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Abstract. Optical colonoscopy is performed by insertion of a long flexible
colonoscope into the colon. Estimating the position of the colonoscope tip with
respect to the colon surface is important as it would help localization of
cancerous polyps for subsequent surgery and facilitate navigation. Knowing
camera pose is also essential for 3D automatic scene reconstruction, which could
support clinicians inspecting the whole colon surface thereby reducing missed
polyps. This paper presents a method to estimate the pose of the colonoscope
camera with six degrees of freedom (DoF) using deep convolutional neural
network (CNN). Because obtaining a ground truth to train the CNN for camera
pose from actual colonoscopy videos is extremely challenging, we trained the
CNN using realistic synthetic videos generated with a colonoscopy simulator,
which could generate the exact camera pose parameters. We validated the
trained CNN on unseen simulated video datasets and on actual colonoscopy
videos from 10 patients. Our results showed that the colonoscopy camera pose
could be estimated with higher accuracy and speed than feature based computer
vision methods such as the classical structure from motion (SfM) pipeline. This
paper demonstrates that transfer learning from surgical simulation to actual
endoscopic based surgery is a possible approach for deep learning technologies.
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1 Introduction

Colorectal cancer is ranked as the type of cancer that is third most likely to claim
people’s lives in Australia, and the fourth worldwide [1, 2]. Optical colonoscopy has
been known as the gold standard method for detecting and removing colonic polyps,
the precursor of bowel cancer [3].

Estimating the colonoscope position with high accuracy is important as it can
determine the location of detected polyps, especially when there is a need for subse-
quent surgery for removing cancerous polyps [4]. Despite the work that has been done
in estimating the colonoscope position (camera pose) from optical colonoscopy [5, 6],
accurately localizing the position of colonoscope with respect to the colon’s surface
remains a critical issue.

Conventional methods to estimate camera motion from an endoscopy procedure
such as optical flow [5–7] or hybrid methods [8, 9] are time consuming, sensitive to
feature matching, require an offline camera or sensor calibration and resulted in a drift
in camera pose estimation. Here, we develop a method based on deep convolutional
neural network (CNN) to estimate relative camera pose between two consecutive
frames, which is independent to traditional feature detection and tracking, and reduces
the camera drift.

In recent years, convolutional neural networks have been widely used in various
computer vision fields. Although they were initially designed for classification pur-
poses [10], the recent CNNs with advanced architectures have shown significant results
in problems including object recognition [11], optical flow estimation [12], and dense
feature matching [13] by means of simulated or actual data. Using artificial neural
networks (ANN), Bell et al. [14] estimated the camera pose of teleoperated flexible
endoscopes by training ANNs with optical flow magnitude and angle when the
endoscope was moved by a robotic hand inside a plastic colon phantom. Recently,
Kendall et al. [15] regressed the camera pose from a single RGB image by training a
CNN with camera pose which was estimated offline by a structure from motion
algorithm as ground truth. The main challenge then was lack of ground truth for scenes
which had not enough features to track to estimate ground truth through SfM. Since
annotating real images is difficult and expensive, application of synthetic data has
boosted its popularity as an alternative to train networks [16, 17].

In this paper, we aim to estimate camera pose from actual optical colonoscopy
video frames. To achieve this, rather than using SfM [15] to generate a ground truth, we
trained a CNN by simulated colonoscopy frames for which the camera poses were
available from the simulator as ground truth. The camera pose for actual colonoscopy
frames was then regressed when the actual colonoscopy frames were passed to the
network. The results obtained from the CNN were compared to a feature based algo-
rithm which is explained in [18]. In addition, the performance of different networks
architecture and input data (optical flow) were investigated. A diagram of our method is
demonstrated in Fig. 1 and described in the following sections.
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2 Method

We presented two approaches, we trained the CNN by optical flow patterns between
consecutive frames, by or alternatively directly by consecutive frames. The camera
pose parameters inferred from the CNN were compared to a structure from motion
(SfM) algorithm [18]. First we briefly describe the preprocessing including frame
preparation for training CNNs with frames, SIFT flow [19] estimation for training with
motion field, and SfM as a camera pose estimation method, before explaining the
proposed CNN’s model architecture and training details.

2.1 Pre-processing and SfM

Frames were prepared through the following steps; (i) frames were converted to grays-
cale, (ii) the black corners were removed as they had no information (iii) frames were
resized to train modified AlexNet and GoogLeNet. The size of input data
(height � width � number of frames) for AlexNet and GoogLeNet were (227�
227 � 2), (224 � 224 � 2) respectively. To estimate the optical flow pattern, the SIFT
flow algorithm [19] was utilized to extract and match features between two consecutive
grayscale frames. The final input data had the size of (227 � 227 � 2), and included
motion field in u and v direction.

2.2 Model for Estimating Camera Pose

In this section, we describe the CNN models that estimate the camera pose parameters.
The input to our models are either: the two consecutive grayscale frames; or optical
flow pattern between consecutive frames. The outputs are relative camera translations
and rotations with respect to the colon surface with six degrees of freedom (DoF).

