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Abstract. Laparoscopic augmented reality (AR), improves the surgeon’s expe‐
rience of using multimodal visual data during a procedure by fusion of medical
image data (e.g., ultrasound images) onto live laparoscopic video. The majority
of AR studies are based on either computer vision-based or hardware-based (e.g.,
optical and electromagnetic tracking) approaches. However, both approaches
introduce registration errors because of variable operating conditions. To alleviate
this problem, we propose a novel approach of hybrid tracking which comprises
of both hardware-based and computer vision-based approaches. It consists of the
registration of an ultrasound image with a time-matched video frame using elec‐
tromagnetic tracking followed by a computer vision-based refinement of the
registration and subsequent fusion. Experimental results demonstrate not only the
feasibility of the proposed concept but also improved tracking accuracy that it
provides and the potential for its integration into a future clinical AR system.
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tracking · Hybrid tracking

1 Introduction

Laparoscopic surgery is an increasingly accepted mode of surgery because it is mini‐
mally invasive and leads to much faster recovery and improved outcomes. In a typical
laparoscopic surgery, the primary means of intraoperative visualization is a real-time
video of the surgical field acquired by a laparoscopic camera. Compared to open surgery,
laparoscopic surgery lacks tactile feedback. Moreover, laparoscopic video is capable of
providing only a surface view of the organs and cannot show anatomical structures
beneath the exposed organ surfaces. One solution to this problem is augmented reality
(AR), which is a method of overlaying imaging data—laparoscopic ultrasound (LUS)
images in the present work—onto live laparoscopic video. Potential benefits of AR are
improved procedure planning, improved surgical tool navigation and reduced procedure
times. A typical AR approach consists of registration of real-time LUS images on live
laparoscopic video followed by their superimposition.
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Image-to-video registration methods can be divided into two broad categories: (1)
computer vision (CV)-based and (2) hardware-based methods. The first category uses
CV techniques to track in real time natural anatomical landmarks and/or user-introduced
patterns within the field of view of the camera used. When ultrasound is the augmenting
imaging modality, tracking the ultrasound transducer in the video is the goal in these
approaches. For example, some earlier methods [1, 2] attached user-defined patterns on
the ultrasound transducer and tracked those patterns in the video. Feuerstein et al. [3],
on the other hand, directly tracked the LUS transducer in the video by detecting lines
describing the outer contours of the probe. However, the CV-based approaches may fail
or degrade in the presence of occlusion and variable lighting conditions [4].

The second category concerns the use of external tracking hardware devices. The
most established method at present is optical tracking, which uses infrared cameras to
track optical markers affixed rigidly on the desired tools and imaging devices. The
method has been employed in many AR applications [5–7]. AR systems based on elec‐
tromagnetic (EM) tracking have also been proposed [8, 9]. Tracking hardware is suscep‐
tible to two types of errors: system and calibration. The system-based errors in EM
tracking often stem from ferrous metals and conductive materials in tools that are close
enough to the field generator [10]. Optical markers frequently face the line-of-sight
problem. Calibration-based registration errors could be associated with experimental
errors from system calibration, which includes ultrasound calibration [11] and laparo‐
scopic camera calibration [12].

We propose a novel hybrid tracking method comprising of both hardware-based and
vision-based methods, which may provide consistent, more accurate and reliable image
fusion for an AR system. In this work, we focus on applying our method to EM tracking
that is capable of tracking the LUS transducer with a flexible imaging tip. The same
framework can also be applied to optical tracking. After an ultrasound image is registered
with and overlaid on a time-matched video frame using EM tracking, a vision-based
algorithm is used to refine the registration and subsequent fusion. Such a rectified cali‐
bration method can be accomplished in two stages by: (1) computing a correction trans‐
formation which when applied to a 3D Computer Aided Design (CAD) model of the
LUS probe improves the alignment of its projection with the actual LUS probe visible
in the camera image and (2) incorporating the calculated correction transformation in
the overall calibration system.

