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Preface CARE 2017

The 4th International Workshop on Computer-Assisted Robotic Endoscopy (CARE
2017) was held in conjunction with MICCAI on September 14th, 2017 in Quebec City,
Canada. Building on the success of the previous three workshops, CARE 2017 brought
together researchers, clinicians, and medical companies to advance the field of
computer-assisted and robotic endoscopy.

This workshop featured high-quality original papers and invited keynote presenta-
tions on the latest advances in computer-assisted and robotic endoscopy. After peer
review, seven papers were selected for presentation at CARE 2017 and are included in
these proceedings. As in previous years, CARE 2017 included keynote presentations
from leading experts in academia and industry. This year we were honoured to have Dr.
Dan Stoyanov (University College London, UK) and Dr. Michael Wood (Synaptive
Medical, Canada) give keynote presentations for the workshop.

We would like to thank all the reviewers and members of the programme committee
who contributed their time, effort and expertise to make this workshop possible. We are
grateful to all the authors and attendees for their scientific research and enthusiastic
participation in CARE 2017. We would also like to express our gratitude to the
organizers of MICCAI for supporting this workshop and to KUKA Robotics for
sponsoring the best paper awards.

September 2017 Jonathan McLeod
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Preface CLIP 2017

On September 14, 2017, the 6th International Workshop on Clinical Image-Based
Procedures: From Planning to Intervention (CLIP 2017) was held in Quebec City,
Quebec, Canada in conjunction with the 20th International Conference on Medical
Image Computing and Computer Assisted Intervention (MICCAI). Following the
tradition set in the last five years, this year’s workshop was an exciting forum for the
discussion and dissemination of clinically tested, state-of-the-art methods for
image-based planning, monitoring, and evaluation of medical procedures, as in
previous years.
Over the past few years, there has been considerable and growing interest in the
development and evaluation of new translational image-based techniques in the modern
hospital. For a decade or more, a proliferation of meetings dedicated to medical image
computing has created a need for greater study and scrutiny of the clinical application
and validation of such methods. New attention and new strategies are essential to
ensure a smooth and effective translation of computational image-based techniques into
the clinic. For these reasons and to complement other technology-focused MICCAI
workshops on computer-assisted interventions, CLIP 2017’s major focus continued to
be on filling the gaps between basic science and clinical applications.
Members of the medical imaging community were encouraged to submit work centered
on specific clinical applications, including techniques and procedures based on clinical
data or already in use and evaluated by clinical users. Once again, the event brought
together world-class researchers and clinicians who presented ways to strengthen links
between computer scientists and engineers, and surgeons, interventional radiologists,
and radiation oncologists.
In response to the call for papers, 12 original manuscripts were submitted for
presentation at CLIP 2017. Each of the manuscripts underwent a meticulous
double-blind peer review by three members of the Program Committee, all of them
prestigious experts in the field of medical image analysis and clinical translations of
technology. A member of the Organizing Committee further oversaw the review of
each manuscript. Ten manuscripts were accepted for oral presentation at the
workshop. The accepted contributors represented nine countries from three continents:
Europe, North America, and Asia. Judging by the contributions received, the quality of
CLIP 2017 improved compared with last year’s event. However, we also noticed that
the number of submissions decreased compared with the events of the last two years.
This might be due to the increasing number of satellite events around the MICCAI
main conference.
As always, the workshop featured a prominent expert as keynoter. Underscoring the
translational, bench-to-bedside theme of the workshop, the CLIP 2017 keynote was
given by Neil Glossop, a recognized expert in the field of image-guided surgery from
ArciTrax Inc. and the University of Toronto.



We would like to acknowledge the invaluable contribution of our entire Program
Committee, many members of which have actively participated in the planning of the
workshop over the years, and without whose assistance CLIP 2017 would not have
been possible. Our thanks also go to all the authors in this volume for the high quality
of their work and their commitment of time and effort. Finally, we are grateful to the
MICCAI organizers for supporting the organization of CLIP 2017.
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Shape-Based Pose Estimation of Robotic
Surgical Instruments

Daniel Wesierski1,2(B) and Sebastian Cygert1
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Abstract. We describe a detector of robotic instrument parts in image-
guided surgery. The detector consists of a huge ensemble of scale-variant
and pose-dedicated, rigid appearance templates. The templates, which
are equipped with pose-related keypoints and segmentation masks, allow
for explicit pose estimation and segmentation of multiple end-effectors as
well as fine-grained non-maximum suppression. We train the templates
by grouping examples of end-effector articulations, imaged at various
viewpoints, in thus arising space of instrument shapes. Proposed shape-
based grouping forms tight clusters of pose-specific end-effector appear-
ance. Experimental results show that the proposed method can effec-
tively estimate the end-effector pose and delineate its boundary while
being trained with moderately sized data clusters. We then show that
matching such huge ensemble of templates takes less than one second on
commodity hardware.

Keywords: Surgical instruments · Localization · Segmentation ·
Grouping

1 Introduction

Surgical robots with increased autonomy are an engaging objective for next-
generation computer-aided intervention. A mature technology, though, very
likely requires delivering visual algorithms that will grant robots full aware-
ness of the operated surrounding. Precise and continuous localization of surgical
instrument parts in images will then belong to primary robot abilities.

Scarcity of relevant data is one of the hurdles for traditional, data-driven
approaches to tool part localization. Despite that the articulation of robotic
instruments is not as free as, say, that of a human body, the available video
snippets of specific surgeries usually contain only several tool motions. Efforts to
account for incomplete spectrum of object articulations in available datasets usu-
ally consist in developing algorithms that should generalize to previously unseen
object configurations. Alternatively, memory-centric methods only improve with
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): CARE/CLIP 2017, LNCS 10550, pp. 3–15, 2017.
DOI: 10.1007/978-3-319-67543-5 1



4 D. Wesierski and S. Cygert

growing volumes of data. Intuitively, data-driven algorithms with generalization
capability should require less data than memory-centric methods. On the other
hand, a proof of generalization to unseen pose types may require such data-driven
algorithms to correctly and repeatedly predict tool articulations for all possible
tool-camera configurations, for instance, up to quantization, before being com-
missioned into operating rooms – an evaluation procedure that would as well
exhaustively test the efficacy of memory-centric methods.

This work embraces a memory-centric approach that explicitly learns a wide
spectrum of instrument poses by leveraging shapes of segmented instruments. We
propose to explain the articulated motion of robotic surgical instruments with
an ensemble of scale-variant and pose-dedicated appearance models. Learning
the appearance of surgical instruments at different poses is challenged by image
noise that appears, for instance, as blurry tool surface with incident specular
reflections. Arguably, the more training examples a procedure uses for training
an appearance model, the less the noisy observations contaminate the model. Our
contribution is twofold. Despite data scarcity, we show that our approach can
be accurate in estimating end-effector pose using a modest number of examples
per pose type. Then, we demonstrate that grouping the examples based on their
segmented shapes produces tight appearance clusters of training examples. The
clusters in turn allow learning effective end-effector models in the form of the
huge ensemble of scale-variant and pose-dedicated templates that can be fast
evaluated in the image.

2 Related Work

Image-based pose estimation of robotic surgical instruments has been substan-
tially studied in the literature [3]. Successfully evaluated algorithms for locating
robotic tools in videos would immediately find applications in computer-aided
intervention. The algorithms could assess and help improve skills of novice sur-
geons during surgical training [13], provide experienced surgeons with force feed-
back [1] and other helpful and unobtrusive metadata [12], and in further stages
of maturity enable robots to take over some surgical tasks from the surgeon
during a surgery [17].

One of the main approaches to locating tools in images relies on brute-force
search for a monolithic template that best matches the image evidence. When the
template encodes object pose, top-down template matching is an attractive app-
roach to pose estimation. Despite being commonly referred to as a naive approach
to object detection, data-driven template matching requires training a template-
based detector. Notably, given abridged training datasets and adverse occlusions
at test-time, such as self-occlusions, occlusions by other objects, and truncation
at image border, a procedure for training a precise and robust, template-based
tool pose estimator is challenging.

A large ensemble of rotation-variant and scale-variant templates exhaustively
searched for rigid surgical tools over all image locations in [2]. The proposed
pipeline converted an entry image to semantic maps of scores and labels using



Shape-Based Pose Estimation of Robotic Surgical Instruments 5

an Adaboost classifier in the first stage. In the second stage, rotated and scaled
versions of the SVM-trained templates aggregated either real-valued semantic
scores or discrete semantic labels for final output of multiple rigid instruments.
The spatial extent of the templates was regularized during SVM training by
enforcing 4-connected pixels to have close values in order to account for irregular
response maps of the first stage of the pipeline. Authors reported, however, that
the smoothed templates produced no improvement in the performance of the
tool detector. Implemented on GPU, the detector ran nearly in real-time and
estimated location and orientation of a rigid suction tube in complex surgical
image scenes.

Local feature-based methods attempt to estimate tool pose from a video
in a bottom-up manner. Robotic da Vinci tools possess inherent features that
were captured with region covariance descriptors in [11]. Multi-class, random-
ized trees classifier scored the feature descriptors. Extended Kalman filter fused
thus obtained heatmaps of characteristic landmarks with a CAD tool model and
robot kinematics to recover the pose of robotic tools in 3D, though without end-
effector articulation. An approach that, in turn, entirely relied on image features
was proposed in [15] to estimate 2D tool pose. Haar-like features, which repre-
sented multiple tool landmarks in an initial batch of video frames, were fed into
a multiclass classifier. Scanning the classifier over an image pyramid at test-time
produced a response map of score clouds that assessed hypothesized locations
and scales of tool parts. Ransac algorithm fit a line to the cloud that estimated
the orientation of the tool shaft. Then, weighted averaging of the clouds out-
put the tool center of a rigid instrument. Orientation and center location of the
instrument was jointly estimated in [16] utilizing a structured model of mixtures
of tool parts. Dynamic programming matched a diverse set of pose-dedicated
appearance templates that corresponded to end-effector and shaft parts. Select-
ing best shaft subparts along hypothesized shaft orientations during inference
coped with varying shaft length, subject to truncation at the image border.

Segmentation can improve object detection by feeding classifiers solely with
foreground features [7]. Moreover, characteristic object contours often suffice as
visual cues for template-based object detection in cluttered scenes [5]. Then, a
deep residual network in [6], that was trained for joint segmentation and localiza-
tion of shaft and end-effector parts of non-rigid and robotic tools, outperformed
the network that was trained to do either segmentation or localization alone.
Optic flow and color images jointly fed a CNN to obtain tool region proposals in
[13]. Relying solely on images, the algorithm retrieved the 2D center of robotic
tools in challenging phantom data.

Auxiliary information, such as robot encoder readings, can be exploited to
improve computational efficiency of the algorithms and tool pose estimation.
Contracting curve density algorithm tracked shaft contours in [14]. Initialized
with image-projected robot CAD model, the algorithm learned online color sta-
tistics of inner and outer image regions to separate the shaft from the back-
ground. However, the method included no end-effector features and the estimated
mask of the shaft was sliding along the shaft. A Gaussian mixture model captured
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the distribution of color and texture features of robotic tool parts in [10]. The
proposed probabilistic regime required class-specific manual segmentation of the
tool parts in the initial frames. The conducted experiments showed that the algo-
rithm segmented well the shaft and end-effector parts but struggled with finer
classification of the end-effector into robotic head and forceps. Random forests
classified the shaft, end-effector, and background [1] using color features that
were manually segmented from the first video frame. At each time instant, the
algorithm projected the model contours of robot parts onto the labeled image
and aligned them with the contours of both segments under level-set frame-
work. Additionally, optical flow supported the estimation of tool trajectory in
the presence of fast motion of the tools. The pose was estimated in 3D but with-
out specifying the locations of the forcep tips. In a follow up work in [4], a 2D
tracker was developed using Hough voting and SIFT features to automatically
initialize the 3D tracker of [1]. It required the known 3D tool pose for initial-
ization that was available from the projection of the tool onto the image using
robot kinematics.

Full 3D pose of robotic tools, i.e. together with the end-effector articulation,
was estimated in real-time in [18]. The method first split the robot gripper into
local parts, anchored at multiple, manually chosen keypoints. For efficiency and
robustness to occlusions, the appearance of a subset of parts was learned in an
online manner by generating only part examples that were consistent with the
currently estimated tool pose in 3D. The LINE algorithm [5] enhanced image
contours and efficiently matched rendered templates of part contours to the
image. Prosac algorithm then verified score aggregations through their geometric
consistency with respect to rendered part configurations over a polar grid. Lifting
the 2D tool pose to 3D was realized with Extended Kalman filter and robot
kinematics. Noting that surgeons often prefer to work in close proximity to tissue
in [12], only 3D pose of the end-effector was estimated. Likewise, the LINE
algorithm was employed to efficiently match a huge set of pose-specific templates
that were rendered online from the fine-grained CAD model of the end-effector.

Our method relies solely on image cues and uses region descriptors to repre-
sent characteristic tool features. It segments end-effector parts and recovers 2D
end-effector articulation in a top-down manner, in the spirit of metadata-transfer
of exemplar-SVMs [8]. By training pose-specific templates, it differs from [8] by
(i) grouping the training examples based on their segmentation masks instead of
training an SVM for each single example and (ii) transferring metadata of pose
along with segmentation mask at test time that are averaged over respective
groups of examples. Although it uses no auxiliary information, such as robot
encoder readings, processing our large set of templates for segmentation and
pose estimation could be aided by such prior knowledge in a similar manner to
approaches that rely on robot kinematics.

3 Shape-Based Pose Estimation

Shape deformations of a robotic end-effector result from its articulating parts and
camera-instrument viewpoint changes. In this section, we describe a simple, top-
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down method for locating end-effector parts in images. We capture the varying
appearance of the end-effector with an ensemble of monolithic templates. Each
template is assigned with a dedicated pose skeleton and a canonical segmentation
mask. The method employs a brute-force search for templates that best match
the image evidence. Selected, top-performing templates then explicitly transfer
the assigned metadata for segmenting and estimating the pose of the end-effector.

As the huge collection of templates encode many shape variations, top-down
template matching is an attractive approach to object pose estimation. Despite
being commonly referred to as naive, data-driven template matching requires
training a template-based detector. Arguably, the more training examples a pro-
cedure uses for training an appearance model, the less the noisy observations
contaminate the modeled templates. Grouping image examples thus allows fil-
tering out noise from the training samples during learning, thereby emphasizing
discriminative features of the tool appearance. At the same time, though, impre-
cise grouping might attenuate good features leading to poor performance of the
trained model. While grouping the examples can be approached by leveraging
annotated keypoints, manual annotations require additional supervision. In this
work, we describe a procedure that produces tight appearance clusters of the
training examples by leveraging their shape cues. As the shape masks may be
obtained from an external segmentation module, shape-based grouping is thus
an attractive approach to reducing the amount of supervision during learning
appearance models. The flowchart of our method is depicted in Fig. 1.

Fig. 1. Flowchart of our method. Given training video sequences of surgical instru-
ments, we annotate pose-related keypoints and segmentation masks of the robotic end-
effector. Proposed algorithm then uses (i) the segmentation masks for grouping and
learning pose-dedicated appearance templates at training time and (ii) the skeleton
keypoints for estimating the articulation of end-effectors at test-time. After convolving
an entry image only at its original scale with the learned, huge set of pose-variant
and scale-variant appearance templates, the selected templates, which best explain the
image evidence after fine-grained non-maximum suppression (NMS), explicitly transfer
the masks and the keypoints on the image, thereby estimating the pose as well as the
shape of multiple robotic end-effectors.
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3.1 Detection

Our method relies on brute-force search for the best template out of the huge
set of templates at each image location. The templates encode tool appearance
at various scales. Hence, they are convolved with an entry image only at single
scale, without requiring to rescale the image in the pyramid-based manner.

Let I denote a two-dimensional image and l ∈ N
2×1 denote discrete locations

in the image domain. The t-th template of the end-effector is denoted by wt. It is
associated with a segmentation mask mt and a pose-specific keypoints kt, thereby
forming a 3-tuple {wt,mt, kt}T

t=1, where T is the total number of templates.
Then, instantiating the templates in image I is scored as:

S(I, l, t) = wtφt(I, l) + bt (1)

where φt(I, l) is an image descriptor (e.g., histogram of oriented gradients, color
histogram). The function φt(I, l) describes image region in the window of the
t-th template at location l. The last term bt is the bias, associated with the
template, that relates to the size of the corresponding t-th cluster of examples.

Finding the template ̂t at location ̂l that best explains the whole image I is
realized in a scanning window manner by solving:

( ̂l,̂t ) = argmax S(I, l, t) (2)

as depicted in the right part of Fig. 1. In effect, pose and segmentation mask
of the detected ̂t-th end-effector are transferred to the image at location ̂l as
{m̂t, k̂t}. In practice, an image may contain more than one tool though. In this
case, the procedure retrieves the highest scoring template at each each loca-
tion ̂t(l) and then thresholds the scores. Having obtained a table of candidate
matches, it is necessary to suppress the non-maximal scoring candidates if they
significantly overlap each other.

Fine-grained NMS. Non-maximum suppression greedily prunes the candidates
that overlap with the top scoring candidate, selected at each iteration. Having
direct access to the segmentation masks mt of the candidate detections and
to their precomputed areas, the algorithm can efficiently evaluate fine-grained
extent of the overlap between an instantiated pair of candidates, for instance,
of two end-effectors performing some grasping task close to each other (Fig. 1).
The procedure is iteratively repeated until no candidates are left in the table.

3.2 Learning

We learn the parameters of the template ensemble in a supervised manner. The
template models are learned separately and have the form βt = [bt, wt]. The
linear function (1) can be factored as S(In, l, t) = β xn, where xn = (1, φt(In, l))
is a training feature vector for the t-th template.
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Fig. 2. Shape-based grouping of training examples from an annotated dataset.

Grouping. Assigning the example to respective t-th cluster, given its segmen-
tation mask, is illustrated in Fig. 2. The algorithm proceeds in three steps. First,
training examples are grouped by the sizes of their bounding boxes. The rectan-
gular boxes are cropped to the extent of the segmentation masks of the examples.
Second, each group of equally sized bounding boxes is split into subgroups that
contain similar segmentation masks. The similarity of the segmentation masks is
measured using the distance transform of pairs of examples. After thresholding
the similarity scores, the procedure obtains a symmetric, binary co-occurrence
table, that maps examples to clusters. Notably, the clusters can overlap each
other. Finally, the obtained groups of pose-variant and scale-variant masks trans-
late to groups of example clusters. Each cluster contains pose-specific keypoints
and canonical segmentation mask, here encircled in the cluster centers. The key-
points are means of point clouds while the canonical mask results from binary
sum of the masks of the clustered training examples.

Having grouped the examples, we learn regularized parameters of each tem-
plate model βt in a linear, asymmetric-cost SVM setting:

argminβt,ξ

1
2
‖βtRt‖2 + C+

m+
∑

n=1

ξn + C−
m−
∑

n=1

ξn (3)

s.t. βt x+
n ≥ 1 − ξn , ∀x+

n

βt x−
n ≤ −1 + ξn , ∀x−

n
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where the regularization matrix Rt is diagonal. The elements of Rt are positive,
such that Rt

ii = {1, τ} and τ < 1 attenuates the features outside the down-
sampled, canonical segmentation mask of t-th group of examples. The above
formulation states that our model βt should learn to assign scores higher than
1 to positive examples x+

n and assign scores lower than −1 to negative exam-
ples x−

n . The objective function penalizes violations of these constraints with
slack variables ξn ≥ 0, asymmetrically weighted by constants C+ and C−. The
negative examples x−

n come from incorrect detections, which are mined as hard-
negatives on images without surgical instruments. We used INRIA pedestrian
dataset for this task. We randomly selected 50 images from the dataset when
learning each template that amounted to m− < 104 negative training examples.
Figure 2 (bottom) illustrates some of the learned templates.

The segmentation masks that are representative of each cluster are obtained
as a binary sum of example masks. However, some examples may be less similar
to other ones in the cluster, unnecessarily widening the canonical segmentation
masks. To alleviate this, we use the scores of each positive example after hav-
ing learned the SVM model for each template in order to compute a weighted
average of example segmentation masks. In effect, we obtain a refined canonical
segmentation mask for each cluster that we use for segmentation at test-time.

4 Experiments and Results

This section quantitatively (Fig. 4) and qualitatively (Figs. 5 and 6) evaluates
the performance of our method in locating parts of robotic instruments.

Dataset. We evaluate the performance of our method on a dataset of three video
sequences S1–S3. The sequences show two da Vinci needle drivers that manip-
ulate a surgical suture on phantom background [9]. The instruments are always
in view. Large shape deformations of the end-effectors are the main challenges
of this dataset. The sequences have 613, 904, and 505 frames, respectively, with
frame size of 360 × 640 pixels. We annotated the dataset with four keypoints of
the tool parts, shaft ending, center joint, and two forcep tips, and with contours
of both tools, which yielded segmentation masks. We trained the detector on
the sequence S1 and tested it on the sequences S2 and S3. The training set was
augmented to m+ ≈ 9 × 104 positive examples by rotating each frame every 5◦

within 180◦ interval, followed by horizontal flipping.

Evaluation protocol. We evaluate our method in two scenarios. After non-
maximum suppressing the detections, the protocol evaluates: (i) all detections
and (ii) top-2 detections. The first scenario assumes the number of tools in the
videos is unknown to the algorithm and reports average precision of keypoints
(APK) using standard recall and precision. We also report on the recall of the
detector when it knows there are two tools present in the videos. We count a
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detection as true positive when it is close to the ground truth. The closeness of
the detected and ground truth keypoints is evaluated using the KBB metric [6].
The euclidean distance between both points is first normalized by the larger of
the sides of the box that tightly bounds all end-effector keypoints, and then com-
pared with α-thresholds. Unmatched ground truth is false negative. To evaluate
the segmentation results, we use the DICE metric.

Implementation details. The appearance templates are defined in the feature
space of histograms of oriented gradients (HOGs). We set sbin = 8 for the HOG
cells and clip histogram magnitudes to 0.2. In order to account for specularities
on the tool surface, the feature descriptor only uses 9 absolute orientations of
image gradients, bypassing orientation-sensitive cues. The minimal and maximal
side size of the learned templates is 6 and 12, respectively. The SVM hyperpa-
rameters are asymmetrically set to C+ = 10 and C− = 1 and account for
m+ � m− imbalance in the training set. The regularization parameter in R is
set to τ = 0.1.

A pair of training examples is claimed alike when their segmentation masks
cross-match to their distance transforms, both satisfying the matching threshold
of 300. Setting the threshold to this value yielded ∼3500 clusters, an acceptable
tradeoff between the number of clusters and their sizes, as shown in Fig. 3. We
retain all clusters during learning the templates, even the ones with a single
example.

Fig. 3. Matching threshold for grouping
binary masks vs number of produced clus-
ters. At the threshold 300, there are over
3500 clusters, where 400 clusters have one
example (upper right). There is unequal
distribution of examples across clusters.

The main part of the algorithm
was implemented in Matlab environ-
ment, while convolution was imple-
mented in C++ and CUDA. We tested
the computational performance of the
algorithm on a multicore CPU (Intel
Core i7-4930K) with 64 GB RAM and
on a GPU (NVIDIA GeForce GTX
780Ti). The timings of four imple-
mentation variants are shown in the
right part of Fig. 4. Specifically, at test
time our tailored GPU-based imple-
mentation requires ∼0.8 s to detect
robotic parts with ∼3500 templates in
each frame, while an off-the-shelf GPU
code1 requires ∼4 s. Training a tem-
plate proceeds separately from other
templates and lends itself to paral-
lelization. Training a single template and ten batches of templates in parallel
took less than 2 min and 9 h, respectively.

1 Eklund, A., Dufort, P., Non-separable 2D, 3D, and 4D Filtering with CUDA.
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Fig. 4. Quantitative results (best viewed in color). Left: Performance of our method
in locating four keypoints of da Vinci end-effectors in phantom data setting. The APK
and Recall metrics, evaluating all and top-2 detections, respectively, show that locating
the tool center is the easiest for our method in both cases. We also show the extent of
circular regions at each keypoint, inside which a candidate is counted as true positive.
Here, the circles (white) have two rigorous radii that correspond to alpha values of
0.1 and 0.2. Right: The computational performance of the algorithm was tested in
four variants. Notably, our GPU-based implementation scales evidently better with
the number of templates than its both CPU-based counterparts and than off-the-shelf
GPU code. For ∼3500 templates, it requires ∼0.8 s per frame to locate the keypoints of
both end-effectors. Both GPU-based convolutions also offer considerable computational
improvements for a smaller number of templates. (Color figure online)

Quantitative results. In the task of segmentation of the end-effector, our
method achieves the DICE score of 64% and 66% when all and top-2 detec-
tions are evaluated, respectively. Moreover, its performance in pose estimation
is 67% and 73%, averaged over all four keypoints at threshold α = 0.2, for all
and top-2 detections, respectively. The obtained results are quite satisfactory
and promising given that our templates are trained, on average, only on dozens
of positive examples. Further results are shown in Fig. 4.
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Fig. 5. Correct top-2 detections. Our method has to select the right templates from
thousands of potential templates. It can successfully locate robotic parts of multiple
instruments and segment the end-effectors at varying scale, articulation, and proximity.
The yellow boxes show the type T and the score S of the found templates. (Color figure
online)

Fig. 6. Analysis of failure cases indicates the method can get confused by the back-
ground (here, it slid to the shaft part) and suffers from double-counting errors (right).

5 Conclusion

In this work we proposed a shape-based method for pose estimation of surgical
end-effectors. The method groups image examples of the robotic end-effectors
by successfully leveraging manually annotated shapes of the end-effectors. The
obtained tight appearance clusters allow learning an ensemble of scale-variant
and pose-dedicated appearance templates. The templates transfer skeletons and
segmentation masks that are specific to particular end-effector articulations.
Despite that the tool articulation produces thousands of templates during learn-
ing, we achieve frame processing rate below 1 s per frame by convolving the
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entry image only at its original scale. Our future work will focus on obtaining
the segmentation masks automatically in order to learn the template ensemble
on-the-fly in unsupervised manner.

Acknowledgment. This work was partially supported by the National Science Center
under the agreement UMO-2014/13/D/ST7/03358.
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Abstract. 3D endoscopic systems have been researched and developed
to measure the actual shape and size of living tissues for the purpose of
remote surgery and diagnosis, to name a few. For such systems, active
stereo that consists of a camera and a pattern projector (i.e., struc-
tured light systems) is a promising solution because of simple system
with high accuracy. Recently, an active-stereo-based 3D endoscope sys-
tem has been proposed, in which many practical problems were solved
such as shallow focal range of the pattern projector or strong diffusion by
living tissues. To use the laser pattern projector for endoscopic systems,
two fundamental issues arise; a limited dynamic range of the endoscopic
camera and a calibration of the system. In this paper, we proposed a new
high dynamic range (HDR) image synthesis technique for a laser pattern
projector as well as an auto-calibration technique for dynamic motion.
Quantitative experiments are conducted to show the effectiveness of the
method followed by a demonstration using real endoscopic system.

1 Introduction

3D endoscopic systems have been intensively researched and developed to mea-
sure the actual shape and size of living tissues for the strong demands on remote
surgery, diagnosis and so on. For example, in the diagnosis, the size of the tumor
is an important factor to decide the stage of cancer. There are several techniques
for 3D endoscopic systems, such as binocular stereo, active stereo by projector-
camera pair, time of flight, etc. Among them, active stereo is one of the most
promising techniques because of its simple configuration, e.g., conventional endo-
scopic systems can be used without any modification. Although there are several
issues to apply active stereo for endoscopic systems, such as dark and shallow
focal range of the pattern projector, strong diffusion by tissue, etc., those issues
are efficiently solved by a laser pattern projector recently [1,2]. Those systems
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): CARE/CLIP 2017, LNCS 10550, pp. 16–28, 2017.
DOI: 10.1007/978-3-319-67543-5 2
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use a micro-sized pattern projector with diffractive optical element (DOE) and
have successfully reconstructed ex vivo human tumor samples. However, if we
use the system with in vivo environment, other fundamental issues will arise;
one is insufficient dynamic range of captured image because of the limited size of
image sensor under no external light and the other is an unstable calibration of
the system because of dynamic motion during an actual endoscopic operation.

In this paper, we proposed a new high dynamic range (HDR) imaging
technique for a laser pattern projector as well an auto-calibration technique
for dynamic motion. Usually HDR images are synthesized by using multiple-
exposure images, however, it is usually impossible to precisely control the expo-
sure of the camera of commonly available endoscopic systems. Therefore, we
adopt to vary the intensity of the projector during the operation. In addition, to
avoid complicated systems, we use simple signal switching (on-and-off) device
without any synchronization mechanism. Multiple exposure images are efficiently
captured by frequency difference between the camera and projector’s fps. We also
propose an auto-calibration technique realized by simultaneous capture of the
head of the pattern projector as well as the projected pattern onto the target
object. By softly imposing the 2-DOF ambiguity constraint [1], not only 6-DOF
extrinsic parameters are robustly estimated, but also scale ambiguity is effec-
tively eliminated.

By using our HDR synthesis technique and auto calibration algorithm, we
can achieve an efficient and accurate reconstruction of tissue in metric 3D under
practical operation of endoscopic system. In the experiments, we show the effec-
tiveness of our technique with several tests using the real system, and demon-
strate the successful reconstruction of the inside of real stomach of pig.

2 Related Work

3D endoscopes based on binocular stereo [3,4] are actively being researched
at the present. For the binocular stereo algorithm, which is a typical passive
stereo technique, correspondence retrieval is essentially difficult, especially on
textureless surfaces. To cope with textureless surfaces, techniques using Shape
from Shading (SfS) [5] have been proposed, however, the 3D reconstruction is
only up-to-scale and it cannot be directly applied for measuring real sizes of 3D
tissues. For laparoscopes for surgery, several structured-light systems have been
already proposed [6,7].

An active stereo technique is a simple solution for the aforementioned prob-
lems. For example, a single-line laser scanner attached to the scope head was
used to measure tissue shape [8]. However, the scope head had to be actuated
in a direction parallel to the target, which limited the practical applicability of
the technique. Some other vision techniques using special cameras being applied
to endoscopes such as ToF sensors [9,10]. However, original resolution of ToF
sensor is considerably low [9] or the size is too large and only applicable to
laparoscope systems [10]. Recently, we proposed a structured light system for
endoscope [1,2,11], which allows users to update a common endoscope system
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without any reconfiguration. However, there are several problems with the sys-
tem and our technique can provide practical solution.

One contribution of our technique is HDR image synthesis for endo-
scopic system. Usually HDR images are synthesized by using multiple-exposure
images [12]. However, it is usually difficult to capture images with different expo-
sures using ordinary video cameras. There are several techniques which achieve
HDR synthesis and tone-mapping for video [13,14], however active lighting con-
ditions are not considered. If a lighting condition can be precisely controlled with
camera synchronization, multi-exposure images are easily retrieved. Though, we
assume only on-and-off controllable pattern projector with no synchronization
mechanism, and there is no paper has published yet of such an approach.

In terms of auto-calibration, tons of techniques are proposed for binocular
stereo so far [15]. However, there is a few techniques for active stereo systems,
especially for structured light systems [16,17]. It should be noted that scale
ambiguity remains for common auto-calibration techniques and should be solved
for endoscopic systems.

3 DOE-Based Laser Pattern Projector for Endoscopy

3.1 System Configuration

A projector-camera system is constructed by installing a micro pattern projec-
tor on a standard endoscope as shown in Fig. 1(a). For our system, we used a
FujiFilm VP-4450HD system coupled with a EG-590WR scope. The DOE-based
laser pattern projector is inserted in the endoscope through the instrument chan-
nel, the projector protrudes slightly from the endoscope head and emits struc-
tured light. The light source of the projector is a green laser module with a
wavelength of 517 nm. The laser light is transmitted through a single-mode opti-
cal fiber to the head of the DOE projector. The DOE generates the pattern
through diffraction of the laser light. The 3D measurements are conducted by
structured light method with the projector-camera pair composed of the single
endoscope camera and the pattern projector.

Our system is based on active stereo method that we have proposed [2], in
which a gap-based grid pattern is used for avoiding effect of subsurface scattering
that is harmful for 3D reconstruction. The projected pattern consists of only
line segments as shown in Fig. 1(c) (top). The vertical lines of pattern are all
connected and straight, whereas the horizontal segments are designed in a way
to leave a small variable vertical gap between adjacent horizontal segments and
their intersections with the same vertical line. With this configuration, a higher-
level ternary code emerges from the design with the following three codewords:
S (the end-points of both sides have the same height), L (the end-point of the
left side is higher), and R (the end-point of the left side is higher). The codes of
the pattern of Fig. 1(c) (top) are shown by color in Fig. 1(c) (bottom).
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Fig. 1. System configuration: (a) System components. (b) DOE micro projector. (c)
The projected pattern(top), and embedded codewords of S colored in red, L in blue,
and R in green (bottom). S means edges of the left and the right sides have the same
height, L means the left side is higher, and R means the right is higher. (Color figure
online)

3.2 3D Reconstruction

The source image is first geometrically corrected on the fish-eye lens distor-
tion. Noises of the image are suppressed using Gaussian filters or median filters
at the same time. The projected vertical and horizontal lines are detected in
the undistorted image using the line detection algorithm from Sagawa et al.
[18]. This method can detect projected parallel lines whose approximate direc-
tions are known, ignoring intersecting non-vertical lines, based on loopy belief
propagation.

From the detected line patterns, grid-graph structure is constructed by
detecting intersections between the horizontal and vertical lines. Then, each
node is connected with its up, down, left, or right adjacent nodes by vertical or
horizontal edges. Some horizontal edges might have a missing edge because of
misdetection. In this case, the node will only have either a left or a right edge,
which may be later matched by looking at other connectivity of the grid graph.
Figures 8(f) and 9(b)(f) show examples of the detected vertical and horizontal
patterns with estimated gap codes.

Let the detected grid-graph be G, and let the grid-graph of the pattern in
Fig. 1(c) be P . Note that graph G may lack some edges, or have undesired false
edges, missing labels, or false labels of S/L/R as shown in the left part of Fig. 2.

To match G and P allowing topological errors, we exploit the notion of local
sub-graph patterns (LSGPs). We define an LSGP to be a sub-graph of a grid-
graph used as a template for matching common local topologies of G and P (in
Fig. 2, the left part shows G, the right part shows P , and the middle part shows
LSGPs). Given a dictionary of LSGPs, G may be matched to P robustly to
missing or false edges. By providing multiple LSGPs and trying to match G and
P using each of them, flexible matching can be realized. In our implementation,
an LSGP is represented by a path that traces all of its edges. To merge all the
matching results of LSGPs, voting is used.
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Fig. 2. Matching the detected grid graph and the projected pattern using LSGPs.

Once the correspondence of the captured image to the pattern is obtained,
the points on the vertical and horizontal lines are reconstructed in 3D using a
light-sectioning method.

4 Auto-Calibration of the Projector Position

In this system, the target surface, which is projected by pattern projector, is
captured by the endoscope camera. Since the head of the projector is not tightly
fixed to the endoscope, the relative position between the projector head and
the endoscopic camera varies during endoscopic operations, such as bending the
head. Since, for active stereo techniques, the position of the projector is an impor-
tant parameter for 3D reconstruction, such unstable condition is problematic for
robust and accurate shape measurement.

Furukawa et al. [1] modeled the relative position by 2-DOF rigid transforma-
tion, where projector translates along or rotates around the axis of the instru-
ment channel. This 2-DOF model could be applied to our system if the pattern
projector’s outer diameter perfectly fitted to the inner diameter of the instru-
ment channel. However, there should be some margin between the projector and
the channel, for the projector to be inserted during the endoscopic operations.
In real situations, the projector have more freedom to move beyond the 2-DOF
model within the margin.

Another problem of work of Furukawa et al. [1] is that they estimate the
projector’s position by detecting a marker drawn on the projector from the
endoscope image. In real situations where endoscope image is captured in dark
environments, markers drawn on the projector are difficult to detect from the
captured images.

In the proposed system, we use silhouette of the projector and the markers
embedded in the grid pattern projected onto the target surface. The silhouette
of the projector can be observed from the captured image, even if there are not
illumination except for the projected pattern. The markers in the grid pattern
can be also detected from the same image (see Fig. 8(d) for an example, where
the projector silhouette can be observed at the bottom of the image).

The actual process is as follows: From the input image captured for mea-
surement, markers in the grid pattens (mi) are detected. Also, several points
in the projector’s silhouette (sj) are also sampled (Fig. 3). Note that, we can
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Fig. 3. Input points for auto-calibration of the projector.

assume epipolar geometries fullilled between the endoscope camera and the pat-
tern projector, if the estimated parameters are correct for the auto-calibration.
Since a pattern projector can be modeled in the same way as a camera, epipolar
geometries can be used for a projector-camera pair.

The auto-calibration is processed as an optimization of 6-DOF rigind trans-
formation parameters that represent projector’s position. Here, we devide the
estimated 6 parameters into 2 sets of parameters: one set is for 2-DOF freedom
described in [1] and the other is for the rest 4 parameters. We regard the 2-DOF
parameters as freely changing parameters, since they represent the motion of
the pattern projector that rotates around and translates along the axis of the
instrument channel, while we supress the rest 4 parameters since they are devi-
ation from the 2-DOF freedom of [1]. Because of this ‘soft’ 2-DOF constraint,
the estimated projector position does not have scale ambiguity.