Learning camera translation and rotation. Camera rotation and translation param-
eters were regressed by training the CNN to minimize the following objective function:

Loss ¼ b � Rtarget � Rpredicted

�
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�
�

�
�
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Fig. 1. Main processing steps of our proposed method
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Where b is the weight factor for our dataset is one, (Rtarget; TtargetÞ are camera rotation
(degree) and translation (mm) which are available from the simulator as ground truth,
and (Rpredicetd ; TpredicetdÞ are camera pose parameters predicted by the CNN. The camera
translation is normalized to unit vector and is unit less. In our experiments, the camera
rotation is represented in Eulerian angle (a,w,c). Applying Euclidian distance on Euler
angle may result in more than one set of values which can yield the same angle
representation. According to [21], this can be prevented under the following conditions
on the Euler angles: a, c 2 [−p, p); w 2 [−p/2, p/2), and therefore L2 on rotation is a
metric on SO(3) [21]. In our dataset the maximum of relative rotation is below the
mentioned range in [21].

Network architecture. The base of the architecture of our CNN is the state-of-the-art
GoogLeNet for the direct image pair. We also modified AlexNet for the optical flow
approach to compare the results. These networks were originally designed for image
classification. We applied the following changes on both GoogLeNet and AlexNet to
regress the camera parameters; (i) considering the input data to the network, which are
motion features (u,v) in two dimensions or two consecutive frames in grayscale, the
first convolutional layer filter (filter size; input channel; number of filters) was modified
to (11;2;96) for AlexNet and (7;2;4) for GoogelNet, allowing networks to operate in
two dimensions; and (ii) the Softmax classifier was replaced by two fully connected

Fig. 2. The general architecture of our CNNs to predict camera pose parameters, the first layer is
modified to accept two gray images or optical flow, and the classification layer was replaced by
Euclidean loss to optimize predicted rotation and translation by network. Note that we trained
AlexNet with both optical flow and image for comparison purposes.
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layers, each with three outputs to estimate relative camera rotation and translation. The
outputs of last layers then passed to a Euclidean loss function to regress the camera
pose. The schematic of our networks are shown in Fig. 2.

Training details and transfer learning. The Matconvnet toolbox [22] was used for
the implementation of our CNN model. We trained our network using stochastic
gradient descent on our dataset which included 30,000 grayscale frames and their
optical flow patterns. The batch size and iteration were 580 and 2500 respectively. To
prevent any bias, input data were shuffled and randomly chosen for each batch. Since
the pre-trained networks were used for our experiments, the learning rate was initial-
ized to be 10�4, and every 1000 epochs it was reduced by 0.1, and the momentum was
set to 0.9. We used multi-GPU (Nvidia) for training to accelerate the training com-
putational speed. The trained networks by simulated data then were used to predict
camera pose from actual colonoscopy videos.

3 Dataset

3.1 Simulated Video

The simulated colonoscopy video frames were generated by the CSIRO colonoscopy
simulator, which is explained in [23]. The simulator uses a 3D analytical model of the
colon, with a haptic device allowing inspection of the simulated colon. The parametric
mathematical model of the colon geometry embedded in the simulator allowed us to
generate realistic human colonoscopy videos. The simulator utilized OpenGL to sim-
ulate realistic colonoscopy video based on the model and camera pose, which was used
as ground truth in this paper. Appearance parameters such as illumination and specular
reflection also modeled in simulator software to generate realistic colonoscopy frames.

We generated 30,000 frames from 15 different simulated colons with different
structures, and a variety of possible camera motions. Each frame’s size was
1352 � 1080 pixels, and the simulator recording rate was 30 fps.

3.2 Real Colonoscopy Video

We predicted the camera motion for actual colonoscopy video frames with our trained
CNN on five segments from five different patients, each of which covered around
20 cm of colon. The videos were captured by a 190HD Olympus endoscope, with 50
fps (frame size was 1352 � 1080 pixels). In general 2500 vivo frames were used for
validation.

4 Experiments and Results

4.1 Simulated Video

The networks were trained with 80% of data (chosen from different videos), which
were shuffled to prevent bias in the training phase. The trained networks with optical
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flow pattern and two consecutive grayscale frames were tested on the remaining data.
In our study to demonstrate the performance of CNNs in comparison to a feature based
algorithm; we estimated motion features between consecutive frames, removed unin-
formative frames [20] and computed camera translation and rotation with respect to the
colon surface [18]. The results including the root mean square error (RMS) and
standard deviation (STD) from the ground truth for both CNNs and SfM are shown in
Fig. 3. The results indicate the higher performance of modified GoogLeNet trained by
grayscale frames in comparison to other methods.

To investigate the ability of the trained networks in generalizing the results, the
camera poses were computed using our trained networks from a simulated video
consisting of 450 frames which were never observed by the networks during training or
validation. The outcome for the distance traveled by the colonoscope camera along the
Z direction is shown in Fig. 4, which demonstrates the high performance of the
modified GoogLeNet trained by gray scale images.

