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Preface

The 7th EAI International Conference on Game Theory for Networks (GameNets
2017) was held in the city of Knoxville, Tennessee, USA, on May 9, 2017. The
conference attracted researchers and practitioners sharing a deep interest in the field of
game theory for networks. Game theory has proven to provide indispensable tools
enabling the analysis, modeling, and design of traditional as well as emerging complex
networks. In this regard, the mission of GameNets 2017 was to introduce novel
advancements in the research, development, and design of game-theoretic tools for
networks and to draw future directions that this research must take to cope with the
ever-growing complexity of modern networks.

The conference included 15 papers whose scope ranges from advancing funda-
mental game-theoretic concepts to focusing on various prominent network-based
applications in the fields of the smart electric grid, the Internet of Things, social
networks, network security, mobile service markets, and epidemic control. The con-
ference included two keynote addresses by Prof. Vincent Poor and Prof. Eitan Altman,
whose keynotes focused, respectively, on the use of game theory in smart grids and
network neutrality analyses.

We would like to express our gratitude to all the authors for their submissions and
contributions as well as to the Technical Program Committee and the reviewers who
performed and supervised the review process.

We would also like to thank the European Alliance for Innovations (EAI), whose
support was indispensable to the success of GameNets 2017.

August 2017 Lingjie Duan
Anibal Sanjab
Husheng Li

Xu Chen
Donatello Materassi

Rachid Elazouzi
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Nash Equilibrium Seeking with Non-doubly
Stochastic Communication Weight Matrix

Farzad Salehisadaghiani and Lacra Pavel(B)

Department of Electrical and Computer Engineering, University of Toronto,
10 King’s College Road, Toronto, ON M5S 3G4, Canada

farzad.salehisadaghiani@mail.utoronto.ca, pavel@control.utoronto.ca

Abstract. A distributed Nash equilibrium seeking algorithm is pre-
sented for networked games. We assume an incomplete information avail-
able to each player about the other players’ actions. The players commu-
nicate over a strongly connected digraph to send/receive the estimates
of the other players’ actions to/from the other local players accord-
ing to a gossip communication protocol. Due to asymmetric informa-
tion exchange between the players, a non-doubly (row) stochastic weight
matrix is defined. We show that, due to the non-doubly stochastic prop-
erty, there is no exact convergence. Then, we present an almost sure
convergence proof of the algorithm to a Nash equilibrium of the game.
Moreover, we extend the algorithm for graphical games in which all play-
ers’ cost functions are only dependent on the local neighboring players
over an interference digraph. We design an assumption on the communi-
cation digraph such that the players are able to update all the estimates
of the players who interfere with their cost functions. It is shown that the
communication digraph needs to be a superset of a transitive reduction
of the interference digraph. Finally, we verify the efficacy of the algorithm
via a simulation on a social media behavioral case.

1 Introduction

The problem of finding a Nash equilibrium (NE) of a networked game has
recently drawn many attentions. The players who participate in this game aim
to minimize their own cost functions selfishly by making decision in response to
other players’ actions. Each player in the network has only access to local infor-
mation of the neighbors. Due to the imperfect information available to players,
they maintain an estimate of the other players’ actions and communicate over a
communication graph in order to exchange the estimates with local neighbors.
Using this information, players update their actions and estimates.

In many algorithms in the context of NE seeking problems, it is assumed
that the communications between the players are symmetric in the sense that
the players who are in communication can exchange their information altogether
and update their estimates at the same time. This, in general, leads to a doubly

This work was supported by an NSERC Discovery Grant.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
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4 F. Salehisadaghiani and L. Pavel

stochastic communication weight matrix which preserves the global average of
the estimates over time. However, there are many real-world applications in
which symmetric communication is not of interest or may be an undesired feature
in applications such as sensor network.

Literature review. Our work is related to the literature on Nash games and
distributed NE seeking algorithms [1,4,11,16,17]. A distributed algorithm is
proposed in [18] to compute a generalized NE of the game for a complete com-
munication graph. In [7], an algorithm is provided to find an NE of aggregative
games for a partial communication graph but complete interference graph. This
algorithm is extended by [12] for a more general class of games in which the
players’ cost functions does not necessarily depend on the aggregate of players’
actions. It is further generalized for the partial interference graph in [13]. For a
two-network zero-sum game [5] considers a distributed algorithm for NE seek-
ing. To find distributed algorithms for games with local-agent utility functions,
a methodology is presented in [8] based on state-based potential games.

Gossip-based communication has been widely used in synchronous and asyn-
chronous algorithms in consensus and distributed optimization problems [2,3,9].
In [9], a gossip algorithm is designed for a distributed broadcast-based optimiza-
tion problem. An almost-sure convergence is provided due to the non-doubly
stochasticity of the communication matrix. In [2], a broadcast gossip algorithm
is studied to compute the average of the initial measurements which is proved
to converge almost surely to a consensus.

Contributions. We propose an asynchronous gossip-based algorithm to find an
NE of a distributed game over a communication digraph. We assume that play-
ers send/receive information to/from their local out/in-neighbors over a strongly
connected communication digraph. Players update their own actions and esti-
mates based on the received information. We prove an almost sure convergence
of the algorithm to the NE of the game. Unlike in the undirected case [12,13],
herein we cannot exploit the doubly stochastic property for the communication
weight matrix due to asymmetric information exchange. Non-doubly stochastic
property leads to have total average of the players’ estimates not preserved over
time. This was one of the critical steps in the convergence proof in [12,13].

Moreover, we extend the algorithm for graphical games in which the players’
cost functions may be interfered by any subset of players’ (not necessarily all
the players’) actions. The locality of cost functions is specified by an interference
digraph which marks the pair of players who interfere one with another. In order
to have a convergent algorithm, we design an assumption on the communication
digraph by which there exists a lower bound on the communication digraph
which is a transitive reduction of the interference digraph. By this assumption,
it is proved that all the players are able to exchange and update all the estimates
of the actions interfering with their cost functions.

The proofs are omitted due to space limitations, and are available in [14].
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2 Problem Statement: Game with a Complete
Interference Digraph

Consider a multi-player game in a network with a set of players V . The inter-
ference of players’ actions on the cost functions is represented by a complete
interference digraph G(V,E), with E marking the pair of players that interfere
one with another. Note that for a complete digraph every pair of distinct nodes
is connected by a pair of unique edges (one in each direction).

The game is denoted by G(V,Ωi, Ji) and defined over

– V = {1, . . . , N}: Set of players,
– Ωi ⊂ R: Action set of player i, ∀i ∈ V with Ω =

∏
i∈V Ωi ⊂ R

N the action
set of all players,

– Ji : Ω → R: Cost function of player i, ∀i ∈ V ,

In the following we define a few notations for players’ actions.

– x = (xi, x−i) ∈ Ω: All players actions,
– xi ∈ Ωi: Player i’s action, ∀i ∈ V and x−i ∈ Ω−i :=

∏
j∈V \{i} Ωj : All other

players’ actions except i.

The game is defined as a set of N simultaneous optimization problems as follows:
{

minimize
yi

Ji(yi, x−i)

subject to yi ∈ Ωi

∀i ∈ V. (1)

Each problem is run by an individual player and its solution is dependent on
the solution of the other problems. The objective is to find an NE of this game
which is defined as follows:

Definition 1. Consider an N -player game G(V,Ωi, Ji), each player i minimiz-
ing the cost function Ji : Ω → R. A vector x∗ = (x∗

i , x
∗
−i) ∈ Ω is called an NE

of this game if

Ji(x∗
i , x

∗
−i) ≤ Ji(xi, x

∗
−i) ∀xi ∈ Ωi, ∀i ∈ V. (2)

We state a few assumptions for the existence and the uniqueness of an NE.

Assumption 1. For every i ∈ V ,

– Ωi is non-empty, compact and convex,
– Ji(xi, x−i) is C1 in xi, continuous in x and convex in xi for every x−i.

The compactness of Ω implies that ∀i ∈ V and x ∈ Ω,

‖∇xi
Ji(x)‖ ≤ C, for some C > 0. (3)

Let F : Ω → R
N , F (x) := [∇xi

Ji(x)]i∈V be the pseudo-gradient vector of the
cost functions (game map).
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Assumption 2. F is strictly monotone, (F (x) − F (y))T (x − y) > 0 ∀x, y ∈
Ω, x 	= y.

Assumption 3. ∇xi
Ji(xi, u) is Lipschitz continuous in xi, for every fixed u ∈

Ω−i and for every i ∈ V , i.e., there exists σi > 0 such that

‖∇xi
Ji(xi, u) − ∇xi

Ji(yi, u)‖ ≤ σi‖xi − yi‖ ∀xi, yi ∈ Ωi.

Moreover, ∇xi
Ji(xi, u) is Lipschitz continuous in u with a Lipschitz constant

Li > 0 for every fixed xi ∈ Ωi, ∀i ∈ V .

In game (1), the only information available to each player i is Ji and Ω. Thus,
each player maintains an estimate of the other players actions and exchanges
those estimates with the neighbors to update them. A communication digraph
GC(V,EC) is defined where EC ⊆ V ×V denotes the set of communication links
between the players. (i, j) ∈ EC if and only if player i sends his information to
player j. Note that (i, j) ∈ EC does not necessarily imply (j, i) ∈ EC . The set of
in-neighbors of player i in GC , denoted by N in

C (i), is defined as N in
C (i) := {j ∈

V |(j, i) ∈ EC}. The following assumption on GC is used.

Assumption 4. GC is strongly connected.

Our objective is to find an algorithm for computing an NE of G(V,Ωi, Ji)
using only imperfect information over the communication digraph GC(V,EC).

3 Asynchronous Gossip-Based Algorithm

We propose a projected gradient-based algorithm using an asynchronous gossip-
based method as in [12]. The algorithm is inspired by [12] except that the com-
munications are supposed to be directed in a sense that the information exchange
is considered over a directed path. Our challenge here is to deal with the asym-
metric communications between the players. This makes the convergence proof
dependent on a non-doubly stochastic weight matrix , whose properties need to
be investigated and proved. The algorithm is elaborated as follows:

1- Initialization Step: Each player i maintains an initial temporary estimate
x̃i(0) ∈ Ω for all players. Let x̃i

j(0) ∈ Ωj ⊂ R be player i’s initial temporary
estimate of player j’s action, for i, j ∈ V .

2- Gossiping Step: At iteration k, player ik becomes active uniformly at ran-
dom and selects a communication in-neighbor indexed by jk ∈ N in

C (ik) uni-
formly at random. Let x̃i(k) ∈ Ω ⊂ R

N be player i’s temporary estimate at
iteration k. Then player jk sends his temporary estimate x̃jk(k) to player ik.
After receiving the information, player ik constructs his final estimate of all
players. Let x̂i

j(k) ∈ Ωj ⊂ R be player i’s final estimate of player j’s action,
for i, j ∈ V . The final estimates are computed as in the following:
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1. Players ik’s final estimate:
⎧
⎨

⎩

x̂ik
ik

(k) = x̃ik
ik

(k)

x̂ik
−ik

(k) =
x̃
ik
−ik

(k)+x̃
jk
−ik

(k)

2 .
(4)

Note that x̃i
i(k) = xi(k) for all i ∈ V .

2. For all other players i 	= ik, the temporary estimate is maintained, i.e.,

x̂i(k) = x̃i(k), ∀i 	= ik. (5)

We use communication weight matrix W (k) := [wij(k)]i,j∈V to obtain a
compact form of the gossip protocol. W (k) is a non-doubly (row) stochastic
weight matrix defined as follows:

W (k) = IN − eik(eik − ejk)T

2
, (6)

where ei ∈ R
N is a unit vector. Note that W (k) is different from the doubly sto-

chastic one used in [12]. The non-doubly (row) stochasticity of W (k) is translated
into:

W (k)1N = 1N , 1T
NW (k) 	= 1T

N . (7)

Let x̄(k) = [x̄1(k), . . . , x̄N (k)]T ∈ ΩN be an intermediary variable such that

x̄(k) = (W (k) ⊗ IN )x̃(k), (8)

where x̃(k) = [x̃1(k), . . . , x̃N (k)]T ∈ ΩN is the overall temporary estimate at k.
Using (6) one can combine (4) and (5) in a compact form of x̂ik

−ik
(k) = x̄ik

−ik
(k)

and x̂i(k) = x̄i(k) for ∀i 	= ik.

3- Local Step: At this moment all the players update their actions according
to a projected gradient-based method. Let x̄i = (x̄i

i, x̄
i
−i) ∈ Ω, ∀i ∈ V with

x̄i
i ∈ Ωi be the intermediary variable associated to player i. Because of imperfect

information available to player i, he uses x̄i
−i(k) and updates his action as follows:

if i = ik,
xi(k + 1) = TΩi

[xi(k) − αk,i∇xi
Ji(xi(k), x̄i

−i(k))], (9)

otherwise, xi(k+1) = xi(k). In (9), TΩi
: R → Ωi is an Euclidean projection and

αk,i are diminishing step sizes such that
∑∞

k=1 α2
k,i < ∞,

∑∞
k=1 αk,i = ∞ ∀i ∈ V .

The players use their updated actions to update their temporary estimates as
follows:

x̃i(k + 1) = x̄i(k) + (xi(k + 1) − x̄i
i(k))ei, ∀i ∈ V. (10)

At this point, the players are ready to begin a new iteration from step 2. We
elaborate on the non-doubly stochasticity of W (k) from two perspectives.
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1. Design: By the row (non-doubly) stochastic property of W (k), the temporary
estimates remain at consensus subspace once they reach there. This can be
verified by (8) when x̃(k) = 1N ⊗ α for an N × 1 vector α, since,

x̄(k) = (W (k) ⊗ IN )(1N ⊗ α) = 1N ⊗ α. (11)

Equations (9), (10) and (11) imply that the consensus is maintained. On the
other hand W (k) is not column-stochastic which is a critical property used
in [12]. This implies that the average of temporary estimates is not equal to
the average of x̄. Indeed by (8),

1
N

(1T
N ⊗ IN )x̄(k) =

1
N

(1T
N ⊗ IN )(W (k) ⊗ IN )x̃(k) 	= 1

N
(1T

N ⊗ IN )x̃(k). (12)

Equations (9), (10) and (12) imply that the average of temporary estimates is
not preserved for the next iteration. Thus, it is infeasible to obtain an exact
convergence to the average consensus [2]. Instead, we show an almost sure
(a.s.) convergence of the temporary estimates to an average consensus1.

2. Convergence Proof: λmax(W (k)T W (k)) is a key parameter in the proof
(as in [9,12]). Unlike [12], the non-doubly stochastic property of W (k)T W (k)
ends up in having λmax(W (k)T W (k)) > 1. We resolve this issue in Lemma 1.

4 Convergence for Diminishing Step Sizes

In this section we prove convergence of the algorithm for diminishing step sizes.
Consider a memory in which the history of the decision making is recorded. Let
Mk denote the sigma-field generated by the history up to time k − 1 with

M0 = {x̃i(0), i ∈ V }. Mk = M0 ∪
{

(il, jl); 1 ≤ l ≤ k − 1
}

, ∀k ≥ 2. (13)

As explained in the design challenge in Sect. 3, we consider a.s. convergence.
Convergence is shown in two parts. First, we prove a.s. convergence of the tem-
porary estimate vectors x̃i, to an average consensus, proved to be the vectors’
average. Then we prove a.s. convergence of players’ actions toward an NE.

Let x̃(k) be the overall temporary estimate vector. The average of all tem-
porary estimates at T (k) is defined as follows:

Z(k) =
1
N

(1T
N ⊗ IN )x̃(k). (14)

As mentioned in Sect. 3, the major difference between the proposed algorithm
and the one in [12] is in using a non-doubly stochastic weight matrix W (k) which
was a key step. The following lemma is used to overcome these challenges.
1 The same objective is followed by [9] to find a broadcast gossip algorithm (with non-

doubly stochastic weight matrix) in the area of distributed optimization. However,
in the proof of Lemma 2 ([9] page 1348) which is mainly dedicated to this discussion,
the doubly stochasticity of W (k) is used right after Eq. (22) which violates the main
assumption on W (k).
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Lemma 1. Let Q(k) = (W (k)− 1
N 1N1T

NW (k))⊗IN and W (k) be a non-doubly
(row) stochastic weight matrix defined in (6) which satisfies (7). Let also γ =
λmax

(
E[Q(k)T Q(k)]

)
. Then γ < 1.

Proof. See [14].

Theorem 1. Let x̃(k) be the stack vector with all temporary estimates of the
players and Z(k) be its average as in (14). Let also αk,max =maxi∈V αk,i. Then
under Assumptions 1, 4, the following hold.

(i)
∑∞

k=0 αk,max‖x̃(k) − (1N ⊗ IN )Z(k)‖ < ∞ a.s.,
(ii)

∑∞
k=0 ‖x̃(k) − (1N ⊗ IN )Z(k)‖2 < ∞ a.s.

Proof. The proof follows as in the proof of Theorem 1 in [12], but the critical
step here is in using Lemma 1.

Corollary 1. For the players’ actions x(k) and x̄(k), the following terms hold
a.s. under Assumptions 1–4.

(i)
∑∞

k=0 αk,max‖x(k) − Z(k)‖ < ∞ a.s., (ii)
∑∞

k=0 ‖x(k) − Z(k)‖2 < ∞ a.s.,

(iii)
∑∞

k=0 E

[
‖x̄(k) − (1N ⊗ IN )Z(k)‖2

∣
∣
∣Mk

]
< ∞ a.s.

Proof. See [14].

Theorem 2. Let x(k) and x∗ be the players’ actions and the NE of G, respec-
tively. Under Assumptions 3–4, the sequence {x(k)} generated by the algorithm
converges to x∗, almost surely.

Proof. The proof is similar to the proof of Theorem 2 in [12] based on Theorem 1.
Theorem 2 verifies that the actions of the players converge a.s. toward the NE
using the fact that the actions converge to a consensus subspace (Corollary 1).

