(tri+1).

Concrete actions are values exchanged through channels. The set of concrete
actions over C is thus Act(C) = I(C) ∪ O(C) where I(C) = {c?v | c ∈ Cin, v ∈
M} are inputs and O(C) = {c!v | c ∈ Cout, v ∈ M} are outputs. Given act ∈
Act(C) of the form cΔv with Δ ∈ {!, ?}, chan(act) refers to c, act refers to its

Constraint-Based Oracles for Timed Distributed Conformance Testing 279

mirror action, cΔv with ! =? and ? =!. Variable interpretations are canonically
extended to symbolic actions (ν(c?x) = c?(ν(x)) and ν(c!t) = c!ν(t)).

A concrete action is generally observed after a delay has occurred since the
previous occurrence of a concrete action. This is captured by the notion of events.

Definition 1 (Events). The set of (resp. initialised) events over C is defined
as Evt(C) = (D+∪{ })×(Act(C)∪{δ}) (resp. IEvt(C) = D+×(Act(C)∪{δ})).

Pair (d, a) represents the observation of concrete action a after delay d. Fol-
lowing [21], symbol ‘δ’ is used to denote the absence of observation of a concrete
action (i.e. quiescence). Let us point out that usually, in a pure timed framework,
δ may be useless (e.g. [6,13,14]). Here, the use of δ is a side effect of considering
atomic actions as events. Indeed, expressing that a system is quiescent after a
duration d has to be representable as an event, and thus, we need a symbol to
represent these quiescent situations as a couple (d, δ). Symbol ‘ ’ is introduced
to denote the absence of the observation of a delay (i.e. (, a)). We require this so
that the first action of a localised trace need not be stamped with a duration. In
addition, between two consecutive concrete actions on one location, we require
that the delay is greater than zero so that two events do not occur simultane-
ously. Given ev ∈ Evt(C), we let act(ev) = a and delay(ev) = d if ev = (d, a)
with d ∈ D+, else delay(ev) = 0 (ev = (, a)). In the sequel δEvt(C) denotes
{ev ∈ Evt(C)\act(ev) = δ}.

Definition 2 (Timed traces). The set ITraces(C) of initialised traces over
C is2 (IEvt(C) \ δEvt(C))∗.(ε + δEvt(C)).
The set UTraces(C) of uninitialised traces over C is {u(σ) | σ ∈ ITraces(C)}
where u(σ) denotes ε if σ = ε and (, a).σ′ if σ = (d, a).σ′.
The set TTraces(C) of timed traces over C is UTraces(C) ∪ ITraces(C).

Any event of an initialised trace contains a duration and a concrete action.
For the first event, this duration represents a delay between some distinguished
moment (e.g. since the time at which a tester started to measure the duration)
and the first observed action. Uninitialised traces are timed traces for which no
initial instant is identified. Finally, note that quiescence is only observed at the
end of traces, when no communication action follows it. Indeed when a commu-
nication action a occurs after a period of time where an implementation remains
silent, this period of time is captured by the delay of the event introducing a.

For σ ∈ TTraces(C), dur(σ) denotes the duration of σ, which is 0 if σ is ε,
and otherwise is the sum of all delays of events in σ. Pref(σ) denotes the set of
prefixes of σ defined as {ε} if σ is ε and Pref(σ′)∪{σ} if σ is of the form σ′.ev.
Moreover, for an action a in Act(C), |σ|a denotes the number of occurrences of a
in σ. pref(σ, a, n) stands for the smallest prefix of σ that contains n occurrences
of a when this prefix exists. Finally, using the pref operation, we introduce an
operation that measures the elapsed time at the nth occurrence of an event a

2 E∗ is the set of finite sequences of elements in E with ε as neutral element for
sequence concatenation.

280 N. Benharrat et al.

from the beginning of the trace. By convention, if a trace contains strictly fewer
than n occurrences of a, then the associated duration is that of the entire trace.

dur occ(σ, a, n) =
{

dur(pref(σ, a, n)) if pref(σ, a, n) exists
dur(σ) else

We now define runs of transitions of TIOSTS:

Definition 3 (Runs of transitions). Let G = (Q, q0, T r) be a TIOSTS
over Σ. The set SnpM (G) of snapshots of G is the set Q × MA∪T . For tr =
(q, φ, ψ,T, act, ρ, q′) ∈ Tr, the set of runs of tr is the set Run(tr) ⊆ SnpM (G) ×
Evt(C) × SnpM (G) s.t. ((q, ν), ev, (q′, ν′)) ∈ Run(tr) iff there exist d ∈ D and
ξ : A ∪ T → M satisfying:

– for all w ∈ T , ξ(w) = ν(w) + d,
– if act = c!t then for all x ∈ A, ξ(x) = ν(x), else (act = c?x) for all y ∈ A\{x},

ξ(y) = ν(y),

and such that we have either ev = (d, ξ(act)) or ev = (, ξ(act)), ∀x ∈ A, ν′(x) =
ξ(ρ(x)), ∀w ∈ T, ν′(w) = 0, ∀w ∈ (T \T), ν′(w) = ξ(w), M |=ξ φ and M |=ξ ψ.

In Definition 3, ξ is an intermediate interpretation whose purpose is to let
time pass from ν for all clocks (ξ(w) = ν(w) + d) and take into account a
potential input value (denoted by ξ(x) if act = c?x). Guards of the transition
should be satisfied by ξ and if it is the case then the transition can be fired
resulting on a new interpretation ν′ updating data variables according to ρ and
resetting clocks occurring in T.

For a path p of G, the set of timed traces of p, denoted TTraces(p) is {ε}
if p = ε and if p is of the form tr1. · · · .trn, TTrace(p) contains all sequences of
events ev1 · · · evn such that there exists a sequence of runs r1 · · · rn satisfying:
for all i ≤ n, ri is a run of tri of the form (snpi, evi, snp′

i+1) and for all j < n
we have snp′

j = snpj+1 and such that all events are initialised except for i = 1,
i.e. ev1 is of form (, a1) and for all i > 1, evi is of form (di, ai).

By taking into account the particular action δ, the set of timed traces of G,
denoted TTraces(G), is defined as:

– For all p ∈ Path(G) we have TTraces(p) ⊆ TTraces(G),
– For all σ ∈ TTraces(G) such that there exists no path p and no event ev with

act(ev) ∈ O(C) satisfying σ.ev ∈ TTraces(p), we have σ.(d, δ) ∈ TTraces(G)
if σ 	= ε and (, δ) ∈ TTraces(G) if σ = ε.

2.2 Communication and Systems

We now define a distributed interface as a collection of localised interfaces.

Definition 4 (Distributed interface). A distributed interface is a tuple Λ =
(C1, · · · , Cn), with n ≥ 1, where for all i ≤ n, Ci is a set of channels such that
for any i 	= j we have Cout

i ∩ Cout
j = ∅. C(Λ), which is equal to

⋃
i≤n Ci, is the

set of channels of Λ with C(Λ)in =
⋃

i≤n Cin
i and C(Λ)out =

⋃
i≤n Cout

i .

Constraint-Based Oracles for Timed Distributed Conformance Testing 281

Cout
i ∩ Cout

j = ∅ ensures that for a channel c, messages emitted through
c can only be emitted from one sender. This is a simplification hypothesis
that makes the later formalisation lighter. In a distributed architecture, for a
given localised interface Ci of Λ = (C1, · · · , Cn), Cint

i (resp. Cext
i), defined

as
⋃{Ci ∩ Cj | j ≤ n ∧ j 	= i} (resp. Ci\Cint

i), denotes the set of internal
channels (resp. external channels) that can be used to exchange messages with
other localised subsystems (resp. exchange messages with the system environ-
ment). We let Cint(Λ) denote

⋃
i≤n Cint

i , Cext(Λ) denote
⋃

i≤n Cext
i , and Act(Λ)

denote I(Λ) ∪ O(Λ) with I(Λ) =
⋃

i≤n I(Ci) and O(Λ) =
⋃

i≤n O(Ci). Iint(Λ)
(resp. Oint(Λ)) is the subset of I(Λ) (resp. O(Λ)) whose elements are inputs
(resp. outputs) through internal channels. For any c!v ∈ O(Λ), Sender(Λ, c!v)
stands for the index j such that c ∈ Cout

j . We let Actint(Λ) = Iint(Λ)∪Oint(Λ),
Evt(Λ) = Evt(C(Λ)), and Evtint

in (Λ) be the set of events whose action is an
internal input. We define Tup(Λ) to be TTraces(C1) × · · · × TTraces(Cn). In
the sequel, a distributed interface Λ = (C1, · · · , Cn) is given. An observation
made in a system will be a tuple of timed traces where each timed trace repre-
sents a local observation. We first introduce the notion of a multi-trace, which
is a tuple of timed traces characterising compatible communications between a
collection of localised subsystems.

Definition 5 (Multi-traces). The set of multi-traces of Λ with initial
instants, denoted IMTraces(Λ), is the subset of ITraces(C1)×· · ·×ITraces(Cn)
defined as follows:

– Empty multi-trace: (ε, · · · , ε) ∈ IMTraces(Λ),
– multi-trace Extension: for any μ = (σ1, . . . , σn) ∈ IMTraces(Λ), for

ev ∈ IEvt(Ci) for i ≤ n, (σ1, . . . , σi.ev, . . . , σn) ∈ IMTraces(Λ) provided
that: if act(ev) ∈ I(Ci) ∩ Iint(Λ), we have |σj |ev ≥ |σi|act(ev) + 1 and
dur occ(σj , ev, |σi|act(ev) + 1) < dur(σi.ev) with j = Sender(Λ, act(ev)).

The set UMTraces(Λ) (resp. MTraces(Λ)) of uninitialised multi-traces (resp.
of multi-traces) of Λ is {(u(σ1), · · · , u(σn)) | (σ1, · · · , σn) ∈ IMTraces(Λ)}
(resp. UMTraces(Λ) ∪ IMTraces(Λ)).

Initialised multi-traces denote tuples of traces, each trace of the tuple being a
partial centralised vision of a common distributed execution. The nature of com-
munication considered is multicast, as captured by the property that an internal
message can be received at some Ci only if Ci has consumed fewer occurrences
of this message than the number of the corresponding output occurrences. Each
trace occurring in an initialised multi-trace starts with an event introducing a
duration. All those durations are supposed to start at a common initial instant.
Of course, in the context of distributed executions it is generally not possible to
observe such a common initial instant. Therefore, we defined uninitialised multi-
traces in which the initial durations are not observable. Similar rules have been
proposed in [16] to express component composition in a distributed setting.

In distributed testing, we assume that there is a separate tester at each
localised interface and there is no global clock for globally ordering distributed

282 N. Benharrat et al.

events. Hence, we cannot make any assumption on the different moments at
which the different local testers stop observing their associated interfaces. To
capture this, we accept as valid observations, tuples made of multi-trace prefixes.

Definition 6 (Observable multi-traces). The set of initialised observ-
able multi-traces of Λ, denoted IOTraces(Λ), is the smallest set containing
IMTraces(Λ) and such that for any (σ1, · · · , σi.ev, · · · , σn) ∈ IOTraces(Λ) we
have (σ1, · · · , σn) ∈ IOTraces(Λ).

The set of uninitialised observable multi-traces of Λ, denoted UOTraces(Λ),
is the set {(u(σ1), · · · , u(σn)) | (σ1, · · · , σn) ∈ IOTraces(Λ)}.

Initialised observable multi-traces characterise observations starting at a
common initial instant but ending at different instants depending on the con-
sidered component of the interface. Of course, since there is a common initial
instant it is possible to order the moments at which the observations of the differ-
ent traces of the tuple occur (σi ends before σj if dur(σi) < dur(σj)). However,
in general such an initial instant cannot be identified in testing. Therefore, real
observations of system executions should be defined by tuples containing only
uninitialised traces, which is captured by uninitialised observable multi-traces.

Definition 7. Let Λ = (C1, · · · , Cn) be a distributed interface. A system over
Λ is a tuple Sys = (G1, · · ·Gn) such that for all i ≤ n we have Gi is a TIOSTS
over a signature of the form (Ωi, Ai, Ti, Ci). The semantics of Sys, denoted
TTraces(Sys) is defined as (TTraces(G1)×· · ·×TTraces(Gn))∩ UOTraces(Λ).

3 The PhoneX Case Study

PhoneX [18] is a central telecommunication system model describing a proto-
col to establish sessions between phones. It was initially used as a reference
to investigate the test case generation capacities of the platform Diversity3 by
the Ericsson company. In our context, PhoneX is interesting since it allows
the number of communicating actors to be parameterised, even though there
is only one time constraint in the subsystem models. Figure 1 depicts a sce-
nario of a successful session setup and call establishment between 2 phones.
A caller with Phone112 initiates a call (doCall(113)) to the user of Phone113.
The PhoneX server, after receiving Calling(112, 113), checks if Phone113 is reg-
istered, available, and then starts StartSession(112, 113) for communication
management and remains available. Session113

112 informs Phone113 that Phone112
tried to get in contact (CalledBy(112)). The user of Phone113 can accept the call
(doAcceptCall) and informs Session113

112 using AcceptingCall which can estab-
lish communication (multicasting InitCall). Each user can end the call (the user
of Phone112 hangs up, doEndCall) and report it (EndingCall) to Session113

112

that closes the connection by multicasting TermCall and becomes available
(EndSession(112, 113)) again. Figure 2 depicts the architecture. Components

3 https://projects.eclipse.org/proposals/eclipse-formal-modeling-project.

https://projects.eclipse.org/proposals/eclipse-formal-modeling-project

Constraint-Based Oracles for Timed Distributed Conformance Testing 283

Fig. 1. Interaction scenario of a successful call operation

Fig. 2. The PhoneX architecture

Caller Client and Called Client define two roles that registered phones can
have. PhoneX is the component that plays the role of the telecommunication
centre. Active Session is a generic representation of sessions created by the cen-
tre to manage communications between phones. Communication channels model
the media used by components in Fig. 2.

Caller client behaviour (Fig. 3(a)). At the Idle state, caller src receives a call
from the environment (a caller) to make a call operation with called dest. Then
it joins PhoneX central by sending to it src and dest (caller reaches Initiating
state). Caller returns to Idle state when it receives an error code from PhoneX
(PhoneX cannot establish a call due to violated condition of call establishment)
or a signal to terminate the call from the active session (due to a call rejection
by called client). At Initiating, src may reach Established if a call is estab-
lished by active session or state Terminating if a no-answer (from called client)
is observed during a waiting delay. When a call is established (at Established),
src may return to Idle by receiving a terminating signal from the active session
(due to an ending call by called client) or receive a signal from the environ-
ment (a caller) to end the call in progress (caller reaches UserEndingCall). At
UserEndingCall, the caller notifies the active session for terminating the call
(caller reaches Terminating). At Terminating, src returns to Idle by receiving
a terminating signal from the active session.

284 N. Benharrat et al.

Called client behaviour (Fig. 3(b)). This role is symmetric (on the called
client side) to the one described in Fig. 3(a)).

Fig. 3. TIOSTSs Gsrc and Gdest of Caller and Called clients

PhoneX central behaviour (Fig. 4(a)). At the Idle state, PhoneX may receive
a call and reach Calling or get notified of the ending of an already active session
and return to Idle. At Calling, PhoneX may start a new session (src, dest)
and return to Idle provided that dest is a registered and allowed-to-call number
in the Client database and there is no active session with called client dest.
Otherwise, PhoneX may also return to Idle when dest is not registered in Client
database, or calling dest is not allowed, or called client dest is busy.

Session behaviour (depicted in Fig. 4(b)). When a new session is started, a
Session TIOSTS is instantiated. At the Idle state, Session receives src and dest
numbers, it then reaches Starting. It notifies dest with a call operation emitted
by src and reaches Initiating. At Initiating, it may reach either Accepted when
called client accepts the call during a waiting delay or Terminating if a no-
answer is observed during a waiting delay or the call get rejected. At Accepted,
active session initiates a call between src and dest and reaches state Established.
Then, either caller or called client may end the call (session reaches Terminating
state). At Terminating state session sends a terminating signal to both caller
and called clients and reaches Ending. Finally, it returns to Idle by notifying
PhoneX central of ending the active session.

Constraint-Based Oracles for Timed Distributed Conformance Testing 285

Fig. 4. TIOSTSs GX and GS of PhoneX Central and Active Session

4 Testing

In [6], we modelled timed distributed systems as tuples (LS1, . . . ,LSn) where each
LSi denotes a black box localised system under test. Then we defined a confor-
mance relation dtioco to test such a distributed system with respect to a system
model (G1, . . . ,Gn). We showed that solving the oracle problem for an observable
multi-trace (σ1, · · · , σn) reduces to: (a) solve the oracle problem of each σi with
respect to tioco [15] and with Gi as reference model (unitary testing, see Sect. 4.1)
and, (b) check whether (σ1, · · · , σn) is an observable (uninitialised) multi-trace. In
Sect. 4.1 we briefly recall the principles of a simplified4 version of the unitary test-
ing algorithm defined in [1]. Then in Sect. 4.2, we introduce the new algorithm
based on constraint solving to decide if a tuple is an observational multi-trace.
As compared to [1,6], we have slightly adapted our definitions of timed traces in
order to deal with events instead of atomic observations such as inputs, outputs
or durations; this adaptation has no impact on the results in [1,6].

4.1 Unitary Testing

A Localised subsystem Under Test (LUT) is defined over a set of channels C as
a non-empty subset LS of UOTraces(C) such that:

– Input completeness: for any σ in LS of the form σ′.ev′, for any ev ∈ Evt(C)
such that act(ev) ∈ I(C) and delay(ev) ≤ delay(ev′), we have σ′.ev ∈ LS.

4 Due to the lack of space.

286 N. Benharrat et al.

– Quiescence: for all σ ∈ LS we have:

∀ev ∈ Evt(C).(act(ev) ∈ O(C) ⇒ σ.ev /∈ LS)

⇔
(σ 	= ε ⇒ (∀d ∈ D+, σ.(d, δ) ∈ LS)) ∧ (σ = ε ⇒ (, δ) ∈ LS)

Moreover for any σ in LS of the form σ′.ev′ with act(ev′) = δ, for any ev ∈
Evt(C) with act(ev) ∈ O(C) we have σ.ev /∈ LS.

– Reaction prefix: for any σ in LS, we have Pref(σ) ⊆ LS.

Input completeness is required so that an LUT cannot refuse an input
from the environment. Quiescence corresponds to situations where the LUT
will not react anymore until it receives a new stimulation. Reaction prefix is
a realistic property stating that a prefix of an observation is an observation.

