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Abstract. Breast cancer is one of the most commonly diagnosed cancer
in women worldwide. A popular diagnostic method involves histopatho-
logical microscopy imaging, which can be augmented by automated
image analysis. In histopathology image analysis, stain normalization
is an important procedure of color transfer between a source (reference)
and the test image, that helps in addressing an important concern of
stain color variation. In this work, we hypothesize that if color-texture
information is well captured with suitable features using data containing
sufficient color variation, it may obviate the need for stain normalization.

Considering that such an image analysis study is relatively less
explored, some questions are yet unresolved such as (a) How can texture
and color information be effectively extracted and used for classification
so as to reduce the burden on the uniform staining or stain normal-
ization. (b) Are there good feature-classifier combinations which work
consistently across all magnifications? (c) Can there be an automated
way to select reference image for stain normalization?

In this work, we attempt to address such questions. In the process,
we compare the independent texture and color channel information with
that of some more sophisticated features which consider jointly color-
texture information. We have extracted above features using images with
and without stain normalization to validate the above hypothesis. More-
over, we also compare different types of contemporary classification in
conjunction with the above features. Based on the results of our exhaus-
tive experimentation we provide some useful indications.

Keywords: Histopathology image analysis · Stain normalization ·
Color-texture features · SVM · Random forest

1 Introduction

Breast cancer is the most common cancer in women worldwide and is the sec-
ond leading cause of cancer deaths in women, after lung cancer [1]. One of the
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common approaches used for cancer detection is histopathology; it is defined as
the microscopic examination of the histological sections of a biopsy sample by a
pathologist in order to study the effects of a particular disease. Computer-aided
approaches with image analysis and machine learning can be included in digital
pathology to achieve quick and reproducible results. Computer aided diagnostic
(CAD) models are also important as they assist pathologists in locating and
identifying abnormalities in the breast tissue images.

A concern in histopathology image based assessment is the variation in color
is obtained due to a number of factors like chemical reactivity from different
manufacturers, differences in color responses of slide scanners or due to the light
transmission being a function of slide thickness. However, this variability only
partially limits the interpretation of images by pathologists. But leads to a large
variation in the efficiency of automated image analysis algorithms. This problem
can be partially reduced by incorporating the use of standardized staining pro-
tocols and automated staining machines. Stain normalization algorithms [2–4]
have also been recently introduced to address stain variation, with the aim of
matching stain colors of whole slide image with a given template.

One of the naive options to deal with color constancy is to convert color
image to grayscale. In [5] author extracted features from a grayscale version
of a query image. Conversion of an image into grayscale gives us the average of
concentrations of the tissue components and does not tell us the relative amounts
of each of them. Further, this also does not make effective use of the color
information which is present. Recent research in histopathology has confirmed
that color information is quite significant in quantitative analysis.

The outstanding ability of a pathologist to identify stain components is not
only due to the utilization of color information but also because of incorporating
the spatial dependency of tissue structures. The use of standardized staining
protocols and automated staining machines may improve staining quality by
yielding a more accurate and consistent staining. However, eliminating all the
underlying sources of variation is infeasible.

Indeed, methods that investigate the importance of staining in conjunction
with classification framework have also been developed. In [6], authors investigate
the importance of stain normalization in tissue classification utilizing convolution
network. In the same way, the authors in [7] perform the classification of prostate
tumor regions via stain normalization and adaptive cell density estimation. On
the other hand, there also exists some work which considers the utilization of
color information without the use of stain normalization. The works in [8] and [9]
propose the use color information in addition to texture. Milagro et al. [8] propose
the combinations of traditional texture features and color spaces. Furthermore,
they have also considered different classifiers such as Adaboost learning, bagging
trees, random forest, Fisher discriminant and SVM. In [9], authors utilized color
and differential invariants to assign class posterior probabilities to pixels and
then perform a probabilistic classification.