2 Methods

Our AR system in this study includes a clinical vision system (Image 1 Hub, KARL
STORZ, Tuttlingen, Germany) with a 10-mm 0° laparoscopic camera (Image 1 HD), an
ultrasound scanner (Flex Focus 700, BK Ultrasound, Analogic Corporation, Peabody, MA,
USA) with a 9-mm LUS transducer with a flexible imaging tip (Model 8836-RF), an EM
tracking system with a tabletop field generator (Aurora, Northern Digital Inc., Waterloo,
ON, Canada), and a graphics processing unit (GPU)-accelerated laptop computer that runs
the image fusion software. As shown in Fig. 1, we designed and 3D-printed a wedge-like
mount to hold the EM sensor (Aurora 6DOF Flex Tube, Type 2, 1.3 mm diameter) using
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an existing biopsy needle introducer track in the LUS transducer [9]. The mount was made
as thin as possible so that the integrated transducer can still go through a 12-mm trocar, a
typical-sized trocar for use with the original transducer.

Fig. 1. Custom-designed EM tracking mount on the LUS transducer.

The outline of our hybrid tracking framework is illustrated in Fig. 2. It has two main
stages. The first stage consists of two parts: (1) computing calibration of AR system
components: laparoscope and LUS transducer; (2) registration of LUS image and the
projection of the 3D LUS transducer model on the camera image using the calibration
results. In the second stage, the 2D projection of the 3D LUS transducer model is fitted
to the actual transducer seen in the camera image. To achieve this, the position and pose
parameters of the 3D LUS transducer model are optimized to determine the best fit of
its projection to the camera image. Such a correction transformation matrix is fed back
to Stage 1, and thus the registration of the LUS image to video is refined.

Fig. 2. The outline of the proposed framework.

2.1 System Calibration for AR

We first briefly describe the method for our hardware-based AR visualization. Let

pUS =
[
x y 0 1

]T denote a point in the LUS image in homogeneous coordinates, in which

the z coordinate is 0. Let pU
Lap = [u v 1]T denote the point that pUS corresponds to in the

undistorted camera image. If we denote TB
A as the 4 × 4 transformation matrix from the

coordinate system of A to that of B, the registration of pUS on the undistorted camera
image can be expressed as

pU
Lap = C ⋅

[
I30

]
⋅ TCam

Mark-Lap ⋅ T
Mark-Lap
Tracker ⋅ TTracker

Mark-US ⋅ TMark-US
US ⋅ pUS (1)
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where US refers to the LUS image; Mark-US refers to the EM sensor attached on the
LUS transducer; Tracker refers to the EM tracker; Mark-Lap refers to the EM sensor
attached on the laparoscope; Cam refers to the laparoscopic camera; I3 is an identity
matrix of size 3; and C is the camera matrix. TMark-US

US  can be obtained from ultrasound

calibration; TTracker
Mark-US and TMark-Lap

Tracker  can be obtained from tracking system; TCam
Mark-Lap and C

can be obtained from laparoscope calibration [12].

2.2 Improved System Calibration for AR

To refine the registration of the LUS image, we first project a 3D LUS transducer model
on the camera image using the standard calibration results. We then apply a vision-based
algorithm to register the projected 3D transducer model with the actual LUS transducer
shown in the video. This yields a correction matrix TCorr as a rigid transformation. Since
there is a fixed geometric relationship between the LUS transducer and the LUS image,
the same TCorr can be used to refine the location of the LUS image overlaid on the video.
As an update to Eq. 1, a summary of our general approach can be expressed as

pU
Lap = C ⋅

[
I30

]
⋅ TCorr ⋅ TCam

Mark-Lap ⋅ T
Mark-Lap
Tracker ⋅ TTracker

Mark-US ⋅ TMark-US
US ⋅ TUS

Model ⋅ pModel (2)

where points of the 3D LUS transducer model are first transferred to the LUS image
coordinate system through TUS

Model, which is described in the next section.