The local verdict computation algorithm is based on a symbolic structure
SE(G)δ computed from the reference model G obtained by classical symbolic
execution techniques. It is a tree-like structure whose nodes are symbolic states
used to capture information related to the possible executions of G. A path
p is a sequence of consecutive edges relating symbolic states and labelled by
symbolic events. The set of executions (uninitialised timed traces) associated to
p is characterised by the sequence ev1 · · · evn of symbolic events labelling the
consecutive edges and by the final symbolic state η. Each symbolic event of the
sequence is of the form (di, acti) (except ev1 which is of the form (, act1)). Each
di is a new fresh variable (i.e. not used in the definition of G) used to represent
durations (they are typed as clocks) and each acti is of the form c?zi or c!ti
where zi is a new fresh variable and ti is a term built over the same equational
logic signature Ω as terms in G but on a set of new fresh variables. η is of the
form (q, πd, πt, �) where q is the state reached in G, πd is a constraint on new
fresh data variables (let Fd be the set of those variables), πt is a constraint on
the set of variables of the form di and � : A → TΩ(Fd) associates symbolic values
to variables of G. An uninitialised timed trace ev′

1 · · · ev′
n belongs to p iff for all

i ≤ n:

– ev′
i is of the form (, act′i) (resp. (d′

i, act′i)) if evi is of the form (, acti) (resp.
(di, acti)) and act′i is of the form c?z′

i (resp. c!t′i) if acti is of the form c?zi

(resp. c!ti).
– Let xi (resp. x′

i) stand for the variable zi (resp. z′
i) if acti (resp. act′i) is

an input and for the term ti (resp. t′i) if acti (resp. act′i) is an output. The
formula (

∧
i≤n xi = x′

i) ∧ πd ∧ πt is satisfiable.

The verdict computation algorithm analyses successively all events of σ =
ev′

1 · · · ev′
n and at each steps it computes the set of paths to which the already

analysed prefix of σ belongs. As soon as possible a verdict is emitted5:

5 In accordance with the tioco conformance relation.

Constraint-Based Oracles for Timed Distributed Conformance Testing 287

– Fail if act(ev′
i) is an output or δ and the set of path becomes empty, or else

act(ev′
i) is an input (d′

i, act′i) and there exists an event ev′′
i = (d′′

i , act′′i) where
act′′i is an output (not δ) satisfying d′′

i < d′
i and ev′

1 · · · ev′
i−1.ev

′′
i belongs to

some path of SE(G)δ.
– Inconc if act(ev′

i) is an input (d′
i, act′i), the set of path becomes empty, and

for all events ev′′
i = (d′′

i , act′′i) where act′′i is an output (not δ), d′′
i < d′

i we
have ev′

1 · · · ev′
i−1.ev

′′
i does not belong to any path of SE(G)δ.

– Pass if σ is fully analysed without generating any of the previous verdicts.

4.2 Communication Testing

An SUT over Λ is a tuple S = (LS1, . . . ,LSn) where LSi is an LUT defined
over Ci (all i ≤ n). The semantics of S, denoted Obs(S) ⊆ LS1 × · · · × LSn,
contains all observations that can be made when executing S. The goal of
Algorithm 1 is to check whether those observations reveal communication errors
by checking whether they are in UOTraces(Λ). It is based on the property that
an uninitialised observable multi-trace μ = (σ1, · · · , σn) is such that each σi is
either empty or of the form (, ai).σ′

i, but in the latter case μ has been obtained
from an initialised observable multi-trace of the form μ′ = (σ′′

1 , · · · , σ′′
n) where

σ′′
i is ε for σi = ε and of the form (di, ai).σ′

i for σi of the form (, ai).σ′
i. Thus,

(σ1, · · · , σi.ev, · · · σn) ∈ UOTraces(Λ) iff there exist durations d1, · · · , dn where
μ′′ = (σ′′

1 , · · · , σ′′
i , · · · σ′′

n) ∈ IOTraces(Λ). We check whether such durations
exist by considering them as n variables d1, · · · , dn (of type D); we construct
constraints on these variables characterising the properties of observable traces.
By definition, only the occurrence of an internal input might break the prop-
erty. There are two reasons for allowing an initialised observable multi-trace
to be extended by an internal input. The first is that a sufficient number of
corresponding internal outputs have previously been emitted. The second is
that at the time when the extension is performed, the trace emitting the cor-
responding internal output is no longer observed. If σi is the trace extended
by internal input a, ρ = σi.a and σj is the trace at the interface that sends
a, the first case correspond to situation in which pref(σj , a, |ρ|a) exists and C:
di+dur(ρ) > dj +dur occ(σj , a, |ρ|a) holds. The latter case corresponds to situa-
tions in which pref(σj , a, |ρ|a) does not exist and C ′: di +dur(ρ) > dj +dur(σj)
holds. However, by definition of dur occ, when pref(σj , a, |ρ|a) does not exist
we have that dur occ(σj , a, |ρ|a) = dur(σj), which means that the constraints
C and C ′ are equivalent. Therefore both cases can be treated in the same way
by requiring that C holds, as is done in Algorithm1. Every new constraint to
be considered is added to the set E (line 10). Sat is a function on sets of con-
straints such that Sat(E) returns True if all constraints in E are simultaneously
satisfiable and False otherwise.

288 N. Benharrat et al.

Algorithm 1. ObsMult(μ, d, Λ)
Data: μ = (σ1, · · · , σn) tuple of traces, d = (d1, · · · , dn) n variables, Λ system signature
Result: a verdict stating whether or not μ is an observable multi-trace

1 begin
2 E ← ∅;
3 for i ∈ [1 · · · n] do
4 ρ ← ε ;
5 foreach ev ∈ σi do
6 ρ ← ρ.ev ;

7 if act(ev) ∈ I(Cint(Λ)) then
8 a ← act(ev);

9 j ← Sender(Λ, act(ev));
10 E ← E ∪ {(di + dur(ρ) > dj + dur occ(σj , a, |ρ|a)};
11 if ¬Sat(E) then
12 return Failcom /* It’s not an observable multi-trace */;

13 return Passcom;

5 Experiments

We implemented the approach by separating the verification of local traces
(Sect. 4.1) and the verification of the tuple of traces against the definition of
observable multi-traces (Definition 6 and Sect. 4.2). If there are n subsystems, the
global verdict V erdictg has n + 1 verdicts (V erdict1, . . . , V erdictn, V erdictcom)
where for l in [1 . . . n], V erdictl is the local verdict in {Passl, Faill, Inconcl}
associated to the lth component and where V erdictcom ∈ {Passcom, Failcom}
is the verdict relating to the verification of the communication policy.

In order to assess the scalability of the framework, we adopted a mutation-
based approach. We first generated multi-traces that are correct by construction
with respect to local analyses and communication rules. For this purpose, a global
model of the system is built by simulating internal communications using one
timed queue per component. Since the reception of a message can be delayed, the
model specifies asynchronous communications. Then, we use the symbolic exe-
cution platform Diversity6 to build long traces, focusing on the behaviours that
complete communication scenarios as much as possible. Finally, the resulting
multi-traces are directly constructed by considering a tuple made of all projec-
tions for each component. Generated multi-traces are then modified by applying
some simple mutation schemas. Table 1 summaries mutation schemas we applied
on a multi-trace μ to produce a set of mutated tuples of traces.

Mutation schemas #1 and #3 require that added or modified events respect
syntactic requirements from the system signature and concerning channels and
data types. Mutation schema #5 is designed to break the key property of
multi-traces, that is that time is necessarily elapsing when messages are trans-
mitted. Let us illustrate with the observable multi-trace μ = (σ1, σ2) where
σ1 = (, c1?v1).(1, c2!v2).(3, c3?v3) and σ2 = (, c2?v2).(1, c3!v3). Applying muta-
tion schema #5 consists of breaking the so-called round-trip communication,

6 https://projects.eclipse.org/proposals/eclipse-formal-modeling-project.

https://projects.eclipse.org/proposals/eclipse-formal-modeling-project

Constraint-Based Oracles for Timed Distributed Conformance Testing 289

Table 1. Mutation schemas on multi-traces

Mut. schema Description

#1 Choose (randomly) a position in μ and insert an event ev

#2 Choose randomly an event ev in μ and delete it

#3 Choose randomly an event ev in μ and modify its data

#4 Choose randomly an event ev in μ and modify its duration

#5 Choose randomly a round-trip-commnunication (RTC) in μ
and break it

abbreviated as the acronym RTC, c2!v2 → c2?v2 → c3!v3 → c3?v3, for which
by construction, the delay between the emission and the reception on the first
component has to be strictly greater than the delay between the reception and
the emission on the second component. Mutation schema #5 modifies delays
between these actions so that there is an internal reception occurring before
its corresponding emission is sent. A possible mutation of μ using mutation
schema #5 could be μ′ = (σ′

1, σ
′
2) with σ′

1 = (, c1?v1).(1, c2!v2).(1, c3?v3) and
σ′
2 = (, c2?v2).(2, c3!v3). While the first 4 mutation schemas do not necessarily

create faulty multi-traces, mutation schema #5 creates by construction at least
a communication fault.

The size of the PhoneX system depends on the number of clients. We consider
a system with 3 caller clients, 3 called clients, 3 active sessions and a PhoneX
central. In Table 2, the third column (com. checking) give the time7 needed to
solve the constraint associated to the verification of communications described
in a multi-trace whose number of events is given in the first column and number
of internal communications is given in the second column. The fourth column
provides the time8 needed to analyse all local traces. For each multi-trace, we
generate 1000 mutated tuples of traces and we count the ratio of multi-traces that
are faulty with regards to communication policy (before last column). Finally, in
the last column, we give the average time to check the communication constraint
of the mutated tuples. Experiments have been performed on a 3.10 Ghz Intel
Xeon E5-2687W working station with 64 GB of RAM on Linux Ubuntu 14.04.

Among classical solvers, we get best results with the Yices SMT solver [5].
The efficiency of Yices for solving constraints of the form di + x > dj + y where
x and y are concrete durations together with the fact that constructing the set
of constraints from a tuple is linear explains that communication checking is
more efficient than unit testing. Unit testing of subsystems is performed by the
extension to unitary testing of the symbolic execution platform Diversity which
is coupled with several solvers such as Yices, CVC4 or Z3. Regarding symbolic
models without timed issues, functionalities (test case generation driven by test
purposes, verdict computation) offered by the Diversity test extension are similar
to those provided by the tool STG [4].

7 using the Yices SMT solver [5].
8 using the CVC4 solver [2] embedded in the Diversity platform.

290 N. Benharrat et al.

Table 2. Experimental data for correct multitraces and their mutants

Correct multi-traces generated by Diversity 1000 Mutated tuples of traces

#events #internal.
com

Com.
checking

Local. testing
(for all traces)

#com. errors Average of com.
checking

759 340 17ms 6 s 519 ms 713 17.371 ms

1587 700 28ms 21 s 761 ms 729 27.648 ms

3633 1589 49ms 1m 34 s 178ms 800 40.934 ms

6486 2830 59ms 7m 5 s 797ms 737 60.140 ms

7797 3400 69ms 10m 52 s 378ms 722 66.315 ms

9999 4357 88ms 24m 14 s 860ms 738 80.825 ms

6 Related Work

Testing timed distributed systems from models gives rise to several recent works.
In [16], hypotheses are broadly the same as those adopted in this paper, namely
a model for each local component, and a testing architecture constituted of inde-
pendent local testers. [16] mainly focuses on the generation of test cases from
a global model built by composing local models and queues, similar to the one
that we used in Sect. 5. The main difference is that the correction of the system
can boil down to the local correction of each component, without any verifica-
tion of internal communications. In [13], testing of distributed real-time systems
is based on the conformance relation tioco and considers timed automata as
models. Testers can be local or global so that the testing architecture does not
necessarily reflect the one of the system. The authors focus on the construction
of analogue-clock and digital-clock test cases. The question of communications
is supported by a compositionality result saying that correctness up to tioco
is preserved by parallel composition of timed automata provided that they are
input-enabled. Similarly, in [22], local testers that can exchange synchronisation
messages are derived from a global timed automaton. Thus, all these works are
rather interested in the issue of test case generation, assuming testing hypotheses
on communications between components, while we leave aside this question to
focus on the analysis of traces with almost no hypotheses on internal communi-
cations. Lastly, the use of constraint solvers is often advocated when dealing with
software and system testing issues [7]. As an example of usage for the verdict
computation in MBT, [12] uses SAT solvers for generating checking sequences
from finite state machines.

7 Conclusion

We focus on the oracle problem for testing distributed systems against specifica-
tions. A system execution is a tuple of timed local traces, one for each location.
An observation is correct iff each local trace is allowed by the corresponding

Constraint-Based Oracles for Timed Distributed Conformance Testing 291

specification component and the tuple of local traces defines a valid communica-
tion scenario. The oracle problem is reduced to several instances of the standard
oracle problem for centralised testing plus a constraint satisfaction problem for
communication. This is implemented as an orchestration coordinating several
centralised verdict computations using the Diversity tool and calls to classi-
cal constraint solvers. We have carried out experiments with a central telecom-
munication system which have shown low computation time. Our algorithm is
designed for active testing in which we run a test and then check the observation
made. It would be interesting to extend it to deal with passive testing.

References

1. Bannour, B., Escobedo, J.P., Gaston, C., Gall, L.P.: Off-line test case generation
for timed symbolic model-based conformance testing. In: Nielsen, B., Weise, C.
(eds.) ICTSS 2012. LNCS, vol. 7641, pp. 119–135. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-34691-0 10

2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22110-1 14

3. Brinksma, E., Heerink, L., Tretmans, J.: Factorized test generation for multi-
input/output transition systems. In: FIP TC6 11th International Workshop on
Testing Communicating Systems (IWTCS), vol. 131 of IFIP Conference Proceed-
ings, pp. 67–82. Kluwer (1998)

4. Clarke, D., Jéron, T., Rusu, V., Zinovieva, E.: STG: a symbolic test generation tool.
In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 470–475.
Springer, Heidelberg (2002). doi:10.1007/3-540-46002-0 34

5. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). doi:10.1007/978-3-319-08867-9 49

6. Gaston, C., Hierons, R.M., Gall, L.P.: An implementation relation and test frame-
work for timed distributed systems. In: Yenigün, H., Yilmaz, C., Ulrich, A. (eds.)
ICTSS 2013. LNCS, vol. 8254, pp. 82–97. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41707-8 6

7. Gotlieb, A.: Constraint-based testing: an emerging trend in software testing. Adv.
Comput. 99, 67–101 (2015)

8. Grieskamp, W., Kicillof, N., Stobie, K., Braberman, V.: Model-based quality assur-
ance of protocol documentation: tools and methodology. J. Softw. Testing Verifi-
cation Reliab. 21(1), 55–71 (2011)

9. Hierons, R.M., Merayo, M.G., Núñez, M.: Implementation relations for the dis-
tributed test architecture. In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T.
(eds.) FATES/TestCom -2008. LNCS, vol. 5047, pp. 200–215. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-68524-1 15

10. Hierons, R.M., Merayo, M.G., Núñez, M.: Using time to add order to distributed
testing. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp.
232–246. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32759-9 20

11. Joint Technical Committee ISO/IEC JTC 1. International Standard ISO/IEC
9646–1. Information Technology - Open Systems Interconnection - Conformance
testing methodology, framework - Part 1: General concepts. ISO/IEC (1994)

http://dx.doi.org/10.1007/978-3-642-34691-0_10
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/3-540-46002-0_34
http://dx.doi.org/10.1007/978-3-319-08867-9_49
http://dx.doi.org/10.1007/978-3-642-41707-8_6
http://dx.doi.org/10.1007/978-3-642-41707-8_6
http://dx.doi.org/10.1007/978-3-540-68524-1_15
http://dx.doi.org/10.1007/978-3-642-32759-9_20

292 N. Benharrat et al.

12. Jourdan, G.-V., Ural, H., Yenigün, H., Zhu, D.: Using a SAT solver to gener-
ate checking sequences. In: The 24th International Symposium on Computer and
Information Sciences, ISCIS 2009, pp. 549–554. IEEE (2009)

13. Krichen, M.: A formal framework for black-box conformance testing of distributed
real-time systems. Int. J. Crit. Comput. Based Syst. 3(1/2), 26–43 (2012)

14. Krichen, M., Tripakis, S.: Black-box conformance testing for real-time systems. In:
Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 109–126. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24732-6 8

15. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Form. Meth-
ods Syst. Des. 34(3), 238–304 (2009)

16. Nguyen, H.N., Zäıdi, F., Cavalli, A.R.: A framework for distributed testing of
timed composite systems. In: 21st Asia-Pacific Software Engineering Conference,
APSEC, pp. 47–54. IEEE (2014)

17. Petrenko, A., Yevtushenko, N.: Testing from partial deterministic FSM specifica-
tions. IEEE Trans. Comput. 54(9), 1154–1165 (2005)

18. Ericsson International report. Investigation on how to integrate Diversity (MBT
tool) and Titan (TTCN-3 executor) to provide an open source MBT tool chain
(2016)

19. Sarikaya, B., von Bochmann, G.: Synchronization and specification issues in pro-
tocol testing. IEEE Trans. Commun. 32, 389–395 (1984)

20. Schmaltz, J., Tretmans, J.: On conformance testing for timed systems. In: Cassez,
F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 250–264. Springer, Hei-
delberg (2008). doi:10.1007/978-3-540-85778-5 18

21. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78917-8 1

22. Vain, J., Halling, E., Kanter, G., Anier, A., Pal, D.: Automatic distribution of local
testers for testing distributed systems. In: 12th International Baltic Conference on
Databases and Information Systems IX, vol. 291, pp. 297–310. IOS Press (2016)

http://dx.doi.org/10.1007/978-3-540-24732-6_8
http://dx.doi.org/10.1007/978-3-540-85778-5_18
http://dx.doi.org/10.1007/978-3-540-78917-8_1

Checking Response-Time Properties
of Web-Service Applications Under Stochastic

User Profiles

Richard Schumi1(B), Priska Lang2, Bernhard K. Aichernig1,
Willibald Krenn2, and Rupert Schlick2

1 Institute of Software Technology, Graz University of Technology, Graz, Austria
{rschumi,aichernig}@ist.tugraz.at

2 Austrian Institute of Technology, Vienna, Austria
{Priska.Lang,Willibald.Krenn,Rupert.Schlick}@ait.ac.at

Abstract. Performance evaluation of critical software is important but
also computationally expensive. It usually involves sophisticated load-
testing tools and demands a large amount of computing resources. Ana-
lysing different user populations requires even more effort, becoming
infeasible in most realistic cases. Therefore, we propose a model-based
approach. We apply model-based test-case generation to generate log-
data and learn the associated distributions of response times. These dis-
tributions are added to the behavioural models on which we perform
statistical model checking (SMC) in order to assess the probabilities of
the required response times. Then, we apply classical hypothesis testing
to evaluate if an implementation of the behavioural model conforms to
these timing requirements. This is the first model-based approach for
performance evaluation combining automated test-case generation, cost
learning and SMC for real applications. We realised this method with a
property-based testing tool, extended with SMC functionality, and eval-
uate it on an industrial web-service application.

Keywords: Statistical model checking · Property-based testing ·
Model-based testing · FsCheck · User profiles · Response time · Cost
learning

1 Introduction

Statistical model checking (SMC) is a simulation method that can answer both
quantitative and qualitative questions. The questions are expressed as properties
of a stochastic model which are checked by analysing simulations of this model.
Depending on the SMC algorithm, either a fixed number of samples or a stopping
criterion is needed. Property-based testing (PBT) is a random testing technique
that tries to falsify a given property, which describes the expected behaviour of
a function-under-test. In order to test such a property, a PBT tool generates
inputs for the function and checks if the expected behaviour is observed.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 293–310, 2017.
DOI: 10.1007/978-3-319-67549-7 18

294 R. Schumi et al.

Functional
Model

MBT
in PBT

Log-
Files

Cost-Model
Learning

Cost
Model
(STA)

SMC
in PBT
of SUT

SMC in
PBT of
Model

SUT
User

Profiles

Probabilities,
Accepted/Rejected

Hypotheses

Fig. 1. Overview of the steps for cost-model learning and response-time checking.