The above approaches suggest different views about the consideration of stain
normalization for classification. Inspired by this, our primary contribution in the
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Fig. 1. Reference images chosen for normalization (top), sample of original images
(middle), and obtained stain normalized images using the target images (bottom)

present work, is to explicitly provide indications towards addressing the ques-
tion about how important is stain normalization for automatic classification,
and whether there may exist useful features which inherently capture the color-
texture variability without performing stain normalization. In other words, we
attempt to justify the role of color-texture information in automated classifica-
tion framework without performing stain normalization. We believe that such
a study is important from a systems perspective, as it may help reduce the
stain normalization overhead for automated histopathology classification sys-
tems. We note that such an indication of mitigating the need for stain nor-
malization assumes that the training data contains images with different stain
color/intensity, that helps in capturing the color-texture variability. We validate
this hypothesis on a reasonably large dataset containing such images.

In this primary context, our work also has the following salient contributions
about methodology and evaluation: (1) Exploring joint color-texture features and
various contemporary classifiers, which makes the proposed work also serve as an
extended comparative review. (2) Suggesting an automatic approach to select the
reference (target) image for stain normalization where it is not available. Figure 1
shows examples of stained images of each magnification generated using target
images. (3) Demonstrating an improved performance of the proposed method
with joint color-texture features with respect to the state-of-the-art.
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2 Proposed Approach

We now discuss the overall framework of proposed approach including: dataset
description, stain normalization, feature descriptors, and contemporary classi-
fiers. Due to lack of space, we briefly describe the features and classifiers with
suitable references. Figure 3 depicts our overall framework.

2.1 Dataset Description

In this work, we use BreakHis dataset [10] that contains fairly large amount of
histopathology images (7909). A detailed description is provided in Table 3.

In [10–12], authors developed the framework to classify breast cancer
histopathological images utilizing the BreakHis dataset. In [10], a series of exper-
iments utilizing six different state-of-art texture descriptors such as Local Binary
Pattern (LBP), Completed Local Binary Pattern (CLBP), Threshold Adjancey
Statistics (PFTAS), Grey-Level Co-occurrence Matrix (GLM), Local Phase
Quantization (LPQ), Oriented FAST and rotated BRIEF (ORB), and four dif-
ferent classifiers were evaluated and showed the accuracy at patient level. In [11],
Alexnet [13] was used for extracting features and classification. Bayramoglu
et al. [12] proposed a magnification independent model utilizing deep learning to
classify the benign and malignant cases. The magnification independent system
is trained with images of different magnifications, and thus can handle the scale
diversity in microscopic images.

2.2 Stain Normalization Procedure

Various methods [2–4] have been developed to automate the standardization
process of histopathological images to reduce the effect of variation that exists
in staining protocol. In [2] authors utilized chromatic and density distributions
for each individual stain class in the hue-saturation-density (HSD) color model
i.e. the spatial dependency of tissue structures was incorporated along with color
information. In experiments, the target template was chosen based on opinion
of two pathologists, who studied a large number of slides from two different
laboratory. The high contrast between hematoxylin and eosin staining (H & E)
and visibility of the nuclear texture were taken into consideration while choos-
ing template image. In [3], the authors use the linear transform in a perceptual
color space for matching the color distribution of an image to that of a target
image. In [4], authors also utilized pathologist-preferred target image to gener-
ate structure-preserving color normalization. These stain normalization methods
require prior knowledge of reference stain vectors for every dye present in the
histopathogical images.

Due to the unavailability of a target template in the public dataset used
in this work, we automatically select the target image from the dataset. Our
approach considers that the target stain chromatic information should be con-
sidered that which occurs most commonly, so that a large number of images need
not be color-transformed. Thus, we suggest the following process: (1) First, all
the images in dataset are converted from RGB color-space to HSV color-space.
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(2) We choose H and S component for further analysis as Hue and Saturation
essentially relate to the chromatic information. (3) A K-means clustering algo-
rithm is applied to form the desired number of clusters. The number of clusters
chosen is the double of the number of different Hue that are found on manual
examination of different images. This is to ensure that we have a good enough
separation of images of different Hue. (4) The number of stain hues in the dataset
found after manual examination are five. So we chose to create 10 clusters. In
the pictorial representation of Fig. 2, we show less number of clusters for better
clarity. (5) We choose the cluster that has highest number of images. In this
cluster we find out the mean H and S value of image which is the closest to
the centroid of the cluster using Euclidean distance measure. The corresponding
image is used as the target image after conversion to RGB color-space.

