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Abstract. The ventro-intermediate nucleus (Vim), as the others thalamic
subparts, cannot be directly visualized by current standard magnetic resonance
imaging (MRI), in daily clinical practice. Hence, for treatment of tremor in func‐
tional neurosurgery, where the commonly used target is the Vim, the targeting
procedure is done indirectly. We present a novel direct automated segmentation
of the Vim using only subject-related MRI information, specifically, diffusion
MRI at 3T and susceptibility weighted images (SWI) acquired at 7T. With a state-
of-the-art method based on local diffusion MR properties for automated subdi‐
vision of the thalamus, we first restrain the region of interest to the group of motor-
related nuclei. Then, this thalamic part is further subdivided, in graph parcellation
manner, using the intensity-related features provided by SWI together with prior
knowledge of the Vim localization inside the motor thalamic segment. Our
framework was tested in four healthy elderly subjects, for eight thalami in total,
and the results were evaluated by an experienced neurosurgeon, showing the
ability to directly detect the Vim area. The qualitative inspection indicated that
the proposed method outperforms standard multi-atlas based techniques.
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1 Introduction

The ventro-intermediate nucleus (Vim) is part of the motor-group of thalamic nuclei.
Its major importance comes from being the most common target in functional neuro‐
surgery as a treatment for tremor, either in standard procedures (deep brain stimulation
or radiofrequency thalamotomy) or in alternative minimally invasive therapies (Vim
radiosurgery or High Intensity Focused Ultrasound) [1, 2]. However, due to the lack of
intrinsic or inherent contrast inside the thalamic area, the Vim is not directly visible on
standard magnetic resonance imaging (MRI) routinely used in daily clinical practice
acquired from field up to 3T. Consequently, the targeting for drug-resistant tremor is
done in an indirect way by employing stereotactic coordinates or quadrilatere of Guiot
[3]. Such approaches are mainly built upon a statistical average over the population and
therefore, lack in representation of the individual variability.

To address these limitations, several research groups have made an attempt for an
automated parcellation of the thalamus mainly based on diffusion-weighted images
(DWI) acquired at 3T with the purpose of exploring the fibers orientation within the
thalamic subparts [4–8]. In this context, Battistella et al. [4] recently proposed a robust
method that partitions the thalamus in seven groups of nuclei using the Orientation
Distribution Functions (ODFs) expressed in the Spherical Harmonic (SH) Basis that is
outperforming the most advanced diffusion features so far. One of the segmented clusters
represents the ventro-lateral ventral (VLV) thalamic part i.e. the motor-related group of
nuclei including the Vim. However, the Vim cannot be accurately depicted with diffu‐
sion MRI, for instance as a separate component of VLV, mainly due to the relatively
low spatial resolution of the standard DWI (~2 × 2 × 2 mm3).

Advanced developments in MRI at ultra-high field (7T) provides not only better
spatial resolution, but also an improved intensity-contrast variation inside the thalamus,
namely with the susceptibility mapping approaches. Moreover, Abosch et al. have indi‐
cated the correspondence of the observed features on susceptibility-weighted imaging
(SWI) acquired at 7T with the thalamic anatomy [9] and subsequently they suggested
the possibility of a direct visualization of the Vim on those images. Nevertheless, while
the subthalamic nucleus has been validated for 7T in a clinical frame, the Vim obser‐
vations remain purely descriptive.

Fig. 1. Schematic overview of the proposed framework
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The aim of this study is to automatically segment the Vim by combining SWI infor‐
mation at ultra-high field and prior knowledge of the VLV group of nuclei extracted
from diffusion MRI. More specifically, we will combine NCut graph segmentation based
on SWI intensity with a high-probability map of Vim localization derived from diffusion
MRI thalamic clustering. Figure 1 shows a scheme of the proposed framework.

2 Materials and Methods

2.1 Dataset

The core of this study is performed in a dataset acquired at both 3 and 7T from four
healthy elderly subjects (mean ± std: 67.2 ± 9.5 years, 3 males). Additional data from
four healthy young subjects (28.5 ± 2.6 years, 2 males), for whom manual delineation
of the Vim is available, was used for building atlases for comparison purposes. None of
the subjects had any particular neurological disease nor a brain deformation caused by
intracranial lesions. The study was approved by the local institutional review board and
an informed consent was obtained from all the participants.

