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Abstract. Nephrolithiasis is a costly and prevalent disease that is associated with
significant morbidity including pain, infection, and kidney injury. While surgical
treatment of kidney stones is generally based on the size and quality of the stones,
studies have suggested that specific characteristics of the pyelocalyceal anatomy
(i.e. urinary drainage system), such as the infundibulopelvic angle (IPA), can
influence the success rate of various treatment modalities. However, the tradi‐
tional methods of quantifying such anatomic features have typically relied on
manual measurements using 2-dimensional (2D) images of a 3-dimensional (3D)
system, which can be cumbersome and potentially inaccurate. In this paper, we
propose a novel algorithm that automatically identifies and isolates the 3D volume
and central frame of the urinary drainage system from computerized tomography
(CT) Urograms, which then allows for 3D characterization of the pyelocalyceal
anatomy. First, the kidney and pyelocalyceal system were segmented from adja‐
cent soft tissues using an automated algorithm. A centerline tree structure was
then generated from the segmented pyelocalyceal anatomy. Finally, the IPA was
measured using the derived reconstructions and tree structure. 8 of 11 pyeloca‐
lyceal systems were successfully segmented and used to measure the IPA,
suggesting that it is technically feasible to use our algorithm to automatically
segment the pyelocalyceal anatomy from target images and determine its 3D
central frame for anatomic characterization. To the best of our knowledge, this is
the first method that allows for an automated characterization of the isolated 3D
pyelocalyceal structure from CT images.
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1 Introduction

The prevalence of kidney stone disease, or nephrolithiasis, has been rising over the last
several decades and now affects approximately 1 in 11 individuals in the United States [1].
Most stones that do not spontaneously pass will require surgical treatment with uretero‐
scopy (retrograde endoscopy through the urethra and bladder), extracorporeal shock wave
lithotripsy (stones fragmentation using noninvasive shock waves), percutaneous lithotripsy
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(endoscopy through 1 cm direct puncture into the kidney), or very rarely laparoscopic or
open surgery. An efficient and effective choice of surgical approach is critical given the
significant morbidity due to kidney stones, including pain, infection, and renal insuffi‐
ciency, as well as associated costs, which were estimated to be over $5 billion in 2000 [2].
Currently, more than 40% of patients may not be stone free after surgery [3].

In determining an optimal surgical approach, it is essential to consider anatomic
factors and stone features as these affect treatment success rates [4, 5]. However, prior
research correlating specific characteristics of the pyelocalyceal anatomy (kidney
drainage or urinary collecting system where stones grow), such as the IPA (angle repre‐
senting the lower pole (i.e. most inferior portion of the drainage system where stones
can settle)) and stone-free rates after surgery has often relied on manual measurements
of 2D imaging modalities, such as fluoroscopy and intravenous pyelograms, to charac‐
terize the 3D urinary collecting system. Data from such studies are conflicting, which
may in part be due to the crudeness of the 2D approximations [4, 6]. For example, the
range of IPAs in patients using 2D intravenous urograms are not consistent with those
measured from 3D resin casts of cadaver kidneys [7, 8]. Furthermore, many of the studies
were performed using images taken during surgery, meaning the images were not avail‐
able pre-operatively to actually aid in treatment planning.

The above indicate a strong need and opportunity for improvement in image-based
patient-specific preoperative planning and counseling in the management of stone
disease. The high prevalence of CT as a clinical tool provides an ideal avenue to develop
algorithms for patient-specific computer-aided treatment guidance. In addition, this type
of data at a population level will be highly valuable in the development of novel devices
for kidney stone surgery and more general characterization of anatomy.

In this feasibility study, we aimed to automatically segment and isolate the 3D struc‐
ture of the renal collecting system anatomy in normal CT Urograms that could then be
used to measure the IPA, a key feature previously identified as potentially correlating
with operative accessibility and thus, success of a given surgical approach.

2 Methods

2.1 Patient Selection and Imaging

The Institutional Review Board approved this study with a waiver of informed consent.
Electronic medical records were used to randomly identify patients who had a CT
Urogram for evaluation of hematuria (blood in the urine) [9]. Exclusion criteria included
any treated or untreated kidney pathology including tumors, presence of kidney stones,
anatomic variants, and chronic renal insufficiency as this affects the rate of contrast
excretion. Images were manually reviewed to confirm good image quality. All excretory
phase sequences (Fig. 1 demonstrates difference between a non-contrast and excretory
phase image) in this study were performed in the prone position at an 8 min delay per
institutional protocol with 3 mm axial reconstructions.
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Fig. 1. Top: Non-contrast CT with cropped images of the kidney in which pyelocalyceal system
is not visualized. Bottom: Excretory phase of CT Urogram with cropped images of kidney and
pyelocalyceal anatomy illuminated during excretion of contrast by the kidneys.