The optimized cost function is defined as follows:

1. The cost function takes 6 parameters p1, p2, q1, q2, q3, q4, representing the
3D position of the projector (rotation R and translation t) relative to the
endoscope camera, where p1 and p2 are 2-DOF parameters described in [1],
and q1, · · · , q4 represents the rest of the fill 6-DOF rigid transformation that
should be supressed.

2. For the markers mi, the corresponding epipolar line is calculated, and the
distance between mi and the epipolar line is calculated as gi.

3. The virtual silhouette of the projector is rendered as a cylinder moved by the
rigid transformation R and t. From each sj , the minimum distance from sj
to contours of the rendered silhouette is calculated as hj .

4.
∑

i(gi)
2 +w1

∑
j(hj)2 +w2

∑
k(qk)

2 is calculated as the cost value, where w1

is weight of the cost of silhouette fitting and w2 is weight for supresson of the
parameters representing the deviation from the 2-DOF freedom [1].

In current implementation, selection of the marker position and sampling
points on the silhouette contour are conducted manually for each frame in image
sequences and auto-calibration should be conducted for each frame. Further
automation for point selection will be our future work.
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5 HDR Synthesis Using Asynchronous Blinking Pattern

To synthesize HDR image, usually multiple-exposure images are required. How-
ever, it is not possible to capture such images with commonly available endo-
scopic systems. To solve the issue, we control the light source instead of the cam-
era, i.e., blinking the pattern in this paper. Note that we just switch the pattern
on-and-off periodically without synchronization mechanism, such an implemen-
tation is simple and easy.

The reason why just two intensities for the projector are fine to synthesize
HDR whereas usually multiple exposures are required, is based on the difference
of frequency of the camera and the projector. Suppose n Hz for the camera and
m Hz for the projector. Usually video mode of camera is set burst mode, i.e.,
the shutter is always open, and the shutter speed is 1/n sec. On the other hand,
switching (on-and-off) signal makes half of exposure time, i.e., 1/(2m) for the
projector. Then the exposure time is 1/(2m)−s, when the offset is s(s < 1/(2m),
n < 2m). Since s varies at each capture because of the frequency difference,
exposure time is also changed at each capture as shown in Fig. 4. For example,
if n = 30 and m = 26, then exposure time varies approximately with 8 Hz and
we can synthesize HDR using the 8 frames. Then, tone mapping is applied to
the HDR images to make 8bit images, which allows to use conventional image
processing tools.

To make HDR, exposure time is supposed to be known. If the camera and
the projector are synchronized, the s is known and an exact exposure time can
be calculated. However, it requires a complicated device to achieve synchroniza-
tion. To avoid such additional devices, we estimate the exposure time only from
captured images. In our implementation, we simply average the intensity of the
pattern excluding outliers with simple thresholding technique for each frame and
use the ratio of the average as for the ratio of exposure time.

Normally, multiple-exposure for HDR image synthesis is conducted for a
static camera and the scene. Since the endoscope and the target tissue can be
move, they are not static. However, for the above setup of n = 30 and m = 26,
we can obtain a image set of around 8 different exposure in 1/4 s, which is short
enough to assume the camera and the scene is static if we hold the endoscope
still.

Fig. 4. Relationship between a shutter speed and a pattern projection time: ti repre-
sents an exposure time.
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6 Experiments

6.1 Improvement Using HDR Image for 3D Reconstruction

To show effectiveness of the HDR image generation, we tested our algorithm
using a human hand as the target object. We first captured images of the target
surface which is projected by a blinking laser pattern projector. Although pattern
is just illuminated bright and dark repeatedly, we could obtain an image sequence
with different exposures. We have extarcted 8 images of one multi-exposure cycle
I1, I2, · · · I8. I1, I3, I5 and I7 are shown in Fig. 5. With our HDR image synthesis
method, image sequence of single period of intensity change is automatically
extracted by finding the darkest frame in three consecutive frames; Fig. 5 is one
of such sequence.

Then, HDR image is created from the sequence, and then, tone-mapped for
3D reconstructed algorithm. The HDR image is shown in Fig. 6(b). The 3D
reconstructed results with/without HDR algorithm are shown in Fig. 6(c) and
(d). The numbers of reconstructed points for each frame and HDR image are
shown in Fig. 7. From Fig. 7, we can confirm that the area that was successfully
reconstructed from the HDR image was larger than the results of the any of the
original input images. In Fig. 6, we can see that the regions around the brightest
center marker were reconstructed in the result of IT (HDR image), whereas, in

Fig. 5. Original images: I1, I3, I5, I7 from 8 images I1, I2, · · · , I8. Note that the expo-
sure was changing frame by frame.

(a) I5 (b) IT (c) Result of I5 (d) Result of IT

Fig. 6. Comparison between the original and the tone-mapped HDR images. (a) I5
from Fig. 5, which was most successfully reconstructed in images I1 to I8. (b) The
tone-mapped HDR image generated from I1 to I8. (c) 3D reconstruction result of (a).
(d) 3D reconstruction result of (b).
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Fig. 7. Comparison of 3D reconstructed areas of original and tone-mapped HDR
images.

the result of I5 (note that I5 was the most successfully reconstructed image from
Fig. 7), the same regions were not reconstructed. In Fig. 6, we can also see that
the noises in the source images are reduced in the tone-mapped HDR image,
because multiple images are merged so that independent noises are suppressed.
From the results, we have confirmed that HDR image enhanced the image quality
and reduced the negative effects of over and under exposures and noises.

6.2 3D Reconstruction Inside Stomach of a Pig

To evaluate the system in more realistic conditions, we captured shapes inside
a stomach of a pig, which is often used for evaluation purpose and practice
of endoscopists. To evaluate the scales captured by the 3D endoscope, we first
curved several markers on the surface of pig’s stomach, then, reconstruct 3D
shape of the entire surface. The distances between the two markers are estimated
and compared to the ground truth, which is obtained by measuring the real
distances between the markers after the measurement process; we cut and opened
the stomach. Since the stomach was inflated while the endoscopy diagnosis, the
ground truth distances that are actually measured were considered to be smaller
than the estimated distance with our technique. To compensate such error, we
also measure the ground truth distance while expanding the stomach surface
manually.

Figure 8 shows the experimental situation and the measurement results. Com-
parison between estimated results and ground truth are shown in Table 1. The
precision was about 5.0% and 2.1% from the unexpanded ground truth. Consid-
ering the difference of measurement situation, we could conclude that the mea-
surement was sufficiently accurate. In Fig. 8(g) and (h), we also show the result
of auto-calibration. In Fig. 8(g), which shows situation before auto-calibration,
the rendered silhouette of the projector is different from the captured silhouette
of Fig. 8(e). After auto-calibration shown in Fig. 8(h), the projector position fits
to the captured image, and the epipolar lines lie on the marker position.
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Fig. 8. 3D reconstruction of bio-tissue inside a pig stomach with markers. (a) The
environment of the experiment. (b) The pig-stomach cut open after experiment session.
(c) The appearance inside the stomach with marker positions. (d) The captured image
with the pattern projected. (e) The HDR enhanced image. (f) The detected grid graph.
(g), (h) Before and after the auto-calibration of the projector. The rendered projector
positing is the read cylinder and the epipolar lines are pink line segments. (g) is before
the auto-calibration and (h) is after the auto-calibration. (i), (j) Reconstructed 3D
shape rendered from two different view points. (k), (l) Distance measurements between
the two markers. Red regions are reconstructed areas. (Color figure online)

Table 1. Estimated distances between two markers of pig stomach

Marker IDs Ground Truth Ground Truth (expanded) Our result

1 and 2 24.6 mm 29.4 mm 25.9 mm

2 and 3 14.2 mm 15.1 mm 13.9 mm

While measuring the pig’s stomach, we also measured more complicated
shapes such as ridges on the surface. Figure 9 shows examples of the captured
images and the reconstructed shapes. We can confirm that the ridges or concaves
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ridges

(a) (b) (c) (d)

ridges

(e) (f) (g) (h)

Fig. 9. 3D reconstruction of bio-tissue inside a stomach with complicated shapes. (a)
The HDR processed input image. (b) The detected grid graph with codes. (c)(d) The
reconstructed shapes viewed from different directions. (e)–(h) Another result. Note
that ridges of the surface are successfully reconstructed in the 3D shape.

of the bio-tissues are captured in the 3D reconstruction results, which proves that
our technique can recover dense shape of complicated surfaces.

7 Conclusion

We proposed a 3D endoscopic system based on an active stereo, where the laser
pattern projector consists of a DOE that generates a special line-based grid
pattern. Since the laser projector has a strong light intensity and dynamic range
of the camera is not enough, we propose a new HDR image synthesis technique
using a blinking modulation applied to the projector. In addition, the head of
endoscope dynamically moves during an actual operation, and thus, the relative
position of a camera and a projector is not fixed with respect to each other. Since
the relative position should be known for 3D reconstruction, we propose an auto-
calibration technique using the silhouette of the pattern projector. The ability
of the techniques were confirmed by intensive experiments using real endoscopic
systems and demonstrated by reconstructing the 3D shape of the inside surface
of a pig’s stomach. Our future work is to construct the realtime system and use
it to actual diagnosis and operations.
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Abstract. Colorectal cancer is the second cause of cancer death in United
States: precursor lesions (polyps) detection is key for patient survival.
Though colonoscopy is the gold standard screening tool, some polyps are
still missed. Several computational systems have been proposed but none
of them are used in the clinical room mainly due to computational con-
straints. Besides, most of them are built over still frame databases, decreas-
ing their performance on video analysis due to the lack of output stabil-
ity and not coping with associated variability on image quality and polyp
appearance. We propose a strategy to adapt these methods to video analy-
sis by adding a spatio-temporal stability module and studying a combina-
tion of features to capture polyp appearance variability. We validate our
strategy, incorporated on a real-time detection method, on a public video
database. Resulting method detects all polyps under real time constraints,
increasing its performance due to our adaptation strategy.

Keywords: Polyp detection · Colonoscopy · Real time · Spatio temporal
coherence

1 Introduction

Colorectal cancer (CRC) is the second leading cause of cancer death in United
States, causing about 49,190 deaths during 2016 [1]. CRC’s early diagnose is cru-
cial for patient’s survival, as precursor lesions (known as polyps) may degenerate
into cancer over time. Several techniques have been proposed for lesion screening,
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): CARE/CLIP 2017, LNCS 10550, pp. 29–41, 2017.
DOI: 10.1007/978-3-319-67543-5 3
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such as Wireless Capsule Endoscopy (WCE) or Virtual Colonoscopy (VC) but
colonoscopy is still considered as the gold standard tool as it can detect lesions of
any size (contrary to VC) and it allows lesion detection and removal during the
same procedure (contrary to WCE). Nevertheless, colonoscopy has its own draw-
backs being the most relevant of them polyp miss-rate, reported to be up to 22%
for the case of small size or flat polyps [10].

Three types of approaches have been tackled to overcome these drawbacks:
(1) improvement of endoscopic devices (magnification endoscopes [6]), (2) the
development of new imaging technologies such as virtual chromoendoscopy [7,12]
and (3) the proposal of computational support systems for colonoscopy aiming
to support clinicians during/after the procedure.

Regarding computational systems, several efforts have already tackled auto-
matic polyp detection in colonoscopy videos, ranging from classical hand-crafted
shape-based methods [4] to pure machine learning approaches [2,8]. Recently,
trending techniques such as deep convolutional networks have been also pro-
posed [13,14] and a comparison between a large number of them was presented
in [5] in the context of a global polyp detection challenge.

Despite the large number of approaches, none of them, to the best of our
knowledge, are currently used in the exploration room due to: (1) not meeting
real-time constraints, (2) not being tested on full length colonoscopy procedures
and (3) being developed using still frame data (as fully public annotated video
databases are not available). Regarding the latter, development over still frame
data present the following problems associated to video analysis: absence of
temporal coherence in method output and lack of adaption to higher variability
in structures appearance (polyps and other elements) and image quality.

We present in this paper a methodology to adapt existing still-frame based
polyp detection methods to video analysis. Our strategy consists of the addi-
tion of a spatio-temporal coherence module to stabilize methods output and the
combination of different feature types to capture polyp appearance variability
throughout a video. We integrate our strategy over an real-time polyp detection
method [2]; the whole methodology is validated over a fully publicly annotated
video database [3]. This validation is performed using a set of performance met-
rics chosen to fully represent method performance.

The structure of the rest of this paper is as follows. Section 2 introduces the
adaptation strategy as well as the reference polyp detection method. In Sect. 3 we
detail the experimental setup, results of which are shown in Sect. 4. We discuss
in-depth the performance of the proposed methodology in Sect. 5. We finally the
main conclusions of this study are drawn in Sect. 6.

2 Method

2.1 Reference Real-Time Still Frame-Based Polyp Detection
Method

As explained in Sect. 1, we will use as reference method the one proposed in [2]
which offers a good tradeoff between performance and associated processing time
(0.039 ms, meeting real-time constrains over 25 fps videos). This active learning
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Fig. 1. Still-frame processing pipeline

methodology consists of two different stages: (i) a Cascade AdaBoost learning
step for the computation of a classifier, and (ii) a strengthening strategy based
on active learning principle using Hard Negative examples [16]. Active learning is
used to reinforce the classification performance by adding new negative examples
produced by the initial classifier to the learning database.

This initial classifier is trained using six patches from each image of the
training database (CVC-ClinicDB [4]): one positive patch covering completely
the polyp and five negative ones without any polyp content. We use the Cascade
Adaboost strategy (10 stages, with for each of them a targeted true positive rate
of 99% and a false positive rate of 50%) to obtain this initial classifier, which
is tested as a polyp detector function on each of the images of the complete
dataset. As a result, the classifier provides a set of regions of interest (RoIs)
where it predicts polyp presence. We compare prediction results over ground
truth; all RoIs that do not contain a polyp are fed into the learning process as
hard negative training patches so a new Cascade Adaboost classifier is created.
An overview of the full processing training/learning scheme is shown Fig. 1. This
process is repeated several times to obtain an optimal performance level. The
interested reader can find a full description of the methodology at [2].

2.2 Combination of Feature Types

The use of texture-based descriptors (Local Binary Patterns) was proposed in
[2] due the polyp appeared different enough from its surroundings due to the
good selection of polyp shots from the corresponding videos. Unfortunately, in
full video analysis, the number of false alarms grow due to variations in image
quality and polyp appearance and due to the presence of other endoluminal
scene elements which can deviate detectors’ attention from the polyp.

The reference method allows an straightforward aggregation of other features
to complement LBP though it is important to consider the potential impact in
computational time of these new features. We propose to combine LBP with Haar
features [11] because of the following two reasons: first, they can be fastly com-
puted by using the usual “integral image strategy”. Second, they can offer com-
plementary information to LBP in a way such if LBP are more sensitive to the
gradient information inside an image, Haar, by computing contrast/homogeneity
parameter, can be related to geometrical local properties of a given RoI.
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Fig. 2. Spatio-temporal coherence module: (a) Example of spatio temporal instability
in the output of still frame polyp detection methods when applied on full sequences. (b)
Graphical explanation of the proposed solution: Green boxes represent the output in
the current frame, blue boxes represents outputs in the previous frames. Green dashed
lines connect similar RoIs in consecutive frames (kept in method output) whereas red
ones represent unconnected RoIs between consecutive frames (removed in the output).
(Color figure online)

2.3 Spatio-Temporal Coherence Module

One big drawback of the use of still-frame based methods for video analysis is
that, by default, they do not consider information of previous frames to deter-
mine the output of the current ones. Due to this, a given method can show
a performance like the one shown in Fig. 2(a) where we can observe that the
method is not able to provide a stable output between consecutive frames.

To mitigate this, we propose the decision tree shown in Fig. 3. It is important
to mention that to calculate the initial output for a given frame we first perform
intra-frame block fusion to only provide as output candidates those RoIs where
more individual outputs have been provided by the classifier. Once this is done,
when calculating the final output for a given frame, the system considers also
the RoIs provided by the classifier in the two previous frames in a way such if
RoIs from the previous frame overlap with RoIs provided for the actual frame,
these RoIs are kept to generate the final output. If it is not the case, those RoIs
without spatio-temporal overlap are not included in the final output.

Fig. 3. Decision tree implemented to warrantee spatio-temporal coherence in method
output
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Table 1. Statistics of CVC-ClinicVideoDB database. PF stands for polyp frames,
NPF for non-polyp frames and Paris represents morphology of the polyp according to
Paris classification (0-Is for sessile polyps, 0-Ip for pedunculated polyps and 0-IIa for
flat-elevated polyps).

Video PF NPF Paris Video PF NPF Paris Video PF NPF Paris

1 386 112 0-Is 7 338 103 0-Is 13 620 4 0-Is

2 597 176 0-Is 8 405 44 0-IIa 14 2015 45 0-Is

3 819 153 0-Is 9 532 19 0-Ip 15 360 215 0-Is

4 350 40 0-Is 10 762 78 0-IIa 16 366 5 0-Is

5 412 78 0-Is 11 370 130 0-Is 17 651 146 0-IIa

6 522 335 0-Ip 12 261 124 0-IIa 18 259 122 0-Ip

Fig. 4. Examples of (a, c) original image and (b, d) associated ground truth.

3 Experimental Setup

3.1 Validation Database

We validate our complete methodology over the first fully publicly available video
annotated database (CVC-ClinicVideoDB) database, which comprises 18 differ-
ent standard definition video sequences all showing a polyp. These sequences
have been recorded using OLYMPUS QF190 endoscopes and Exera III video-
grabber. CVC-ClinicVideoDB contains 10924 frames of size 768 × 576, of which
9221 contain a polyp. Table 1 shows statistics of each of the videos of CVC-
ClinicVideoDB, including Paris morphology [9] of the different polyps. Ground
truth for each frame corresponds to a binary image in which white pixels cor-
respond to polyp pixels in the image (images without polyps do not have any
white pixels). CVC-ClinicVideoDB ground truth consists of an ellipse approx-
imating polyp boundary. We show some examples of original images and their
corresponding ground truth in Fig. 4.

3.2 Performance Metrics

Before defining the different metrics used to assess method performance, it is
worth to mention that the output of the method for a particular frame consist
of a series of bounding boxes representing the different RoIs provided by the
classifier.
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Following guidelines depicted in [5], we will use as first indication of correct
detection (True Positive, TP) if the centroid of the RoI falls within the polyp
mask. As in this first version of the database we provide ellipses for a weak
labelling of the polyp, we have incorporated two additional criteria to determine
a TP: (1) having pixel-wise precision within the RoI is higher than 50% (to cover
the case of very big polyps against an small RoI) or (2) having a small distance
to the centroid of the RoI to the border of the ground truth mask or a pixel-wise
recall higher than 50% (to cover the case of small polyps enclosed within a large
ground truth area). It is important to mention that we will only account one
TP per polyp region in the image, no matter how many RoIs detect it. In case a
polyp in a frame is not detected, we have a False Negative (FN) - we can have as
many FNs as polyps in the image -. RoIs without overlap with a polyp region are
accounted as False Positives (FP) - there can be more than one FP per image -
and, finally, the absence of RoIs in a frame without a polyp is defined as a True
Negative (TN).

From these definitions, we can calculate the following aggregation metrics:
(1) Precision (Prec = 100 ∗ TP

TP+FP ), (2) Recall (Rec = 100 ∗ TP
TP+FN ) and (3)

F1-score (F1 = 2∗Prec∗Rec
Prec+Rec ).

We also calculate the following metrics to account for clinical usability:

– Polyp Detection Rate (PDR) checks whether a method is able to detect the
polyp at least once in a sequence, following guidelines depicted in [15].

– Mean Processing Time per frame (MPT). Considering videos are recorded at
25 fps, 40 milliseconds is the maximum time processing of a new frame can
take to avoid delaying the intervention. MPT includes both frame processing
time as well as displaying the results on the monitor.

– Mean Number of False Positives per frame (MNFP).
– Reaction Time (RT) represents the delay (in frames and seconds considering

a frame rate of 25fps) between first appearance of the polyp in the sequence
and the first correct detection provided by the method [4].

4 Results

4.1 Quantitative Results

We present quantitative results in Table 2, broken down by the different aspects
we wanted to test in the study (impact of adaptation strategy, computational
efficiency). Before introducing a breakdown of the results, it is important to men-
tion that, as the methodology over which we have incorporated our adaptation
strategy incorporates strengthening stages, we will distinguish each strengthen-
ing iteration with a cardinal index starting by 0 in a way such classifier Ni will
refer to a classifier computed with i strengthening steps.

The first important result to be extracted from Table 2 is that the method-
ology is able to detect all different polyps in the different sequences at least in
one frame, using the same definition proposed in [15]. The basic configuration
of the system, as presented in [2], achieves the smallest reaction time.
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Table 2. Overall performance results.

Method PDR MPT MNFP Prec Rec F1 RT

Impact of the type of feature descriptor used

LBPN0 100% 140ms 3.5 12.42% 54.65% 20.24% 7.2 [0.3 sec]

HaarN0 100% 24ms 1.4 23.29% 46.82% 31.10% 17.5 [0.7 sec]

Impact of spatio-temporal coherence (STC)  
LBPN0 noSTC 100% 140ms 3.5 12.42% 54.65% 20.24% 7.2 [0.3 sec]

LBPN0 100% 140ms 1.9 16.25% 41.25% 23.31% 35.0 [1.4 sec]

HaarN0 noSTC 100% 24ms 1.4 23.29% 46.82% 31.10% 17.5 [0.7 sec]

HaarN0 100% 36ms 0.9 27.02% 39.61% 32.12% 38.3 [1.5 sec]

Impact of network strengthening

LBPN0 100% 140ms 1.9 16.25% 41.25% 23.31% 35.0 [1.4 sec]

LBPN1 100% 160ms 1.1 27.11% 46.02% 34.12% 43.7 [1.7 sec]

LBPN2 100% 162ms 0.7 29.88% 34.96% 32.22% 45.9 [1.8 sec]

HaarN0 100% 36ms 0.9 27.02% 39.61% 32.12% 38.3 [1.5 sec]

HaarN1 100% 21ms 0.6 39.14% 42.56% 40.78% 27.3 [1.1 sec]

Impact of feature aggregation)

LBPN2 100% 162ms 0.7 29.88% 34.96% 32.22% 45.9 [1.8 sec]

HaarN1 100% 21ms 0.6 39.14% 42.56% 40.78% 27.3 [1.1 sec]

Aggregation 100% 185ms 1.1 30.39% 52.40% 38.47% 15.0 [0.6 sec]

With respect of the type of features used, we can observe a positive difference
associated to the use of Haar features which leads to a great reduction in the
number of false positives while keeping real-time constraints and a similar recall
(higher F1-score). LBP offers a slower processing time (140 ms per image) and
an excessive number of false alarms (around 3.5 FP per image), which makes its
use not compatible with a clinical use.

We broke down the results according to polyp morphology, under the assump-
tion that Haar features should perform better for those types in which the
contour can be clearly observed. We present results of this side experiment in
Table 3. On the one hand, we can observe how LBP achieves a higher F1-score for
flat polyps (higher recall for a similar precision); we associate Haar’s worse per-
formance to the lack of strong contours. In this case, LBP takes advantage of the
difference in pattern between polyp and mucosa. On the other hand, for pedun-
cular polyps in which their contours are clearly recognizable, we can observe a
clearly superior performance of Haar in all performance metrics, especially with
respect to RT (difference of more than 3.5 s with respect to LBP).

The use of our spatio-temporal coherence module results on an improvement
in the overall performance for both descriptors, decreasing in a significant way
the average number of FPs per image (lower than one for Haar descriptor). We
can also notice that, for both descriptors, the average detection latency is now
more than a second. We associate this to false positives damaging posterior good
detections. Only Haar presents a MCT compatible with real time constraints



36 Q. Angermann et al.

Table 3. Impact of Paris morphology on overall performance results. N1 classifiers are
used for both for LBP and Haar features, as well as spatio-temporal coherence.

Method MNFP Prec Rec F1 RT

0-Is (sessile,11 polyps)

LBPN1 1.3 23.93% 40.84% 30.18% 40.6 [1.6 sec]

HaarN1 0.6 38.01% 41.32% 39.59% 22.3 [0.9 sec]

Aggregation 1.2 27.93% 48.18% 35.36% 21 [0.8 sec]

0-Ip (peduncular,3 polyps)

LBPN1 1.0 31.4% 51.10% 38.90% 89.0 [3.6 sec]

HaarN1 0.5 50.46% 57.50% 53.75% 4.0 [0.1 sec]

Aggregation 1.1 40.28% 64.73% 49.66% 4.0 [0.1 sec]

0-IIa (flat, 4 polyps)

LBPN1 1.1 34.62% 59.35% 43.73% 18.0 [0.7 sec]

HaarN1 0.6 35.14% 37.08% 36.08% 58.5 [2.3 sec]

Aggregation 0.8 32.32% 58.10% 41.54% 7.0 [0.3 sec]

(36 ms). Considering the overall positive impact of spatio temporal coherence,
in the following it will be applied for all experiments.

Though clearly more specific to the reference methodology used, Table 2
shows the benefit of the strengthening strategy for both descriptors. The overall
performance is improved though, for the case of LBP, the mean computation
time remains incompatible with a clinical use, and the detection latency is not
far from 2 s for LBPN2 classifier. Haar descriptors definitely appear here more
compatible with a daily routine use since for HaarN1 the mean latency is only
of 1.1 s but with 14 videos (on the overall 18) presenting with an average RT
lower than 0.4 s; the mean computation time is only of 21 ms with a max value of
only 25 ms for video 14 and, finally, the overall performance levels obtained are
the best from all the experiments presented in this paper in terms of trade-off
between true and false alarms.

One of the reasons of studying the use of different type of features was to
observe whether the combination of several feature types could lead to an over-
all performance improvement. Our experiments yield an interesting result: the
combination of LBP and Haar classifiers leads to a significant increase of the
TP detection rate since the Recall reaches its highest value considering the all
set of experiments achieved in this section. Results indicate that LBP and Haar
can detect different kind of polyp (RoIs) in a complementary way. Neverthe-
less, from a clinical applicability perspective, even if the mean RT is only of
0.7 s when combining both classifiers, as expected, the mean processing time per
frame is constrained by LBP classifier performance which is of an average value
of more than 185 ms. Finally, we can observe in Table 3 how the combination of
feature descriptors help to improve recall scores and to reduce computation time
regardless polyp morphology.
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The first conclusion that we can extract from the analysis of the results
presented is that our proposed adaptation strategy does improve the performance
of still-frame based methods when dealing with video analysis. The use of spatio-
temporal coherence leads to a reduction in the number of false positive alarms
whereas the combination of different types of features lead to an increase in
the number of polyp frames correctly detected. It is important to mention that
some of these improvements come at the cost of losing real-time capabilities
and efforts should be made to improve the computational cost of some of the
proposed improvements (such as the combination of LBP and Haar features).

5 Discussion

5.1 Impact of Adaptation Strategy on Method’s Performance

With respect of the specific feature descriptor used, we observed better perfor-
mance related to the use of Haar features. We associate this to the fact that in
video sequences, differences in texture between mucosa and the polyp become
less relevant and, in this case, the presence of strong boundaries delimiting the
different structures such as polyps in the image may appear more useful than
texture analysis. Nevertheless, it has to be taken into account LBP’s offers best
performance for the case of flat polyps, which are those recurrently mentioned
by clinicians as one of the main causes of polyp miss-rate. If the decision on the
descriptor to use depends on real time constraints, Haar is the way to go but,
as Fig. 5(a–d) shows, the combination of both descriptors might increase overall
performance.

With respect to spatio-temporal coherence module, its inclusion has led to
a reduction in the number of false alarms but it has also lead to a decrease
in performance scores on Recall or RT. We associate this decrease to isolated
correct detections not kept through consecutive frames therefore leading to miss
the polyp in the whole subsequence of frames. In this case efforts should be
made to clearly identify the polyp target to be tracked in order to only mitigate
false alarms and not those correct ones. Consequently, efforts should be put on

Fig. 5. Differences in performance associated to the specific feature descriptor used:
(a, c) show the output of Haar descriptor whereas (b, d) show the output achieved
using LBP as descriptor.
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Fig. 6. Evolution of the AvPDR metric with respect to the threshold value applied to
the Recall on each video.

identifying and tackling appropriately the source of those false alarms which
might involve, as some authors propose [4], considering the impact of other
elements of the endoluminal scene.

5.2 Frame-Based Analysis vs. Clinical Applicability

We have presented in Sect. 3 two sets of metrics to represent the performance of a
given method. It is clear that clinicians will be mainly interested on whether the
computational system is able to detect the polyp once it appears in the image.
As the polyp is detected, their attention will deviate to other areas in the image.
Considering this, a good performing method could be one that only detects the
polyp in one frame being this frame the first in which the polyp appears in the
sequence. As this kind of system does not warrantee good performance under
exploratory conditions, frame-based and clinical applicability metrics should be
combined to represent actual method performance.

To solve this, we propose to combine the most clinically relevant metric
(PDR) with Recall into a new metric representing both whether the method is
able to detect the polyp and that this detection occurs in a relevant number
of frames. We define the Average Polyp Detection Rate (AvPDR) to checks
whether a method is able to detect the polyp in a set of sequences with respect
to a minimum value for Recall. We calculate AvPDR in the following way: for
each video we set individual (IndPDR) score to 1 if Recall score for the particular
video surpasses Recthres value. Final AvPDR score for the whole dataset will be
calculated as the mean of individual InDPRs. To illustrate this, Fig. 6 shows the
evolution of the AvPDR for different values of the Recall and for the three last
computed classifiers LBPN2, HaarN1 and aggregation of both.

As it can be seen, the AvPDR brings very interesting insights on the capac-
ity of a given method to detect the polyp with a given minimum Recall. In
our case, the aggregation of LBPN2 and HaarN1 classifiers makes possible to
systematically detect the polyp in all videos with a minimum Recall of 20%.
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5.3 Analysis of Methods’ Performance in the Context
of the State-of-the-Art

As mentioned in Sect. 1, there are many available polyp detection methods in
the literature, some of them already showing quite good performance as it can
be observed in [5]. The main objective of our work was not to develop the
best polyp detection method but to show how still frame-based methodologies
databases could still be valid for full sequences analysis.

Due to the lack of publicly available annotated video databases, we can only
compare global performance scores of different methods even if they have not
been tested under the same conditions. In this sense, our approach obtains similar
performances in PDR and Reaction time than those achieved by the best meth-
ods presented in [5]. As mentioned before, we are not worried here about frame-
based performance (though it has to be improved for sure) but on whether the
system can be of actual clinical use hence the focus on real time performance. We
also believe that, once public video databases become more available, methods
performance (especially machine learning ones) will benefit from being trained
on them as they will cover a wide variety of polyp appearances.

Finally and to assess actual clinical applicability of a given method on the
exploration room, we believe efforts should also be made on incorporating full
realistic interventions as part of the databases in a way such once the polyp is
found the clinician progresses through the colon without the need of observing
the polyp in different views, typical from still frame database creation protocols,

6 Conclusions

We have presented in this paper a study on how to adapt still frame based
polyp detection methodologies to full sequences analysis. Our adaptation strat-
egy involves the addition of a spatio-temporal coherence module and the com-
bination of feature descriptors. We have tested the impact (in performance and
computational efficiency) of this adaptation strategy implementing them over
an already existing real time polyp detection method trained on still frame
based databases. We validate the complete methodology over a newly published
video database of 18 sequences using a set of clinical and technical performance
metrics.

The main conclusion extracted from this study is that the addition of a spatio-
temporal coherence module and the combination of feature descriptors lead to
an overall improvement on method performance over full sequences; once these
modules are applied over the reference method, the proposed methodology is
able to detect all different polyps in at least one frame in the sequence.

It has to be noted that the best performing configuration is not ready for
clinical use due to not meeting real time constraints; efforts should be made to
increase the computational efficiency of the different modules proposed. Apart
from this, we also foresee the following areas of improvement: (i) add an image
preprocessing stage to mitigate the impact of other elements of the endoluminal
scene (which can impact when the first correct detection occurs), (ii) incorporate
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computationally efficient camera motion tracking methods to improve spatio-
temporal coherence and (iii) study the possibility of incorporating additional
feature descriptors to improve overall performance. Moreover, our method should
be trained over video sequences in order to capture better the great variability
of polyp appearance within a same sequence.
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Abstract. In this paper, we presented a progressive strategy based on an invariant
point to accomplish hand-eye calibration for laparoscopic surgery navigation. An
invariant dot was imaged by a stereo laparoscopy, the 2D image coordinate of the
invariant dot was calculated by the blob detection algorithm, and mapped into the
3D coordinate system by the triangulation. In the meanwhile, reflective passive
markers (RPM) fixed on the distal end of a stereo laparoscope was located by an
optical tracking system. The Levenberg-Marquardt (LM) algorithm was used to
iteratively estimate the hand-eye transformation based on the dot image coordi-
nates and RPM’s poses. One pair of dot image coordinate and RPM’s pose were
acquired in each iteration procedure, and were added into their accumulated data
buffer as the input of LMoptimization. The calibration error was calculated as well
for each iteration. To evaluate accuracy of the proposed method, laboratory
experiments were conducted by computing two errors, including forward error
and backward error. The results show that the minimal forward error of 1.32 mm
and backward error of 0.86 pixels were obtained at the 8th iteration. In conclusion,
the high calibration accuracy can be achieved with a few progressive iterations by
our method. Additionally, the proposed approach provided a way for operators to
monitor the procedure so that the calibration process can be stopped when the
procedure feedbacks an acceptable accuracy.

Keywords: Hand-eye calibration � Laparoscopic surgery navigation �
Progressive calibration � Invariant point

1 Introduction

Laparoscopic surgery is a popular clinical procedure because of its minimal inva-
siveness and shorter postoperative hospital stays relative to open surgery. However,
this procedure is always limited by restricted field of view and lack of tactile feedback.
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To overcome these limitations, image-guided surgery system [1] and surgical robotic
[2] have been developed. Hand-eye calibration is a well-known term in robotics lit-
erature; for laparoscopic surgery navigation, “hand” denotes the reflective passive
markers (RPM) attached to the laparoscope, and “eye” denotes the laparoscopic
camera. Hand-eye calibration determines the position and orientation of the laparo-
scopic camera relative to the (RPM), is an important procedure for implementing a
navigation system for laparoscopic surgery.

The hand-eye calibration can be formulated as a linear system of equations as:

AX ¼ XB ð1Þ

where A denotes the relative motion of laparoscopic camera, B is the motion of the
RPM, and X represents the hand-eye transformation. Tsai and Lenz [3] have proven
that at least two motions are required to solve Eq. (1).

Many methods have been proposed to estimate the hand-eye transformation. It can
be decomposed into a rotation matrix and a translation vector. The most commonly
used method was realized by computing the rotation and the translation separately [4],
while the rotation and the translation can also be jointly estimated [5]. Horaud et al. [6]
proved that the camera intrinsic calibration is not independent from hand-eye cali-
bration. Malm and Heyden [7] investigated a joint solution for a camera intrinsic
calibration and hand-eye calibration using an unfixed planar calibration object for robot
vision. Malti et al. [8] proposed a similar hand-eye calibration approach, they estimated
the optimal camera parameters as well as hand-eye transformation based on the min-
imal number of the calibration object images.

Although hand-eye calibration has been well-studied within robotic field, it is
challenging to transfer these methods from robotic literature into laparoscopic surgery
directly. Because different situations existed in laparoscopic surgery, the proposed
method is required to be compatible with sterility constrains and not to interrupt the
surgical workflow. Recently, Thompson et al. [9] proposed a novel calibration method
for laparoscopic surgery navigation. In their work, an invariant cross-hair point was
imaged by a stereo laparoscope with different views; positions of the invariant point
were automatically calculated from laparoscopic images, and the Levenberg-Marquardt
(LM) optimizer was used to estimate an optimal hand-eye transformation based on
extracted invariant points and poses of RPM. However, the accuracy of their method
would be compromised with inaccurate cross-hair detection or outlier data input.

Inspired by the work of Thompson et al. [9], we proposed a progressive strategy
based on an invariant point for hand-eye calibration. In this strategy, the hand-eye
transform of the i-th iteration was initialized with the results of i-1 iteration, and
updated based on the accumulation data buffer of the i-th iteration. Different from the
invariant point used in Thompson’s work, a fixed small dot acting as the invariant point
was applied in our method. To evaluate accuracy of the proposed method, two errors
were calculated at each iteration. With the iterative evaluation, the operator can set a
desired error prior to calibration and terminates the hand-eye calibration when the
procedure gives an acceptable value.
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2 Methods

2.1 Hardware

The hardware used in this study is shown in Fig. 1. A Polaris Spectra optical tracking
system (NDI, Waterloo, Ontario, Canada) was employed to record the pose of RPM.
Because the clinical stereo laparoscope is not available, two Ultra Mini CMOS Color
Cameras (MISUMI) were assembled to make a stereo laparoscope (Fig. 1A), its spatial
resolution is 640 � 480 and baseline is 6 cm. The RPM is fixed on the distal end of the
stereo laparoscope. To improve the accuracy of the invariant point detection, we did not
use the cross-hair as an invariant point, any sterile paper marked with one dot can be
used as a calibration object in our work. To guarantee the accuracy of invariant point
extraction, the diameter of the dot was set as 1 mm.