The proposed procedure is applied separately to images of different magni-
fications. At the end, we have one target image for each magnification group of
images. After selecting target image, we use stain normalization method pro-
posed by [3] to normalize the dataset. Figure 2 illustrates the overall procedure
for selecting target image. Figure 2 is just a way to depict the procedure and is
not a real picture of our plots.

Fig. 2. Selection of target image.

2.3 Feature Descriptors and Contemporary Classifiers

Various texture features that consider the mutual dependency of color channel as
well as the features that don’t utilize the color information are extracted in order
to support believe that we have made. Due to space constraint we are not provid-
ing the detailing of features. Gray level co-occurence matrix (GLCM), Completed
local binary pattern (CLBP) [14], and Local phase quantization (LPQ) [15]
are used to extract plain texture. For capturing joint color-texture variabil-
ity, features such as Opponent Colour Local Binary pattern (OCLBP) [16],
Gabor features on Gaussian color model [17], Multilayer Coordinate Clusters
representation (MCCR) [18], and Parameter-free Threshold Adjacency Statis-
tics (PFTAS) [19] are utilized. Note that the choice of features and classifiers is
simply based on the popularity of the traditional texutre features, and consid-
ering some recently reported color-texture features.
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Fig. 3. Overall process of image classification.

Various contemporary classifiers [20] such as Support Vector Machine (SVM),
Nearest Neighbors (NN) and Random forest (RF) are experimented with above
listed texture features. For the proposed study, we utilize following variants of
mentioned classifiers: (1) Liner SVM: Linear kernel, (2) Gaussian SVM: RBF
kernel and kernel scale set to 2

√
P , (3) K-NN: 100 neighbors and euclidean

metric for distance measure, (4) RF: number of trees (30), maximum number of
splits (20). Thus, the study also serves as a comparative review of performance
for the above mentioned features and classifiers for the considered problem.

Figure 3 illustrates the overall structure utilized for the proposed study. As
indicated earlier, the primary intention of this study is to consider the effect of
stain normalization for automated breast cancer histopathology image classifi-
cation. Thus, we test the classification performance with gray-scale image, stain
normalized images, and original non-normalized images.

3 Results and Discussion

3.1 Training-Testing Protocol and Evaluation Metric

In our experiments, we have randomly chosen 58 patients (70%) for training and
remaining 25 for testing (30%). This also enables fair comparison with a state-
of-the-art approach [10–12]. We train the above listed contemporary classifiers
using images for the chosen 58 patients, and have also used five trials of random
selection of training-testing data. These trained models are tested using images
of the remaining images 25 patients.

To compare the results with existing approach [10–12], we use patient recog-
nition rate (PRR) as evaluation metric. However, some other evaluation metrics
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such as recall, precision, area under the ROC curve (AUC) can also be utilized.
The definition of patient recognition rate (PRR), which uses the patient score
(PS), is given as follows:

PRR =
∑N

i=1 PSi

N
PS =

Nrec

NP
(1)

where N is the total number of patients (available for testing), and Nrec and
NP are the correctly classified and total cancer image of patient P respectively.

3.2 Performance Evaluation and Comparison

Tables 1, 2 illustrate the performance of contemporary classifiers for 40X, 100X,
200X and 400X magnification respectively. For each magnification, seven texture
features out of which three are plain texture that directly extracts the feature
from gray version of image, and other four are color texture that utilizes color-
channel information are extracted.

From the tables following can be observed (for most or all cases):
(1) The performance when using color information (with or without stain

normalization) is better performance than using gray level information. This
highlights the importance of color in classification.

Table 1. Evaluation of color channel information along with contemporary classifiers
for 40x and 100x. Best performance at each magnification is highlighted.