2.2 Automated Localization and Segmentation of Whole Kidney

Figure 2 demonstrates the workflow of the proposed algorithm. A SIMPLE context
learning-based multi-atlas segmentation framework [10] was used to achieve whole
kidney segmentation. To achieve the SIMPLE framework, 30 pairs of atlases (anatom‐
ical CT scans and corresponding labels) were obtained from MICCAI 2015 MeDiCAL
challenges (https://www.synapse.org/#!Synapse:syn3193805/wiki/89480). Two sets of
cropped atlases were then formed based on kidney locations (30 pairs each for the left
and right kidneys). The atlases were manually cropped by an experienced rater using
MIPAV software [11]. Next, the left and right kidneys in target CT Urogram images
were automatically localized and cropped using a random forest based localization
method [12]. The previously cropped atlases were then registered to the cropped target
CT Urogram images using affine and non-rigid registrations by NiftyReg [13]. A
SIMPLE based context learning procedure was performed to select the best 10 registered
atlases for each target kidney [14]. Finally, the left and right kidney segmentations from
the target images were separately derived by performing a joint label fusion (JLF) [15]
on the selected atlases.
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Fig. 2. The workflow of the proposed algorithm. First, the whole kidney was localized and
segmented using multi-atlas segmentation. The pyelocalyceal structure was then segmented using
a Gaussian Mixture Model and the tree structure was subsequently derived. Key landmarks
(yellow dots) were identified from the 3D reconstruction and tree structure to construct an oblique
4 mm thick plane from which the IPA was measured. (Color figure online)

2.3 Automated Segmentation of Pyelocalyceal Anatomy and Validation

Once the kidneys were cropped and segmented from the original excretory phase images,
a Gaussian mixture model (GMM) was used to segment the pyelocalyceal anatomy
within the kidneys. Empirically, a threshold above 100 Hounsfield Unit (HU) was
applied to exclude tissues surrounding the kidney. The GMM with three components
was then employed on the histogram of remaining intensities. The two components
(from three total) with higher mean HU score were clustered and identified to be the
pyelocalyceal anatomy segmentation. The component with smallest mean HU score
represented residual kidney organ tissue not completed removed in the initial thresh‐
olding step. Finally, a 3D tree structure (center line) was derived from the pyelocalyceal
anatomy segmentation using the method described in [16]. Briefly, the method calcu‐
lated the 3D axis skeleton of the 3D binary volume using a parallel thinning algorithm
based on an Euler table.

All pyelocalyceal segmentations were qualitatively evaluated by a radiologist and
rated as having excellent, acceptable, or poor accuracy. A random subset of the kidneys
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that resulted in excellent or acceptable segmentations were then manually segmented
by a radiologist and the Dice coefficient was calculated.

2.4 Measurement of Infundibulopelvic Angle in 2D and 3D Images

The previously described Elbahnasy method for IPA measurement in 2D images was
modified to allow for IPA measurement using 3D images and the above derived 3D tree
structure [17]. Key landmarks corresponding to those in the Elbahnasy method were
manually identified by a Urologist in 3D slicer software (https://www.slicer.org) using
the kidney segmentation, pyelocalyceal anatomy and tree structure derived from above
automated algorithm. The landmarks based on the Elbahnasy method were as follows:
(1) the center point of the proximal ureter at the lowest plane of the kidney, (2) the center
point of the renal pelvis along medial margin of kidney, (3) a point in the inferior branch

Fig. 3. Example results of the segmentation and angle measurements for a single kidney. Top
row: 3D reconstruction of the kidney, 3D reconstruction of the pyelocalyceal structure, tree
structure. Bottom row: Overlays of reconstructions and tree structure, traditional 2D measurement
[14] of IPA (red lines) using an averaged (i.e. flattened) pseudo-2D image generated from CT
images to simulate IV pyelogram IPA measurement (horizontal blue line indicates lowest plane
of the kidney, sloped vertical blue line indicates medial margin of kidney, (A) center of ureter at
lower margin of kidney, (B) center of renal pelvis at medial margin, (C) center line through lower
pole branch), and the 3D IPA measurement (red lines) using described method. (Color figure
online)
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of the kidney drainage system (i.e. lower pole). The three points were used to create a
unique 4 mm thick slice from the 3D volume, and the IPA was measured as the angle
between the line connecting points (1) and (2), and the center line through the lowest
branch of the kidney drainage system (Fig. 2).