In previous work [2,3], we have demonstrated how SMC can be integrated
into a PBT tool in order to evaluate properties of stochastic models as well as
stochastic implementations. Based on this previous work, we present a simu-
lation method for stochastic user profiles of a web-service application in order
to answer questions about the expected response time of a system-under-test
(SUT). Figure 1 illustrates this process.

First, we apply a PBT tool to run model-based testing (MBT) with a func-
tional model concurrently in several threads in order to obtain log-files that
include the response times of the tested web-service requests. Since the model
serves as an oracle, we also test for conformance violations in this phase. This
functional aspect was discussed in earlier work [1], here the focus is on timing.

In the next step, we derive response-time distributions per type of service
request via linear regression, which was a suitable learning method for our logs.
Since the response time is influenced by the parallel activity on the server, the
distributions are parametrised by the number of active users. These cost distribu-
tions are added to the transitions in the functional model resulting in, so called,
cost models. These models have the semantics of stochastic timed automata
(STA) [6]. The name cost model shall emphasize that our method may be gen-
eralized to other type of cost indicators, e.g., energy consumption.

Next, we combine these models with user profiles, containing probabilities for
transitions and waiting times, in order to simulate realistic user behaviour and
the expected response time. With this simulation we can evaluate response-time
properties, like “What is the probability that the response time of each user
within a user population is under a certain threshold?” or “Is this probability
above or below a specific limit?”.

Additionally, we can check such properties directly on the SUT, e.g., to verify
the simulation on the model. It is also possible to skip the model simulation and
test response-time properties directly on the SUT. However, running a realistic
user population on the SUT is time-consuming and might not be feasible due
to realistic waiting times. A simulation on the model is much faster. Therefore,
also properties that require a larger number of samples can be checked, e.g.,
Monte Carlo simulation. Our aim is to run the SUT only with a limited number

Checking Response-Time Properties of Web-Service Applications 295

of samples in order to check, if the property results of the model are satisfied
by the SUT. Therefore, we test the SUT with the sequential probability ratio
test [34], a form of hypothesis testing, as this allows us to stop testing as soon
as we have sufficient evidence.

Related Work. A number of related approaches in the area of PBT are concerned
with testing concurrent software. For example, Claessen et al. [13] presented a
testing method that can find race conditions in Erlang with QuickCheck and
a user-level scheduler called PULSE. A similar approach was shown by Norell
et al. [28]. They demonstrated an automated way to test blocking operations, i.e.
operations that have to wait until a certain condition is met. Another concurrent
PBT approach was demonstrated by Hughes et al. [20]. They showed how PBT
can be applied to test distributed file-synchronisation services, like Dropbox.
The closest related work we found in the PBT community was from Arts [5].
It shows a load-testing approach with QuickCheck that can run user scenarios
on an SUT in order to determine the maximum supported number of users. In
contrast to our approach, Arts does not consider stochastic user profiles and the
user scenarios are only tested on an SUT, but not simulated at model-level.

Related work can also be found in the area of load testing. For example,
Draheim et al. [14] demonstrated a load-testing approach that simulates realistic
user behaviour with stochastic models. Moreover, a number of related tools, like
Neoload perform load testing with user populations [31]. In contrast to our work,
load testing is mostly performed directly on the SUT. With our approach, we
want to simulate user populations on the model-level as well. There are also
many approaches that focus only on a simulation on the model-level [7,9,11,26],
but with our method we can also directly test an SUT within the same tool.

The most related tool is UPPAAL SMC [10]. Similar to our approach, it
provides SMC of priced timed automata, which can simulate user populations.
It also supports testing real implementations, but for this a test adapter needs
to be implemented, which, e.g., handles form-data creation. With our method,
we can use PBT features, like generators in order to automatically generate form
data and we can model in a programming language. This helps testers, who are
already familiar with this language, as they do not have to learn new notations.

To the best of our knowledge our work is novel: (1) no other work applies
PBT for evaluating stochastic properties about the response time of both real
systems and stochastic models, (2) no other work performs cost learning on
behaviour models using linear regression. Grinchtein learns time-deterministic
event-recording automata via active automata learning [16]. Verwer et al. pas-
sively learn probabilistic real-time automata [33]. In contrast, we learn cost dis-
tributions and add them to existing automata models for SMC.

Contribution. We present a cost-model learning approach that works with log-
files of tests of a PBT tool and derives cost distributions for varying numbers of
users. Building upon our previous work, where we integrated SMC into a PBT
tool [3], we show how the learned cost models can be applied to simulate the

296 R. Schumi et al.

response time of user profiles. With this simulation we can evaluate response-
time properties with SMC based on the model. Moreover, we can also check such
properties on the real system by applying hypothesis testing and by measuring
the real response times instead of the simulated ones. Another contribution is the
evaluation of our method by applying it to an industrial web-service application.

Structure. First, Sect. 2 introduces the background of SMC and PBT based
on our previous work [3] and it explains cost-model learning. Next, in Sect. 3
we present an example and demonstrate our method. In Sect. 4, we give more
details about the process and implementations. Section 5 presents an evaluation
with an industrial web-service application. Finally, we conclude in Sect. 6.

2 Background

2.1 Statistical Model Checking (SMC)

SMC is a verification method that evaluates certain properties of a stochastic
model. These properties are usually defined with (temporal) logics, and they can
describe quantitative and qualitative questions. For example, questions, like what
is the probability that the model satisfies a property or is the probability that the
model satisfies a property above or below a certain threshold? In order to answer
such questions, a statistical model checker produces samples, i.e. random walks
on the stochastic model and checks whether the property holds for these samples.
Various SMC algorithms are applied in order to compute the total number of
samples needed to find an answer for a specific question or to compute a stopping
criterion. This criterion determines when we can stop sampling because we have
found an answer with a required certainty. In this work, we focus on the following
algorithms, which are commonly used in the SMC literature [24,25].

Monte Carlo Simulation with Chernoff-Hoeffding Bound. The algorithm com-
putes the required number of simulations n in order to estimate the probability
γ that a stochastic model satisfies a Boolean property. The procedure is based on
the Chernoff-Hoeffding bound [18] that provides a lower limit for the probability
that the estimation error is below a value ε. Assuming a confidence 1 − δ the
required number of simulations can be calculated as follows:

n ≥ 1
2ε2

ln
(

2
δ

)

The n simulations represent Bernoulli random variables X1, . . . , Xn with out-
come xi = 1 if the property holds for the i-th simulation run and xi = 0 other-
wise. Let the estimated probability be γ̄n = (

∑n
i=1 xi)/n, then the probability

that the estimation error is below ε is greater than our required confidence. For-
mally we have: Pr(|γ̄n − γ| ≤ ε) ≥ 1 − δ. After the calculation of the number of
samples n, a simple Monte Carlo simulation is performed [25].

Checking Response-Time Properties of Web-Service Applications 297

Sequential Probability Ratio Test (SPRT). This sequential method [34] is a
form of hypothesis testing, which can answer qualitative questions. Given a ran-
dom variable X with a probability density function f(x, θ), we want to decide,
whether a null hypothesis H0 : θ = θ0 or an alternative hypothesis H1 : θ = θ1
is true for desired type I and II errors (α, β). In order to make the decision, we
start sampling and calculate the log-likelihood ratio after each observation of xi:

log Λm = log
pm
1

pm
0

= log

m∏
i=1

f(xi, θ1)

m∏
i=1

f(xi, θ0)
=

m∑
i=1

log
f(xi, θ1)
f(xi, θ0)

We continue sampling as long as log β
1−α < log Λm < log 1−β

α . H1 is accepted
when log Λm ≥ log 1−β

α , and H0 when log Λm ≤ log β
1−α [15].

In this work, we form a hypothesis about the expected response time with the
Monte Carlo method on the model. Then, we check with SPRT if this hypothesis
holds on the SUT. This is faster than running Monte Carlo directly on the SUT.

2.2 Property-Based Testing (PBT)

PBT is a random-testing technique that aims to check the correctness of prop-
erties. A property is a high-level specification of the expected behaviour of a
function-under-test that should always hold. For example, the length of a con-
catenated list is always equal to the sum of lengths of its sub-lists:

∀ l1, l2 ∈ Lists[T] : length(concatenate(l1, l2)) = length(l1) + length(l2)

With PBT, we automatically generate inputs for such a property by apply-
ing data generators, e.g., the random list generator. The inputs are fed to the
function-under-test and the property is evaluated. If it holds, then this indicates
that the function works as expected, otherwise a counterexample is produced.

PBT also supports MBT. Models encoded as extended finite state machines
(EFSMs) [22] can serve as source for state-machine properties. An EFSM is a
6-tuple (S, s0, V, I, O, T). S is a finite set of states, s0 ∈ S is the initial state,
V is a finite set of variables, I is a finite set of inputs, O is a finite set of outputs,
T is a finite set of transitions. A transition t ∈ T can be described as a 5-tuple
(ss, i, g, op, st), ss is the source state, i is an input, g is a guard, op is a sequence
of output and assignment operations, st is the target state [22]. In order to
derive a state-machine property from an EFSM, we have to write a specification
comprising the initial state, commands and a generator for the next transition
given the current state of the model. Commands encapsulate (1) preconditions
that define the permitted transition sequences, (2) postconditions that specify
the expected behaviour and (3) execution semantics of transitions for the model
and the SUT. A state-machine property states that for all permitted transition
sequences, the postcondition must hold after the execution of each transition,

298 R. Schumi et al.

respectively command [19,29]. Formally we define such a property as follows:

cmd.runModel, cmd.runActual : S × I → S × O

cmd.pre : I × S → Boolean, cmd.post : S × O × S × O → Boolean

∀s ∈ S, i ∈ I, cmd ∈ Cmds :
cmd.pre(i, s) =⇒ cmd.post(cmd.runModel(i, s), cmd.runActual(i, s))

We have two functions to execute a command on the model and on the SUT:
cmd.runModel and cmd.runActual. The precondition cmd.pre defines the valid
inputs for a command. The postcondition cmd.post compares the outputs and
states of the model and the SUT after the execution of a command.

PBT is a powerful testing technique that allows a flexible definition of gener-
ators and properties via inheritance or composition. The first implementation of
PBT was QuickCheck for Haskell [12]. Numerous reimplementations followed for
other programming languages, like Hypothesis1 for Python or ScalaCheck [27].
We demonstrate our approach with FsCheck [1]. FsCheck is a .NET port of
QuickCheck with influences of ScalaCheck. It supports a property definition in
both, a functional programming style with F# and an object-oriented style with
C#. We work with C# as it is the programming language of our SUT.

2.3 Stochastic Timed Automata

Timed automata (TA) were originally introduced by Alur and Dill [4]. Sev-
eral extensions of TA have been proposed, including stochastically enhanced
TA [8] and continuous probabilistic TA [23]. We follow the definition of
Stochastic Timed Automata (STA) by Ballarini et al. [6]: An STA can be
expressed as a tuple (L, l0, A,C, I, E, F,W), where the first part is a normal
TA (L, l0, A,C, I, E) and additionally it contains probability density functions
(PDFs) F = (fl)l∈L for the sojourn time and natural weights W = (we)e∈E for
the transitions. L is a finite set of locations, l0 ∈ L is the initial location, A
is a finite set of actions, C is a finite set of clocks with real-valued valuations
u(c) ∈ R>0, I : L �→ B(C) is a finite set of invariants for the locations and
E ⊆ L × A × B(C) × 2C × L is a finite set of transitions between locations,
with an action, a guard and a set of clock resets. The transition relation can be
described as follows. For a location l and a clock valuation u the PDF fl is used
to choose the sojourn time d, which changes the state to (l, u + d), where u + d
means that the clock valuation is changed (u + d)(c) = u(c) + d for all c ∈ C.
After this change, an edge e is selected out of the set of enabled edges E(l, u+d)
with the probability we/

∑
h∈E(l,u+d) wh. Then, a transition to the target loca-

tion l′ of e and u′ = u+d is performed. For our models the underlying stochastic
process is a semi-Markov process as the clocks are reset at every transition, but
we do not assume exponential waiting times and therefore the process is not a
standard continuous-time Markov chain.

1 https://pypi.python.org/pypi/hypothesis.

https://pypi.python.org/pypi/hypothesis

Checking Response-Time Properties of Web-Service Applications 299

2.4 Integration of SMC into PBT

We have demonstrated that SMC can be integrated into a PBT tool in order to
perform SMC of PBT-properties [2,3], which were explained in Sect. 2.2. These
PBT-properties can be evaluated on stochastic models, like in classical SMC,
as well as on stochastic implementations. For the integration we introduced our
own new SMC properties, which take a PBT property, configurations for the
PBT execution, and parameters for the specific SMC algorithm as input. Then,
our properties perform an SMC algorithm by utilizing the PBT tool as simu-
lation environment and they return either a quantitative or qualitative result,
depending on the algorithm. Figure 2 shows how we can evaluate a state-machine
property within an SMC property. Such a state-machine property can, e.g., be
applied for a statistical conformance analysis by comparing an ideal model to a
stochastic faulty implementation or it can also simulate a stochastic model. We
evaluated our SMC properties by repeating case studies from the SMC literature
and we were able to reproduce the results.

State-Machine
Property

SUT

Model

SMC Property

SMC Algorithm

Configurations

Parameter

Result

Fig. 2. Data flow diagram of an SMC property.

2.5 Cost-Model Learning

We aim at learning response times or other costs from log-files in order to asso-
ciate them to behavioural models. This problem can be seen as a classical regres-
sion problem. (Note that other types of costs or systems can require different
learning methods, like Splines or tree-based models [17,35].) The simplest regres-
sion method is the linear least squares regression, which minimizes the difference
between the observed and estimated values (called residuals). An advantage of
this method is that it may also help in detecting confounding variables, e.g.,
when the full model does not predict well. For removing these noisy or highly
correlated variables, different feature selection algorithms are available [32].

Multiple Regression. The general linear regression model is known as

y = Xβ + ε

where y is the dependent variable (regressand), X is the design matrix of the
independent variables (regressors), β contains the partial derivatives and ε is the
error term. In more detail, in case of i regressors the cost function for the nth

observation is

300 R. Schumi et al.

yn = β0 + xn1β1 + ... + xniβi + εn

with β0 as the constant term.
Discrete values are handled via categorical variables that can take on one of a

limited number of possible values, called levels. In case of categorical independent
variables, to transfer the factors into a linear regression model different coding
techniques are available. (If they are not independent, interaction terms can be
added [21].) The simplest is dummy coding, where each level of a factor has its
own binary dummy variable (indicator variable), set to 1 if the observation has
factor level i, 0 otherwise. By definition, these variables are linearly dependent,
because the sum of all columns related to the same factor leads to a column
of ones, which is the constant intercept term. Therefore, to avoid singularity
problems, for each factor it is necessary to have one dummy variable less than
the number of factor levels. The factor level that has no dummy variable is the
so called reference group of the model. It has zeros in all dummy variables. In
case of numerical and categorical regressors, we have a combination that yields
y = Xβ + Zγ + ε, where X is the design matrix for the categorical variables
and Z contains the measured values (covariables). γ contains analogous to β the
partial derivatives. For more details, see [30].

3 Method

In this section, we show how we derive cost models from logs and how we can
apply these models to simulate stochastic user profiles. This approach is demon-
strated by an example of an industrial incident manager [1].

This SUT is a web-based tool that supports tasks, like creating, editing or
closing incident objects, which are elements of the application domain, e.g., bug
reports. These objects include attributes (form data) that are stored in a data-
base and have to be set by the users. The state machine in Fig. 3 on the left rep-
resents the tasks of an incident object. To keep it simple, this state machine only
represents the tasks of a currently opened incident without attributes. In reality,
we also have transitions to switch between objects and a variety of attributes.
Hence, this functional model is an EFSM. In our previous work, we have demon-
strated how such functional models can be derived from business-rule models
of the server implementation [1]. For this paper, we assume existing functional
models, although they are created in the same way as before. Each task consists
of subtasks, e.g., for setting attributes or for opening a screen. The subtasks
of one task can be seen in the middle of Fig. 3. Many subtasks require server
interaction. Therefore, they can also be seen as requests.

Based on these functional models, we can perform conventional PBT, which
generates random sequences of commands with form data (attributes). While
the properties are tested on the SUT, a log is created that captures the response
times (costs) of individual requests. The properties are checked concurrently on
the SUT in order to obtain response times of multiple simultaneous requests,
which represents the behaviour of multiple active users. An example log from a
non-productive test system with low computing resources (virtual machine) is

Checking Response-Time Properties of Web-Service Applications 301

Submitted

Closed

Create

Edit

Close

StartTask

SetAttribute1

SetAttribute2
...

Commit

Edit

sample(cost(Edit,StartTask,#ActiveUser))

sample(cost(Edit,SetAttribute,#ActiveUser,Attr1))

sample(cost(Edit,SetAttribute,#ActiveUser,Attr2))

...

sample(cost(Edit,Commit,#ActiveUser))

Fig. 3. Cost model of the incident manger.

Table 1. Example log-data of the incident manager.

Task From To Subtask #ActiveUsers Attribute ResponseTime [ms]

Create Global Submitted StartTask 7 – 334

Create Global Submitted SetAttribute 8 Assignee 77

Edit Submitted Submitted StartTask 5 – 286

Create Global Submitted Commit 6 – 918

Edit Submitted Submitted SetAttribute 4 TestOrder 347

represented in Table 1. We record response times of tasks, subtasks, attributes,
states (From, To) and simultaneous requests (#ActiveUsers). For this initial
logging phase the transitions are chosen with uniform distribution. For learning
the cost models, we first did some descriptive statistics and feature selection by
applying common wrapper models to the logs, e.g., stepwise regression. Selecting
the most important variables yields the linear multiple regression (LMR) model:

ResponseTime ∼ #ActiveUsers + Task + Subtask + Attribute

For categorical variables (tasks, subtasks and attributes), the dummy coding, as
explained in Sect. 2.5, was applied. Listing 1.1 shows the results of the LMR. For
this system, the log-file contains 293.361 observations (subtasks). The calcula-
tions are done in R version 3.3.2 with the lm function from the stats package.2 In
the left column are the intercept and the regressor variables. The second column
shows the estimates of means with empirical standard errors in the third. The
fourth column contains the t values that are the ratio of estimate and standard
error. The p values in the last column describe the statistical significance of the
estimates: low p values, indicate high significance. They are marked with ∗ if
0.01 < p � 0.05 and ∗∗∗ if p � 0.001. In our LMR model, nearly all variables are
significant and are, therefore, used to obtain different probability distributions
for costs. These costs can be expressed as functions that take a task, subtask,
the number of active users (i.e. a natural number without zero N>0) and an
attribute as input and return empirical parameters for probability distributions.
For our observed response times, we selected the normal distribution and since
the real parameters are unknown, the cost function gives us the parameter μ for

2 https://www.r-project.org/.

https://www.r-project.org/

302 R. Schumi et al.

the mean (estimate of the LMR output) and σ for the std. deviation (std. error
of the LMR output). Both of these parameters are positive real numbers R>0.

cost : Task × Subtask × N>0 × Attribute → R>0 × R>0

sample : R>0 × R>0 → R>0

We use these parameters for a sample function returning a response-time value,
which is chosen according to this normal distribution. The right-hand side of
Fig. 3 shows the application of these functions for a task. For each subtask, we
introduced a state with the sampled sojourn time.
1 Estimate Std . Error t value Pr(>| t |)
2 (In t e r c ep t) 405.4160 52.9412 7.658 1 .90 e−14 ∗∗∗
3 X. Act iveUsers 33.7867 0.3094 109.187 < 2e−16 ∗∗∗
4 Task IncidentCloseTask 44.7672 52.9505 0.845 0.3979
5 Task IncidentCreateTask 365.8872 52.9359 6.912 4 .79 e−12 ∗∗∗
6 Task IncidentEditTask 135.8733 52.9421 2.566 0.0103 ∗
7 Task Se l ec t −220.7655 52.9422 −4.170 3 .05 e−05 ∗∗∗
8 Act ion SetAtt r ibute −133.2684 2.3094 −57.706 < 2e−16 ∗∗∗
9 Act ion StartTask −341.9593 1.4774 −231.460 < 2e−16 ∗∗∗

10 Att r ibute Ass i gnee −486.6695 2.8706 −169.539 < 2e−16 ∗∗∗

Listing 1.1. Excerpt of the linear multiple regression output.