2.2 Progressive Hand-Eye Calibration

The stereo laparoscopic camera was calibrated prior to hand-eye calibration. To obtain
the camera intrinsic and extrinsic parameters, the widely used checkboard method [10]
from OpenCV was applied directly. Because the focal length is fixed in custom-made
laparoscope, camera calibration can be performed prior to the clinical procedure and
saved to a file for the usage at any time. During the procedure of hand-eye calibration,
the laparoscope camera was kept above the dot calibration object, and the RPM was
tracked by the optical positional tracker at the same time. We rotated the laparoscope
within a cone to acquire laparoscopic images of the invariant point (Fig. 2); in this
cone, the vertex is roughly located at the dot, and the rotation angle is about 60°.

We proposed a strategy that laparoscopic images of the calibration object were
iteratively acquired and processed to get an optimal hand-eye transformation. Figure 3
shows the workflow of the proposed method. After capturing the left/right images of
the variant dot, both images were converted into grayscale format and smoothed, the
blob detection algorithm was applied to detect 2D image coordinates of the dot cen-
troid. Based on previously determined camera intrinsic and extrinsic parameters, the 3D
coordinate of the dot centroid in the left camera coordinate system was computed by
triangulation. The 3D coordinate is defined as XL_i, where i denotes the number of
iterations. Meanwhile, the optical position tracking system captured the pose of RPM,
trackerThand i , at the same time.

Fig. 1. (A) Custom-made stereo laparoscope and (B) hand-eye calibration theatre setting.
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Considering that the ith iteration, the coordinate of the invariant point defined in the
left camera space, XL_i, can be transformed to the optical tracker coordinate system (see
the relationship of transformations as shown in Fig. 2), Xworld_i, according to the fol-
lowing equation,

Xworld i ¼ tracker Thand i � handTeye � XL i ð2Þ

Meanwhile, we denote the 3D coordinate of invariant point defined in optical
tracker system space as Xtracker_point = (xt, yt, zt). Therefore, there are two vectors,
Xworld_i and Xtracker_point, representing coordinates for the same invariant point. Theo-
retically, these two vectors should be identical or the residual error E between them is
as small as possible,

Ej ¼ Xworld i;j �Xtracker point j ð3Þ

where j represents the x, y, z components of Xtracker_point.

The hand-eye transformation can be represented as a matrix,
R t
~0 1

� �
, where

R denotes a rotation with three components, and t is a translation which is also can be
divided into three scalars. Thus, there is a total of nine parameters, including R, t, and
three components of Xtracker_point to be optimized. Levenberg-Marquardt optimizer
algorithm was employed to optimize the unknown parameters based on Eq. (3), which
is initialized with Xtracker_point = (0, 0, 0) and an identity matrix of handTeye.

A strategy that progressively adding new frames of the invariant dot into the
workflow to optimize the obtained hand-eye transform was used. We acquired one
frame data of the variant dot from the laparoscopic space and the tracking system
space, respectively. After adding the newly acquired data into the data buffer obtained
before, a new accumulated data buffer was set as the input for LM algorithm to
re-optimize the hand-eye transform.

Optical  Posit ional  Tracking System

Reflective Passive Markers

Laparoscopic Camera

Laparoscope

trackerTha nd

ha ndTeye

eyeTpoint

Xtracker_point

Reflective Passive Markers

Laparoscope

ha ndTeye

eyeTpoint
state_1

state_i

trackerTha nd_i

Fig. 2. Rotate the laparoscope within a cone, its vertex is roughly located at the dot, and its
angle is about 60°.
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The calibration error was evaluated at each iteration. Before the calibration, we
located the invariant dot in the optical tracking system with a tracking probe from the
Polaris Spectra system, then the 3D coordinate of the invariant dot, Xtracker_point, was
obtained. Based on the calculated hand-eye transform, the 3D coordinate of the
invariant dot in the optical tracking system can be mapped into the 2D image coor-
dinate system according to the following equation,

XL project i ¼ handTeye
�1 � trackerThand i

�1 �Xtracker point ð4Þ

where XL_project_i denotes the mapped 2D image coordinate; the calibration error is
evaluated as the distance (in pixel) between the mapped invariant dot and the corre-
sponding ground truth in the laparoscopic image. We evaluated the calibration error
iteratively. The iteration terminates once the error meets the input tolerance, otherwise;
hand-eye calibration program will progressively collect the new frames to perform the
next iteration until the error is acceptable.

3 Experiments

The ground truth data were acquired before calibration to evaluate accuracy of the
proposed method. Through the blob detection, the 2D image coordinate of the variant
dot, XL_base, was computed from laparoscopic images. At the same time, a probe from
Polaris Spectra system was used to locate the position of invariant dot in the tracker
coordinate system, Xtracker_base. The XL_base and Xtracker_base were used as the ground
truth data for the method evaluation. The proposed hand-eye calibration approach was
implemented based on an open-source toolkit of MITK [11] as shown in Fig. 4.

The forward and backward errors were calculated to assess the calibration accuracy.
Based on the obtained hand-eye transform after each iteration, a 2D image coordinate
of the variant dot XL_test, can be mapped into the optical tracker coordinate system to
get a 3D coordinate Xtracker_test, by applying Eq. (2). The forward error is defined as the
distance (in mm) between Xtracker_test and the ground truth Xtracker_base, on the contrary,

Fig. 3. The workflow of the proposed method for hand-eye calibration.
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by applying Eq. (4), the point coordinate estimated from LM optimization, denoted as
Xtracker_estimated, can be mapped into 2D laparoscopic image coordinate system. The
backward error is defined as the distance (in pixel) between mapped 2D coordinate,
donated as XL_estimated, and the corresponding ground truth XL_base.

4 Results

A total of 70 frames data were collected to evaluate calibration accuracy. The forward
and backward errors are depicted in Figs. 5 and 6, respectively.

The accuracy of the proposed method can be guaranteed when the outlier data was
collected, because the procedure can be reinitialized with a reasonable value from a
previous iteration without outlier data, and the error would fall into an acceptable range

Fig. 4. The graphic user interface of the hand-eye calibration implemented using MITK.
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during the next few iterations. For instance, the forward error of the 5th iteration is
41.95 mm. Obviously, it is an outlier input because of a wrong localization of RPM’s
pose, while the error can be decreased into a reasonable range after several iterations.
At the same iteration, the projected error is 39.77 pixels, but the error is also decreased
during the following iterations. The minimum errors were obtained at the 8th iteration
with forward error of 1.32 mm and the backward error of 0.86 pixels, respectively.

5 Conclusion

In this paper, we presented a progressive strategy based on an invariant dot to
accomplish the hand-eye calibration for laparoscopic surgery navigation. The cali-
bration accuracy was evaluated by forward and backward errors in the laboratory
experiments. The results show that the high calibration accuracy can be obtained with a
few progressive iterations. In addition, the proposed method provided a way for
operators to monitor the calibration procedure; they can stop the calibration when the
procedure feedbacks an acceptable accuracy.
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Abstract. Optical colonoscopy is performed by insertion of a long flexible
colonoscope into the colon. Estimating the position of the colonoscope tip with
respect to the colon surface is important as it would help localization of
cancerous polyps for subsequent surgery and facilitate navigation. Knowing
camera pose is also essential for 3D automatic scene reconstruction, which could
support clinicians inspecting the whole colon surface thereby reducing missed
polyps. This paper presents a method to estimate the pose of the colonoscope
camera with six degrees of freedom (DoF) using deep convolutional neural
network (CNN). Because obtaining a ground truth to train the CNN for camera
pose from actual colonoscopy videos is extremely challenging, we trained the
CNN using realistic synthetic videos generated with a colonoscopy simulator,
which could generate the exact camera pose parameters. We validated the
trained CNN on unseen simulated video datasets and on actual colonoscopy
videos from 10 patients. Our results showed that the colonoscopy camera pose
could be estimated with higher accuracy and speed than feature based computer
vision methods such as the classical structure from motion (SfM) pipeline. This
paper demonstrates that transfer learning from surgical simulation to actual
endoscopic based surgery is a possible approach for deep learning technologies.
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1 Introduction

Colorectal cancer is ranked as the type of cancer that is third most likely to claim
people’s lives in Australia, and the fourth worldwide [1, 2]. Optical colonoscopy has
been known as the gold standard method for detecting and removing colonic polyps,
the precursor of bowel cancer [3].

Estimating the colonoscope position with high accuracy is important as it can
determine the location of detected polyps, especially when there is a need for subse-
quent surgery for removing cancerous polyps [4]. Despite the work that has been done
in estimating the colonoscope position (camera pose) from optical colonoscopy [5, 6],
accurately localizing the position of colonoscope with respect to the colon’s surface
remains a critical issue.

Conventional methods to estimate camera motion from an endoscopy procedure
such as optical flow [5–7] or hybrid methods [8, 9] are time consuming, sensitive to
feature matching, require an offline camera or sensor calibration and resulted in a drift
in camera pose estimation. Here, we develop a method based on deep convolutional
neural network (CNN) to estimate relative camera pose between two consecutive
frames, which is independent to traditional feature detection and tracking, and reduces
the camera drift.

In recent years, convolutional neural networks have been widely used in various
computer vision fields. Although they were initially designed for classification pur-
poses [10], the recent CNNs with advanced architectures have shown significant results
in problems including object recognition [11], optical flow estimation [12], and dense
feature matching [13] by means of simulated or actual data. Using artificial neural
networks (ANN), Bell et al. [14] estimated the camera pose of teleoperated flexible
endoscopes by training ANNs with optical flow magnitude and angle when the
endoscope was moved by a robotic hand inside a plastic colon phantom. Recently,
Kendall et al. [15] regressed the camera pose from a single RGB image by training a
CNN with camera pose which was estimated offline by a structure from motion
algorithm as ground truth. The main challenge then was lack of ground truth for scenes
which had not enough features to track to estimate ground truth through SfM. Since
annotating real images is difficult and expensive, application of synthetic data has
boosted its popularity as an alternative to train networks [16, 17].

In this paper, we aim to estimate camera pose from actual optical colonoscopy
video frames. To achieve this, rather than using SfM [15] to generate a ground truth, we
trained a CNN by simulated colonoscopy frames for which the camera poses were
available from the simulator as ground truth. The camera pose for actual colonoscopy
frames was then regressed when the actual colonoscopy frames were passed to the
network. The results obtained from the CNN were compared to a feature based algo-
rithm which is explained in [18]. In addition, the performance of different networks
architecture and input data (optical flow) were investigated. A diagram of our method is
demonstrated in Fig. 1 and described in the following sections.
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2 Method

We presented two approaches, we trained the CNN by optical flow patterns between
consecutive frames, by or alternatively directly by consecutive frames. The camera
pose parameters inferred from the CNN were compared to a structure from motion
(SfM) algorithm [18]. First we briefly describe the preprocessing including frame
preparation for training CNNs with frames, SIFT flow [19] estimation for training with
motion field, and SfM as a camera pose estimation method, before explaining the
proposed CNN’s model architecture and training details.

2.1 Pre-processing and SfM

Frames were prepared through the following steps; (i) frames were converted to grays-
cale, (ii) the black corners were removed as they had no information (iii) frames were
resized to train modified AlexNet and GoogLeNet. The size of input data
(height � width � number of frames) for AlexNet and GoogLeNet were (227�
227 � 2), (224 � 224 � 2) respectively. To estimate the optical flow pattern, the SIFT
flow algorithm [19] was utilized to extract and match features between two consecutive
grayscale frames. The final input data had the size of (227 � 227 � 2), and included
motion field in u and v direction.

2.2 Model for Estimating Camera Pose

In this section, we describe the CNN models that estimate the camera pose parameters.
The input to our models are either: the two consecutive grayscale frames; or optical
flow pattern between consecutive frames. The outputs are relative camera translations
and rotations with respect to the colon surface with six degrees of freedom (DoF).

Learning camera translation and rotation. Camera rotation and translation param-
eters were regressed by training the CNN to minimize the following objective function:

Loss ¼ b � Rtarget � Rpredicted

�
�

�
�
2 þ Ttarget � Tpredicted

�
�

�
�
2

Fig. 1. Main processing steps of our proposed method
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Where b is the weight factor for our dataset is one, (Rtarget; TtargetÞ are camera rotation
(degree) and translation (mm) which are available from the simulator as ground truth,
and (Rpredicetd ; TpredicetdÞ are camera pose parameters predicted by the CNN. The camera
translation is normalized to unit vector and is unit less. In our experiments, the camera
rotation is represented in Eulerian angle (a,w,c). Applying Euclidian distance on Euler
angle may result in more than one set of values which can yield the same angle
representation. According to [21], this can be prevented under the following conditions
on the Euler angles: a, c 2 [−p, p); w 2 [−p/2, p/2), and therefore L2 on rotation is a
metric on SO(3) [21]. In our dataset the maximum of relative rotation is below the
mentioned range in [21].

Network architecture. The base of the architecture of our CNN is the state-of-the-art
GoogLeNet for the direct image pair. We also modified AlexNet for the optical flow
approach to compare the results. These networks were originally designed for image
classification. We applied the following changes on both GoogLeNet and AlexNet to
regress the camera parameters; (i) considering the input data to the network, which are
motion features (u,v) in two dimensions or two consecutive frames in grayscale, the
first convolutional layer filter (filter size; input channel; number of filters) was modified
to (11;2;96) for AlexNet and (7;2;4) for GoogelNet, allowing networks to operate in
two dimensions; and (ii) the Softmax classifier was replaced by two fully connected

Fig. 2. The general architecture of our CNNs to predict camera pose parameters, the first layer is
modified to accept two gray images or optical flow, and the classification layer was replaced by
Euclidean loss to optimize predicted rotation and translation by network. Note that we trained
AlexNet with both optical flow and image for comparison purposes.
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layers, each with three outputs to estimate relative camera rotation and translation. The
outputs of last layers then passed to a Euclidean loss function to regress the camera
pose. The schematic of our networks are shown in Fig. 2.

Training details and transfer learning. The Matconvnet toolbox [22] was used for
the implementation of our CNN model. We trained our network using stochastic
gradient descent on our dataset which included 30,000 grayscale frames and their
optical flow patterns. The batch size and iteration were 580 and 2500 respectively. To
prevent any bias, input data were shuffled and randomly chosen for each batch. Since
the pre-trained networks were used for our experiments, the learning rate was initial-
ized to be 10�4, and every 1000 epochs it was reduced by 0.1, and the momentum was
set to 0.9. We used multi-GPU (Nvidia) for training to accelerate the training com-
putational speed. The trained networks by simulated data then were used to predict
camera pose from actual colonoscopy videos.

3 Dataset

3.1 Simulated Video

The simulated colonoscopy video frames were generated by the CSIRO colonoscopy
simulator, which is explained in [23]. The simulator uses a 3D analytical model of the
colon, with a haptic device allowing inspection of the simulated colon. The parametric
mathematical model of the colon geometry embedded in the simulator allowed us to
generate realistic human colonoscopy videos. The simulator utilized OpenGL to sim-
ulate realistic colonoscopy video based on the model and camera pose, which was used
as ground truth in this paper. Appearance parameters such as illumination and specular
reflection also modeled in simulator software to generate realistic colonoscopy frames.

We generated 30,000 frames from 15 different simulated colons with different
structures, and a variety of possible camera motions. Each frame’s size was
1352 � 1080 pixels, and the simulator recording rate was 30 fps.

3.2 Real Colonoscopy Video

We predicted the camera motion for actual colonoscopy video frames with our trained
CNN on five segments from five different patients, each of which covered around
20 cm of colon. The videos were captured by a 190HD Olympus endoscope, with 50
fps (frame size was 1352 � 1080 pixels). In general 2500 vivo frames were used for
validation.

4 Experiments and Results

4.1 Simulated Video

The networks were trained with 80% of data (chosen from different videos), which
were shuffled to prevent bias in the training phase. The trained networks with optical
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flow pattern and two consecutive grayscale frames were tested on the remaining data.
In our study to demonstrate the performance of CNNs in comparison to a feature based
algorithm; we estimated motion features between consecutive frames, removed unin-
formative frames [20] and computed camera translation and rotation with respect to the
colon surface [18]. The results including the root mean square error (RMS) and
standard deviation (STD) from the ground truth for both CNNs and SfM are shown in
Fig. 3. The results indicate the higher performance of modified GoogLeNet trained by
grayscale frames in comparison to other methods.

To investigate the ability of the trained networks in generalizing the results, the
camera poses were computed using our trained networks from a simulated video
consisting of 450 frames which were never observed by the networks during training or
validation. The outcome for the distance traveled by the colonoscope camera along the
Z direction is shown in Fig. 4, which demonstrates the high performance of the
modified GoogLeNet trained by gray scale images.

4.2 Validation Using a Colonoscopy Phantom

Prior to validating our trained network on actual colonoscopy frames which were
obtained from patients, we estimated the camera pose when colonoscope traveled back
and forth in a straight phantom. It started from a start point, which represented as frame
(s) in Fig. 5, and returned to the same place frame (e). Results for the distance traveled
by camera in Z direction from different networks are shown in Fig. 5. The modified
GoogLeNet which was trained by frames shows the lowest drift in comparison to SfM
(D2) and the AlexNet when it was trained by optical flow (D1).

4.3 Application to Actual Colonoscopy Video

Actual colonoscopy videos from different parts of colons were chosen, specifically
when the camera moved back and forth (a common practice during colonoscopy) to

Fig. 3. The root mean square error (RMS) and standard deviation (STD) between ground truth
and the camera rotations and translations estimated by SfM, modified AlexNet trained by optical
flow and grayscale frames, and modified GoogLeNet trained by grayscale frames.

Learning Camera Pose from Optical Colonoscopy Frames 55



allow validation. We estimated the distance camera traveled in the Z direction by SfM,
and our CNN methods. Figure 6 represents a qualitative evaluation of the methods in
the Z coordinate. During one typical examination, the colonoscope was moved back
and forth during withdrawal (video in supplementary materials). The graph shows the
estimation of Z coordinate along the center line for three different methods (see
legend). The image inserts compares different frames that are estimated to be from the
same Z location. The orange frame 54 (left insert) was visually closer to frame 166 (top
magenta on right inserts) than to frame 141 (green image on right insert), suggesting

Fig. 5. Distance traveled by camera in the Z direction estimated by modified AlexNet,
GoogLeNet and SfM (D1 and D2 represent the drift in camera motion estimation by modified
AlexNet and SfM respectively), the GoogLeNet trained by frames shows very low drift.

Fig. 4. The comparison for generalization of camera motion estimation by AlexNet when
optical flow and frames were used for training and GoogLeNet when frames were used for
training on a dataset that has not been seen before. Here, GoogLeNet shows better performance.
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that the CNN-based method is more accurate than the previous SfM approach. In
addition, the CNN method estimated that frame 215 (magenta, bottom right insert) was
also at the same location as frame 54 (orange left insert), which visually matches,
whereas a drift was observed for the SfM method.

5 Discussion and Conclusion

In this paper, we presented a method to estimate the relative camera pose with six DoF
from actual colonoscopy video frames. We used two separate new approaches: one
modified and trained GoogLeNet using two consecutive grayscale frames as input; the
other modified and trained AlexNet and used the optical flow pattern (SIFT flow) and
consecutive frames (for the sake of comparison) as input. The networks, trained by
simulated data were validated on simulated and actual colonoscopy frames. Our results,
which are presented in Fig. 3 showed that the network which was trained with two
consecutive frames could outperform the one which was trained by optical flow. In
addition, modified GoogLeNet which was trained by frames had better performance in
generalizing results for frames that had not been observed in training or validation stage
in comparison to the one which was trained by optical flow, as it shown in Fig. 4. Some
colonoscopy frames are feature-poor, thus it is hard to find accurate matches between
frames, and that rendering the conventional SfM approach is inaccurate. In contrast,
CNN-based approach is more robust to these issues, and resulting in higher accuracy
Fig. 3.

Fig. 6. The camera translation in the Z direction estimated by modified AlexNet, GoogLeNet
and SfM on an actual colonoscopy video frames. Frames in orange, green and magenta are
chosen to be from same Z height, but we visually understand that the closest frame to orange is
the first magenta on the right inset. The modified GoogLeNet trained by grayscale frames and
modified AlexNet trained by optical flow are showing better results in comparison to SfM. (color
figure online)
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The computational time for estimating relative camera pose from a trained network
was 0.1 s on average, whereas SfM with a bundle adjustment as optimizer took three
seconds when Matlab scripts were used.

In this study, we had the ground truth for camera pose from the simulator software,
which we used to generate thousands of frames with a variety of camera motions
incorporating translation and rotation for training and validation. Previously, others
used a robot hand, magnetic sensor [14] or SfM algorithm to estimate camera pose as
ground truth to train a network [15]. Any error in calibrating the sensor or estimating
camera pose by SfM as ground truth could result in false data for training.

Our results on actual colonoscopy which presented in Fig. 6 indicate the high
performance of CNNs in comparison to SfM for estimating the distance in the Z
direction that a colonoscope camera traveled in returning to a previously seen location.

One of the main challenges in our work was transfer learning from simulated to
actual frames domain. Although we could obtain remarkable results using simulated
data and pre-trained networks, as a part of our future work we aim at implementing
domain transfer method to improve our current results. We also investigate the per-
formance of other networks such as visual geometry group (VGG) and will propose our
network to estimate colonoscope pose.

References

1. Australian Institute of Health and Welfare. http://www.aihw.gov.au/
2. World Health Organization (WHO). Fact sheet # 297: Cancer. http://www.who.int/

mediacentre/factsheets/fs297/en/
3. Hewett, D.G., Kahi, C.J., Rex, D.K.: Does colonoscopy work? J. Natl. Compr. Cancer Netw.

JNCCN 8, 67–76 (2010). quiz 77
4. Cotton, P.B., Williams, C.B.: Practical Gastrointestinal Endoscopy. Wiley-Blackwell,

Oxford (2008)
5. Puerto-Souza, G.A., Staranowicz, A.N., Bell, C.S., Valdastri, P., Mariottini, G.-L.: A

comparative study of ego-motion estimation algorithms for teleoperated robotic endoscopes.
In: Luo, X., Reichl, T., Mirota, D., Soper, T. (eds.) CARE 2014. LNCS, vol. 8899, pp. 64–76.
Springer, Cham (2014). doi:10.1007/978-3-319-13410-9_7

6. Liu, J., Subramanian, K.R., Yoo, T.S.: A robust method to track colonoscopy videos with
non-informative images. Int. J. Comput. Assist. Radiol. Surg. 8, 575–592 (2013)

7. Armin, M.A., Chetty, G., De Visser, H., Dumas, C., Grimpen, F., Salvado, O.: Automated
visibility map of the internal colon surface from colonoscopy video. Int. J. Comput. Assist.
Radiol. Surg. 11, 1599–1610 (2016)

8. Rai, L., Helferty, J.P., Higgins, W.E.: Combined video tracking and image-video registration
for continuous bronchoscopic guidance. Int. J. Comput. Assist. Radiol. Surg. 3, 315–329
(2008)

9. Bao, G., Pahlavan, K., Mi, L.: Hybrid localization of microrobotic endoscopic capsule inside
small intestine by data fusion of vision and RF sensors. IEEE Sens. J. 15, 2669–2678 (2015)

10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

11. Aubry, M., Maturana, D., Efros, A.A., Russell, B.C., Sivic, J.: Seeing 3D Chairs: Exemplar
Part-Based 2D-3D Alignment Using a Large Dataset of CAD Models, June 2014

58 M.A. Armin et al.

http://www.aihw.gov.au/
http://www.who.int/mediacentre/factsheets/fs297/en/
http://www.who.int/mediacentre/factsheets/fs297/en/
http://dx.doi.org/10.1007/978-3-319-13410-9_7


12. Dosovitskiy, A., Fischery, P., Ilg, E., Hazirbas, C., Golkov, V., van der Smagt, P., Cremers, D.,
Brox, T.: Flownet: learning optical flow with convolutional networks. In: 2015 IEEE
International Conference on Computer Vision (ICCV), pp. 2758–2766. IEEE (2015)

13. Zhou, T., Krähenbühl, P., Aubry, M., Huang, Q., Efros, A.A.: Learning Dense Correspon-
dence via 3D-guided Cycle Consistency. ArXiv Prepr. arXiv:1604.05383 (2016)

14. Bell, C.S., Obstein, K.L., Valdastri, P.: Image partitioning and illumination in image-based
pose detection for teleoperated flexible endoscopes. Artif. Intell. Med. 59, 185–196 (2013)

15. Kendall, A., Grimes, M., Cipolla, R.: Convolutional networks for real-time 6-DOF camera
relocalization. Proceedings of the International Conference on Computer Vision (ICCV)
(2015)

16. Su, H., Qi, C.R., Li, Y., Guibas, L.J.: Render for CNN: viewpoint estimation in images using
CNNs trained with rendered 3D model views. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 2686–2694 (2015)

17. Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox, T.: A large
dataset to train convolutional networks for disparity, optical flow, and scene flow estimation.
In: Presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2016)

18. Armin, M.A., De Visser, H., Chetty, G., Dumas, C., Conlan, D., Grimpen, F., Salvado, O.:
Visibility map: a new method in evaluation quality of optical colonoscopy. In: Navab, N.,
Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 396–
404. Springer, Cham (2015). doi:10.1007/978-3-319-24553-9_49

19. Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W.T.: SIFT flow: dense correspondence
across different scenes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS,
vol. 5304, pp. 28–42. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88690-7_3

20. Armin, M.A., Chetty, G., Jurgen, F., De Visser, H., Dumas, C., Fazlollahi, A., Grimpen, F.,
Salvado, O.: Uninformative frame detection in colonoscopy through motion, edge and color
features. In: Luo, X., Reichl, T., Reiter, A., Mariottini, G.-L. (eds.) CARE 2015. LNCS, vol.
9515, pp. 153–162. Springer, Cham (2016). doi:10.1007/978-3-319-29965-5_15

21. Huynh, D.Q.: Metrics for 3D rotations: comparison and analysis. J. Math. Imaging Vis. 35,
155–164 (2009)

22. Vedaldi, A., Lenc, K.: MatConvNet: Convolutional Neural Networks for MATLAB (2015)
23. De Visser, H., Passenger, J., Conlan, D., Russ, C., Hellier, D., Cheng, M., Acosta, O.,

Ourselin, S., Salvado, O.: Developing a next generation colonoscopy simulator. Int. J. Image
Graph. 10, 203–217 (2010)

Learning Camera Pose from Optical Colonoscopy Frames 59

http://arxiv.org/abs/1604.05383
http://dx.doi.org/10.1007/978-3-319-24553-9_49
http://dx.doi.org/10.1007/978-3-540-88690-7_3
http://dx.doi.org/10.1007/978-3-319-29965-5_15


Motion Vector for Outlier Elimination
in Feature Matching and Its Application
in SLAM Based Laparoscopic Tracking

Cheng Wang1(B), Masahiro Oda2, Yuichiro Hayashi2, Kazunari Misawa3,
Holger Roth2, and Kensaku Mori2

1 Graduate School of Information Science, Nagoya University, Nagoya, Japan
{chwang,moda,yhayashi,rothhr}@mori.m.is.nagoya-u.ac.jp

2 Graduate School of Informatics, Nagoya University, Nagoya, Japan
kensaku@is.nagoya-u.ac.jp

3 Aichi Cancer Center Hospital, Nagoya, Japan
misawakzn@aichi-cc.jp

Abstract. This paper presents a motion vector-based method to detect
and remove the outlier of the matched feature point in laparoscopic
images. Feature point detected on organ surface in laparoscopic images
plays an important role not only in laparoscopic tracking but also in
organ surface shape reconstruction. However, many factors such as the
deformation of the organ or the movement of the surgical tools result to
the outliers in matched feature points, thus the feature point based track-
ing and reconstruction will have larger errors. Traditional methods use
these points either directly (inside a RANSAC scheme) or after a prior
knowledge of compensation, which may lead to larger error in tracking
and reconstruction. We introduce the motion vector (MV) based method
to detect outliers among the matched feature points. MV is originally
used in the compression of the video streams, we exploit it to detect the
movement of one feature point in different video frames. The outliers of
feature point can be detected by enforcing a direction constraint with its
MV. Our method had been implement under a SLAM-based framework
for laparoscopic tracking, we modified the map management of SLAM
for better laparoscopic tracking. The experimental results showed that
our method effectively detects and removes the outliers without any prior
knowledge; the average precision rate in image pairs was 95.9%.

Keywords: Laparoscopic tracking · Motion vector · SLAM

1 Introduction

In recent years, minimally invasive surgery (MIS) has became more popular due
to its benefit to patients. However, MIS has drawbacks such as the limited view
to surgeons. Therefore, endoscopic surgery navigation systems are used to make
MIS processes safe and effective [1]. However, traditional endoscopic navigation
needs additional equipment such as optical or magnetic trackers, that make
c© Springer International Publishing AG 2017
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the endoscopic surgery navigation systems complex. To make the endoscope
navigation system simple, the endoscope pose obtaining from the endoscopic
videos instead of using additional equipment has been explored [2].

Visual simultaneous localization and mapping (V SLAM) is an approach
for camera localization and 3D reconstruction. It has been introduced into
laparoscopic navigation since 2006 [1,3,4]. However, even though breakthroughs
have been made in recent years, many questions remain unsolved. For example,
organ deformation may increase the error of laparoscopic tracking and in-vivo
reconstruction.

Previous research [2] assumed rigid (or generally rigid) environments that
all matched feature points are used for the estimation of laparoscope posture
and 3D environments. This may result in the large difference comparing with
real posture of laparoscope. Yang et al. established an online estimation of tis-
sue deformation by exploiting a periodic motion model to estimate the organ’s
deformation [5]. They kept the estimation of the feature points detected on the
organ surface using a filter-based SLAM. However, at least two assumptions
were made: periodic organ motion, and as few other deformations as possible.
A short observation for organ deformation with static camera is also needed
before tracking. Clooins et al. exploited the prior information of organ shape for
3D tracking reconstruction without feature detecting in their work, and showed
a good performance [6]. Mahmoud et al. extended the density of SLAM’s map
by enforcing cross-correlation on newly selected frames [7]. Their results showed
that the reconstructed maps have higher density than the original SLAM with
a higher RMSE value comparing with the segmented preoperative CT scans.
Gustavo et al. exploited a HMA-based method to improve the performance of
feature matching in MIS scenarios [8]. However, their work may be helpful in
the reconstruction of the organ shape while it may behaves poor in real time
tracking of the laparoscope.

Since previous methods use matched feature points for laparoscopic tracking,
the laparoscopic tracking might fail due to the outliers existed in matched feature
points. To remove these feature points, we use a motion vector-based method
to judge the motion of the matched feature points. Motion vector (MV) was
previously proposed [9] to detect object’s movement within a SLAM solution.
A voting procedure to determine the camera direction and a filtering proce-
dure to reduce feature points were used. However, due to the difference between
indoor/outdoor scenes and laparoscope scenes, the procedure we used is more
strict.

Our main contribution is find a new method for the detection of the out-
lier existed in the matched feature points during laparoscopic tracking by the
combination of the pure translational motion and the MV of the matched fea-
tures. Different from the traditional method, our MV-based method detect the
outliers by enforcing the direction constraint on the displacement of the feature
point after the detection of eipolar constraint. The outliers in matched feature
points can be detected and removed without any prior knowledge, this is quite
different from the traditional method [5,9]. We explain this procedure in Sect. 2.
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The performance of our method were shown in Sect. 3, the difference in tracked
images and trajectories could be found.

2 Methodology

The goal of our method is to detect the outlier in matched feature points. To
achieve this goal, we use three steps: (1) initial motion estimation of two images;
(2) feature point selection using motion vector (MV); (3) motion refine using
optimization. These three steps check the matched feature point not only with
the traditional epipolar constraint, but also with the characteristic of pure trans-
formation. Therefore, the small displacement of feature point caused by different
factors can be detected and removed. We introduce the proposed feature point
selection method into the ORB-SLAM to improve the tracking quality during
laparoscopic tracking. The flowchart of the system implement with our method
is shown in Fig. 1.

2.1 MV-Based Method for Motion Estimation

Initial Motion Estimation. Our method starts from the estimation of the
motion between two images. Assume that two images at the time (m) and (n)
are obtained, they are denoted as I(m) and I(n). The two images should have
overlapping views so that enough feature points can be matched and used for
motion estimation. Then the ORB feature is used to extract and match feature
point in I(m) and I(n) [10]. After the feature matching procedure, a set of cor-
responding feature points C(m,n) =

{
x
(m)
i ↔ x

(n)
i | x(m)

i ∈ P (m),x
(n)
i ∈ P (n)

}

are obtained, where P (m) are the extracted feature points in I(m) and P (n) are
the extracted feature points in I(n), respectively.

With the use of the matched feature points C(m,n), an initial fundamental
matrix F(m,n) can be computed using the eight-point algorithm with utilization

Fig. 1. ORB-SLAM flowchart implementing MV-based feature point selection proce-
dure: tracking is used to track new frame; local mapping is used to create more map
point; optimization is used for posture optimization. (Color figure online)
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of a RANSAC algorithm [11] for outlier exclusion. The initial fundamental matrix
F(m,n) gives an inlier corresponding set in the matched feature points:

C(m,n)′
=

{
x
(m)
i ↔ x

(n)
i | x(m)

i ↔ x
(n)
i ⊂ C(m,n), (x(m)

i )TF(m,n)x
(n)
i < ε

}
(1)

where ε is an error threshold. The fundamental matrix F(m,n) is also used to
calculate the essential matrix E(m,n) using E(m,n) = KTF(m,n)K, where K is the
intrinsic parameter. The essential matrix E(m,n) is decomposed to obtain the
transformation between two images [11].

After this step, a subset of the corresponding feature points C(m,n)′
and the

transformation T(m,n) =
[
sR(m,n) t(m,n)

0 1

]
are obtained, where R(m,n), t(m,n)

are the rotation and translation between two images, respectively. For adjacent
frames in laparoscope video, the scaling s is set to 1.

MV-Based Method for Feature Point Selection. Unlike the other
outdoor/indoor scenes, the in-vivo scenes are more complex and challenging due
to the influence of factors such as the deformation of the organ, the movement
of the forceps and so on. To improve the camera localization accuracy, only the
inlier feature points are used.

To distinguish the matched feature points, we first rotate the feature points
in x(m)

i to a new position by using

x(m)′

i = sKR(m,n)K−1x(m)
i (2)

where x(m)′

i is the new position of x(m)
i after rotation R(m,n) and scaling s.

With this equation, the motion of the feature point can be changed to pure
translation. Motion vectors (MVs) of feature points can be expressed as x(n)

i −e

and x(n)
i −x(m)′

i , where e is the epipole on image I(n). For the pure translational
motion, vectors x(n)

i − e and x(n)
i − x(m)′

i are collinear [11]. However, in the
abdominal cavity, due to the influence of factors mentioned above, these two
vectors become non-collinear and the angle α is not 0◦ or 180◦. Examples are
shown in Figs. 2 and 3.

However, since the displacement caused by the additional motion is small,
these feature point can’t be detected by using constraint such as epipolar con-
straint or symmetric transfer error. To detect these outliers out, the angle of the
motion vectors is used. The feature point is identified as outlier if

|cos(α)| =

∣∣∣∣∣∣

(
x(n)
i − e

)
∣∣∣x(n)

i − e
∣∣∣

·
(
x(n)
i − x(m)′

i

)
∣∣∣x(n)

i − x(m)′
i

∣∣∣

∣∣∣∣∣∣
< λ, (3)

where λ is an threshold; otherwise, the feature point is identified as inlier. The
inlier feature points are selected as the input for the motion refine procedure.
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Fig. 2. An example of MV in laparoscope
image. The red arrows show corresponding
points x(m)′

and x
(n)
i , while the black lines

show x
(n)
i and the epipole e. Feature points

of inliers should show the correspondence
as the green arrows while the outlier is the
red arrows [11]. (Color figure online)

Fig. 3. The matched feature points and
the cosine value of the angle α. We cal-
culate the |cos(α)| in two scene: one
is the ex vivo scene (blue line) and
the other one is the in vivo abdominal
scene exists both the non-rigid motion
and rigid motion (red line). The aver-
age of |cos(α)| is closer to 1 in ex vivo
scene while the abdominal scene is not.
(Color figure online)

We can obtain a subset of C(m,n)′
marked

C(m,n)′′
=

⎧
⎨
⎩x

(m)
i ↔ x

(n)
i |

∣∣∣∣∣∣

(
x
(n)
i − e

)
∣∣∣x(n)

i − e
∣∣∣

·
(
x
(n)
i − x

′(m)
i

)
∣∣∣x(n)

i − x
′(m)
i

∣∣∣

∣∣∣∣∣∣
≥ λ

⎫
⎬
⎭. (4)

Motion Refine. The motion refine procedure is used to optimize the trans-
formation of two images using the inlier feature points. The transformation is
optimized by minimizing the reprojection error using

T∗(m,n)
r = arg min

T
(m,n)
r

∑
j

ρ
∥∥∥x(n)

j − proj
(
T(m,n)

r ,X
(n)
j

)∥∥∥, (5)

where X(n)
j is the j-th recovered world coordinate of the feature point x(n)

j ,

proj is the projection function projecting X(n)
j onto I(m) [9,12], ρ is the Huber

influence function [13].
Finally, we can obtain an optimized transformation T∗(m,n)

r between two
images and a subset of matched feature points satisfying Eq. 4.

