
Image-Based Smoke Detection
in Laparoscopic Videos

Andreas Leibetseder(B), Manfred Jürgen Primus, Stefan Petscharnig,
and Klaus Schoeffmann

Institute of Information Technology, Alpen-Adria University,
9020 Klagenfurt, Austria

{aleibets,mprimus,spetsch,ks}@itec.aau.at

Abstract. The development and improper removal of smoke during
minimally invasive surgery (MIS) can considerably impede a patient’s
treatment, while additionally entailing serious deleterious health effects.
Hence, state-of-the-art surgical procedures employ smoke evacuation sys-
tems, which often still are activated manually by the medical staff or less
commonly operate automatically utilizing industrial, highly-specialized
and operating room (OR) approved sensors. As an alternate approach,
video analysis can be used to take on said detection process – a topic
not yet much researched in aforementioned context. In order to advance
in this sector, we propose utilizing an image-based smoke classification
task on a pre-trained convolutional neural network (CNN). We provide
a custom data set of over 30 000 laparoscopic smoke/non-smoke images,
part of which served as training data for GoogLeNet-based [41] CNN
models. To be able to compare our research for evaluation, we separately
developed a non-CNN classifier based on observing the saturation chan-
nel of a sample picture in the HSV color space. While the deep learning
approaches yield excellent results with Receiver Operating Characteris-
tic (ROC) curves enclosing areas of over 0.98, the computationally much
less costly analysis of an image’s saturation histogram under certain cir-
cumstances can, surprisingly, as well be a good indicator for smoke with
areas under the curves (AUCs) of around 0.92–0.97.

Keywords: Smoke detection · Endoscopy · Image processing · Deep
learning

1 Introduction

Substantial advances in health care technology over the recent decades enabled
minimally invasive surgery (MIS), i.e. medical operations inflicting as little as
possible physical trauma upon patients, to become common practice in the clin-
ical community. Nowadays, some surgical interventions almost exclusively are
performed via MIS [46], such as the cholecystectomy procedure for attending
gallbladder conditions. Regarding the technology applied in such or similar situ-
ations, physicians rely on video-monitoring their treatment of a patient’s internal
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anatomy – a modus operandi achievable by introducing a high definition camera
or endoscope in addition to a variety of instruments through bodily orifices. The
corresponding medical field, namely endoscopy, is sub-categorized by considering
the insertion locality of said video device, which may be natural apertures such
as nose (rhinoscopy), ear (otoscopy), anus (anoscopy) etc. or deliberately cre-
ated incisions used in order to examine interior cavities of joints (arthroscopy),
thorax (thoracoscopy) as well as of the most frequently inspected abdomen –
a zone treatable via a broad number of procedures that comprise the field of
laparoscopy, constituting the main focus of this study.

Many laparoscopic actions require severing tissue, which can create open
wounds causing internal bleeding, a matter which usually needs to be tended
to urgently. This typically is accomplished by suturing, i.e. sewing parts of the
affected tissue back together and thereby helping natural hemostasis, as well
as cauterization, that is using electrically heated or laser instruments1 in order
to mitigate or stop the hemorrhage. The latter either can be applied during
dissection as to prevent aforementioned effects or afterwards in an attempt to seal
afflicted regions. In any case, it is estimated that tissue cauterization is applied in
well over 90% of all surgical procedures, generating yet another undesirable side-
effect: a gaseous mixture consisting of 95% water and 5% chemical, biological as
well as physical by-products [32] – materials comprising a surgical smoke plume.
Potentially harmful contained substances like toxins, viruses or bacteria as well as
ultrafine particulate matter renders exposure to such an entity a possibly serious
health risk for both medical staff and patients, as is indicated in a great amount
of scientific documents [5,10,14,21,34,37,43]. Thus, the necessity of removing
surgical smoke swiftly and safely after its creation seems imperative in modern
medicine, yet involved hazards still are underestimated, which can cause bad
decisions like releasing corresponding fumes into the operating room (OR) air2,
a not uncommon practice according to Sahaf et al. [5].

