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Abstract. Described here is a novel method for automatic detection
and enhancement of needles under 3D ultrasound guidance. We develop
a detector consisting of a linear learning-based pixel classifier that utilizes
Histogram of Oriented Gradients descriptors extracted from local phase
projections. The detector automatically identifies slices of the volume
that contain needle data, reducing the needle search space. Needle tip
enhancement is performed on a projection of the extracted sub-volume,
followed by automatic tip localization using spatially distributed image
statistics within the trajectory constrained region. Evaluation of the pro-
posed method on 40 volumes of ex vivo bovine tissue shows 88% detection
precision, 98% recall rate, mean classification time per slice of 0.06 s and
mean tip localization error of 0.44 ± 0.13 mm. The promising results
indicate potential of the method for further evaluation on clinical pain
management procedures.

1 Introduction

Ultrasound (US) guidance for regional anesthesia has gained popularity in clin-
ical practice because of its radiation-free, low-cost and real-time nature. With
two-dimensional (2D) US, which is the current standard, it is often difficult to
align the needle with the scan plane. Needle localization is even more difficult for
deep or steep insertions. This may impair therapeutic efficacy or cause injury.
To address this challenge, three-dimensional (3D) US has emerged as a viable
alternative [1]. 3D US permits simultaneous multi-planar visualization of the
needle without probe adjustment, hence orientation of the needle with respect
to the scan plane need not be perfect. However, needle visibility in 3D US is
affected by low dimension of the needle with respect to the US volume, signal
attenuation, high intensity artifacts and speckle noise.

Previously, algorithms for needle enhancement and localization in 3D US
were reported. These include: the 3D Hough transform (HT) [2], projection-based
methods such as parallel integration projection (PIP) [3] and iterative model-
fitting methods based on the random sample consensus (RANSAC) algorithm [4].
These methods generally suffer from computational complexity due to the large
amount of volume data that must be processed [5]. Further, since these methods
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are intensity-based, challenges may arise under difficult imaging conditions or in
the presence of high intensity US imaging artifacts.

Although the RANSAC based ROI-RK method proposed in [4,5] reduces
calculation time, it is not robust to high intensity artifacts and steep insertion
angles. The limitations of intensity-based methods can be overcome with the
use of local phase features. A qualitative comparison of local phase, HT and
RANSAC based needle-axis localization is presented in Fig. 1, where we observe
that when the only high intensity feature present is the needle, all methods
give accurate localization, short of which only local phase features consistently
yield accurate localization. In [6], oscillation of a needle stylet was modeled into
a projection-based localization framework, providing a more robust solution.
However, oscillating the stylet during US guided needle insertion is difficult in a
single operator scenario, especially for shallow angles.

Recently, a robust, intensity-invariant algorithm for needle enhancement and
localization in 2D US was proposed [7]. Needle shaft and tip were enhanced
by incorporating US signal transmission models in an optimization problem.
The needle trajectory was estimated from local phase-based projections of the
enhanced B-mode image [8]. However, incorrect tip localization arose when high
intensity soft tissue artifacts were present along the needle trajectory. The algo-
rithm also required proper alignment of the needle with the scan plane. In this
paper, we address the limitations in [7] by extending this promising method

Fig. 1. Comparison of local phase, Hough transform and RANSAC based needle-axis
localization. First column: 2D B-mode image. Second column-fourth column: Needle-
axis localization (green) from local-phase, Hough transform and RANSAC respectively.
When the needle is wholly conspicuous (top row), all methods give correct needle
trajectory. When the needle shaft is broken or high intensity artifacts are present in
the image, only the local phase-based method consistently gives accurate results. (Color
figure online)
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to 3D. Our main contributions are: (1) A learning based classifier that utilizes
local phase descriptors to detect needle-containing slices in the US volume. (2)
A technique that computes multi-planar reconstructions for needle tip localiza-
tion in 3D. Our specific clinical focus is needle guidance in spinal injections such
as lumbar facet joint and medial branch blocks in obese patients. Preliminary
qualitative and quantitative validation results on ex vivo volumes demonstrate
that our method is robust and has a low execution time, making it suitable for
clinical evaluation in these pain management procedures.