2.2 Application in ORB-SLAM Based Tracking

ORB-SLAM is an ORB feature-based SLAM framework and superior to other
visual SLAM methods such as PTAM [12] and EKF-SLAM [3,13]. The fea-
sibility of ORB-SLAM in endoscope surgery navigation has been proved [7].
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We implemented our method on the ORB-SLAM. The flowchart of the modified
ORB-SLAM is shown in Fig. 1, where the red part is the implementation of our
method. We explain in details in the following parts.

Detection in Map Initialization. We modify the map initialization procedure
of ORB-SLAM to initialize the map using fundamental matrix. The matched
feature points should pass the test of motion model as well as our MV-based
detection before they are used in map point creation.

Detection of New Map Points. New map points are created in the local
mapping procedure of the ORB-SLAM. Feature points in the selected frames
(called key frames) are matched and used to create new map points. New map
points are created after the matched feature points pass the test of epipolar
constraint and our MV-based approach.

Key Frame Management. Our MV-based method can detect the outlier of
feature points especially observing the non-rigid motion. This can decrease the
number of map points, and finally may resulting in the failure of laparoscopic
tracking. To avoid this, we lower the threshold in the key frame selection to allow
more key frames are used in building of the map. In actual implementation, we
create the key frame every two frames and cull them if we have tracked enough
points.

3 Experiments and Results

We validated our approach with in-vivo laparoscope videos. The videos recorded
a task of exploring the abdominal cavity with a resolution of 640 × 480 pixels
at 25 fps. The deformation in laparoscope videos were not too large [14]. We set
the number of the ORB feature points in each frame to 2000, and the threshold
λ was set to the mean value of |cos(α)| in rigid scene.

3.1 Detection Rate in Image Pairs

We saved the frames used in the map initialization during laparoscopic tracking.
The ground truth is created by annotating the matched feature points manually.
The matched feature points were marked true if it is found as outlier, and were
marked false if it is found as inlier. The type of matched feature point is judged
according to their neighbor and position. Table 1 shows the false positive (FP)
rate, precision rate and recall rate of feature points of our method.
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Table 1. Detection rate of proposed method in laparoscope images

Index TP FP FP rate [%] Precision rate [%] Recall rate [%] Miss rate [%]

1 252 17 47.1 93.7 100 0

2 129 4 13.7 96.9 100 0

3 99 6 31.6 94.3 100 0

4 88 17 5.5 98.9 100 0

Fig. 4. Comparison of trajectory between
our method and the original SLAM
method. We can see the differences in two
trajectories as frame changes.

Fig. 5. Matched feature points in the
key frames. Green and yellow lines show
matched feature points of inlier and out-
lier, respectively. We have removed the
yellow lines to show clearly in the right
figure. (Color figure online)

3.2 Performance in Laparoscopic Video

We used the laparoscope videos mentioned above as the input of our system.
The videos can be processed in real time. We obtained 5087 map points with
the original ORB-SLAM and 3807 map points using SLAM implemented with
our method. A comparison of trajectories between our method and the original
SLAM was shown in Fig. 4. Due to no ground truth of laparoscope trajectory
in real clinical scene, we only showed the difference of two methods in three
directions in this figure: x-axis is the right direction, y-axis is the down direction,
and z-axis is the front direction, respectively. We used the median depth of the
first frame to make the trajectory under the same scale with that of the ORB-
SLAM [13]. The matched feature points are shown in Figs. 5 and 6. Matched
feature points are connected by yellow lines if they are judged as outliers while
feature points are connected by green line if they are judged as inliers. The
performance of our method in the local mapping procedure of SLAM is also
validated. Figure 6 shows the matched feature points between the key frames.
Some mismatched feature points together with feature points observing the non-
rigid motion were detected by our method while they are poorly detected by the
original ORB-SLAM.
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Fig. 6. Matched feature points in key frames. Green and yellow lines show feature
point in rigid and non-rigid motion area, respectively. (a)–(c) pairs show good results,
(c) shows the mismatched feature point. (d) shows poor result caused by wrong motion
estimation. (Color figure online)

4 Discussion

We confirm that the proposed method performs good in detecting and removing
the outlier feature points during vision-based laparoscopic tracking. Our method
exploit the characteristic of pure translation to find the outlier of the match,
feature points with small displacement can be found using our method while
they can’t be detected by traditional method.

Figure 6(c) demonstrates that the mismatched feature points can be detected.
This is because the MVs of the mismatched feature points also showing large
angles. The mismatched feature points can also decrease the accuracy of the
tracking.

Table 1 shows a comparison of our method and the map initialization pro-
cedure of ORB-SLAM. Our method can detect the outlier feature points even
though after the test of ORB-SLAM initialization procedure. From this table, we
can see our method outperform the map initialization procedure of ORB-SLAM.

However, since our method based on the estimated transformation between
two images, the accuracy of our method depends on the estimated transforma-
tion. If the transformation is wrongly estimated, our method can’t eliminate the
outlier correctly. An undesirable result was shown in the fourth pair of Fig. 6.
This result is caused by the incorrect transformation between two images.

In our experiment, the threshold λ is set according to the rigid scene. How-
ever, the value of λ can have an influence on the robust of the tracking. Too large
or too small will cause the failure of the tracking, so the relationship between
the λ and the tracking quality should be studied in the future.

5 Conclusion and Future Work

We proposed a motion vector-based method to detect the outlier feature points
in laparoscopic video. The proposed method uses the transformation estimated
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between two images to distinguish feature points and achieved good performance
both in the image pairs and in SLAM-based tracking. Future work contains the
validation of the laparoscope posture estimated by our method, the comparison
with other system such as RS-SLAM [15], and the discussion with surgeons that
whether the accuracy is satisfactory for laparoscope navigation.
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Abstract. The development and improper removal of smoke during
minimally invasive surgery (MIS) can considerably impede a patient’s
treatment, while additionally entailing serious deleterious health effects.
Hence, state-of-the-art surgical procedures employ smoke evacuation sys-
tems, which often still are activated manually by the medical staff or less
commonly operate automatically utilizing industrial, highly-specialized
and operating room (OR) approved sensors. As an alternate approach,
video analysis can be used to take on said detection process – a topic
not yet much researched in aforementioned context. In order to advance
in this sector, we propose utilizing an image-based smoke classification
task on a pre-trained convolutional neural network (CNN). We provide
a custom data set of over 30 000 laparoscopic smoke/non-smoke images,
part of which served as training data for GoogLeNet-based [41] CNN
models. To be able to compare our research for evaluation, we separately
developed a non-CNN classifier based on observing the saturation chan-
nel of a sample picture in the HSV color space. While the deep learning
approaches yield excellent results with Receiver Operating Characteris-
tic (ROC) curves enclosing areas of over 0.98, the computationally much
less costly analysis of an image’s saturation histogram under certain cir-
cumstances can, surprisingly, as well be a good indicator for smoke with
areas under the curves (AUCs) of around 0.92–0.97.

Keywords: Smoke detection · Endoscopy · Image processing · Deep
learning

1 Introduction

Substantial advances in health care technology over the recent decades enabled
minimally invasive surgery (MIS), i.e. medical operations inflicting as little as
possible physical trauma upon patients, to become common practice in the clin-
ical community. Nowadays, some surgical interventions almost exclusively are
performed via MIS [46], such as the cholecystectomy procedure for attending
gallbladder conditions. Regarding the technology applied in such or similar situ-
ations, physicians rely on video-monitoring their treatment of a patient’s internal
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): CARE/CLIP 2017, LNCS 10550, pp. 70–87, 2017.
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anatomy – a modus operandi achievable by introducing a high definition camera
or endoscope in addition to a variety of instruments through bodily orifices. The
corresponding medical field, namely endoscopy, is sub-categorized by considering
the insertion locality of said video device, which may be natural apertures such
as nose (rhinoscopy), ear (otoscopy), anus (anoscopy) etc. or deliberately cre-
ated incisions used in order to examine interior cavities of joints (arthroscopy),
thorax (thoracoscopy) as well as of the most frequently inspected abdomen –
a zone treatable via a broad number of procedures that comprise the field of
laparoscopy, constituting the main focus of this study.

Many laparoscopic actions require severing tissue, which can create open
wounds causing internal bleeding, a matter which usually needs to be tended
to urgently. This typically is accomplished by suturing, i.e. sewing parts of the
affected tissue back together and thereby helping natural hemostasis, as well
as cauterization, that is using electrically heated or laser instruments1 in order
to mitigate or stop the hemorrhage. The latter either can be applied during
dissection as to prevent aforementioned effects or afterwards in an attempt to seal
afflicted regions. In any case, it is estimated that tissue cauterization is applied in
well over 90% of all surgical procedures, generating yet another undesirable side-
effect: a gaseous mixture consisting of 95% water and 5% chemical, biological as
well as physical by-products [32] – materials comprising a surgical smoke plume.
Potentially harmful contained substances like toxins, viruses or bacteria as well as
ultrafine particulate matter renders exposure to such an entity a possibly serious
health risk for both medical staff and patients, as is indicated in a great amount
of scientific documents [5,10,14,21,34,37,43]. Thus, the necessity of removing
surgical smoke swiftly and safely after its creation seems imperative in modern
medicine, yet involved hazards still are underestimated, which can cause bad
decisions like releasing corresponding fumes into the operating room (OR) air2,
a not uncommon practice according to Sahaf et al. [5].

Proper smoke evacuation on the other hand is accomplished via OR-approved
suction systems that typically are activated manually by the medical staff, in
case cauterization is conducted. However, this particular action can easily be
forgotten or neglected, potentially leading up to a point, in which the operating
staff’s view onto the currently treated body parts is severely obstructed by smoke
– Fig. 1 demonstrates such situations by portraying three laparoscopic scenes
that depict the emergence of smoke in various intensities.

In addition to the inconvenience of requiring manual control, smoke evacu-
ators designed for laparoscopic utilization must be able to keep the abdominal
cavity from collapsing during the suction process, which is achieved by using
a medical grade insufflation gas3 [7], entailing additional budget expenses to
clinical institutions. Thus, handling a smoke evacuator inefficiently, which very
likely happens many times during critical situations like surgeries, comes at a
price. Naturally, automatic evacuation would represent an optimal solution for

1 Temperatures range from about 100◦–1200◦ Celsius.
2 This effect is achieved by opening the stopcock of the laparoscopic port.
3 In laparoscopy usually carbon dioxide (CO2) is used [35].
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(a) no/weak
amount of smoke

(b) no/moderate
amount of smoke

(c) no/strong
amount of smoke

Fig. 1. Comparison of non-smoke vs. smoke images with different effect intensities.

both the nuisance of manual evacuator operation and the possibility of wasting
valuable resources. Systems targeting similar goals have already been proposed,
albeit all of them pursuing the rather naive methodology of commencing smoke
removal whenever a cauterization instrument is activated [12,13,42]. Consider-
ing such a procedure fairly excessive and hardware restrictive, we argue that it is
possible to construct more fine-grained, universal systems by detecting smoke via
image analysis accurately and in real-time. Therefore, we formulate the research
question behind our work as follows:

Q Can image-based analysis of endoscopic videos be leveraged as to reliably
recognize the emergence of smoke in real-time?

Our proposed strategies to answer Q in general fall into the category of
binary classification tasks – we develop a simple image saturation based his-
togram thresholding algorithm and compare its performance to two state-of-
the-art CNN-based approaches.

The remainder of this work is subdivided into four sections: related work
described in following Sect. 2, a detailed account of the methodology we apply
in Sect. 3, evaluation results containing performance as well as runtime analyses
in Sect. 4 and a concluding Sect. 5 highlighting our scientific contributions.

2 Related Work

Today classification utilizing CNNs is already commonly used in the medical
field – research on the topic can be found dating back to the mid-1990s, where
for example Sahiner et al. developed a three-layer CNN approach to be able
to differentiate between normal tissue and abnormal areas (mass) when ana-
lyzing mammograms achieving a ROC AUC of 0.87 [40]. Further work using
CNNs on computerized tomographic (CT) and Magnetic Resonance Imaging
(MRI) images include Li et al. [30], who are detecting five different lung states
related to interstitial lung diseases with 0.8 precision, 0.9 recall for each of them.
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Conducting research in the same area, Anthimopoulos et al. [6] defined seven
classes and they were able to outperform the former as well as other state-of-
the-art methods. Moreover, Yan et al. [48] developed a multi-stage deep learning
framework utilizing a CNN structure to automatically determine characteristics
of different body parts, altogether exceeding recall, precision and F1 score of
standard CNNs.

Although great potential for employing computer-aided processes in endo-
scopic surgery are being pointed out by Liedlgruber et al. [31], research con-
cerned with classification techniques that operate on corresponding media yet
is rather sparse – no matter if deep learning is applied or not. A few studies
have been published by Häfner et al. within the scope of colonoscopy: they show
the feasibility of automatically classifying colonic mucosa via feeding pyrami-
dal discrete wavelet-transformed images to a k-nearest neighbors (k-NN) as well
as Bayes classifier [17], develop a system for automated colon cancer detection
based on the pit pattern classification (Kudo et al. [27]) in [18] and propose a
novel color texture operator for pit pattern classification outperforming state-of-
the-art operators in terms of compactness as well as computational speed [19].
As for CNN-based approaches, Park et al. [38] apply learning of hierarchical
features on colonoscopy images for identifying polyp regions with an accuracy
of 90%. Albeit in a different context, but specific to this work’s target-domain
– laparoscopy – Petscharnig et al. [39] continue training AlexNet (Krizhevsky
et al. [25]) to be able classify shots taken from a large gynecologic video database
categorized into 14 different classes in order to aid physicians in the process of
surgery annotation.

Finally, surgical smoke detection is yet another area still not much researched
– predominantly visual smoke recognition is addressed in non-medical settings
such as identifying fire outbursts [36,47,49], utilizing classification approaches
like image separation [44], optical flow computation [11,24] or pattern recognition
[15,16,45]. Since smoke emergence and lighting conditions in endoscopic environ-
ments strongly differ from outdoor settings, these techniques only to some extent
are applicable to the medical sector. In the field of laparoscopy, apart from a
non-vision-based assessment of smoke evacuation benefits (Takahashi et al. [42])
and an US patent from the Sony Corporation vaguely describing a frame-based
system using motion blur as well as pixel block analysis [9], we merely are able
to discover one related study, albeit targeted towards retrieval of scenes con-
taining smoke in contrast to their real-time detection, as is our intent: Loukas
et al. [33]. They extract 76 individual shots of 26–58 frames (between 1976–
4408 images) from cholecystectomy videos, calculate their space-time optical
flow together with some kinematic features and employ a one-class support vec-
tor machine (OCSVM) for classification, outperforming selected wavelet-based
image decomposition methods for fire surveillance [8,16,29].

3 Proposed Methodologies

Altogether, we propose three smoke classification approaches: Sect. 3.1 gives an
understanding of simply inspecting an image’s saturation channel in HSV color
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(a) DS A: smoke
intensity 0

(b) DS A: smoke
intensity 1

(c) DS A: smoke
intensity 2

(d) DS A: smoke
intensity 3

(e) DS B: smoke
intensity 0

(f) DS B: smoke
intensity 1

(g) DS B: smoke
intensity 2

(h) DS B: smoke
intensity 3

Fig. 2. Smoke development in different datasets DS A and B, including 256 bin satura-
tion histograms. Images show various smoke intensities: none (0), weak (1), moderate
(2), strong (3). Visual histogram comparison facilitated by division into four equal
sectors (vertical lines).

space – a technique we call Saturation Peak Analysis (SPA) and Sect. 3.2 outlines
the development of two GoogLeNet CNN models learned from both, full color
(GLN RGB) as well as saturation only (GLN SAT) samples.

3.1 Saturation Peak Analysis (SPA)

Regions of smoke in endoscopic images tend to be grayish or rather colorless.
Therefore, it seems appropriate to use the saturation component of the HSV
color space to detect these areas, especially since the amount of smoke increases
rapidly in the abdominal cavity when there is no evacuation mechanism in place.
A caveat of taking such a perspective is that other colorless entities can be
found during laparoscopic procedures: e.g. instruments and reflections of light
hitting objects. Interferences like that can severely impact the saturation of
an image, hence, naively observing this value will yield moderate classification
results. Using the saturation histogram of a frame, we found in an explorative
manner that by merely inspecting significant local bin maxima, i.e. peaks in the
histogram’s shape, we can determine colorlessness, compensating for insignificant
non-smoke influences.
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Fig. 3. SPA Classification: finding local maxima in an image’s saturation histogram
and classifying via thresholding. (Color figure online)

In order to illustrate the basis for our reasoning, Fig. 2 shows transitions
in smoke intensities from no smoke to a very high degree of smoke together
with corresponding saturation histograms for two scenes taken from different
laparoscopic datasets4. Additionally to displaying individual pixel saturation
counts via their 256 bins, the histogram images in the figure are sectioned into
four equal parts indicated by three blue dashed vertical lines marking 25%, 50%
and 75% portions of all bins, which helps facilitate their comparison across the
portrayed smoke intensification. It can easily be discovered that the bin curves
strongly correlate to the presence of smoke: for example, the depicted upper
scene (Figs. 2a–d) starts out with an almost centered histogram curve (Fig. 2a)
moving below the first bin quarter as smoke rises to a strong level (Fig. 2d). In
contrast this development, the lower sequence’s histograms (Figs. 2e–h) overall
are far less saturated, predominantly gathering in between the second bin portion
(Fig. 2e) but swiftly gravitating below the first one at a high level of smoke
(Fig. 2h), again indicating colorlessness in similar fashion to former example.
Empirical pre-study analyses on our laparoscopic video material show that these
individual trends apply to the majority of images in different datasets, therefore,
smoke detection using saturation histograms seemingly boils down to finding
an appropriate concentration point for bin values of non-smoke samples, i.e. a
classification threshold as introduced shortly, which can be used as a reference
to smoke samples that generally exhibit a lower concentration point. As this
is not a straightforward task, at present we incrementally select such locations
and apply SPA in order to classify a single image, which is visually described in
Fig. 3.

SPA analyzes a frame’s saturation by converting it into the HSV color
space, before isolating corresponding S-channel and creating a respective

4 The image sequences show typical scenes from both of this study’s custom datasets,
i.e. DS A and DS B (see Sect. 4.1 for details).
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intensity histogram. Using this representation, a twofold decision criterium is
employed, which in general relies on the above demonstrated observation that
colorless/smoke-containing images exhibit many low saturated pixels, hence their
corresponding histograms will comprise higher values in their lower bins, inher-
ently establishing a vice versa situation for the upper ones (cf. Fig. 2). In detail,
significant local maxima (peaks) are computed as a first step (red vertical solid
lines in Fig. 3), restricted by the following iteratively determined constraints that
as well constitute results of aforementioned empirical pre-study:

– A maximum must not be found below a peak threshold of tp = 0.35 ×
max bin value (green horizontal dashed line in Fig. 3), which ensures that
a discovered peak is sufficiently significant.

– Left as well as right slopes culminating in a peak must be at least 2 bins
wide rendering the peak’s total width at least 5 bins, which eliminates small
outliers exhibiting very similar saturation values (e.g. gray instruments).

Fig. 4. CNN Training/Testing: RGB/SAT images used in GoogLeNet-based model
training, evaluations via different dataset.

Finally, classification is simply based on relating the number of peaks below a
classification threshold tc (blue vertical dashed line in Fig. 3) to the ones above,
yielding prediction confidences predS for smoke as well as predNS for non-smoke,
defined by Formulas 2 and 1:

predS(pk(H)) =
|{p | p ∈ pk(H) ∧ p ≤ tc}|

|pk(H)| , (1)

predNS(pk(H)) =
|{p | p ∈ pk(H) ∧ p > tc}|

|pk(H)| , (2)

where H describes a set of input histogram bin values (|H| = 256) and function
pk(H) ⊂ N0 calculates the set of peak positions following the criteria outlined
above. In case no peak is found, i.e. pk(H) = ∅, the predictions are made via finding
the majority of bin’s values above and below tc, defined by Formulas 4 and 3:

predS(H) =
1

|H|
∑

i=0
b∈H
i≤tc

bi, (3)
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predNS(H) =
1

|H|
∑

i=0
b∈H
i>tc

bi. (4)

For demonstration purposes, Fig. 3 indicates a tc of 0.50, yet for evaluation
values from 0.10 up to 0.80 in 0.05 increment steps are used, which, as men-
tioned, currently serves the purpose of iteratively finding suitable thresholds
for videos exhibiting a different color spectrum. The necessity for this decision
becomes apparent when recalling pre-study discovery, formerly highlighted when
discussing Fig. 2: images from separate laparoscopic datasets on average show
distinguishable differences in saturation histograms. Consequently, when once
again regarding the illustrated smoke intensification examples, SPA should per-
form best between tc = 0.40 to tc = 0.60 for the first and tc = 0.20 to tc = 0.40
for the second scene, which will be evaluated in Sect. 4.

3.2 CNN Classification

Promising image classification results achieved by using CNN architectures, most
prominently LeNet [28], AlexNet [26] and GoogLeNet [41] as well as advances in
applying those networks in the medical domain (see Sect. 2) inspired our impulse
to employ them for our smoke classification task at hand. While utilizing deeper
networks like, for instance, ResNet [20] (152 layers) may yield better results,
their slower computation speed would be detrimental to our general aim – real-
time smoke detection on preferably commercially available hardware. Therefore,
we choose to benefit from 22-layered pre-trained CNN architecture GoogLeNet
and at first pursue the most conventional strategy of simply using RGB images
to continue training the network, which we further denominate GLN RGB for
brevity. In order to enable a direct comparison between a trained CNN model and
the SPA approach that builds on saturation analysis, we use grayscale images
only depicting the saturation channel of the HSV color space for creating a
classification model we accordingly label GLN SAT – a decision largely based
on discovering partially very promising results when applying SPA (see Sect. 4).
Figure 4 illustrates both approaches for training and classification, which are
conducted via popular deep learning framework Caffe [22].

For training and validating each of the GLN architectures an 80:20 split
of dataset images5 are used with an even distribution for non-smoke/smoke
samples. Exclusively in case of GLN SAT these are converted to saturation only
pictures, whereas further preprocessing remained the same for both methods:
resizing to GoogLeNet’s intended resolution of 256× 256 pixels, computation of
a global image mean needed for data normalization as well as encapsulating the
results within a Lightning Memory-Mapped Database (lmdb) [2].

Model training altogether takes a little over two hours for each model on
a machine running Linux Mint 17.3 (64-bit) [1] with following hardware specs:

5 Approximately 20 000 non-smoke/smoke images of DS A (see Sect. 4.1 for details).
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Intel Core i7-3770K CPU @ 3.50GHz x 4, 16 GiB DDR3 @ 1333 MHz, Nvidia
GeForce GTX 980 Ti. The Caffe solver options have iteratively been adjusted
through several training attempts and finally set to: 100 Epochs – ultimately we
chose Epoch 80 due to its high accuracy, stochastic optimization using Adam
[23] with an initial learning rate of 0.0001.

At last, classification can be conducted merely requiring the trained model
(snapshot @ 80 Epochs) in order to calculate prediction confidences for non-
smoke or smoke images.

4 Experimental Results

Detailed results of all three above described methodologies and statistics are cov-
ered within this section. First, we introduce our employed datasets in Sect. 4.1.
Afterwards, a closer look is taken at evaluations using test data from DS A
(Subsect. 4.2), which is taken from the same source material as the GLN train-
ing data, yet it of course comprises different scenes. Afterwards, images from DS
B are evaluated, which, as already mentioned, are extracted from a distinctly
separate kind of source (Sect. 4.3). Finally, the overall performance of the applied
methods is inspected in Subsect. 4.4.

4.1 Datasets

All our evaluations are based on two datasets: dataset A (DS A) and dataset B
(DS B), described in following short paragraphs.

DS A is used for training, validation as well as testing and it consists of
images taken from over eight laparoscopic surgeries in the field of gynecology.
We extract different frame sequences of up to two seconds in length, amounting
to about 30 000 images, half of which show non-smoke situations, the other half
depicts smoke occurring in various intensities. For training and validating CNN
models we use approximately 20 000 images (50% non-smoke/smoke), which
leaves about 10 000 samples for evaluations.

The laparoscopic source videos for DS A show many similarities, since they
are recorded under similar conditions: the same endoscope and lighting yield an
analogous image color spectrum. Therefore, we added DS B, which is extracted
from a laparoscopic video recorded in another location and under different cir-
cumstances. The dataset’s color scheme differs in large parts from DS A, which
we determined via a thorough preliminary histogram analysis and major implica-
tions, namely different optimal classification thresholds, are hinted at in Sect. 3.1,
Fig. 2. Hence this dataset represents a valuable resource to solidify evaluation
results. DS B consists of about 4 500 images (50% non-smoke/smoke), again
taken from sequences of up to two seconds. They exclusively are used for evalu-
ation only, which will be outlined in Sect. 4.3.



Image-Based Smoke Detection in Laparoscopic Videos 79

4.2 Evaluation Results - DS A

Results from evaluating DS A are illustrated in Table 1a, which lists selected
classification measures for both GLN methods, as well as SPA with tc ranging
from 0.10 to 0.80 generally arranged in 0.10 increment steps except for excep-
tion tc = 0.45 in order to highlight its peak performance area (see details below).
Classifications in the table are conducted at confidence cc = 0.50, meaning for
instance that in order to correctly classify an image containing smoke, the clas-
sifier’s prediction confidence for corresponding label needs to be 50% or higher
(progression at different cc values can be observed inspecting the ROC curve
in Fig. 5a). For the given DS A, GLN RGB shows the best performance with
93.2% correctly classified smoke samples, i.e. very high sensitivity, and even
higher specificity of 95.3%, i.e. correctly classified non-smoke samples, yielding
an accuracy of 94.2%. GLN SAT achieves a slightly worse outcome but still yields
a quite high accuracy of 87.0% with 82.6% sensitivity and 91.4% specificity. As
for SPA, at cc = 50 a threshold of tc = 0.40 seems to classify similarly compared
to GLN SAT, resulting in an accuracy of 85.0%, 87.7% sensitivity and 82.2%
specificity. Regarding the accuracy and precision of SPA from tc = 0.10 up to
tc = 0.80 it becomes clear that SPAs peak performance is around tc = 0.30 to
tc = 0.50, specifically above tc = 0.40, which indicates that non-smoke saturation

Table 1. Evaluation results for datasets A and B, cc = 0.50.

(a) DS A.

Method Accuracy Precision Sensitivity Specificity F1

GLN RGB 0.942 0.952 0.932 0.953 0.942

GLN SAT 0.870 0.906 0.826 0.914 0.864

SPA 0.10 0.536 0.891 0.081 0.990 0.149

SPA 0.20 0.674 0.968 0.360 0.988 0.525

SPA 0.30 0.770 0.928 0.585 0.955 0.718

SPA 0.40 0.850 0.831 0.877 0.822 0.854

SPA 0.45 0.820 0.752 0.956 0.685 0.842

SPA 0.50 0.738 0.659 0.986 0.491 0.790

SPA 0.60 0.557 0.530 0.999 0.115 0.693

SPA 0.70 0.506 0.503 1.000 0.013 0.670

SPA 0.80 0.500 0.500 1.000 0.000 0.667

(b) DS B.

Method Accuracy Precision Sensitivity Specificity F1

GLN RGB 0.779 0.697 0.998 0.555 0.821

GLN SAT 0.914 0.879 0.962 0.864 0.919

SPA 0.10 0.507 0.954 0.029 0.999 0.056

SPA 0.20 0.815 0.994 0.639 0.996 0.778

SPA 0.25 0.910 0.976 0.843 0.979 0.905

SPA 0.30 0.892 0.843 0.966 0.816 0.900

SPA 0.40 0.508 0.507 1.000 0.003 0.673

SPA 0.50 0.507 0.507 1.000 0.000 0.672

SPA 0.60 0.507 0.507 1.000 0.000 0.672

SPA 0.70 0.507 0.507 1.000 0.000 0.672

SPA 0.80 0.507 0.507 1.000 0.000 0.672

(a) DS A. (b) DS B.

Fig. 5. ROC curve comparison for datasets A and B. (Color figure online)
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histograms tend to exhibit more peaks, i.e. higher bin values, above tc = 0.40 and
vice-versa for smoke histograms. Figure 6 shows the most significant confusion
matrices at cc = 0.50, used to calculate part of the results in Table 1a.

(a) GLN RGB (b) GLN SAT (c) SPA 0.40 (d) SPA 0.45

Fig. 6. Most significant confusion matrices for DS A (0 no smoke, 1 smoke), cc = 0.50.

Clearly GLN RGB (Fig. 6a) with merely 599 misclassifications out of 10386
images again emphasizes the findings from above, whereas SPA 0.45 with 1865
(Fig. 6d) falsely classified samples stands out as the worst of the bunch. However,
a slightly different impression can be gained when regarding a continuous cc
progression, as is depicted in Fig. 5a showing the ROC curve of the methods listed
in Table 1a. Judging by the AUCs, it is evident that GLN RGB (solid blue curve)
still performs best with an AUC of 0.9862, followed by GLN SAT’s (solid orange
curve) AUC of 0.9415. For SPA although in contrast to the above discoveries
tc = 0.45 (dashed green curve) seems to have an overall better performance
than tc = 0.40 (dashed red curve), albeit just slightly (AUC 0.9294 vs. 0.9243).
Nevertheless this is interesting to see, since results for cc = 0.50 seem to differ by
a higher degree, which apparently is approximated as cc progresses. SPA using
other tc values, as already pointed out, gradually perform worse up until the
point of near randomness (dashed black diagonal line).

4.3 Evaluation Results - DS B

Due to the fact that DS B (around 4 000 images, 50% non-smoke/smoke), as
mentioned above, has not been involved in any GLN training at all, it perfectly
serves the purpose of further verifying previous findings. Its most salient differ-
ence to DS A has already been pointed out – a more or less consistently divergent
color spectrum comprising much less saturated images. Therefore, the optimal
tc should definitively be lower than for DS A, which indeed is the case judging
by the evaluation results at cc = 0.50 listed in Table 1b. This time GLN SAT
seems to perform best yielding 91.4% classification accuracy, 96.2% sensitivity
and 86.4% specificity. It is closely followed by SPA with tc = 0.25, which as
well achieves 91.0% accuracy but with almost interchanged sensitivity (84.3%)
and specificity (97.9%) values, which indicates a better efficiency in detecting
non-smoke than smoke. Nevertheless, the performance sweet spot for SPA seems
to lie between tc = 0.25 and tc = 0.30, since in the latter’s outcome sensitivity
(96.6%) and specificity (81.6%) are again reversed, resulting in an accuracy of
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89.2%. As Fig. 7 shows, GLN RGB at cc = 0.50 misclassifies a lot of non-smoke
images (934 of 2098), which causes it to perform rather poorly compared to all
other methods yielding unbalanced 100.0% sensitivity, 55.5% specificity and only
77.9% accuracy.

(a) GLN RGB (b) GLN SAT (c) SPA 0.25 (d) SPA 0.30

Fig. 7. Most significant confusion matrices for DS B (0 no smoke, 1 smoke), cc = 0.50.

Finally, we take a look at the ROC curves from DS B’s evaluations, which
are depicted in Fig. 5b and again paint a slightly different picture. GLN SAT
(blue solid line) with an AUC of 0.9822 still turns out to be the best classifier
for DS B. SPA with tc = 0.30 (orange dashed line), however, comes in second
with an area of 0.9770, similarly to the DS A’s evaluation, outperforming the
seemingly better SPA method at cc = 0.50. Surprisingly GLN RGB (green solid
line) ranks third with 0.9769 only performing negligibly worse than the former
method. SPA with tc = 0.25 (red dashed line) classifies well yielding an AUC of
0.9403, yet performance for other SPA rapidly decreases, especially starting from
tc = 0.40 upwards, where many effectively yield predictions equal to a random
classifier – SPA curves above tc = 60 even exactly match the diagonal line.

4.4 Runtime Evaluation

Since the intent behind this work is real-time smoke detection, it is important to
as well consider computational performance in addition to above assessed classi-
fication quality. Table 2 shows the average wall clock timings6 of image prepara-
tion, classification and their total for both datasets’ differing sample resolutions
(DS A: 720× 480, DS B: 1920× 1080).

Table 2. Image evaluation performance avg. in DS A/B (ms).

Method Preparation Classification Overall

SPA (720x480) 3.542 0.005 3.546

GLN RGB (720x480) 12.182 107.880 120.063

GLN SAT (720x480) 6.234 75.936 82.170

SPA (1920x1080) 12.487 0.006 12.493

GLN RGB (1920x1080) 45.132 105.223 150.355

GLN SAT (1920x1080) 18.847 75.307 94.154

6 For the exact machine hardware specs, see Sect. 3.2.
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All evaluations are implemented in Python [4] with preparation steps mostly
consisting of OpenCV [3] tasks, like color conversion, image resizing and his-
togram extraction but as well of course a custom implementation for finding
local maxima in case of SPA. Regarding the measurements for both resolutions,
it becomes apparent that GLN RGB by far is the most costly of all methods
with classification time requirements of about 105 ms, followed by GLN SAT
with around 75 ms and SPA with negligible 0.005 ms. In case preparation tim-
ings are included, the overall processing duration worsens due to the relatively
long time resizing images to 256× 256 pixels takes: depending on how many
channels are used7, this step adds about 3–12 ms for 720× 480 and 8–45 ms for
1920× 1080. This results in altogether 120–150 ms for GLN RGB, 82–94 ms for
GLN SAT and 3–12 ms for SPA, rendering SPA the only method fulfilling real-
time requirements8 on the utilized test machine.

4.5 Discussion

When surveying the entirety of outcomes, a clear trend towards GoogLeNet
using colored images (GLN RGB) can be observed, since its worst performance
in both datasets still is producing a ROC AUC of above 0.97. Unfortunately this
as well is the most computationally expensive method, showing runtime perfor-
mances of about 150 ms per HD image, which indicates merely near real-time
performance. Nevertheless, since smoke development across frames does gener-
ally not change very rapidly, it would very likely be feasible to drop some frames
and still achieve great results in live systems. As an alternative, GoogLeNet fed
with saturation images (GLN SAT) could be used to speed up the process con-
siderably with a performance of around 94 ms for the same type of input. This
would impact classification performance but not substantially, since at worst
evaluations still show an AUC of over 0.94. The only method capable of true
real-time performance is saturation peak analysis (SPA) with as little as around
12 ms computation requirements and ROC curve areas of at least over 0.92, when
always considering the best classification threshold tc. However, SPA critically
relies on finding this right tc for every classified image, which renders the algo-
rithm, at least in its current form, inapplicable for live smoke detection. Still,
when regarding analyses conducted on DS A and B, it seems apparent that,
although different surgery setups can produce contrasting distributions in satu-
ration, equivalent ones appear to share similar values. This consideration would
for example explain SPA showing optimal performance for both datasets at dif-
ferent threshold ranges: around tc = 0.40 to tc = 0.50 for DS A and tc = 0.20 to
tc = 0.30 for DS B.

Regarding comparability with most relevant work by Loukas et al. [33]
described in Sect. 2, it has to be born in mind that the authors do not target
real-time smoke evacuation, as is the case in our study. Nevertheless, since our
methodologies can achieve at least a near real-time classification rate, they could

7 SAT channel conversion takes around 3 ms for 720× 480, 10 ms for 1920× 1080.
8 For a 25 fps video real-time requirements would be: 1000

25
= 40ms.
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as well be utilized to annotate recorded media. In straight comparison, although
outperforming selected wavelet-based outdoor smoke detection methods with an
achieved ROC AUC of 0.63, their methodology seems to perform considerably
worse than our proposed techniques, at least for their custom created dataset.

5 Conclusion

Targeting real-time smoke detection in endoscopic videos, we develop several
image-based classification approaches, which we evaluate on two custom laparo-
scopic datasets. Continued training of GoogLeNet using full color samples overall
achieves the highest classification but lowest runtime performance, which could
be mitigated by simply omitting frames in real-time systems. Alternatively, using
saturation channel only images for GoogLeNet training still produces a high
accuracy at much faster computation times, yet as well not fully capable of
handling live streams. In contrast to these CNN-based methods, naive image
saturation analysis shows good performance in terms of classification and run-
time, however, it is currently limited to requiring information about a dataset’s
average saturation distribution for non-smoke images.

When addressing our general research question Q inquiring the feasibility of
reliable smoke recognition in laparoscopic live streams, we consider the achieved
classification quality to be good enough for highly accurate systems. Regarding
the real-time aspect, future investigations need to be conducted, although we
estimate dropping frames being a sufficient measure to compensate for slower
computation speeds. Furthermore, we deem the evaluated methodologies also be
applicable to general endoscopic videos, since they typically are very similar to
laparoscopic recordings, where equivalent equipment is used.

In future work, we will evaluate the performance of our present method-
ologies on further datasets, particularly published by others. Additionally, our
promising results motivate investigating more and different CNN architectures,
possibly as well many-layered architectures, despite a likely even greater impact
on computation times. Finally, since saturation seems to be a good indicator for
smoke, it is worthwhile to investigate histogram equalization methods for auto-
matically determining good naive classification thresholds or finding alternative
combinations for training CNN models.
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Abstract. We describe a fully-automated system for analysing X-rays
of the wrist to identify possible fractures. Fractures of the distal radius
in the wrist are estimated to be about 18% of the fractures seen in
adults and 25% of those seen in children. Unfortunately such fractures
are amongst the most frequently missed by doctors in Emergency Depart-
ments (EDs). A system which can identify suspicious areas could reduce
the number of misdiagnoses. We automatically locate the outline of the
radius in both posteroanterior (PA) and lateral (LAT) radiographs, then
use shape and texture features to classify abnormalities. We show for the
first time that fractures can be better identified in the lateral view, and
that combining information from both views leads to an overall improve-
ment in performance.