Proper smoke evacuation on the other hand is accomplished via OR-approved
suction systems that typically are activated manually by the medical staff, in
case cauterization is conducted. However, this particular action can easily be
forgotten or neglected, potentially leading up to a point, in which the operating
staff’s view onto the currently treated body parts is severely obstructed by smoke
– Fig. 1 demonstrates such situations by portraying three laparoscopic scenes
that depict the emergence of smoke in various intensities.

In addition to the inconvenience of requiring manual control, smoke evacu-
ators designed for laparoscopic utilization must be able to keep the abdominal
cavity from collapsing during the suction process, which is achieved by using
a medical grade insufflation gas3 [7], entailing additional budget expenses to
clinical institutions. Thus, handling a smoke evacuator inefficiently, which very
likely happens many times during critical situations like surgeries, comes at a
price. Naturally, automatic evacuation would represent an optimal solution for

1 Temperatures range from about 100◦–1200◦ Celsius.
2 This effect is achieved by opening the stopcock of the laparoscopic port.
3 In laparoscopy usually carbon dioxide (CO2) is used [35].
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(a) no/weak
amount of smoke

(b) no/moderate
amount of smoke

(c) no/strong
amount of smoke

Fig. 1. Comparison of non-smoke vs. smoke images with different effect intensities.

both the nuisance of manual evacuator operation and the possibility of wasting
valuable resources. Systems targeting similar goals have already been proposed,
albeit all of them pursuing the rather naive methodology of commencing smoke
removal whenever a cauterization instrument is activated [12,13,42]. Consider-
ing such a procedure fairly excessive and hardware restrictive, we argue that it is
possible to construct more fine-grained, universal systems by detecting smoke via
image analysis accurately and in real-time. Therefore, we formulate the research
question behind our work as follows:

Q Can image-based analysis of endoscopic videos be leveraged as to reliably
recognize the emergence of smoke in real-time?

Our proposed strategies to answer Q in general fall into the category of
binary classification tasks – we develop a simple image saturation based his-
togram thresholding algorithm and compare its performance to two state-of-
the-art CNN-based approaches.

The remainder of this work is subdivided into four sections: related work
described in following Sect. 2, a detailed account of the methodology we apply
in Sect. 3, evaluation results containing performance as well as runtime analyses
in Sect. 4 and a concluding Sect. 5 highlighting our scientific contributions.

2 Related Work

Today classification utilizing CNNs is already commonly used in the medical
field – research on the topic can be found dating back to the mid-1990s, where
for example Sahiner et al. developed a three-layer CNN approach to be able
to differentiate between normal tissue and abnormal areas (mass) when ana-
lyzing mammograms achieving a ROC AUC of 0.87 [40]. Further work using
CNNs on computerized tomographic (CT) and Magnetic Resonance Imaging
(MRI) images include Li et al. [30], who are detecting five different lung states
related to interstitial lung diseases with 0.8 precision, 0.9 recall for each of them.
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Conducting research in the same area, Anthimopoulos et al. [6] defined seven
classes and they were able to outperform the former as well as other state-of-
the-art methods. Moreover, Yan et al. [48] developed a multi-stage deep learning
framework utilizing a CNN structure to automatically determine characteristics
of different body parts, altogether exceeding recall, precision and F1 score of
standard CNNs.

Although great potential for employing computer-aided processes in endo-
scopic surgery are being pointed out by Liedlgruber et al. [31], research con-
cerned with classification techniques that operate on corresponding media yet
is rather sparse – no matter if deep learning is applied or not. A few studies
have been published by Häfner et al. within the scope of colonoscopy: they show
the feasibility of automatically classifying colonic mucosa via feeding pyrami-
dal discrete wavelet-transformed images to a k-nearest neighbors (k-NN) as well
as Bayes classifier [17], develop a system for automated colon cancer detection
based on the pit pattern classification (Kudo et al. [27]) in [18] and propose a
novel color texture operator for pit pattern classification outperforming state-of-
the-art operators in terms of compactness as well as computational speed [19].
As for CNN-based approaches, Park et al. [38] apply learning of hierarchical
features on colonoscopy images for identifying polyp regions with an accuracy
of 90%. Albeit in a different context, but specific to this work’s target-domain
– laparoscopy – Petscharnig et al. [39] continue training AlexNet (Krizhevsky
et al. [25]) to be able classify shots taken from a large gynecologic video database
categorized into 14 different classes in order to aid physicians in the process of
surgery annotation.