2 Methods

We propose a two-stage framework illustrated in Fig. 2. We first detect slices
(2D frames acquired from a motorized 3D transducer) with needle data. This is
followed by needle enhancement and multi-planar tip localization. The following
sub-sections describe this process in detail.

2.1 Needle Detection

Previously, locally normalized histograms of oriented gradients (HOG) descrip-
tors were shown to be efficient at capturing gradient information [9]. They are
also invariant to translations or rotations, demonstrating performance similar
to Scale Invariant Feature Transformation (SIFT) descriptors. As such, locally
normalized HOG descriptors make robust feature sets for needle detection. In
our design, we extract intensity-invariant local phase descriptors and use them
to derive HOG descriptors.

Fig. 2. Block diagram of the proposed approach. (1) A needle detector is used to
classify slices that contain needle data, which are then compiled into a sub-volume as
described in Sect. 2.1. (2) Needle tip localization is performed on the sub-volume after
enhancement of needle data. The enhancement and localization processes are described
in Sects. 2.2 and 2.3 respectively.
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Fig. 3. The needle detection process. Top-row: B-mode US slices constituent of
USvolume. The original volume comprised of 41 slices. Here, we show only 7 slices
containing needle data, sandwiched between two slices (first and last columns) without
needle data. Middle row: Respective NPD(x, y) images. The slices with needle data
possess a salient straight feature with minimum bending. The slices without needle data
lack such features. Bottom row: Slice classification results after running the detector.
The classification accuracy here was 100%.

Local Phase Descriptors for Needles: We apply orientation tuned intensity-
invariant local phase filter banks to each slice of the 3D volume (hereafter
denoted as USvolume) to extract a needle phase descriptor, hereafter denoted as
NPD(x, y). The filter banks are constructed from 2D Log-Gabor filters, whose
parameters are selected automatically using the framework proposed in [8]. It
is assumed that the insertion side of the needle is known a priori, and the cal-
culation is limited to an automatically selected region of interest (ROI) on the
insertion side. It is expected that the ROI contains a visible part of the shaft. The
output of the filter operation gives a phase-based descriptor called phase symme-
try, PS(x, y), which is used as an input to the Maximum Likelihood Estimation
SAmple Consensus algorithm (MLESAC) [10]. We use MLESAC to prune false
positive pixels and connect inliers to yield NPD(x, y). Figure 3 shows exam-
ples of slices with and without NPD(x, y). Investigating Fig. 3 (first and last
columns), we note that slices without needle data do not contain NPD(x, y),
while slices with needle data (middle 7 columns) possess NPD(x, y), existing as
bright intensity straight features, commensurate with a rigid needle.

Detector Architecture: For details of the HOG algorithm, we refer the reader
to [9]. Specifically, we use L2–Hys (Lowe-style clipped L2–norm) contrast nor-
malization on overlapping 3 × 3 cell blocks of 4 × 4 pixel cells: From the unnor-
malized descriptor vector v, L2–Hys is determined by clipping the L2–norm,
v → v/

√
‖ v ‖22 +ε2 where ε is a small constant. This normalization is done to

achieve invariance to geometric transformations. HOG computation is performed
using a 64 × 128 sliding detection window, and the resulting descriptor is fed to
a linear support vector machine (SVM) baseline classifier.

The detector is applied to each of the slices in USvolume after preprocessing to
elicit needle phase descriptors similar to those used in training the detector. The
resulting sub-volume, US∗

volume, consists of only slices that contain needle data.
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Volume reduction saves computing load in the needle enhancement and local-
ization steps that follow. It also removes slices that have artifacts which would
degrade needle enhancement. Figure 3 (bottom row) illustrates an example of
needle detection from volume data. Detected needles are shown with rectangu-
lar annotation.