5 Game with a Partial Interference Digraph

We extend the game defined in Sect. 2 to the case with partially coupled cost
functions, such that the cost functions may be interfered by the actions of any
subset of players. The game is denoted by G(V,GI , Ωi, Ji) where GI(V,EI) is an
interference digraph with EI marking the players whose actions interfere with
the other players’ cost functions. We denote by N in

I (i) := {j ∈ V |(j, i) ∈ EI},
the set of in-neighbors of player i in GI whose actions affect Ji and Ñ in

I (i) :=
N in

I (i) ∪ {i}.
The following assumption is considered for GI .

Assumption 5. GI is strongly connected.

The cost function of player i, Ji, ∀i ∈ V , is defined over Ωi → R where
Ωi =

∏
j∈Ñ in

I (i) Ωj ⊂ R
|Ñ in

I (i)| is the action set of players interfering with the
cost function of player i. A few notations for players’ actions are given:
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– xi = (xi, x
i
−i) ∈ Ωi: All players’ actions which interfere with Ji,

– xi
−i ∈ Ωi

−i :=
∏

j∈N in
I (i) Ωj : Other players’ actions which interfere with Ji.

Given xi
−i, each player i aims to minimize his own cost function selfishly,

{
minimize

yi

Ji(yi, x
i
−i)

subject to yi ∈ Ωi

∀i ∈ V. (15)

Known parameters to player i are as follows: (1) Cost function of player i, Ji and
(2) Action set Ωi. Note that this game setup is similar to the one in [13] except
for a directed GC used for asymmetric communications. Our first objective is to
design an assumption on GC such that all required information is communicated
by the players after sufficiently many iterations. In other words, we ensure that
player i, ∀i ∈ V receives information from all the players whose actions interfere
with his cost function.

Definition 2. Transitive reduction: A digraph H is a transitive reduction of G
which is obtained as follows: for all three vertices i, j, l in G such that edges (i, j),
(j, l) are in G, (i, l) is removed from G.

Note that transitive reduction is different from maximal triangle-free span-
ning subgraph which is used in Assumption 2 in [13].

Assumption 6. The following holds for the communication graph GC :

– GTR ⊆ GC ⊆ GI , where GTR is a transitive reduction of GI .

Lemma 2. Let GI and GC satisfying Assumptions 5, 6. Then, ∀i ∈ V ,
⋃

j∈N in
C (i)

(
N in

I (i) ∩ Ñ in
I (j)

)
= N in

I (i). (16)

Proof. See [14].

Remark 1. (16) verifies that using Assumptions 5, 6 the first objective is satis-
fied.

The assumptions for existence and uniqueness of an NE are Assumptions
1–3 with the cost functions adapted to GI . Our second objective is to find an
algorithm for computing an NE of G(V,GI , Ωi, Ji) over GC(V,EC) with partially
coupled cost functions as described by the directed graph GI(V,EI).

6 Asynchronous Gossip-Based Algorithm Adapted
to GI

The structure of the algorithm is similar to the one in Sect. 3. The steps are
elaborated in the following:
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1- Initialization Step:
– x̃i(0) ∈ Ωi: Player i’s initial temporary estimate.

2- Gossiping Step:
– x̃i

j(k) ∈ Ωj ⊂ R: Player i’s temporary estimate of player j’s action at k.
– x̂i

j(k) ∈ Ωj ⊂ R: Player i’s final estimate of player j’s action at k, for
i ∈ V, j ∈ Ñ in

I (i).
– Final estimate construction:

x̂ik
l (k) =

{
x̃
ik
l (k)+x̃

jk
l (k)

2 , l ∈ (N in
I (ik) ∩ Ñ in

I (jk))
x̃ik

l (k), l ∈ Ñ in
I (ik)\(N in

I (ik) ∩ Ñ in
I (jk)).

(17)

For
i 	= ik, j ∈ Ñ in

I (i), x̂i
j(k) = x̃i

j(k). (18)

We suggest a compact form for gossip protocol by using W I(k).
Let for player i,

W I(k) := Im −
∑

l∈(Ñ in
I (ik)∩Ñ in

I (jk))

esikl
(esikl

− esjkl
)T

2
, (19)

where ei ∈ R
m is a unit vector. Note that W I(k) is different from the doubly

stochastic one used in [13]. See [14] for the design of sij which is an index of
the estimate vector element associated with player i’s estimate of player j’s
action.

– x̃(k) :=
[
x̃1T , . . . , x̃NT ]T : Stack vector of all temporary estimates,

– x̄(k) := W I(k)x̃(k): Intermediary variable.
Using the intermediary variable, one can construct the final estimates as
follows:

x̂i
−i(k) = [x̄sij

(k)]j∈N in
I (i). (20)

3- Local Step: Player i updates his action as follows: If i = ik, xi(k + 1) =
TΩi

[
xi(k)−αk,i∇xi

Ji

(
xi(k),[x̄sij

(k)]j∈N in
I (i)

)]
, otherwise,

xi(k + 1) = xi(k), (21)

Then he updates his temporary estimates:

x̃i
j(k + 1) =

{
x̄sij

(k), if j 	= i

xi(k + 1), if j = i.
(22)

At this point, the players are ready to begin a new iteration from step 2.
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7 Convergence of the Algorithm Adapted to GI

Similar to Sect. 4, the convergence proof is split into two steps:

1. First, we prove a.s. convergence of x̃(k) ⊂ R
m to an average consensus which

is shown to be the augmented average of all temporary estimate vectors. Let
– mout

i := degoutGI
(i) + 1, where degoutGI

(i) is the out-degree of vertex i in GI ,
– 1./mout := [ 1

mout
1

, . . . , 1
mout

N
]T ,

–
H := [

∑

i:1∈N in
I (i)

esi1 , . . . ,
∑

i:N∈N in
I (i)

esiN
] ∈ R

m×N , (23)

where i : j ∈ N in
I (i) is all i’s such that j ∈ N in

I (i). The augmented average of
all temporary estimates is denoted by ZI(k) ∈ R

m and defined as follows:

ZI(k) := Hdiag(1./mout)HT x̃(k) ∈ R
m. (24)

2. Secondly, we prove almost sure convergence of the players actions to an NE.

The proof depends on some key properties of W I and H given in Lemmas 3, 4.

Lemma 3. Let W I(k) and H be defined in (19) and (23). Then, W I(k)H = H.
This can be interpreted as the generalized row stochastic property of W I(k).

Proof. See [14].

Lemma 4. Let QI(k) :=W I(k) − Hdiag(1./mout)HT W I(k) and
γI = λmax

(
E[QI(k)T QI(k)]

)
. Then γI < 1.

Proof. See [14].

Theorem 3. Let x̃(k) be the stack vector with all temporary estimates of the
players and ZI(k) be its average as in (24). Let also αk,max = maxi∈V αk,i.
Then under Assumptions 1′, 5, 6, the following hold.
(i)

∑∞
k=0 αk,max‖x̃(k) − ZI(k)‖ < ∞ a.s., (ii)

∑∞
k=0 ‖x̃(k) − ZI(k)‖2 < ∞ a.s.

Proof. The proof uses Lemmas 3, 4 and is similar to the proof Theorem 1
in [15].

Corollary 2. Let zI(k) := diag(1./mout)HT x̃(k) ∈ R
N be the average of all

players’ temporary estimates. Under Assumptions 1′, 5, 6 the following hold for
players’ actions x(k) and x̄(k):

(i)
∑∞

k=0 αk,max‖x(k) − zI(k)‖ < ∞ a.s., (ii)
∑∞

k=0 ‖x(k) − zI(k)‖2 < ∞ a.s.,

(iii)
∑∞

k=0 E

[
‖x̄(k) − ZI(k)‖2

∣
∣
∣Mk

]
< ∞ a.s.

Proof. See [14].

Theorem 4. Let x(k) and x∗ be all players’ actions and the NE of G, respec-
tively. Under Assumptions 1′–3′, 5, 6, the sequence {x(k)} generated by the
algorithm converges to x∗, almost surely.

Proof. The proof uses Theorem 3 and is similar to the proof of Theorem 2
in [15].
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8 Simulation Results

8.1 Social Media Behavior

In this example we aim to investigate social networking media for users’ behav-
ior. In such media like Facebook, Twitter and Instagram users are allowed to
follow (or be friend with) the other users and post statuses, photos and videos
or also share links and events. Depending on the type of social media, the way
of communication is defined. For instance, in Instagram, friendship is defined
unidirectional in a sense that either side could be only a follower and/or being
followed. Recently, researchers at Microsoft have been studying the behavioral
attitude of the users of Facebook as a giant and global network [10]. This study
can be useful in many areas e.g. business (posting advertisements) and politics
(posting for the purpose of presidential election campaign). Generating new sta-
tus usually comes with the cost for the users such that if there is no benefit in
posting status, the users don’t bother to generate new ones. In any social media
drawing others’ attention is one of the most important motivation/stimulation
to post status [6]. Our objective is to find the optimal rate of posting status for
each user to draw more attention in his network. In the following, we make an
information/attention model of a generic social media [6] and define a commu-
nication between users (GC) and an interference graph between them (GI).

Consider a social media network of N users. Each user i produces xi unit
of information that the followers can see in their news feeds. The users’ com-
munication network is defined by a strongly connected digraph GC in which
i©→ j© means j is a follower of i or j receives xi in his news feed. We also

assume a strongly connected interference digraph GI to show the influence of
the users on the others. We assume that each user i’s cost function is not
only affected by the users he follows, but also by the users that his follow-
ers follow. The cost function of user i is denoted by Ji and consists of three
parts: (1) Ci(xi) := hixi, hi > 0 which is a cost that user i pays to pro-
duce xi unit of information. (2) f1

i (x) := Li

√∑
j∈N in

C (i) qjixj , Li > 0 which is

a differentiable, increasing and concave utility function of user i from receiv-
ing information from his news feed with f1

i (0) = 0 and qji represents fol-
lower i’s interest in user j’s information and Li is a user-specific parameter.
(3) f2

i (x) :=
∑

l:i∈N in
C (l)Ll

(√∑
j∈N in

C (l) qjlxj −
√∑

j∈N in
C (l)\{i} qjlxj

)
which is an

incremental utility function that each user obtains from receiving attention in
his network with f2

i (x)|xi=0 = 0. Specifically, this function targets the amount
of attention that each follower pays to the information of other users in his news
feed. The total cost function for user i is then Ji(x) = Ci(xi)−f1

i (x)−f2
i (x). For

this example, we consider 5 users in the social media whose network of followers
GC is given in Fig. 1(a). From GC and taking Ji into account, one can construct
GI (Fig. 1(b)) in a way that the interferences among users are specified. Note
that this is a reverse process of the one discussed in Sect. 5 because GC is given
as the network of followers and GI is constructed from GC . For the particular
networks in Fig. 1(a, b), Assumptions 5, 6 hold. We then employ the algorithm
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Fig. 1. (a) GC (b) GI (c) Convergence of the unit of information that each user pro-
duces to a NE over GC .

in Sect. 6 to find an NE of this game for hi = 2 and Li = 1.5 ∀i ∈ V , and
q41 = q45 = 1.75, q32 = q43 = 2 and the rest of qij = 1. The result is shown in
Fig. 1(c). To analyze the NE x∗ = [0, 0, 0.42, 2.24, 0.14]T , one can realize from
GC that user 4 has 3 followers (users 1, 3 and 5), user 3 has 2 followers (users
2 and 5) and the rest has only 1 follower. Then, it is straightforward to predict
that users 4 and 3 could draw more attentions and produce more information.
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Abstract. We consider in this paper the Hawk-Dove game in which
each of infinitely many individuals, involved with pairwise encounters
with other individuals, can decide whether to act aggressively (Hawk) or
peacefully (Dove). Each individual is characterized by its strength. The
strength distribution among the population is assumed to be fixed and
not to vary in time. If both individuals involved in an interaction are
Hawks, there will be a fight, the result of which will be determined by
the strength of each of the individuals involved. The larger the differ-
ence between the strength of the individuals is, the larger is the cost for
the weaker player involved in the fight. Our goal is to study the influ-
ence of the parameters (such as the strength level distribution) on the
equilibrium of the game. We show that for some parameters there exists
a threshold equilibrium policy while for other parameters there is no
equilibrium policy at all.

1 Introduction

Evolutionary games become a central tool for predicting and even design evolu-
tion in many field. The origin of evolutionary games come from biology where
it was introduced by [15] to model conflicts among animals. It differs from clas-
sical game theory by (i) its focusing on the evolution dynamics of the fraction
of members of the population that use a given strategy, and (2) in the notion
of Evolutionary Stable Strategy (ESS, [15]) which includes robustness against a
deviation of a whole (possibly small) fraction of the population who may wish to
deviate (This is in contrast with the standard Nash equilibrium concept that only
incorporates robustness against deviation of a single user). It became perhaps the
most important mathematical tool for describing and modeling evolution since
Darwin. Indeed, on the importance of the ESS for understanding the evolution
of species, Dawkins writes in his book “The Selfish Gene” [18]: “we may come
to look back on the invention of the ESS concept as one of the most important
advances in evolutionary theory since Darwin.” He further specifies: “Maynard
Smith’s concept of the ESS will enable us, for the first time, to see clearly how a
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

L. Duan et al. (Eds.): GameNets 2017, LNICST 212, pp. 16–28, 2017.
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collection of independent selfish entities can come to resemble a single organized
whole.” Recently, however, evolutionary game theory has become of increased
interest to social scientists [8]. In computer science, evolutionary game theory
is appearing, some examples of applications can be found in multiple access
protocols [16], multihoming [14] and resources competition in the Internet [20].

In this paper we focus on the classical evolutionary Hawk-Dove game which is
one of the most studied examples in evolutionary games. The Hawk-Dove game
is a model for determining the degree of aggressiveness in a society in which
each individual can decide on whether to be a Hawk or a Dove. There are many
pairwise interactions between individuals while competing over resources such
as food. While Hawkish behavior benefits an individual who meets a Dove while
contending over a resource, it has a cost since it is involved in more confrontations
Hawk-Hawk which are more violent and in which chances of getting wounded
are high. The objective of a game analysis is then to predict what fraction of
the population would be aggressive at equilibrium as a function of the system’s
parameters.

In this paper we assume that the choice between Dove and Hawk only deter-
mines whether or not there would be a confrontation between the individuals.
But the outcome of the conflict is determined by a parameter that is proper to
each of the involved individual, which we call strength. It could be related to
its size, or its weight. Each individual in a large population takes a decision on
whether to act aggressively (Hawk) or not (Dove) based on its own strength. It
is again involved in many pairwise encounters with other individuals randomly
selected from a large population. The decision to act aggressively or not is taken
without knowing what will be the strength of those individuals it would meet.

In evolutionary game literature, variants of the hawk-dove game exist. For
example, in [11] a dynamic version of the hawk dove game is proposed. In this
version, it is assumed that each player (animal) has a state that corresponds
to its level of energy reserves. A strategy of a player specifies which action to
take as a function of its state. Assuming that an animal must minimize its
probability of dying, the authors established a new ESS according to which
an animal plays a hawk if its energy reserves are below some critical value, and
plays dove otherwise. Furthermore, any single mutant that adopts other strategy
than the ESS would get a strictly lower fitness. In [19], the author considered a
heterogeneous population composed of two groups of hawks and doves that have
different fighting abilities and which are linked via migration. Assuming that
migration occurs at a much faster time scale than the game dynamics (hawk dove
game), the author studied the dynamics of the full population. Other interesting
extended versions of the Hawk-Dove game are proposed in [3–7,10,12,13].

Originated in biology, the hawk-dove game lends itself well to various net-
working problems such as power control or medium access control as well. In
[2,9], a semi-dynamic version of the hawk-dove game applied to power control
is introduced. In this game, the aggressive behavior stands for transmitting at
a high power level while the peaceful behavior is associated to transmitting at
a low power level. Each mobile station (player) has a state that corresponds to
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its energy level. The action used by a player determines its immediate fitness
and its future state. Moreover, it is assumed that a player can use only the
same strategy during its lifetime. The goal of a player is to maximize its overall
amount of data sent during its lifetime. The authors identified in this context
a paradox in which the fraction of a population choosing the peaceful behav-
ior at the evolutionarily stability decreases as the initial energy state of players
increases. In [1], the authors applied the hawk dove game to congestion control
where the aggressive behavior corresponds to using a high-speed TCP version
to be used over the Internet. Another application of the hawk-dove game in the
medium access control is considered in [17].

In this paper we allow the state space to be a continuum. After presenting
the model in the next section, we identify in Sect. 3 conditions for an equilibrium
with a threshold structure to exist, in which a individual behaves aggressively if
it is stronger than some threshold. We then search in Sect. 4 for other equilibria
and show that under some conditions, any equilibrium other than threshold does
not exist at all. This is due to the fact that the state space is infinite and has
thus not been observed in games with finite state spaces.

2 Model

We consider a Hawk and Dove game, in which individuals have pairwise inter-
actions over resources (food). Two individuals that adopt a Dove behavior split
the resource peacefully; we assume that the share of each individual depends
on the strength of the individual as follows. The stronger individual receives a
fraction α of the resource and the other one receives 1 − α of it, where α is a
constant between 0 and 1. If it meets a individual with an aggressive behavior
(Hawk) then the whole resource is taken by the aggressive individual so that the
Hawk gets one unit of fitness and the Dove none.

When two Hawks meet, there is a fight in which case the true identity deter-
mines the fitness of each player. We assume that the stronger individual receives
one unit of fitness whereas the weaker one’s utility is monotone increasing in
its strength. Let x (and y) be the strength levels of the stronger (resp. weaker)
individual. Then we assume that the fitness of the weaker individual is given by
−f(y, x − y) for some nonnegative f which is assumed to be decreasing in its
first argument and increasing in its second one. Each individual is encountered
with another individual chosen uniformly at random. Assume that the strength
level in the population is distributed according to probability density function
θ(x). This means the probability that any individual encounters a individual of
strength between x to x+dx is θ(x)dx for small dx. When stronger individual
has strength x and weaker individual has strength y(< x), then payoff matrices
are as follows (Tables 1 and 2).
The probability that a individual of strength x meets another individual of
strength exactly equal to x is zero. Hence the payoffs in that case do not affect
the utility of the individuals.

