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Abstract. We describe a fully-automated system for analysing X-rays
of the wrist to identify possible fractures. Fractures of the distal radius
in the wrist are estimated to be about 18% of the fractures seen in
adults and 25% of those seen in children. Unfortunately such fractures
are amongst the most frequently missed by doctors in Emergency Depart-
ments (EDs). A system which can identify suspicious areas could reduce
the number of misdiagnoses. We automatically locate the outline of the
radius in both posteroanterior (PA) and lateral (LAT) radiographs, then
use shape and texture features to classify abnormalities. We show for the
first time that fractures can be better identified in the lateral view, and
that combining information from both views leads to an overall improve-
ment in performance.

Keywords: Image analysis · Image interpretation and understanding ·
X-ray fracture detection · Wrist fractures · Radius fractures · Machine
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1 Introduction

Fractures of the wrist are usually identified in Emergency Departments by doc-
tors examining lateral (LAT) and posterioanterior (PA) radiographs (Fig. 1).
Unfortunately missing such fractures is one of the most common diagnostic
errors in EDs, leading to delayed treatment and more suffering for the patient
[7,14,18]. This is mainly because the majority of patients attending EDs are
seen by junior doctors [8,13]. This problem is widely acknowledged, so in many
hospitals X-rays are reviewed by an expert radiologist at a later date - however
this can lead to significant delays on missed fractures which can have an impact
on the eventual outcome. To address this we are developing a system which can
automatically analyse radiographs of the wrist in order to identify abnormalities
and thus prompt clinicians, hopefully reducing the number of errors.

In this paper we describe a fully-automated system for detecting radius frac-
tures in PA and LAT radiographs. For each view, a global search [11] is performed
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for finding the approximate position of the radius. The detailed outline of the
bone is then located using a Random Forest Regression Voting Constrained Local
Model (RFCLM) [10]. We use features derived from the shape and texture to
train random forest classifiers on the task of detecting fractures. Features from
both views are combined for better performance.

This paper is the first to show an automatic system for identifying fractures
from lateral view radiographs of the wrist. We show that better performance can
be achieved from this view than the PA view, and that further improvement can
be obtained by combining results from both views.

2 Background

Distal radius fractures have been on increase in all age groups [15]. They alone
constitute around 18% of the fractures seen in EDs in adults [4,6] and 25% of
the fractures seen in children [6].

Previous work on detecting fractures in X-rays has been done on a variety of
anatomical regions, including arm fractures [19], femur fractures [1,9,12,17,20],
and vertebral endplates [16]. Cao et al. [2] used stacked random forests to fuse
different feature representations to identify fractures in a range of anatomical
regions. They achieved a sensitivity of 81% and precision of 25%. All reported
work on automatical analysis of wrist fractures that we are aware of [5,9,12]
uses only the PA view. In each case some form of shape model is used to locate
the outline of the bones, then texture (and possibly shape) features are used to
train a classifier to distinguish healthy from fractured bones.

[9,12] use both active shape models and active appearance models [3] to
locate the approximate contour of the radius. They extract various texture fea-
tures (Gabor, Markov Random Field, and gradient intensity) and classify with a
Support Vector Machine SVM. They achieved encouraging performance (accu-
racy ≈ sensitivity ≈ 96%) but were working on a rather small dataset with only
23 fractured examples in their test set. In previous work [5] we used RFCLMs
to segment both the radius and ulna in PA views and trained random forest
classifiers on statistical shape parameters and eigen-mode texture features. The
automatic system [5] achieved a performance of 88.6% (Area under Receiver
Operating Characteristic Curve AUC) on data set of 409 radiographs including
199 fractures. The system we describe below is for the radius in both PA and
LAT views achieving better performance and is tested on a data set about twice
the size.

3 Method

The outline of the radius was manually annotated with 48 points in the PA
view and with 64 points in the LAT View (Fig. 1). For each view, a statistical
shape model and an RFCLM [10] object detection model were built from the
corresponding manual annotations. The models then used to segment the bone
on new radiographs automatically.
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3.1 Modeling and Matching

Building Models for Shape and Texture. The outline of the radius is
modeled by a linear statistical shape model [3].
Each training image is annotated with n feature points, (xi, yi). A 2n-D vector
x = (x1, ....., xn, y1, ......, yn)T represents all the points.

PA

LAT
(a) (b) (c)

Fig. 1. The annotations of both views on (a) a normal radius, (b) a radius with a
subtle fracture, and (c) with an obvious fracture. The two red points, appearing on
each view, are the anatomical points found by the global searcher for that view. (Color
figure online)

Shapes are modelled using

x = T (x̄ + Pb : θ) (1)

where x̄ is the mean shape, P is the set of the eigenvectors corresponding to the t
highest eignvalues of the covariance matrix, b is the vector of shape parameters
and T (. : θ) applies a similarity transformation with parameters θ. The first
three modes of the built shape models are shown in Fig. 2. Similarly, statistical
texture models [3] are built by applying PCA to vectors of normalised intensity
(g) sampled from the regions defined by the points of the shape model.

g ≈ ḡ + Pgbg (2)

After fitting the model to a new radiograph, shape parameters b (in Eq. 1) and
the texture parameters bg (in Eq. 2) are used as features on which classifiers are
trained to distinguish between normal and fractured bones.
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Matching Shape Models to New Radiographs. We use a technique similar
to that described by Lindner et al. [11] to locate the outline of the targeted bone
in each view separately. A single global model per view is trained to initially find
approximate position of a box containing two anatomical landmarks (i.e. the red
points in Fig. 1). As in [11] a random forest regressor with Hough voting is trained
to find the displacement between the center of a patch and the object center.
During training, patches are sampled at random displacements and scales from
the object center and fed to a Random Forest to learn the relationship between
an image patch and the displacement of the patch centre from the target position.
By scanning a new image at different scales and orientations with the Random
Forest and collecting the votes, the most likely center, scale and orientation of
the object can be found. The two points estimated by the global searcher are
used to initialise a local search for the outline of the radius. We used a sequence
of three RFCLMs of increasing resolution to produce the final result.