2.2 Needle Enhancement

The goal of this step is to remove speckle, reverse attenuation effects, and mini-
mize the effect of artifacts in the sub-volume US∗

volume so as to improve visibility
of the needle shaft and tip. We design our approach to suit tip localization for in-
plane insertion. In [7], it was shown that the needle tip and shaft can be enhanced
by modeling US signal transmission using L1-norm based contextual regular-
ization. We follow a similar approach, where US signal transmission in each
slice is modeled as S(x, y) = St(x, y)Se(x, y) + (1 − St(x, y))κ. Here, S(x, y) is a
slice in US∗

volume, St(x, y) is the signal transmission map, Se(x, y) is the desired
enhanced image while κ is the average intensity of the tissue surrounding the
needle in attenuated regions. St(x, y) is obtained by minimizing the objective
function:

λ

2
‖ St(x, y) − Sa(x, y) ‖22 +

∑

i∈ζ

‖ Γi ◦ (Ri � St(x, y)) ‖1 (1)

Here, Sa(x, y) is a patch-wise transmission function representing boundary con-
straints imposed on the image by attenuation and orientation of the needle, ζ
is an index set of image pixels, ◦ is element wise multiplication, and � is a con-
volution operator. Ri a bank of high order differential filters consisting of eight
Kirsch filters and one Laplacian filter, and Γi is a weighting matrix calculated
from Γi(x, y) = exp(− | Ri(x, y) � S(x, y) |2). Details of how Sa(x, y) is obtained
are presented in [7]. After calculating St(x, y) using (1), Se(x, y) is extracted
from:

Se(x, y) = [(S(x, y) − κ)/[max(St(x, y), ε)]ρ] + κ (2)

Here, ε is a small constant and ρ is related to the attenuation co-efficient of the
tissue. To minimize the effect of high intensity artifacts aligned with the needle
trajectory, each enhanced slice is subjected to a Top-hat filter operation using
a linear structuring element. The final enhanced slices constitute the enhanced
sub-volume denoted as USE∗

volume.

2.3 Tip Localization

In our workflow, the needle tip location is displayed in two planar visualizations,
parallel and normal to the needle insertion direction. We consider a 3D US
volume where x, y, z denote the lateral, axial and elevation directions respectively
(Fig. 4). Our interest is determining Ω(x′, y′, z′, χ), the 3D tip location, where χ
is the characteristic intensity of the tip in USE∗

volume.
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Fig. 4. The tip localization process. First column: Px,y image. Second column: PE(x, y)
image. The automatically localized tip (red) is overlaid on x–y (third column) and y–z
(fourth column) slices, which jointly give tip location in 3D. The green cross represents
the expert localized tip. Fifth column: 3D imaging coordinates. Top row: moderate
insertion angle and needle aligned with US beam. Middle row: moderate insertion
angle and needle not aligned with US beam. Bottom row: steep insertion angle and
needle aligned with US beam. (Color figure online)

2D Tip Localization: If needle insertion is in the y–z plane, then the x–y plane
is parallel to the needle insertion direction. We determine x′ and y′ from a pro-
jection Px,y since x′ and y′ have the same value in all slices. Px,y is calculated as
the maximum intensity projection (MIP) of USE∗

volume, by extracting maximum
intensity values along optical paths in the z direction. From this projection, the
needle tip is localized following the algorithm in [8]. In summary, we determine
the phase symmetry PS(x, y) of Px,y in a region limited to the needle trajectory,
apply the MLESAC algorithm for inlier detection and geometrical optimization,
followed by feature extraction on the resultant point cloud using a combination
of spatially distributed image statistics which enhance the needle tip. This yields
the projection enhanced needle image denoted as PE(x, y). (x′, y′) is determined
from the first maximum intensity pixel at the distal end of the needle trajectory
in PE(x, y).