Finally, surgical smoke detection is yet another area still not much researched
– predominantly visual smoke recognition is addressed in non-medical settings
such as identifying fire outbursts [36,47,49], utilizing classification approaches
like image separation [44], optical flow computation [11,24] or pattern recognition
[15,16,45]. Since smoke emergence and lighting conditions in endoscopic environ-
ments strongly differ from outdoor settings, these techniques only to some extent
are applicable to the medical sector. In the field of laparoscopy, apart from a
non-vision-based assessment of smoke evacuation benefits (Takahashi et al. [42])
and an US patent from the Sony Corporation vaguely describing a frame-based
system using motion blur as well as pixel block analysis [9], we merely are able
to discover one related study, albeit targeted towards retrieval of scenes con-
taining smoke in contrast to their real-time detection, as is our intent: Loukas
et al. [33]. They extract 76 individual shots of 26–58 frames (between 1976–
4408 images) from cholecystectomy videos, calculate their space-time optical
flow together with some kinematic features and employ a one-class support vec-
tor machine (OCSVM) for classification, outperforming selected wavelet-based
image decomposition methods for fire surveillance [8,16,29].

3 Proposed Methodologies

Altogether, we propose three smoke classification approaches: Sect. 3.1 gives an
understanding of simply inspecting an image’s saturation channel in HSV color
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(a) DS A: smoke
intensity 0

(b) DS A: smoke
intensity 1

(c) DS A: smoke
intensity 2

(d) DS A: smoke
intensity 3

(e) DS B: smoke
intensity 0

(f) DS B: smoke
intensity 1

(g) DS B: smoke
intensity 2

(h) DS B: smoke
intensity 3

Fig. 2. Smoke development in different datasets DS A and B, including 256 bin satura-
tion histograms. Images show various smoke intensities: none (0), weak (1), moderate
(2), strong (3). Visual histogram comparison facilitated by division into four equal
sectors (vertical lines).

space – a technique we call Saturation Peak Analysis (SPA) and Sect. 3.2 outlines
the development of two GoogLeNet CNN models learned from both, full color
(GLN RGB) as well as saturation only (GLN SAT) samples.

3.1 Saturation Peak Analysis (SPA)

Regions of smoke in endoscopic images tend to be grayish or rather colorless.
Therefore, it seems appropriate to use the saturation component of the HSV
color space to detect these areas, especially since the amount of smoke increases
rapidly in the abdominal cavity when there is no evacuation mechanism in place.
A caveat of taking such a perspective is that other colorless entities can be
found during laparoscopic procedures: e.g. instruments and reflections of light
hitting objects. Interferences like that can severely impact the saturation of
an image, hence, naively observing this value will yield moderate classification
results. Using the saturation histogram of a frame, we found in an explorative
manner that by merely inspecting significant local bin maxima, i.e. peaks in the
histogram’s shape, we can determine colorlessness, compensating for insignificant
non-smoke influences.
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Fig. 3. SPA Classification: finding local maxima in an image’s saturation histogram
and classifying via thresholding. (Color figure online)

In order to illustrate the basis for our reasoning, Fig. 2 shows transitions
in smoke intensities from no smoke to a very high degree of smoke together
with corresponding saturation histograms for two scenes taken from different
laparoscopic datasets4. Additionally to displaying individual pixel saturation
counts via their 256 bins, the histogram images in the figure are sectioned into
four equal parts indicated by three blue dashed vertical lines marking 25%, 50%
and 75% portions of all bins, which helps facilitate their comparison across the
portrayed smoke intensification. It can easily be discovered that the bin curves
strongly correlate to the presence of smoke: for example, the depicted upper
scene (Figs. 2a–d) starts out with an almost centered histogram curve (Fig. 2a)
moving below the first bin quarter as smoke rises to a strong level (Fig. 2d). In
contrast this development, the lower sequence’s histograms (Figs. 2e–h) overall
are far less saturated, predominantly gathering in between the second bin portion
(Fig. 2e) but swiftly gravitating below the first one at a high level of smoke
(Fig. 2h), again indicating colorlessness in similar fashion to former example.
Empirical pre-study analyses on our laparoscopic video material show that these
individual trends apply to the majority of images in different datasets, therefore,
smoke detection using saturation histograms seemingly boils down to finding
an appropriate concentration point for bin values of non-smoke samples, i.e. a
classification threshold as introduced shortly, which can be used as a reference
to smoke samples that generally exhibit a lower concentration point. As this
is not a straightforward task, at present we incrementally select such locations
and apply SPA in order to classify a single image, which is visually described in
Fig. 3.