We define P (as a function of x) to be the strategy of the individuals. P (x) is
the probability of playing Hawk when at strength level x (and hence probability
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Table 1. Payoff for player
with strength x(> y)

H D

H 1 1

D 0 α

Table 2. Payoff for player
with strength y(< x)

H D

H −f(x, y − x) 1

D 0 1 − α

that it plays Dove is 1 − P (x)). In general different individuals can play dif-
ferent strategies. But when a particular individual is encountered by a random
individual, only thing that affects its utility is the probability with which it is
encountered by a individual with strength y and strategy Hawk and individual
with strength y and strategy Dove. If h(y) is the probability with which the
individual is encountered by a individual with strength y and playing Hawk,
we can equivalently assume that all individuals with strength y are playing
Hawk with probability h(y)

θ(y) . Hence forward we shall assume all the individuals
in the environment play the same strategy. Define the utility of the individual
as U(P ′, x, P ), this is the expected utility that a individual (of strength x) gets
when it uses strategy P ′ and the rest of the population uses strategy P . It is
given by

U(P ′, x, P ) = P ′(x)U(H,x, P ) + (1 − P ′(x)) U(D,x, P )

where H is pure strategy of playing Hawk and D is pure strategy of playing
Dove. We have,

U(H,x, P ) =
∫ x

0

θ(y) dy+
∫ ∞

x

θ(y)P (y)(−f(x, y−x)) dy+
∫ ∞

x

θ(y)(1−P (y)) dy

U(D,x, P ) = α

∫ x

0

θ(y)(1 − P (y)) dy + (1 − α)
∫ ∞

x

θ(y)(1 − P (y)) dy

3 Threshold Strategy

Before studying the existence of Nash equilibrium and ESS, let us define the
threshold strategy based on the strength level.

Definition 1. We define a threshold strategy P by

P (x) =

⎧⎨
⎩

0 if x < L
1 if x > L

any value ∈ [0, 1] if x = L
(1)
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We call L as threshold value of this threshold strategy, and denote the threshold
strategy as PL.

Theorem 1. If f is a bounded function, then there exists a threshold strategy
(for α = 1/2), such that if it is used by the individual and the population, it is
Nash equilibrium. If the function f is strictly increasing in x, then this threshold
strategy is also an ESS.

Proof. Part 1 - Existence of threshold strategy which is Nash equilibrium.
We find the conditions on threshold value L so that its threshold strength

is Nash equilibrium. Let PL be a Nash equilibrium. This U(PL, x, PL) ≥
U(P, x, PL) for every strategy P , and every strength level x. We have

PL(x)U(H,x, PL) + (1−PL(x))U(D,x, PL) ≥ P (x)U(H,x, PL) + (1−P (x))U(D,x, PL) (2)

Case 1 : x > L

For x > L, we have PL(x) = 1, to satisfy (2), we must have
U(PL, x, PL) ≥ U(P, x, PL)
U(H,x, PL) ≥ P (x)U(H,x, PL) + (1 − P (x))U(D,x, PL)
(1 − P (x)) U(H,x, PL) ≥ (1 − P (x)) U(D,x, PL)

Above inequality has to be satisfied by all strategies P , so it is necessary and
sufficient that
U(H,x, PL) ≥ U(D,x, PL)∫ x

0
θ(y) dy +

∫ ∞
x

θ(y)(−f(x, y − x)) dy ≥ 1
2

∫ L

0
θ(y) dy∫ x

0
θ(y) dy ≥ 1

2

∫ L

0
θ(y) +

∫ ∞
x

θ(y)f(x, y − x) dy

LHS of the above statement is increasing in x and as f is decreasing in x, RHS
is decreasing in x. So, it is necessary and sufficient that inequality is satisfied for
x = L. ∫ L

0

θ(y) dy ≥ 1
2

∫ L

0

θ(y) +
∫ ∞

L

θ(y)f(L, y − L) dy

1
2

∫ L

0

θ(y) dy ≥
∫ ∞

L

θ(y)f(L, y − L) dy (3)

Case 2 : x < L

For x < L, we have PL(x) = 0, to satisfy (2), we must have
U(PL, x, PL) ≥ U(P, x, PL)
U(D,x, PL) ≥ P (x)U(H,x, PL) + (1 − P (x))U(D,x, PL)
P (x) U(D,x, PL) ≥ P (x) U(H,x, PL)

It is necessary and sufficient to have U(D,x, PL) ≥ U(H,x, PL)∫ L

0
θ(y) dy +

∫ ∞
L

θ(y)(−f(x, y − x)) dy ≤ 1
2

∫ L

0
θ(y) dy
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1
2

∫ L

0
θ(y) dy ≤ ∫ ∞

L
θ(y)f(x, y − x) dy

LHS of the above statement is constant in x and as f is decreasing in x, RHS is
decreasing in x. So, it is necessary and sufficient that inequality is satisfied for
x = L.∫ L

0
θ(y) dy ≤ (1/2)

∫ L

0
θ(y) +

∫ ∞
L

θ(y)f(L, y − L) dy

1
2

∫ L

0

θ(y) dy ≤
∫ ∞

L

θ(y)f(L, y − L) dy (4)

(3) and (4) imply

1
2

∫ L

0

θ(y) dy =
∫ ∞

L

θ(y)f(L, y − L) dy (5)

Above equation also tells us that U(H,L, PL) = U(D,L, PL), so a player with
strength L is indifferent in playing Hawk and Dove, so PL(L) can take any value
between 0 and 1 and still PL will be a Nash equilibrium. So, it is sufficient for
L to satisfy the above equation for PL to be Nash equilibrium.

LHS of (5) is increasing in L and RHS of (5) is decreasing in L. At L = 0, LHS
takes value 0 and as L tends to ∞, LHS tends to 1/2. If RHS is bounded, as f
is a non negative, not identically zero bounded function, RHS takes a positive
value at L = 0 and tends to 0 as L tends to ∞. Hence, (5) has unique solution.
So, we have a threshold strategy which is Nash equilibrium whenever the RHS
is bounded.

Part 2 -
For PL to be ESS, for all strategies P other than PL and for all x except maybe
on a set of measure zero, at least one of the following must hold,

(1) U(PL, x, PL) > U(P, x, PL)
(2) U(PL, x, PL) = U(P, x, PL) and U(PL, x, P ) > U(P, x, P )

Let PL be the threshold strategy we get in Part 1 which is Nash equilibrium.
Then we have, U(H,L, PL) = U(D,L, PL)

Also, as for x ≥ L, U(D,x, PL) = 1
2

∫ L

0
θ(y) dy and

U(H,x, PL) =
∫ x

0
θ(y) dy +

∫ ∞
x

θ(y)P (y)(−f(x, y − x)) dy , we have

U(H,x, PL) > U(H,L, PL) for x > L (Strict inequality because f is strictly
increasing)

So for x > L, we have

U(H,x, PL) > U(H,L, PL) = U(D,L, PL) = U(D,x, PL), which implies

U(PL, x, PL) > U(P, x, PL)

Similarly, we can also show the same for x < L. This proves that PL is also an
ESS as L is set of measure zero.
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Threshold equilibrium for general α: We now try to find if there exists a
threshold Nash equilibrium strategy for general α. We assume the probability
density function θ is differentiable and decreasing. We assume f is bounded and
decreasing in x. It is also reasonable to assume that f is concave in the variable
x (meaning δ2

δ2xf(x, y − x) ≤ 0 for all x).

Case 1 : x ≥ L

In this case, PL(x) = 1. For PL to be Nash equilibrium, we must have for any
other strategy P and for all x ≥ L, U(PL, x, PL) ≥ U(P, x, PL)

⇔ U(H,x, PL) ≥ P (x)U(H,x, PL) + (1 − P (x))U(D,x, PL)

⇔ (1 − P (x)) U(H,x, PL) ≥ (1 − P (x)) U(D,x, PL)

⇔ U(H,x, PL) ≥ U(D,x, PL)

⇔ ∫ ∞
x

θ(y)(−f(x, y − x)) dy +
∫ x

0
θ(y) dy ≥ α

∫ L

0
θ(y) dy

⇔ ∫ x

0
θ(y) dy ≥ α

∫ L

0
θ(y) +

∫ ∞
x

θ(y)f(x, y − x) dy

LHS of the above statement is increasing in x and as f is decreasing in x, RHS
is decreasing in x. So, it is sufficient that equation is satisfied for x = L.

∫ L

0

θ(y) dy ≥ α

∫ L

0

θ(y) +
∫ ∞

L

θ(y)f(L, y − L) dy

(1 − α)
∫ L

0

θ(y) dy ≥
∫ ∞

L

θ(y)f(L, y − L) dy (6)

Case 2 : x < L

In this case, PL(x) = 0. For PL to be Nash equilibrium, we must have for any
other strategy P and for all x ≤ L,

U(PL, x, PL) ≥ U(P, x, PL)

⇔ U(D,x, PL) ≥ P (x)U(H,x, PL) + (1 − P (x))U(D,x, PL)

⇔ P (x) U(D,x, PL) ≥ P (x) U(H,x, PL)

⇔ U(D,x, PL) ≥ U(H,x, PL)

⇔ α
∫ x

0
θ(y) dy + (1 − α)

∫ L

x
θ(y) dy ≥ ∫ ∞

L
θ(y)(−f(x, y − x)) dy +

∫ L

0
θ(y) dy

⇔ α

∫ L

0

θ(y) dy ≤ (2α − 1)
∫ x

0

θ(y) dy +
∫ ∞

L

θ(y)f(x, y − x) dy (7)



A Multitype Hawk and Dove Game 23

Let F (x) denote the RHS of (7). LHS is independent of x, so (7) holds for x < L
if and only if F (x) satisfies the inequality LHS ≤ min 0≤x≤L {F (x)}.

F (x) = (2α − 1)
∫ x

0
θ(y) +

∫ ∞
L

θ(y)f(x, y − x) dy

As θ is assumed differentiable, F is twice differentiable.

F ′(x) = (2α − 1)θ(x) +
∫ ∞

L
θ(y) δ

δxf(x, y − x) dy

F ′′(x) = (2α − 1)θ′(x) +
∫ ∞

L
θ(y) δ2

δ2xf(x, y − x) dy

As f is concave in x and θ is decreasing, F ′′(x) ≤ 0 ∀ x ≤ L

So, F takes minimum value either at 0 or L.

For this case, it is necessary and sufficient that (7) is satisfied by x = 0 and
x = L. These with (6) are the necessary and sufficient conditions for L to
Nash equilibrium threshold strategy. So, PL is Nash equilibrium if and only if
(1) α

∫ L

0
θ(y) dy = F (L) and (2) α

∫ L

0
θ(y) dy ≤ F (0).

So there exists a threshold strength L such that PL is Nash equilibrium if and
only if there exists L satisfying both above equations, which when rearranged
can be written as follows

(1 − α)
∫ L

0

θ(y) dy =
∫ ∞

L

θ(y)f(L, y − L) dy (8)

α ≤ 1
2

+

∫ ∞
L

θ(y)[f(0, y) − f(L, y − L)] dy

2
∫ L

0
θ(y) dy

(9)

As we can see, this proves that for α = 1, (8) cannot be satisfied, hence there is
no solution. For α ≤ 1

2 , there always exists a Nash equilibria threshold strength.
For 1

2 < α < 1, existence of a Nash equilibrium threshold strategy depends upon
whether the functions θ and f satisfy (9).

4 Other Equilibria

We would now try to find if there are other equlibria. For this section we shall
assume the function f to be only dependent on the difference between the indi-
vidual’s and the opponent’s strength levels (earlier f was dependent on the
difference in strength levels and individual’s strength level). We also assume
α = 1/2. Note that if at some strength level x, if the individual receives more
utility by playing Hawk (Dove) then it will play Hawk (Dove) with full proba-
bility in the equilibrium.

Hence, U(H,x, P ) > U(D,x, P ) ⇒ P (x) = 1 for P to be equilibrium strategy.
Similarly, U(H,x, P ) < U(D,x, P ) ⇒ P (x) = 0

Also, P (x) = 1 ⇒ U(H,x, P ) ≥ U(D,x, P ),
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P (x) = 0 ⇒ U(H,x, P ) ≤ U(D,x, P ),

0 < P (x) < 1 ⇒ U(H,x, P ) = U(D,x, P ) for P to be equilibrium strategy

Lemma: Any equilibrium strategy is monotone. Formally for an equilibrium
strategy P , for some x1, if U(H,x1, P ) > U(D,x1, P ), then P (x) = 1 ∀x ≥ x1,
for some x2, if U(H,x2, P ) < U(D,x2, P ), then P (x) = 0 ∀x ≤ x2.

Proof:

U(H,x, P ) =
∫ x

0
θ(y) dy +

∫ ∞
x

θ(y)P (y)(−f(y − x)) dy +
∫ ∞

x
θ(y)(1 − P (y)) dy

After simplifying, we get U(H,x, P ) = 1 − ∫ ∞
x

θ(y)P (y)(1 + f(y − x)) dy

f is increasing in y −x, so f is decreasing in x. So the quantity
∫ ∞

x
θ(y)P (y)(1+

f(y − x)) dy is decreasing in x. So, U(H,x, P ) is increasing in x.

U(D,x, P ) = (1/2)
∫ ∞
0

θ(y)(1 − P (y)) dy is independent of x. So, the quantity
U(H,x, P ) − U(D,x, P ) is increasing in x.

U(H,x1, P ) > U(D,x1, P ) → U(H,x1, P ) − U(D,x1, P ) > 0

For x ≥ x1, U(H,x, P ) − U(D,x, P ) ≥ U(H,x1, P ) − U(D,x1, P ) > 0 →
P (x) = 1.

By similar reasoning, second part also holds. This completes the proof of the
lemma.

Let AP = {x |U(H,x, P ) > U(D,x, P )}, BP = {x |U(H,x, P ) = U(D,x, P )},
CP = {x |U(H,x, P ) < U(D,x, P )}.

Because of our lemma in this section, every element in BP is greater than every
element in AP and less than every element in CP .

Let x1 = inf(BP ), x2 = sup(BP ). Clearly, x1 ≤ x2

So, we have P (x) = 0 ∀x < x1 and P (x) = 1 ∀x > x2

If x1 = x2, P (x) can take non trivial value (value greater than 0 and less than 1)
at the most one value (It may take nontrivial value at x1(= x2)). So the strategy
is a threshold strategy.

Now assume x1 < x2. For x1 < x < x2, 0 < P (x) < 1. So, we have
U(H,x, P ) = U(D,x, P ) on the whole interval (x1, x2). So, we can differenti-
ate and equate the two sides.

For x1 < x < x2, the utilities are
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U(H,x, P ) =
∫ x

0
θ(y) dy +

∫ x2

x
θ(y)(−f(y−x))P (y) dy +

∫ x2

x
θ(y)(1−P (y)) dy +∫ ∞

x2
θ(y)(−f(y − x)) dy

U(D,x, P ) = (1/2)
∫ x1

0
θ(y) dy + (1/2)

∫ x2

x1
θ(y)(1 − P (y)) dy

U(H,x, P ) = U(D,x, P )

⇔ ∫ x

0
θ(y) dy +

∫ x2

x
θ(y)(−f(y − x))P (y) dy +

∫ x2

x
θ(y)(1 − P (y)) dy +∫ ∞

x2
θ(y)(−f(y − x)) dy = (1/2)

∫ x1

0
θ(y) dy + (1/2)

∫ x2

x1
θ(y)(1 − P (y)) dy

⇔ ∫ x2

0
θ(y) dy − ∫ x2

x
θ(y)(1 + f(y − x))P (y) dy +

∫ ∞
x2

θ(y)(−f(y − x)) dy =
(1/2)

∫ x1

0
θ(y) dy + (1/2)

∫ x2

x1
θ(y)(1 − P (y)) dy

We have U(H,x, P ) = U(D,x, P ) on the whole interval (x1, x2). So, we can
differentiate (with respect to x) and equate the two sides. We get,

−(
∫ x2

x
θ(y) δ

δxf(y−x)P (y) dy)+θ(x)(1+f(0))P (x)−(
∫ ∞

x2
θ(y) δ

δxf(y−x) dy ) = 0

θ(x)(1 + f(0))P (x) =
∫ x2

x
θ(y) δ

δxf(y − x)P (y) dy + +
∫ ∞

x2
θ(y) δ

δxf(y − x) dy

Since f is increasing in (y −x), it is decreasing in x. So, the quantity δ
δxf(y −x)

is negative. Both the terms in the RHS are nonpositive, so RHS is nonpositive.
But LHS is nonnegative, so for this equation to satisfy we must have P (x) =
0 ∀x1 < x < x2. Contradiction, since x such that x1 < x < x2 belongs to BP ,
and hence P (x) > 0.

So, for x1 < x2, we do not have any solution. So, there does not exist any other
equilibrium strategy other than threshold strategy.

5 Price of Stability

In this section, we study the inefficiency caused in the objective function by
imposing the condition of Nash equilibrium for certain functions f . Objective
function here for us is the average utility of all the players. This inefficiency is
quantified by price of Stability. Formally it is defined as

Price of Stability (PoS) = maxP∈PeAU(P )
maxP∈PAU(P )

where AU(P ) is average utility when the whole population plays strategy P , P
is set of all strategies for the population, Pe is set of all equilibrium strategies
for the population. Thus, PoS is the ratio of best you can get using the Nash
equilibrium strategies and the overall best you can get. Note, PoS is always less
than or equal to 1. We shall find PoS for some density functions θ and cost func-
tions f . Apart from previous conditions on θ and f , we would generally put the
restrictions on f that f(x, 0) = 0 and fix a constant, say 1

2 , we would generally
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want for fixed x, f(x, y−x) tend to infinity or a constant at least 1
2 as y−x tend

to infinity. We shall now calculate PoS for some examples with the restrictions
defined.