Keywords: Image analysis · Image interpretation and understanding ·
X-ray fracture detection · Wrist fractures · Radius fractures · Machine
learning

1 Introduction

Fractures of the wrist are usually identified in Emergency Departments by doc-
tors examining lateral (LAT) and posterioanterior (PA) radiographs (Fig. 1).
Unfortunately missing such fractures is one of the most common diagnostic
errors in EDs, leading to delayed treatment and more suffering for the patient
[7,14,18]. This is mainly because the majority of patients attending EDs are
seen by junior doctors [8,13]. This problem is widely acknowledged, so in many
hospitals X-rays are reviewed by an expert radiologist at a later date - however
this can lead to significant delays on missed fractures which can have an impact
on the eventual outcome. To address this we are developing a system which can
automatically analyse radiographs of the wrist in order to identify abnormalities
and thus prompt clinicians, hopefully reducing the number of errors.

In this paper we describe a fully-automated system for detecting radius frac-
tures in PA and LAT radiographs. For each view, a global search [11] is performed
c© Springer International Publishing AG 2017
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for finding the approximate position of the radius. The detailed outline of the
bone is then located using a Random Forest Regression Voting Constrained Local
Model (RFCLM) [10]. We use features derived from the shape and texture to
train random forest classifiers on the task of detecting fractures. Features from
both views are combined for better performance.

This paper is the first to show an automatic system for identifying fractures
from lateral view radiographs of the wrist. We show that better performance can
be achieved from this view than the PA view, and that further improvement can
be obtained by combining results from both views.

2 Background

Distal radius fractures have been on increase in all age groups [15]. They alone
constitute around 18% of the fractures seen in EDs in adults [4,6] and 25% of
the fractures seen in children [6].

Previous work on detecting fractures in X-rays has been done on a variety of
anatomical regions, including arm fractures [19], femur fractures [1,9,12,17,20],
and vertebral endplates [16]. Cao et al. [2] used stacked random forests to fuse
different feature representations to identify fractures in a range of anatomical
regions. They achieved a sensitivity of 81% and precision of 25%. All reported
work on automatical analysis of wrist fractures that we are aware of [5,9,12]
uses only the PA view. In each case some form of shape model is used to locate
the outline of the bones, then texture (and possibly shape) features are used to
train a classifier to distinguish healthy from fractured bones.

[9,12] use both active shape models and active appearance models [3] to
locate the approximate contour of the radius. They extract various texture fea-
tures (Gabor, Markov Random Field, and gradient intensity) and classify with a
Support Vector Machine SVM. They achieved encouraging performance (accu-
racy ≈ sensitivity ≈ 96%) but were working on a rather small dataset with only
23 fractured examples in their test set. In previous work [5] we used RFCLMs
to segment both the radius and ulna in PA views and trained random forest
classifiers on statistical shape parameters and eigen-mode texture features. The
automatic system [5] achieved a performance of 88.6% (Area under Receiver
Operating Characteristic Curve AUC) on data set of 409 radiographs including
199 fractures. The system we describe below is for the radius in both PA and
LAT views achieving better performance and is tested on a data set about twice
the size.

3 Method

The outline of the radius was manually annotated with 48 points in the PA
view and with 64 points in the LAT View (Fig. 1). For each view, a statistical
shape model and an RFCLM [10] object detection model were built from the
corresponding manual annotations. The models then used to segment the bone
on new radiographs automatically.
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3.1 Modeling and Matching

Building Models for Shape and Texture. The outline of the radius is
modeled by a linear statistical shape model [3].
Each training image is annotated with n feature points, (xi, yi). A 2n-D vector
x = (x1, ....., xn, y1, ......, yn)T represents all the points.

PA

LAT
(a) (b) (c)

Fig. 1. The annotations of both views on (a) a normal radius, (b) a radius with a
subtle fracture, and (c) with an obvious fracture. The two red points, appearing on
each view, are the anatomical points found by the global searcher for that view. (Color
figure online)

Shapes are modelled using

x = T (x̄ + Pb : θ) (1)

where x̄ is the mean shape, P is the set of the eigenvectors corresponding to the t
highest eignvalues of the covariance matrix, b is the vector of shape parameters
and T (. : θ) applies a similarity transformation with parameters θ. The first
three modes of the built shape models are shown in Fig. 2. Similarly, statistical
texture models [3] are built by applying PCA to vectors of normalised intensity
(g) sampled from the regions defined by the points of the shape model.

g ≈ ḡ + Pgbg (2)

After fitting the model to a new radiograph, shape parameters b (in Eq. 1) and
the texture parameters bg (in Eq. 2) are used as features on which classifiers are
trained to distinguish between normal and fractured bones.
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Matching Shape Models to New Radiographs. We use a technique similar
to that described by Lindner et al. [11] to locate the outline of the targeted bone
in each view separately. A single global model per view is trained to initially find
approximate position of a box containing two anatomical landmarks (i.e. the red
points in Fig. 1). As in [11] a random forest regressor with Hough voting is trained
to find the displacement between the center of a patch and the object center.
During training, patches are sampled at random displacements and scales from
the object center and fed to a Random Forest to learn the relationship between
an image patch and the displacement of the patch centre from the target position.
By scanning a new image at different scales and orientations with the Random
Forest and collecting the votes, the most likely center, scale and orientation of
the object can be found. The two points estimated by the global searcher are
used to initialise a local search for the outline of the radius. We used a sequence
of three RFCLMs of increasing resolution to produce the final result.

3.2 Classification

After performing the full automatic search so that radius outline points are
located on all radiographs, Random Forest classifiers (100 trees each) are trained
on features derived from the shape (the shape parameters, b) and the texture
(the texture model parameters, bg) for the task of fracture detection (i.e. nor-
mal or fractured). A series of cross validation experiments were performed with
different combinations of features for each view separately, then for both views
together.

4 Experiments

Data. The experiments were carried out on a dataset containing both views
for 787 adult patients (378 of whom had fractures) from two local EDs gathered
and anonymised by a clinician.

Automatic Annotation. In order to generate the automatic annotation for
the whole dataset, we divided PA radiographs into two subsets, training models
on one subset and applying them to the second. Four subsets were needed to
successfully learn representative models for the LAT view. That is because of
the overlap between the two bones, (i.e. radius and ulna) on lateral view can
take various orientations due to different acceptable positioning in practice [6].
This is not the case for PA view as the two bones appear side by side. Figure 3
shows some examples from our LAT dataset.

The accuracy of the segmentation is calculated as the percentage of mean
point-to-curve distance [11] to a reference width, and converted to mm by assum-
ing a mean reference width of 25 mm for the radius in the PA view and 20 mm
in the LAT view. The reference width of a view is the distance between the two
reference points for that view (see Fig. 1(a)).
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(PA.1) (PA.2) (PA.3) (LAT.1) (LAT.2) (LAT.3)

Fig. 2. The first three modes of the shape models of the radius.

Fig. 3. Different relative radius-ulna positions appearing in lateral radiographs.

The results in Table 1 show the ability of the models to successfully segment
the targeted structure even when fractured. The mean error was less than 1.4 mm
for more than 95% of the radiographs in the LAT view and less than 0.6 mm
for 95% of radiographs in the PA view. The PA error was less that reported in
[5] (0.61 mm vs 0.78 mm for the 95%-ile, though our dataset is twice the size).
The table also breaks down the results by class and shows that although in the
PA view there is almost no difference in accuracy between fractured and normal
cases, in the LAT view errors are roughly 50% larger. However overall the system
can successfully capture a good approximation to both the normal and fractured
shapes.

Classification. For each view we performed 5-fold cross validation experi-
ments with Random Forest classifiers using 100 trees (repeated three times) on:
(i) shape parameters only, (ii) texture parameters only, and (iii) the concatena-
tion of shape and texture parameters. The results obtained from the PA view,
shown in Table 2, reflects the small difference between the manual and automatic
annotation. The performance of the automated system improves slightly on that
described in [5] (though that was on a smaller dataset).

Table 3 shows the classification results for the LAT view. Note that classify-
ing using the shape alone gives significantly better performance than that from
the PA view. Adding the texture information makes only a small improvement
(in the manual case) and slightly degrades performance of the fully automated
system. The difference in performance for shape between manual and automatic
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Table 1. The mean point-to-curve distance in (mm) for the fully automatic
annotations.

View Class Mean Median 90% 95% 99%

PA Normal 0.18 0.10 0.40 0.50 1.08

PA Fractured 0.18 0.11 0.47 0.63 1.04

PA Both 0.18 0.10 0.42 0.61 1.06

LAT Normal 0.40 0.28 0.76 0.94 1.86

LAT Fractured 0.62 0.44 1.27 1.62 2.83

LAT Both 0.50 0.32 1.01 1.37 2.34

Table 2. AUC for classification based on PA view.

PA view Manual Fully automated Automated result from [5]

Shape 0.847 ± 0.004 0.826 ± 0.002 0.816 ± 0.007

Texture 0.896 ± 0.005 0.891 ± 0.001 0.881 ± 0.004

Shape & Texture 0.898 ± 0.002 0.897 ± 0.002 0.868 ± 0.002

results suggests that classification performance can be improved by improving
the accuracy of the search (perhaps by increasing the size of the training set).

Table 3. AUC for classification based on lateral view.

LAT view Manual Fully automated

Shape 0.933 ± 0.001 0.905 ± 0.003

Texture 0.894 ± 0.002 0.878 ± 0.002

Shape & Texture 0.937 ± 0.001 0.899 ± 0.001

Combining information from both views results in the best classification per-
formance in both manual and automatic cases. See Table 4. Figure 4 shows the
ROC curves for the best results.

Table 4. AUC for classification based on features from both views.

PA & LAT views Manual Fully automated

Shape 0.933 ± 0.001 0.913 ± 0.003

Texture 0.918 ± 0.002 0.890 ± 0.006

Shape & Texture 0.942 ± 0.002 0.914 ± 0.004
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Fig. 4. The ROC curves corresponding to classification based on combining shape
and texture features from both PA and LAT views for: (i) manual annotation, and
(ii) automatic annotation.

5 Conclusions

This paper presents a system that automatically locates the outline of radius in
both posteroanterior and lateral radiographs and extracts discriminative features
for fracture detection. In future work, we will extend our current work to generate
automatic description of the found fracture (i.e. fracture classification), and will
explore learning alternative texture features. Our long term goal is to build a
system which works well enough to help clinicians in EDs make more reliable
decisions.
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1. Bayram, F., Çakirolu, M.: DIFFRACT: diaphyseal femur fracture classifier system.
Biocybern. Biomed. Eng. 36(1), 157–171 (2016)

2. Cao, Y., Wang, H., Moradi, M., Prasanna, P., Syeda-Mahmood, T.F.: Fracture
detection in x-ray images through stacked random forests feature fusion. In: Inter-
national Symposium on Biomedical Imaging (ISBI 2015), pp. 801–805, April 2015

3. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans.
Pattern Anal. Mach. Intell. 23(6), 681–685 (2001)

4. Court-Brown, C.M., Caesar, B.: Epidemiology of adult fractures: a review. Injury
37, 691–697 (2006)

5. Ebsim, R., Naqvi, J., Cootes, T.: Detection of wrist fractures in X-Ray images. In:
Shekhar, R., et al. (eds.) CLIP 2016. LNCS, vol. 9958, pp. 1–8. Springer, Cham
(2016). doi:10.1007/978-3-319-46472-5 1

http://dx.doi.org/10.1007/978-3-319-46472-5_1


98 R. Ebsim et al.

6. Goldfarb, C.A., Yin, Y., Gilula, L.A., Fisher, A.J., Boyer, M.I.: Wrist fractures:
what the clinician wants to know. Radiology 219, 11–28 (2001)

7. Guly, H.R.: Injuries initially misdiagnosed as sprained wrist (beware the sprained
wrist). Emergency Med. J. (EMJ) 19, 41 (2002)

8. Lee, C., Bleetman, A.: Commonly missed injuries in the accident and emergency
department. Trauma 6, 41–51 (2004)

9. Lim, S.E., Xing, Y., Chen, Y., Leow, W.K., Howe, T.S., Png, M.A.: Detection of
femur and radius fractures in x-ray images. In: Proceedings of 2nd International
Conference on Advances in Medical Signal and Information Processing, vol. 1, pp.
249–256 (2004)

10. Lindner, C., Bromiley, P.A., Ionita, M.C., Cootes, T.: Robust and accurate shape
model matching using random forest regression-voting. IEEE Trans. Pattern Anal.
Mach. Intell. 37(9), 1862–1874 (2015)

11. Lindner, C., Thiagarajah, S., Wilkinson, J.M., Consortium, T., Wallis, G.A.,
Cootes, T.F.: Fully automatic segmentation of the proximal femur using random
forest regression voting. Med. Image Anal. 32(8), 1462–1472 (2013)

12. Lum, V.L.F., Leow, W.K., Chen, Y., Howe, T.S., Png, M.A.: Combining classifiers
for bone fracture detection in X-ray images, vol. 1, pp. I-1149–1152 (2005)

13. McLauchlan, C.A., Jones, K., Guly, H.R.: Interpretation of trauma radiographs
by junior doctors in accident and emergency departments: a cause for concern? J.
Accid. Emerg. Med. 14(5), 295–298 (1997)

14. Petinaux, B., Bhat, R., Boniface, K., Aristizabal, J.: Accuracy of radiographic
readings in the emergency department. Am. J. Emerg. Med. 29, 18–25 (2011)

15. Porrino, J.A., Maloney, E., Scherer, K., Mulcahy, H., Ha, A.S., Allan, C.: Fracture
of the distal radius: epidemiology and premanagement radiographic characteriza-
tion. Am. J. Roentgenol. (AJR) 203, 551–559 (2014)

16. Roberts, M.G., Oh, T., Pacheco, E.M.B., Mohankumar, R., Cootes, T.F., Adams,
J.E.: Semi-automatic determination of detailed vertebral shape from lumbar radi-
ographs using active appearance models. Osteoporos. Int. 23(2), 655–664 (2012)

17. Tian, T.P., Chen, Y., Leow, W.K., Hsu, W., Howe, T.S., Png, M.A.: Computing
neck-shaft angle of femur for X-Ray fracture detection. In: Petkov, N., Westenberg,
M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 82–89. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45179-2 11

18. Wei, C.-J., Tsai, W.-C., Tiu, C.-M., Wu, H.-T., Chiou, H.-J., Chang, C.-Y.: Sys-
tematic analysis of missed extremity fractures in emergency radiology. Acta Radi-
ologica 47, 710 (2006)

19. Jia, Y.: Active contour model with shape constraints for bone fracture detection.
In: International Conference on Computer Graphics, Imaging and Visualisation
(CGIV 2006), vol. 3, pp. 90–95 (2006)

20. Yap, D.W.H., Chen, Y., Leow, W.K., Howe, T.S., Png, M.A.: Detecting femur frac-
tures by texture analysis of trabeculae. In: Proceedings - International Conference
on Pattern Recognition vol. 3, pp. 730–733 (2004)

http://dx.doi.org/10.1007/978-3-540-45179-2_11


Automated Characterization of Pyelocalyceal
Anatomy Using CT Urograms to Aid in Management

of Kidney Stones

Yuankai Huo1 , Vaughn Braxton2 , S. Duke Herrell2 ,
Bennett Landman1 , and Smita De2(✉)

1 Vanderbilt University, Nashville, TN, USA
2 Vanderbilt University Medical Center, Nashville, TN, USA

smita.de@vanderbilt.edu

Abstract. Nephrolithiasis is a costly and prevalent disease that is associated with
significant morbidity including pain, infection, and kidney injury. While surgical
treatment of kidney stones is generally based on the size and quality of the stones,
studies have suggested that specific characteristics of the pyelocalyceal anatomy
(i.e. urinary drainage system), such as the infundibulopelvic angle (IPA), can
influence the success rate of various treatment modalities. However, the tradi‐
tional methods of quantifying such anatomic features have typically relied on
manual measurements using 2-dimensional (2D) images of a 3-dimensional (3D)
system, which can be cumbersome and potentially inaccurate. In this paper, we
propose a novel algorithm that automatically identifies and isolates the 3D volume
and central frame of the urinary drainage system from computerized tomography
(CT) Urograms, which then allows for 3D characterization of the pyelocalyceal
anatomy. First, the kidney and pyelocalyceal system were segmented from adja‐
cent soft tissues using an automated algorithm. A centerline tree structure was
then generated from the segmented pyelocalyceal anatomy. Finally, the IPA was
measured using the derived reconstructions and tree structure. 8 of 11 pyeloca‐
lyceal systems were successfully segmented and used to measure the IPA,
suggesting that it is technically feasible to use our algorithm to automatically
segment the pyelocalyceal anatomy from target images and determine its 3D
central frame for anatomic characterization. To the best of our knowledge, this is
the first method that allows for an automated characterization of the isolated 3D
pyelocalyceal structure from CT images.

Keywords: Pyelocalyceal anatomy · Kidney stones · Automated segmentation

1 Introduction

The prevalence of kidney stone disease, or nephrolithiasis, has been rising over the last
several decades and now affects approximately 1 in 11 individuals in the United States [1].
Most stones that do not spontaneously pass will require surgical treatment with uretero‐
scopy (retrograde endoscopy through the urethra and bladder), extracorporeal shock wave
lithotripsy (stones fragmentation using noninvasive shock waves), percutaneous lithotripsy
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(endoscopy through 1 cm direct puncture into the kidney), or very rarely laparoscopic or
open surgery. An efficient and effective choice of surgical approach is critical given the
significant morbidity due to kidney stones, including pain, infection, and renal insuffi‐
ciency, as well as associated costs, which were estimated to be over $5 billion in 2000 [2].
Currently, more than 40% of patients may not be stone free after surgery [3].

In determining an optimal surgical approach, it is essential to consider anatomic
factors and stone features as these affect treatment success rates [4, 5]. However, prior
research correlating specific characteristics of the pyelocalyceal anatomy (kidney
drainage or urinary collecting system where stones grow), such as the IPA (angle repre‐
senting the lower pole (i.e. most inferior portion of the drainage system where stones
can settle)) and stone-free rates after surgery has often relied on manual measurements
of 2D imaging modalities, such as fluoroscopy and intravenous pyelograms, to charac‐
terize the 3D urinary collecting system. Data from such studies are conflicting, which
may in part be due to the crudeness of the 2D approximations [4, 6]. For example, the
range of IPAs in patients using 2D intravenous urograms are not consistent with those
measured from 3D resin casts of cadaver kidneys [7, 8]. Furthermore, many of the studies
were performed using images taken during surgery, meaning the images were not avail‐
able pre-operatively to actually aid in treatment planning.

The above indicate a strong need and opportunity for improvement in image-based
patient-specific preoperative planning and counseling in the management of stone
disease. The high prevalence of CT as a clinical tool provides an ideal avenue to develop
algorithms for patient-specific computer-aided treatment guidance. In addition, this type
of data at a population level will be highly valuable in the development of novel devices
for kidney stone surgery and more general characterization of anatomy.

In this feasibility study, we aimed to automatically segment and isolate the 3D struc‐
ture of the renal collecting system anatomy in normal CT Urograms that could then be
used to measure the IPA, a key feature previously identified as potentially correlating
with operative accessibility and thus, success of a given surgical approach.

2 Methods

2.1 Patient Selection and Imaging

The Institutional Review Board approved this study with a waiver of informed consent.
Electronic medical records were used to randomly identify patients who had a CT
Urogram for evaluation of hematuria (blood in the urine) [9]. Exclusion criteria included
any treated or untreated kidney pathology including tumors, presence of kidney stones,
anatomic variants, and chronic renal insufficiency as this affects the rate of contrast
excretion. Images were manually reviewed to confirm good image quality. All excretory
phase sequences (Fig. 1 demonstrates difference between a non-contrast and excretory
phase image) in this study were performed in the prone position at an 8 min delay per
institutional protocol with 3 mm axial reconstructions.
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Fig. 1. Top: Non-contrast CT with cropped images of the kidney in which pyelocalyceal system
is not visualized. Bottom: Excretory phase of CT Urogram with cropped images of kidney and
pyelocalyceal anatomy illuminated during excretion of contrast by the kidneys.

2.2 Automated Localization and Segmentation of Whole Kidney

Figure 2 demonstrates the workflow of the proposed algorithm. A SIMPLE context
learning-based multi-atlas segmentation framework [10] was used to achieve whole
kidney segmentation. To achieve the SIMPLE framework, 30 pairs of atlases (anatom‐
ical CT scans and corresponding labels) were obtained from MICCAI 2015 MeDiCAL
challenges (https://www.synapse.org/#!Synapse:syn3193805/wiki/89480). Two sets of
cropped atlases were then formed based on kidney locations (30 pairs each for the left
and right kidneys). The atlases were manually cropped by an experienced rater using
MIPAV software [11]. Next, the left and right kidneys in target CT Urogram images
were automatically localized and cropped using a random forest based localization
method [12]. The previously cropped atlases were then registered to the cropped target
CT Urogram images using affine and non-rigid registrations by NiftyReg [13]. A
SIMPLE based context learning procedure was performed to select the best 10 registered
atlases for each target kidney [14]. Finally, the left and right kidney segmentations from
the target images were separately derived by performing a joint label fusion (JLF) [15]
on the selected atlases.
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Fig. 2. The workflow of the proposed algorithm. First, the whole kidney was localized and
segmented using multi-atlas segmentation. The pyelocalyceal structure was then segmented using
a Gaussian Mixture Model and the tree structure was subsequently derived. Key landmarks
(yellow dots) were identified from the 3D reconstruction and tree structure to construct an oblique
4 mm thick plane from which the IPA was measured. (Color figure online)

2.3 Automated Segmentation of Pyelocalyceal Anatomy and Validation

Once the kidneys were cropped and segmented from the original excretory phase images,
a Gaussian mixture model (GMM) was used to segment the pyelocalyceal anatomy
within the kidneys. Empirically, a threshold above 100 Hounsfield Unit (HU) was
applied to exclude tissues surrounding the kidney. The GMM with three components
was then employed on the histogram of remaining intensities. The two components
(from three total) with higher mean HU score were clustered and identified to be the
pyelocalyceal anatomy segmentation. The component with smallest mean HU score
represented residual kidney organ tissue not completed removed in the initial thresh‐
olding step. Finally, a 3D tree structure (center line) was derived from the pyelocalyceal
anatomy segmentation using the method described in [16]. Briefly, the method calcu‐
lated the 3D axis skeleton of the 3D binary volume using a parallel thinning algorithm
based on an Euler table.

All pyelocalyceal segmentations were qualitatively evaluated by a radiologist and
rated as having excellent, acceptable, or poor accuracy. A random subset of the kidneys
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that resulted in excellent or acceptable segmentations were then manually segmented
by a radiologist and the Dice coefficient was calculated.

2.4 Measurement of Infundibulopelvic Angle in 2D and 3D Images

The previously described Elbahnasy method for IPA measurement in 2D images was
modified to allow for IPA measurement using 3D images and the above derived 3D tree
structure [17]. Key landmarks corresponding to those in the Elbahnasy method were
manually identified by a Urologist in 3D slicer software (https://www.slicer.org) using
the kidney segmentation, pyelocalyceal anatomy and tree structure derived from above
automated algorithm. The landmarks based on the Elbahnasy method were as follows:
(1) the center point of the proximal ureter at the lowest plane of the kidney, (2) the center
point of the renal pelvis along medial margin of kidney, (3) a point in the inferior branch

Fig. 3. Example results of the segmentation and angle measurements for a single kidney. Top
row: 3D reconstruction of the kidney, 3D reconstruction of the pyelocalyceal structure, tree
structure. Bottom row: Overlays of reconstructions and tree structure, traditional 2D measurement
[14] of IPA (red lines) using an averaged (i.e. flattened) pseudo-2D image generated from CT
images to simulate IV pyelogram IPA measurement (horizontal blue line indicates lowest plane
of the kidney, sloped vertical blue line indicates medial margin of kidney, (A) center of ureter at
lower margin of kidney, (B) center of renal pelvis at medial margin, (C) center line through lower
pole branch), and the 3D IPA measurement (red lines) using described method. (Color figure
online)
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of the kidney drainage system (i.e. lower pole). The three points were used to create a
unique 4 mm thick slice from the 3D volume, and the IPA was measured as the angle
between the line connecting points (1) and (2), and the center line through the lowest
branch of the kidney drainage system (Fig. 2).

As a comparison, 2D measurements of the IPA were performed on the cropped
kidney from an averaged CT image in the coronal direction. This traditional 2D meas‐
urement was obtained by estimating the center point (A) of the proximal ureter at the
lowest plane of the kidney, estimating the center point (B) of the renal pelvis along
medial margin of kidney, approximating the center line (C) through the lower pole
branch, and measuring the angle between line C and a line connecting A and B (Fig. 3).

3 Results

3.1 Patients

After exclusion of patients with imaging artifacts or inadequate collecting system
distension, CT images of 11 individual kidneys from 8 patients were identified to be
appropriate for this feasibility study. Patients ranged in age from 41–80 years old and
all had normal kidney function.

3.2 Pyelocalyceal Anatomy Segmentation

The pyelocalyceal anatomy was appropriately segmented in 8 of the 11 kidneys with a
rating of excellent or acceptable by the radiologist. Of these, 6 were randomly chosen and
manually segmented by the radiologist and Dice coefficients ranged from 0.62 to 0.88.

3.3 Infundibulopelvic Angle

Figure 3 demonstrates the segmentation results, tree structure, as well as 2D and 3D IPA
measurements from a single example kidney. The IPA based on the 3D segmentations
and tree structures ranged from 14.6° to 81.5° while IPA based on 2D reformatted images

Table 1. Infundibulopelvic angles obtained from 2D and 3D measurements

Kidney# 2D IPA
measurement (°)

3D IPA
measurement (°)

Absolute difference (°) Percent difference

1 19.2 23.7 4.5 18.99%
2 16.5 21.9 5.4 24.66%
3 66.9 70.1 3.2 4.57%
4 34.2 48.6 14.4 29.63%
5 57.4 60 2.6 4.33%
6 9.4 14.6 5.2 35.63%
7 16.3 19.7 3.4 17.26%
8 88.3 81.5 6.8 8.34%
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ranged from 9.4° to 88.3° (Table 1). Comparisons between the angles based on the 2D
and 3D methods demonstrated differences up to 35.6%.

4 Discussion

Kidney stone disease is a chronic condition that often requires many surgeries over a
patient’s lifetime. Each surgery is associated with risks and residual stones can have
severe consequences so appropriate pre-operative evaluation and intervention are crit‐
ical [18]. In addition to stone-free rates after surgery, anatomic variation may play a role
in stone formation and burden of disease [6]. Thus, accurate characterization of patient
anatomy can have both immediate and long-term effects with respect to surgical planning
as well as lifelong management, such as the interval between imaging studies.

Augmentation of currently widely available CT Urography with powerful post-
processing tools such as 3D modeling and characterization algorithms may aid in
advancing patient-tailored medicine in urologic disease. While there is prior work on
automated detection of kidney stones and kidney tumors [19, 20] from CT images, this
is the first method known to the authors for automated isolation and characterization of
the 3D pyelocalyceal frame. There have been some efforts to perform automated iden‐
tification and segmentation of the pyelocalyceal anatomy using magnetic resonance
imaging (MRI). A mean Dice coefficient of 0.72 [21] has been reported, which is within
the range achieved in this study, but anatomic characterization was not performed and
furthermore, MRIs do not provide adequate visualization of kidney stones and thus are
not used for stone patients. The results presented here demonstrate that the proposed
algorithm is technically feasible with CT imaging and Dice coefficient calculations
indicate that the automated segmentation results compare favorably with manual
segmentations for the given geometry.

With respect to the IPA, the relative difference in the measured IPA between the 2D and
3D techniques was noted to be up to 35%. As previously mentioned, prior studies have
indicated that anatomic variation may be critical to predicting surgical success, but the data
on IPA and other anatomic parameters are inconsistent [4]. As this preliminary data
suggests, the discrepancies may be partially attributed to the lower anatomic fidelity of the
traditionally utilized 2D images, and the advantages of using 3D techniques are a focus of
our future studies. An inherent limitation of such automated algorithms is that the result
will only be as reliable as the initial imaging, and imaging quality of CT urograms can be
dependent on multiple factors such as kidney function and level of hydration. We aim to
further automate our algorithm, assess additional anatomic variables, both novel and previ‐
ously described, and then correlate these more accurate 3D-based measurements with
stone-free rates after stone surgery. Outcomes from such studies may provide valuable
tools for patient-specific stone management.
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Abstract. Described here is a novel method for automatic detection
and enhancement of needles under 3D ultrasound guidance. We develop
a detector consisting of a linear learning-based pixel classifier that utilizes
Histogram of Oriented Gradients descriptors extracted from local phase
projections. The detector automatically identifies slices of the volume
that contain needle data, reducing the needle search space. Needle tip
enhancement is performed on a projection of the extracted sub-volume,
followed by automatic tip localization using spatially distributed image
statistics within the trajectory constrained region. Evaluation of the pro-
posed method on 40 volumes of ex vivo bovine tissue shows 88% detection
precision, 98% recall rate, mean classification time per slice of 0.06 s and
mean tip localization error of 0.44 ± 0.13 mm. The promising results
indicate potential of the method for further evaluation on clinical pain
management procedures.

1 Introduction

Ultrasound (US) guidance for regional anesthesia has gained popularity in clin-
ical practice because of its radiation-free, low-cost and real-time nature. With
two-dimensional (2D) US, which is the current standard, it is often difficult to
align the needle with the scan plane. Needle localization is even more difficult for
deep or steep insertions. This may impair therapeutic efficacy or cause injury.
To address this challenge, three-dimensional (3D) US has emerged as a viable
alternative [1]. 3D US permits simultaneous multi-planar visualization of the
needle without probe adjustment, hence orientation of the needle with respect
to the scan plane need not be perfect. However, needle visibility in 3D US is
affected by low dimension of the needle with respect to the US volume, signal
attenuation, high intensity artifacts and speckle noise.

Previously, algorithms for needle enhancement and localization in 3D US
were reported. These include: the 3D Hough transform (HT) [2], projection-based
methods such as parallel integration projection (PIP) [3] and iterative model-
fitting methods based on the random sample consensus (RANSAC) algorithm [4].
These methods generally suffer from computational complexity due to the large
amount of volume data that must be processed [5]. Further, since these methods
c© Springer International Publishing AG 2017
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are intensity-based, challenges may arise under difficult imaging conditions or in
the presence of high intensity US imaging artifacts.

Although the RANSAC based ROI-RK method proposed in [4,5] reduces
calculation time, it is not robust to high intensity artifacts and steep insertion
angles. The limitations of intensity-based methods can be overcome with the
use of local phase features. A qualitative comparison of local phase, HT and
RANSAC based needle-axis localization is presented in Fig. 1, where we observe
that when the only high intensity feature present is the needle, all methods
give accurate localization, short of which only local phase features consistently
yield accurate localization. In [6], oscillation of a needle stylet was modeled into
a projection-based localization framework, providing a more robust solution.
However, oscillating the stylet during US guided needle insertion is difficult in a
single operator scenario, especially for shallow angles.

Recently, a robust, intensity-invariant algorithm for needle enhancement and
localization in 2D US was proposed [7]. Needle shaft and tip were enhanced
by incorporating US signal transmission models in an optimization problem.
The needle trajectory was estimated from local phase-based projections of the
enhanced B-mode image [8]. However, incorrect tip localization arose when high
intensity soft tissue artifacts were present along the needle trajectory. The algo-
rithm also required proper alignment of the needle with the scan plane. In this
paper, we address the limitations in [7] by extending this promising method

Fig. 1. Comparison of local phase, Hough transform and RANSAC based needle-axis
localization. First column: 2D B-mode image. Second column-fourth column: Needle-
axis localization (green) from local-phase, Hough transform and RANSAC respectively.
When the needle is wholly conspicuous (top row), all methods give correct needle
trajectory. When the needle shaft is broken or high intensity artifacts are present in
the image, only the local phase-based method consistently gives accurate results. (Color
figure online)



110 C. Mwikirize et al.

to 3D. Our main contributions are: (1) A learning based classifier that utilizes
local phase descriptors to detect needle-containing slices in the US volume. (2)
A technique that computes multi-planar reconstructions for needle tip localiza-
tion in 3D. Our specific clinical focus is needle guidance in spinal injections such
as lumbar facet joint and medial branch blocks in obese patients. Preliminary
qualitative and quantitative validation results on ex vivo volumes demonstrate
that our method is robust and has a low execution time, making it suitable for
clinical evaluation in these pain management procedures.

2 Methods

We propose a two-stage framework illustrated in Fig. 2. We first detect slices
(2D frames acquired from a motorized 3D transducer) with needle data. This is
followed by needle enhancement and multi-planar tip localization. The following
sub-sections describe this process in detail.

2.1 Needle Detection

Previously, locally normalized histograms of oriented gradients (HOG) descrip-
tors were shown to be efficient at capturing gradient information [9]. They are
also invariant to translations or rotations, demonstrating performance similar
to Scale Invariant Feature Transformation (SIFT) descriptors. As such, locally
normalized HOG descriptors make robust feature sets for needle detection. In
our design, we extract intensity-invariant local phase descriptors and use them
to derive HOG descriptors.

Fig. 2. Block diagram of the proposed approach. (1) A needle detector is used to
classify slices that contain needle data, which are then compiled into a sub-volume as
described in Sect. 2.1. (2) Needle tip localization is performed on the sub-volume after
enhancement of needle data. The enhancement and localization processes are described
in Sects. 2.2 and 2.3 respectively.
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Fig. 3. The needle detection process. Top-row: B-mode US slices constituent of
USvolume. The original volume comprised of 41 slices. Here, we show only 7 slices
containing needle data, sandwiched between two slices (first and last columns) without
needle data. Middle row: Respective NPD(x, y) images. The slices with needle data
possess a salient straight feature with minimum bending. The slices without needle data
lack such features. Bottom row: Slice classification results after running the detector.
The classification accuracy here was 100%.

Local Phase Descriptors for Needles: We apply orientation tuned intensity-
invariant local phase filter banks to each slice of the 3D volume (hereafter
denoted as USvolume) to extract a needle phase descriptor, hereafter denoted as
NPD(x, y). The filter banks are constructed from 2D Log-Gabor filters, whose
parameters are selected automatically using the framework proposed in [8]. It
is assumed that the insertion side of the needle is known a priori, and the cal-
culation is limited to an automatically selected region of interest (ROI) on the
insertion side. It is expected that the ROI contains a visible part of the shaft. The
output of the filter operation gives a phase-based descriptor called phase symme-
try, PS(x, y), which is used as an input to the Maximum Likelihood Estimation
SAmple Consensus algorithm (MLESAC) [10]. We use MLESAC to prune false
positive pixels and connect inliers to yield NPD(x, y). Figure 3 shows exam-
ples of slices with and without NPD(x, y). Investigating Fig. 3 (first and last
columns), we note that slices without needle data do not contain NPD(x, y),
while slices with needle data (middle 7 columns) possess NPD(x, y), existing as
bright intensity straight features, commensurate with a rigid needle.

Detector Architecture: For details of the HOG algorithm, we refer the reader
to [9]. Specifically, we use L2–Hys (Lowe-style clipped L2–norm) contrast nor-
malization on overlapping 3 × 3 cell blocks of 4 × 4 pixel cells: From the unnor-
malized descriptor vector v, L2–Hys is determined by clipping the L2–norm,
v → v/

√
‖ v ‖22 +ε2 where ε is a small constant. This normalization is done to

achieve invariance to geometric transformations. HOG computation is performed
using a 64 × 128 sliding detection window, and the resulting descriptor is fed to
a linear support vector machine (SVM) baseline classifier.

The detector is applied to each of the slices in USvolume after preprocessing to
elicit needle phase descriptors similar to those used in training the detector. The
resulting sub-volume, US∗

volume, consists of only slices that contain needle data.
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Volume reduction saves computing load in the needle enhancement and local-
ization steps that follow. It also removes slices that have artifacts which would
degrade needle enhancement. Figure 3 (bottom row) illustrates an example of
needle detection from volume data. Detected needles are shown with rectangu-
lar annotation.