Image magnification 40x 100x

Classifier and their variations Linear
SVM

Gaussian
SVM

Gaussian
KNN

Random
forest

Linear
SVM

Gaussian
SVM

Gaussian
KNN

Random
forest

Plain
texture
features

GLCM Gray scale 74.60 74.72 68.73 68.10 74.49 74.58 70.71 65.29

Stain normalization 74.91 74.81 72.96 71.55 75.77 75.31 74.77 73.49

Channel information 81.65 76.79 74.45 78.30 82.16 76.76 75.82 77.89

CLBP Gray scale 70.13 70.68 72.38 72.91 70.13 70.68 72.38 72.91

Stain normalization 70.4 70.4 70.4 70.67 70.4 70.4 70.4 70.42

Channel information 75.09 74.65 72.30 71.39 73.50 75.46 74.51 73.09

LBQ Gray scale 76.37 77.44 74.69 75.04 73.77 76.72 73.60 72.66

Stain normalization 74.52 75.21 73.86 74.40 72.73 76.79 73.67 74.50

Channel information 74.97 76.77 73.08 75.42 72.69 76.79 73.67 73.38

Colour
texture
feature

PFTAS Gray scale 74.77 74.90 69.19 68.99 73.75 73.45 71.90 68.19

Stain normalization 74.77 75.59 74.68 75.00 75.26 75.46 74.28 74.53

Channel information 70.11 72.51 75.63 75.52 80.92 78.07 81.54 84.75

Opponent
LBP

Gray scale 73.86 70.22 71.62 72.36 75.42 74.58 74.62 70.55

Stain normalization 76.09 75.25 75.54 76.05 68.66 75.88 74.27 71.92

Channel information 86.88 86.20 85.41 85.18 86.17 86.40 85.09 87.41

Gabour on
gaussian
color model

Gray scale 74.76 74.93 72.95 73.90 71.74 73.58 72.27 67.82

Stain normalization 78.58 74.50 74.85 75.01 79.12 74.94 74.90 75.37

Channel information 85.62 84.86 80.63 84.93 88.41 85.61 84.65 86.11

M CCR (8) Gray scale 73.83 70.4 67.80 68.06 69.74 70.4 68.76 65.63

Stain normalization 72.35 74.40 72.78 71.18 71.83 73.25 70.87 75.67

Channel information 78.93 78.50 82.63 84.42 80.40 78.96 80.30 87.15
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Table 2. Evaluation of color channel information along with contemporary classifiers
for 200x and 400x. Best performance at each magnification is highlighted.