Example 1. We consider the case where α = 1
2 . Let θ(y) = μe−μy and

f(x, y − x) = 1 − e−μ(y−x).

The value of threshold strength L can be calculated by solving the equation

1
2

∫ L

0
θ(y) dy =

∫ ∞
L

θ(y)f(L, y − L) dy

Solving, we get e−μL = 1
2 or L = 1

μ ln(2).

Thus, the utility for player with strength x < L is 1
2

∫ L

0
μe−μy dy =

1
2 (1 − e−μL) = 1

4

For x > L it is
∫ x

0
μe−μy dy − ∫ ∞

x
μ−μy (1 − e−μ(y−x)) dy = 1 − 3

2 e−μx

Average utility AU =
∫ L

0

μe−μx(
1
4
) dx +

∫ ∞

L

μe−μx(1 − 3
2

e−μx) dx

=
1
4

(1 − e−μL) + e−μL − (
3
2
) (

1
2
) e−2μL

=
1
4

(1 − 1
2
) +

1
2

− (
3
2
) (

1
2
)

1
4

=
7
16

As this is unique Nash equilibrium, it is best Nash equilibrium. It can be clearly
seen that when strategies are not restricted to Nash equilibrium, the average
payoff is maximized when all players play Dove, the average payoff in this case
is 1

2 . So, PoS for this game 7
8 .

Example 2. Consider the same α and θ, but f(x, y − x) = 1 − e−cμ(y−x) for
some constant > 0. By same calculations, we can check that

e−μL = c+1
3c+1 and AU = 1

2 − c(c+1)
2(3c+1)2 .

We cannot have c = 0 (in that case, f(x, y–x) = 0 which is not allowed), but any
c > 0 is allowed. As c ↓ 0, AU → 1

2 and so PoS → 1. So, for any small ε > 0,
we can create a game by choosing proper value of c such that PoS of this game
is 1 − ε.
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Example 3. Same α and θ, f(x, y − x) = ekμ(y−x) where k ≥ 0 is a constant.
We can find threshold strength only for k < 1. So, for k ≥ 1, there is no Nash
equilibrium strategy, so by definition, PoS is zero. For k < 1, we get e−μL = 1−k

3−k

and AU = 1
2 − 1−k

2(3−k)2 . As k ↑ 1, AU → 1
2 and so PoS → 1. So, again for any

small ε > 0, we can create a game by choosing proper value of k such that PoS
of this game is 1 − ε.
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Abstract. It is known that individuals in social networks tend to exhibit
homophily (a.k.a. assortative mixing) in their social ties, which implies
that they prefer bonding with others of their own kind. But what are
the reasons for this phenomenon? Is it that such relations are more con-
venient and easier to maintain? Or are there also some more tangible
benefits to be gained from this collective behaviour?

The current work takes a game-theoretic perspective on this phenom-
enon, and studies the conditions under which different assortative mixing
strategies lead to equilibrium in an evolving social network. We focus on
a biased preferential attachment model where the strategy of each group
(e.g., political or social minority) determines the level of bias of its mem-
bers toward other group members and non-members. Our first result is
that if the utility function that the group attempts to maximize is the
degree centrality of the group, interpreted as the sum of degrees of the
group members in the network, then the only strategy achieving Nash
equilibrium is a perfect homophily, which implies that cooperation with
other groups is harmful to this utility function. A second, and perhaps
more surprising, result is that if a reward for inter-group cooperation is
added to the utility function (e.g., externally enforced by an authority
as a regulation), then there are only two possible equilibria, namely, per-
fect homophily or perfect heterophily, and it is possible to characterize
their feasibility spaces. Interestingly, these results hold regardless of the
minority-majority ratio in the population.

We believe that these results, as well as the game-theoretic perspec-
tive presented herein, may contribute to a better understanding of the
forces that shape the groups and communities of our society.

Keywords: Social networks · Homophily · Game theory

1 Introduction

Homophily (lit. “love of the same”) [15], also known as assortative mixing [17], is
a prevalent and well documented phenomenon in social networks [16]; in making
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their social ties, people often prefer to connect with other individuals of simi-
lar characteristics, such as nationality, race, gender, age, religion, education or
profession.

Homophily has many important consequences, both on the structure of the
social network (e.g., the formation of communities) and on the behaviors and
opportunities of participants in it, for example on the welfare of individuals [12]
and on the diffusion patterns of information in the network [13]. It is therefore
interesting to explore the reasons for this phenomenon. Clearly, one natural
reason is that relationship with similar individuals may be more convenient and
easier to maintain. But are there also some more tangible benefits to be gained
from this collective behaviour of sub-populations in the network?

To better understand homophily, we take a different perspective on this phe-
nomenon and study it through a strategic, game-theoretic prism. We investi-
gate the conditions under which different assortative (and disassortative) mixing
strategies lead to equilibrium in an evolving social network game.

To model the network evolution, we use a variant of the classical preferen-
tial attachment model [4], which incorporates a heterogeneous population and
assortative mixing patterns for the sub-populations. This model, known as biased
preferential attachment (BPA) [3], maintains the “rich get richer” property, but
additionally enables different mixing patterns (including perfect homophily and
heterophily) between sub-populations, by using rejection sampling.

In this paper, we modify this model by turning it into a game. Each sub-
population is represented as a player who can choose its mixing pattern as a
strategy. The utility function (or payoff) of a player is a result of its popula-
tion’s (expected) properties in the BPA model. A strategy profile (describing the
strategies of both players) attains a Nash equilibrium for the game if no player
can do better by unilaterally changing its own strategy.

Obviously, the result of the game depends on the players’ utility functions. In
the current study we take an initial step and study two natural utility functions.
In the first, we consider the payoff to be the total power of the group, that is,
the sum of degrees of all group members. In this case we prove that there is a
unique stable Nash equilibrium which is the perfect homophily profile, namely,
cooperation with other groups is harmful to this utility function. We stress that
while there are other strategy profiles, like the unbiased profile, that guarantee
the same total power to the groups, those profiles do not yield Nash equilibrium.

Since perfect homophily results in complete segregation of the sub-
populations, we consider a second utility function based on a linear combina-
tion between the total power of the group and the number of cross-population
links (i.e., the size of the population cut). In particular, the utility is taken to
be γ times the total power of the group plus 1 − γ times the population cut
size, for some weight factor 0 ≤ γ ≤ 1. Such a utility can be viewed as a rule
(or a law) imposed by a regulator to encourage cooperation between the two
sub-populations. At a first glance, this utility seems to lead to different Nash
equilibria for different γ values. Somewhat surprisingly, we show that only two
possible equilibria may emerge. For γ > 1/2, the perfect homophily profile is
the unique Nash equilibrium, and for γ < 1/2, the heterophily profile is the
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(a) πH - homophily (b) πT - heterophily (c) πU - unbiased

Fig. 1. Examples of the Biased Preferential Attachment (BPA) model with various
parameter settings. All examples depict a 200-vertex bi-populated network generated
by our BPA model starting from a single edge connecting a blue and a red vertex and
30% red nodes (with vertex size proportional to its degree). (Color figure online)

unique Nash equilibrium. For γ = 1/2, both profiles yield a Nash equilibrium,
but only the perfect homophily yields a stable equilibrium. (Note, by the way,
that all our results are independent of the ratio r between the sizes of the two
sub-populations.)

What may we learn from these results? A first, quite intuitive, lesson is that if
the payoff includes benefits for heterophilic edges, then the game can move away
from the perfect homophily equilibrium. But, within the natural utility function
we study, if the game moves away from the homophily equilibrium, then it must
reach a perfect heterophily equilibrium. Both of these equilibria may appear to
be too “radical” from a social capital perspective, which may find it desirable to
maintain some balance in-between the two extremes, i.e., preserve the internal
structure of both sub-populations as well as form significant cross-population
links between the two sub-populations. This leaves us with some interesting
follow-up research directions: what ‘mechanism design’ rules can a regulator
employ in order to have a more fine-grained control on the equilibrium? what
happens in a system with more than two sub-populations? how do the equilibria
behave? We leave these questions for future work; we believe that taking the
game theoretic perspective on evolving social network models for heterogenous
populations is an important tool in understanding homophily, as shown in this
initial model.

Due to space limitations, we provide only an outline of our proofs. The inter-
ested reader is referred to [2] for details.

2 Related Work

Game theory provides a natural framework for modeling selfish interests and the
networks they generate [1,18]. While many studies (see [11] for a comprehensive
survey) focus on local network formation games, others (e.g., [7]) model the
players as making global structural decisions. In this paper we define a game
that features a mixture of both local and global characteristics. This situation is
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close to cooperative games [5], where all the nodes of the same group have the
same payment. However, the key idea of cooperative games is to choose which
coalitions to form, whereas here the partition into groups is predefined.

In this context, one should distinguish between network formation games
[11,14,18] and evolving network games (e.g., [6]). The former involve a fixed set
of nodes, with the connections between them changing over time. In contrast, in
the evolving network model used herein, the nodes and edges are both dynamic,
and new nodes join the network as it evolves over time.

Based on the assumption that people have tendency to copy the decisions
of other people, we suggest a network construction process that follows the well
known preferential attachment model [4] with an additional phase to incorporate
the mixing parameter [3]. However, related studies in the economics literature
examine different procedures to model the social network formation. The studies
of [8,10] assume that individuals are randomly paired with other members of the
population and then match assortatively. Another model, presented at [6], sug-
gests two-phase attachments. The nodes first choose their neighbors with a bias
towards their own type and then make an unbiased choice of neighbors from among
the neighbors of their biased neighbors. While the models of [10,14] and others
assume that a connecting edge between a pair of nodes is fixed by using bilateral
agreement, in our model the matching choice is somewhat ambiguous. The rejec-
tion of a proposed connection can be interpreted as either decided by one of the
parties unilaterally or accepted by a bilateral agreement.

One of the main themes of this paper is studying the homophily phenom-
enon and its influence on minority-majority groups. McPherson et al. [16] give an
overview of research on homophily and survey a variety of properties and how they
lead to particular patterns in bonding. While some studies (e.g., [3,8,9]) model
homophily as ranging over a spectrum between perfect homophily and unbiased
society, we have followed [6,10], which also allow disassortative matching.

Currarini, Jackson and Pin [8] examine friendship patterns in a representa-
tive sample of U.S. high schools and build a model of friendship formation based
on empirical data. They report that all groups are biased towards same-type
friendship relative to demographics, but different homophilic patterns emerge
as a function of the group size; while homophily is essentially absent for groups
that comprise very small or very large fractions of their school, it is significant
for groups that comprise a middle-ranged fraction. In [10] it is also claimed that
the majority group has greater tendency to homophily. In contrast, we have
presented independence between the size of the group and the mixing pattern.
Namely, the majority-minority parameter r does not influence the attained equi-
libria. This inconsistency can be explained by the different construction of the
network ([8,10] assume random matching with biased agreement as mentioned
above), or perhaps by the simplicity of our model and the fact that it involves
only two groups.
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3 Network and Game Model

Our network model is an extension of the bi-populated biased preferential attach-
ment (BPA) model [3]. We use this model as the basis to an evolving heteroge-
neous network game. We start by describing the network model.

3.1 Biased Preferential Attachment Model

The biased preferential attachment model1 (BPA) [3] is a bi-populated prefer-
ential attachment model obtained by applying the classical preferential attach-
ment model [4] to a bi-populated minority-majority network augmented with
homophily.

Definition 1 (BPA Model, BPA(n, r, π)). The model describes a bi-
populated random evolving network with red and blue vertices, where n is the
total number of nodes, r is the arrival rate of the red vertices and π is the mixing
matrix. Denote the social network at time t by Gt = (Vt, Et), where Vt and Et,
respectively, are the sets of vertices and edges in the network at time t, and
let dt(v) denote the degree of vertex v at time t. The process starts with an
arbitrary initial bi-populated (red-blue) connected network G0 with n0 vertices
and m0 edges. For simplicity we hereafter assume that G0 consists of one blue
and one red vertex connected by an edge, but this assumption can be removed.
This initial network evolves in n time steps as follows. In every time step t, a
new vertex v enters the network. The arrival rate of the red nodes is denoted
by 0 < r < 1, i.e., the new vertex v is red with probability r and blue with
probability 1 − r.

In the first stage, v selects a tentative neighbor u at random by preferential
attachment, i.e., with probability proportional to u’s degree at time t,

P[u is chosen] = dt(u)/
∑

w∈Vt

dt(w).

The second stage employs a 2 × 2 stochastic mixing matrix, π, composed of the
stochastic homophily vectors of each player, πR, πB, i.e.,

π =
(

πR

πB

)
=

(
ρR 1 − ρR

1 − ρB ρB

)
.

Letting x ∈ {R, B} be v’s color, the edge (v, u) is inserted into the graph with
probability ρx when u’s color is also x. If the colors differ, then the edge is
inserted with probability 1 − ρx. If the edge is rejected (i.e., is not inserted into
the graph), then the two-stage procedure is restarted. This process is repeated
until some edge {v, u} has been inserted. Thus in each time step, one new vertex
and one new edge are added to the existing graph.

1 In fact, here we extend the model of [3] to allow heterophily.
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Note that the mixing matrix π describes the degree of segregation (incor-
porated by using rejection sampling) of the system. In particular, using the

perfect homophily matrix πH =
(
HR
HB

)
=

(
1 0
0 1

)
, all added edges connect ver-

tex pairs of the same color. At the other extreme, using the perfect heterophily

matrix πT =
(
TR
TB

)
=

(
0 1
1 0

)
, all added edges connect vertex pairs with differ-

ent color. Similarly, using the unbiased strategy matrix πU =
(
UR
UB

)
=

(
.5 .5
.5 .5

)
,

edges are connected independently of the node colors. For intermediate values
0 < ρR, ρB < 1, the players show a tendency to favor one kind of interaction
over another. When ρR, ρB > 0.5, the players tend to be homophilic, and when
ρR, ρB < 0.5, the players tend to be heterophilic. Figure 1 presents three exam-
ples of parameter settings for the BPA model on a 200-vertex bi-populated social
network with r = 0.3 (30% red nodes), using πH, πT and πU.

3.2 Evolving Heterogeneous Network Games

We now define the evolving heterogeneous EH (t, r, π, γ) network game (EH game,
for short) between the two sub-populations. The game is played between two
players, the red player R and the blue player B. (Note that we occasionally
use R and B to denote either the color, the corresponding set of nodes, or the
corresponding player. The exact meaning will be clear from the context.)

Assume r and G0 are given to the players. Each player X ∈ {R, B} can now
choose its strategy vector as a mixing vector πX in the mixing matrix π. Then the
network evolves according the biased preferential attachment model BPA(t, r, π).

Let nt(R) and nt(B), respectively, denote the number of red and blue nodes
at time t > 0, where nt = nt(R) + nt(B) = n0 + t. Denote by dt(R) (respectively,
dt(B)) the sum of degrees of the red (resp., blue) vertices present in the system
at time t ≥ 0. Altogether, the number of edges in the network at time t is
mt = m0 + t, where dt(R) + dt(B) = 2mt.

Let C(Gt) denote the cut of the graph Gt defined by the red-blue partition of
Vt, i.e., the set of edges that have one endpoint in R and the other in B. Formally,

C(Gt) = {(u, v) ∈ Et | u ∈ R, v ∈ B} .

Let φ(Gt) = |C(Gt)| denote the size of the cut.
In our game, the payoff of each player is a combination of two quantities:

the total power of its sub-population (namely, its expected sum of degrees),
and the expected cut size φ(G). Observe that these quantities pull in opposite
directions, hence they are balanced using a parameter 0 ≤ γ ≤ 1 that will serve
as a weighting factor for the utility function of the game. The parameter γ can
be viewed as set by a regulator to enforce cooperation between sub-populations.
Formally, the payoffs (utilities) of the players R and B at time t are
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Uγ
t (R) = γ

dt(R)
dt

+ (1 − γ)
φt

2mt
=

1
dt

(
γdt(R) + (1 − γ)φt

)
,

Uγ
t (B) = γ

dt(B)
dt

+ (1 − γ)
φt

2mt
=

1
dt

(
γdt(B) + (1 − γ)φt

)
.

A strategy profile π is a Nash equilibrium for the game EH (t, r, π, γ) if no
player X ∈ {R, B} can do better by unilaterally changing its own strategy πX. A
Nash equilibrium for the game EH (t, r, π, γ) is stable if a small change in π for
one player leads to a situation where two conditions hold: (i) the player who did
not change has no better strategy in the new circumstance, and (ii) the player
who did change is now playing with a strictly worse strategy. If both conditions
are met, then the player who changed its π will return immediately to the Nash
equilibrium, hence the equilibrium is stable. If condition (i) does not hold (but
condition (ii) does), then the equilibrium is unstable.

4 Degree Maximization Game

Before studying the behavior of the general evolving heterogeneous network
game, let us consider the solution of the game in the basic case where γ = 1 for
every t, i.e., each player’s utility depends only on the expected sum of degrees.

An urn process. The biased preferential attachment BPA(n, r, π) process can
also be interpreted as a Polya’s urn process, where each new edge added to the
graph corresponds to two new balls added to the urn, one for each endpoint,
and the balls are colored by the color of the corresponding vertices. In this
interpretation, a time step of the original evolving network process corresponds
to the arrival of a new ball x (which is red with probability r and blue with
probability 1 − r), and in the ensuing procedure, we choose an existing ball
y from the urn uniformly at random; now, if x is of the same (respectively,
different) color x ∈ R, B as y, then with probability ρx (resp., 1 − ρx) we add to
the urn both x and a second copy of y (corresponding to the two endpoints of
the added edge), and with probability 1 − ρx (resp., ρx) we reject the choice of
y and repeat the experiment, i.e., choose another existing ball y′ from the urn
uniformly at random. This is repeated until the choice of y is not rejected. Hence
the arrival of each new ball x results in the addition of exactly two new balls to
the urn, namely, x and a copy of some existing ball y.