2.2 Needle Enhancement

The goal of this step is to remove speckle, reverse attenuation effects, and mini-
mize the effect of artifacts in the sub-volume US∗

volume so as to improve visibility
of the needle shaft and tip. We design our approach to suit tip localization for in-
plane insertion. In [7], it was shown that the needle tip and shaft can be enhanced
by modeling US signal transmission using L1-norm based contextual regular-
ization. We follow a similar approach, where US signal transmission in each
slice is modeled as S(x, y) = St(x, y)Se(x, y) + (1 − St(x, y))κ. Here, S(x, y) is a
slice in US∗

volume, St(x, y) is the signal transmission map, Se(x, y) is the desired
enhanced image while κ is the average intensity of the tissue surrounding the
needle in attenuated regions. St(x, y) is obtained by minimizing the objective
function:

λ

2
‖ St(x, y) − Sa(x, y) ‖22 +

∑

i∈ζ

‖ Γi ◦ (Ri � St(x, y)) ‖1 (1)

Here, Sa(x, y) is a patch-wise transmission function representing boundary con-
straints imposed on the image by attenuation and orientation of the needle, ζ
is an index set of image pixels, ◦ is element wise multiplication, and � is a con-
volution operator. Ri a bank of high order differential filters consisting of eight
Kirsch filters and one Laplacian filter, and Γi is a weighting matrix calculated
from Γi(x, y) = exp(− | Ri(x, y) � S(x, y) |2). Details of how Sa(x, y) is obtained
are presented in [7]. After calculating St(x, y) using (1), Se(x, y) is extracted
from:

Se(x, y) = [(S(x, y) − κ)/[max(St(x, y), ε)]ρ] + κ (2)

Here, ε is a small constant and ρ is related to the attenuation co-efficient of the
tissue. To minimize the effect of high intensity artifacts aligned with the needle
trajectory, each enhanced slice is subjected to a Top-hat filter operation using
a linear structuring element. The final enhanced slices constitute the enhanced
sub-volume denoted as USE∗

volume.

2.3 Tip Localization

In our workflow, the needle tip location is displayed in two planar visualizations,
parallel and normal to the needle insertion direction. We consider a 3D US
volume where x, y, z denote the lateral, axial and elevation directions respectively
(Fig. 4). Our interest is determining Ω(x′, y′, z′, χ), the 3D tip location, where χ
is the characteristic intensity of the tip in USE∗

volume.
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Fig. 4. The tip localization process. First column: Px,y image. Second column: PE(x, y)
image. The automatically localized tip (red) is overlaid on x–y (third column) and y–z
(fourth column) slices, which jointly give tip location in 3D. The green cross represents
the expert localized tip. Fifth column: 3D imaging coordinates. Top row: moderate
insertion angle and needle aligned with US beam. Middle row: moderate insertion
angle and needle not aligned with US beam. Bottom row: steep insertion angle and
needle aligned with US beam. (Color figure online)

2D Tip Localization: If needle insertion is in the y–z plane, then the x–y plane
is parallel to the needle insertion direction. We determine x′ and y′ from a pro-
jection Px,y since x′ and y′ have the same value in all slices. Px,y is calculated as
the maximum intensity projection (MIP) of USE∗

volume, by extracting maximum
intensity values along optical paths in the z direction. From this projection, the
needle tip is localized following the algorithm in [8]. In summary, we determine
the phase symmetry PS(x, y) of Px,y in a region limited to the needle trajectory,
apply the MLESAC algorithm for inlier detection and geometrical optimization,
followed by feature extraction on the resultant point cloud using a combination
of spatially distributed image statistics which enhance the needle tip. This yields
the projection enhanced needle image denoted as PE(x, y). (x′, y′) is determined
from the first maximum intensity pixel at the distal end of the needle trajectory
in PE(x, y).

Scan Plane Determination: In this context, scan plane means the slice con-
taining the needle tip, which is the most advanced portion of the needle in the
elevation (z) direction of the volume. The scan plane is determined by calcu-
lating

∑+γ
i=−γ

∑+γ
j=−γ I(x′ + i, y′ + j), the sum of pixel intensities in a bounded

square patch of length 2γ centered at (x′, y′) in each slice within USE∗
volume. The

scan plane is estimated as the slice with the maximum intensity sum. The result
gives us z′. Figure 4 shows the tip localization process and qualitative results for
different imaging conditions as well as the imaging coordinates used during tip
localization.



114 C. Mwikirize et al.

2.4 Data Acquisition and Experimental Validation

3D US volumes were acquired using the SonixTouch system (Analogic Corpo-
ration, Peabody, MA, USA) equipped with a 4DL14-5/38 broadband volumet-
ric probe. A 17-gauge (1.5 mm diameter, 90 mm length) Tuohy epidural nee-
dle (Arrow International, Reading, PA, USA) was inserted into freshly excised
bovine tissue. The transducer motor was automatically controlled during inser-
tion to achieve a Field of View (FOV) of 10◦ for sweeps of 0.244◦ per frame
and 41 frames per volume. Multiple experiments were performed at various nee-
dle depths (40–80 mm) and orientations (30◦–70◦) with the needle in a native
axial/elevation (y–z) direction of the volume. A total of 80 volumes were col-
lected. The US system settings were fixed for all imaging sessions. The volumes
were divided into 2 sets without overlap: 40 for training and 40 for validation.

The proposed method was implemented in MATLAB on a 3.6 GHz Intel(R)
CoreTM i7 CPU, 16 GB RAM Windows PC. The Log-Gabor filter parame-
ters were determined automatically using the method proposed in [8]. In (2),
κ = 0.5 × Imax, where Imax is the maximum intensity in S(x, y), ρ = 2 and
ε = 0.0005. These values were empirically determined and fixed during val-
idation. For the training dataset, 150 positive and 100 negative samples
for NPD(x, y) were manually selected. Performance of the needle detec-
tor was evaluated by calculating Precision (P) and Recall Rate (RR),
where P = True Positive/(True Positive + False Positive) and RR =
True Positive/(True Positive + False Negative). To determine localization
accuracy, the ground truth tip location was segmented manually by an expert
user in volumes where the tip was visible. Tip localization error was determined
by calculating the Euclidean Distance (ED) between the automatically localized
tip and the manually segmented tip.

3 Results

Qualitative results (Fig. 4) show that our method gives accurate tip localization
for moderate to steep insertion angles, including cases when the shaft is discon-
tinuous (Fig. 4 middle and bottom rows). Quantitative results revealed average
precision of 88%, recall rate of 98%, detector execution time (per slice) of 0.06 s,
overall execution time (for both slice detection and tip localization) of 3.5 s, tip
localization error of 0.44 ± 0.13 mm and maximum localization error of 1.62 mm.

4 Discussion and Conclusions

We have proposed a novel learning-based method for automatic detection and
localization of needles in US volumes. The low slice classification time potentially
suits real-time applications and can complement previous approaches such as
those reported in [2–6]. Considering the anatomy of our focus application (medial
branch nerves are typically about 1 mm in diameter), a tip localization error of
less than 1 mm is clinically acceptable. In [7], analysis of US data from porcine,
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bovine, kidney and liver tissue showed that local phase features are not affected
by the intensity variations caused by different tissue types. Since the detector
uses HOG descriptors derived from local phase features, detection accuracy is
independent of tissue type. On account of including needle data from pertinent
slices, accurate tip localization is possible when the needle is misaligned with
the scan plane. The sufficiently high recall rate demonstrates that the detected
volume always contains sufficient needle data to support the localization process.

The method is validated on epidural needles with minimal bending. For
enhancement of bending needles, the proposed model can be updated by incor-
porating bending information into the framework. In future, we will investigate
automating parameter selection for the algorithm, performance of the proposed
method on needles of different gauges, real-time implementation of the proposed
method, and a 3D classifier, in which needle detection is performed in a single
extraction step applied to the entire volume.
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Abstract. 3D photography offers non-invasive, radiation-free, and anesthetic-
free evaluation of craniofacial morphology. However, intracranial volume (ICV)
quantification is not possible with current non-invasive imaging systems in order
to evaluate brain development in children with cranial pathology. The aim of this
study is to develop an automated, radiation-free framework to estimate ICV. Pairs
of computed tomography (CT) images and 3D photographs were aligned using
registration. We used the real ICV calculated from the CTs and the head volumes
from their corresponding 3D photographs to create a regression model. Then, a
template 3D photograph was selected as a reference from the data, and a set of
landmarks defining the cranial vault were detected automatically on that template.
Given the 3D photograph of a new patient, it was registered to the template to
estimate the cranial vault area. After obtaining the head volume, the regression
model was then used to estimate the ICV. Experiments showed that our volume
regression model predicted ICV from head volumes with an average error of 5.81
± 3.07% and a correlation (R2) of 0.96. We also demonstrated that our automated
framework quantified ICV from 3D photography with an average error of 7.02 ±
7.76%, a correlation (R2) of 0.94, and an average estimation error for the position
of the cranial base landmarks of 11.39 ± 4.3 mm.

Keywords: 3D photography · Computed tomography · Intracranial volume
quantification · Registration

1 Introduction

Cranial volume analysis is important to assess craniofacial development and pathology.
Specifically, intracranial volume (ICV) plays an essential role in the assessment of
craniosynostosis and the decision factors for treatment, since the early fusion of the
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cranial sutures can alter brain growth [1, 2]. In addition, longitudinal assessment of ICV
is equally important after surgical treatment to evaluate the outcome of the intervention.

Most methods to quantify ICV are based on brain segmentation from computed
tomography (CT) [3] or magnetic resonance imaging (MRI) scans [4]. However, CT
involves radiation and MRI typically requires sedation or anesthesia for young children.
Due to concerns about the risks of radiation and/or sedation in these patients, 3D
photography has become an increasingly attractive modality to assess head volume,
since it offers radiation-free, non-invasive, and anesthetic-free imaging [5, 6].

Wilbrand et al. [7] demonstrated that 3D photography has great potential to track and
quantify the clinical course of surgical correction of craniosynostosis. Meulstee et al. [8]
used 3D photography to evaluate the cranial shape to identify craniosynostosis. Freudl‐
sperger et al. [9] used 3D photography to capture pre- and post-operative scans of children
with metopic craniosynostosis to compare head volume (HV) changes before and after
surgery. However, these works focus on the head volume and shape, which do not measure
the ICV (volume inside the cranial vault).

The aim of this study is to automatically quantify the ICV from 3D photography.
First, we register a set of paired CT images and 3D photographs from the same patients
to create a regression model that estimates the ICV (obtained from CT) from the HV
measured from the 3D photography. We then use the regression model in conjunction
with the 3D photograph of a new patient, for which we automatically measure the HV
using registration to a 3D photograph reference template. The resulting framework
allows us to automatically quantify the ICV from 3D photography to monitor patients
with cranial pathology.

2 Materials and Methods

In the following sections, we will describe each component of our framework to fully
automatic estimate ICV from 3D photography (see Fig. 1).

Fig. 1. Schematic of the proposed framework. ICV: intracranial volume. HV: head volume. The
methods used for each of the boxes in this figure are detailed in Sect. 2 of the paper.
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2.1 Data Description

Pairs of retrospective head CT imaging and 3D photography were collected by our
institution from 14 subjects (average age 47 ± 66 months, range 2–199 months) with a
variety of craniofacial pathologies (e.g., craniosynostosis and velopharyngeal insuffi‐
ciency). All 3D photographs were taken at an average of 13 ± 18 days (range 0–49 days)
from their corresponding CTs. CT image in-plane resolution ranged 0.26–0.49 mm, with
axial spacing smaller or equal to 5 mm. 3D photographs were acquired using the
3dMDhead System (3dMD, Atlanta, GA). In the next sections, we will refer to this
dataset as Φpairs.

In addition, we also collected an independent dataset Φsingles of 3D photographs from
14 new patients (average age 88 ± 62 months, range 7–193 months) with craniofacial
pathologies without paired CT.

2.2 Intracranial Volume Quantification from CT

To register a 3D photograph to its paired CT image (Φpairs dataset), we first created a 3D
surface representing the patient’s head (including the skin) from CT. We segmented the
image areas with signal intensity higher than −200 Hounsfield units (HU), which sepa‐
rates the whole head from the background. We used morphological opening to isolate
the inner tissues and we extracted the largest connected component, which provided a
binary mask defining the patient’s head. The marching cubes algorithm [10] was used
to reconstruct the head surface from the image, which resulted in a single layered trian‐
gular mesh of the head.

The cranial bones were extracted from CT using the approach described in [3, 11].
In summary, a binary image with the bone structures was obtained from CT by thresh‐
olding at HU > 100. This binary image was then registered (optimizing translation,
rotation and scaling) to a reference template in which a set of 4 landmarks were manually
placed at the nasion, opisthion and the two clinoid processes of the dorsum sellae. This
registration identified the location of these landmarks in the CT image of each patient,
which define the two planes at the cranial base that we used to extract the cranial vault.
Given the cranial vault of the patient, the CT-based intracranial volume (VCT_ICV) was
calculated as the volume within the cranial vault (i.e. between the cranial bones and the
planes defined by the cranial base landmarks).

2.3 Head Volume Quantification from 3D Photography

To extract the part of the head surface obtained from 3D photography that corresponds
to the cranial vault, the head surface obtained from its paired CT was registered to the
3D photograph using the iterative closest point algorithm (ICP) [12], which minimized
the following equation:

E =

∑N

i=0
||Tpi − qi

||2, (1)
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where pi are the homogeneous coordinates of point i in the head surface extracted from
CT, qi are corresponding coordinates in the 3D photograph, N is the number of points
on the surface from CT, and T is the rigid transformation estimated. Point correspond‐
ences were established by searching each point on the CT surface to locate its closest
point in the 3D photograph.

After registration, the cranial base landmarks identified in the CT image were propa‐
gated to the 3D photograph using T. The head volume (V3D_HV) from the 3D photograph
was calculated as the volume between the head surface and the cranial base defined by
the 4 cranial base landmarks, as illustrated in Fig. 2.

Cranial base landmarks
Plane 2

Cranial base Head surface

Fig. 2. Cranial vault area estimation for head volume measurement. The green surface represents
the patient’s head surface, which can be obtained from CT or 3D photograph. The cranial base
(in purple) corresponds to two planes defined by the 4 cranial base landmarks at the nasion,
opisthion and the two clinoid processes of the dorsum sellae. (Color figure online)

2.4 Intracranial Volume Estimation from 3D Photography

From the two volumes quantified in previous sections, VCT_ICV and V3D_HV, we built a
linear regression model. This model will allow predicting the ICV given the HV calcu‐
lated from the 3D photograph of a patient (V3D_HV). In this section, we present a method
to estimate V3D_HV without the need of a paired CT image.

We selected a 3D photograph of a patient with a paired CT image as a reference
template (Rshape) in which we located the cranial base landmarks (Rlandmark) using its CT
image as previously explained. Then, given the 3D photograph of a new patient
(Mshape), we registered it to the reference template to estimate the location of the land‐
marks. Table 1 shows the proposed registration algorithm.
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Table 1. Cranial base landmarks estimation via registration.

Taffine is an affine surface-based transformation estimated using the ICP algorithm,
as shown in Eq. 1. Tlocal is a B-spline based transformation estimated as proposed in [13].
The registration between Rshape and Mshape is first optimized by affine transformation, and
then refined by a non-rigid deformation.

This registration allows determining the position of the 4 cranial base landmarks on
a new 3D photograph without using a corresponding CT image, and thus computing the
HV. Using the volume regression model created in previous section, we then estimated
the ICV from the calculated HV.

3 Evaluation and Results

The CT-based true intracranial volume (VCT_ICV) and the head volume (V3D_HV) from its
corresponding 3D photograph in dataset Φpairs were computed to create a linear regression
model as explained in Sect. 2.2. The model, which is shown in Fig. 3, yielded a clinically
acceptable average volumetric error of 5.81 ± 3.07% and a correlation (R2) of 0.96.

y = 0.59x + 120743
R² = 0.96
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Fig. 3. Linear regression model predicting intracranial volume based on the automated head
volume quantification from 3D photography.
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We used the proposed framework to estimate the ICV (V3D_ICV) using only the 3D
photographs from the patients in Φpairs, and we compared the estimated values with the
real ICV (VCT_ICV) quantified from their paired CT images. We obtained an average
volumetric error of 7.02 ± 7.76% and a correlation (R2) of 0.94. In addition, we obtained
an average estimation error for the position of the cranial base landmarks of 11.39 ±
4.3 mm. Figure 4 represents the Bland-Altman analysis [14] showing the agreement
between V3D_ICV and VCT_ICV. There was one outlier that represents 31.67% of the error
due to artifacts in the 3D photograph close to the neck area, which could be improved
by a more efficient pre-processing. If we exclude this case the average volumetric error
decreases to 5.16 ± 3.63%. Next, we used a Wilcoxon rank-sum test to test whether the
distribution of V3D_ICV and V

CT_ICV
 were statistically different, obtaining a p-value of 0.91.

Therefore, we could not reject the hypothesis that the ICV estimated from 3D photog‐
raphy has the same distribution than the true ICV estimated from CT imaging.
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Fig. 4. Bland-Altman plot comparing the estimated ICV from 3D photography (V3D_ICV) and the
true ICV from CT (VCT_ICV ) for the patients in Φpairs.

Finally, we estimated the ICV from an independent dataset of 3D photographs
(Φsingles) using the proposed framework. Figure 5 shows the ICV quantified from the 3D
photographs of both datasets (Φsingles and Φpairs) together with the true ICV from the CT
images in Φpairs. We also calculated an age regression function of the form y = 𝛼x𝛽 both
for the true ICV volume from CT, and for the ICV estimated from 3D photography,
where y is the ICV in mm3 and x is the age of the patients in months. As it can be observed,
the age regression functions are similar, indicating the potential to estimate ICV from
3D photography using our framework.
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4 Conclusions

We proposed an automated, non-invasive, radiation-free framework to estimate intra‐
cranial volume (ICV) using 3D photography, and we evaluated its accuracy using CT-
based measurements.

Experiments showed that our volume regression model predicted ICV from head
volumes with an average error of 5.81 ± 3.07% and a correlation (R2) of 0.96. We also
demonstrated that our automated framework quantified ICV from 3D photography with
an average error of 7.02 ± 7.76% (p-value = 0.91), a correlation (R2) of 0.94, and an
average estimation error for the position of the cranial base landmarks of 11.39 ± 4.3 mm.

Future work includes the validation of the proposed framework on a larger popula‐
tion. In addition, the framework can be extended to integrate cranial shape assessment,
which will allow for a non-invasive longitudinal assessment of the surgical outcome for
several craniofacial interventions.
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Abstract. Accurate detection and diagnosis of developmental dys-
plasia of the hip (DDH), a common hip instability condition among
infants, relies heavily on acquiring adequate ultrasound (US) image data.
Although 2D US is the standard modality used for DDH screening, 3D
US has recently been considered as well. Presently there is no automatic
method (or even a standardized manual method) capable of analyzing
the US volume to determine whether that volume is adequate for extract-
ing DDH metrics required for diagnosis. Scan adequacy in 2D has seen
only one work on automation and there has been no work done on scan
adequacy in 3D. We propose an automatic, near real-time method of
assessing 3D ultrasound scans in developmental dysplasia screening and
diagnostic applications using a convolutional neural network (CNN). Our
classifier labels volumes as adequate or inadequate for subsequent inter-
pretation based on the presence of hip anatomy needed for DDH diagno-
sis. We validate our approach on 40 datasets from 15 pediatric patients
and demonstrate a classification rate of 100% with average processing
time of just above 2 s per US volume. We expect automatic US scan ade-
quacy assessment to have significant clinical impact with the potential to
help in imaging standardization, improving efficiency of measuring DDH
metrics, and improving accuracy of clinical decision making.

Keywords: 3D ultrasound ·Developmental dysplasia of the hip ·DDH ·
Convolutional neural networks · CNN · Scan adequacy · Real time

1 Introduction

Developmental dysplasia of the hip (DDH), a condition encompassing a spec-
trum of hip joint instabilities, is the most common hip disorder in infants. Due
to its low cost, portability and absence of potentially harmful ionizing radiation,
c© Springer International Publishing AG 2017
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ultrasound (US) is the recommended imaging modality for DDH screening of the
hip joint prior to ossification of the femoral head [1]. Although physical exami-
nation and US-based screening is routine in most countries, the standardization
of these examinations remains a challenge. Typically, US images are manually
acquired by an experienced radiologist or orthopedic surgeon as they search for
key anatomical structures required to make certain measurements that lead to a
diagnosis. Once judged to be adequate for interpretation, the US data are saved
during the physical exam of the patient for later analysis when DDH metrics are
extracted from the data (usually a manual process).

Accurate detection of hip joint instabilities and correct anatomical measure-
ments needed for diagnosis heavily rely on the acquisition of high quality volumes
that can successfully be used to complete the required tasks, namely extracting
the α angle (the angle between the acetabular roof and the vertical cortex of the
ilium), β angle (the angle between the labrum and the vertical cortex of the ilium),
and femoral head coverage (the femoral head portion sitting in the acetabular cup
of the hip joint) metrics for diagnosis. If no adequate data is collected during a
patient visit, the patient must return for a subsequent appointment, resulting in
both unnecessary effort, time and monetary costs. Obtaining adequate quality US
acquisitions is a skill that becomes stronger with many years of clinical experience.
For example, in Germany, special commissions control the quality of recorded US
in an effort to reduce misdiagnoses [2]. However, when the quality of hip sonograms
across 8 German states were tested in 2011, many hip sonography licenses were
revoked because of their poor quality diagnoses using 2D US [3]. The reasons for
misdiagnoses were: (1) US probe orientation errors; (2) incorrect anatomical inter-
pretation; and (3) lack of adequacy check [2]. In 2011, refresher courses in Austria
and Germany revealed the majority of mistakes made by 250 medical doctors who
performing and classifying scans (64% of the tests) were due to wrong anatomical
identification by the clinicians [2].

Correctly and efficiently guiding US to the desired anatomical locations and
interpreting the images correctly are difficult tasks. A number of recent works
addressed this issue in others fields, such as fetal abnormality screening [4,5]
and cardiac imaging [6]. Only one group [7–9] has recently addressed 2D US
scan adequacy for DDH. Quader [9] proposed a computational image analysis
technique to automatically identify adequate images and subsequently extract
dysplasia metrics in 2D. Although they produced excellent agreement with clin-
ician adequacy classifications and reduced variability in the measured dysplasia
metrics (p < 0.05), the computational time required for the 2D adequacy task
was around 1 s per image [9]. This is not suitable for 3D volumes, as the time
required for classification would add up to over 3 min of processing time per
volume (205 slices total on our machine).

Computer-aided methods have shown good potential for improving detec-
tion rates of DDH from US. Very recently, quantification of infant hip using
3D US has shown promising results in improving diagnostic accuracy as the
3D scans capture the entire hip joint and are less prone to probe orientation
errors compared to 2D scans [10]. Mabee [11] quantified 3D using the acetabular
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contact angle (ACA) and found it was significantly more reliable than 2D US
α angle. Hareendranathan [12] proposed a semiautomatic algorithm to calculate
ACA, and found that it reduced inter-observer and intra-observer variation in
the calculation. Quader [13] also showed that a 3D alpha angle calculation may
be significantly more reproducible than the conventional 2D measure. Subse-
quently, we focus on classifying 3D volumes although our implementation inher-
ently solves the problem of 2D adequacy classification as well. To the best of
our knowledge, no one has explored adequacy identification of US volumes used
for making DDH measurements and our work is the first one to automate the
volume standardization in DDH screening with 3D US.

2 Methods

We propose an automatic, near real-time technique for assessing 3D US scan
adequacy for DDH in clinical settings using a trained convolutional neural net-
work (CNN) to classify US volumes as adequate or inadequate for diagnostic
interpretation. Our method performs slice by slice categorization of 2D images
in search of the relevant anatomy of the hip needed for DDH metric extraction.

2.1 Materials and Experimental Setup

As part of our clinical study, we acquired 40 3D B-mode US volumes, made up of
a total 8,200 slices, from 15 pediatric patients acquired by a team of two pediatric
orthopedic surgeons at British Columbia Children’s Hospital. We labelled a total
of 3,078 slices from the dataset in order to maintain a balanced training set
between adequate and inadequate samples, as there were 1,539 adequate slices
within our 40 training volumes. The data was obtained as part of routine clinical
care under appropriate institutional review board approval using a SonixTouch
Q+ scanner (powered by Analogic) with a 4DL14-5/38 linear 4D transducer
set at 7 MHz. Each acquired volume constituted 205 slices, with 6 slices per
millimeter. All slices had a x-dimension of 38 mm and variable y-dimension of a
minimum of 38 mm and were resized to 256× 256 pixels to maintain consistency
in the input dimensions to our neural network.

2.2 Ultrasound Scan Adequacy Criteria

We define an adequate 2D slice within a scan volume to be one containing
the anatomical features necessary to extract the commonly used DDH metrics,
namely the α angle, β angle, and femoral head coverage. Those anatomical fea-
tures include the ilium, acetabulum, labrum, ischium and entire femoral head
[9], as illustrated in Fig. 1. When a volume properly captures these features,
the femoral head, a hypoechoic spherical structure, should be seen growing and
shrinking in size across the encompassing slices with a region of interest span-
ning an average area of 8× 8 mm, as 8 mm is the typical diameter of an infant’s
femoral head. Our adequacy criteria is rather straight forward: we hypothesize an
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adequate 3D scan to be one that contains sufficient number of adjacent adequate
2D frames. In our implementation, those were defined as spanning a minimum
of 5 mm, corresponding to 30 slices on our machine. Additionally, we require
inadequate slices to both precede and follow the adequate slices such that we
are confident the entire hip joint is imaged without being cut off at the edge
of the volume. In contrast, an inadequate scan volume will have a significantly
lower number of adequate 2D slices (less than 30).

Fig. 1. 2D slice examples of (a) an adequate US slice, (b) the slice in (a) with the
relevant anatomy needed for adequacy annotated on top, and (c) an inadequate US
slice.

2.3 CNN Architecture

We implemented our network using Caffe [14] to classify 2D slices as adequate or
inadequate based on the presence of the needed anatomy exemplified in Fig. 1.
Classification based on 2D slices allows for training with fewer images due to
significantly lower number of parameters needed for optimization during train-
ing compared to 3D CNN based classification. A block diagram of our network
architecture is shown in Fig. 2.

The network receives a 227 × 227 image as input and begins with three
convolutional layers. Each convolutional layer receives local receptive fields from
the preceding layer and extracts a number of features depending on their number
of filters. We employed rectified linear units (ReLUs) as activation functions
between layers as they have been found to perform better than the traditional
sigmoid function due to their sparse representations [15]. Max-pooling layers
are used to nonlinearly downsample the resolution of the convolutional layers’
feature maps. Inspired by the skipping layer implemented by Su [16], the outputs
of both fully-connected layers are concatenated such that multi-scale features
are preserved, since features in the second fully-connected layer (FC7) are more
global that those in the first fully-connected layer (FC6). This concatenation
avoids having the second fully-connected layer as a bottleneck for information
propagation [16]. The final layer outputs the posterior probability for each class
with a softmax loss function, which computes the multinomial logistic loss of
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Fig. 2. Overview of the our CNN architecture. The number of filters, size, and stride
of each convolutional kernel are indicated along with their respective rate of dropout.
Rectified linear units (ReLUs) are implemented as the activation functions of all three
convolutions along with normalization layers and 2×2 max-pooling. The convolutional
layers are followed by two fully connected layers, each with a ReLU and 25% dropout,
and then concatenated before the final softmax output layer.

the softmax of its inputs. This layer is conceptually the same as a softmax layer
followed by a multinomial logistic loss layer, but provides a more numerically
stable gradient.

2.4 Training

We split our dataset of 3,078 slices from 40 3D US volumes from 15 pediatric
patients into a test set containing 20% of the subjects and used the remaining
80% for training. We performed 5-fold cross validation taking care to avoid
mixing images from the same patient between training and validation groups.
During training, we augmented each batch by cropping 227 × 227 sub-images,
effectively reducing the field of view during training as a form of training data
augmentation, as in [15]. We used a 25% dropout rate after both fully connected
layers which we empirically found to be sufficient for avoiding overfit to the
training set. We trained the net for 10 k iterations since both the test loss and
test accuracy had stabilized by this time, and chose the net parameters with
the lowest error on the validation set: namely momentums of 0.9 and 0.999,
base learning rate of 0.001, and weight decay of 5e–8. Adam, a gradient-based
optimization method similar to stochastic gradient descent proposed in [17], was
used with gradients calculated by back-propagation and training was done on
an 8-core Linux workstation with two Intel 3 GHz Xeon x5472 processors, an
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Nvidia GeForce GTX 460 v2 GPU with 1 GB of GDDR5 VRAM, and 8 GB of
host memory.

3 Results and Discussion

To assess the performance of our classifier, we tested on a validation dataset
containing 20 unseen (by our network) US volumes from 5 new patients (10
adequate volumes, 10 inadequate volumes). For each test subject, we calculated
and recorded the confidence for each class over all the slices in a volume. Our
method implementation operates in near real-time, requiring only 9.9 ms for
classifying one frame, adding up to only 2.03 s per volume (205 slices on our
machine).

3.1 Criteria for Validation

It is important to note that there is no gold standard for clinical classification
of US volumes, since 2D assessment is the clinical standard for DDH screening.
To improve confidence in the adequacy labels of our test volumes, we used the
only automatic 3D extraction method available [13] and ensured the relevant
anatomy for both alpha angle (plane of the ilium and plane of the acetabulum)
and femoral head coverage (plane of the ilium and femoral head) in 3D were
successfully computed in all adequate volumes, as shown in Fig. 3. We found that

Fig. 3. (a)–(d) sample outputs resulting from running the automatic metric extraction
of [13] on volumes classified as inadequate by our CNN. (e)–(h) sample outputs resulting
from running the automatic metric extraction on volumes classified as adequate by our
CNN. We found that the automatic algorithm was able to localize the relevant anatomy
(femoral head in purple, plane of the ilium in blue, and plane of the acetabulum in
green) in volumes classified as adequate by our CNN. (Color figure online)



130 O. Paserin et al.

Fig. 4. Results from an exemplar test volume. (a) Slice by slice classification output (in
blue). True adequate slices (in green) were correctly classified as adequate, while some
inadequate slices were misclassified as adequate. (b) Slice by slice scoring functions for
the adequate (in blue) and inadequate (in red) classes. (c) Sample slices at the locations
marked in (b) (from left to right: correctly labeled as inadequate, correctly labeled as
adequate, the misclassified slice, and another correctly labeled as inadequate). (Color
figure online)

the algorithm was able to localize the relevant anatomical features in volumes
classified as adequate by our CNN.

Figure 4 shows the sample network outputs from an example (adequate) test
volume. In part (a), the classification output from each slice of the volume is
plotted and shows a clear identification of the adequate slices (120 to 159 inclu-
sive), near the centre of the volume. In this test sample, there is one false positive
slice (denoted FP) that was misclassified as adequate. In part (b), the scoring
functions for both adequate and inadequate class labels are plotted for the same
test volume. The majority of slices show strong differences in scoring functions
(expressing high confidence in the network’s prediction) for the correct output
class, with small differences occurring at the boundaries where inadequate slices
become adequate slices and vice versa. The misclassified slice had a difference
between scoring functions of less than one, indicating that the network was
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uncertain about the class for this image and chose an adequate label over an
inadequate one with low confidence. This slice is shown in part (c), where it
can be seen that the image has a visible ilium and labrum, but is missing the
remaining acetabulum and ischium.

4 Conclusions

In this study, we proposed an CNN based automated method for classification
of 3D US scan adequacy for application to DDH screening and diagnosis. Our
network design allows for robust real-time inference crucial for real life clinical
workflow. This promising approach may improve acquisitions, assist operators in
volume interpretation, and allow the time-consuming step of extracting dyspla-
sia metrics to be confidently deferred to off-line calculations resulting in better
clinical management.

For our future work we will expand the size of our training set to include
all 35 patients from our clinical study. We plan to investigate the differences in
reliability and task time between novice and experienced sonographers/surgeons
using our setup. Ultimately, we aim to design and test a fully automatic system
that combines our proposed scan adequacy module with automatic DDH metric
extraction.
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Abstract. The localization and analysis of the sentinel lymph node for
patients diagnosed with cancer, has significant influence on the prognosis,
outcome and treatment of the disease. We present a fully automatic
approach to localize the sentinel lymph node and additional active nodes
and determine their lymph node level on SPECT-CT data. This is a
crucial prerequisite for the planning of radiation therapy or a surgical
neck dissection. Our approach was evaluated on 17 lymph nodes. The
detection rate of the lymph nodes was 94%; and 88% of the lymph nodes
were correctly assigned to their corresponding lymph node level. The
proposed algorithm targets a very important topic in clinical practice.
The first results are already very promising. The next step has to be the
evaluation on a larger data set.

Keywords: SPECT imaging · Sentinel lymph node detection · Lymph
node level classification

1 Introduction

Every year, 600.000 new incidences of head and neck cancer are diagnosed with
an annual patient death rate of 300.000 [11]. One of the most significant prog-
nostic factors for the disease is the presence or absence of metastases in sentinel
lymph nodes (SLN). Lymph nodes play a crucial role in the human immune
system. In case a patient develops cancer, cancerous cells can be transported
through the lymphatic system and finally infiltrate lymph nodes. From there
the disease can further spread throughout the human body and infiltrate other
lymph nodes or organs. These distant metastasis (m-staging) are within the most
devastating prognosis for a patient. Any stage of the disease, even an early T1 or
c© Springer International Publishing AG 2017
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T2 staged cancer, is upstaged to stage 4, the worst possible classification, when
a distant metastatis (M1) is diagnosed [8]. Therefore, the presence or absence
of metastases within the SLN and other distant lymph nodes is one of the most
significant prognostic factors in (Head and Neck) cancer.

In clinical practice different treatment approaches in head and neck can-
cer are followed, depending on the location and the stage of the disease. The
most extreme forms of treatment are the active waiting and the elective neck
dissection [12]. With the former approach repeated screenings of the patient are
done, as long as it is not clear if a metastases has taken place. The idea is, to not
expose the patient to a overtreatment. Later is the exact opposite. During an
elective neck dissection all lymph nodes in the area around the metastatic lymph
node are surgically removed. In many cases this leads to an overtreatment. On
the other hand, studies have shown, that the overall survival rate is higher and
the reoccurance rate of the tumor is lower [5]. In all cases, where not only the
tumor, but the lymphatic system is treated as well, a localisation of the sentinel
lymph node is crucial. In cases where a patient is treated with radiation therapy,
a selective irradiation of the target volume of the lymph node area containing
the SLN is practice by international clinical guidelines [3].

The detection of the sentinel lymph node can be achieved in different ways.
One intervention uses blue dye, which is injected during surgery at the tumor
site. The flow of the dye is observed and thereby the sentinel lymph node can be
determined [4]. Another possible approach is the usage of SPECT-CT imaging to
investigate a possible tumor spread. Currently, the common practice in clinical
routine is to only visually inspect the SPECT-CT image data, the image data
is not used for any further analysis.

In this paper we propose a novel method to fully automatically extract meta
information about the patient’s lymph nodes from the acquired SPECT and
CT image data, which is useful for radiation therapy or a surgical neck dissec-
tion. After a short introduction of the methods of our approach (see Sect. 2),
we describe the test setup and perform a quantitative evaluation on clinical
data sets.

2 Methods

Our approach consists of three steps (although the CT-CT registration is
optional). In the first step (Sect. 2.1) the lymph nodes are located within the CT
image. The second step is an optional step (Sect. 2.2). If present, the SPECT-
CT scan is registered to a planning CT scan with a higher resolution. The idea
hereby is to use a higher resolution input for the third step. As the third step
(Sect. 2.3), we use our coupled shape model algorithm (CoSMo [6]) to automati-
cally detect the lymph node levels in the head and neck region. The lymph nodes
located on the SPECT image data are then mapped to the lymph node levels
determined by CoSMo. All of these steps are run without any user interaction
and provide the clinician with the lymph node levels of all active nodes and can
be used for further clinical procedures (Fig. 1).



Automatic Sentinel Lymph Node Localization 135

Fig. 1. The figure on the left side, shows which input is needed for the algorithm and
what output it produces. The figure on the right visualizes the workflow of the lymph
node localization process.

2.1 Lymph Node Localisation

Compared to CT image data, where the intensity values are already normalized
by protocol, the SPECT image intensity values we observed were in range: [0,
65000]. After further observation it became clear, that no assumptions could
be made about the intensity values of active lymph nodes, because there was a
noticeable variance between different patients and different lymph nodes. Besides
the obvious reason of different machines used for the acquisition of the scans,
one of the reasons presumably is the fact that the intensity value of a lymph
node depends on the uptake of the radioactive tracer and the time between the
injection of the tracer and the image acquisition. But, not only the significant
difference in intensity values yields a problem for an analysis, the huge amount
of noise is an additional problem. As a result it can be considered that it is
completely unfeasible to define a narrow intensity intervall beforehand wherein
the lymph nodes reside.

We have designed a top-down approach to iteratively extract the active lymph
nodes from the SPECT data. We generate a labelmap [7] of the SPECT image
with a lower threshold ti. Where i ∈ [1, 10] and smax is the maximum intensity
value of the SPECT image data.

ti = 10 ∗
√

smax

i
(1)

Within each iteration all labels are extracted from the label map. The
‘hottest’ structures always represents the tumor, while the others are considered
as lymph nodes. It has been shown, that the monitoring of the 3 or 4 hottest
nodes is sufficient for a correct staging [2]. So we are only interested in up to
4 active lymph nodes and for this reason we have added another termination
condition, we automatically stop once we have found 4 active nodes,

2.2 Spect-CT - CT Registration

We added an additional optional step to the algorithm. In case a higher resolution
planning CT is present (a radiation therapy planning CT), this can be used for
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CoSMo adaptation. Since the SPECT-CT and the higher resolution CT are
acquired by different machines, these images are not aligned. To transfer the
information from the SPECT to the higher resolution CT a registration between
the CT of the SPECT and the highres CT is required. The image data we
received was taken using a fixation mask, resulting in a negligible amount of
deformation between the two different CT image data sets. Therefore, for this
scenario a rigid registration method is absolutely sufficient. If a deformation
between the CT data sets is present, a more sophisticated approach has to be
used. For this task an approach using CoSMo, described in [10], could be used
for a deformable image registration. A mean-squared error metric and a gradient
descent optimizer were used for the registration process (Fig. 2).