SPA analyzes a frame’s saturation by converting it into the HSV color
space, before isolating corresponding S-channel and creating a respective

4 The image sequences show typical scenes from both of this study’s custom datasets,
i.e. DS A and DS B (see Sect. 4.1 for details).
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intensity histogram. Using this representation, a twofold decision criterium is
employed, which in general relies on the above demonstrated observation that
colorless/smoke-containing images exhibit many low saturated pixels, hence their
corresponding histograms will comprise higher values in their lower bins, inher-
ently establishing a vice versa situation for the upper ones (cf. Fig. 2). In detail,
significant local maxima (peaks) are computed as a first step (red vertical solid
lines in Fig. 3), restricted by the following iteratively determined constraints that
as well constitute results of aforementioned empirical pre-study:

– A maximum must not be found below a peak threshold of tp = 0.35 ×
max bin value (green horizontal dashed line in Fig. 3), which ensures that
a discovered peak is sufficiently significant.

– Left as well as right slopes culminating in a peak must be at least 2 bins
wide rendering the peak’s total width at least 5 bins, which eliminates small
outliers exhibiting very similar saturation values (e.g. gray instruments).

Fig. 4. CNN Training/Testing: RGB/SAT images used in GoogLeNet-based model
training, evaluations via different dataset.

Finally, classification is simply based on relating the number of peaks below a
classification threshold tc (blue vertical dashed line in Fig. 3) to the ones above,
yielding prediction confidences predS for smoke as well as predNS for non-smoke,
defined by Formulas 2 and 1:

predS(pk(H)) =
|{p | p ∈ pk(H) ∧ p ≤ tc}|

|pk(H)| , (1)

predNS(pk(H)) =
|{p | p ∈ pk(H) ∧ p > tc}|

|pk(H)| , (2)

where H describes a set of input histogram bin values (|H| = 256) and function
pk(H) ⊂ N0 calculates the set of peak positions following the criteria outlined
above. In case no peak is found, i.e. pk(H) = ∅, the predictions are made via finding
the majority of bin’s values above and below tc, defined by Formulas 4 and 3:

predS(H) =
1

|H|
∑

i=0
b∈H
i≤tc

bi, (3)
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predNS(H) =
1

|H|
∑

i=0
b∈H
i>tc

bi. (4)

For demonstration purposes, Fig. 3 indicates a tc of 0.50, yet for evaluation
values from 0.10 up to 0.80 in 0.05 increment steps are used, which, as men-
tioned, currently serves the purpose of iteratively finding suitable thresholds
for videos exhibiting a different color spectrum. The necessity for this decision
becomes apparent when recalling pre-study discovery, formerly highlighted when
discussing Fig. 2: images from separate laparoscopic datasets on average show
distinguishable differences in saturation histograms. Consequently, when once
again regarding the illustrated smoke intensification examples, SPA should per-
form best between tc = 0.40 to tc = 0.60 for the first and tc = 0.20 to tc = 0.40
for the second scene, which will be evaluated in Sect. 4.