The key observation is that to analyze the expected fraction of the red balls
in the urn at time t, there is no need to keep track of the degrees of individual
vertices in the corresponding process of evolving network; the sum of degrees of
all red vertices, dt(R), is exactly the number of red balls in the urn. Noting that
exactly two balls join the system in each time step, we have

dt(R) + dt(B) = dt = 2t + n0 = 2(t + 1).

Note that while dt(R) and dt(B) are random variables, dt is not.

Convergence of expectations. Let αt = dt(R)/dt be a random variable denot-
ing the fraction of red balls in the system at time t. Given the mixing matrix π,
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we claim that the process will converge to a ratio of α red balls in the system
(as a function of π). More formally, we claim that, regardless of the starting
condition, there exists a limit α = limt→∞ E[αt].

Lemma 1. E [αt+1 | αt] = αt +
F (αt) − αt

t + 2
, where

F (x) =
1
2

(
1 +

ρB(−1 + r)(−1 + α)
−α + ρB(−1 + 2α)

+
rρRα

1 − α + ρR(−1 + 2α)

)
.

Lemma 2. The function F (x) has the following properties:

1. F (x) is monotonically increasing.
2. F (x) has exactly one fixed point, α ∈ [0, 1].
3. The image of the unit interval by F (x) is contained in the unit interval:

F ([0, 1]) =
[

r
2 , 1+r

2

] ⊂ [0, 1].
4. If x < α then x < F (x) < α and if x > α then x > F (x) > α.

Assume w.l.o.g. that αt < α. By Lemma 2 αt < F (αt) < α, so by Lemma 1
αt < E [αt+1 | αt] < α. Taking expectations, we get that E[αt] < E[αt+1] <
E[α] = α. We have thus shown that the expected value of αt converges to the
fixed point α of F (x). We have thus established the following.

Theorem 1. Given the rate r of red nodes and the mixing matrix π, for any
initial graph, as t tends to infinity, the expected fraction of red balls, E[αt],
converges to the unique real α ∈ (0, 1) satisfying the equation F (α) = α, or

2α = 1 +
ρB(−1 + r)(−1 + α)
−α + ρB(−1 + 2α)

+
rρRα

1 − α + ρR(−1 + 2α)
.

Hence the limit α is the solution of the cubic equation

(2 − 4ρB − 4ρR + 8ρBρR)α3 + (−3 + 7ρB + ρBr + 4ρR − 10ρBρR + rρR − 4ρBrρR)α2

+ (1 − 3ρB − 2ρBr − ρR + 3ρBρR + 4ρBrρR)α + ρBr − ρBrρR = 0.

Note that this limit is independent of the initial values d0 and α0 of the system.

Existence of a Nash Equilibrium. Having shown that for any given strategy
profile π the expected fraction of red node degrees converges to α, we examine
the influence of the different strategies on the utility functions.

Lemma 3. The limit α and E[αt] are monotone in the mixing matrix entries,
i.e., both increase with increasing ρR and decrease with increasing ρB.

Given the utility functions U1
t (R) = dt(R) and U1

t (B) = dt(B), each player can
choose its row in the mixing matrix π. By Theorem 1 we get that U1

t→∞(R) = dtα
and U1

t→∞(B) = dt(1 − α). Lemma 3 implies that the red and blue players
maximize their utility by increasing ρR and ρB, respectively. Hence, the homophily
strategy profile πH is strictly dominant for both players. The same applies for
t < ∞.

Theorem 2. The homophily strategy profile πH is a unique Nash equilibrium for
the game EH (t, r, π, γ = 1).
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5 Utilitiy Maximization Game

The evolving heterogeneous network game EH (t, r, π, γ) for a bi-populated net-
work consists of two contrasting ingredients, the expected sum of degrees d(·)
and the cut size φ(G). The following theorem expresses the impact of these forces
on the system as a function of the weighting factor γ.

Theorem 3. Consider the evolving network game EH (t, r, π, γ) for 0 < r < 1.

1. For γ > 1/2, the homophily strategy profile πH is a unique Nash equilibrium.
2. For γ < 1/2, the heterophily strategy profile πT is a unique Nash equilibrium.
3. For γ = 1/2, the only two Nash equilibria are πH and πT. The homophily

strategy profile πH is a stable Nash equilibrium, while the heterophily strategy
profile πT is an unstable Nash equilibrium.

Sketch of proof. Given that the new vertex at time t + 1 is blue, the probability
PBB that it attaches to a blue vertex satisfies

PBB(αt) = (1 − αt)ρB + αtρBPBB(αt) + (1 − αt)ρBPBB(αt),

hence PBB(αt) = ρB−ρBαt

ρB+αt−2ρBαt
. Similarly, when the new vertex at time t+1 is red,

the probability that it attaches to a red vertex is PRR(αt) = ρRαt

1−αt+ρR(1−2αt)
.

Let Nt(x) and Mt(x) be random variables denoting, respectively, the number of
new red balls and cut edges at time t. We have dt(R) = d0(R) +

∑t
i=1 Nt(αi−1)

and φ(Gt) = φ(G0) +
∑t

i=1 Mi(αi−1). Define the potential function of the red
player, denoted ΔR, as the expected increment of its utility at step t. Then

ΔR = E
[
Uγ

t+1(R) − Uγ
t (R) | α

]
= E [γNt+1(α) + (1 − γ)Mt+1(α)]

= γ(1 − (1 − r)PBB(α) + rPRR(α)) + (1 − γ)(1 − ((1 − r)PBB(α) + rPRR(α)))
= 1 − (1 − r)PBB(α) + r(2γ − 1)PRR(α).

Similar considerations imply that the potential function of the blue player is

ΔB = 1 − rPRR(α) + (1 − r)(2γ − 1)PBB(α).

The theorem follows by inspecting the value of the potential functions ΔR and
ΔB for every γ and using Lemma 3 (for the monotonicity of PRR(α) and PBB(α)
with the entries of the mixing matrix). ��

6 Discussion

This work investigates the assortative mixing phenomenon using a game theory
perspective. Given some predefined rules related to the probability of connect-
ing to other node, each player is allowed to determine its strategy in order to
maximize its payoff. First we used a utility function that captures degree cen-
trality, and showed that the expected sum of degrees and its limit are monoton-
ically increasing with the homophily tendency. This directly implies that the
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homophily strategy is the unique Nash equilibrium. In this context, it will be
interesting to use different centrality measures (such as PageRank, betweenness,
etc.) and examine their influence on the equilibria. Next we enhanced the utility
function to give positive payoff for both the degree and the cut. The results we
have presented show a phase transition in the strategy as a function the weight
γ. A small fluctuation in γ might cause extreme changes in the preference of
the players, i.e., from perfect homophily to perfect heterophily (or vice versa);
the intermediate strategies are never in equilibrium. This result is independent
of the fraction of the sub-population size in the population. Generalizing the
model to more than two sub-populations or reformulating the utility function
may shape the strategy function differently.

An interesting outcome of the above is the possibility that setting a rule (or
a law) by a regulator to encourage cooperation between the two sub-populations
will play as a remedial strategy to achieve equal opportunities. This observation
is remarkable since, in contrast to the usual affirmative action approach, this
attitude does not discriminate any individual, but at the same time, it promises
a fair representation of the different sub-populations and even a way for breaking
the glass ceiling [3] that some minority sub-populations suffer from. We leave
this direction for further work.
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Abstract. We study network selection games in wireless networks. Each
client selects a base station to maximize her throughput. We utilize a
model which incorporates client priority weight and her physical rate on
individual Base Stations. The network selection behavior considered is
atomic, implying that a client connects to exactly one Base Station.

We formulate a non-cooperative game and study its convergence to a
pure Nash equilibrium, if it exists, or prove non-existence otherwise, and
present algorithms to discover pure Nash equilibrium for multiple cases.

1 Introduction

Enhancements in wireless connectivity involve the ability to choose the best
available network connection. This is evident in recently put forth proposals and
implementations, where a wireless device selects the provider (base station) and
type of access (Wi-Fi, WiMax or GPRS schemes, femto etc.) which permits the
best speed or rate, on the basis of location and availability (Google Fi services
is an example). Moreover, priority weights, ensuring individual user priorities
according to fixed agreements, are being increasingly suggested by providers.
These priority agreements would serve to provide Quality of Service (QoS).

Throughput analysis of accessing heterogeneous radio technologies has been
studied in [1–4] where clients utilize information from the access networks
(termed RAT or RAN) to determine the choice of network access points (also
referred to as Base stations). The standard approach is to consider the clients
to be autonomous agents. Alternately, rules can be imposed on the RAN clients
to regulate traffic.

The key decision for users in such a model is the selection of the network
access point. The system of autonomous agents competing for a limited set of
resources gives rise to a congestion game. Such a system leads to the formation
of a complex system model where a user (client) would select, based on priority
weights, a provider’s base station and an instantaneous PHY rate provided by the
base station, as has been utilized in [4], depending on current physical conditions
like base station load, location or even radio bandwidth congestion. All such
factors would determine the throughput that a client would be able to obtain
on a base station.

Every client seeks to maximize her own total throughput without regard for
how other clients are affected by her actions and thus, we formulate a game
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
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where each client behaves selfishly to maximize her throughput. Such a game-
theoretic model has previously been studied also in [3,4]. Additional throughput
or utility models can be found in the survey paper [1]. We term the above model
as an atomic throughput game, also termed as a RAN selection game in previous
papers. These previous papers leave a number of unresolved issues regarding the
existence of pure Nash equilibrium (interchangeably, for simplicity, referred to
as Nash equilibrium in this paper) in the defined games.

The RAN selection game falls into the class of congestion games. Atomic
congestion games with a cost function dependent on the number of clients occu-
pying a resource were first studied in [5] with consequent work on client specific
utilities in [6]. The computational complexity of determining Nash equilibrium in
these games was studied in [7], where they showed that atomic congestion games
with arbitrary cost functions are PLS-Complete. Wireless congestion games and
cost network specific cost functions have been studied in [2,8,9]. Unlike the prior
studies, the model in [3,4] utilizes the throughput itself as a metric of perfor-
mance. Additional game theoretic models using evolutionary games [10,11] have
been studied but are not relevant as these models correspond to non-atomic
versions of the game with large number of users, each with infinitesimal impact.

In this paper we consider the RAN selection game:

– We first show that pure Nash equilibrium does not always exist for the RAN
selection game with non-uniform weights and rates, implying that the system
might not stabilize at all. This resolves a question left unanswered in [3,4]
where Aryafar et al. alluded to such a result. Resolving the existence and
complexity of Nash equilibrium is considered important as it characterizes
the convergence towards stability of such autonomous systems. We consider
interesting practical cases and prove that pure Nash Equilibrium always exists
if the user has uniform or identical priorities over all base stations. We pro-
vide an ε-approximate Nash Equilibrium algorithm which runs in polynomial
time in this case, as well as a polynomial algorithm to compute pure Nash
equilibrium when, additionally, rates are uniform.

– We consider priority regulated games, where priority can be used to regulate the
throughput rate and disprove a conjecture from [4] which states that a Nash
Equilibrium always exists in games where the priority weights is a polynomial
function of the rates. On the positive side, we provide a simple fairness rule that
ensures convergence to a solution which is stable, i.e. no further improvements
are possible. This stable point may not be a Nash equilibrium of the original
strategy space but the system is stable under the rule.

1.1 Network Model

The wireless selection problem has a set of clients P accessing a set of wireless
access points, which we refer to as Base Stations, K. The base stations represent
the range of wireless access points, Wi-Fi and GPRS etc. Each client accesses
a base station and negotiates a rate of access. The wireless selection problem is
that of scheduling clients to base stations to optimize throughput. We represent
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the wireless selection problem by a network model where the underlying graph
is a bipartite graph represented by G = (P,K,E). The clients are represented
by one (independent) vertex set P and the set of Base Stations (BS), K, the
second (independent) vertex set. The set of edges E represents the base sta-
tions available between the clients in the set P and the base stations. An edge
e = (i, k), i ∈ P, k ∈ K exists if and only if the client i can access base station k.
Each client i is characterized by two parameters, the weight φi,k that provides
her a priority on a base station k ∈ K and the PHY rate Ri,k that she can obtain
on that base station k. The throughput that the clients acquire from the base
station k is dependent on the other clients that utilize the base station.

Throughput Model. The throughput model we use is based on the model in [3,4]
that defines the throughput client i obtains on base station k as

ωi,k =
φi,k

∑
j∈s(k)

φj ,k
Rj ,k

where s(k) is the set of clients that are currently accessing base station k.
Since each client has an independent choice of scheduling her traffic on the

available base stations, the rational autonomous decisions of the client can be
modeled by a game:

A Throughput Game is denoted by TG(P,K, φ,R) where P are the clients
(clients) in the game, K is the set of base stations, φ : P × K → R

+ is a
function representing the priorities (weights) of clients on the base stations K,
R : P × K → R

+ is a function representing the rates the clients have obtained
on the base stations. In a throughput game, a client selects one base station
to transfer data, and given the selection of the other clients, selfishly selects
the base station on which she receives maximum throughput. We also consider
restricted models defined below:

1. Different types of traffic require a priority that is dictated by their type,
e.g., video traffic requires a certain priority level, and do not depend on the
base stations, leading to Uniform Priority Throughput games, denoted
by TGP (P,K, φ,R), where the priority levels are independent of the base
stations, i.e. φi,k = φi,k′ = φi,∀k, k′.

2. Furthermore, devices may only be able to communicate at a particular rate,
leading to Uniform Rate Throughput games, denoted by TGR(P,K, φ,
R), where the rates achieved by a client i is independent of the base stations,
i.e. Ri,k = Ri,k′ = Ri,∀k, k′.

We define the Load on a base station k, when a set s(k) of clients are scheduled
on base station k, to be Gs(k) =

∑
j∈s(k)

φj,k

Rj,k
where the contribution of a client

j to the load is φj,k

Rj,k
. Note that when i is the only client on a base station k, she

gets throughput ωi,k = Ri,k.
A pure Nash equlibrium is defined as an assignment of clients to base stations

such that no client can unilaterally improve her throughput by switching to a
different base station.
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2 Nash Equilibrium in Throughput Games

We first resolve the question of existence of Nash equilibrium in throughput
games, left unanswered in [4].

Theorem 1. There exists a throughput game, TG(P,K, φ,R), for which there
is no pure Nash equilibrium.

Proof. In order to determine an example for a game, a Monte Carlo algorithm
was used to generate the base station rates and priorities. In a game involving
3 clients and 3 base stations, the following values of φ and R present a scenario
such that no configuration of assignments result in any client being satisfied on
the base station she occupies. The matrix Φ represents the priorities φi,k and
the matrix R represents the rates Ri,k.

Φ =

⎡

⎢
⎢
⎣

L1 L2 L3

P1 9.8 1.6 5.1
P2 8.1 0.2 8.6
P3 4.6 3.9 8.8

⎤

⎥
⎥
⎦ R =

⎡

⎢
⎢
⎣

L1 L2 L3

P1 98.3 80.8 12.6
P2 27.6 32.6 21.2
P3 65.8 14.9 9.8

⎤

⎥
⎥
⎦

Any configuration in this instance results in cycling. To illustrate one such cycle,
consider an initial configuration (2, 1, 1) denoting that client 1 is on link 2, client
2 is on link 1 and client 3 is on link 1. Client 3 can obtain a higher throughput
than what she already has by moving from link 1 to link 2, and does so. The
configuration is thus (2, 1, 2), following which, Client 1 then switches to link 1 to
obtain a higher throughput, yielding the configuration (1, 1, 2). The configuration
keeps changing and eventually cycles back to a previous state. The cycle is shown
in Fig. 1.

Fig. 1. Client cycling in a throughput game where Nash equilibrium does not exist

2.1 Nash Equilibrium in Uniform Priority Throughput Games

Since we have shown that a Nash equilibrium may not always exist in throughput
games, we study its existence in Uniform Priority Throughput Games.

Theorem 2. Every instance of a Uniform Priority Throughput game,
TGU (P,K, φ,R) (where φik = φil = φi), has a pure Nash equilibrium.
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Proof. Given an assignment of clients to base stations, characterized by speci-
fying s(k), the set of clients on base station k, we first establish an inequality,
which provides a condition under which a client switches to another base station.
Consider a client i who chooses to make a move from k to k′ to get a higher
throughput. For this move to occur, we must have

φi
∑

j∈s(k′)
φj

Rj ,k′ + φi

Ri,k′
>

φi
∑

j∈s(k)
φj

Rj ,k

(1)

The load on base station k is
∑

j∈k
φj

Rj ,k = Gs(k), as defined in the network
model. Inequality (1) then becomes

Gs(k′) +
φi

Ri,k′
< Gs(k) or equivalently, Gs′(k′) < Gs(k) (2)

where Gs′(k′) = Gs(k′) + φi

Ri,k′ is the load of base station k after i moves.
This expresses the fact that when client i moves from base station k to k′ to

increase her throughput, the load on base station k′ after the move must be less
than the pre-move load of k, otherwise client i would have had no incentive to
move.

We then consider a vector L = {{Gs(k1), · · · , Gs(k), Gs(k′), · · · , Gs(kK)} s.t.
{Gs(k1) > · · · > Gs(k) > Gs(k′) > · · · > Gs(kK)}}, i.e., k1 is the base station with
the highest load and kK is the base station with the smallest load. Our claim
is that the load vector L, which is the sorted loads of base stations, decreases
(in lexicographic ordering) for every move that client i makes to increase her
throughput. We prove our claim below:

We define the position (increasing from left to right) of the load of a base
station k in a load vector L by πL(k). Let L be the load vector before client i
moves and L′ be the load vector after i has moved. Note that πL(k) ≤ πL′(k).
There are two cases:

1. πL′(k) < πL′(k′): Since Gs′(k) < Gs(k), the lexicographic value of L′ will be
less than L.

2. πL′(k′) < πL′(k): Since Gs′(k′) < Gs(k) from inequality (2), the lexicographic
value of L′ will be less than L.