Image Acquisitions. The data from elderly subjects at 3T was acquired with a Prisma
Siemens scanner and it included a T1-weighted (T1w, MPRAGE) sequence (TR/
TE = 2300/2.03 ms, TI = 900 ms, voxel size: 1 mm3) and DWI (64 gradient directions,
b = 1000 s/mm2, TR/TE = 7100/84 ms, voxel-size: 2.24 × 2.24 × 2.2 mm3). T1w images
from the healthy population were acquired with 3T TIM Trio Siemens scanner with
similar acquisition parameters as those for the elderly population.

For all eight subjects, the ultra-high field data was acquired with a 7T, 68 cm-wide
bore MRI system from SIEMENS Medical Solutions, equipped with a single-channel
transmit/32-channel receive head RF array (Nova Medical). This data included axial
SWI (with a restrained field of view, FoV, surrounding the thalamus, TR/TE = 28/20 ms,
flip-angle 10°, voxel-size: 0.375 × 0.375 × 1 mm3, 72 slices) and T1w (MP2RAGE)
sequence (TR/TE = 6000/2.05 ms, TI1/TI2 = 800/2700 ms, flip-angles: 7/5°, voxel-size:
0.6 × 0.6 × 0.6 mm3).

Common Image Space. We choose to work in the individual anterior commissure-
posterior commissure (AC-PC) image space of each elderly subject. The image space
was defined by the T1 template in MNI space of voxel size 0.5 × 0.5 × 0.5 mm3 [10]
whose AC-PC plane was aligned horizontally. Each 3T MPRAGE was transformed into
this AC-PC space by a rigid transform, and the individual resulting image, T1w_acpc,
was considered as reference for the successive image transformations described in the
following sections.

2.2 Thalamic Parcellation

The preprocessing of the DWI included several steps: data denoising [11, 12], bias field
[13, 14], motion [15] and eddy current corrections [16]. Furthermore, with a non-linear
registration, using FSL’s FNIRT [13], between the T1w_acpc and the respective
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fractional anisotropy (FA) map, we compensated the EPI distortions presented in the
DWI data. On the preprocessed data we performed the Q-ball fitting of the Constant
Solid Angle ODFs (FSL qboot) with maximum SH order of 6, accordingly to [4].

The thalamus masks were obtained from the FreeSurfer’s subcortical parcellation,
performed for each 3T MPRAGE, and further refined, as described in [4], by automat‐
ically removing voxels with FA value greater than 0.55 and celebro-spinal fluid’s prob‐
ability exceeding 5%. Subsequently to a qualitative comparison between the refined
masks and the SWI where the thalamic borders appear more discernible, missing voxels
were manually added mainly in the anterior and the lateral part of the inferior thalamic
slices.

Following the framework description in [4], the thalamus was subdivided in 7 clus‐
ters while applying a modified k-means using as features the spatial position of the
thalamic voxels and the corresponding ODF coefficients in the SH basis. The obtained
results, including the VLV cluster were then brought in the AC-PC space by applying
the non-linear transform, as described earlier, matching the FA and T1w_acpc image.

2.3 The Proposed Framework

The VLV cluster, other than Vim, includes several motor-related nuclei. However, in
correspondence to the findings described in [9], in SW imaging, the ventral nuclei
surrounding the Vim, such as ventro-caudalis (Vc) and ventro-odalis (Vo), appear as
darker regions in comparison with our area of interest (see Fig. 2). These contrast
differences we observed inside the VLV drove us to explore the SWI-intensity for a
further VLV subdivision aiming towards an automated delineation of the Vim.

Fig. 2. Illsutration of the SWI visible structures surrounding the Vim in axial view. On the right
side we have manually in-plane draw of the visible ventral nuclei in correspondence with the
Schaltenbrand and Wahren atlas [17], while on the left they are indicated with arrows. The yellow
represents the Vim, while the bright green and the bright orange ventro-caudalis (Vc) and ventro-
odalis (Vo), which are surrounding the Vim as darker areas. (Color figure online)

SWI Preprocessing. The SWI images from our elderly cohort were corrected for
intensity inhomogeneities using the N4ITK bias field correction algorithm [18]. The
obtained images were first registered to the corresponding 7T MP2RAGE with a rigid
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transform and then brought to the AC-PC space by applying the analogous affine trans‐
form that matched the 7T MP2RAGE and T1w_acpc.