As a comparison, 2D measurements of the IPA were performed on the cropped
kidney from an averaged CT image in the coronal direction. This traditional 2D meas‐
urement was obtained by estimating the center point (A) of the proximal ureter at the
lowest plane of the kidney, estimating the center point (B) of the renal pelvis along
medial margin of kidney, approximating the center line (C) through the lower pole
branch, and measuring the angle between line C and a line connecting A and B (Fig. 3).

3 Results

3.1 Patients

After exclusion of patients with imaging artifacts or inadequate collecting system
distension, CT images of 11 individual kidneys from 8 patients were identified to be
appropriate for this feasibility study. Patients ranged in age from 41–80 years old and
all had normal kidney function.

3.2 Pyelocalyceal Anatomy Segmentation

The pyelocalyceal anatomy was appropriately segmented in 8 of the 11 kidneys with a
rating of excellent or acceptable by the radiologist. Of these, 6 were randomly chosen and
manually segmented by the radiologist and Dice coefficients ranged from 0.62 to 0.88.

3.3 Infundibulopelvic Angle

Figure 3 demonstrates the segmentation results, tree structure, as well as 2D and 3D IPA
measurements from a single example kidney. The IPA based on the 3D segmentations
and tree structures ranged from 14.6° to 81.5° while IPA based on 2D reformatted images

Table 1. Infundibulopelvic angles obtained from 2D and 3D measurements

Kidney# 2D IPA
measurement (°)

3D IPA
measurement (°)

Absolute difference (°) Percent difference

1 19.2 23.7 4.5 18.99%
2 16.5 21.9 5.4 24.66%
3 66.9 70.1 3.2 4.57%
4 34.2 48.6 14.4 29.63%
5 57.4 60 2.6 4.33%
6 9.4 14.6 5.2 35.63%
7 16.3 19.7 3.4 17.26%
8 88.3 81.5 6.8 8.34%
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ranged from 9.4° to 88.3° (Table 1). Comparisons between the angles based on the 2D
and 3D methods demonstrated differences up to 35.6%.

4 Discussion

Kidney stone disease is a chronic condition that often requires many surgeries over a
patient’s lifetime. Each surgery is associated with risks and residual stones can have
severe consequences so appropriate pre-operative evaluation and intervention are crit‐
ical [18]. In addition to stone-free rates after surgery, anatomic variation may play a role
in stone formation and burden of disease [6]. Thus, accurate characterization of patient
anatomy can have both immediate and long-term effects with respect to surgical planning
as well as lifelong management, such as the interval between imaging studies.

Augmentation of currently widely available CT Urography with powerful post-
processing tools such as 3D modeling and characterization algorithms may aid in
advancing patient-tailored medicine in urologic disease. While there is prior work on
automated detection of kidney stones and kidney tumors [19, 20] from CT images, this
is the first method known to the authors for automated isolation and characterization of
the 3D pyelocalyceal frame. There have been some efforts to perform automated iden‐
tification and segmentation of the pyelocalyceal anatomy using magnetic resonance
imaging (MRI). A mean Dice coefficient of 0.72 [21] has been reported, which is within
the range achieved in this study, but anatomic characterization was not performed and
furthermore, MRIs do not provide adequate visualization of kidney stones and thus are
not used for stone patients. The results presented here demonstrate that the proposed
algorithm is technically feasible with CT imaging and Dice coefficient calculations
indicate that the automated segmentation results compare favorably with manual
segmentations for the given geometry.

With respect to the IPA, the relative difference in the measured IPA between the 2D and
3D techniques was noted to be up to 35%. As previously mentioned, prior studies have
indicated that anatomic variation may be critical to predicting surgical success, but the data
on IPA and other anatomic parameters are inconsistent [4]. As this preliminary data
suggests, the discrepancies may be partially attributed to the lower anatomic fidelity of the
traditionally utilized 2D images, and the advantages of using 3D techniques are a focus of
our future studies. An inherent limitation of such automated algorithms is that the result
will only be as reliable as the initial imaging, and imaging quality of CT urograms can be
dependent on multiple factors such as kidney function and level of hydration. We aim to
further automate our algorithm, assess additional anatomic variables, both novel and previ‐
ously described, and then correlate these more accurate 3D-based measurements with
stone-free rates after stone surgery. Outcomes from such studies may provide valuable
tools for patient-specific stone management.
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