Each of the cases indicate that the vector L will lexicographically decrease
for every move that improves the throughput of a client. To show that the
minimum load on each base station is lower bounded by a positive value, let
φmin = mini∈P φi and Rmax = maxi∈P,k∈K Ri,k. The minimum load on each
base station, which is occupied by at least one client, is then at least φmin

Rmax
.

Therefore, the uniform throughput priority game will always converge to a pure
Nash equilibrium.

2.2 ε-Approximate Nash Equilibrium for Uniform Priority Models

Based on the proof of Theorem 2, we observe that Nash equilibrium can be
determined by allowing clients to improve their throughput by switching base
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stations. The number of improvement steps of the lexicographic ordering in vec-

tor L is upper bounded by O
(
|P | ×

∑
i∈P,k∈K

φi
Ri,k

δ

)
, where δ is the minimum

change in lexicographic value caused by a switch. When the values of φij and
Rij are integers, δ ≥ 1

R2
max

. Similar bounds can be established for rationals.
Finding a polynomial time algorithm for determining Nash equilibrium appears
difficult. Therefore, we specialize certain parameters to obtain faster algorithms
for achieving a near-Nash equilibrium state.

We first define an ε-approximate Nash equilibrium: A throughput game
is at an ε-approximate Nash equilibrium if for every client, a switch to another
base station improves her throughput by a factor of at most (1 + ε).

Algorithm 1. Finding ε-approximate Nash equilibrium in TGP (P,K, φ,R)
1: Start with any random assignment of clients, where the set of clients on base station

k is given by s(k), ∀k.
2: while ∃ clients who can improve their throughput by a factor of (1+ε) by switching

to another base station do
3: Select client i s.t. (i, k′

i) = argmin(i,k′(i))(Gs′(ki) +Gs′(k′
i)
+
∑

k∈K,k �=ki,k′
i
Gs(k))

where i is assigned to ki and moves to k′
i, and s′(k) denotes the set of clients on

k after the movement of i.
4: Move i from ki to k′

i.
5: end while

Theorem 3. Given an instance of a Uniform Priority Throughput Game, Algo-
rithm 1 finds a ε-approximate Nash equilibrium in time O(t × P × K), where
t = log1+ε

Rmax
φmin

+log1+ε

∑
i∈P ( φ

R )imax is the upper bound on the number of steps
a client moves, where ( φ

R )imax = maxk,k′∈K
φk

Rk′ .

Proof. We have already established that a switch implies a lexicographic decrease
of vector L, as shown in Theorem 2, and therefore, assured that the approximate
Nash equilibrium is achieved by the algorithm.

To calculate the time complexity, we provide an upper bound t on the number
of times a client would have to switch to reach her final choice of base station.
Since a client i can only move if she gains a factor of (1 + ε) on her current
throughput, t can be calculated by comparing the lower bound and upper bound,
termed ωimin and ωimax , respectively, on her possible throughput.

We obtain the value of ωimax for a client i by placing her alone on the
base station where she has the maximum PHY rate Rmax = maxi∈P,k∈K Ri,k,
since the load on the base station increases as soon as she shares a base sta-
tion with another client. Therefore, ωimax = Rmax. Similarly, we get ωimin

by placing the client with the minimum φi (φmin) with all the other clients
in the game, and then by selecting the maximum load contribution of each
client, ( φ

R )imax = maxk∈K( φi

Ri,k
), giving a total load of

∑
i∈P ( φ

R )imax . Therefore,



46 M. Hota and S. Kapoor

ωimin
= φmin∑

i∈P ( φ
R )imax

. We then obtain the bound on t by using the fact that

when the algorithm terminates, the maximum throughput is at most ωimax

ωimin
.

Therefore, (1+ε)t ≤ ωimax

ωimin
, which implies t ≤ log1+ε

Rmax
φmin

+log1+ε

∑
i∈P ( φ

R )imax

which then leads to our result.

2.3 Finding Equilibrium in Uniform Priority-and-Rate Games

While a Nash equilibrium is not easily (in polynomial time) found in Uniform
Priority games, we show that by altering the uniform priority game to include
uniform rates, denoted by TGP,R(P,K, φ,R), a Nash equilibrium can be discov-
ered by a polynomial time algorithm.

Algorithm 2. Finding a Pure Nash equilibrium in TGP,R(P,K, φ,R)

1: Sort clients in non-increasing order of φi
Ri

2: for Client i = 1 · · · |P | do
3: ki = argmink∈K(Gs(k) +

φi
Ri

)
4: Assign client i to base station ki.
5: end for

Theorem 4. Given an instance of a Uniform Priority-and-Rate Throughput
game TGP,R(P,K, φ,R), Algorithm 2 correctly finds a pure Nash equilibrium in
time O(|P |(|K| + log|P |)).
Proof. The algorithm assigns a new client to a base station and ensures that the
client gets maximum throughput, given the current system configuration. For
our algorithm to be correct, an addition of a new client to the system should
not induce any moves.

First, we use contradiction to show that after addition of a new client to a
base station, other clients from that base station do not have an incentive to
move to other links. Let Gs(k) and Gs(k′) be the loads of base stations k and k′

respectively before either client i or i′ have been introduced. Suppose that on
addition of the ith client to base station k, client i′ wants to switch from using
base station k to k′, implying inequality (3),

φi′

Gs(k) + φi

Ri
+ φi′

Ri′

<
φi′

Gs(k′) + φi′
R′

i

⇒ Gs(k′) < Gs(k) +
φi

Ri
(3)

and from the fact that client i was previously assigned to base station k, we have
inequality (4)

φi

Gs(k) + φi

Ri
+ φi′

Ri′

>
φi

Gs(k′) + φi

Ri

⇒ Gs(k′) > Gs(k) +
φi′

Ri′
(4)
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From the sorting performed φi

Ri
in step 1, we have

φi′/Ri′ > φi/Ri (5)

Using the above inequalities, we get the following contradiction

Gs(k′) < Gs(k) +
φi

Ri
< Gs(k) +

φi′

Ri′
and Gs(k′) > Gs(k) +

φi′

Ri′
> Gs(k) +

φi

Ri

In the second case, we show that when a client p is added to a base station k,
clients p′ from other base stations k′(say) do not move to k. Prior to adding p,
p′ had chosen base station k′ over base station k.

∴ Gs(k) +
φp′

Rp′
> Gs(k′) +

φp′

Rp′
⇒ Gs(k) > Gs(k′) (6)

If it were beneficial for p′ to switch to base station k now, the following inequality
must be true

Gs(k) +
φp

Rp
+

φp′

Rp′
< Gs(k′) +

φp′

Rp′
⇒ Gs(k) < Gs(k′) (7)

which is contradictory to inequality (6), thus proving our claim.
The running time of step 1 is O(|P | log |P |) for sorting the values. Step 2 has

|P | iterations of steps 3 and 4, which perform |K| comparisons, thus giving a
total running time of O(|P |(log |P | + |K|)).

3 Nash Equilibrium in Rate-Dependent Priority
Throughput Games

Throughput games where the priorities are a function of the rates have been
investigated in [4]. In this model, φi,k = Rβ

i,k, and the game is denoted by
TGβ(P,K, φ,R). Properties of this model have been studied in [4] where it was
conjectured that Nash equilibrium exists for any value of β. We first disprove
this conjecture and then provide a set of rules under which we prove that a stable
point exists.

Theorem 5. There exists an instance of a Rate-dependent Throughput Game,
TGβ(P,K, φ,R), with φij = R−1.5

ij for which a pure Nash equilibrium does not
exist.

Proof. Similar to Theorem 1, we use a Monte Carlo algorithm to obtain the
values of φij and Rij where φij = Rβ

ij and β = −1.5. The matrix R is

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

L1 L2 L3

P1 8.719 3.755 4.927
P2 5.802 1.361 5.783
P3 4.824 1.094 4.643
P4 3.340 9.648 8.743
P5 2.818 9.543 4.325

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Values of φ can be generated using matrix R and β = −1.5. In fact, such examples
were found for multiple values of β where β < 0. We illustrate an instance of a
cycle of configurations in Fig. 2. Each configuration of the above instance results
in similar cycles, yielding a system where no pure Nash equilibrium exists.

Fig. 2. Client cycling in a rate dependent throughput game where Nash equilibrium
does not exist

3.1 Conditions for Convergence to a Stable Point

Having established that Nash equilibrium need not always exist, we now establish
a protocol that ensures convergence to a stable point, thus preventing thrashing
in the system.

Fair-Movement Protocol:

The following rules shall apply:

1. When a new client joins a system, she will be automatically assigned to the
base station she has the highest rate on.

2. For every client, say i, switching from base station k to k′ is permitted, only
if Ri,k′ ≤ Ri,k. This is termed as the Fair Movement Rule

The purpose to the Fair Movement Rule is that since a client has already
sought to reject a base station she was assigned a higher rate on, she must not
be allowed to act selfishly with respect to her base rate Ri,k and prevent the
system from stabilizing.

Theorem 6. Under the Fair-Movement Rule, every Rate-dependent
Throughput Game has a stable point; i.e., no client gains by unilaterally changing
to a different assignment.

Proof. Consider a vector L of loads on base stations L = {Gs(k1), Gs(k2), · · · ,
Gs(kK)} s.t. {Gs(k1) > ... > Gs(k) > Gs(k′) > ... > Gs(kK)}}. Note that the load
of a base station is now given by Gs(k) =

∑
1

R1−β
i,k



Nash Equilibrium and Stability in Network Selection Games 49

Now, client i moves from base station k to k′ (Gs(k) is inclusive of client i)
when she gets a higher throughput on k′,

Gsk

Rβ
i,k

>
1

Rβ
i,k′

(Gsk′ +
1

R1−β
i,k′

) (8)

Using rule 2 of the Fair-Movement Protocol, we have Rβ
i,k − Rβ

i,k′ > 0, therefore

1

Rβ
i,k′

(Gsk′ +
1

R1−β
i,k′

) >
1

Rβ
i,k

(Gsk′ +
1

R1−β
i,k′

) (9)

So, from (8) and (9), 1

Rβ
i,k

Gsk > 1

Rβ
i,k

(Gsk′ + 1

Rβ

i,k′
) ⇒ Gsk > Gsk′ + 1

R1−β

i,k′
,

implying that the vector L decreases in lexicographic ordering every time a
client i switches from base station k to k′. Thus, the game will be stable.

4 Conclusions and Acknowledgements

This paper has presented results for pure Nash equilibrium in a wireless game
model where throughput has been used as the measure of the payoff. It would be
of further interest to include link access costs, client budgets and general utility
functions in the model.
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Abstract. This study presents an adaptation of finite population evo-
lutionary stable strategy definition by Schaffer in [1,2] to perfect infor-
mation extensive form games. In this adaptation, players reach a finite
population evolutionary stable strategy equilibrium by using finite popu-
lation evolutionary stable strategies which ensure that the game ends up
with equal payoffs. We studied the fpESS equilibria of some famous two-
player bargaining games such as the ultimatum game, the dictatorship
game and a dollar auction game. Not all Perfect Information Extensive
form games have an fpESS equilibrium. However, when there exist an
fpESS equilibrium in these games, the outcome is a perfectly fair one;
that is, all players get equal payoffs.

Keywords: Perfect information extensive form game · Ultimatum
game · Fairness · Finite population evolutionary stable strategy

1 Introduction

Perfect Information Extensive Form games are very important in game theory.
As one of them, the ultimatum game is a widely researched problem. There is
some amount of money that the first player is asked to divide between himself
and the second player. If the second player does not accept his share, he rejects
it and both players take nothing. If he accepts the offer, both players take the
amounts that they hold. The dictatorship game is also widely researched in
game theory. The first player determines the shares again, but the second player
cannot reject the offer.

When we look at the experiments on the ultimatum game, the results that
we encounter are very different than the theory predicts. Second players often
reject the offers less than half of the money and first players are willing to offer
much more than the least that they can offer [3,4]. However, when we look at
the experimental results of the dictatorship game, first players are more selfish
and they offer much less compared to the offers in the ultimatum game.

The first and the second player consider each other’s actions in the perfect
information extensive form games. Even if it does not seem rational, it is impor-
tant to get greater or equal payoff for players. Evolutionary Stable Strategies
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
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(ESS) take this point into account. Therefore, we decided to study fpESS (finite
population ESS) approach to analyze the perfect information extensive form
games and especially the ultimatum and the dictatorship games. We show that
for some perfect information extensive form games, there are some finite popu-
lation evolutionary stable strategies that a player can quarantee a payoff at least
as large as any opponent’s payoff. When players pick one of these strategies, they
can prevent to be beaten by their opponents (receiving a smaller payoff than any
of the opponent’s).

In the rest of the paper we first give, in Sect. 2, the relevant background
and definitions for the application of fpESS to Extensive Form games followed
by, in Sects. 2.1 and 2.2, the work to find the fpESS equilibria for three well
known game instances: the ultimatum game, the dictatorship game and the
dollar auction game.

2 Adaptation of FpESS to Extensive Form Games
in Induced Form

The fpESS concept is introduced in [5] and restated as the following definition.

Definition 1. Let S be the strategy set of a symmetric normal form game. An
fpESS s is a strategy in which ∀s∗ ∈ S, u(s, s∗) ≥ u(s∗, s) (by Schaffer [1,2]).

In the fpESS concept, the game is symmetric and the players have the same
strategy sets. We applied this approach to the induced normal forms of extensive
form games. It is obvious that an induced normal form does not have to be
symmetric. However, we can apply this definition to the induced normal form of
extensive form games.

Definition 2. Let S1, S2, ..., Sn be the strategy sets in the induced normal form
of a perfect information extensive form game with n players. A strategy si ∈ Si

is an fpESS if ∀j, ui(si, s−i) ≥ uj(sj , s−j) for all s−i ∈ S−i and s−j ∈ S−j where
S−i = (S1 × ...Si−1 × Si+1... × Sn) and S−j = (S1 × ...Sj−1 × Sj+1... × Sn).

Definition 2 implies that a strategy si is an fpESS for player i if there is no
strategy available to any opponent that returns a greater payoff than that of the
ith player’s payoff.

Definition 3. If ∀i s∗
i is an fpESS, then (s∗

1,..., s
∗
n) is an fpESS equilibrium.

Example 1. Consider a two player game with the payoffs z1 = (10, 10), z2 =
(30,−30), z3 = (−20, 20). This extensive form game tree is shown in Fig. 1(a).
When the induced normal form of this game is obtained as shown in Table 1,
we see from the row labeled s1, i.e., [(10, 10), (30,−30)], that the first players
payoff is always greater than or equal to the second player. In other words
strategy s1 is an fpESS for the first player. Similarly from the column s3, which
is [(10, 10), (−20, 20)], under this strategy the second player’s payoff is at least as
big as its opponent, and thus s3 is an fpESS for the second player. Thus, (s1, s3)
is an fpESS equilibrium.
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1

2

z1 z2

z3

s1 s2

s3 s4

a1 a2

b1 b2
b3 b4

c1 c2 c3 c4 c5 c6 c7 c8

4,4,4 1,1,0 2,1,2 5,1,0 0,4,4 1,2,0 4,1,5 3,1,0

_1_

_2_ _2_

_3_
_3_ _3__3_

(a) (b)

Fig. 1. Two examples of perfect information extensive form games (a) A two player
game, (b) A three player game

Table 1. Induced normal form of the game in Fig. 1(a) with the payoffs z1 =
(10, 10), z2 = (30,−30), z3 = (−20, 20)

s3 s4

s1 (10, 10) (30,−30)

s2 (−20, 20) (−20, 20)

In a perfect information extensive form game, there does not have to be an
fpESS equilibrium.

Example 2. Assume that in Fig. 1(a), z1 = (10,−10), z2 = (−20,−30), z3 =
(0, 0). Although the first player has two fpESSs (s1 and s2), the second player
has no fpESS. Therefore, there is no fpESS equilibrium for this game. This
shows that a player may not have an fpESS and a game may not have an fpESS
equilibrium.

Example 3. We can analyze some famous cases. Pyrrhic victory is one of them
in which the result is so devastating that the victor loses everything except the
victory. This devastating lost is equal to defeat. We applied this result to the
game tree in Fig. 1(a). The terminal nodes are z1 = (a1, b1), z2 = (a2, b2), z3 =
(a3, b3).

Let S1 be going to war, S2 be not going to war as the strategies of the king
Pyrrhus of Epirus and S3 be accepting the challenge and going to war against
Pyrrhus, S4 be surrendering without battling as the strategies of the Romans at
Heraclea in 280 BC.

In this game, if we assume that a1 = b1, a2 > b2,a3 ≤ b3, we see that (going
to war as Pyrrhus, going to war as the Romans) is an fpESS equilibrium. Here
our assumption is that when both sides go to war, they will lose everything
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equally, when Pyrrhus choose not to go to war, the Romans’ payoff is greater
than or equal to Pyrrhus, and finally when Pyrrhus goes to war and the Romans
surrender, the Pyrrhus’s payoff is greater than the Romans’ payoff. This victory
can be modeled in different ways. In this model, we have an fpESS equilibrium.
We interpret this as both sides can do anything in order not to be beaten by the
opponent in war.

Example 4. Consider the perfect information extensive form game with three
players in Fig. 1(b). Here, there are 8 outputs whose paths are (a1, b1, c1),
(a1, b1, c2), (a1, b2, c3), (a1, b2, c4), (a2, b3, c5), (a2, b3, c6), (a2, b4, c7), (a2, b4, c8)
in this game. [a1, (b1, b3), (c1, c3, c5, c7)] is an fpESS equilibrium.

In Tables 2 and 3, the second player’s payoff is greater than or equal to
the first and the third players’ payoffs in (a1, b1, c1), (a1, b1, c2), (a2, b3, c5) ,
(a2, b3, c6).

The third player’s payoff is greater than or equal to the first and the second
player’ payoffs in (a1, b1, c1), (a1, b2, c3), (a2, b3, c5), (a2, b4, c7).

The first player’s payoff is greater than or equal to the second and third
players’ payoffs in (a1, b1, c1), (a1, b1, c2), (a1, b2, c3), (a1, b2, c4).