In addition to the cost models, also user profiles are needed for the simulation.
For our use case they are represented by weights for tasks, by waiting intervals
between tasks/subtasks and additionally by waiting factors for the input time,
e.g., a delay per character for the time to enter a text. The transition probabilities
resulting from the task weights are shown on the left-hand side of Fig. 4. Note, we
also included the probability for select transitions, which allow a switch between
active incident objects. On the right-hand side, a representation of this user
profile is shown in the JavaScript Object Notation (JSON) format, which was
used for storage. It also includes the mentioned waiting intervals and factors.

This user profile is joined with the cost model in order to obtain a combined
model that can be applied to simulate a user. A user population is simulated by
executing this model concurrently within one of our SMC properties, which were
explained in Sect. 2.4. The combined model has the semantics of a stochastic
timed automaton, as explained in Sect. 2.3. The weights of the tasks can be
expressed with the transition weights W . The probability density functions F
for the sojourn time can be defined with parameters μ and σ of the normal
distribution or with intervals for the uniform distribution, which we used for the
waiting times of user profiles. Note, for these waiting times, we also introduce
states in a similar way as for the subtasks, as illustrated in Fig. 3.

In order to estimate the probability of response-time properties, we perform
a Monte Carlo simulation with Chernoff-Hoeffding bound. However, this sim-
ulation requires too many samples to be efficiently executed on the SUT and
so we only run it on the model. For example, checking the probability that the
response time of a Commit subtask is under a threshold of one second for each
user of a population of 10 users with parameters ε = 0.05 and δ = 0.01, requires
1060 samples and returns a probability of 0.593, when a test-case length of three
tasks is considered. Fortunately, hypothesis testing requires fewer samples and
is, therefore, better suited for the evaluation of the SUT. The probability that

Checking Response-Time Properties of Web-Service Applications 303

Incident 1 Active

Submitted

Closed

Incident 2 Active

Submitted

Closed

...

...

1: Create

0.26: Edit
0.15: Close

0.18: Select

0.18: Select0.41: Create

0.7: Create

0.3: Select

0.3: Select

0.26: Edit

0.15: Close

0.7: Create

0.41: Create

{TaskWeights :{
Inc ident :{

Inc identCreateTask : 70 ,
Inc identEditTask : 45 ,
Inc identCloseTask : 25 ,
S e l e c t :30}} ,

TaskWaitIntervalStart : 500 ,
TaskWaitIntervalEnd :1500 ,
SubTaskWaitIntervalStart : 300 ,
SubTaskWaitIntervalEnd :500 ,
WaitPerReference : 10 ,
WaitPerCharacter :30}

Fig. 4. User profile of the incident manager.

was computed on the model serves as a hypothesis to check, if the SUT is at
least as good. We apply it as alternative hypothesis and select a probability of
0.493 as null hypothesis, which is 0.1 smaller, because we want to be able to
reject the hypothesis that the SUT has a smaller probability. By running SPRT
(with 0.01 as type I and II error parameters) for each user of the population,
we can check these hypotheses. The alternative hypothesis was accepted for all
users and on average 76.8 samples were needed for the decision.

Algorithm 1. Pseudo code of a CostAttribute class.
Local Variables and Inputs: Task t, Subtask st, Attribute a, function cost : (. . .) → (μ, σ)
Global Variable: ActiveUserNum ∈ N � number of users that have an open request
1: function Generator
2: ActiveUserNum ← ActiveUserNum + 1 � should be locked (Mutex)
3: delay ← sample(cost(t, st,ActiveUserNum, a)) � sample normal distribution
4: sleep(delay) � thread should sleep
5: ActiveUserNum ← ActiveUserNum − 1 � should be locked (Mutex)
6: return Gen.Constant(delay)

4 Model-Simulation Architecture and Implementations

Here, we detail the integration of the cost models and user profiles into a collec-
tive model and we illustrate how such models can be simulated with PBT.

We already presented an existing implementation of MBT with FsCheck [1],
which supports automatic form-data generation and EFSMs. Based on this work,
we implemented the following extensions in order to support our method. The
first extension is a parser that reads the cost distributions and integrates them
into the model. In the previous implementation, we had command instances,
which represent the tasks and attributes which include generators for different
data types (for the generation of form data). Now, we introduce new CostAt-
tributes for costs or response times, which can be applied in the same way as
normal form-data attributes. The generators of attributes are called during the
test-case generation and the generated values can be evaluated within the com-
mands. This helps to check response-time properties.

304 R. Schumi et al.

Algorithm 1 represents the implementation of these attributes. The inputs are
a task, a subtask, an attribute and a cost function, which returns parameters for
the normal distribution. Additionally, there is a global variable ActiveUserNum,
which is shared by all users. The main function of a CostAttribute is its gener-
ator, which works as follows. First, the number of active users is increased to
simulate a request. (The access to ActiveUserNum should be locked to avoid
race conditions.) Next, a value is sampled according to the normal distribution
and assigned to the delay variable. The sample is created with the parameters
μ and σ from the cost function. The next step is a sleep for the time that was
sampled. Then, the number of users is decreased. Finally, the generated delay
is returned within a constant generator so that it can be checked outside the
generator. A constant generator is applied, because the default generators do
not support normal distributions, but the Attribute has to return an object of
type Gen for this method. Note, this generator function also applies the gener-
ated delay. This is done, because we need to know the number of active users
for the generation of a sample and in order to know which user is active it is
necessary to directly execute this behaviour, so that we have active users during
the generation step. Multiple users are executed concurrently in different threads
in an independent way. However, their shared variable ActiveUserNum causes a
certain dependency between the user threads, because when one user increases
this variable, then this affects the response-time distributions of the other users.

CostAttribute

StartTask
Response Time

WaitAttribute

Simul. User
Input Time

WaitAttribute

Simul. User
Input Time

CostAttribute

SetAttribute(X)
Response Time

. . . WaitAttribute

Simul. User
Input Time

CostAttribute

Commit
Response Time

Fig. 5. Attribute sequence of a task.

For the user profiles there is a parser as well and the user behaviour is also
included in the combined model. The waiting times of a user can be integrated in
a similar way as the costs by introducing WaitAttributes. Their implementation
details are omitted, as they work in the same way as CostAttributes except that
they do not change the number of active users and they use a uniform distrib-
ution instead of a normal distribution. With both these attributes, we are able
to implement the sequence of subtasks of tasks as represented in Fig. 5. Wait-
Attributes represent the time that a user needs for the input and CostAttributes
simulate the response time. Note, the simulation of the model can be done with
a virtual time, i.e. a fraction of the actual time.

The selection of the tasks according to the given weights was implemented
with a frequency generator. A frequency generator takes a set of weights and
generator Gen pairs and selects one of the generators according to the weights.

Gen.Frequency : P(R>0 × Gen) → Gen

This generator was applied in order to choose commands, which handle the exe-
cution of tasks. The generator for commands does not only generate commands,

Checking Response-Time Properties of Web-Service Applications 305

Algorithm 2. Pseudo code of the test-case generation.
Input: spec: state-machine specification of a PBT tool, size: parameter for test-case length
1: for i ∈ {1, ..., size} do
2: gen ← spec.Next(model) � Next returns a command generator
3: cmd ← gen.Sample() � command is generated
4: model ← cmd.runModel(model) � command is executed

5: function spec.Next(model)
6: set ← model.getEnabledTasksWithWeights() � set of (weight,Gen[Task])
7: return Gen.Frequency(set).selectMany(task →
8: task .Attributes.Generator().selectMany(data → � generate attribute data
9: CmdGenerator(task , data))) � generator for a command

but also their required attributes. Algorithm 2 outlines the process of the test-
case generation. The algorithm requires a state-machine specification spec, which
includes a generator for the next state and the initial state of the model. First,
there is an iteration over the size parameter and in each iteration the Next func-
tion of the spec is called to obtain a command generator for the current model
state. A command cmd is sampled according to this generator (Line 3) and
executed on the model cmd.runModel in order to retrieve a new model, which
incorporates the applied state change. This new model is needed in the next
iteration for the Next function, which works as follows. First, a set of pairs of
weights and task generators is retrieved from the getEnabledTasksWithWeights
function of the model. Based on this set, a frequency generator is build (Line 7).
The function selectMany of this generator is called to further process the selected
value. This function can be applied to a generator in order to build a new gen-
erator. It needs an anonymous function as argument, which takes a value of the
generator as input and has to return a new generator.

Gen[A].selectMany : (A → Gen[B]) → Gen[B]

Within this function, a generator is called that generates the attribute data of
the task. The selectMany function is applied again on this generator and within
this function a command generator is created for the given task and data.

5 Evaluation

We evaluated our method by applying it to a web-service application from the
automotive domain, which was provided by our industrial partner AVL.3 We
focus on the response times and the number of samples needed, but omit the
run-times of the simulation and testing process. The application is called Testfac-
tory Management Suite (TFMS) version 1.7 and it enables various management
activities of test fields, like test definition, planning, preparation, execution and
data management/analysis for testing engines. Note that there already is a new
version of TFMS with better performance, but it was not available for this work.

For our evaluation we focused on one module of the application, the Test
Order Manager (TOM). This module enables the configuration and execution of
3 https://www.avl.com.

https://www.avl.com

306 R. Schumi et al.

test orders, which are basically a composition of steps that are necessary for a
test sequence at a test field [1]. Figure 6 shows the tasks of an example test order.
Each task represents the invocation of a page, entering data for form fields and
saving the page. The TOM module contains further sub-models for the creation
of test orders, but they are similar to this model, and are therefore omitted.

Created

ToCreate
Duplicate

AdminEdit
EditCreated

InWork

MakeReady AdminEdit

Executed

AdminEdit

Finished AdminEdit

Cancelled

AdminEdit

CancelInCreated

DeletedAdminEdit

Invalid

Invalidate Duplicate Reject AdminEdit

AdminEdit EditStandardWorkInWork

AdminEdit

AdminEdit

AdminEditCancelInStandardWorkInWork

AdminEdit

Duplicate AdminEdit

AdminEdit

AdminEdit EditStandardWorkExecuted

Finish AdminEdit

AdminEdit CancelInStandardWorkExecuted

AdminEdit

Duplicate
AdminEdit

AdminEdit

AdminEdit

AdminEdit

AdminEdit CancelInFinished

AdminEdit

Duplicate AdminEdit

AdminEdit

AdminEdit

AdminEdit

AdminEdit

AdminEdit

Activate

CancelInInvalid

Fig. 6. Example test order model.

We applied our method in order to compute the probability that the response
time of a Commit subtask is under a threshold of 1.65 s. Hence, we check the
probability that all the response times of these subtasks within a sequence of
tasks with fixed lengths are under this threshold. Note that we focus on this
subtask as it is the most computationally expensive one. For this evaluation a
user profile was created in cooperation with domain experts from AVL. This
profile was similar to the one shown in Sect. 3, and is therefore omitted. The
LMR model was similar as well and also omitted, the only difference was that
due to the increased complexity of this module, we had more log-data (929.584
observations). We applied the profile to form user populations of different sizes
and we checked the proposed property for test cases with increasing lengths
via a Monte Carlo simulation with Chernoff-Hoeffding bound with parameters
ε = 0.05 and δ = 0.01. This requires 1060 samples per data point. Figure 7
shows the results. Note that test cases of length one have always probability
one as the initial task for sub-model selection has no requests and, hence, zero
response time. As expected, a decrease in the probability of the property can
be observed, when the test-case length or the population size increases. The
advantage of the simulation on the model-level is that it runs much faster than
on the SUT. With a virtual time of 1/100 of the actual time, we can perform
simulations that would take weeks on the SUT within hours.

It is also important to check the probabilities that we received through model
simulation on the SUT. This was done as explained in Sect. 3 by applying the
SPRT with the same parameters. Table 2 shows the results. Due to the high
computation effort, we did not check all data points of Fig. 7. Our focus was
on test cases with length three as this was a common length of user scenarios.

Checking Response-Time Properties of Web-Service Applications 307

2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

test-case length

p
ro

b
a
b
il
it
y

UserNumber = 6

UserNumber = 9

UserNumber = 12

UserNumber = 15

UserNumber = 18

Fig. 7. Simul. result: how likely is it that the response time is under a threshold?

The table shows the hypotheses and evaluation results for different numbers of
users. Note that in order to obtain an average number of needed samples, we
run the SPRT concurrently for each user of the population and calculate the
average of these runs. Multiple independent SPRT runs would produce a better
average, but the computation time was too high. Compared to the execution on
the model, a smaller number of samples is needed, as the SPRT stops, when it has
sufficient evidence. The result column shows that the alternative hypothesis was
always accepted. This means that the probabilities of response-time properties
on the SUT were at least as good as on the model. The smaller required number
of samples of the SPRT (max. 66) compared to Monte Carlo simulation (1060
samples) allowed us to analyse the SUT within a feasible time.

Table 2. Results of the evaluation on the SUT by applying the SPRT.

#Users H0 H1 Result #Samples needed

6 0.897 0.997 H1 66.6

9 0.846 0.946 H1 42.0

12 0.641 0.741 H1 60.8

15 0.305 0.405 H1 17.3

18 0.042 0.142 H1 7.6

6 Conclusion

We have demonstrated that we can exploit PBT features in order to check
response-time properties under different user populations both on a model-level
and on an SUT. With SMC, we can evaluate stochastic cost models and check
properties like, what is the probability that the response time of a user within a
population is under a certain threshold? We also showed that such probabilities
can be tested directly on the SUT without the need for an extra tool. A big
advantage of our method is that we can perform simulations, which require a
high number of samples on the model in a fraction of the time that would be
required on the SUT. Moreover, we can check the results of such simulations
on the SUT by applying the SPRT, which needs fewer samples. Another benefit

308 R. Schumi et al.

lies in the fact that we simulate inside a PBT tool. This facilitates the model
and property definition in a high-level programming language, which makes our
method more accessible to testers from industry.

We have evaluated our method by applying it to an industrial web-service
application from the automotive industry and the results were promising. We
showed that we can derive probabilities for response-time properties for different
population sizes and that we can evaluate these probabilities on the real system
with a smaller number of samples. In principle, our method can be applied
outside the web domain, e.g., to evaluate run-time requirements of real-time
or embedded systems. However, for other applications and other types of costs
alternative cost-learning techniques [17,35] may be better suited.

In the future, we plan to apply our cost models for stress testing as they help
to find subtasks or attributes that are more computationally expensive than
others. Additionally, we want to apply our method to compare the performance
of different versions of the SUT, i.e. non-functional regression testing.

Acknowledgments. This work was funded by the Austrian Research Promotion
Agency (FFG), project TRUCONF, No. 845582. We are grateful to Martin Tappler,
the team at AVL, especially Elisabeth Jöbstl, and the anonymous reviewers for their
valuable inputs.

References

1. Aichernig, B.K., Schumi, R.: Property-based testing with FsCheck by deriving
properties from business rule models. In: ICSTW, pp. 219–228. IEEE (2016)

2. Aichernig, B.K., Schumi, R.: Towards integrating statistical model checking into
property-based testing. In: MEMOCODE, pp. 71–76. IEEE (2016)

3. Aichernig, B.K., Schumi, R.: Statistical model checking meets property-based test-
ing. In: ICST, pp. 390–400. IEEE (2017)

4. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

5. Arts, T.: On shrinking randomly generated load tests. In: Erlang 2014, pp. 25–31.
ACM (2014)

6. Ballarini, P., Bertrand, N., Horváth, A., Paolieri, M., Vicario, E.: Transient analysis
of networks of stochastic timed automata using stochastic state classes. In: Joshi,
K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054,
pp. 355–371. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40196-1 30

7. Becker, S., Koziolek, H., Reussner, R.H.: The palladio component model for model-
driven performance prediction. J. Syst. Softw. 82(1), 3–22 (2009)

8. Blair, L., Jones, T., Blair, G.: Stochastically enhanced timed automata. In: Smith,
S.F., Talcott, C.L. (eds.) FMOODS 2000. IAICT, vol. 49, pp. 327–347. Springer,
Boston, MA (2000). doi:10.1007/978-0-387-35520-7 17

9. Book, M., Gruhn, V., Hülder, M., Köhler, A., Kriegel, A.: Cost and response time
simulation for web-based applications on mobile channels. In: QSIC, pp. 83–90.
IEEE (2005)

10. Bulychev, P.E., David, A., Larsen, K.G., Mikucionis, M., Poulsen, D.B., Legay, A.,
Wang, Z.: UPPAAL-SMC: statistical model checking for priced timed automata.
In: QAPL. EPTCS, vol. 85, pp. 1–16. Open Publishing Association (2012). doi:10.
4204/EPTCS.85.1

http://dx.doi.org/10.1007/978-3-642-40196-1_30
http://dx.doi.org/10.1007/978-0-387-35520-7_17
http://dx.doi.org/10.4204/EPTCS.85.1
http://dx.doi.org/10.4204/EPTCS.85.1

Checking Response-Time Properties of Web-Service Applications 309

11. Chen, X., Mohapatra, P., Chen, H.: An admission control scheme for predictable
server response time for web accesses. In: WWW, pp. 545–554. ACM (2001)

12. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: ICFP, pp. 268–279. ACM (2000)

13. Claessen, K., Palka, M.H., Smallbone, N., Hughes, J., Svensson, H., Arts, T.,
Wiger, U.T.: Finding race conditions in Erlang with QuickCheck and PULSE.
In: ICFP, pp. 149–160. ACM (2009)

14. Draheim, D., Grundy, J.C., Hosking, J.G., Lutteroth, C., Weber, G.: Realistic load
testing of web applications. In: CSMR, pp. 57–70. IEEE (2006)

15. Govindarajulu, Z.: Sequential Statistics. World Scientific, Singapore (2004)
16. Grinchtein, O.: Learning of Timed Systems. Ph.D. thesis, Uppsala Univ. (2008)
17. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer Series in Statistics, 2nd edn.
Springer, New York (2009). doi:10.1007/978-0-387-84858-7

18. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Statist. Assoc. 58(301), 13–30 (1963)

19. Hughes, J.: QuickCheck testing for fun and profit. In: Hanus, M. (ed.) PADL
2007. LNCS, vol. 4354, pp. 1–32. Springer, Heidelberg (2006). doi:10.1007/
978-3-540-69611-7 1

20. Hughes, J., Pierce, B.C., Arts, T., Norell, U.: Mysteries of dropbox: property-
based testing of a distributed synchronization service. In: ICST, pp. 135–145. IEEE
(2016)

21. Jaccard, J., Turrisi, R.: Interaction Effects in Multiple Regression. SAGE, Thou-
sand Oaks (2003)

22. Kalaji, A.S., Hierons, R.M., Swift, S.: Generating feasible transition paths for test-
ing from an extended finite state machine. In: ICST, pp. 230–239. IEEE (2009)

23. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Verifying quantitative
properties of continuous probabilistic timed automata. In: Palamidessi, C. (ed.)
CONCUR 2000. LNCS, vol. 1877, pp. 123–137. Springer, Heidelberg (2000). doi:10.
1007/3-540-44618-4 11

24. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu,
G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16612-9 11

25. Legay, A., Sedwards, S.: On statistical model checking with PLASMA. In: TASE,
pp. 139–145. IEEE (2014)

26. Lu, Y., Nolte, T., Bate, I., Cucu-Grosjean, L.: A statistical response-time analysis
of real-time embedded systems. In: RTSS, pp. 351–362. IEEE (2012)

27. Nilsson, R.: ScalaCheck: The Definitive Guide. IT Pro, Artima Incorporated (2014)
28. Norell, U., Svensson, H., Arts, T.: Testing blocking operations with QuickCheck’s

component library. In: Erlang 2013, pp. 87–92. ACM (2013)
29. Papadakis, M., Sagonas, K.: A proper integration of types and function specifica-

tions with property-based testing. In: Erlang 2011, pp. 39–50. ACM (2011)
30. Rencher, A., Christensen, W.: Methods of Multivariate Analysis. Wiley, New York

(2012)
31. Rina, T.S.: A comparative study of performance testing tools. Intern. J. Adv. Res.