Primary analysis of the SWI data showed high intensity variability among the
subjects and different head position in the scanner. Therefore, to standardize the image
intensity appearing on these images, we applied the histogram equalization algorithm
proposed by Nyul et al. [19] that represents an one-to-one image transformation and
therefore, does not affect the image appearance. We work in a volume of interest (VOI)
surrounding both thalami for each subject respectively. Figure 2 is representing an axial
slice of the used VOI in one case. All four SWI images from the elderly population were
used in the training step where the standard scale was build upon the deciles extracted
from each image histogram. The results from this histogram matching are shown in
Fig. 3.
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Fig. 3. Histogram equalization of the SWI intensity inside the thalamic area

To further enhance the edges and observable features on the SWI, the ITK gradient
anisotropic diffusion filtering of conductance 0.3 was applied.

Graph Representation and Parcellation. The preprocessed SWI-intensity informa‐
tion inside the VLV was transformed in a graph representation of the data. More
precisely, we constructed a k-nn graph with 50 nearest neighbors, where the edges’
weights expressed the Gaussian weighting of the linear combination between the inten‐
sity distance (Dint) and the Euclidean distance among the VLV voxels (Dpos):

D = Dint + 𝛾Dpos (1)

where γ represents the ratio between max(Dint) and max(Dpos) and therefore, it acts as
a scaling factor that brings the Dpos in the same range of values as Dint.

The parcellation of the graph was performed with Normalized Cut (NCut) partition
[20]. We subdivided the VLV in 3 sub-clusters. The number 3 was chosen empirically
since it gives a consistent parcellation pattern corresponding to our prior knowledge/
hypothesis of the VLV structure: the region with bright SWI intensity as the expected
one in the Vim area, the region with darker SWI intensity and an auxiliary part (see
Fig. 4B1).
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Fig. 4. Isolation of the inferior anterio-lateral part of the VLV cluster. Panel A shows a schematic
illustration of the VLV-cluster separation in 8 geometrical quadrants, while panel B shows a real-
case example of the left VLV in axial view. In panel B1 the diffusion-based VLV outline is given
with the magenta contour and additionally we can observe the three parcels obtained from SWI
intensity-based NCut partition. The VLV_ial part for the given case is shown with the white
contour in panel B2. (Color figure online)

Geometry Quadrants. To isolate the inferior anterio-lateral part of the VLV cluster
obtained from diffusion MRI (Sect. 2.2), VLV_ial, where the Vim is most likely to be
found, we proceeded at dividing the VLV using the geometry of the smallest rectangular
cuboid that contains all of its non-zero voxels. In fact, with the cuboid’s mid-plane, we
separated the inferior from the superior part and with the in-plane diagonals the anterio-
lateral from the ventral-posterior part (see Fig. 4A).

The separated VLV_ial portion was used to confine the NCut parcellation to the
expected localization of the Vim (Fig. 4B).

2.4 Multi-atlas Segmentation

In this work we propose a direct segmentation of the Vim by using subject specific
information from both diffusion MRI and SWI. The state-of-the-art lacks in Vim-delin‐
eation approaches. However, if an atlas is available, this could be achieved with the
atlas-based segmentation techniques. Hence, we additionally aim at performing a multi-
atlas based segmentation and comparing it to the outcome of our multi-modal frame‐
work. As atlases we used SWI data from young subjects where the Vim was manually
delineated by an experienced neurosurgeon. The manual delineation was mainly based
upon the visible contrast variation together with the observation shown in [9] and the
Schaltenbrand and Wahren atlas [17].

For transforming the atlases in each respective AC-PC space previously defined, our
initial attempt was to directly match the SWIs but, presumably due to the variation of
the FoV orientation among the subjects, all image registration technics failed to provide
a good matching. Therefore, the atlases correspondence was done via the T1w images,
by calculating consecutively linear and BSpline transform between the respective atlas’
3T MPRAGE and the T1w_acpc. The final multi-atlas outline was obtained by applying
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the Joint Label Fusion method with corrective learning [21] within the thalamic VOI
previously defined.

3 Results

The proposed framework was tested for the group of elderly subjects or, more precisely,
eight thalami in total. The intersection between the NCut parcellation and the VLV_ial
portion mainly resulted in two subdivisions. Among the two, we choose as Vim outline
the region showing brighter intensity (see Fig. 4 panel B). As described in Sect. 2.4,
atlas-based segmentation using 4 thalami per hemisphere was also performed.