It may be hard to find a game with an fpESS equilibrium in which all players
participate. However, if some of the players have fpESS strategies, they can
choose them to play mutually.

Table 2. When the first player selects a1

(c1, c3) (c1, c4) (c2, c3) (c2, c4)

b1 (a1, b1, c1) (a1, b1, c1) (a1, b1, c2) (a1, b1, c2)

b2 (a1, b2, c3) (a1, b2, c4) (a1, b2, c3) (a1, b2, c4)

Table 3. When the first player selects a2

(c5, c7) (c5, c8) (c6, c7) (c6, c8)

b3 (a2, b3, c5) (a2, b3, c5) (a2, b3, c6) (a2, b3, c6)

b4 (a2, b4, c7) (a2, b4, c8) (a2, b4, c7) (a2, b4, c8)

2.1 FpESS Equilibria of Ultimatum and Dictatorship Games

Ultimatum game is a widely researched bargaining problem. We used [6] to
express the equilibria in the ultimatum game. In this game, one of the players
must divide A dollar as (A − x, x). He takes A − x to himself, gives x to the
other player. If the second player accepts this sharing, he takes x and the first
player takes A − x. If he does not accept the sharing, all the players take zero
as their payoffs.

Payoffs do not have to be integers. For any value of x, there is a subgame
for the second player. In this case, we can analyze the second player’s action for
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each x value. x can be zero or greater than zero. When x is zero, to say yes or
no is indifferent for the second player. When x is greater than zero, the second
player says yes because x > 0. By this, we have two optimal strategies for the
second player. The first is to say yes for x ≥ 0. The second is to answer yes for
x > 0 and no for x = 0.

Assume that offered payoffs are not integers. For the second player’s first
optimal strategy, the first player must offer zero. For the second player’s second
optimal strategy, the first player must offer any value greater than zero. Thus,
first player’s optimal strategy (considering the optimal strategies for player 1) is
to offer the smallest x > 0. However, if the offers are made in real numbers, there
is no such smallest x > 0. However, if offered values are integer, for Example 1
cent as the least value, the first player must offer 1 cent to the second player.

In this game, the subgame perfect equilibrium is that the first player offers
zero and the second player accepts this. When the offered values are integers,
we have one more subgame perfect equilibrium so that the first player offers the
least value x > 0 to the second player, the second player accept this. However,
when we look at the experiments, we do not see the theoretical predictions (that
is, the first player offers the least positive amount and the second player accepts
this minimum offer) are realized. Instead, we encounter more fair outcomes where
offers considerably higher than minimum are typical and minimum offers usually
rejected.

When we investigate the ultimatum game for any amount N , we see the
remarkable feature of fpESS’s is that a player does not offer more than half in
the first position and a player does not accept less than half. When two players
pick fpESS strategies to play, game ends fairly.

Proposition 1. In an ultimatum game, let N ∈ R be the total payoff to share.
∀N ∈ R a strategy s ∈ S1 in the induced normal form is an fpESS if and only if
it includes always to offer less than or equal to N/2 as first player’s strategy.

Proof. If ∀N ∈ R a strategy s ∈ S1 in the induced normal form is an fpESS,
then it includes always to offer less than or equal to N/2 as first player’s strategy.
Assume that s is an fpESS, but it does not include to offer less than or equal
to N/2. There exists a cell in the induced matrix row in which the first player
offers more than half. The first players payoff becomes less than the second
players payoff. This is in contrast with the definition of fpESS. Our assumption
is invalid.

If ∀N ∈ R a strategy s ∈ S1 in the induced normal form includes always
to offer less than or equal to N/2 as first player’s strategy, then it is an fpESS.
Assume that s includes always to offer less than or equal to N/2, but it is not
an fpESS. There is a cell where s resides in which the first player’s payoff is
less than the second player’s payoff. This is a contradiction; our assumption is
invalid. ��
Proposition 2. In an ultimatum game, ∀N ∈ R a strategy s ∈ S2 in the
induced normal form is an fpESS if and only if it includes always not to accept
any offer less than N/2 as second player’s strategy. ��
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Proof. If ∀N ∈ R a strategy s ∈ S2 in the induced normal form is an fpESS,
then it includes always not to accept any offer less than N/2 as second player’s
strategy. Assume that s is an fpESS, but it includes to accept an offer less than
N/2 as second player’s strategy. There exists a cell in the induced matrix column
in which the second player accepts less than half. The second players payoff
becomes less than the first players payoff. This is contrast with the definition of
fpESS. Our assumption is invalid.

If ∀N ∈ R a strategy s ∈ S2 in the induced normal form includes always
not to accept any offer less than N/2 as second player’s strategy, then it is an
fpESS. Assume that s includes always not to accept any offer less than N/2, but
it is not an fpESS. There is a cell where s resides in which the second player’s
payoff is less than the first player’s payoff. However, we accept that s includes
always not to accept any offer less than N/2 as second player’s strategy. This is
contradiction. Our assumption is invalid. ��
Proposition 3. In an ultimatum game, ∀N ∈ R, an fpESS equilibrium is an
outcome in which s1 ∈ S1 and s2 ∈ S2 are fpESSs. The payoffs in the fpESS
equilibrium are equal. ��
Proof. If s1 and s2 are fpESSs, then there are two possible solutions for the game.
If the first player offers N/2 to the second player, he accepts and the game ends
(N/2, N/2) which the payoffs which are equal. If the first player offers less than
N/2 to the second player, he does not accept and the game ends with the payoffs
with equal payoffs (0, 0). ��

fpESS equilibrium finalizes the game so that players can’t gain advantage
over each other. However, when we cannot do anything in a game in order not
to be beaten by our opponent, we do not have an fpESS and there is not an
fpESS equilibrium in the game. An example of this type of game is dictatorship
game where the second player has no power to affect the outcome of the game.
Dictatorship game does not include an fpESS for the second player and does not
have an fpESS equilibrium.

2.2 FPESS Equilibrium of an Instance of the Dollar Auction Game

The Dollar auction game is a sequential game designed by Martin Shubik [7] to
show that players are led to make irrational decisions in a perfect information
game. In the game, the winner and the second highest bidder pay the last dollar
amount that they bid. The game starts with a randomly selected player. When
the first player says 5 cents, the second player can escalade the number by saying
10 cents or he can give up the game. If he says 10 cents, the first player can
escalade the number by saying 15 cents, or he can also give up the game. If the
first player gives up the game at this point, he pays 5 cents and he wins nothing.
The second player pays 10 cents and he wins a dollar.

However, one bids 1.05$, another may bid 1.10$. They escalade the number
above 1$ in order not to risk losing the game because they must pay the last
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dollar amount they bid even if they lose. At this point, bidding above 1$ is not
rational to win a dollar as prize.

An example of this game is presented in [8]. There is 3$ as the prize and the
maximum amount that a player can bid is 4$. The original game does not have
an upper limit, but here there is.

Example 5. We adapted above game so that 2$ is the prize and the maximum
amount that a player can bid is 3$. When a player says 3$, he wins the game
but loses 1$. The game tree is given in Fig. 2.

0,2

1,0

-1,0 -1,-2

-1,-1 0,0

-2,-1

-1,0

0$
1$

2$
3$

0$
2$ 3$

0$ 3$

0$
3$

1.player

1.player

2.player 2.player

Fig. 2. A dollar auction game example with 2$ prize

We benefited from [9] to analyze the subgame perfect equilibrium for this
game. The only difference between the game in Fig. 2 and the game in [9] is one
of the first moves of first player. In our game, when the first player bids 0$, the
game ends with the payoffs (0, 2). On the other hand, in the game given in [9]
if the first player bids 0$, the game ends with the payoffs (0,0). The subgame
perfect equilibria are [(1$, 0$), (0$, 0$)], [(2$, 0$), (2$, 0$)], [(0$, 0$), (2$, 0$)],
[(1$, 3$), (0$, 0$)]. These two games have the same subgame perfect equilibria
because none of the first player’s first moves in our game changes.

For example, the strategy that the first player will play in [(1$, 3$), (0$, 0$)]
is to play 1$ for the first move and to play 3$ for the last move in the tree. The
strategy that the second player will play is to move 0$ for the subtree tied to
1$, to move 0$ for the subtree tied to 2$.

In this game, the first player has one fpESS. At the beginning, his move is
1$. If the second player plays 2$, he plays 3$. (1$, 3$) is the first player’s fpESS.
The second player has two fpESS’s. These are (3$, 0$) and (3$, 3$). If the first
player plays 1$, the second player plays 3$. If the first player plays 2$, the second
player plays 0$ or 3$. The game ends up with (−1,−1). We can interpret the
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second player’s behavior as risking himself and the other player in order not to
be beaten in the game. He does not want to gain less than or lose more than the
opponent.

3 Conclusion

When we determine a strategy to play in a perfect information extensive form
game, we consider our opponents’ possible strategies. If we do not want to be
beaten by our opponent at any cost, we use finite population evolutionary stable
strategies if exist. It is hard to say that a player who uses these strategies is
rational, but we frequently encounter this attitude in real life.

In an fpESS equilibrium, the players select the strategies so that they don’t
get less than their opponent. It guarantees that when we use an fpESS, the game
will end up with a tie. This may bring a new understanding for player attitudes
and their positions in the perfect information extensive form games.

In ultimatum game, the theoretical solutions do not explain experimental
results thoroughly. In ultimatum games, when the second player picks a strategy
that brings him to an fpESS equilibrium, he can’t be worse off than the first
player. When the first player knows this, he does not offer any unacceptable
amount to the second player. He knows that any unfair (less than half the total
amount) offer will be rejected. Any fpESS strategy which brings the players to
an fpESS equilibrium ensures the game ends up fairly.

In dictatorship game, there is nothing to do for the second player when he
does not want to gain less than the first player, thus there does not exist any
fpESS and fpESS equilibrium in the dictatorship game.

In the instance of dollar auction game that we have analyzed, the fpESS
equilibrium can be interpreted as any bidder can risk losing more and more by
continuing with higher bids. A player can prefer staying in the game and losing
equally (with the opponent) to withdrawing from the game earlier with relatively
more loss.

We suppose there may be an intersection between subgame perfect equilib-
rium solution concept and fpESS equilibrium, it is a new research topic.
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Abstract. Cyber-insurance has been studied as both a method for risk-
transfer, as well as a potential incentive mechanism for improving the
state of cyber-security. However, in the absence of regulated insurance
markets or compulsory insurance, the introduction of insurance deterio-
rates network security. This is because by transferring part of their risk
to the insurer, the insured agents can decrease their levels of effort. In
this paper, we consider the design of insurance contracts by an (unregu-
lated) profit-maximizing insurer, and allow for voluntary participation.
We propose the use of pre-screening to offer premium discounts to higher
effort agents. We show that such premium discrimination not only helps
the insurer attain higher profits, but also leads the agents to improve
their efforts. We show that with interdependent agents, the incentivized
improvement in efforts can compensate for the effort reduction resulting
from risk transfer, thus improving the state of network security over the
no-insurance scenario. In other words, the availability of pre-screening
signals benefits both the insurer, as well as the state of network security,
without the need to regulate the market or compulsory participation.

1 Introduction

Organizations and businesses big and small are facing increasingly more complex,
costly and frequent cyber threats. Many technology based protection methods
such as novel cryptography schemes and protection softwares have been devel-
oped to reduce the risk of cyber threats. In addition to a myriad of technol-
ogy based protection methods, cyber-insurance has emerged as an accepted risk
mitigation mechanism, that allows purchasers of insurance policies/contracts to
transfer their residual risks to the insurer.

The impact of cyber insurance on firms’ security investment has been quite
extensively studied in the past few years. These studies include cyber-insurance
as a method for risk transfer, as well as a possible incentive mechanism for risk
reduction, see e.g., [1–8]. Many papers on cyber insurance markets have studied
the impact of cyber-insurance on the state of network security. Existing litera-
ture has arrived at two seemingly contradictory conclusions about the potential
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of cyber-insurance as an incentive mechanism for risk reduction. The difference
is mainly due to the underlying model of the insurer/insurance market. In par-
ticular, when the cyber-insurance market is modeled as a competitive market,
e.g., [7,8], the insurance contracts are designed with the intention of attract-
ing clients, and are hence not optimized to induce better security behavior. As
a result, [7,8] show that the introduction of cyber-insurance deteriorates net-
work security. Furthermore, as a consequence of the assumption of competitive
markets, the insurers make no profit.

On the other hand, by considering a monopolist (profit-neutral) cyber-
insurer, whose goal is to increase social welfare, [3–7] show that it is possible to
design cyber-insurance contracts that lead users to improve their efforts toward
securing their systems, and consequently, improve the state of security. The
works in [5–7] propose premium discrimination; the idea is to assign less favor-
able contracts (i.e., higher premiums) to agents with worse types or lower efforts.
These contracts can lead to an increase in social welfare and network security,
as well as non-negative profit for the insurer. However, the underlying models
assume that the insurer acts to increase social welfare (due to e.g., government
regulation), and is therefore not profit-maximizing. In addition, participation by
agents is assumed compulsory.

In this paper, we are similarly interested in the possibility of using cyber-
insurance as an incentive mechanism for improved network security. We modify
two of the key existing assumptions, in order to better capture the current state of
cyber-insurance markets, by (1) considering a profit-maximizing cyber-insurer,
and (2) ensuring that participation is voluntary, i.e., agents may opt out of
purchasing a contract.

We propose the use of pre-screening (initial audit) by the insurer; pre-
screening allows the insurer to evaluate the potential client’s security posture,
prior to offering the contract. This essentially allows the insurer to premium-
discriminate the agents, based on their perceived/measured state of security. We
provide sufficient conditions under which the introduction of pre-screening can
lead to higher profits for the insurer, and that it also positively impacts the state
of security. In other words, this type of pre-screening is a potential option for
making cyber-insurance contracts better drivers for improved cyber-security.

2 A Single Risk-Averse Agent

We first consider a single-period contract design problem between a risk-neutral
cyber-insurer and a risk-averse agent.1 The agent exerts effort e ∈ [0,+∞)
towards securing his system, incurring a cost of c per unit of effort. Let Le

denote the loss, a random variable, that the agent experiences given his effort
e. We assume Le has a normal distribution, with mean μ(e) ≥ 0 and variance
λ(e) ≥ 0. We assume μ(e) and λ(e) are strictly convex, strictly decreasing,
and twice differentiable. The decreasing assumption entails that increased effort
1 Throughout the paper, we use she/her and he/his to refer to the insurer and agent(s),

respectively.
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reduces the expected loss, as well as its unpredictability, for the agent. The
convexity assumption suggests that while initial investment in security leads to
considerable reduction in loss, the marginal benefit decreases as effort increases.
We assume once a loss Le is realized, it will be observed by both the cyber-
insurer and agent through e.g., reporting and auditing. We further assume λ(e)
is small compared to μ(e), so that Pr(Le < 0) is negligible. Finally, when the
agent exerts an effort e, the insurer observes a pre-screening signal Se = e + W ,
where W is a zero mean Gaussian noise with variance σ2. This signal can be
attained through, e.g., external audits or initial surveys filled out by the agent.
We assume Se is conditionally independent of Le, given e.

Linear Contract and Insurer’s Payoff: In this paper, we consider the design
of a set of linear contracts. Specifically, the contract offered by the insurer con-
sists of a base premium p, a discount factor α, and a coverage factor β. The agent
pays a premium p − α · Se, and receives β · Le as coverage. We let 0 ≤ β ≤ 1,
i.e., coverage never exceeds the actual loss. Thus the insurer’s utility (profit) is
given by:

V (p, α, β, e) = p − α · Se − β · Le.

The insurer’s expected profit is then given by V (p, α, β, e) = p − αe − βμ(e).

Agent’s Payoff without a Contract: If the agent chooses not to enter a
contract, he bears the full cost of his effort as well as any loss. We assume

U(e) = − exp{−γ · (−Le − ce)}, (1)

where γ denotes the risk attitude of the agent; a higher γ implies more risk
aversion. We shall assume that γ is known to the insurer, thereby eliminating
adverse selection and solely focusing on the moral hazard aspect of the problem.

Using basic properties of the normal distribution, we have the following
expected utility for the agent:

U(e) = E(− exp{−γ · (−Le − ce)}) = − exp{γ · μ(e) +
1
2
γ2λ(e) + γce}. (2)

Using (2), the optimal effort for an agent outside the contract is given by
m := arg mine≥0

{
μ(e) + 1

2γλ(e) + ce
}
. Let Uo := Ū(m) denote the maximum

expected payoff of the agent without a contract.

Agent’s Payoff with a Contract: If the agent accepts a contract, his utility
is given by:

U c(p, α, β, e) = − exp{−γ · (−p + α · Se − Le + β · Le − ce)}.

Noting that Se and Le are conditionally independent, his expected utility is

U
c
(p, α, β, e) = E(− exp{−γ · (−p + α · Se − Le + β · Le − ce)})

= − exp
{
γ(p + (c − α)e + 1

2α2γσ2 + (1 − β)μ(e) + 1
2γ(1 − β)2λ(e))

}

The Insurer’s Problem: The insurer designs the contract (p, α, β) to maximize
her expected payoff. In doing so, the insurer also has to satisfy two constraints:
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Individual Rationality (IR), and Incentive Compatibility (IC). The first stipu-
lates that a rational agent will not enter a contract with payoff less than his
outside option Uo, and the second that the effort desired by the insurer should
maximize the agent’s expected utility under that contract. Formally,

max
p,α,0≤β≤1

V̄ (p, α, β, e) = p − α · e − β · μ(e)

s.t. (IR) Ū c(p, α, β, e) ≥ Uo (3)
(IC) e ∈ arg max

e′≥0
Ū c(p, α, β, e′)

Note that the (IR) constraint can be re-written as follows,

p + (c − α) · e + 1
2α2 · γσ2 + (1 − β)μ(e) + 1

2γ(1 − β)2λ(e) ≤ uo .

where, uo := ln(−Uo)
γ = mine≥0{μ(e) + 1

2γλ(e) + c · e}. Similarly, the (IC) con-
straint can be rearranged as follows,

e ∈ arg mine′≥0 (c − α) · e′ + (1 − β)μ(e′) + 1
2γ(1 − β)2λ(e′).