2.3 LUS Probe Model and Calibrations

We obtained a CAD model of the LUS probe used in this study from the manufacturer.
Because the exact mechanical relationship between the imaging tip of the LUS trans‐
ducer and the LUS image is proprietary information and not known to the research
community, we developed a simple registration step to transfer the coordinate system
of the CAD model to that of the LUS image (supposing the LUS image space is 3D with
z = 0). As illustrated in Fig. 3, we selected three characteristic points on the CAD model
and their corresponding points on the LUS image plane. Without loss of generality, we
fixed the scan depth of the LUS image to 6.4 cm, a commonly used depth setting for
ultrasound imaging during abdominal procedures. A simple three-point rigid registration
was then performed to obtain TUS

Model in Eq. 2.

Fig. 3. The three points selected on the LUS CAD model (left) and on the LUS image (right).
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We performed ultrasound calibration using the tools provided in the PLUS library
[11]. Laparoscope calibration was performed using the fast approach of [12], which
requires only a single image of the calibration pattern.

2.4 Model Projection and Alignment

To compare the pose and position of the rendered virtual model and the probe in the
camera image, we propose the workflow of the CV-based refinement algorithm as
presented in Fig. 4. First a region of interest (ROI) is generated for each frame of the
laparoscopic video using fast visual tracking based on robust discriminative correlation
filters [13] such that subsequent processing focuses on the imaging tip. Based on this
coarse estimate of the probe’s location, the bounding box surrounding the imaging tip
is intended to include at least some portion of the top, middle, and tip of the probe as
seen by the camera. To find the straight edges of these features of the probe, the camera
image is first converted to a gray scale image based on brightness, followed by Canny
edge detection. We used the Probabilistic Hough Transform (PHT) to extract a set of
lines from the edge detection result within the ROI, an example of which is shown in
Fig. 5. The line set was filtered by creating a coarse grain 2D histogram with the axes
defined by PHT parameters (r, 𝜃) and values of histogram defined by the sum of the
lengths of lines in the bin. All lines not contained within the highest peak present in the
2D histogram are removed to produce a set of lines that corresponds with the long edges,
parallel or close to parallel present in the probe. From this smaller set of lines, a fine
grain 2D histogram based on the PHT parameters (r, 𝜃) is created. The two highest peaks
in this histogram represent the top and middle of the probe. The indices of the peaks are
then used in the cost function for the optimization of the virtual probe location.

Fig. 4. The proposed refinement algorithm. Dotted areas depict iterative processes.
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Fig. 5. An example of the hybrid based tracking system with intermediate results displayed: Top
Left – gray scale representation of the original camera image and the mask box being used shown
in red, Top Right – Canny edges detected within the mask, Lower Left – Probabilistic Hough
Transform line set from Canny, Lower Right – line feature based filtering of the line set (Color
figure online)

In Stage 1 of optimization, we use the same procedure to detect the same two feature
lines both for the rendered 3D LUS transducer model and for the actual transducer shown
in the camera image. We compared the alignment of the feature lines using a cost func‐
tion defined as

F1(x) =
∑2

i=1

[
wr ⋅

(
ri

img − ri

gl(x)

)2
+ w

𝜃
⋅

(
𝜃

i

img − 𝜃
i

gl(x)

)2
]

(3)

where w is a scalar, img refers to the camera image, and gl refers to the OpenGL-rendered
3D LUS transducer model. The optimization used the simplex method [15] to search for
the five parameters x associated with a rigid transformation (TCorr in Eq. 2). In our current
work, we fixed the other parameter, i.e., the one associated with the rotation about the
LUS transducer axis. With only two feature lines as constraints, the optimization in Stage
1 may not accurately estimate parameters associated with translation along the LUS
transducer axis.

In Stage 2 of optimization, we detect a feature point of the tip of the probe in both
images to address inaccuracies along the transducer axis. We used gradient descent-
based active contours method [14] to segment the LUS probe from the camera image
and identify a feature point p as the farthest point corresponding with the tip of the
transducer. The initialization for segmentation was provided by an ellipse encompassing
the ROI. We compared the feature points using another cost function
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F2(x) = wp ⋅ d
(
pimg, pgl(x)

)2 (4)

where d(⋅, ⋅) is the Euclidean distance in image. In this stage, we restricted the simplex
search to focus on only one of the six parameters: the one associated with translation
along the LUS transducer axis. The other five parameters are kept fixed to their results
from Stage 1. For both stages of optimization, the search terminated according to the
tolerances set on both input and cost function deltas.