Comput. Sci. Softw. Eng. IJARCSSE 3(5), 1300–1307 (2013)
32. Tang, J., Alelyani, S., Liu, H.: Feature selection for classification: a review. In:

Data Classification: Algorithms and Applications, pp. 37–64. CRC Press (2014)

http://dx.doi.org/10.1007/978-0-387-84858-7
http://dx.doi.org/10.1007/978-3-540-69611-7_1
http://dx.doi.org/10.1007/978-3-540-69611-7_1
http://dx.doi.org/10.1007/3-540-44618-4_11
http://dx.doi.org/10.1007/3-540-44618-4_11
http://dx.doi.org/10.1007/978-3-642-16612-9_11

310 R. Schumi et al.

33. Verwer, S., Weerdt, M., Witteveen, C.: A likelihood-ratio test for identifying prob-
abilistic deterministic real-time automata from positive data. In: Sempere, J.M.,
Garćıa, P. (eds.) ICGI 2010. LNCS (LNAI), vol. 6339, pp. 203–216. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15488-1 17

34. Wald, A.: Sequential Analysis. Courier Corporation, New York City (1973)
35. West, B., Welch, K., Galecki, A.: Linear Mixed Models. CRC Press, Boca Raton

(2006)

http://dx.doi.org/10.1007/978-3-642-15488-1_17

Short Contributions

Ongoing Work on Automated Verification
of Noisy Nonlinear Systems with ARIADNE

Luca Geretti1, Davide Bresolin2, Pieter Collins3,
Sanja Zivanovic Gonzalez4, and Tiziano Villa1(B)

1 Universitá di Verona, Verona, Italy
{luca.geretti,tiziano.villa}@univr.it

2 Universitá di Padova, Padova, Italy
davide.bresolin@unipd.it

3 Maastricht University, Maastricht, The Netherlands
pieter.collins@maastrichtuniversity.nl

4 Barry University, Miami, FL, USA
SZivanovic@barry.edu

Abstract. Cyber-physical systems (CPS) are hybrid systems that com-
monly consist of a discrete control part that operates in a continuous
environment. Hybrid automata are a convenient model for CPS suitable
for formal verification. The latter is based on reachability analysis of the
system to trace its hybrid evolution and consequently verify its prop-
erties. However, when computing reachable states, a challenging task
especially for nonlinear noisy systems is to control automatically the
numerical precision to obtain meaningful approximations of the reached
set. This paper presents the ongoing work and open issues in the auto-
mated computation of system evolution when the dynamics is described
by differential inclusions. Differential inclusions allow to model noise for
hybrid systems and also to decouple the components in a complex sys-
tem, in order to simplify model-based design and verification. The pro-
posed work aims to extend the capabilities of Ariadne, a C++ library
to perform formal verification of nonlinear hybrid systems.

1 Introduction

Formal verification is concerned with the identification of system properties that
are guaranteed to hold for every possible behavior of the system itself. Such
guarantee is based on the rigorous methodology underlying the computation
or deduction of the desired properties. As a consequence, formal verification
represents a powerful tool for evaluation of a system, compared to simulation
techniques.

In this paper we focus on hybrid systems, i.e., dynamical systems that exhibit
both a discrete and a continuous behavior. In order to model and specify hybrid
systems in a formal way, the notion of hybrid automaton has been introduced [1].
Intuitively, a hybrid automaton is a “finite-state automaton” with continuous

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 313–319, 2017.
DOI: 10.1007/978-3-319-67549-7 19

314 L. Geretti et al.

variables that evolve according to dynamics characterizing each discrete state
(called a location).

Of particular importance in the analysis of hybrid automata is the computa-
tion of the reachable set, i.e., the set of all states that can be reached under the
dynamical evolution starting from a given initial state set. Many approximation
techniques and tools to estimate the reachable set have been proposed in the
literature (see [16] for a comprehensive analysis). We recently proposed a devel-
opment environment for the verification of nonlinear compositional hybrid sys-
tems, called Ariadne [4], which differs from existing tools by being based on the
theory of computable analysis [8]. Such theory provides a rigorous mathematical
semantics for the numerical analysis of dynamical systems, suitable for imple-
menting formal verification algorithms. The tool has been applied mainly to the
safety verification of robotic surgery tasks [6]. It also has been successfully used
for dominance checking of controllers [3] and even for correct-by-construction
code generation [7].

This paper discusses the ongoing work aimed at extending the dynamical
model used in Ariadne to differential inclusions, based on the work of [19], in
order to perform reachability analysis in the presence of noisy inputs. While the
most straightforward application of differential inclusions is for modeling system
uncertainty, it is worth remarking that they can be used also to support contract-
based design [16]: given a complex system, we can replace the actual input of
an automaton with an input having partially defined behavior. The resulting
decoupling of automata ultimately allows to analyze subsystems in isolation,
thus trading-off system complexity for precision.

Unfortunately, the introduction of differential inclusions to a nonlinear sys-
tem represents a challenge in terms of controlling the quality of the computed
reachable sets. Such control can be exercised using a number of precision para-
meters, which should be tuned dynamically for maximum effectiveness. In other
words, the successful verification of a noisy system cannot disregard a thorough
analysis of such precision parameters and the identification of a proper set of
policies for their automated control.

In the following, in Sect. 2 we start by presenting the approach used by Ari-
adne for verification, in order to better understand how differential inclusions
are a valuable addition to the framework. Then, a discussion on differential inclu-
sions is provided in Sect. 3, followed by open issues related to automation aspects
in Sect. 4.

2 Formal Verification in the Ariadne Framework

In this Section some insight on the approach used in Ariadne is provided, in
order to understand the impact of the introduction of differential inclusions.
Detailed technical information on the framework can be found in [9] about func-
tional calculus and [3] regarding the reachability routines.

Suppose we wish to verify that a safety property ϕ holds for a hybrid automa-
ton H; i.e., that ϕ remains true for all possible executions starting from a set

Ongoing Work on Automated Verification of Noisy Nonlinear Systems 315

X0 of initial states, allowing to answer if a system operates within safe oper-
ating conditions expressed as a set. If this objective is cast as a reachability
analysis problem, then it is necessary to prove that ReachSetH(X0) ⊆ Sat(ϕ),
where ReachSetH(X0) is the set of states reached by H (also called the reach-
able set) and Sat(ϕ) is the set of states where ϕ is true. Unfortunately, the
reachability problem is not decidable in general [1]. Nevertheless, formal verifi-
cation methods can be applied to hybrid automata: suppose we can compute an
outer approximation S̄ such that S̄ ⊇ ReachSetH(X0). If S̄ ⊆ Sat(ϕ) holds, then
also ReachSetH(X0) ⊆ Sat(ϕ) holds, i.e., the automaton H respects the prop-
erty, or in other terms we proved the property. Conversely, if we can compute an
inner approximation S such that S ⊆ ReachSetH(X0) that turns out to contain
at least one point outside Sat(ϕ), we have proved that H does not respect the
safety property ϕ, i.e., we disproved the property.

Clearly, any approximation to the reachable set is bound to the numerical
precision used, hence a given quality of approximation may not allow to prove or
disprove the property. Computable analysis defines the conditions to construct
approximations such that if the precision is progressively increased, a sequence
of approximations converging to the reachable set is obtained.

For a given precision, an approximation is obtained by identifying the reached
region resulting from the evolution of the system over time. Such evolution is
obtained through a sequence of continuous and discrete steps. A continuous
step represents time advancement and relies on the integration of a vector field
Ẋ = f(X) for a chosen step size Δt, where f is nonlinear in general. A discrete
step represents a transition, which changes the hybrid state, i.e., the pairing of
the continuous state and the discrete state, without any time advancement.

At a first glance, evolution may appear to return results similar to those
of simulative tools like MathWorks Simulink R©. Instead, Ariadne is designed
to include all the possible behaviors that result from evolving sets rather than
single points. The underlying engine relies on results from interval analysis,
which supports the definition of constants over intervals (among other things).
Analyzing a system in this case is equivalent to the simultaneous analysis of
the set of singleton instances of the system, each corresponding to a distinct
valuation of all constants. In particular, if a given constant represents a design
parameter, parametric analysis [11] is able to identify subintervals where the
constant yields optimal behavior of the system with respect to some metrics.

Since intervals only model a set of constant behaviors, differential inclusions
represent the most natural extension to the tool: by using them it is possible
to analyze a system in which arbitrary variations of quantities within bounded
intervals occur. The resulting over-approximation of behaviors covered by the
noisy model can consequently compensate for an inaccurate system definition,
which is a common problem when modelling real systems.

316 L. Geretti et al.

3 Differential Inclusions

The seminal paper [19] that we are working to implement in Ariadne considers
a system with dynamics

ẋ(t) = f(x(t), v(t)), x(t) ∈ R
n, v(t) ∈ V ⊂ R

m (1)

where f : Rn ×R
m → R

n is a smooth function, V is a compact set and v(t) is a
measurable function known as the disturbance input. In particular, [19] discusses
how to compute the reachable set for nonlinear control systems which are affine
with respect to noisy inputs. Also, a reasonable assumption in practice is that
noisy inputs are elements of a box whose vector components are intervals.

The numerical approach focuses on (a) using an auxiliary function system
to account for the input during a continuous step of evolution, then (b) adding
the high-order theoretical error between the given system and the auxiliary one.
Such approach is formally correct since it yields an over-approximation of the
reachable set. However, the higher the order one desires, the greater the number
of parameters for the auxiliary system required for each continuous step, which
clearly affects the efficiency of the algorithm. The question remains if the auxil-
iary system approach yields the best trade-off between precision and efficiency
for computing reachable sets. The answer is not straightforward and most likely
depends on the system itself.

Designing numerical algorithms for computing solutions of differential inclu-
sions, both efficiently and with high precision, remains a point of current
research. Different techniques and various types of numerical methods have been
proposed as approximations to the solution set of a differential inclusion in the
past. For example, ellipsoidal calculus was used in [15], a Lohner-type algorithm
in [14], grid-based methods in [5,17], optimal control in [2], discrete approxima-
tions in [10,12], and optimal control and support vector machines with grids in
[18]. However, these algorithms either do not give rigorous over-approximations
and so they cannot be used to validate the system, or are low-order approxima-
tions, e.g., Euler approximations with a first-order single-step truncation error.

Essentially, the only algorithms mentioned above that could give arbitrarily
accurate error estimates are the ones that use grids. However, higher-order dis-
cretization of a state space greatly affects the efficiency of the algorithm. In fact,
it was noted in [5] that if one tries to obtain higher-order error estimates on the
solution set of differential inclusions then grid methods should be avoided.

A recent publication [13] proposes a method for computing outer approxi-
mations of reachable sets for nonlinear control systems by constructing convex
polyhedral enclosures of reachable sets; it produces upper and lower bounds via
polyhedra and demonstrates the efficiency of the proposed algorithm through
several examples. Since all the examples are input-affine systems, we plan to
compare this approach to the implementation of [19] within Ariadne.

Finally, in terms of theoretical extensions of the current approach, a desirable
objective is to explore even higher-order error estimates. Additionally, we plan
to use constraints for set representation, which allow for pseudo-affine inputs

Ongoing Work on Automated Verification of Noisy Nonlinear Systems 317

and inputs defined via more general convex sets. The ultimate goal however is
the ability to handle differential inclusions which are nonlinear in the inputs.

4 Open Issues for Automation

The presence of differential inclusions introduces additional issues for continuous
evolution, which require specific operations to be performed:

– Reduction of auxiliary parameters. Each continuous step increases the
number of parameters by 2m, where m is the dimension of the noise space.
Consequently it is important to identify when some parameters can be lumped
into a uniform error term δ, in order to reduce the dimensionality of the
problem.

– Reconditioning of the set. When the uniform error term of the represen-
tation of the set becomes too large in respect to the set radius, it is beneficial
to convert it into an additional parameter for the representation itself. Again,
it is necessary to lump periodically one or more parameters into δ for scal-
ability purposes. While reconditioning is a necessary operation in general,
differential inclusions make its automation even more critical.

– Splitting and recombining sets. Additional precision can be obtained by
splitting a large set over one parameter and evolving the split parts separately.
However, the problem of identifying the conditions for an effective splitting is
not trivial. Additionally, it is ultimately necessary to recombine split sets peri-
odically to avoid an exponential explosion of the number of evolved sets. The
problem is that recombination should introduce a small over-approximation
error, in order to justify splitting in the first place.

– Tuning of the continuous step size. There is a trade-off to investigate
between a large step size, which is unable to provide an accurate reachable
set, and a small step size, which results in high complexity of the evolved set
along with longer verification time.

In general, it is clear that local dynamics greatly affect the approximation
error introduced in a single continuous step. As a consequence, a manual tuning
phase at the beginning of the reachability routine has a very limited capability
to identify a (sub)optimal strategy for evolution.

A reasonable approach relies on a pre-analysis of the system using point-based
simulation. In this case, we drop the guarantees given by set-based evolution with
the objective of gaining valuable local information on the system evolution in
a significantly shorter verification time. The resulting information necessarily
comes with no guarantees of correctness, meaning that the obtained evolution
may include spurious transitions or miss some transitions. Still, for sufficiently
well-behaved dynamics this approach is able to identify reached regions where
evolution is critical from the numerical viewpoint. Given such pre-analysis of
the system, preemptive policies can be enacted to tune numerical parameters in
order to trade between precision and verification time.

318 L. Geretti et al.

Summarizing, it appears that dealing with noisy nonlinear systems requires
both local and global strategies in order to allow evolution to progress with
bounded over-approximation error and reasonable efficiency of computation.
Future work will focus on improving such strategies, with the objective of pro-
viding as much automation as possible regardless of the dynamics involved.

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an algo-
rithmic approach to the specification and verification of hybrid systems. In: Gross-
man, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS, vol.
736, pp. 209–229. Springer, Heidelberg (1993). doi:10.1007/3-540-57318-6 30

2. Baier, R., Gerdts, M.: A computational method for non-convex reachable sets
using optimal control. In: Proceedings of the European Control Conference 2009,
Budapest, HU, pp. 97–102. IEEE (2009)

3. Benvenuti, L., Bresolin, D., Collins, P., Ferrari, A., Geretti, L., Villa, T.: Ariadne:
dominance checking of nonlinear hybrid automata using reachability analysis. In:
Finkel, A., Leroux, J., Potapov, I. (eds.) RP 2012. LNCS, vol. 7550, pp. 79–91.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-33512-9 8

4. Benvenuti, L., Bresolin, D., Collins, P., Ferrari, A., Geretti, L., Villa, T.: Assume-
guarantee verification of nonlinear hybrid systems with Ariadne. Int. J. Robust.
Nonlinear Control 24(4), 699–724 (2014)

5. Beyn, W.-J., Rieger, J.: Numerical fixed grid methods for differential inclusions.
Computing 81(1), 91–106 (2007)

6. Bresolin, D., Di Guglielmo, L., Geretti, L., Muradore, R., Fiorini, P., Villa, T.:
Open problems in verification and refinement of autonomous robotic systems.
In: 15th Euromicro Conference on Digital System Design (DSD), pp. 469–476,
September 2012

7. Bresolin, D., Di Guglielmo, L., Geretti, L., Villa, T.: Correct-by-construction code
generation from hybrid automata specification. In: 7th International Wireless Com-
munications and Mobile Computing Conference (IWCMC), pp. 1660–1665, July
2011

8. Collins, P.: Semantics and computability of the evolution of hybrid systems. SIAM
J. Control Optim. 49, 890–925 (2011)

9. Collins, P., Bresolin, D., Geretti, L., Villa, T.: Computing the evolution of hybrid
systems using rigorous function calculus. In: Proceedings of the 4th IFAC Con-
ference on Analysis and Design of Hybrid Systems (ADHS 2012), pp. 284–290,
Eindhoven, The Netherlands, June 2012

10. Dontchev, T.: Euler approximation of nonconvex discontinuous differential inclu-
sions. An. Stiint. Univ. Ovidius Constanta Ser. Mat. 10(1), 73–86 (2002)

11. Geretti, L., Muradore, R., Bresolin, D., Fiorini, P., Villa, T.: Parametric formal
verification: the robotic paint spraying case study. In: Proceedings of the 20th IFAC
World Congress, pp. 9658–9663, July 2017

12. Grammel, G.: Towards fully discretized differential inclusions. Set Valued Anal.
11(3), 1–8 (2003)

13. Harwood, S., Barton, P.: Efficient polyhedral enclosures for the reachable set of
nonlinear control systems. Math. Control Signals Syst. 28(8) (2016)

14. Kapela, T.A., Zgliczynski, P.: A lohner-type algorithm for control systems and
ordinary differential inclusions. Discrete Contin. Dyn. Syst. Ser. B 11(2), 365–385
(2009)

http://dx.doi.org/10.1007/3-540-57318-6_30
http://dx.doi.org/10.1007/978-3-642-33512-9_8

Ongoing Work on Automated Verification of Noisy Nonlinear Systems 319

15. Kurzhanski, A., Valyi, I.: Ellipsoidal Calculus for Estimation and Control. Systems
& Control: Foundations & Applications. Birkhäuser Basel, New York (1997)

16. Nuzzo, P., Sangiovanni-Vincentelli, A.L., Bresolin, D., Geretti, L., Villa, T.: A
platform-based design methodology with contracts and related tools for the design
of cyber-physical systems. Proc. IEEE 103(11), 2104–2132 (2015)

17. Puri, A., Borkar, V., Varaiya, P.: ε-approximation of differential inclusions. In:
Proceedings of the 34th IEEE Conference on Decision and Control, New Orleans,
LA, USA, pp. 2892–2897. IEEE (1995)

18. Rasmussen, M., Rieger, J., Webster, K.: Approximation of reachable sets using
optimal control and support vector machines. J. Comput. Appl. Math. 311, 68–83
(2017)

19. Zivanovic, S., Collins, P.: Numerical solutions to noisy systems. In: 49th IEEE
Conference on Decision and Control (CDC), pp. 798–803, December 2010

Generating Checking Sequences
for User Defined Fault Models

Alexandre Petrenko1(&) and Adenilso Simao2

1 CRIM, Centre de recherche informatique de Montréal,
405 Ogilvy Avenue, Suite 101, Montréal, QC H3N 1M3, Canada

petrenko@crim.ca
2 Instituto de Ciencias Matematicas e de Computacao,
Universidade de Sao Paulo, Sao Carlos/Sao Paulo, Brazil

adenilso@icmc.usp.br

Abstract. In this paper, we investigate how a checking sequence can be gen-
erated from a Finite State Machine, with respect to a user-defined set of faults,
modeled as a nondeterministic FSM, called Mutation Machine (MM). We
propose an algorithm for generating a checking sequence in this scenario and
demonstrate its correctness.