3.2 Classification

After performing the full automatic search so that radius outline points are
located on all radiographs, Random Forest classifiers (100 trees each) are trained
on features derived from the shape (the shape parameters, b) and the texture
(the texture model parameters, bg) for the task of fracture detection (i.e. nor-
mal or fractured). A series of cross validation experiments were performed with
different combinations of features for each view separately, then for both views
together.

4 Experiments

Data. The experiments were carried out on a dataset containing both views
for 787 adult patients (378 of whom had fractures) from two local EDs gathered
and anonymised by a clinician.

Automatic Annotation. In order to generate the automatic annotation for
the whole dataset, we divided PA radiographs into two subsets, training models
on one subset and applying them to the second. Four subsets were needed to
successfully learn representative models for the LAT view. That is because of
the overlap between the two bones, (i.e. radius and ulna) on lateral view can
take various orientations due to different acceptable positioning in practice [6].
This is not the case for PA view as the two bones appear side by side. Figure 3
shows some examples from our LAT dataset.

The accuracy of the segmentation is calculated as the percentage of mean
point-to-curve distance [11] to a reference width, and converted to mm by assum-
ing a mean reference width of 25 mm for the radius in the PA view and 20 mm
in the LAT view. The reference width of a view is the distance between the two
reference points for that view (see Fig. 1(a)).
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(PA.1) (PA.2) (PA.3) (LAT.1) (LAT.2) (LAT.3)

Fig. 2. The first three modes of the shape models of the radius.

Fig. 3. Different relative radius-ulna positions appearing in lateral radiographs.

The results in Table 1 show the ability of the models to successfully segment
the targeted structure even when fractured. The mean error was less than 1.4 mm
for more than 95% of the radiographs in the LAT view and less than 0.6 mm
for 95% of radiographs in the PA view. The PA error was less that reported in
[5] (0.61 mm vs 0.78 mm for the 95%-ile, though our dataset is twice the size).
The table also breaks down the results by class and shows that although in the
PA view there is almost no difference in accuracy between fractured and normal
cases, in the LAT view errors are roughly 50% larger. However overall the system
can successfully capture a good approximation to both the normal and fractured
shapes.

Classification. For each view we performed 5-fold cross validation experi-
ments with Random Forest classifiers using 100 trees (repeated three times) on:
(i) shape parameters only, (ii) texture parameters only, and (iii) the concatena-
tion of shape and texture parameters. The results obtained from the PA view,
shown in Table 2, reflects the small difference between the manual and automatic
annotation. The performance of the automated system improves slightly on that
described in [5] (though that was on a smaller dataset).

Table 3 shows the classification results for the LAT view. Note that classify-
ing using the shape alone gives significantly better performance than that from
the PA view. Adding the texture information makes only a small improvement
(in the manual case) and slightly degrades performance of the fully automated
system. The difference in performance for shape between manual and automatic
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Table 1. The mean point-to-curve distance in (mm) for the fully automatic
annotations.

View Class Mean Median 90% 95% 99%

PA Normal 0.18 0.10 0.40 0.50 1.08

PA Fractured 0.18 0.11 0.47 0.63 1.04

PA Both 0.18 0.10 0.42 0.61 1.06

LAT Normal 0.40 0.28 0.76 0.94 1.86

LAT Fractured 0.62 0.44 1.27 1.62 2.83

LAT Both 0.50 0.32 1.01 1.37 2.34

Table 2. AUC for classification based on PA view.

PA view Manual Fully automated Automated result from [5]

Shape 0.847 ± 0.004 0.826 ± 0.002 0.816 ± 0.007

Texture 0.896 ± 0.005 0.891 ± 0.001 0.881 ± 0.004

Shape & Texture 0.898 ± 0.002 0.897 ± 0.002 0.868 ± 0.002

results suggests that classification performance can be improved by improving
the accuracy of the search (perhaps by increasing the size of the training set).

Table 3. AUC for classification based on lateral view.

LAT view Manual Fully automated

Shape 0.933 ± 0.001 0.905 ± 0.003

Texture 0.894 ± 0.002 0.878 ± 0.002

Shape & Texture 0.937 ± 0.001 0.899 ± 0.001

Combining information from both views results in the best classification per-
formance in both manual and automatic cases. See Table 4. Figure 4 shows the
ROC curves for the best results.

Table 4. AUC for classification based on features from both views.

PA & LAT views Manual Fully automated

Shape 0.933 ± 0.001 0.913 ± 0.003

Texture 0.918 ± 0.002 0.890 ± 0.006

Shape & Texture 0.942 ± 0.002 0.914 ± 0.004
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Fig. 4. The ROC curves corresponding to classification based on combining shape
and texture features from both PA and LAT views for: (i) manual annotation, and
(ii) automatic annotation.

5 Conclusions

This paper presents a system that automatically locates the outline of radius in
both posteroanterior and lateral radiographs and extracts discriminative features
for fracture detection. In future work, we will extend our current work to generate
automatic description of the found fracture (i.e. fracture classification), and will
explore learning alternative texture features. Our long term goal is to build a
system which works well enough to help clinicians in EDs make more reliable
decisions.
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