3.2 CNN Classification

Promising image classification results achieved by using CNN architectures, most
prominently LeNet [28], AlexNet [26] and GoogLeNet [41] as well as advances in
applying those networks in the medical domain (see Sect. 2) inspired our impulse
to employ them for our smoke classification task at hand. While utilizing deeper
networks like, for instance, ResNet [20] (152 layers) may yield better results,
their slower computation speed would be detrimental to our general aim – real-
time smoke detection on preferably commercially available hardware. Therefore,
we choose to benefit from 22-layered pre-trained CNN architecture GoogLeNet
and at first pursue the most conventional strategy of simply using RGB images
to continue training the network, which we further denominate GLN RGB for
brevity. In order to enable a direct comparison between a trained CNN model and
the SPA approach that builds on saturation analysis, we use grayscale images
only depicting the saturation channel of the HSV color space for creating a
classification model we accordingly label GLN SAT – a decision largely based
on discovering partially very promising results when applying SPA (see Sect. 4).
Figure 4 illustrates both approaches for training and classification, which are
conducted via popular deep learning framework Caffe [22].

For training and validating each of the GLN architectures an 80:20 split
of dataset images5 are used with an even distribution for non-smoke/smoke
samples. Exclusively in case of GLN SAT these are converted to saturation only
pictures, whereas further preprocessing remained the same for both methods:
resizing to GoogLeNet’s intended resolution of 256× 256 pixels, computation of
a global image mean needed for data normalization as well as encapsulating the
results within a Lightning Memory-Mapped Database (lmdb) [2].

Model training altogether takes a little over two hours for each model on
a machine running Linux Mint 17.3 (64-bit) [1] with following hardware specs:

5 Approximately 20 000 non-smoke/smoke images of DS A (see Sect. 4.1 for details).
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Intel Core i7-3770K CPU @ 3.50GHz x 4, 16 GiB DDR3 @ 1333 MHz, Nvidia
GeForce GTX 980 Ti. The Caffe solver options have iteratively been adjusted
through several training attempts and finally set to: 100 Epochs – ultimately we
chose Epoch 80 due to its high accuracy, stochastic optimization using Adam
[23] with an initial learning rate of 0.0001.

At last, classification can be conducted merely requiring the trained model
(snapshot @ 80 Epochs) in order to calculate prediction confidences for non-
smoke or smoke images.

4 Experimental Results

Detailed results of all three above described methodologies and statistics are cov-
ered within this section. First, we introduce our employed datasets in Sect. 4.1.
Afterwards, a closer look is taken at evaluations using test data from DS A
(Subsect. 4.2), which is taken from the same source material as the GLN train-
ing data, yet it of course comprises different scenes. Afterwards, images from DS
B are evaluated, which, as already mentioned, are extracted from a distinctly
separate kind of source (Sect. 4.3). Finally, the overall performance of the applied
methods is inspected in Subsect. 4.4.

4.1 Datasets

All our evaluations are based on two datasets: dataset A (DS A) and dataset B
(DS B), described in following short paragraphs.

DS A is used for training, validation as well as testing and it consists of
images taken from over eight laparoscopic surgeries in the field of gynecology.
We extract different frame sequences of up to two seconds in length, amounting
to about 30 000 images, half of which show non-smoke situations, the other half
depicts smoke occurring in various intensities. For training and validating CNN
models we use approximately 20 000 images (50% non-smoke/smoke), which
leaves about 10 000 samples for evaluations.

The laparoscopic source videos for DS A show many similarities, since they
are recorded under similar conditions: the same endoscope and lighting yield an
analogous image color spectrum. Therefore, we added DS B, which is extracted
from a laparoscopic video recorded in another location and under different cir-
cumstances. The dataset’s color scheme differs in large parts from DS A, which
we determined via a thorough preliminary histogram analysis and major implica-
tions, namely different optimal classification thresholds, are hinted at in Sect. 3.1,
Fig. 2. Hence this dataset represents a valuable resource to solidify evaluation
results. DS B consists of about 4 500 images (50% non-smoke/smoke), again
taken from sequences of up to two seconds. They exclusively are used for evalu-
ation only, which will be outlined in Sect. 4.3.
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4.2 Evaluation Results - DS A