The multi-atlas outline represented in general smaller area than the multi-modal
outline. However, overlap between both delimitations was always observed. Addition‐
ally, for six out of eight thalami, the major part of the multi-atlas Vim delimitation was
inside the one from the multi-modal segmentation. For the remaining two cases, a blood
vessel was observed in the targeted area disintegrating its intensity homogeneity (Fig. 5,
right hemisphere of ES2 and ES4). Overall results are illustrated in Fig. 5.

Fig. 5. Visual overview of the obtained findings for each tested subject respectively in an axial
slice. The multi-modal outline corresponds to the violet contour, while the multi-atlas one to the
green contour. (Color figure online)

The results provided by the proposed framework were qualitatively validated by the
same neurosurgeon who did the manual delimitation of the Vim in the atlases. His
observations were that, despite the tendency of the multi-modal approach to do a slight
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overestimation of the visually expected Vim extend by enclosing minor parts of the
surrounding thalamic structures, they however portray more completely the region of
interest than the small volumes provided by the multi-atlas approach. Additionally, the
multi-modal delimitations are more consistent in symmetry over the hemispheres than
the multi-atlas ones.

In the context of the size, the visual observations were confirmed with the calculated
volumes of both multi-modal and multi-atlas segmentations given in Table 1. Since the
expected size of the Vim is between 60 to 150 mm3 [22], the volumes of the proposed
multi-modal delimitation are sometimes marginally exceeding the expected range. In
contrast to this, the multi-atlas delineations are importantly underestimating the size of
the Vim.

Table 1. Volumes of the resulting Vim outlines

VOLUME [mm3] Multi-modal segmentation Multi-atlas segmentation
Left Right Left Right

Subject ES1 122.5 149.2 21.4 18.7
Subject ES2 196 54.7 14.7 29.7
Subject ES3 198.4 187.2 11.7 35
Subject ES4 176.1 129.2 5.4 29.1

4 Discussion

Although performed on a limited number of subjects, the present study represents an
important step towards an automated segmentation of the Vim area. We used local
diffusion MR properties inside the thalamus for delimitation of an initial region of
interest, the VLV cluster enclosing the motor-related thalamic nuclei, which was further
subdivided using the 7T SWI intensity and a prior knowledge of the Vim localization
within the VLV. We additionally examined the ability of multi-atlas based techniques
to segment the Vim.

The spatial distribution and extent of the resulting Vim outlines were qualitatively
validated by an experienced neurosurgeon. A minor affinity of slightly imprecise borders
regarding the surrounding structures was observed in the outcome of the proposed multi-
modal method. Nevertheless, these outlines represent better and in more complete
manner the Vim area than the limited extents provided by a multi-atlas segmentation
approach. Analogue to this are the calculated volumes of the outlines.

The DWI used for the VLV delineation has approximately five times lower spatial
resolution than the image reference space where the analysis were performed
(2.24 × 2.24 × 2.2 mm3 versus 0.5 × 0.5 × 0.5 mm3). As consequence we are prone to
imprecise border delineation of the initial region of interest i.e. the VLV thalamic part.
Another limitation comes from the non-robust contrast variation observed on the SWI
together with the presence of the blood vessels in an indiscriminate mode, inside the
VLV and the thalamus in general, increasing the potential of Vim’s border inaccuracy.
This could also have a major impact on direct visualization in some cases. Further studies
should be done to understand the origin of the differences in feature appearance observed
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on SWI for the populations of different age. We believe that standardization of the SWI
contrast could make this imaging method even more powerful tool for direct visualiza‐
tion, especially for direct targeting in functional neurosurgery in drug-resistant tremor.

In this study we have also shown that the imaging method based on the individual
subjects’ anatomy outperforms the approaches build from statistical average among a
chosen population, such as the atlases. As limitation of the used multi-atlas approach
we consider the image registration done between the respective T1w images on which
the thalamus appears as a homogeneous area with borders that are difficult to discrimi‐
nate. Hence, the information provided for the thalami matching and the corrective
learning afterwards is not optimal. Possible improvement in this context could be the
direct use of the SWI for the image matching procedure, since it provides much more
features of the thalamic architecture. However, mainly due to the variation of the SWI
FoV orientation, it was difficult to achieve such task in the presented data.

The proposed multi-modal framework should be further quantitatively evaluated
against a manual delamination of the targeted area. Nevertheless, it represents a novel
advancement in the field of automated subject-specific segmentation of the Vim.
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