Fig. 2. CoSMo: Visualization of the mean model

2.3 CoSMo Adaptation

CoSMo is a model trained from clinically annotated data sets. Hereby, a sta-
tistical representation for every item of interest is obtained. For items with low
variance, a rigid model item is trained, which is a probability map plus an aver-
age intensity image (for more in depth information see [9]). Structures with
high variance are represented as deformable shape models. The model not only
trains the possible deformations of the unique items, but how an item deforms,
translates and rotates in correspondance to the other items and the complete
model.

The adaptation step is divided into several levels. The structures which are
best distinguishable within the data set are adapted first, while the structures
with the lowest visible contrast, are adapted last. That way first, the model is
initialized by locating the skull within the image data. Then, the bone struc-
tures are adapted. Next different muscles and glands, the eyes and the brain
are adapted. And finally, the adaptation of the lymph node levels is executed.
As output, a separate segmentation for each structure of the model is generated.
For more in detail information on the process refer to [6].
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2.4 Lymph Node Level Determination

The acquired lymph nodes in the CT image data and the segmented lymph node
regions from CoSMo are finally combined to extract the lymph node levels of the
sentinel lymph node and the active lymph nodes. To determine the lymph node
level of a detected lymph node a nearest neighbour search with all lymph node
levels retrieved from CoSMo is run. Since the SPECT activity for a lymph node
sometimes only occupies one or two voxel within the image data, it might be
possible that it does not directly overlap with a lymph node region but resides
directly next to one. Therefore, the nearest neighbour algorithm was favored
over an overlap metric.

As a result the clinician receives all lymph node levels with active nodes,
that should be considered during the radiation therapy planning or surgical
neck dissection.

3 Evaluation

The test setup for the evaluation was as follows. Three data sets from patients
of Università degli studi di Parma (Italy) and four data sets from Clinique et
Maternité Sainte-Elisabeth Namur (Belgium) were used. The data sets from the
hospital in Italy consisted of a SPECT-CT and the data sets from the hospital
in Belgium SPECT-CT and a radiation therapy planning CT. In addition, we
received the information about the number of active nodes and their lymph node
level from a clinical expert from each of the centers. This information was used
as ground truth and was compared with the output of our algorithm. In total,
17 lymph nodes have been identified by the clinical experts within the 7 patient
data sets. The goal was to detect these lymph nodes correctly in the CT data set
and match them to their corresponding lymph node level. Table 1 represents the
results of the evaluation. The second column contains the found structures. The
third column lists how the found structures have been classified (either LN level
1–5 left/right or as an artifact). The last column lists the ground truth lymph
node level obtained by a clinical expert. In addition Fig. 3 shows the result of
such a detection.

For six out of seven patients all lymph nodes have been detected and located
in the image data correctly. For patient 4 only one lymph node in Level II left
was detected, although the clinical experts counted two. Visual inspectation of
the image data revealed, that the two lymph nodes are located extremly close to
each other and the algorithm considers them as one lymph node. Although, this
is not the desired output of the algorithm, it is negligible in clinical practice,
because an active node has been located in this lymph node level. For radiation
therapy or a neck dissection, the complete lymph node level is treated no matter
if one or two lymph nodes have been detected. Three times, an activity was
detected, that afterwards was correctly classified as an artifact. Only one lymph
node was not classified accordingly (Patient 3 lymph node 3). The lymph node
was considered as an artifact, although it was a retropharyngeal lymph node.
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Fig. 3. Visualization of the second lymph node of patient 3 (left) and the overlay with
lymph node level III left (right).

Table 1. Comparison of the detected active lymph node levels’ with their ground truth

Patient # Found lymph
node #

Classified lymph node Level Ground truth level

1 1 & 3 Level II left Level II left (2 SLNs)

2 Level II right Level II right

- Artifact -

2 1 Level II right Level II right (1 SLN)

2 Level II left Level II left (1 SLN)

- Artifact -

3 1 Level II left Level II left (1 SLN)

2 Level III left Level III left(1 SLN)

- Artifact Retropharyngeal

4 1 Level II left Level II left (2 SLNs)

2 Level II right Level II right (1 SLN)

5 1 Level III left Level III left (1 SLN)

- Artifact -

3 Level III right Level III right (1 SLN)

6 1 & 3 Level III left Level III left (2 SLNs)

2 Level Ib left Level Ib left (1 SLN)

7 1 Level II left Level II left (1 SLN)

2 Level III left Level III left (1 SLN)
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The reason for this misclassification is, that CoSMo only contains the lymph
node level I - V left/right and not the Retropharyngeal area.

The runtime for the approach is the following. The duration for the SPECT
detection is neglectable, it is around 1 s. CoSMo adaptation takes around 4 min
and the SPECT-CT to CT registration takes around 1 min.

4 Conclusion

We have presented a novel approach to automatically extract additional infor-
mation from SPECT-CT image data. The complete approach does not need any
user interaction at all and can be run in background, before the image data is
visually inspected by a clinical expert. The additional information obtained by
our algorithm can be helpful in clinical practice for the planning of a surgical
neck dissection or radiation therapy planning.

The algorithm has been evaluated on seven different patients and 17 lymph
nodes have been inspected. 15 out of the 17 have been matched correctly. In one
case two lymph nodes have been detected as one. In the other case the lymph
node could not be matched properly because CoSMo currently does include the
lymph node level (Retropharyngeal) in which the lymph node is located. As
future work, additional lymph node levels could be included into CoSMo to
match all needed lymph node levels. Finally, the approach has to be evaluated
on a larger data set, to improve the statistical relevance of the evaluation result.

Recently, a new tracer has been presented, which primarily focuses on sentinel
lymph nodes [1]. It rapidly clears out the tumor but remains in the lymph nodes.
A consequence would be a better contrast for the nodes since the images would
be free from the ‘shine through effect’. This should greatly enhance the quality
of the acquired data and thereby ease the processing by the algorithm. As a
future work it would be very interesting, to acquire images with the new tracer
and evaluate the approach on these.

In addition, it would be very interesting to evaluate if the proposed approach
is suitable for PET imaging as well. Due to its similar nature, it should be feasible
to use the algorithm on PET data as well, with some minor modifications.

The proposed algorithm is able to support radiation and surgical oncologists
in their daily clinical routine. The approach features a fully automatic, fast
and promising robust method to detect SLNs in the head and neck area and
determine their corresponding lymph node levels.

Acknowledgements. This work is partially funded within the OraMod project (FP7-
ICT-2013-10-611425) by the European Commission.
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Abstract. The ventro-intermediate nucleus (Vim), as the others thalamic
subparts, cannot be directly visualized by current standard magnetic resonance
imaging (MRI), in daily clinical practice. Hence, for treatment of tremor in func‐
tional neurosurgery, where the commonly used target is the Vim, the targeting
procedure is done indirectly. We present a novel direct automated segmentation
of the Vim using only subject-related MRI information, specifically, diffusion
MRI at 3T and susceptibility weighted images (SWI) acquired at 7T. With a state-
of-the-art method based on local diffusion MR properties for automated subdi‐
vision of the thalamus, we first restrain the region of interest to the group of motor-
related nuclei. Then, this thalamic part is further subdivided, in graph parcellation
manner, using the intensity-related features provided by SWI together with prior
knowledge of the Vim localization inside the motor thalamic segment. Our
framework was tested in four healthy elderly subjects, for eight thalami in total,
and the results were evaluated by an experienced neurosurgeon, showing the
ability to directly detect the Vim area. The qualitative inspection indicated that
the proposed method outperforms standard multi-atlas based techniques.
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1 Introduction

The ventro-intermediate nucleus (Vim) is part of the motor-group of thalamic nuclei.
Its major importance comes from being the most common target in functional neuro‐
surgery as a treatment for tremor, either in standard procedures (deep brain stimulation
or radiofrequency thalamotomy) or in alternative minimally invasive therapies (Vim
radiosurgery or High Intensity Focused Ultrasound) [1, 2]. However, due to the lack of
intrinsic or inherent contrast inside the thalamic area, the Vim is not directly visible on
standard magnetic resonance imaging (MRI) routinely used in daily clinical practice
acquired from field up to 3T. Consequently, the targeting for drug-resistant tremor is
done in an indirect way by employing stereotactic coordinates or quadrilatere of Guiot
[3]. Such approaches are mainly built upon a statistical average over the population and
therefore, lack in representation of the individual variability.

To address these limitations, several research groups have made an attempt for an
automated parcellation of the thalamus mainly based on diffusion-weighted images
(DWI) acquired at 3T with the purpose of exploring the fibers orientation within the
thalamic subparts [4–8]. In this context, Battistella et al. [4] recently proposed a robust
method that partitions the thalamus in seven groups of nuclei using the Orientation
Distribution Functions (ODFs) expressed in the Spherical Harmonic (SH) Basis that is
outperforming the most advanced diffusion features so far. One of the segmented clusters
represents the ventro-lateral ventral (VLV) thalamic part i.e. the motor-related group of
nuclei including the Vim. However, the Vim cannot be accurately depicted with diffu‐
sion MRI, for instance as a separate component of VLV, mainly due to the relatively
low spatial resolution of the standard DWI (~2 × 2 × 2 mm3).

Advanced developments in MRI at ultra-high field (7T) provides not only better
spatial resolution, but also an improved intensity-contrast variation inside the thalamus,
namely with the susceptibility mapping approaches. Moreover, Abosch et al. have indi‐
cated the correspondence of the observed features on susceptibility-weighted imaging
(SWI) acquired at 7T with the thalamic anatomy [9] and subsequently they suggested
the possibility of a direct visualization of the Vim on those images. Nevertheless, while
the subthalamic nucleus has been validated for 7T in a clinical frame, the Vim obser‐
vations remain purely descriptive.

Fig. 1. Schematic overview of the proposed framework
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The aim of this study is to automatically segment the Vim by combining SWI infor‐
mation at ultra-high field and prior knowledge of the VLV group of nuclei extracted
from diffusion MRI. More specifically, we will combine NCut graph segmentation based
on SWI intensity with a high-probability map of Vim localization derived from diffusion
MRI thalamic clustering. Figure 1 shows a scheme of the proposed framework.

2 Materials and Methods

2.1 Dataset

The core of this study is performed in a dataset acquired at both 3 and 7T from four
healthy elderly subjects (mean ± std: 67.2 ± 9.5 years, 3 males). Additional data from
four healthy young subjects (28.5 ± 2.6 years, 2 males), for whom manual delineation
of the Vim is available, was used for building atlases for comparison purposes. None of
the subjects had any particular neurological disease nor a brain deformation caused by
intracranial lesions. The study was approved by the local institutional review board and
an informed consent was obtained from all the participants.

Image Acquisitions. The data from elderly subjects at 3T was acquired with a Prisma
Siemens scanner and it included a T1-weighted (T1w, MPRAGE) sequence (TR/
TE = 2300/2.03 ms, TI = 900 ms, voxel size: 1 mm3) and DWI (64 gradient directions,
b = 1000 s/mm2, TR/TE = 7100/84 ms, voxel-size: 2.24 × 2.24 × 2.2 mm3). T1w images
from the healthy population were acquired with 3T TIM Trio Siemens scanner with
similar acquisition parameters as those for the elderly population.

For all eight subjects, the ultra-high field data was acquired with a 7T, 68 cm-wide
bore MRI system from SIEMENS Medical Solutions, equipped with a single-channel
transmit/32-channel receive head RF array (Nova Medical). This data included axial
SWI (with a restrained field of view, FoV, surrounding the thalamus, TR/TE = 28/20 ms,
flip-angle 10°, voxel-size: 0.375 × 0.375 × 1 mm3, 72 slices) and T1w (MP2RAGE)
sequence (TR/TE = 6000/2.05 ms, TI1/TI2 = 800/2700 ms, flip-angles: 7/5°, voxel-size:
0.6 × 0.6 × 0.6 mm3).

Common Image Space. We choose to work in the individual anterior commissure-
posterior commissure (AC-PC) image space of each elderly subject. The image space
was defined by the T1 template in MNI space of voxel size 0.5 × 0.5 × 0.5 mm3 [10]
whose AC-PC plane was aligned horizontally. Each 3T MPRAGE was transformed into
this AC-PC space by a rigid transform, and the individual resulting image, T1w_acpc,
was considered as reference for the successive image transformations described in the
following sections.

2.2 Thalamic Parcellation

The preprocessing of the DWI included several steps: data denoising [11, 12], bias field
[13, 14], motion [15] and eddy current corrections [16]. Furthermore, with a non-linear
registration, using FSL’s FNIRT [13], between the T1w_acpc and the respective
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fractional anisotropy (FA) map, we compensated the EPI distortions presented in the
DWI data. On the preprocessed data we performed the Q-ball fitting of the Constant
Solid Angle ODFs (FSL qboot) with maximum SH order of 6, accordingly to [4].

The thalamus masks were obtained from the FreeSurfer’s subcortical parcellation,
performed for each 3T MPRAGE, and further refined, as described in [4], by automat‐
ically removing voxels with FA value greater than 0.55 and celebro-spinal fluid’s prob‐
ability exceeding 5%. Subsequently to a qualitative comparison between the refined
masks and the SWI where the thalamic borders appear more discernible, missing voxels
were manually added mainly in the anterior and the lateral part of the inferior thalamic
slices.

Following the framework description in [4], the thalamus was subdivided in 7 clus‐
ters while applying a modified k-means using as features the spatial position of the
thalamic voxels and the corresponding ODF coefficients in the SH basis. The obtained
results, including the VLV cluster were then brought in the AC-PC space by applying
the non-linear transform, as described earlier, matching the FA and T1w_acpc image.

2.3 The Proposed Framework

The VLV cluster, other than Vim, includes several motor-related nuclei. However, in
correspondence to the findings described in [9], in SW imaging, the ventral nuclei
surrounding the Vim, such as ventro-caudalis (Vc) and ventro-odalis (Vo), appear as
darker regions in comparison with our area of interest (see Fig. 2). These contrast
differences we observed inside the VLV drove us to explore the SWI-intensity for a
further VLV subdivision aiming towards an automated delineation of the Vim.

Fig. 2. Illsutration of the SWI visible structures surrounding the Vim in axial view. On the right
side we have manually in-plane draw of the visible ventral nuclei in correspondence with the
Schaltenbrand and Wahren atlas [17], while on the left they are indicated with arrows. The yellow
represents the Vim, while the bright green and the bright orange ventro-caudalis (Vc) and ventro-
odalis (Vo), which are surrounding the Vim as darker areas. (Color figure online)

SWI Preprocessing. The SWI images from our elderly cohort were corrected for
intensity inhomogeneities using the N4ITK bias field correction algorithm [18]. The
obtained images were first registered to the corresponding 7T MP2RAGE with a rigid
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transform and then brought to the AC-PC space by applying the analogous affine trans‐
form that matched the 7T MP2RAGE and T1w_acpc.

Primary analysis of the SWI data showed high intensity variability among the
subjects and different head position in the scanner. Therefore, to standardize the image
intensity appearing on these images, we applied the histogram equalization algorithm
proposed by Nyul et al. [19] that represents an one-to-one image transformation and
therefore, does not affect the image appearance. We work in a volume of interest (VOI)
surrounding both thalami for each subject respectively. Figure 2 is representing an axial
slice of the used VOI in one case. All four SWI images from the elderly population were
used in the training step where the standard scale was build upon the deciles extracted
from each image histogram. The results from this histogram matching are shown in
Fig. 3.
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Fig. 3. Histogram equalization of the SWI intensity inside the thalamic area

To further enhance the edges and observable features on the SWI, the ITK gradient
anisotropic diffusion filtering of conductance 0.3 was applied.

Graph Representation and Parcellation. The preprocessed SWI-intensity informa‐
tion inside the VLV was transformed in a graph representation of the data. More
precisely, we constructed a k-nn graph with 50 nearest neighbors, where the edges’
weights expressed the Gaussian weighting of the linear combination between the inten‐
sity distance (Dint) and the Euclidean distance among the VLV voxels (Dpos):

D = Dint + 𝛾Dpos (1)

where γ represents the ratio between max(Dint) and max(Dpos) and therefore, it acts as
a scaling factor that brings the Dpos in the same range of values as Dint.

The parcellation of the graph was performed with Normalized Cut (NCut) partition
[20]. We subdivided the VLV in 3 sub-clusters. The number 3 was chosen empirically
since it gives a consistent parcellation pattern corresponding to our prior knowledge/
hypothesis of the VLV structure: the region with bright SWI intensity as the expected
one in the Vim area, the region with darker SWI intensity and an auxiliary part (see
Fig. 4B1).
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Fig. 4. Isolation of the inferior anterio-lateral part of the VLV cluster. Panel A shows a schematic
illustration of the VLV-cluster separation in 8 geometrical quadrants, while panel B shows a real-
case example of the left VLV in axial view. In panel B1 the diffusion-based VLV outline is given
with the magenta contour and additionally we can observe the three parcels obtained from SWI
intensity-based NCut partition. The VLV_ial part for the given case is shown with the white
contour in panel B2. (Color figure online)

Geometry Quadrants. To isolate the inferior anterio-lateral part of the VLV cluster
obtained from diffusion MRI (Sect. 2.2), VLV_ial, where the Vim is most likely to be
found, we proceeded at dividing the VLV using the geometry of the smallest rectangular
cuboid that contains all of its non-zero voxels. In fact, with the cuboid’s mid-plane, we
separated the inferior from the superior part and with the in-plane diagonals the anterio-
lateral from the ventral-posterior part (see Fig. 4A).

The separated VLV_ial portion was used to confine the NCut parcellation to the
expected localization of the Vim (Fig. 4B).

2.4 Multi-atlas Segmentation

In this work we propose a direct segmentation of the Vim by using subject specific
information from both diffusion MRI and SWI. The state-of-the-art lacks in Vim-delin‐
eation approaches. However, if an atlas is available, this could be achieved with the
atlas-based segmentation techniques. Hence, we additionally aim at performing a multi-
atlas based segmentation and comparing it to the outcome of our multi-modal frame‐
work. As atlases we used SWI data from young subjects where the Vim was manually
delineated by an experienced neurosurgeon. The manual delineation was mainly based
upon the visible contrast variation together with the observation shown in [9] and the
Schaltenbrand and Wahren atlas [17].

For transforming the atlases in each respective AC-PC space previously defined, our
initial attempt was to directly match the SWIs but, presumably due to the variation of
the FoV orientation among the subjects, all image registration technics failed to provide
a good matching. Therefore, the atlases correspondence was done via the T1w images,
by calculating consecutively linear and BSpline transform between the respective atlas’
3T MPRAGE and the T1w_acpc. The final multi-atlas outline was obtained by applying
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the Joint Label Fusion method with corrective learning [21] within the thalamic VOI
previously defined.

3 Results

The proposed framework was tested for the group of elderly subjects or, more precisely,
eight thalami in total. The intersection between the NCut parcellation and the VLV_ial
portion mainly resulted in two subdivisions. Among the two, we choose as Vim outline
the region showing brighter intensity (see Fig. 4 panel B). As described in Sect. 2.4,
atlas-based segmentation using 4 thalami per hemisphere was also performed.

The multi-atlas outline represented in general smaller area than the multi-modal
outline. However, overlap between both delimitations was always observed. Addition‐
ally, for six out of eight thalami, the major part of the multi-atlas Vim delimitation was
inside the one from the multi-modal segmentation. For the remaining two cases, a blood
vessel was observed in the targeted area disintegrating its intensity homogeneity (Fig. 5,
right hemisphere of ES2 and ES4). Overall results are illustrated in Fig. 5.

Fig. 5. Visual overview of the obtained findings for each tested subject respectively in an axial
slice. The multi-modal outline corresponds to the violet contour, while the multi-atlas one to the
green contour. (Color figure online)

The results provided by the proposed framework were qualitatively validated by the
same neurosurgeon who did the manual delimitation of the Vim in the atlases. His
observations were that, despite the tendency of the multi-modal approach to do a slight
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overestimation of the visually expected Vim extend by enclosing minor parts of the
surrounding thalamic structures, they however portray more completely the region of
interest than the small volumes provided by the multi-atlas approach. Additionally, the
multi-modal delimitations are more consistent in symmetry over the hemispheres than
the multi-atlas ones.

In the context of the size, the visual observations were confirmed with the calculated
volumes of both multi-modal and multi-atlas segmentations given in Table 1. Since the
expected size of the Vim is between 60 to 150 mm3 [22], the volumes of the proposed
multi-modal delimitation are sometimes marginally exceeding the expected range. In
contrast to this, the multi-atlas delineations are importantly underestimating the size of
the Vim.

Table 1. Volumes of the resulting Vim outlines

VOLUME [mm3] Multi-modal segmentation Multi-atlas segmentation
Left Right Left Right

Subject ES1 122.5 149.2 21.4 18.7
Subject ES2 196 54.7 14.7 29.7
Subject ES3 198.4 187.2 11.7 35
Subject ES4 176.1 129.2 5.4 29.1

4 Discussion

Although performed on a limited number of subjects, the present study represents an
important step towards an automated segmentation of the Vim area. We used local
diffusion MR properties inside the thalamus for delimitation of an initial region of
interest, the VLV cluster enclosing the motor-related thalamic nuclei, which was further
subdivided using the 7T SWI intensity and a prior knowledge of the Vim localization
within the VLV. We additionally examined the ability of multi-atlas based techniques
to segment the Vim.

The spatial distribution and extent of the resulting Vim outlines were qualitatively
validated by an experienced neurosurgeon. A minor affinity of slightly imprecise borders
regarding the surrounding structures was observed in the outcome of the proposed multi-
modal method. Nevertheless, these outlines represent better and in more complete
manner the Vim area than the limited extents provided by a multi-atlas segmentation
approach. Analogue to this are the calculated volumes of the outlines.

The DWI used for the VLV delineation has approximately five times lower spatial
resolution than the image reference space where the analysis were performed
(2.24 × 2.24 × 2.2 mm3 versus 0.5 × 0.5 × 0.5 mm3). As consequence we are prone to
imprecise border delineation of the initial region of interest i.e. the VLV thalamic part.
Another limitation comes from the non-robust contrast variation observed on the SWI
together with the presence of the blood vessels in an indiscriminate mode, inside the
VLV and the thalamus in general, increasing the potential of Vim’s border inaccuracy.
This could also have a major impact on direct visualization in some cases. Further studies
should be done to understand the origin of the differences in feature appearance observed
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on SWI for the populations of different age. We believe that standardization of the SWI
contrast could make this imaging method even more powerful tool for direct visualiza‐
tion, especially for direct targeting in functional neurosurgery in drug-resistant tremor.

In this study we have also shown that the imaging method based on the individual
subjects’ anatomy outperforms the approaches build from statistical average among a
chosen population, such as the atlases. As limitation of the used multi-atlas approach
we consider the image registration done between the respective T1w images on which
the thalamus appears as a homogeneous area with borders that are difficult to discrimi‐
nate. Hence, the information provided for the thalami matching and the corrective
learning afterwards is not optimal. Possible improvement in this context could be the
direct use of the SWI for the image matching procedure, since it provides much more
features of the thalamic architecture. However, mainly due to the variation of the SWI
FoV orientation, it was difficult to achieve such task in the presented data.

The proposed multi-modal framework should be further quantitatively evaluated
against a manual delamination of the targeted area. Nevertheless, it represents a novel
advancement in the field of automated subject-specific segmentation of the Vim.
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Abstract. Confocal Laser Endomicroscopy (CLE) is an emerging imag-
ing technique that allows the in-vivo acquisition of cell patterns of
potentially malignant lesions. Such patterns could discriminate between
inflammatory and neoplastic lesions and, thus, serve as a first in-vivo
biopsy to discard cases that do not actually require a cell biopsy.

The goal of this work is to explore whether CLE images obtained
during videobronchoscopy contain enough visual information to discrim-
inate between benign and malign peripheral lesions for lung cancer diag-
nosis. To do so, we have performed a pilot comparative study with 12
patients (6 adenocarcinoma and 6 benign-inflammatory) using 2 differ-
ent methods for CLE pattern analysis: visual analysis by 3 experts and
a novel methodology that uses graph methods to find patterns in pre-
trained feature spaces. Our preliminary results indicate that although
visual analysis can only achieve a 60.2% of accuracy, the accuracy of the
proposed unsupervised image pattern classification raises to 84.6%.

We conclude that CLE images visual information allow in-vivo detec-
tion of neoplastic lesions and graph structural analysis applied to deep-
learning feature spaces can achieve competitive results.

1 Introduction

Incidence of Solitary Pulmonary Nodule (SPN) is increasing, but its diagnose
can be challenging, especially when it is located in the periphery. Bronchoscopy
is a minimally invasive procedure used in the diagnosis of central airways and
lung tissue pathologies. Nowadays, new bronchoscopic procedures such as endo-
bronchial ultrasound, ultrathin bronchoscopy guided by fluoroscopy or electro-
magnetic navigation, where a combination of endoscopic and radiological images
are used, have increased bronchoscopy diagnostic yield.

Confocal laser endomicroscopy (CLE) is a new technique that can be com-
bined with bronchoscopy to provide images of cells. CLE is a probe containing
optic fibres that is introduced through the channel within the bronchoscope.
Once CLE is in touch with the airways wall (proximal or distal airways) it will
c© Springer International Publishing AG 2017
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show microscopic images of lung tissue [1]. Up to now, CLE has been mainly used
in gastrointestinal endoscopy to detect changes in mucosa and cellular patterns
for in-vivo classification of neoplastic and inflammatory lesions in colon cancer
diagnosis [1–3]. Only in recent studies, CLE using fluorescence has been applied
to the visualization of lung structures (alveolar ducts and bronchial microstruc-
tures) [4,5]. In particular there are 2 works describing the visual characteristics
of neoplastic cellular patterns observed in CLE.

In [6], the authors analyzed the patterns observed in CLE images from 12
patients with nodules in main airways. In that study, the visual patterns for 3
different types of cancerous lesions were described and compared to the visual
appearance of normal mucosa. The main conclusion of that work is that the dis-
tribution and size of cell nuclei is more heterogeneous and sparse for malign nod-
ules. The other study reports about cellular patterns of CLE with methylene blue
dye taken from peripheral lesions of 3 patients [7]. In that work the authors also
conclude that the technique might allow in-vivo assessment of solitary peripheral
nodules during the bronchoscopic exploration. Although clinical studies indicate
that CLE images of the lung could provide enough visual information to differen-
tiate between malign and benign cellular patterns, as far as we known, there are
no studies assessing CLE visual patterns in an quantitative systematic way. The
goal of this work is to characterize cellular patterns in CLE images of periph-
eral lung nodules and assess their potential to discriminate between malign and
benign lesions.

A main challenge in the development of image processing and classification
methods for emerging medical imaging technologies is the limited amount of data
available to design, train and test the decision support system. Such a condition
has a negative impact in state-of-art classification methods that demand huge
amounts of annotated data to achieve accurate and reliable results, such as Sup-
port Vector Machines (SVM) [8] and more recently deep learning algorithms [9].

Alternatives to supervised classification methods are either retrieval systems
or unsupervised clustering algorithms. Both approaches rely on a similarity mea-
sure defined in the image feature space to either retrieve annotated cases similar
to an unknown input image or group images presenting similar visual features. In
fact, the only work addressing assessment of cellular patterns in CLE proposes
a content-based image retrieval system based on Bag of Words and k-nearest
neighbour (kNN) clustering [2]. Although, the use of such software restricts to
classification of CLE patterns in gastrointestinal endoscopic procedures its 89.6%
of accuracy proves the potential of unsupervised methods to achieve clinically
meaningful conclusions in case of a low number of samples.

We present a novel approach to find patterns in visual feature spaces by
exploring the space topological structure. In order to extract topology, proximity
relationships among a set of discrete samples is codified using a graph representa-
tion. The open sets defining the topology correspond to subgraphs fulfilling some
connectivity criterion. To compute such subgraphs, we use community detection
methods from social network analysis. Finally, the profile computed using the
annotated samples, belonging to each community that a CLE image belongs to,
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defines the diagnose of non-annotated cases. The preliminary results obtained for
171 images with malign and benign patterns achieve a 84.6% of overall accuracy
and a 81.1% of recall in cancer detection.

2 Classification of Confocal Patterns

Our approach consists in constructing a graph representation of CLE images
based on visual features and try to discover potentially overlapping groups of
images that share common properties. We refer to such groups as communities
borrowing the terminology from the social network community. The rational of
this approach is the following. Given a network of images (users) connected by
means of visual appearance, we apply community detection algorithms to infer
group of images that share similar properties. The annotations (clinical data in
our case) made on the community images allow the definition of a community
profile that can be assigned to images in the community without annotations.
Since a CLE image can belong to more than one community we have to merge the
community profiles it belongs to. In this section we describe all the main steps
of our method: construction of the graph codifying feature space connectivity,
graph community detection representing space topology and definition of profile
(diagnosis in our case) for non-annotated images (see Fig. 1).
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The topology of a space is given by a collection of open subsets that cover
the whole space [10]. Such collection defines, for each point of the space, a set
of neighbouring points given by all points included in the subsets the point
belongs to. Conversely, the set of neighbours of each point defines a topology in
the space. Although unsupervised clustering is also based on neighbourhoods,
a main difference with a topological approach is the criterion used to compute
the open sets. In most unsupervised clustering such neighbourhoods are defined
using a metric on the Euclidean space given by feature vectors. In a metric space,
the collection of open sets are “balls” (points at equal distance to a given point).
Since all open sets have equal dimension and shape, the resulting topology is
very rigid in the sense that might have limited capability to describe clusters
with complex structures of different dimensions.

The first step to obtain a topology is to represent the proximity among
feature points. In the discrete domain, the spatial proximity of a set of points
(images), sampled in a feature space, can be represented using an undirected
graph, being the nodes the feature points representing images and being the
edges defined according to similarity measure, or friendship, among neighbouring
images. In the context of social networks, most applications (like Facebook or
Tinder) grant connection between two users in case that they have mutually
accepted a friendship request. An equivalent criterion on a image network is to
use the mutual-kNN to define the connectivity of the graph [11]. The mutual-
kNN criterion connects two images, Ii and Ij , if their feature points, xi ∈ R

n

and xj ∈ R
n, both of them are among the k-th nearest neighbours of the other.

That is, two images are connected if xi is ranked on the top k nearest neighbours
of xj and reciprocally. We use the Euclidean distance in R

n to compute nearest
neighbours.

In order to obtain the groups of neighbouring points that define the topology,
we will use methods for community detection in social networks. Such methods
group users (images in our case) according to the adjacency of the graph rep-
resenting the network. A main difference with other clustering techniques (like
k-means) is that social community detection methods allow group overlapping.
So that nodes (users) can belong to more than one community, characterized by
each community metadata.

To detect CLE image communities we use the intrinsic longitudinal com-
munity detection (iLCD) algorithm, which analyses social network communities
along time [12]. In that work, the authors define the smallest community that
they want to detect (a clique of order 3 or 4) and a set of rules that detect new
communities, merge them or even destroy them. A clique of order c is a fully
connected subgraph with c nodes. A subgraph is said to be fully connected if
each node is connected to all the other nodes belonging to the clique.

A clique represents a simplex and it is a continuous mapping (homeomor-
phism) into a topological space of a polyhedron defining a reference in Euclidean
space [10]. A simplex defines an open set and thus the collection of all simplex
define a topology. It follows that iLCD communities are giving the open sets of
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a topology defined by simplicial complexes, so we can describe richer geometries
of our feature space.

The last step of our method is to take advantage of the above geometric rep-
resentation to compute CLE image profiles for clinical diagnosis purposes. The
profile of a non-annotated image is given by the fusion of the community profiles,
in which it belongs to. Given that in this work we face a 2-class problem, we use
the argmax criterion on the diagnosed: malign or benign cases, and therefore
assign the most frequent label to the new image.

3 Experiments

3.1 Experimental Set-Up

A total of 12 patients (cases) from Hospital Universitari de Bellvitge with SPN
or lung mass referred for bronchoscopy were included in the study. In the end,
6 patients had adenocarcinoma and 6 patients showed benign inflammatory
changes. CLE images were obtained using a flexible bronchoscope BF-160, Olym-
pus and a Alveloflex-Cellvizio (Manua Kea Technologies) 660 nm miniprobe for
acquisition of CLE images. Virtual bronchoscopy using Lung Point was used to
plan the path to the lesions. Methylene blue dye was used to enhance cellular
pattern.

For each case, 2–6 video sequences lasting between 1–2.5 min each were
acquired and processed with Cellvizio Viewer to enhance the blue channel. Video
sequences were visually explored to select the between 10 and 15 images present-
ing a clear cellular pattern. In total, we collected 162 images, 78 from adeno-
carcinoma and 79 from inflammation. Figure 2 shows 3 images from each group.
Cells nuclei correspond to brilliant spots in images. We note that for benign-
inflammatory images, their distribution and size is homogeneous. Meanwhile
malignant patterns are characterized by a clustering of cells that results in an
overall heterogeneous appearance of images which have areas of low fluorescence.

Although any feature extraction technique can be applied, we have chosen a
visual descriptor coming from deep learning architectures since they are proving
to outperform handcraft descriptors in many computer vision applications. We
used the VGG Convolutional Neural Network (CNN), which was trained on
the ImageNet 1,000 object categories [13]. This CNN computes a global image
descriptor obtained as the concatenation of the activation values of the last CNN
convolution layer, and just before the fully connected layers which classify the
1,000 objects. This layer gives us a 4096-dimensional real-valued vector that
we reduce using principal component analysis to 100 dimensions, which roughly
represent the 90% of the energy the VGG vector.

We have compared our method to k-means and to kNN to assess the perfor-
mance of the propose method in different aspects. The accuracy of k-means will
indicate the discriminative power of VGG features, while comparison to kNN
will show the differences between a description of clusters based on topology like
ours and a standard metric approach. We assign to each cluster the most fre-
quent label of the images belonging to it. We compare the value of such label to
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each image diagnosis to compute recall each class (malign, benign) and overall
classification accuracy.

Concerning algorithm parameter settings, we applied all methods using dif-
ferent parameter configurations and we selected the best performer for compar-
isons. The numbers reported in Sect. 3.2 were obtained with graphs constructed
using k = 10, k = 18 clusters for k-means and k = 20 for kNN.

Finally, images were shown to 3 expert observers who ignore the histopatho-
logical diagnosis for a blind visual labelling. Recall for each class and overall
accuracy were computed for each expert. Aside, 2 of the observers were asked to
provide a diagnosis for each patient based on the visual inspection of the whole
set of images to assess accuracy in their final diagnosis.

Fig. 2. Examples of CLE images for benign-inflammatory (top images) and malign-
adenocarcinoma (bottom images) cases.

3.2 Results

The overall average accuracy in classification achieved by visual inspection of
images was only 60.2% and presented a large variability among experts and cases.
For malign images, recall was 72.8% in average with values per each observer
equal to 84.2% for observer 1, 63.2% for observer 2 and 71.1% for observer 3.
Benign images had even more variability with recall equal to 36.1% for observer
1, 51.2% for observer 2 and 60.5% for observer 3 and an average recall 49.2%.
Results for visual classification are summarized for each case in Table 1 with
benign cases indicated with (B) and malign ones with (M). Concerning accuracy
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Table 1. Analysis of CLE images done by 3 observers.

Case 1

(M)

Case 2

(B)

Case 3

(M)

Case 4

(B)

Case 5

(M)

Case 6

(B)

Case 7

(B)

Case 8

(M)

Case 9

(M)

Case 10

(M)

Case 11

(B)

Case 12

(B)

Obs. 1 7/7 2/15 9/15 5/15 13/13 6/14 4/12 12/12 14/14 9/15 7/15 7/15

Obs. 2 6/7 11/15 4/15 7/15 13/13 7/14 3/12 10/12 13/14 2/15 2/15 14/15

Obs. 3 5/7 12/15 5/15 6/15 11/13 9/14 4/12 10/12 14/14 9/15 9/15 12/15

AA 85.7% 55.5% 40.0% 40.0% 94.8% 52.3% 30.5% 88.8% 97.6% 44.4% 40.0% 73.3%

in final diagnosis, both experts issued the right diagnosis in 7/12 cases (66.6%),
made a bad decision in 3/12 and did not agree in 2/12.

The overall accuracy for the proposed method (labelled GraphCom from now
on) is 84.6%, 81.3% for kNN and 82.4% for k-means. Recall for malign images is
88.1% for GraphCom, 84.5% for kNN and 78.6% for k-means, while for benign
cases recall is 81.2% for GraphCom, 78.2% for kNN and 86.2% for k-means.
Results for each case reported in Table 2 show a lower variability than visual
assessment. It is worth noticing that in case that final diagnosis was given by
the most frequent label in each case, GraphCom would issue the right diagnosis in
12/12 cases (100%), kNN in 11/12 (91.6%) and k-means in 10/12 cases (83.3%).
For both, kNN and k-means the wrong diagnosis were for malignant cases, which
implies cancer detection rate equal to 83.3% for kNN and 66.6% for k-means.

Table 2. Analysis of CLE images done by the 3 unsupervised methods.