Results from evaluating DS A are illustrated in Table 1a, which lists selected
classification measures for both GLN methods, as well as SPA with tc ranging
from 0.10 to 0.80 generally arranged in 0.10 increment steps except for excep-
tion tc = 0.45 in order to highlight its peak performance area (see details below).
Classifications in the table are conducted at confidence cc = 0.50, meaning for
instance that in order to correctly classify an image containing smoke, the clas-
sifier’s prediction confidence for corresponding label needs to be 50% or higher
(progression at different cc values can be observed inspecting the ROC curve
in Fig. 5a). For the given DS A, GLN RGB shows the best performance with
93.2% correctly classified smoke samples, i.e. very high sensitivity, and even
higher specificity of 95.3%, i.e. correctly classified non-smoke samples, yielding
an accuracy of 94.2%. GLN SAT achieves a slightly worse outcome but still yields
a quite high accuracy of 87.0% with 82.6% sensitivity and 91.4% specificity. As
for SPA, at cc = 50 a threshold of tc = 0.40 seems to classify similarly compared
to GLN SAT, resulting in an accuracy of 85.0%, 87.7% sensitivity and 82.2%
specificity. Regarding the accuracy and precision of SPA from tc = 0.10 up to
tc = 0.80 it becomes clear that SPAs peak performance is around tc = 0.30 to
tc = 0.50, specifically above tc = 0.40, which indicates that non-smoke saturation

Table 1. Evaluation results for datasets A and B, cc = 0.50.

(a) DS A.

Method Accuracy Precision Sensitivity Specificity F1

GLN RGB 0.942 0.952 0.932 0.953 0.942

GLN SAT 0.870 0.906 0.826 0.914 0.864

SPA 0.10 0.536 0.891 0.081 0.990 0.149

SPA 0.20 0.674 0.968 0.360 0.988 0.525

SPA 0.30 0.770 0.928 0.585 0.955 0.718

SPA 0.40 0.850 0.831 0.877 0.822 0.854

SPA 0.45 0.820 0.752 0.956 0.685 0.842

SPA 0.50 0.738 0.659 0.986 0.491 0.790

SPA 0.60 0.557 0.530 0.999 0.115 0.693

SPA 0.70 0.506 0.503 1.000 0.013 0.670

SPA 0.80 0.500 0.500 1.000 0.000 0.667

(b) DS B.

Method Accuracy Precision Sensitivity Specificity F1

GLN RGB 0.779 0.697 0.998 0.555 0.821

GLN SAT 0.914 0.879 0.962 0.864 0.919

SPA 0.10 0.507 0.954 0.029 0.999 0.056

SPA 0.20 0.815 0.994 0.639 0.996 0.778

SPA 0.25 0.910 0.976 0.843 0.979 0.905

SPA 0.30 0.892 0.843 0.966 0.816 0.900

SPA 0.40 0.508 0.507 1.000 0.003 0.673

SPA 0.50 0.507 0.507 1.000 0.000 0.672

SPA 0.60 0.507 0.507 1.000 0.000 0.672

SPA 0.70 0.507 0.507 1.000 0.000 0.672

SPA 0.80 0.507 0.507 1.000 0.000 0.672

(a) DS A. (b) DS B.

Fig. 5. ROC curve comparison for datasets A and B. (Color figure online)
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histograms tend to exhibit more peaks, i.e. higher bin values, above tc = 0.40 and
vice-versa for smoke histograms. Figure 6 shows the most significant confusion
matrices at cc = 0.50, used to calculate part of the results in Table 1a.

(a) GLN RGB (b) GLN SAT (c) SPA 0.40 (d) SPA 0.45

Fig. 6. Most significant confusion matrices for DS A (0 no smoke, 1 smoke), cc = 0.50.

Clearly GLN RGB (Fig. 6a) with merely 599 misclassifications out of 10386
images again emphasizes the findings from above, whereas SPA 0.45 with 1865
(Fig. 6d) falsely classified samples stands out as the worst of the bunch. However,
a slightly different impression can be gained when regarding a continuous cc
progression, as is depicted in Fig. 5a showing the ROC curve of the methods listed
in Table 1a. Judging by the AUCs, it is evident that GLN RGB (solid blue curve)
still performs best with an AUC of 0.9862, followed by GLN SAT’s (solid orange
curve) AUC of 0.9415. For SPA although in contrast to the above discoveries
tc = 0.45 (dashed green curve) seems to have an overall better performance
than tc = 0.40 (dashed red curve), albeit just slightly (AUC 0.9294 vs. 0.9243).
Nevertheless this is interesting to see, since results for cc = 0.50 seem to differ by
a higher degree, which apparently is approximated as cc progresses. SPA using
other tc values, as already pointed out, gradually perform worse up until the
point of near randomness (dashed black diagonal line).