Keywords: FSM testing � Fault models � Checking sequence � Mutation
machine

1 Introduction

Generation of checking sequence (CS) from a Finite State Machine (FSM) is a relevant
problem, when the implementation may not be reset or when reset operation it pro-
hibitively costly. There are methods which, given a distinguishing sequence, can gen-
erate a checking sequence in polynomial time [2, 3]. Other methods generate checking
sequence from characterization sets instead of a distinguishing sequence [1], since the
former is available for any minimal machine, while the latter may not exist. Those
methods, however, rely on the repetition of the sequences in the characterization sets,
resulting in an exponentially long sequence. These methods also consider the classical
fault domain where the implementation may have arbitrary faults, except extra states.

In this paper, we investigate how a CS can be generated from an FSM, with respect
to a subset of faults. The faults of interest are modeled as a nondeterministic FSM,
called Mutation Machine (MM), such that any implementation is assumed to be a
deterministic submachine of the MM. We propose an algorithm for generating a CS in
this scenario. After demonstrating the correctness of the algorithm, we illustrate its
application on a simple example.

2 Checking Sequence Construction

An FSM is a tuple M = (S, S0, X, O, h), where S is the set of states, S0 � S is the set of
initial states, X is the set of inputs, O is the set of outputs, which satisfy the condition

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 320–325, 2017.
DOI: 10.1007/978-3-319-67549-7_20

I \ O ¼ £, and h� S� X � O� Sð Þ is the set of transitions. For state s and input x,
let h(s, x) be the set of transitions from state s with input x. The FSM M is initialized if |
S0| = 1 and is deterministic if for each (s, x) 2 S� X; h s; xð Þj j � 1. For an initialized
FSM, where |S0| = 1, write s0, instead of {s0}.

The machine M is completely specified (complete FSM) if |h(s, x)| � 1 for each
s; xð Þ 2 S� X; otherwise, it is partially specified (partial FSM).

A path of the FSM M = (S, S0, X, O, h) from state s 2 S is a sequence of transitions
(s1, x1, o1, s2) (s2, x2, o2, s3) … (sk, xk, ok, sk+1), such that (si, xi, oi, si+1) 2 h, for
1� i� k. Notice that we also allow a path to be empty, represented by e. The machine
is strongly connected, if it has a path from each state to any other state. The input
projection (output projection) of the path is x1x2 … xk (o1o2 … ok). Input sequence
b 2 I� is a defined input sequence in state s of M if it is an input projection of a path
from state s. We use X sð Þ to denote the set of all input sequences defined in state s and
X Mð Þ for the states in S0, i.e., for M. X Mð Þ = X* holds for any complete machine M,
while for a partial FSM X Mð Þ � X�.

Given a path p, let trav(p) be the set of transitions of M which appear in p. For state
s and input x, let trans(p, (s, x)) be the set of transitions from state s with input x in trav
(p), i.e., trans p; s; xð Þð Þ ¼ trav pð Þ \ h s; xð Þ. For the FSM M = (S, S0, X, O, h), given a
set of states S0 � S and an input sequence a, let path S0; að Þ be the set of paths of M from
states of S0 with input projection a. We denote path S0; að Þ by pathM að Þ. Let k S0; að Þ be
the set of output projections of the paths in Path S0; að Þ; we denote k S0; að Þ by kM að Þ.
Unless stated otherwise, paths are assumed to be from an initial state.

Given states s; t 2 S of the deterministic FSM M = (S, S0, X, O, h), t is quasi-
equivalent to s, if X tð Þ 	 X sð Þ and k t; að Þ ¼ k s; að Þ for all a 2 X sð Þ; moreover, in case
X tð Þ 	 X sð Þ , states are equivalent. States s, t 2 S are distinguishable, if k t; að Þ 6¼
k s; að Þ for some a 2 X tð Þ \ X sð Þ. The machine is reduced, if any two states are dis-
tinguishable. The quasi-equivalence (equivalence) of two deterministic FSMs is the
corresponding relation of their initial states.

Spec = (S, s0, X, O, h) is an initialized deterministic FSM specification. We assume
that it is strongly-connected machine, not necessarily complete and reduced.

Given an FSM M = (S, s0, X, O, h) and s 2 S, let M/s be the FSM (S, s, X, O, h),
i.e., M initialized in state s. We let s-after-a denote the set of states reached by input
sequence a from state s; if a is applied to the initial state of M then we write M-after-a
instead of s0-after-a; for deterministic machines, we write s-after-a = s0 instead of s-
after-a = s0f g.

We use a so-called mutation machine MM = S0; S00;X;O; h
0� �
which is a completely

specified possibly nondeterministic FSM.
FSM M = (S, s0, X, O, h) is a submachine of MM = S0; S00;X;O; h

0� �
iff S� S0,

s0 2 S00 and h� h0. Any complete deterministic submachine ofMM is one of the mutants
of Spec. The number of mutants is S00

�� ��Q
s;xð Þ2S�X h0 s; xð Þj j. For the sets of states S, inputs

X and outputsO, we define the machineChaos(S, X,O) = S; s0;X;O; S� X � O� Sð Þð Þ
representing the universe of all FSMs with |S| states.

Let Prod be the product of Spec and MM = S0; S00;X;O; h
0� �
; the states of Prod is a

subset of S[Df gð Þ � S0. A state D; sð Þ is a D-state. The product Prod = (P, P0, X, O,

Generating Checking Sequences for User Defined Fault Models 321

H), where P0 ¼ s0; s0ð Þ s0 2 S
0
0

��� �
is such that P and H are the smallest sets satisfying

the following rules:

1. If s; s0ð Þ 2 P; s; x; o; tð Þ 2 h; s0; x; o0; t0ð Þ 2 h0; and o ¼ o0, then t; t0ð Þ 2 P and s;ðð
s0Þ; x; o; t; t0ð ÞÞ 2 H:

2. If s; s0ð Þ 2 P; s; x; o; tð Þ 2 h; s0; x; o0; t0ð Þ 2 h0; and o 6¼ o0, then D; t0ð Þ 2 P and
s; s0ð Þ; x; o0; D; t0ð Þð Þ 2 H:

Notice that D-states are sink states. If the product has no D-states, then any mutant
of MM is quasi-equivalent to Spec.

An input sequence x ¼ X Specð Þ is a checking sequence for Spec w.r.t. MM, if for
each deterministic submachine N of MM, if kN xð Þ ¼ kSpec xð Þ, then N is quasi-
equivalent to Spec/s, where s 2 S.

Given a path p = ((s1, m1), x1, o1, (s2, m2)) ((s2, m2), x2, o2, (s3, m3))… ((sk, mk), xk,
ok, (sk+1, mk+1)) of the product Prod of Spec and MM, let p#MM be the corresponding
path in MM, i.e., p#MM = (m1, x1, o1, m2) (m2, x2, o2, m3) … (mk, xk, ok, mk+1).

A path of the product Prod is deterministic (w.r.t. MM) if for every state s and input
x, |trans(p#MM, (s, x))| � 1. Given a set of paths Q of Prod, let det(Q) be the set of
paths of Q which are deterministic (w.r.t. MM) and D(Q) be the set of deterministic
paths which leads to a D-state.

Lemma 1. Let x be an input sequence such that for each input sequence a, we have
that D(det(pathMM(xa))) = £. Then, x is a checking sequence for Spec w.r.t. MM.
Proof. Assume that x is not a checking sequence for Spec w.r.t.MM, but for each input
sequence a, we have that D(det(pathMM(xa))) = £.

Thus, there exists a deterministic submachine N of MM, such that kN xð Þ ¼
kSpec xð Þ, and for each s 2 S, we have that N is not quasi-equivalent to Spec/s. This
implies that state N-after-x is not quasi-equivalent to any state Spec/s-after-x. Then for
each s 2 S, there exists an input sequence b 2 X sð Þ such that kN=N
after
x 6¼
kSpec=s
after
x bð Þ.

Let pxb be the path in N which has xb as the input projection. It follows that
pxb 2 D det pathMM xbð Þð Þð Þ, sinceN is deterministic;moreover, it leads to aD-state, since
kN=N
after
x bð Þ 6¼ kSpec=s
after
x bð Þ, thus,D det pathMM xbð Þð Þð Þ 6¼ £, a contradiction.□

322 A. Petrenko and A. Simao

Thus, by Lemma 1, if the algorithm stops, the resulting sequence x is indeed a
checking sequence. It remains to show that it will always stop for any specification and
mutation machine.

Lemma 2. After a finite number of steps, the algorithm terminates.
Proof. First, notice that for a given deterministic submachine of MM, there is exactly
one deterministic path with a given input sequence projection (many submachines can
share the same path). Thus, the number of paths in det pathMM xð Þð Þ is limited by the
number of deterministic submachines of MM; as there are finitely many such subma-
chines, there are finitely many paths in det pathMM xð Þð Þ. Let Subx be the set of
deterministic submachines for which correspond the paths in det pathMM xð Þð Þ. At least
one path in det pathMM xð Þð Þ leads to a D-state, since the algorithm updated x in the
previous iteration to xa and D det pathMM xað Þð Þð Þ 6¼ £.

Let a be a nonempty input sequence, such that D det pathMM xað Þð Þð Þ 6¼ £. Let
Subxa be the set of deterministic submachines each which has a path in
det pathMM xað Þð Þ. As D-states are sink states, any submachine in Subx with a path to a
D-state is not in Subxa. Thus, there exists at least one submachine which is in Subx but
not in Subxa. The set of submachines with paths in det pathMM xð Þð Þ is thus reduced
each time x is updated by the algorithm. As the set of submachines is finite, eventually
after a finite number of steps the set Subx has no more machines distinguishable from
the specification machine Spec, which means that for any input sequence a, it holds that
D det pathMM xað Þð Þð Þ 6¼ £, and the algorithm terminates. □

We now illustrate the application of the algorithm. Consider the FSM in Fig. 1a.
Observe first that it has no distinguishing sequence. In Fig. 1b, we include a mutation
machine for which we will generate a checking sequence.

Notice that there are twelve deterministic complete submachines of MM. One
possibility to obtain a checking sequence for Spec is to use any of the applicable
methods [2, 3], ignoring MM. However, the resulting checking sequence would be
unnecessarily long.

The algorithm starts by building the product of Spec and MM, as well as initializing
x with the empty sequence. The nonempty input sequence a = aa is such that xa
reaches a D-state in the product, since det pathMM xað Þð Þ = {((1, a, 0, 2), (2, a, 1, 3)),

Fig. 1. (a) Specification FSM. (b) The Mutation Machine MM

Generating Checking Sequences for User Defined Fault Models 323

((1, a, 0, 2) (2, a, 0, D)), ((1, a, 0, 2), (2, a, 1, 2))}, i.e.,D det pathMM xað Þð Þð Þ 6¼ £. We
append a to x, so that now x = aa. In the next iteration, the nonempty input sequence
a = ba is selected, since det pathMM xað Þð Þ = {((1, a, 0, 2), (2, a, 1, 3), (3, b, 1, 2), (2, a,
1, 3)), ((1, a, 0, 2), (2, a, 1, 2), (2, b, 1, 1), (1, a, 0, D)), ((1, a, 0, 2), (2, a, 1, 2), (2, b, 1,
3), (3, a, 1, 3)), ((1, a, 0, 2), (2, a, 1, 2), (2, b, 1, 3), (3, a, 1, 2))}, i.e.,
D det pathMM xað Þð Þð Þ 6¼ £. We append a to x, so that nowx = aaba. In the next
iteration, the nonempty input sequence a = aba is selected, since det pathMM xað Þð Þ =
{((1, a, 0, 2), (2, a, 1, 3), (3, b, 1, 2), (2, a, 1, 3), (3, a, 1, 3), (3, b, 1, 2), (2, a, 1, 3)), ((1,
a, 0, 2), (2, a, 1, 3), (3, b, 1, 2), (2, a, 1, 3), (3, a, 1, 2), (2, b, 1, 1), (1, a, 0, D)), ((1, a, 0,
2), (2, a, 1, 3), (3, b, 1, 2), (2, a, 1, 3), (3, a, 1, 2), (2, b, 1, 3), (3, a, 1, 2)), ((1, a, 0, 2),
(2, a, 1, 2), (2, b, 1, 3), (3, a, 1, 3), (3, a, 1, 3), (3, b, 1, 2), (2, a, 1, 2)), ((1, a, 0, 2), (2,
a, 1, 2), (2, b, 1, 3), (3, a, 1, 2), (2, a, 1, 2), (2, b, 1, 3), (3, a, 1, 2))}, i.e.,
D det pathMM xað Þð Þð Þ 6¼ £. We append a to x, so that now x = aabaaba. In the next
iteration, the nonempty input sequence a = bba is selected, since det pathMM xað Þð Þ =
{((1, a, 0, 2), (2, a, 1, 3), (3, b, 1, 2), (2, a, 1, 3), (3, a, 1, 3), (3, b, 1, 2), (2, a, 1, 3), (3,
b, 1, 2), (2, b, 1, 1), (1, a, 0, 2)), ((1, a, 0, 2), (2, a, 1, 3), (3, b, 1, 2), (2, a, 1, 3), (3, a, 1,
3), (3, b, 1, 2), (2, a, 1, 3), (3, b, 1, 2), (2, b, 1, 3), (3, a, 1, D)), ((1, a, 0, 2), (2, a, 1, 3),
(3, b, 1, 2), (2, a, 1, 3), (3, a, 1, 2), (2, b, 1, 3), (3, a, 1, 2), (2, b, 1, 3), (3, b, 1, 2), (2, a,
1, D)), ((1, a, 0, 2), (2, a, 1, 2), (2, b, 1, 3), (3, a, 1, 3), (3, a, 1, 3), (3, b, 1, 2), (2, a, 1,
2), (2, b, 1, 3), (3, b, 1, 2), (2, a, 1, D)), ((1, a, 0, 2), (2, a, 1, 2), (2, b, 1, 3), (3, a, 1, 2),
(2, a, 1, 2), (2, b, 1, 3), (3, a, 1, 2), (2, b, 1, 3), (3, b, 1, 2), (2, a, 1, D))}, i.e.,
D det pathMM xað Þð Þð Þ 6¼ £. We append a to x, so that x = aabaababba. There is no
nonempty input sequence such that D det pathMM xað Þð Þð Þ 6¼ £. Thus, by Lemma 1,
aabaababba is a checking sequence for Spec with respect to MM.

Consider now the Spec in Fig. 1(a) and the corresponding Chaos(S, X, O) which
represents a traditional fault domain, the universe of all FSMs with up to three states.
The algorithm we propose in this paper generates the checking sequence
aaaabaabababbababbabbbba, of length 24. On the other hand, the algorithm proposed
in [1], generates a checking sequence of length 130.

3 Experimental Results

In this section we present some preliminary experimental results on the length of the
checking sequence obtained for various size of a mutation machine. The experiments
are set up as follows. For each run, a random complete deterministic FSM Spec with 5
states, 2 inputs and 2 outputs is generated, as proposed in [4]. Then, increasingly bigger
mutation machines are generated from Spec by adding transitions to it. The size of the
mutation machine is the number of its transitions; the smallest mutation machine is the
specification itself, which the biggest one is the Chaos machine with that a given
number of states, inputs and outputs. We executed 30 runs and collected the length of
the obtained checking sequence. Figure 2 shows the result of the experiments. We note
that, as expected, the length of the checking sequence increases with the size of the
mutation machine. However, the increment tends to be smaller, as the number of
transitions approaches the maximum.

324 A. Petrenko and A. Simao

4 Conclusion

In this paper, we proposed an algorithm for generating a checking sequence with
respect to a user-defined fault model. In the forthcoming steps of this research, we plan
to characterize scenarios when the algorithm can be effectively applied as well as its
scalability.

Acknowledgement. This work was partially supported by MESI (Ministère de l’Économie,
Science et Innovation) of Gouvernement du Québec and NSERC of Canada, and by Brazilian
Funding Agency FAPESP, Grant 2013/07375-0.

References

1. Rezaki, A., Ural, H.: Construction of checking sequences based on characterization sets.
Comput. Commun. 18(12), 911–920 (1995)

2. da Silva Simão, A., Petrenko, A.: Generating checking sequences for partial reduced finite
state machines. In: TestCom/FATES, pp. 153–168 (2008)

3. Hierons, R.M., Ural, H.: Optimizing the length of checking sequences. IEEE Trans. Comput.
55(5), 618–629 (2006)

4. da Silva Simão, A., Petrenko, A.: Checking completeness of tests for finite state machines.
IEEE Trans. Comput. 59(8), 1023–1032 (2010)

Fig. 2. Variation of the length of the checking sequence with respect to the number of
transitions in the mutation machine.

Generating Checking Sequences for User Defined Fault Models 325

Adaptive Localizer Based on Splitting Trees

Roland Groz1(B), Adenilso Simao2, and Catherine Oriat1

1 Univ. Grenoble Alpes, CNRS, LIG, 38000 Grenoble, France
{Roland.Groz,Catherine.Oriat}@imag.fr

2 Universidade de São Paulo, São Paulo, Brazil

Abstract. When testing a black box system that cannot be reset, it
may be useful to use a localizer procedure that will ensure that the
test sequence goes at some point through a state that can be identified
with a characterizing set of input sequences. In this paper, we propose a
procedure that will localize when the separating sequences are organized
in a splitting tree. Compared to previous localizing sequences based on
characterization sets, using the tree structure one can define an adaptive
localizer, and the complexity of localizing depends on the height of the
tree instead of the number of states.