Image magnification 200x 400x

Classifier and their variations Linear
SVM

Gaussian
SVM

Gaussian
KNN

Random
Forest

Linear
SVM

Gaussian
SVM

Gaussian
KNN

Random
Forest

Plain
texture
features

GLCM Gray scale 70.37 71.10 69.73 63.80 70.06 69.57 70.46 66.03

Stain normalization 71.98 72.67 70.18 68.88 69.28 70.08 72.33 70.51

Channel information 84.19 81.24 76.98 82.61 78.45 77.21 74.30 76.14

CLBP Gray scale 62.85 68.93 66.65 63.31 65.69 69.46 68.56 63.68

Stain normalization 70.4 70.4 70.4 70.67 70.42 70.29 62.08 69.89

Channel information 73.48 71.19 73.52 70.29 72.96 72.54 72.85 70.26

LBQ Gray scale 72.86 75.34 74.27 72.08 72.93 74.99 73.73 70.55

Stain normalization 73.76 75.50 74.48 71.94 75.97 75.48 74.28 72.52

Channel information 73.94 75.24 74.04 73.16 75.59 75.33 73.92 69.79

Colour
texture
feature

PFTAS Gray scale 71.71 70.56 70.91 65.13 72.22 71.92 70.10 64.00

Stain normalization 74.17 73.08 73.89 72.73 75.54 74.79 75.19 72.30

Channel information 73.52 75.46 74.51 72.80 77.14 74.31 77.18 80.97

Opponent
LBP

Gray scale 74.04 70.20 72.19 70.04 74.60 73.30 73.38 69.05

Stain normalization 73.55 72.42 73.11 72.49 76.59 72.93 72.86 74.01

Channel information 88.86 87.89 85.28 87.13 87.55 87.34 84.70 86.43

Gabour on
gaussian
color model

Gray scale 65.28 67.29 67.17 61.10 71.67 69.48 68.86 67.70

Stain normalization 79.56 74.43 73.16 75.11 77.55 73.59 72.92 75.93

Channel information 87.76 88.19 85.49 85.75 85.66 86.83 83.93 82.62

M CCR (8) Gray scale 70.24 70.4 69.41 69.76 70.80 69.7 68.40 67.61

Stain normalization 72.43 73.44 74.12 75.09 74.59 75.90 76.37 76.58

Channel information 79.30 75.87 80.95 88.51 78.55 75.39 80.15 81.40

(2) Comparing the cases with and without stain normalization, it is seen that
the classification performance is better in case of latter. However, the difference is
not too high or even quite close in many cases where traditional texture features
are used. This is expected as texture information is similar, except in some cases
where even independent color channels may help in capturing the color variation.

(3) However, in case of joint color-texture features, except for a very few
cases, the performance without stain normalization is consistently quite high.
This indicates that the joint color-texture features, which consider the mutual
dependency of color channels, indeed, better capture the color-texture variation
for classification.

(4) It can also be observed that opponent LBP where opponent channels are
considered to extract color channel information, shows the superior performance
for most (three) of magnification images. However, Gabor feature on Gaussian
color model, and M CCR also yield somewhat comparable performance.

There are very few exceptions from the above observations for some feature-
classifier combinations. While these need to be better scrutinized, we note that
most of the results support our hypothesis of the effectiveness of color-texture
information in mitigating the need for stain normalization.

Finally, Table 4 compares the results of the proposed approach obtained with
joint color-texture features, with some existing state-of art methods. In Table 4,
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Table 3. Detailed description.

Magnifications Total Patient
40x 100x 200x 400x

Benign 625 644 623 588 2480 24
Malignant 1370 1437 1390 1232 5429 58
Total 1995 2081 2013 1820 7909 82

Table 4. Performance comparison.

Methods & Score [10] [11] [12] Proposed

40x Patient level 83.8± 4.1 90.6 ± 6.7 83.08± 2.08 86.88± 2.37
100x Patient level 82.1± 4.9 88.4± 4.8 83.17± 3.51 88.41 ± 2.73

200x Patient level 85.1± 3.1 84.6± 84.63± 2.72 88.86 ± 3.76

400x Patient level 82.3± 3.8 86.1± 6.2 82.10± 4.42 87.55 ± 3.01

we report the best results of the proposed method obtained across various com-
bination of color-texture descriptors and classifiers. We can observe that, except
for the case of 40x, the proposed method outperforms the existing approaches.
We also note from the Table 4 that at 400x, the obtained accuracy for most
methods is lower than that at 100x and 200x. The reason could be that there
are relatively less number of images for 400x and perhaps more data is required
to capture the finer traits at higher magnification. Furthermore, one can also
observe that the proposed work yields a lesser variance in scores, in most of
the cases. This comparison further shows the effectiveness of joint color-texture
features for classification.

4 Conclusion

In this work, we attempt to establish the usefulness of joint color-texture infor-
mation, for classification without the need for stain normalization. We have
experimented with various classifiers to show the importance of independent and
dependent (mutual) color-channel information and find some interesting aspects
about the same. From our experiments, it is apparent that joint dependency
of color-texture can better capture the color-texture variability. We have also
shown the role of contemporary classifiers with these sophisticated color-texture
features. We believe that this is an interesting study which points towards obvi-
ating the need of stain normalization given effective features and classifiers. We
also demonstrate that employing the joint color-texture features can also out-
perform the state-of-the-art methods for the breast cancer histopathology image
classification.
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