4.3 Evaluation Results - DS B

Due to the fact that DS B (around 4 000 images, 50% non-smoke/smoke), as
mentioned above, has not been involved in any GLN training at all, it perfectly
serves the purpose of further verifying previous findings. Its most salient differ-
ence to DS A has already been pointed out – a more or less consistently divergent
color spectrum comprising much less saturated images. Therefore, the optimal
tc should definitively be lower than for DS A, which indeed is the case judging
by the evaluation results at cc = 0.50 listed in Table 1b. This time GLN SAT
seems to perform best yielding 91.4% classification accuracy, 96.2% sensitivity
and 86.4% specificity. It is closely followed by SPA with tc = 0.25, which as
well achieves 91.0% accuracy but with almost interchanged sensitivity (84.3%)
and specificity (97.9%) values, which indicates a better efficiency in detecting
non-smoke than smoke. Nevertheless, the performance sweet spot for SPA seems
to lie between tc = 0.25 and tc = 0.30, since in the latter’s outcome sensitivity
(96.6%) and specificity (81.6%) are again reversed, resulting in an accuracy of
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89.2%. As Fig. 7 shows, GLN RGB at cc = 0.50 misclassifies a lot of non-smoke
images (934 of 2098), which causes it to perform rather poorly compared to all
other methods yielding unbalanced 100.0% sensitivity, 55.5% specificity and only
77.9% accuracy.

(a) GLN RGB (b) GLN SAT (c) SPA 0.25 (d) SPA 0.30

Fig. 7. Most significant confusion matrices for DS B (0 no smoke, 1 smoke), cc = 0.50.

Finally, we take a look at the ROC curves from DS B’s evaluations, which
are depicted in Fig. 5b and again paint a slightly different picture. GLN SAT
(blue solid line) with an AUC of 0.9822 still turns out to be the best classifier
for DS B. SPA with tc = 0.30 (orange dashed line), however, comes in second
with an area of 0.9770, similarly to the DS A’s evaluation, outperforming the
seemingly better SPA method at cc = 0.50. Surprisingly GLN RGB (green solid
line) ranks third with 0.9769 only performing negligibly worse than the former
method. SPA with tc = 0.25 (red dashed line) classifies well yielding an AUC of
0.9403, yet performance for other SPA rapidly decreases, especially starting from
tc = 0.40 upwards, where many effectively yield predictions equal to a random
classifier – SPA curves above tc = 60 even exactly match the diagonal line.

4.4 Runtime Evaluation

Since the intent behind this work is real-time smoke detection, it is important to
as well consider computational performance in addition to above assessed classi-
fication quality. Table 2 shows the average wall clock timings6 of image prepara-
tion, classification and their total for both datasets’ differing sample resolutions
(DS A: 720× 480, DS B: 1920× 1080).

Table 2. Image evaluation performance avg. in DS A/B (ms).

Method Preparation Classification Overall

SPA (720x480) 3.542 0.005 3.546

GLN RGB (720x480) 12.182 107.880 120.063

GLN SAT (720x480) 6.234 75.936 82.170

SPA (1920x1080) 12.487 0.006 12.493

GLN RGB (1920x1080) 45.132 105.223 150.355

GLN SAT (1920x1080) 18.847 75.307 94.154

6 For the exact machine hardware specs, see Sect. 3.2.
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All evaluations are implemented in Python [4] with preparation steps mostly
consisting of OpenCV [3] tasks, like color conversion, image resizing and his-
togram extraction but as well of course a custom implementation for finding
local maxima in case of SPA. Regarding the measurements for both resolutions,
it becomes apparent that GLN RGB by far is the most costly of all methods
with classification time requirements of about 105 ms, followed by GLN SAT
with around 75 ms and SPA with negligible 0.005 ms. In case preparation tim-
ings are included, the overall processing duration worsens due to the relatively
long time resizing images to 256× 256 pixels takes: depending on how many
channels are used7, this step adds about 3–12 ms for 720× 480 and 8–45 ms for
1920× 1080. This results in altogether 120–150 ms for GLN RGB, 82–94 ms for
GLN SAT and 3–12 ms for SPA, rendering SPA the only method fulfilling real-
time requirements8 on the utilized test machine.