1 Introduction

In testing methods based on FSM models, it is important to ensure that the
black box implementation under test is in a known state at key points after
applying some prefix input sequence, and before applying a trailing sequence.
The same is also true when the test is used to retrieve some kind of state model
information from a black box, as in the inference problem.

Hennie [2] and Kohavi [4] introduced approaches based on locating sequences,
to build checking sequences, that can test for conformance. More recently, we
introduced a localizer procedure to infer a FSM model of a black box system
which cannot be reset [1] with two key assumptions: first, an upper bound n on
the number of states, and second a characterization set (aka W -set) for the sys-
tem. Whatever the initial state of the system, the application of the localizer will
make it possible to ascertain the state reached at the end of it, or more precisely
before applying the last characterizing sequence. For W = {w1, w2, w3}, the
localizer’s input sequence is (w2n−1

1 w2)2n−1(w2n−1
1 w3). The core trick, as already

suggested by Hennie, is that after applying at most n + 1 times a sequence, the
machine must have entered a cycle, and we proved [1] that another n − 2 appli-
cations were enough (in worst case) to identify where the machine is in the cycle,
so as to predict the next application. After w2n−1

1 the answer of the machine to
w1 can be predicted, so by applying w2 we can know its answers to both w1 and
w2. Similarly, after (w2n−1

1 w2)2n−1 we know what its answers would be to w1

AND w2 after applying w2n−1
1 , so we now substitute w3 and therefore we iden-

tify the state reached after (w2n−1
1 w2)2n−1w2n−1

1 . The length of the sequence is
exponential in the cardinal of the characterization set.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 326–332, 2017.
DOI: 10.1007/978-3-319-67549-7 21

Adaptive Localizer Based on Splitting Trees 327

In this paper, we propose an improved localizer when the characterizing
sequences are organized in a splitting tree [5]. In that case, the length of the
localizing sequence is exponential in the height of the tree, so it would reduce to
linear in the number of sequences when the tree is balanced. The main difficulty
lies in the fact that each input sequence from the W -set must be applied after
repeating a fixed number of times (2n − 1) a fixed sub-localizing sequence to
ensure that the next iteration would be a repeated situation identifiable from
the previous observations. The localizer procedure from [1] uses a fixed order of
input sequences from the W -set to ensure that the same sequence is repeated
at each level. With a splitting tree, the sequence to repeat may not be fixed.
In this paper, we show that it is possible to combine variable sequences with
predictability: differing from [3], we allow cycles that hop through different states
and levels up and down the tree. Our new localizer is adaptive, and it does not
produce a fixed input sequence, but an adaptive one.

2 Definitions

In this paper, a FSM is assumed to be a strongly connected complete determin-
istic Mealy machine M = (Q, I,O, δ, λ), with finite state, input and output sets
Q, I,O; δ and λ as transition and output mappings.

Two states q, q′ ∈ Q are distinguishable by a set H ⊂ I∗ if there exists a
separating sequence γ ∈ H such that λ(q, γ) �= λ(q′, γ). An FSM is minimal if
all states are pairwise distinguishable. A set W of sequences of inputs (therefore
conventionally called a W -set) is a characterization set for an FSM M if each
pair of states is distinguishable by W .

Figure 1 shows an FSM M0, taken from [5], with 6 states, 2 inputs (a, b) and
two outputs (0, 1). W = {b, aab, ab, aaab} is a characterization set for M0.

A localizer w.r.t. a set H ⊂ I∗ and n ∈ N is a procedure that applies an input
sequence Ξγ to an unknown machine with at most n states such that γ ∈ H
and the output responses to each sequence in H can be ascertained in the state
reached after applying Ξ. Note that H is not required to be a characterization
set, and we only assume we know a bound on the number of states.

S0

S1 S2

S4

S3

S5

b/0

b/0

a/0

a/1
b/0

a/1

a/0
b/1

b/0
a/0

a/1

b/0

aab

b

S4

a

ab

aaab

S5S0 S2

S3

0 1

0 1 10 11

010 011

S1

1011 1010

Fig. 1. FSM M0 and a splitting tree T for it

328 R. Groz et al.

Following [5], we now define splitting trees. A splitting tree for an FSM M =
(Q, I,O, δ, λ) is a rooted tree T with a finite set of nodes such that:

– each non-leaf node N is labelled by a non-empty sequence of inputs γ ∈ I+;
– each edge e : N1 → N2 is labelled by a non-empty output sequence of outputs

θ ∈ O+ of the same length as the label of the source node N1.

A splitting tree T is separating for M if each node can be associated with a
class of a partition of its states, such that:

– the root of T is associated with the full set of states Q of the machine M ;
– let e : N1 → N2 be an edge of T such that N1 is labelled by γ ∈ I+, e is

labelled by θ ∈ O+. If N1 is associated with Q1 ⊆ Q, then N2 is associated
with Q2 = {q ∈ Q1 ; λ(q, γ) = θ}.

A splitting tree is fully separating if each leaf node is associated with a single
state. In that case, the input sequences from the root of the tree to a leaf sepa-
rate the state on this leaf from all other states. The advantage of structuring a
W -set as a splitting tree is that a state can be identified by applying less input
sequences: with a W -set, we potentially have to apply CardW sequences, while
with a splitting tree, we only have to apply log(CardW) sequences, if the tree
is balanced. As the localizer algorithm is exponential in CardW , the gain from
using splitting trees rather than W -sets is crucial. In Fig. 1, we choose an initial
sequence a /∈ W that better balances the tree and splits on a short sequence.

Given a splitting tree T , and a node N of T , we will use the following
notations:

– We denote the subtree rooted at node N also by N .
– root(T) is the root node of T . Following the previous notation, this root node

could also be denoted by T .
– I(N) is the input sequence that labels node N .
– Λ(N) is the output sequence that labels the edge leading to node N .
– Given a child node N ′ of N , T (N ← N ′) is the modified tree where N has

been replaced by the tree rooted at N ′. In other words, the subtree rooted at
N ′ is grafted one level upwards.

3 Adaptative Localizer Procedure

We assume we are given a FSM whose structure is unknown (so we cannot
compute a homing sequence for it) but we are given T , a known separating
splitting tree for it (see Sect. 4 for a short discussion). The procedure L will bring
the machine to an identified state, meaning that we know its output responses
for all input sequences in a path of the splitting tree from the root to a leaf
N . The procedure L should be called initially with d equal to the height of the
splitting tree T .

The boolean function Predictable(in i, in Nt , out N1) returns true when we
can be sure that the next (i-th) application of L(d − 1, T) would return a node
N1. Nt is an array of nodes from the tree indexed from 0 to i − 1.

Adaptive Localizer Based on Splitting Trees 329

1 procedure L(d, T) return Node N // d is max-depth to use

2

3 if d = 0 then
4 return root(T)
5 else if d = 1 then
6 apply I(root(T)), observe some Λ(N)
7 return N

8 else
9 i := 0

10 repeat
11 Nt [i] := L(d − 1, T)
12 if Nt [i] is a leaf then
13 return Nt [i] // a leaf will be returned through all

// recursive calls as we are now localized

14 end
15 i := i + 1

16 until Predictable(i, Nt, N1)
17 N := L(d − 1, T (parent(N1) ← N1))
18 return N
19 end

20 end

We now illustrate the algorithm on the example FSM M0 and its associated
splitting tree T . In the following, we will denote a node N of the tree T by the
path from the root of T to N . For instance, the node associated with S3 will be
denoted by 〈a/1, ab/11〉. We use primes to differentiate inner values of variables
in recursive calls. We suppose we start in the state S0. The depth of the splitting
tree T is 3, so the first call to the adaptative localizer is L(3, T).

L(3, T)
i := 0
Nt [0] := L(2, T)

i′ := 0
Nt ′[0] := L(1, T)

apply a, observe 0 // we are now in S1
Nt ′[0] = 〈a/0〉
i′ := i′ + 1 = 1
Nt ′[1] := L(1, T)

apply a, observe 1 // we are now in S2
Nt ′[1] = 〈a/1〉
. . .

After five more iterations, we are in S1 and Nt ′ = [〈a/0〉, 〈a/1〉, 〈a/0〉, 〈a/1〉,
〈a/0〉, 〈a/1〉, 〈a/0〉] It is predictable that if we applied a, we would observe 1.
Predictable(i, Nt ′, N1) is true and N1 = 〈a/1〉.

330 R. Groz et al.

1 procedure Predictable(i, Nt, out N1) return boolean
2 r := 0 // repetition factor

3 Ns := empty set // set of states in last r elements of Nt
4 repeat
5 r := r + 1
6 Ns := Ns ∪ leaves(Nt [i − r]) // set of all leaf nodes

7 s := card(Ns)
8 until r = i or s ≤ r
9 if s > r then

10 return false
11 else

// we have entered a loop, can we predict N1?
12 while leaves(Nt [i − r − 1]) ⊆ Ns and r ≤ i − 1 do
13 r := r + 1
14 end
15 find greatest j such that
16 i − r ≤ j < i − 1 and ∀m ∈ [0, r − s − 1],Nt [j − m] = Nt [i − 1 − m]
17 N1 := Nt [j + 1]
18 while j > i − s do
19 j := j − 1
20 if ∀m ∈ [0, r − s − 1],Nt [j − m] = Nt [i − 1 − m] and Nt [j + 1] �= N1

then
21 return false
22 end

23 end
24 return true
25 end

26 end

N := L(1, T (root(T) ← 〈a/1〉)
apply ab, observe 10 // we are now in S3

return 〈a/1, ab/10〉
Nt [0] = 〈a/1, ab/10〉
i := i + 1 = 1
Nt [0] := L(2, T)

i′ := 0
Nt ′[0] := L(1, T)

apply a, observe 1 // we are now in S4
Nt ′[0] = 〈a/1〉
. . .

After 6 iterations, we are in S4 and Nt ′ = [〈a/1〉, 〈a/0〉, 〈a/1〉, 〈a/0〉,
〈a/1〉, 〈a/0〉, 〈a/1〉] It is predictable that if we applied a, we would observe 0.
Predictable(i, Nt ′, N1) is true and N1 = 〈a/0〉.

Adaptive Localizer Based on Splitting Trees 331

N := L(1, T (root(T) ← 〈a/0〉)
apply b, observe 1 // we are now in S5

return 〈a/0, b/1〉
// We have fully identified S4, and we are in S5

Nt [1] = 〈a/0, b/1〉
The whole localizing sequence has 7 + 2 + 7 + 1 = 17 inputs as follows (here

decorated with landmark steps S′, S′′):

a/0 a/1 a/0 a/1 a/0 a/1 a/0 S′ ab/10 a/1 a/0 a/1 a/0 a/1 a/0 a/1 S′′ b/1

Let us recap: in the state S′, we know that if we applied a, we would get 1. We
thus apply the input sequence associated with node 〈a/1〉, which is ab, and get
10. In the state S′′, we know that if we applied a, we would get 0. We thus apply
the input sequence associated with node 〈a/0〉, which is b and get 1. We thus
have fully identified the state S′′ in the trace, which is S4 = 〈a/0 b/1〉.

If the procedure is started from S1, it localizes in 17 steps also. From
S2, S3, S4 and S5 the length of the sequences yielded by the procedure
are 9, 8, 26 and 25 respectively. The non-adaptive localizer with opti-
mal ordering (by increasing size) of W = {b, ab, aab, aaab} would yield
((b11ab)11b11aab)11(b11ab)11b11aaab) requiring 1885 inputs. Even when the tree
is not balanced the gain is huge, because only the worst case will require the full
height of the tree.

4 Perspectives

An adaptive localizer as presented here lowers the complexity of localizing, from
an exponential in the number of sequences to an exponential in the height of
the splitting tree. This paves the way for new applications of localizing, in con-
formance testing or inference for non-resettable machines. In particular, it is
possible to consider adapting an inference algorithm [1] so that the sequences
separating subsets of states are discovered instead of being given. Thus it would
be possible to infer incrementally with just a bound on the number of states,
and with no initial knowledge of separating sequences for a black box system.

Acknowledgments. The authors acknowledge feedback from A. Petrenko.

References

1. Groz, R., Simao, A., Petrenko, A., Oriat, C.: Inferring finite state machines with-
out reset using state identification sequences. In: Proceedings of the International
Conference on Testing Software and Systems, ICTSS 2015, Dubai, November 2015

2. Hennie, F.C.: Fault-detecting experiments for sequential circuits. In: Proceeding of
Fifth Annual Symposium on Circuit Theory and Logical Design, pp. 95–110 (1965)

3. Jourdan, G.-V., Ural, H., Yenigun, H.: Reducing locating sequences for testing from
finite state machines. In: ACM-SAC 2016, pp. 1654–1659 (2016)

332 R. Groz et al.

4. Kohavi, Z., Rivierre, J.A., Kohavi, I.: Checking experiments for sequential machines.
Inf. Sci. 7, 11–28 (1974)

5. Smetsers, R., Moerman, J., Jansen, D.N.: Minimal separating sequences for all
pairs of states. In: Dediu, A.-H., Janoušek, J., Mart́ın-Vide, C., Truthe, B. (eds.)
LATA 2016. LNCS, vol. 9618, pp. 181–193. Springer, Cham (2016). doi:10.1007/
978-3-319-30000-9 14

http://dx.doi.org/10.1007/978-3-319-30000-9_14
http://dx.doi.org/10.1007/978-3-319-30000-9_14

Refining the Specification FSM When Deriving Test Suites
w.r.t. the Reduction Relation

Aleksandr Tvardovskii(✉)

National Research Tomsk State University, 36 Lenin Street, Tomsk, Russia
tvardal@mail.ru

Abstract. Finite State Machines (FSMs) are widely used when deriving tests for
components of discrete event systems. In general, the specification FSM can be
nondeterministic and in this case, a test suite with the guaranteed fault coverage
is derived with respect to the reduction relation. However, when deriving such
tests for nondeterministic FSMs, the existing methods return rather long test suites
which cannot be used for real systems. In order to shorten a test suite, the set of
possible implementation FSMs can be reduced. We present an approach for
deriving shorter test suites for nondeterministic FSMs with respect to the reduc‐
tion relation via refining the specification FSM.

Keywords: Finite state machines (FSM) · Nondeterministic FSM · Test
derivation

1 Introduction

Finite State Machine (FSM) based test derivation is an active research area that has a
long history [1, 2]. The well-known method is the W-method [2] and many derivatives
of this method have been developed including those for FSMs with the nondeterministic
behaviour (see, for example, [3–5]). In FSM based testing, the specification behaviour
and the behaviour of an implementation under test (IUT) are described by FSMs and by
applying input sequences to the IUT and observing the produced outputs a tester should
conclude whether the IUT conforms to its specification. Best known conformance rela‐
tions are the equivalence and reduction relations [4]. In the former case, the IUT has to
have the same behaviour as the specification FSM; in the latter case, the behaviour of
the IUT has to be contained in the behaviour of the specification FSM.

In this paper, we propose to refine the FSM specification via deleting some transitions
in such a way that the refined specification has an (adaptive) distinguishing sequence
that distinguishes every two different states and all the states are definitely reachable
from the initial state [5], i.e., each state is (adaptively) reachable from the initial state.
Under such conditions, the length of a test suite against nondeterministic FSMs is
comparable with that for deterministic FSMs.

The rest of the paper has the following structure. Section 2 contains the preliminaries.
A procedure for deriving complete test suites against nondeterministic FSMs with

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
N. Yevtushenko et al. (Eds.): ICTSS 2017, LNCS 10533, pp. 333–339, 2017.
DOI: 10.1007/978-3-319-67549-7_22

respect to the reduction relation is presented in Sect. 3. Section 4 contains a proposed
procedure for reducing the specification FSM. Section 5 concludes the paper.

2 Preliminaries

In this section, we introduce necessary definitions and notations which are mainly taken
from the paper [5].

A finite state machine (FSM), or simply a machine, is a 5-tuple 𝖲 = ⟨S, I, O, h
S
, s0⟩

where S is a finite nonempty set of states with the designated state s0, I and O are finite
input and output alphabets, and hS ⊆ S × I × O × S is a transition (behavior) relation.
FSM 𝖲 is nondeterministic if for some pair (s, i) ∈ S × I, there can exist several pairs (o,
s′) ∈ O × S such that (s, i, o, s′) ∈ hS; otherwise, the FSM is deterministic. FSM 𝖲 is
complete if for each pair (s, i) ∈ S × I there exists (o, s′) ∈ O × S such that (s, i, o, s′)
∈ hS; otherwise, the FSM is partial. FSM 𝖲 is observable if for every two transitions (s,
i, o, s1), (s, i, o, s2) ∈ hS it holds that s1 = s2. In the following, we consider complete
observable possibly nondeterministic FSM specifications, while an implementation is a
complete deterministic FSM.

Figure 1 shows a FSM 𝖠 for which I = {i1, i2, i3}, O = {o1, o2, o3}, S = {1, 2, 3} and
1 is the initial state. Suppose that input i1 is applied to this FSM at the state 1. After
applying input i1 the FSM can remain at state 1 and produce an output o1. However, the
FSM can also stay at state 1 while producing output o2.

Fig. 1. FSM 𝖠

A trace of FSM 𝖲 at state s is a sequence of input/output pairs α = i1/o1 … il/ol of
consecutive transitions starting from state s. A sequence of inputs i1 … il is an input
sequence, a sequence of outputs o1 … ol is an output sequence.

Given an input alphabet I and an output alphabet O, a test case 𝖳𝖢(I, O) is an initially
connected observable FSM 𝖳 = (T, I, O, hT, t0) with an acyclic transition graph such that
at each state only one input with all possible outputs is defined. Given a complete FSM
𝖲 over alphabets I and O, a test case 𝖳𝖢(I, O) represents an adaptive experiment with
the FSM 𝖲. If |I| > 1 then a test case is a partial FSM. A state t ∈ T is a deadlock state
of the FSM 𝖳 if there are no defined inputs at this state. The notion of a test case can be

334 A. Tvardovskii

used for representing an adaptive input sequence when the next input depends on the
output to the previous input. In general, given a test case 𝖳, the length (height) of the
test case 𝖳 is defined as the length of a longest trace from the initial state to a deadlock
state of T and it specifies the length of the longest input sequence that can be applied to
an FSM 𝖲 during the experiment.

A test case 𝖳 is a distinguishing test case (DTC) for an FSM 𝖲 if for every trace γ of
𝖳 from the initial state to a deadlock state, γ is trace at most at one state of 𝖲. Sometimes,
a distinguishing test case is called an adaptive distinguishing sequence. A distinguishing
test case for a submachine of FSM 𝖠 in Fig. 1 without the bold transition (2, i1, o2, 1) is
shown in Fig. 2.

Fig. 2. A distinguishing test case for a submachine of FSM 𝖠 without the bold transition (2, i1,
o2, 1)

A test case 𝖳 represents an (adaptive) transfer sequence from the initial state to state
s if every trace of 𝖳 from the initial state to a deadlock state takes the FSM from the
initial state to state s. According to [5], if there exists an (adaptive) transfer sequence
from the initial state to state s then state s is definitely reachable from the initial state
and must be implemented in a conforming implementation [5]. Adaptive transfer
sequences to states 2 and 3 for FSM 𝖠 in Fig. 1 is shown in Fig. 3. For a deterministic
FSM, a transfer sequence is simply an input sequence.