4.2 Validation Using a Colonoscopy Phantom

Prior to validating our trained network on actual colonoscopy frames which were
obtained from patients, we estimated the camera pose when colonoscope traveled back
and forth in a straight phantom. It started from a start point, which represented as frame
(s) in Fig. 5, and returned to the same place frame (e). Results for the distance traveled
by camera in Z direction from different networks are shown in Fig. 5. The modified
GoogLeNet which was trained by frames shows the lowest drift in comparison to SfM
(D2) and the AlexNet when it was trained by optical flow (D1).

4.3 Application to Actual Colonoscopy Video

Actual colonoscopy videos from different parts of colons were chosen, specifically
when the camera moved back and forth (a common practice during colonoscopy) to

Fig. 3. The root mean square error (RMS) and standard deviation (STD) between ground truth
and the camera rotations and translations estimated by SfM, modified AlexNet trained by optical
flow and grayscale frames, and modified GoogLeNet trained by grayscale frames.
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allow validation. We estimated the distance camera traveled in the Z direction by SfM,
and our CNN methods. Figure 6 represents a qualitative evaluation of the methods in
the Z coordinate. During one typical examination, the colonoscope was moved back
and forth during withdrawal (video in supplementary materials). The graph shows the
estimation of Z coordinate along the center line for three different methods (see
legend). The image inserts compares different frames that are estimated to be from the
same Z location. The orange frame 54 (left insert) was visually closer to frame 166 (top
magenta on right inserts) than to frame 141 (green image on right insert), suggesting

Fig. 5. Distance traveled by camera in the Z direction estimated by modified AlexNet,
GoogLeNet and SfM (D1 and D2 represent the drift in camera motion estimation by modified
AlexNet and SfM respectively), the GoogLeNet trained by frames shows very low drift.

Fig. 4. The comparison for generalization of camera motion estimation by AlexNet when
optical flow and frames were used for training and GoogLeNet when frames were used for
training on a dataset that has not been seen before. Here, GoogLeNet shows better performance.
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that the CNN-based method is more accurate than the previous SfM approach. In
addition, the CNN method estimated that frame 215 (magenta, bottom right insert) was
also at the same location as frame 54 (orange left insert), which visually matches,
whereas a drift was observed for the SfM method.

5 Discussion and Conclusion

In this paper, we presented a method to estimate the relative camera pose with six DoF
from actual colonoscopy video frames. We used two separate new approaches: one
modified and trained GoogLeNet using two consecutive grayscale frames as input; the
other modified and trained AlexNet and used the optical flow pattern (SIFT flow) and
consecutive frames (for the sake of comparison) as input. The networks, trained by
simulated data were validated on simulated and actual colonoscopy frames. Our results,
which are presented in Fig. 3 showed that the network which was trained with two
consecutive frames could outperform the one which was trained by optical flow. In
addition, modified GoogLeNet which was trained by frames had better performance in
generalizing results for frames that had not been observed in training or validation stage
in comparison to the one which was trained by optical flow, as it shown in Fig. 4. Some
colonoscopy frames are feature-poor, thus it is hard to find accurate matches between
frames, and that rendering the conventional SfM approach is inaccurate. In contrast,
CNN-based approach is more robust to these issues, and resulting in higher accuracy
Fig. 3.

Fig. 6. The camera translation in the Z direction estimated by modified AlexNet, GoogLeNet
and SfM on an actual colonoscopy video frames. Frames in orange, green and magenta are
chosen to be from same Z height, but we visually understand that the closest frame to orange is
the first magenta on the right inset. The modified GoogLeNet trained by grayscale frames and
modified AlexNet trained by optical flow are showing better results in comparison to SfM. (color
figure online)
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The computational time for estimating relative camera pose from a trained network
was 0.1 s on average, whereas SfM with a bundle adjustment as optimizer took three
seconds when Matlab scripts were used.

In this study, we had the ground truth for camera pose from the simulator software,
which we used to generate thousands of frames with a variety of camera motions
incorporating translation and rotation for training and validation. Previously, others
used a robot hand, magnetic sensor [14] or SfM algorithm to estimate camera pose as
ground truth to train a network [15]. Any error in calibrating the sensor or estimating
camera pose by SfM as ground truth could result in false data for training.

Our results on actual colonoscopy which presented in Fig. 6 indicate the high
performance of CNNs in comparison to SfM for estimating the distance in the Z
direction that a colonoscope camera traveled in returning to a previously seen location.

One of the main challenges in our work was transfer learning from simulated to
actual frames domain. Although we could obtain remarkable results using simulated
data and pre-trained networks, as a part of our future work we aim at implementing
domain transfer method to improve our current results. We also investigate the per-
formance of other networks such as visual geometry group (VGG) and will propose our
network to estimate colonoscope pose.
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