4.5 Discussion

When surveying the entirety of outcomes, a clear trend towards GoogLeNet
using colored images (GLN RGB) can be observed, since its worst performance
in both datasets still is producing a ROC AUC of above 0.97. Unfortunately this
as well is the most computationally expensive method, showing runtime perfor-
mances of about 150 ms per HD image, which indicates merely near real-time
performance. Nevertheless, since smoke development across frames does gener-
ally not change very rapidly, it would very likely be feasible to drop some frames
and still achieve great results in live systems. As an alternative, GoogLeNet fed
with saturation images (GLN SAT) could be used to speed up the process con-
siderably with a performance of around 94 ms for the same type of input. This
would impact classification performance but not substantially, since at worst
evaluations still show an AUC of over 0.94. The only method capable of true
real-time performance is saturation peak analysis (SPA) with as little as around
12 ms computation requirements and ROC curve areas of at least over 0.92, when
always considering the best classification threshold tc. However, SPA critically
relies on finding this right tc for every classified image, which renders the algo-
rithm, at least in its current form, inapplicable for live smoke detection. Still,
when regarding analyses conducted on DS A and B, it seems apparent that,
although different surgery setups can produce contrasting distributions in satu-
ration, equivalent ones appear to share similar values. This consideration would
for example explain SPA showing optimal performance for both datasets at dif-
ferent threshold ranges: around tc = 0.40 to tc = 0.50 for DS A and tc = 0.20 to
tc = 0.30 for DS B.

Regarding comparability with most relevant work by Loukas et al. [33]
described in Sect. 2, it has to be born in mind that the authors do not target
real-time smoke evacuation, as is the case in our study. Nevertheless, since our
methodologies can achieve at least a near real-time classification rate, they could

7 SAT channel conversion takes around 3 ms for 720× 480, 10 ms for 1920× 1080.
8 For a 25 fps video real-time requirements would be: 1000

25
= 40ms.
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as well be utilized to annotate recorded media. In straight comparison, although
outperforming selected wavelet-based outdoor smoke detection methods with an
achieved ROC AUC of 0.63, their methodology seems to perform considerably
worse than our proposed techniques, at least for their custom created dataset.

5 Conclusion

Targeting real-time smoke detection in endoscopic videos, we develop several
image-based classification approaches, which we evaluate on two custom laparo-
scopic datasets. Continued training of GoogLeNet using full color samples overall
achieves the highest classification but lowest runtime performance, which could
be mitigated by simply omitting frames in real-time systems. Alternatively, using
saturation channel only images for GoogLeNet training still produces a high
accuracy at much faster computation times, yet as well not fully capable of
handling live streams. In contrast to these CNN-based methods, naive image
saturation analysis shows good performance in terms of classification and run-
time, however, it is currently limited to requiring information about a dataset’s
average saturation distribution for non-smoke images.

When addressing our general research question Q inquiring the feasibility of
reliable smoke recognition in laparoscopic live streams, we consider the achieved
classification quality to be good enough for highly accurate systems. Regarding
the real-time aspect, future investigations need to be conducted, although we
estimate dropping frames being a sufficient measure to compensate for slower
computation speeds. Furthermore, we deem the evaluated methodologies also be
applicable to general endoscopic videos, since they typically are very similar to
laparoscopic recordings, where equivalent equipment is used.

In future work, we will evaluate the performance of our present method-
ologies on further datasets, particularly published by others. Additionally, our
promising results motivate investigating more and different CNN architectures,
possibly as well many-layered architectures, despite a likely even greater impact
on computation times. Finally, since saturation seems to be a good indicator for
smoke, it is worthwhile to investigate histogram equalization methods for auto-
matically determining good naive classification thresholds or finding alternative
combinations for training CNN models.
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