Our hardware-based AR visualization has been implemented using C++ on a GPU-
accelerated laptop computer. Currently, the described CV-based refinement algorithm
is implemented using OpenCV and scikit-image [17] in Python. The Python based
refinement implementation utilizes internal APIs with the C++ based AR code base to
transfer images and results between the two.

3 Experiments and Results

To show the improvement from applying hybrid tracking, we performed experiments
to measure and compare target registration error (TRE) between the EM tracking-based
approach and the hybrid approach. A target point, the intersection of two cross wires
immersed in a water tank, was imaged using the LUS transducer. The target point along
with the imaging tip of the LUS transducer was viewed with the laparoscope, whose
lens was immersed in water as well. The LUS image was overlaid on the camera image
through the EM tracking-based approach (Sect. 2.1) as well as the hybrid approach. The
target point in the overlaid LUS image can then be identified and compared with the
actual target point shown in the camera image. Their Euclidean distance in the image
plane is the TRE.

We performed experiments with four different poses of the laparoscope and the LUS
transducer. The average TRE of the EM tracking-based approach was measured to be
102.0 ± 60.5 pixel (8.2 ± 4.9 mm), and that of the hybrid approach was 46.7 ± 10.1 pixel
(3.8 ± 0.8 mm) with an image resolution of the camera of 1920 × 1280. The hybrid
approach improved overlay accuracy of the original EM tracking-based approach. The CV-
based refinement process took on average 52 s, the major bottleneck being the C++ API
interface required to read in a new candidate correction matrix. The total number of itera‐
tion steps in optimization was fewer than 110 steps for examples tried. Figure 6 shows an
example of the refinement results.

We also tested our approach with a more realistic camera and ultrasound images by
testing images from phantom. While we did not have a quantitative evaluation of such
images, we confirmed that the image processing and subsequent optimization qualita‐
tively worked as well as in the wire phantom. Figure 7 shows examples of this evaluation.
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Fig. 7. Two examples of vision-based refinement on an abdominal phantom. The initial AR
visualization (left) and corrected AR visualization using the hybrid tracking approach (right).

4 Discussion and Conclusion

In this work, we developed a computer vision-based refinement method to correct regis‐
tration error in hardware-based AR visualization. Initial hardware-based registration is
essential to our approach because it provides an ROI for robust feature line detection,
as well as a relatively close initialization for simplex-based optimization. We have
developed a vision-based solution to refine image-to-video registration obtained using
hardware-based tracking. A 3D LUS transducer model was first projected on the camera
image based on calibration results and tracking data. The model was then registered with
the actual LUS transducer using image processing and simplex optimization. Finally,
the resulting correction matrix was applied to the ultrasound image. The method is
promising as evidenced by our preliminary results included in this work. After further
refinement, the proposed hybrid framework could greatly improve the accuracy and
robustness of a laparoscopic AR system for clinical use.

Fig. 6. Example of vision-based refinement showing the initial AR visualization using the EM
tracking approach (left), and corrected AR visualization using the hybrid tracking approach (right).
The arrow indicates the target point shown in the overlaid LUS image.
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Although the current computational time is relatively lengthy even for periodic
correction, we can more tightly integrate the algorithm with our C++ and GPU-accel‐
erated AR system in the future. If implemented on GPU, the Hough Transform can be
achieved in 3 ms [16], and the entire refinement process could take less than 1 s.
Currently, Stage 1 of the optimization algorithm only used five of the six parameters
associated with a rigid transformation. The rotation about the LUS probe axis is not
refined. In the future, we will include the refinement of this parameter in our algorithm.
In addition, determining how often the vision-based refinement should be repeated
during AR visualization will also be one of our areas of investigation.
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