Case 1

(M)

Case 2

(B)

Case 3

(M)

Case 4

(B)

Case 5

(M)

Case 6

(B)

Case 7

(B)

Case 8

(M)

Case 9

(M)

Case 10

(M)

Case 11

(B)

Case 12

(B)

GraphCom 7/7 14/15 9/15 14/15 11/13 13/14 12/12 7/12 11/14 12/15 15/15 10/15

kNN 7/7 13/15 10/15 12/15 11/13 14/14 12/12 7/12 7/14 12/15 15/15 10/15

k-means 7/7 12/15 14/15 12/15 10/13 14/14 12/12 5/12 7/14 14/15 15/15 11/15

4 Conclusions

The goal of this work was to determine whether CLE with methylene blue could
potentially be useful to assess peripheral SPN. To do so, a pilot study with 12
patients (6 adenocarcinoma, 6 benign) and 171 images was conducted. Two main
conclusions can be derived from our pilot study.

A first disappointing conclusion is that visual analysis by several individuals
of CLE images looking for differences between neoplastic and inflammatory dis-
eases showed an important inter and intra observer bias. In addition, identifying
differences between malignancy and non-malignancy by visual inspection can be
challenging given the similarities between both confocal patterns. Looking at
our results, visual inspection is not enough to give a diagnosis of malignancy
versus benign pathologies base on CLE images, with only 60% and 66% average
accuracy between 2 and 3 observers respectively.
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The good news is that image analysis can obtain enough information from
CLE to discriminate between inflammatory and cancerous patterns using non-
supervised techniques. The discriminative power of VGG features (given by k-
means clustering) is quite high with a 82.4% of overall accuracy. However recall
for malign cases drops to 78.6% and accuracy in final diagnosis is 83.3% overall
but only a 66.6 in case of adenocarcinoma. In this paper, we have proposed
to use a graph representation of the feature space combined with community
detection algorithms. Our method provides a more flexible description of the
feature space topology that increases accuracy in malign patterns to 88.1% and
reaches a 100% in final diagnosis.

In summary, our preliminary results indicate that CLE images contain
enough visual information for in-vivo detection of neoplastic lesions that could
be extracted using graph structural analysis. The promising results obtained in
this pilot study, encourage further research on community detection and graph
structural methods as tools to design diagnosis support systems able to reach
clinically meaningful conclusions with scarce annotated data.
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Abstract. Breast cancer is one of the most commonly diagnosed cancer
in women worldwide. A popular diagnostic method involves histopatho-
logical microscopy imaging, which can be augmented by automated
image analysis. In histopathology image analysis, stain normalization
is an important procedure of color transfer between a source (reference)
and the test image, that helps in addressing an important concern of
stain color variation. In this work, we hypothesize that if color-texture
information is well captured with suitable features using data containing
sufficient color variation, it may obviate the need for stain normalization.

Considering that such an image analysis study is relatively less
explored, some questions are yet unresolved such as (a) How can texture
and color information be effectively extracted and used for classification
so as to reduce the burden on the uniform staining or stain normal-
ization. (b) Are there good feature-classifier combinations which work
consistently across all magnifications? (c) Can there be an automated
way to select reference image for stain normalization?

In this work, we attempt to address such questions. In the process,
we compare the independent texture and color channel information with
that of some more sophisticated features which consider jointly color-
texture information. We have extracted above features using images with
and without stain normalization to validate the above hypothesis. More-
over, we also compare different types of contemporary classification in
conjunction with the above features. Based on the results of our exhaus-
tive experimentation we provide some useful indications.

Keywords: Histopathology image analysis · Stain normalization ·
Color-texture features · SVM · Random forest

1 Introduction

Breast cancer is the most common cancer in women worldwide and is the sec-
ond leading cause of cancer deaths in women, after lung cancer [1]. One of the
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): CARE/CLIP 2017, LNCS 10550, pp. 160–169, 2017.
DOI: 10.1007/978-3-319-67543-5 16
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common approaches used for cancer detection is histopathology; it is defined as
the microscopic examination of the histological sections of a biopsy sample by a
pathologist in order to study the effects of a particular disease. Computer-aided
approaches with image analysis and machine learning can be included in digital
pathology to achieve quick and reproducible results. Computer aided diagnostic
(CAD) models are also important as they assist pathologists in locating and
identifying abnormalities in the breast tissue images.

A concern in histopathology image based assessment is the variation in color
is obtained due to a number of factors like chemical reactivity from different
manufacturers, differences in color responses of slide scanners or due to the light
transmission being a function of slide thickness. However, this variability only
partially limits the interpretation of images by pathologists. But leads to a large
variation in the efficiency of automated image analysis algorithms. This problem
can be partially reduced by incorporating the use of standardized staining pro-
tocols and automated staining machines. Stain normalization algorithms [2–4]
have also been recently introduced to address stain variation, with the aim of
matching stain colors of whole slide image with a given template.

One of the naive options to deal with color constancy is to convert color
image to grayscale. In [5] author extracted features from a grayscale version
of a query image. Conversion of an image into grayscale gives us the average of
concentrations of the tissue components and does not tell us the relative amounts
of each of them. Further, this also does not make effective use of the color
information which is present. Recent research in histopathology has confirmed
that color information is quite significant in quantitative analysis.

The outstanding ability of a pathologist to identify stain components is not
only due to the utilization of color information but also because of incorporating
the spatial dependency of tissue structures. The use of standardized staining
protocols and automated staining machines may improve staining quality by
yielding a more accurate and consistent staining. However, eliminating all the
underlying sources of variation is infeasible.

Indeed, methods that investigate the importance of staining in conjunction
with classification framework have also been developed. In [6], authors investigate
the importance of stain normalization in tissue classification utilizing convolution
network. In the same way, the authors in [7] perform the classification of prostate
tumor regions via stain normalization and adaptive cell density estimation. On
the other hand, there also exists some work which considers the utilization of
color information without the use of stain normalization. The works in [8] and [9]
propose the use color information in addition to texture. Milagro et al. [8] propose
the combinations of traditional texture features and color spaces. Furthermore,
they have also considered different classifiers such as Adaboost learning, bagging
trees, random forest, Fisher discriminant and SVM. In [9], authors utilized color
and differential invariants to assign class posterior probabilities to pixels and
then perform a probabilistic classification.

The above approaches suggest different views about the consideration of stain
normalization for classification. Inspired by this, our primary contribution in the
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Fig. 1. Reference images chosen for normalization (top), sample of original images
(middle), and obtained stain normalized images using the target images (bottom)

present work, is to explicitly provide indications towards addressing the ques-
tion about how important is stain normalization for automatic classification,
and whether there may exist useful features which inherently capture the color-
texture variability without performing stain normalization. In other words, we
attempt to justify the role of color-texture information in automated classifica-
tion framework without performing stain normalization. We believe that such
a study is important from a systems perspective, as it may help reduce the
stain normalization overhead for automated histopathology classification sys-
tems. We note that such an indication of mitigating the need for stain nor-
malization assumes that the training data contains images with different stain
color/intensity, that helps in capturing the color-texture variability. We validate
this hypothesis on a reasonably large dataset containing such images.

In this primary context, our work also has the following salient contributions
about methodology and evaluation: (1) Exploring joint color-texture features and
various contemporary classifiers, which makes the proposed work also serve as an
extended comparative review. (2) Suggesting an automatic approach to select the
reference (target) image for stain normalization where it is not available. Figure 1
shows examples of stained images of each magnification generated using target
images. (3) Demonstrating an improved performance of the proposed method
with joint color-texture features with respect to the state-of-the-art.
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2 Proposed Approach

We now discuss the overall framework of proposed approach including: dataset
description, stain normalization, feature descriptors, and contemporary classi-
fiers. Due to lack of space, we briefly describe the features and classifiers with
suitable references. Figure 3 depicts our overall framework.

2.1 Dataset Description

In this work, we use BreakHis dataset [10] that contains fairly large amount of
histopathology images (7909). A detailed description is provided in Table 3.

In [10–12], authors developed the framework to classify breast cancer
histopathological images utilizing the BreakHis dataset. In [10], a series of exper-
iments utilizing six different state-of-art texture descriptors such as Local Binary
Pattern (LBP), Completed Local Binary Pattern (CLBP), Threshold Adjancey
Statistics (PFTAS), Grey-Level Co-occurrence Matrix (GLM), Local Phase
Quantization (LPQ), Oriented FAST and rotated BRIEF (ORB), and four dif-
ferent classifiers were evaluated and showed the accuracy at patient level. In [11],
Alexnet [13] was used for extracting features and classification. Bayramoglu
et al. [12] proposed a magnification independent model utilizing deep learning to
classify the benign and malignant cases. The magnification independent system
is trained with images of different magnifications, and thus can handle the scale
diversity in microscopic images.

2.2 Stain Normalization Procedure

Various methods [2–4] have been developed to automate the standardization
process of histopathological images to reduce the effect of variation that exists
in staining protocol. In [2] authors utilized chromatic and density distributions
for each individual stain class in the hue-saturation-density (HSD) color model
i.e. the spatial dependency of tissue structures was incorporated along with color
information. In experiments, the target template was chosen based on opinion
of two pathologists, who studied a large number of slides from two different
laboratory. The high contrast between hematoxylin and eosin staining (H & E)
and visibility of the nuclear texture were taken into consideration while choos-
ing template image. In [3], the authors use the linear transform in a perceptual
color space for matching the color distribution of an image to that of a target
image. In [4], authors also utilized pathologist-preferred target image to gener-
ate structure-preserving color normalization. These stain normalization methods
require prior knowledge of reference stain vectors for every dye present in the
histopathogical images.

Due to the unavailability of a target template in the public dataset used
in this work, we automatically select the target image from the dataset. Our
approach considers that the target stain chromatic information should be con-
sidered that which occurs most commonly, so that a large number of images need
not be color-transformed. Thus, we suggest the following process: (1) First, all
the images in dataset are converted from RGB color-space to HSV color-space.
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(2) We choose H and S component for further analysis as Hue and Saturation
essentially relate to the chromatic information. (3) A K-means clustering algo-
rithm is applied to form the desired number of clusters. The number of clusters
chosen is the double of the number of different Hue that are found on manual
examination of different images. This is to ensure that we have a good enough
separation of images of different Hue. (4) The number of stain hues in the dataset
found after manual examination are five. So we chose to create 10 clusters. In
the pictorial representation of Fig. 2, we show less number of clusters for better
clarity. (5) We choose the cluster that has highest number of images. In this
cluster we find out the mean H and S value of image which is the closest to
the centroid of the cluster using Euclidean distance measure. The corresponding
image is used as the target image after conversion to RGB color-space.

The proposed procedure is applied separately to images of different magni-
fications. At the end, we have one target image for each magnification group of
images. After selecting target image, we use stain normalization method pro-
posed by [3] to normalize the dataset. Figure 2 illustrates the overall procedure
for selecting target image. Figure 2 is just a way to depict the procedure and is
not a real picture of our plots.

Fig. 2. Selection of target image.

2.3 Feature Descriptors and Contemporary Classifiers

Various texture features that consider the mutual dependency of color channel as
well as the features that don’t utilize the color information are extracted in order
to support believe that we have made. Due to space constraint we are not provid-
ing the detailing of features. Gray level co-occurence matrix (GLCM), Completed
local binary pattern (CLBP) [14], and Local phase quantization (LPQ) [15]
are used to extract plain texture. For capturing joint color-texture variabil-
ity, features such as Opponent Colour Local Binary pattern (OCLBP) [16],
Gabor features on Gaussian color model [17], Multilayer Coordinate Clusters
representation (MCCR) [18], and Parameter-free Threshold Adjacency Statis-
tics (PFTAS) [19] are utilized. Note that the choice of features and classifiers is
simply based on the popularity of the traditional texutre features, and consid-
ering some recently reported color-texture features.
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Fig. 3. Overall process of image classification.

Various contemporary classifiers [20] such as Support Vector Machine (SVM),
Nearest Neighbors (NN) and Random forest (RF) are experimented with above
listed texture features. For the proposed study, we utilize following variants of
mentioned classifiers: (1) Liner SVM: Linear kernel, (2) Gaussian SVM: RBF
kernel and kernel scale set to 2

√
P , (3) K-NN: 100 neighbors and euclidean

metric for distance measure, (4) RF: number of trees (30), maximum number of
splits (20). Thus, the study also serves as a comparative review of performance
for the above mentioned features and classifiers for the considered problem.

Figure 3 illustrates the overall structure utilized for the proposed study. As
indicated earlier, the primary intention of this study is to consider the effect of
stain normalization for automated breast cancer histopathology image classifi-
cation. Thus, we test the classification performance with gray-scale image, stain
normalized images, and original non-normalized images.

3 Results and Discussion

3.1 Training-Testing Protocol and Evaluation Metric

In our experiments, we have randomly chosen 58 patients (70%) for training and
remaining 25 for testing (30%). This also enables fair comparison with a state-
of-the-art approach [10–12]. We train the above listed contemporary classifiers
using images for the chosen 58 patients, and have also used five trials of random
selection of training-testing data. These trained models are tested using images
of the remaining images 25 patients.

To compare the results with existing approach [10–12], we use patient recog-
nition rate (PRR) as evaluation metric. However, some other evaluation metrics
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such as recall, precision, area under the ROC curve (AUC) can also be utilized.
The definition of patient recognition rate (PRR), which uses the patient score
(PS), is given as follows:

PRR =
∑N

i=1 PSi

N
PS =

Nrec

NP
(1)

where N is the total number of patients (available for testing), and Nrec and
NP are the correctly classified and total cancer image of patient P respectively.

3.2 Performance Evaluation and Comparison

Tables 1, 2 illustrate the performance of contemporary classifiers for 40X, 100X,
200X and 400X magnification respectively. For each magnification, seven texture
features out of which three are plain texture that directly extracts the feature
from gray version of image, and other four are color texture that utilizes color-
channel information are extracted.

From the tables following can be observed (for most or all cases):
(1) The performance when using color information (with or without stain

normalization) is better performance than using gray level information. This
highlights the importance of color in classification.

Table 1. Evaluation of color channel information along with contemporary classifiers
for 40x and 100x. Best performance at each magnification is highlighted.

Image magnification 40x 100x

Classifier and their variations Linear
SVM

Gaussian
SVM

Gaussian
KNN

Random
forest

Linear
SVM

Gaussian
SVM

Gaussian
KNN

Random
forest

Plain
texture
features

GLCM Gray scale 74.60 74.72 68.73 68.10 74.49 74.58 70.71 65.29

Stain normalization 74.91 74.81 72.96 71.55 75.77 75.31 74.77 73.49

Channel information 81.65 76.79 74.45 78.30 82.16 76.76 75.82 77.89

CLBP Gray scale 70.13 70.68 72.38 72.91 70.13 70.68 72.38 72.91

Stain normalization 70.4 70.4 70.4 70.67 70.4 70.4 70.4 70.42

Channel information 75.09 74.65 72.30 71.39 73.50 75.46 74.51 73.09

LBQ Gray scale 76.37 77.44 74.69 75.04 73.77 76.72 73.60 72.66

Stain normalization 74.52 75.21 73.86 74.40 72.73 76.79 73.67 74.50

Channel information 74.97 76.77 73.08 75.42 72.69 76.79 73.67 73.38

Colour
texture
feature

PFTAS Gray scale 74.77 74.90 69.19 68.99 73.75 73.45 71.90 68.19

Stain normalization 74.77 75.59 74.68 75.00 75.26 75.46 74.28 74.53

Channel information 70.11 72.51 75.63 75.52 80.92 78.07 81.54 84.75

Opponent
LBP

Gray scale 73.86 70.22 71.62 72.36 75.42 74.58 74.62 70.55

Stain normalization 76.09 75.25 75.54 76.05 68.66 75.88 74.27 71.92

Channel information 86.88 86.20 85.41 85.18 86.17 86.40 85.09 87.41

Gabour on
gaussian
color model

Gray scale 74.76 74.93 72.95 73.90 71.74 73.58 72.27 67.82

Stain normalization 78.58 74.50 74.85 75.01 79.12 74.94 74.90 75.37

Channel information 85.62 84.86 80.63 84.93 88.41 85.61 84.65 86.11

M CCR (8) Gray scale 73.83 70.4 67.80 68.06 69.74 70.4 68.76 65.63

Stain normalization 72.35 74.40 72.78 71.18 71.83 73.25 70.87 75.67

Channel information 78.93 78.50 82.63 84.42 80.40 78.96 80.30 87.15
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Table 2. Evaluation of color channel information along with contemporary classifiers
for 200x and 400x. Best performance at each magnification is highlighted.

Image magnification 200x 400x

Classifier and their variations Linear
SVM

Gaussian
SVM

Gaussian
KNN

Random
Forest

Linear
SVM

Gaussian
SVM

Gaussian
KNN

Random
Forest

Plain
texture
features

GLCM Gray scale 70.37 71.10 69.73 63.80 70.06 69.57 70.46 66.03

Stain normalization 71.98 72.67 70.18 68.88 69.28 70.08 72.33 70.51

Channel information 84.19 81.24 76.98 82.61 78.45 77.21 74.30 76.14

CLBP Gray scale 62.85 68.93 66.65 63.31 65.69 69.46 68.56 63.68

Stain normalization 70.4 70.4 70.4 70.67 70.42 70.29 62.08 69.89

Channel information 73.48 71.19 73.52 70.29 72.96 72.54 72.85 70.26

LBQ Gray scale 72.86 75.34 74.27 72.08 72.93 74.99 73.73 70.55

Stain normalization 73.76 75.50 74.48 71.94 75.97 75.48 74.28 72.52

Channel information 73.94 75.24 74.04 73.16 75.59 75.33 73.92 69.79

Colour
texture
feature

PFTAS Gray scale 71.71 70.56 70.91 65.13 72.22 71.92 70.10 64.00

Stain normalization 74.17 73.08 73.89 72.73 75.54 74.79 75.19 72.30

Channel information 73.52 75.46 74.51 72.80 77.14 74.31 77.18 80.97

Opponent
LBP

Gray scale 74.04 70.20 72.19 70.04 74.60 73.30 73.38 69.05

Stain normalization 73.55 72.42 73.11 72.49 76.59 72.93 72.86 74.01

Channel information 88.86 87.89 85.28 87.13 87.55 87.34 84.70 86.43

Gabour on
gaussian
color model

Gray scale 65.28 67.29 67.17 61.10 71.67 69.48 68.86 67.70

Stain normalization 79.56 74.43 73.16 75.11 77.55 73.59 72.92 75.93

Channel information 87.76 88.19 85.49 85.75 85.66 86.83 83.93 82.62

M CCR (8) Gray scale 70.24 70.4 69.41 69.76 70.80 69.7 68.40 67.61

Stain normalization 72.43 73.44 74.12 75.09 74.59 75.90 76.37 76.58

Channel information 79.30 75.87 80.95 88.51 78.55 75.39 80.15 81.40

(2) Comparing the cases with and without stain normalization, it is seen that
the classification performance is better in case of latter. However, the difference is
not too high or even quite close in many cases where traditional texture features
are used. This is expected as texture information is similar, except in some cases
where even independent color channels may help in capturing the color variation.

(3) However, in case of joint color-texture features, except for a very few
cases, the performance without stain normalization is consistently quite high.
This indicates that the joint color-texture features, which consider the mutual
dependency of color channels, indeed, better capture the color-texture variation
for classification.

(4) It can also be observed that opponent LBP where opponent channels are
considered to extract color channel information, shows the superior performance
for most (three) of magnification images. However, Gabor feature on Gaussian
color model, and M CCR also yield somewhat comparable performance.

There are very few exceptions from the above observations for some feature-
classifier combinations. While these need to be better scrutinized, we note that
most of the results support our hypothesis of the effectiveness of color-texture
information in mitigating the need for stain normalization.

Finally, Table 4 compares the results of the proposed approach obtained with
joint color-texture features, with some existing state-of art methods. In Table 4,
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Table 3. Detailed description.

Magnifications Total Patient
40x 100x 200x 400x

Benign 625 644 623 588 2480 24
Malignant 1370 1437 1390 1232 5429 58
Total 1995 2081 2013 1820 7909 82

Table 4. Performance comparison.

Methods & Score [10] [11] [12] Proposed

40x Patient level 83.8± 4.1 90.6 ± 6.7 83.08± 2.08 86.88± 2.37
100x Patient level 82.1± 4.9 88.4± 4.8 83.17± 3.51 88.41 ± 2.73

200x Patient level 85.1± 3.1 84.6± 84.63± 2.72 88.86 ± 3.76

400x Patient level 82.3± 3.8 86.1± 6.2 82.10± 4.42 87.55 ± 3.01

we report the best results of the proposed method obtained across various com-
bination of color-texture descriptors and classifiers. We can observe that, except
for the case of 40x, the proposed method outperforms the existing approaches.
We also note from the Table 4 that at 400x, the obtained accuracy for most
methods is lower than that at 100x and 200x. The reason could be that there
are relatively less number of images for 400x and perhaps more data is required
to capture the finer traits at higher magnification. Furthermore, one can also
observe that the proposed work yields a lesser variance in scores, in most of
the cases. This comparison further shows the effectiveness of joint color-texture
features for classification.

4 Conclusion

In this work, we attempt to establish the usefulness of joint color-texture infor-
mation, for classification without the need for stain normalization. We have
experimented with various classifiers to show the importance of independent and
dependent (mutual) color-channel information and find some interesting aspects
about the same. From our experiments, it is apparent that joint dependency
of color-texture can better capture the color-texture variability. We have also
shown the role of contemporary classifiers with these sophisticated color-texture
features. We believe that this is an interesting study which points towards obvi-
ating the need of stain normalization given effective features and classifiers. We
also demonstrate that employing the joint color-texture features can also out-
perform the state-of-the-art methods for the breast cancer histopathology image
classification.
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16. Mäenpää, T., Pietikäinen, M.: Texture analysis with local binary patterns. Hand-
book Pattern Recog. Comput. Visi. 3, 197–216 (2005)

17. Hoang, M.A., Geusebroek, J.-M., Smeulders, A.W.M.: Color texture measurement
and segmentation. Sig. Process. 85(2), 265–275 (2005)
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Abstract. Laparoscopic augmented reality (AR), improves the surgeon’s expe‐
rience of using multimodal visual data during a procedure by fusion of medical
image data (e.g., ultrasound images) onto live laparoscopic video. The majority
of AR studies are based on either computer vision-based or hardware-based (e.g.,
optical and electromagnetic tracking) approaches. However, both approaches
introduce registration errors because of variable operating conditions. To alleviate
this problem, we propose a novel approach of hybrid tracking which comprises
of both hardware-based and computer vision-based approaches. It consists of the
registration of an ultrasound image with a time-matched video frame using elec‐
tromagnetic tracking followed by a computer vision-based refinement of the
registration and subsequent fusion. Experimental results demonstrate not only the
feasibility of the proposed concept but also improved tracking accuracy that it
provides and the potential for its integration into a future clinical AR system.

Keywords: Augmented reality · Laparoscopic ultrasound · Electromagnetic
tracking · Hybrid tracking

1 Introduction

Laparoscopic surgery is an increasingly accepted mode of surgery because it is mini‐
mally invasive and leads to much faster recovery and improved outcomes. In a typical
laparoscopic surgery, the primary means of intraoperative visualization is a real-time
video of the surgical field acquired by a laparoscopic camera. Compared to open surgery,
laparoscopic surgery lacks tactile feedback. Moreover, laparoscopic video is capable of
providing only a surface view of the organs and cannot show anatomical structures
beneath the exposed organ surfaces. One solution to this problem is augmented reality
(AR), which is a method of overlaying imaging data—laparoscopic ultrasound (LUS)
images in the present work—onto live laparoscopic video. Potential benefits of AR are
improved procedure planning, improved surgical tool navigation and reduced procedure
times. A typical AR approach consists of registration of real-time LUS images on live
laparoscopic video followed by their superimposition.
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Image-to-video registration methods can be divided into two broad categories: (1)
computer vision (CV)-based and (2) hardware-based methods. The first category uses
CV techniques to track in real time natural anatomical landmarks and/or user-introduced
patterns within the field of view of the camera used. When ultrasound is the augmenting
imaging modality, tracking the ultrasound transducer in the video is the goal in these
approaches. For example, some earlier methods [1, 2] attached user-defined patterns on
the ultrasound transducer and tracked those patterns in the video. Feuerstein et al. [3],
on the other hand, directly tracked the LUS transducer in the video by detecting lines
describing the outer contours of the probe. However, the CV-based approaches may fail
or degrade in the presence of occlusion and variable lighting conditions [4].

The second category concerns the use of external tracking hardware devices. The
most established method at present is optical tracking, which uses infrared cameras to
track optical markers affixed rigidly on the desired tools and imaging devices. The
method has been employed in many AR applications [5–7]. AR systems based on elec‐
tromagnetic (EM) tracking have also been proposed [8, 9]. Tracking hardware is suscep‐
tible to two types of errors: system and calibration. The system-based errors in EM
tracking often stem from ferrous metals and conductive materials in tools that are close
enough to the field generator [10]. Optical markers frequently face the line-of-sight
problem. Calibration-based registration errors could be associated with experimental
errors from system calibration, which includes ultrasound calibration [11] and laparo‐
scopic camera calibration [12].

We propose a novel hybrid tracking method comprising of both hardware-based and
vision-based methods, which may provide consistent, more accurate and reliable image
fusion for an AR system. In this work, we focus on applying our method to EM tracking
that is capable of tracking the LUS transducer with a flexible imaging tip. The same
framework can also be applied to optical tracking. After an ultrasound image is registered
with and overlaid on a time-matched video frame using EM tracking, a vision-based
algorithm is used to refine the registration and subsequent fusion. Such a rectified cali‐
bration method can be accomplished in two stages by: (1) computing a correction trans‐
formation which when applied to a 3D Computer Aided Design (CAD) model of the
LUS probe improves the alignment of its projection with the actual LUS probe visible
in the camera image and (2) incorporating the calculated correction transformation in
the overall calibration system.

2 Methods

Our AR system in this study includes a clinical vision system (Image 1 Hub, KARL
STORZ, Tuttlingen, Germany) with a 10-mm 0° laparoscopic camera (Image 1 HD), an
ultrasound scanner (Flex Focus 700, BK Ultrasound, Analogic Corporation, Peabody, MA,
USA) with a 9-mm LUS transducer with a flexible imaging tip (Model 8836-RF), an EM
tracking system with a tabletop field generator (Aurora, Northern Digital Inc., Waterloo,
ON, Canada), and a graphics processing unit (GPU)-accelerated laptop computer that runs
the image fusion software. As shown in Fig. 1, we designed and 3D-printed a wedge-like
mount to hold the EM sensor (Aurora 6DOF Flex Tube, Type 2, 1.3 mm diameter) using
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an existing biopsy needle introducer track in the LUS transducer [9]. The mount was made
as thin as possible so that the integrated transducer can still go through a 12-mm trocar, a
typical-sized trocar for use with the original transducer.

Fig. 1. Custom-designed EM tracking mount on the LUS transducer.

The outline of our hybrid tracking framework is illustrated in Fig. 2. It has two main
stages. The first stage consists of two parts: (1) computing calibration of AR system
components: laparoscope and LUS transducer; (2) registration of LUS image and the
projection of the 3D LUS transducer model on the camera image using the calibration
results. In the second stage, the 2D projection of the 3D LUS transducer model is fitted
to the actual transducer seen in the camera image. To achieve this, the position and pose
parameters of the 3D LUS transducer model are optimized to determine the best fit of
its projection to the camera image. Such a correction transformation matrix is fed back
to Stage 1, and thus the registration of the LUS image to video is refined.

Fig. 2. The outline of the proposed framework.

2.1 System Calibration for AR

We first briefly describe the method for our hardware-based AR visualization. Let

pUS =

[
x y 0 1

]T denote a point in the LUS image in homogeneous coordinates, in which

the z coordinate is 0. Let pU
Lap = [u v 1]T denote the point that pUS corresponds to in the

undistorted camera image. If we denote TB
A as the 4 × 4 transformation matrix from the

coordinate system of A to that of B, the registration of pUS on the undistorted camera
image can be expressed as

pU
Lap = C ⋅

[
I30

]
⋅ TCam

Mark-Lap ⋅ T
Mark-Lap
Tracker ⋅ TTracker

Mark-US ⋅ TMark-US
US ⋅ pUS (1)
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where US refers to the LUS image; Mark-US refers to the EM sensor attached on the
LUS transducer; Tracker refers to the EM tracker; Mark-Lap refers to the EM sensor
attached on the laparoscope; Cam refers to the laparoscopic camera; I3 is an identity
matrix of size 3; and C is the camera matrix. TMark-US

US  can be obtained from ultrasound

calibration; TTracker
Mark-US and TMark-Lap

Tracker  can be obtained from tracking system; TCam
Mark-Lap and C

can be obtained from laparoscope calibration [12].

2.2 Improved System Calibration for AR

To refine the registration of the LUS image, we first project a 3D LUS transducer model
on the camera image using the standard calibration results. We then apply a vision-based
algorithm to register the projected 3D transducer model with the actual LUS transducer
shown in the video. This yields a correction matrix TCorr as a rigid transformation. Since
there is a fixed geometric relationship between the LUS transducer and the LUS image,
the same TCorr can be used to refine the location of the LUS image overlaid on the video.
As an update to Eq. 1, a summary of our general approach can be expressed as

pU
Lap = C ⋅

[
I30

]
⋅ TCorr ⋅ TCam

Mark-Lap ⋅ T
Mark-Lap
Tracker ⋅ TTracker

Mark-US ⋅ TMark-US
US ⋅ TUS

Model ⋅ pModel (2)

where points of the 3D LUS transducer model are first transferred to the LUS image
coordinate system through TUS

Model, which is described in the next section.

2.3 LUS Probe Model and Calibrations

We obtained a CAD model of the LUS probe used in this study from the manufacturer.
Because the exact mechanical relationship between the imaging tip of the LUS trans‐
ducer and the LUS image is proprietary information and not known to the research
community, we developed a simple registration step to transfer the coordinate system
of the CAD model to that of the LUS image (supposing the LUS image space is 3D with
z = 0). As illustrated in Fig. 3, we selected three characteristic points on the CAD model
and their corresponding points on the LUS image plane. Without loss of generality, we
fixed the scan depth of the LUS image to 6.4 cm, a commonly used depth setting for
ultrasound imaging during abdominal procedures. A simple three-point rigid registration
was then performed to obtain TUS

Model in Eq. 2.

Fig. 3. The three points selected on the LUS CAD model (left) and on the LUS image (right).
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We performed ultrasound calibration using the tools provided in the PLUS library
[11]. Laparoscope calibration was performed using the fast approach of [12], which
requires only a single image of the calibration pattern.

2.4 Model Projection and Alignment

To compare the pose and position of the rendered virtual model and the probe in the
camera image, we propose the workflow of the CV-based refinement algorithm as
presented in Fig. 4. First a region of interest (ROI) is generated for each frame of the
laparoscopic video using fast visual tracking based on robust discriminative correlation
filters [13] such that subsequent processing focuses on the imaging tip. Based on this
coarse estimate of the probe’s location, the bounding box surrounding the imaging tip
is intended to include at least some portion of the top, middle, and tip of the probe as
seen by the camera. To find the straight edges of these features of the probe, the camera
image is first converted to a gray scale image based on brightness, followed by Canny
edge detection. We used the Probabilistic Hough Transform (PHT) to extract a set of
lines from the edge detection result within the ROI, an example of which is shown in
Fig. 5. The line set was filtered by creating a coarse grain 2D histogram with the axes
defined by PHT parameters (r, 𝜃) and values of histogram defined by the sum of the
lengths of lines in the bin. All lines not contained within the highest peak present in the
2D histogram are removed to produce a set of lines that corresponds with the long edges,
parallel or close to parallel present in the probe. From this smaller set of lines, a fine
grain 2D histogram based on the PHT parameters (r, 𝜃) is created. The two highest peaks
in this histogram represent the top and middle of the probe. The indices of the peaks are
then used in the cost function for the optimization of the virtual probe location.

Fig. 4. The proposed refinement algorithm. Dotted areas depict iterative processes.
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Fig. 5. An example of the hybrid based tracking system with intermediate results displayed: Top
Left – gray scale representation of the original camera image and the mask box being used shown
in red, Top Right – Canny edges detected within the mask, Lower Left – Probabilistic Hough
Transform line set from Canny, Lower Right – line feature based filtering of the line set (Color
figure online)

In Stage 1 of optimization, we use the same procedure to detect the same two feature
lines both for the rendered 3D LUS transducer model and for the actual transducer shown
in the camera image. We compared the alignment of the feature lines using a cost func‐
tion defined as

F1(x) =
∑2

i=1

[
wr ⋅

(
ri

img − ri

gl(x)

)2
+ w

𝜃
⋅

(
𝜃

i

img − 𝜃
i

gl(x)

)2
]

(3)

where w is a scalar, img refers to the camera image, and gl refers to the OpenGL-rendered
3D LUS transducer model. The optimization used the simplex method [15] to search for
the five parameters x associated with a rigid transformation (TCorr in Eq. 2). In our current
work, we fixed the other parameter, i.e., the one associated with the rotation about the
LUS transducer axis. With only two feature lines as constraints, the optimization in Stage
1 may not accurately estimate parameters associated with translation along the LUS
transducer axis.

In Stage 2 of optimization, we detect a feature point of the tip of the probe in both
images to address inaccuracies along the transducer axis. We used gradient descent-
based active contours method [14] to segment the LUS probe from the camera image
and identify a feature point p as the farthest point corresponding with the tip of the
transducer. The initialization for segmentation was provided by an ellipse encompassing
the ROI. We compared the feature points using another cost function
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F2(x) = wp ⋅ d
(
pimg, pgl(x)

)2 (4)

where d(⋅, ⋅) is the Euclidean distance in image. In this stage, we restricted the simplex
search to focus on only one of the six parameters: the one associated with translation
along the LUS transducer axis. The other five parameters are kept fixed to their results
from Stage 1. For both stages of optimization, the search terminated according to the
tolerances set on both input and cost function deltas.

Our hardware-based AR visualization has been implemented using C++ on a GPU-
accelerated laptop computer. Currently, the described CV-based refinement algorithm
is implemented using OpenCV and scikit-image [17] in Python. The Python based
refinement implementation utilizes internal APIs with the C++ based AR code base to
transfer images and results between the two.

3 Experiments and Results

To show the improvement from applying hybrid tracking, we performed experiments
to measure and compare target registration error (TRE) between the EM tracking-based
approach and the hybrid approach. A target point, the intersection of two cross wires
immersed in a water tank, was imaged using the LUS transducer. The target point along
with the imaging tip of the LUS transducer was viewed with the laparoscope, whose
lens was immersed in water as well. The LUS image was overlaid on the camera image
through the EM tracking-based approach (Sect. 2.1) as well as the hybrid approach. The
target point in the overlaid LUS image can then be identified and compared with the
actual target point shown in the camera image. Their Euclidean distance in the image
plane is the TRE.

We performed experiments with four different poses of the laparoscope and the LUS
transducer. The average TRE of the EM tracking-based approach was measured to be
102.0 ± 60.5 pixel (8.2 ± 4.9 mm), and that of the hybrid approach was 46.7 ± 10.1 pixel
(3.8 ± 0.8 mm) with an image resolution of the camera of 1920 × 1280. The hybrid
approach improved overlay accuracy of the original EM tracking-based approach. The CV-
based refinement process took on average 52 s, the major bottleneck being the C++ API
interface required to read in a new candidate correction matrix. The total number of itera‐
tion steps in optimization was fewer than 110 steps for examples tried. Figure 6 shows an
example of the refinement results.

We also tested our approach with a more realistic camera and ultrasound images by
testing images from phantom. While we did not have a quantitative evaluation of such
images, we confirmed that the image processing and subsequent optimization qualita‐
tively worked as well as in the wire phantom. Figure 7 shows examples of this evaluation.
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Fig. 7. Two examples of vision-based refinement on an abdominal phantom. The initial AR
visualization (left) and corrected AR visualization using the hybrid tracking approach (right).

4 Discussion and Conclusion

In this work, we developed a computer vision-based refinement method to correct regis‐
tration error in hardware-based AR visualization. Initial hardware-based registration is
essential to our approach because it provides an ROI for robust feature line detection,
as well as a relatively close initialization for simplex-based optimization. We have
developed a vision-based solution to refine image-to-video registration obtained using
hardware-based tracking. A 3D LUS transducer model was first projected on the camera
image based on calibration results and tracking data. The model was then registered with
the actual LUS transducer using image processing and simplex optimization. Finally,
the resulting correction matrix was applied to the ultrasound image. The method is
promising as evidenced by our preliminary results included in this work. After further
refinement, the proposed hybrid framework could greatly improve the accuracy and
robustness of a laparoscopic AR system for clinical use.

Fig. 6. Example of vision-based refinement showing the initial AR visualization using the EM
tracking approach (left), and corrected AR visualization using the hybrid tracking approach (right).
The arrow indicates the target point shown in the overlaid LUS image.
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Although the current computational time is relatively lengthy even for periodic
correction, we can more tightly integrate the algorithm with our C++ and GPU-accel‐
erated AR system in the future. If implemented on GPU, the Hough Transform can be
achieved in 3 ms [16], and the entire refinement process could take less than 1 s.
Currently, Stage 1 of the optimization algorithm only used five of the six parameters
associated with a rigid transformation. The rotation about the LUS probe axis is not
refined. In the future, we will include the refinement of this parameter in our algorithm.
In addition, determining how often the vision-based refinement should be repeated
during AR visualization will also be one of our areas of investigation.
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