Scan Plane Determination: In this context, scan plane means the slice con-
taining the needle tip, which is the most advanced portion of the needle in the
elevation (z) direction of the volume. The scan plane is determined by calcu-
lating

∑+γ
i=−γ

∑+γ
j=−γ I(x′ + i, y′ + j), the sum of pixel intensities in a bounded

square patch of length 2γ centered at (x′, y′) in each slice within USE∗
volume. The

scan plane is estimated as the slice with the maximum intensity sum. The result
gives us z′. Figure 4 shows the tip localization process and qualitative results for
different imaging conditions as well as the imaging coordinates used during tip
localization.
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2.4 Data Acquisition and Experimental Validation

3D US volumes were acquired using the SonixTouch system (Analogic Corpo-
ration, Peabody, MA, USA) equipped with a 4DL14-5/38 broadband volumet-
ric probe. A 17-gauge (1.5 mm diameter, 90 mm length) Tuohy epidural nee-
dle (Arrow International, Reading, PA, USA) was inserted into freshly excised
bovine tissue. The transducer motor was automatically controlled during inser-
tion to achieve a Field of View (FOV) of 10◦ for sweeps of 0.244◦ per frame
and 41 frames per volume. Multiple experiments were performed at various nee-
dle depths (40–80 mm) and orientations (30◦–70◦) with the needle in a native
axial/elevation (y–z) direction of the volume. A total of 80 volumes were col-
lected. The US system settings were fixed for all imaging sessions. The volumes
were divided into 2 sets without overlap: 40 for training and 40 for validation.

The proposed method was implemented in MATLAB on a 3.6 GHz Intel(R)
CoreTM i7 CPU, 16 GB RAM Windows PC. The Log-Gabor filter parame-
ters were determined automatically using the method proposed in [8]. In (2),
κ = 0.5 × Imax, where Imax is the maximum intensity in S(x, y), ρ = 2 and
ε = 0.0005. These values were empirically determined and fixed during val-
idation. For the training dataset, 150 positive and 100 negative samples
for NPD(x, y) were manually selected. Performance of the needle detec-
tor was evaluated by calculating Precision (P) and Recall Rate (RR),
where P = True Positive/(True Positive + False Positive) and RR =
True Positive/(True Positive + False Negative). To determine localization
accuracy, the ground truth tip location was segmented manually by an expert
user in volumes where the tip was visible. Tip localization error was determined
by calculating the Euclidean Distance (ED) between the automatically localized
tip and the manually segmented tip.

3 Results

Qualitative results (Fig. 4) show that our method gives accurate tip localization
for moderate to steep insertion angles, including cases when the shaft is discon-
tinuous (Fig. 4 middle and bottom rows). Quantitative results revealed average
precision of 88%, recall rate of 98%, detector execution time (per slice) of 0.06 s,
overall execution time (for both slice detection and tip localization) of 3.5 s, tip
localization error of 0.44 ± 0.13 mm and maximum localization error of 1.62 mm.

4 Discussion and Conclusions

We have proposed a novel learning-based method for automatic detection and
localization of needles in US volumes. The low slice classification time potentially
suits real-time applications and can complement previous approaches such as
those reported in [2–6]. Considering the anatomy of our focus application (medial
branch nerves are typically about 1 mm in diameter), a tip localization error of
less than 1 mm is clinically acceptable. In [7], analysis of US data from porcine,



Local Phase-Based Learning for Needle Detection and Localization 115

bovine, kidney and liver tissue showed that local phase features are not affected
by the intensity variations caused by different tissue types. Since the detector
uses HOG descriptors derived from local phase features, detection accuracy is
independent of tissue type. On account of including needle data from pertinent
slices, accurate tip localization is possible when the needle is misaligned with
the scan plane. The sufficiently high recall rate demonstrates that the detected
volume always contains sufficient needle data to support the localization process.

The method is validated on epidural needles with minimal bending. For
enhancement of bending needles, the proposed model can be updated by incor-
porating bending information into the framework. In future, we will investigate
automating parameter selection for the algorithm, performance of the proposed
method on needles of different gauges, real-time implementation of the proposed
method, and a 3D classifier, in which needle detection is performed in a single
extraction step applied to the entire volume.
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