Fig. 3. Transfer test cases for FSM 𝖠

Refining the Specification FSM When Deriving Test Suites 335

Test cases are (adaptive) input sequences which are derived against the given FSM
specification to determine whether a given black-box implementation under test (IUT),
which is also assumed to have the FSM behavior, conforms to the given specification.
In this paper, an IUT conforms to the specification if an implementation FSM is a reduc‐
tion of the specification FSM. In other words, an IUT conforms to the specification FSM
if for each input sequence the output response of the IUT is contained in the set of output
responses of the specification FSM to this input sequence. If the observed outputs do
not match, then the implementation has a fault, i.e., it is a nonconforming implementa‐
tion.

Given states s and p of complete FSMs 𝖲 and 𝖯, state p is a reduction of s, p ≤ s, if
the set of I/O sequences of FSM 𝖯 at state p is contained in the set of I/O sequences of
FSM 𝖲 at state s. FSM 𝖯 is a reduction of FSM 𝖲 if the reduction relation holds between
the initial states of these machines.

We consider the fault domain ℑn which contains every deterministic complete FSM
with at most n states and with the same input alphabet as the specification FSM 𝖲 where
n is number of states of the specification FSM. A test suite is a finite set of finite possibly
adaptive input sequences of the specification. A test suite is complete with respect to the
ℑn if for each FSM 𝖯 ∈ ℑn such that 𝖯 is not a reduction of 𝖲, the test suite has a sequence
for which an output response is not in the set of output responses of 𝖲 to this sequence.
In the next section, based on the results of [4] we briefly remind how a complete test
suite with respect to ℑn can be derived when the specification FSM has a distinguishing
test case and each state is definitely reachable from the initial state.

3 Deriving a Complete Test

Methods for deriving tests with respect to the reduction relation are based on (adaptive)
distinguishing and transfer sequences. A test suite of polynomial length can be derived
under the following conditions: (1) an IUT is deterministic and does not have more states
than the specification FSM; (2) the specification FSM has an (adaptive) distinguishing
test case of polynomial length and each state is definitely reachable from the initial state.

An algorithm below returns a complete test suite with respect to the ℑn if the spec‐
ification FSM has a distinguishing test case and each state is definitely reachable from
the initial state. Since the length of an (adaptive) transfer sequence (if it exists) does not
exceed n [5], the length of a returned test suite is polynomial with respect to the number
of states of the specification FSM when a DTC possesses this feature. It is known [3]
that a returned test suite can detect many other faults but the guarantee is only for FSMs
with up to n states where n is the number of states of the specification FSM.

According to the results in [4, 5], the following proposition holds.

Proposition 1. If the specification FSM 𝖲 has a DTC and each state of 𝖲 is definitely
reachable from the initial state then Procedure 1 returns a complete test suite with respect
to ℑn; the length of a test suite is proportional to the product |S| |I| |LDTC| where LDTC is
the length of the distinguishing test case DTC.

336 A. Tvardovskii

4 Refining the Specification FSM

If the specification FSM 𝖲 has no DTC or some state is not definitely reachable from the
initial state then we could find a maximal submachine of 𝖲 (i.e. a submachine with
maximum number of transition) that possesses this feature, however, this is not always
possible. For example, there is no such submachine if there are at least two states where
transitions under the every input are deterministic and the FSM is taken to the same state
with the same output. Nevertheless, if this is possible then we could delete some tran‐
sitions from the specification FSM in order to have an FSM where each state is definitely
reachable and there is a DTC of polynomial length. For example, a submachine of the
FSM in Fig. 1 without the bold transition (2, i1, o2, 1) has a DTC of length 2 and each
state is definitely reachable from the initial state.

Given the specification FSM 𝖲, let 𝖲red be its maximal complete submachine where
each state is definitely reachable and there is a DTC of polynomial length. If 𝖲 = 𝖲

red

then a test suite returned by Procedure 1 is complete with respect to the fault domain
ℑn. If 𝖲 is not equal to 𝖲red then Procedure 1 is used for deriving a test suite TS for FSM
𝖲

red and the following proposition holds.

Proposition 2. If for each input sequence of TS the output response of an IUT 𝖯 is in
the set of output responses of 𝖲red, then the IUT is a reduction of the FSM 𝖲. If the output
response of the IUT to some sequence of TS is not contained in the corresponding set
of output responses of the specification FSM 𝖲 to this input sequence, then the IUT is
not a reduction of 𝖲.

If the output response of the IUT to some sequence of TS is not contained in the
corresponding set of output responses of 𝖲red but is contained in the set of output
responses of 𝖲, then we cannot conclude whether the IUT conforms to its specification.
i.e., the verdict is inconclusive.

Refining the Specification FSM When Deriving Test Suites 337

When deriving distinguishing test cases, merging-free FSMs are often considered.
An FSM 𝖲 is merging-free if for every two transitions (s1, i, o, s) and (s2, i, o, s) it holds
that states s1 and s2 coincide. In [6] it is shown, that a merging-free FSM 𝖲 has a DTC
if and only if for each pair of state of 𝖲 there exists a DTC and moreover, if there exists
a DTC then there exists a DTC with the length that is polynomial with respect to the
number of states of 𝖲. However, in this paper, we do not derive a maximal merging-free
submachine of the specification FSM. Another way to find a maximal submachine of 𝖲
that possesses necessary features could be the enumeration of all submachines of the
specification FSM. However, as this number is big enough, we further propose to
consider only deterministic submachines of the specification FSM. Another reason for
considering deterministic submachines is that if a complete deterministic FSM has an
adaptive distinguishing sequence then the length of such sequence is O(n2) [7].

If Procedure 2 returns FSM 𝖲red then 𝖲red has DTC and each state is definitely reach‐
able from the initial state, i.e., for each state of 𝖲red there exists an (adaptive) transfer
sequence, then a test suite returned by Procedure 1 for 𝖲red has the fault coverage defined
by Proposition 2.

5 Conclusions

In this paper, an approach for deriving test suites of reasonable length for nondetermin‐
istic FSMs with respect to the reduction relation has been proposed. A proposed method
is based on deriving a submachine of the initial FSM specification that has a distin‐
guishing test case of polynomial length and each state is definitely reachable from the
initial state can be derived. Derived for refined specification test is not always complete,
but can be used for checking an appropriate subset of implementations.

338 A. Tvardovskii

Acknowledgement. This work is partly supported by RSF Project No. 16-49-03012.

References

1. Gill, A.: Introduction to the Theory of Finite-State Machines, 272 p (1964)
2. Chow, T.S.: Test design modeled by finite-state machines. IEEE Trans. Software Eng. 4(3),

178–187 (1978)
3. Dorofeeva, R., El-Fakih, K., Maag, S., Cavalli, A.R., Yevtushenko, N.: FSM-based

conformance testing methods: a survey annotated with experimental evaluation. Inf. Software
Technol. 52, 1286–1297 (2010)

4. Petrenko, A., Yevtushenko, N.: Conformance tests as checking experiments for partial
nondeterministic FSM. In: Grieskamp, W., Weise, C. (eds.) FATES 2005. LNCS, vol. 3997,
pp. 118–133. Springer, Heidelberg (2006). doi:10.1007/11759744_9

5. Petrenko, A., Yevtushenko, N.: Adaptive testing of deterministic implementations specified by
nondeterministic FSMs. In: Wolff, B., Zaïdi, F. (eds.) ICTSS 2011. LNCS, vol. 7019, pp. 162–
178. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24580-0_12

6. Yevtushenko, N., Kushik, N.: Nondeterministic merging-free finite state machines. In:
Proceedings of IEEE East-West Design & Test Symposium (EWDTS), pp. 338–341 (2015)

7. Lee, D., Yannakakis, M.: Testing finite-state machines: state identification and verification.
IEEE Trans. Comput. 43(3), 306–320 (1994)

Refining the Specification FSM When Deriving Test Suites 339

http://dx.doi.org/10.1007/11759744_9
http://dx.doi.org/10.1007/978-3-642-24580-0_12

Author Index

Aichernig, Bernhard K. 293
Ali, Shaukat 3
Altun, Ömer Faruk 243
Atam, Kamil Tolga 243
Avellaneda, Florent 126

Benharrat, Nassim 276
Bozic, Josip 162
Bresolin, Davide 313

Cavalcanti, Ana 21
Collins, Pieter 313

Duan, Feng 162

Elaasar, Maged 3

Falcone, Yliès 259
Felbinger, Hermann 197

Garn, Bernhard 162
Gaston, Christophe 276
Geretti, Luca 313
Gonzalez, Sanja Zivanovic 313
Groz, Roland 126, 326

Hierons, Robert M. 276
Hofer, Birgit 71
Huang, Wen-ling 145
Huster, Stefan 54

Janssen, Ramon 91
Jiang, Jie-Hong R. 230

Karahoda, Sertaç 243
Kaya, Kamer 243
Kleine, Kristoffer 162
Krafczyk, Niklas 38
Krenn, Willibald 293
Kropf, Thomas 54
Kushik, Natalia 213, 230

Lang, Priska 293
Lapitre, Arnault 276

Le Gall, Pascale 276
Lei, Yu 162
López, Jorge 213

Ma, Tao 3
Moerman, Joshua 91

Nguena Timo, Omer 108
Nica, Iulia 71

Oriat, Catherine 126, 326

Peleska, Jan 38, 145
Petrenko, Alexandre 108, 126, 320
Pill, Ingo 197

Ramesh, S. 108
Regainia, Loukmen 178
Renard, Matthieu 259
Rollet, Antoine 259
Rosenstiel, Wolfgang 54
Ruf, Jürgen 54

Salva, Sébastien 178
Schlick, Rupert 293
Schumi, Richard 293
Simao, Adenilso 21, 320, 326
Simos, Dimitris E. 162
Ströbele, Jonas 54

Tu, Kuan-Hua 230
Tvardovskii, Aleksandr 333

van den Bos, Petra 91
Villa, Tiziano 313

Wang, Hung-En 230
Wotawa, Franz 71, 162, 197

Yue, Tao 3

Zeghlache, Djamal 213

	Preface
	Organization
	Contents
	Model Based Testing
	Fragility-Oriented Testing with Model Execution and Reinforcement Learning
	Abstract
	1 Introduction
	2 Background
	2.1 Executable Test Model (ETM)
	2.2 Dynamic Flat State Machine (DFSM)
	2.3 Test Model Execution Framework

	3 Running Example
	4 Fragility-Oriented Testing Under Uncertainty
	4.1 Testing Algorithm
	4.2 Uncertainty Generation Strategies
	4.3 Implementation

	5 Evaluation
	5.1 Case Studies and Test Configuration
	5.2 Experimental Design and Execution
	5.3 Evaluation Results
	5.4 Discussion
	5.5 Threats to Validity

	6 Related Work
	7 Conclusion
	References

	Fault-Based Testing for Refinement in CSP
	1 Introduction
	2 Preliminaries
	2.1 CSP: Testing and Refinement
	2.2 Fault-Based Testing

	3 Fault-Based Testing in CSP
	4 Generating Test Sets
	5 Generating Test Sets: Termination
	6 Tool Support and Case Studies
	7 Conclusions
	References

	Effective Infinite-State Model Checking by Input Equivalence Class Partitioning
	1 Introduction
	2 Method
	2.1 State Space Representation
	2.2 Input Equivalence Class Partitioning
	2.3 Checking for Input/Output Equivalence

	3 Case Study and Quantitative Evaluation
	3.1 General Evaluation Approach
	3.2 Models Used
	3.3 Results

	4 Conclusion
	References

	Using Robustness Testing to Handle Incomplete Verification Results When Combining Verification and Testing Techniques
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Proof Obligations
	3.2 Identifying Vulnerable Proof Obligations
	3.3 Spreading Errors - the Risk of Vulnerable Proof Obligations
	3.4 Generating Robustness Tests

	4 Reference-Implementation
	5 Case Studies
	5.1 Case Study: Settings Manager
	5.2 Case Study: Cutting Stock
	5.3 Case Study: Lending Library

	6 Conclusion and Future Work
	References

	AI for Localizing Faults in Spreadsheets
	1 Introduction
	2 Basic Definitions
	3 Experimental Evaluation
	4 Conclusions
	References

	Test Derivation Methods
	n-Complete Test Suites for IOCO
	1 Introduction
	2 Preliminaries
	3 Distinguishing Experiments
	3.1 Equivalence and Compatibility
	3.2 Distinguishing Trees
	3.3 Distinguishing Compatible States

	4 Test Suite Definition
	4.1 Distinguishing Experiments for Compatible States
	4.2 Execution of Test Suites
	4.3 Access Sequences
	4.4 Completeness Proof for Distinguishing Test Suites

	5 Constructing Distinguishing Trees
	6 Conclusions
	References

	Multiple Mutation Testing from Finite State Machines with Symbolic Inputs
	1 Introduction
	2 Background
	2.1 Preliminaries
	2.2 Mutation Machine
	2.3 Mutation Operations for Building Well-Formed Mutation Machines

	3 Boolean Expressions Specifying Mutants (un)Detected by Tests
	4 Checking Completeness of a Test Suite
	5 Complete Test Suite Generation
	6 Prototype Tool and Experimental Results
	7 Conclusion
	References

	From Passive to Active FSM Inference via Checking Sequence Construction
	Abstract
	1 Introduction
	2 Definitions
	3 Problem Statement and Related Work
	3.1 Passive Inference from a Single Trace
	3.2 Checking Sequence Problem
	3.3 Active Inference Without Reset

	4 Passive Inference with SAT Solving
	4.1 Problem Encoding
	4.2 Passive Inference of Different (New) Conjectures

	5 Checking Sequence Construction
	6 Active Inference Approach
	7 Experiments
	8 Conclusions
	Acknowledgements
	References

	Safety and Security Testing
	Safety-Complete Test Suites
	1 Introduction
	2 Notation and Technical Background
	3 A Safety-Complete Wp-Method
	3.1 Safety-Related Output Abstractions
	3.2 A Safety-Complete Variant of the Wp-Method
	3.3 Implementation

	4 Case Studies and Strategy Evaluation
	4.1 Control of Fasten Seat Belt and Return-to-Seat Signs in the Aircraft Cabin
	4.2 Synthetic Example
	4.3 Garage Door Controller

	5 Conclusion
	References

	Testing TLS Using Combinatorial Methods and Execution Framework
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Combinatorial Testing
	4.1 Application to Testing of TLS
	4.2 Input Parameter Modeling
	4.3 Pairwise Test Suites for TLS Testing

	5 Execution Framework
	5.1 Test Oracle
	5.2 Testing Procedure

	6 Evaluation
	7 Conclusion
	References

	Using Data Integration for Security Testing
	1 Introduction
	2 Related Work
	3 Data Integration
	3.1 Data-Store Architecture Presentation
	3.2 Security Data Acquisition and Integration

	4 Threat Modelling
	4.1 Attack Defense Trees (ADTrees)
	4.2 Attack Defense Tree Generation

	5 Test Suite Generation
	6 Evaluation
	6.1 Experiment Results
	6.2 Result Interpretation

	7 Conclusion
	References

	Test Selection and Quality Estimation
	A ``Strength of Decision Tree Equivalence''-Taxonomy and Its Impact on Test Suite Reduction
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Equivalence Taxa
	5 Experimental Evaluation
	5.1 Results
	5.2 Discussion

	6 Conclusion
	References

	Quality Estimation of Virtual Machine Placement in Cloud Infrastructures
	1 Introduction
	2 Background
	2.1 Virtual Machine Placement in Cloud Infrastructures
	2.2 Integer Linear Programming

	3 Related Work
	4 Virtual Machine Placement Quality Estimation
	4.1 Definitions and Notations
	4.2 Placement Quality Evaluation

	5 Testing, Monitoring, and Validating Placement Modules
	5.1 Boundary Test Case Generation for Placement Modules
	5.2 Static Code/algorithm Analysis
	5.3 Dynamic VM Placement Execution

	6 Experimental Evaluation
	7 Conclusions
	References

	Homing Sequence Derivation with Quantified Boolean Satisfiability
	1 Introduction
	2 Preliminaries
	2.1 Finite State Machine and Homing Sequence
	2.2 Quantified Boolean Formula

	3 QBF for Bounded-Length Homing Sequence Existence Checking and Derivation
	4 Implementation
	4.1 Input Symbol Encoding
	4.2 Minimization of Transition Relation
	4.3 QBF Negation for Quantification Level Minimization

	5 Experimental Results
	6 Conclusions
	References

	Synchronizing Heuristics: Speeding up the Slowest
	1 Introduction
	2 Background and Notation
	2.1 The SynchroP heuristic

	3 Speeding up SynchroP and its Variants
	3.1 Eliminating Redundant Cost Computations
	3.2 Lazy Computation of Sequence Costs
	3.3 Accelerating the First Iteration
	3.4 Speeding up SynchroPL

	4 Experimental Results
	4.1 Selecting the Target to Optimize
	4.2 Impact of the Proposed Techniques

	5 Threats to Validity
	6 Conclusion and Future Work
	References

	Testing Timed and Distributed Systems
	GREP: Games for the Runtime Enforcement of Properties
	1 Runtime Enforcement of Timed Properties with Uncontrollable Events
	1.1 Timed Properties and Automata
	1.2 Description of the Approach
	1.3 Games

	2 General Description of GREP
	2.1 Symbolic Computing Module (SCM)
	2.2 Enforcement Monitor Module (EMM)
	2.3 User Interface

	3 Performance Evaluation
	4 Discussion and Concluding Remarks
	A Automaton File
	References

	Constraint-Based Oracles for Timed Distributed Systems
	1 Introduction
	2 Modelling Framework
	2.1 TIOSTS
	2.2 Communication and Systems

	3 The PhoneX Case Study
	4 Testing
	4.1 Unitary Testing
	4.2 Communication Testing

	5 Experiments
	6 Related Work
	7 Conclusion
	References

	Checking Response-Time Properties of Web-Service Applications Under Stochastic User Profiles
	1 Introduction
	2 Background
	2.1 Statistical Model Checking (SMC)
	2.2 Property-Based Testing (PBT)
	2.3 Stochastic Timed Automata
	2.4 Integration of SMC into PBT
	2.5 Cost-Model Learning

	3 Method
	4 Model-Simulation Architecture and Implementations
	5 Evaluation
	6 Conclusion
	References

	Short Contributions
	Ongoing Work on Automated Verification of Noisy Nonlinear Systems with ARIADNE
	1 Introduction
	2 Formal Verification in the Ariadne Framework
	3 Differential Inclusions
	4 Open Issues for Automation
	References

	Generating Checking Sequences for User Defined Fault Models
	Abstract
	1 Introduction
	2 Checking Sequence Construction
	3 Experimental Results
	4 Conclusion
	Acknowledgement
	References

	Adaptive Localizer Based on Splitting Trees
	1 Introduction
	2 Definitions
	3 Adaptative Localizer Procedure
	4 Perspectives
	References

	Refining the Specification FSM When Deriving Test Suites w.r.t. the Reduction Relation
	Abstract
	1 Introduction
	2 Preliminaries
	3 Deriving a Complete Test
	4 Refining the Specification FSM
	5 Conclusions
	Acknowledgement
	References

	Author Index