3 The Role of Pre-screening in a Single Agent System

In this section, we first solve the optimization problem in (3). We then study the
impact of several problem parameters, particularly the accuracy of pre-screening,
on the optimal contract.

Lemma 1. The (IR) constraint is binding in the optimal contract.

By Lemma 1, an optimal contract satisfies the following equation:

p + (c − α) · e +
1
2
α2 · γσ2 + (1 − β)μ(e) +

1
2
γ(1 − β)2λ(e) = uo .

We use the above expression to substitute for the base premium p in the objective
function of (3), and re-writing the insurer’s problem as follows,

maxα,0≤β≤1,e≥0 f(β, e, α) = uo − μ(e) − 1
2γ(1 − β)2λ(e) − c · e − 1

2α2γσ2

s.t., e = arg mine′≥0(c − α) · e′ + (1 − β)μ(e′) + 1
2γ(1 − β)2λ(e′)

(4)
We now turn to the issue of network security. We consider the effort level of

the agent as the metric for evaluating the change in network security. We start
with the following theorem on the state of network security, before and after the
purchase of an insurance contract.

Theorem 1. The effort exerted by the agent in the optimal contract is less than
or equal to the level of effort outside the contract. In other words, insurance
decreases network security as compared to the no-insurance scenario.
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Theorem 1 illustrates the inefficiency of cyber-insurance as a tool for improv-
ing the state of security. Existing work in [8,9] have also arrived at a simi-
lar conclusion when studying competitive/unregulated cyber-insurance markets.
Nevertheless, as cyber-insurance is a profitable market, especially given risk-
averse users, a market for cyber-insurance exists, and its growth is conceivable.
We therefore ask whether the introduction of a pre-screening signal can lead to
higher profits for the insurer, while also positively impacting the state of security,
over the case of no pre-screening. We first analyze the impact of a pre-screening
signal on the insurer’s profit.

Theorem 2. The insurer’s payoff in the optimal contract increases as σ
decreases. That is, the insurer’s profit is increasing in the quality of the pre-
screening signal.

The above result is intuitively to be expected, as we predict that a strategic
insurer can leverage the improved pre-screening information to her benefit, and
attain better payoff. The more interesting observation is on the effect of pre-
screening on the state of network security. The following theorem presents a suf-
ficient condition under which the availability of a pre-screening signal improves
network security, compared to the no pre-screening scenario. Note that we use
σ = ∞ for evaluating the no pre-screening scenario. The equivalence follows from
the fact that, as shown in [11], by setting σ = ∞, the insurer’s optimal choice
will be to set α = 0, which effectively removes the effects of pre-screening.

Theorem 3. Let e1, e2, e∞ denote the optimal effort of the agent in the opti-
mal contract when σ = σ1, σ = σ2 and σ = ∞, respectively. Let k(e, α) =
μ′(e)+

√
μ′(e)2−2γ(c−α)λ′(e)

−γλ′(e) . If k(e, α1)2λ(e) − k(e, α2)2λ(e) is non-decreasing in
e for all 0 ≤ α1 ≤ α2 ≤ c, then e1 ≥ e2 if σ1 ≤ σ2. In other words, better
pre-screening signals improve network security.

In addition, if k(e, 0)2λ(e) − k(e, α)2λ(e) is non-decreasing in e for all 0 ≤
α ≤ c, then e1 ≥ e∞. In other words, availability of a pre-screening signal
improves network security over the no pre-screening scenario.

In the above theorem, k(e, α) is in fact equivalent to 1 − β. Consequently,
k(e, α)2λ(e) is the variance of the uncovered loss in a contract as a function
(e, α). Therefore, Theorem 3 introduces a sufficient condition for improvement
of network security based on the change in the variance of the uncovered loss.

Several instances of μ(e) and λ(e) satisfy the condition of Theorem3; for
instance, (μ(e) = 1

e , λ(e) = 1
e2 ) or (μ(e) = exp{−e}, λ(e) = exp{−2e}).

Theorems 2 and 3 together imply that the introduction of a pre-screening signal
benefits the insurer, as well the state of network security.

4 A Network of Two Risk Averse Agents

We next consider the one period contract problem between one risk-neutral
insurer and two risk-averse agents. We assume the agents’ utilities are again
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given by (1), and let γ1, γ2 denote the risk attitudes of the agents. We assume
that the two agents are interdependent; the effort exerted by an agent affects
not only himself, but further affects the loss that the other agent experiences.
This assumption captures the fact that viruses, worms, etc., can spread from
an infected agent to others. We model the interdependence between these two
agents as follows,

L
(i)
e1,e2 ∼ N (μ(ei + x · e−i), λ(ei + x · e−i))

Here, {−i} = {1, 2} − {i}, and L
(i)
e1,e2 is a random variable denoting the loss

that agent i experiences, given both agents’ efforts. The interdependence factor
is denoted by x, and we let 0 ≤ x < 1.

The insurer can observe the result of pre-screening audit Sei
= ei + Wi on

each agent i, where Wi is a zero mean Gaussian noise with variance σ2
i . We

assume that W1 and W2 are independent, and that Se1 , Se2 , L
(1)
e1,e2 , L

(2)
e1,e2 are

conditionally independent given e1, e2.
We next separately analyze the following three cases, based on whether agents

purchase cyber-insurance contracts.
(i) Neither agent enters a contract
(ii) One of the agents enters a contract, while the other one opts out
(iii) Both agents purchase contracts
Note that Case (ii) is the outside option for agents in Case (iii), and Case (i)

is the outside option for agents in Case (ii). Therefore, in order to evaluate the
participation constraints of agents when both purchase insurance contracts, we
first need to find the optimal contract and agents’ payoffs in Cases (i) and (ii).

4.1 Case (i): Neither Agent Enters a Contract

We start by considering the game Goo between two agents, neither of which have
purchased cyber-insurance contracts. The expected payoffs of these agents, with
unit costs of effort c1, c2 > 0, are given by,

Ūi(e1, e2) = − exp{γiμ(ei + x · e−i) + 1
2γ2

i λ(ei + x · e−i) + γi · ci · ei}

The best-response of each agent, when both opt out, can be found by solving
the following optimization problem,

Boo
i (e−i) = arg maxei≥0 − exp{γiμ(ei + x · e−i) + 1

2
γ2
i λ(ei + x · e−i) + γi · ci · ei}

= arg minei≥0 μ(ei + x · e−i) + 1
2
γiλ(ei + x · e−i) + ci · ei .

(5)
The above optimization problem is a convex optimization problem and has

a unique solution. In order to find Boo
i (e−i), we first define mi as follows,

mi := arg min
e≥0

{μ(e) +
1
2
γiλ(e) + ci · e} (6)
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Using (6), the solution to (5) is given by,

Boo
i (e−i) =

{
mi − x · e−i if mi ≥ x · e−i

0 if mi ≤ x · e−i
(7)

The Nash equilibrium is given by the fixed point of the best-response map-
pings B1(e2) and B2(e1). Let e∗

i (mi,m−i) denote the effort of agent i at the
unique Nash equilibrium. We have,

e∗
i (mi,m−i) =

⎧
⎨

⎩

mi−x·m−i

1−x2 if mi ≥ x · m−i and m−i ≥ x · mi

0 if mi ≤ x · m−i

mi if m−i ≤ x · mi

(8)

Therefore, Ū∗oo
i = Ūi(e∗

1(m1,m2), e∗
2(m2,m1)) is the utility of agent i in the

equilibrium when agents do not choose to enter the contract. As we will see
shortly, an insurer uses her knowledge of Ū∗oo

i to evaluate agents’ outside options
when proposing optimal contracts.

4.2 Case (ii): One of the Agents Enters a Contract

Assume that agent 1 enters a contract, while agent 2 opts out. We use Gio

to denote the game between the insured agent 1 and uninsured agent 2. The
expected payoffs of agents in this game are as follows,

U io
1 (e1, e2, p1, α1, β1) =

E(− exp{−γ1 · (−p1 + α1 · Se1 − L
(1)
e1,e2 + β1 · L

(1)
e1,e2 − c1 · e1)})

= − exp{γ1 · (p1 + (c1 − α1) · e1 + 1
2α2

1 · γ1σ
2
1

+(1 − β1)μ(e1 + x · e2) + 1
2γ1(1 − β1)2λ(e1 + x · e2))}

U io
2 (e1, e2) = E(− exp{−γ2(−L

(2)
e1,e2 − c2 · e2)})

= − exp{γ2μ(e2 + x · e1) + 1
2γ2

2λ(e2 + x · e1) + γ2 · c2 · e2}
In order to find the Nash Equilibrium of Gio, we first calculate the best response
of each agent. Let Bio

i (e−i) denote the best response of agent i. We have,

Bio
1 (e2) = arg maxe1≥0 − exp{γ1 · (p1 + (c1 − α1) · e1

+ 1
2
α2
1 · γ1σ

2
1 + (1 − β1)μ(e1 + x · e2) + 1

2
γ1(1 − β1)

2λ(e1 + x · e2))}
= arg mine1≥0(c1 − α1) · e1 + (1 − β1)μ(e1 + x · e2) + 1

2
γ1(1 − β1)

2λ(e1 + x · e2)
(9)

As the above optimization problem is a convex problem, it has a unique
solution. We next define m1(α1, β1) as follows,

m1(α1, β1) = arg min
e≥0

{(c1 − α1)e + (1 − β1)μ(e) +
1
2
γ1(1 − β1)2λ(e)}

Similar to (7), we use m1(α1, β1) to find Bio
1 (e2) as follows,

Bio
1 (e−i) =

{
m1(α1, β1) − x · e2 if m1(α1, β1) ≥ x · e2
0 if m1(α1, β1) ≤ x · e2

(10)
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For the uninsured agent 2, it is easy to see that the best-response function is
given by Bio

2 (e1) = Boo
2 (e1).

We can now find the Nash equilibrium as the fixed point of the best-
response mappings. Agents’ efforts at the equilibrium are e∗

1(m1(α1, β1),m2)
and e∗

2(m2,m1(α1, β1)) which are defined in (8). For notational convenience, we
denote these efforts by e∗

1, e
∗
2. Let Ū∗io

i denote the utility of agent i at effort levels
e∗
1, e

∗
2, in an equilibrium where only agent 1 purchases a contract, that is,

Ū∗io
1 (p1, α1, β1) = U io

1 (e∗
1, e

∗
2, p1, α1, β1), Ū∗io

2 (α1, β1) = U io
2 (e∗

1, e
∗
2)

Let V̄ io(p1, α1, β1, e1, e2) denote the insurer’s utility, when she offers contract
(p1, α1, β1) to agent 1, and agents exert efforts e1, e2. The optimal contract
offered by the insurer is the solution to the following optimization problem:

V ∗io = maxp1,α1,β,e∗
1 ,e∗

2
V̄ io(p1, α1, β1, e

∗
1, e

∗
2) = p1 − α1e

∗
1 − β1 · μ(e∗

1 + x · e∗
2)

s.t., (IR) Ū∗io
1 (p1, α1, β1) ≥ Ū∗oo

1 ,
(IC) e∗

1, e
∗
2 are effort of the agents in Nash equilibrium of game Gio

We first re-write the (IR) constraint for agent 1 as follows,

p1+(c1−α1)·e∗
1+

1
2
α2
1γ1σ

2
1+(1−β1)μ(e∗

1+x·e∗
2)+

1
2
γ1(1−β1)2λ(e∗

1+x·e∗
2) ≤ uoo

1 ,

where uoo
1 = ln(−Ū∗oo

1 )
γ1

.
Similar to Lemma 1, we can conclude that (IR) constraint is binding in the

optimal contract. Therefore, we can re-write the insurer’s problem by replacing
for the base premium p, similar to the single agent problem in Sect. 2.

4.3 Case (iii): Both Agents Purchase Contracts

Assume the insurer offers each agent i a contract (pi, αi, βi). The expected utility
of agents when both purchase contracts is given by,

U
(ii)
j (e1, e2, pj , αj , βj) =

E(− exp{−γj · (−pj + αj · Sej
− L

(j)
e1,e2 + βj · L

(j)
e1,e2 − cj · ej)})

= − exp{γj · (pj + (cj − αj) · ej + 1
2α2

j · γjσ
2
j +

(1 − βj)μ(ej + x · e−j) + 1
2γj(1 − βj)2λ(ej + x · e−j))}

Following steps similar to those in Sect. 4.2, the best-response function of
player j, denoted Bii

j , is given by,

Bii
j (e−j) =

{
mj(αj , βj) − x · e−j if mj(αj , βj) ≥ x · e−j

0 if mj(αj , βj) ≤ x · e−j

where mj(αj , βj) is the solution of the following equation,

mj(αj , βj) = arg mine≥0(1 − βj)μ(e) + 1
2γj(1 − βj)2λ(e) + (cj − αj) · e. (11)
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Agents’ efforts at the unique Nash equilibrium are e∗
i (mi(αi, βi),m−i(α−i,

β−i)), with e∗
i (., .) defined in (8). For notational convenience, we simply denote

these by e∗
i .

To write the insurer’s problem, note that the outside option of agent 1 (resp.
2) from this game is the game Goi (resp. Gio). The IR constraints can again be
shown to be binding, simplifying the insurer’s problem to,

V ∗ii = maxα1,0≤β1≤1,α2,0≤β2≤1,e∗
1≥0,e∗

2≥0 uoi
1 − μ(e∗

1 + x · e∗
2)

− 1
2γ1(1 − β1)2λ(e∗

1 + x · e∗
2) − c1 · e∗

1 − 1
2α2

1γ1σ
2
1

+uio
2 − μ(e∗

2 + x · e∗
1) − 1

2γ2(1 − β2)2λ(e∗
2 + x · e∗

1) − c2 · e∗
2 − 1

2α2
2γ2σ

2
2

s.t., e∗
1, e

∗
2 are the agents’ effort in the equilibrium of game Gii

where uoi
1 = ln(−Ū∗oi

1 )
γ1

and uio
2 = ln(−Ū∗io

2 )
γ2

, defined in Sect. 4.2.

5 The Role of Pre-screening in a Two Agent Network

We next discuss how different problem parameters, particularly the accuracy of
pre-screening, affect the insurer’s profit, as well as the system’s state of security.

We first consider the utility of the insurer. As the insurer always has the
option to not use the outcome of pre-screening by setting α = 0 in the contract,
the insurer’s profit in the optimal contract with pre-screening is larger than
her profit in the optimal contract without pre-screening; i.e., the availability of
pre-screening is in the insurer’s interest and improves insurer’s profit.

We now return to the effect of pre-screening on the state of network security.
We choose the total effort towards security, e1 + e2, as the metric for evaluating
network security. The following two theorems characterize the impact of pre-
screening on network security when the two agents are homogeneous (γ1 = γ2 =
γ, c1 = c2 = c, σ1 = σ2 = σ). Theorem 4 shows that fully accurate pre-screening
can improve network security over the no insurance scenario. Theorem5 shows
that under certain additional conditions, the improvement is still possible for
sufficiently, yet not fully, accurate pre-screening.

Theorem 4. Assume two homogeneous agents purchase (identical) contracts
from an insurer, and let m = arg mine≥0 μ(e) + 1

2γλ(e) + ce.
(i) If μ′(m) < − c

1+x and both pre-screening signals are accurate, i.e., σ1 =
σ2 = 0, then network security improves after the introduction of insurance.

(ii) If both of the pre-screening signals are uninformative, i.e., σ1 = ∞ and
σ2 = ∞, network security worsens after the introduction of insurance.

Theorem 5. Assume two homogeneous agents purchase (identical) contracts
from an insurer. Let m = arg mine≥0 μ(e)+ 1

2γλ(e)+ce, umax = μ(m)+ 1
2γλ(m)+

cm, and h(m′, β) = c · m′ + (1 − β)μ(m′) + 1
2γ(1 − β)2λ(m′). If μ′(m) < − c

1+x ,

then there exists an upper bound σ2
max := min{−μ(m)− c·m

1+x+μ(0)

0.5c2γ ,
−μ′(m)− c

1+x

Mγ },
where

M := max
0≤β≤1,0≤m′≤ (1+x)umax

c

{∂h(m′, β)
∂m′ · ∂2h(m′, β)

∂m′2 },



72 M.M. Khalili et al.

such that if σ2
1 = σ2

2 ≤ σ2
max, the existence of pre-screening improves network

security as compared to the no insurance scenario.

6 Conclusion

We studied the problem of designing cyber-insurance contracts by a single profit-
maximizing insurer, for both a single agent, as well as two interdependent agents.
The introduction of insurance decreases network security in general, as agents
reduce their effort after transferring part of their risks to an insurer. We pro-
pose the use of pre-screening signals on agents’ efforts to prevent such reduction
in effort after the introduction of insurance contracts, by offering premium dis-
counts to agents with higher perceived efforts. We show that the availability of
these pre-screening signals not only benefits the insurer by increasing her profit,
but also improves network security, as compared to the no pre-screening sce-
nario. Furthermore, when agents are interdependent and pre-screening is highly
accurate, under a set of sufficient conditions, the incentivized improved efforts
can increase network security not only over no pre-screening, but also compared
to the no-insurance scenario. Therefore, introduction of pre-screening signals can
be in the interest of the insurer, as well as the state of network security.

An important extension of this work is to consider arbitrary alternatives for
including the pre-screening signals (as opposed to only linear discounts on premi-
ums), and verify their role in improving network security. Considering multiple
profit-maximizing insurers is another direction of future work.
Online Appendix. Numerical simulations and proofs are given in [11].
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Abstract. We propose a framework based on Network Formation Game
for self-organization in the Internet of Things (IoT). In this framework,
heterogeneous and multi-interface nodes are modeled as self-interested
agents who individually decide on establishment and severance of links to
other agents. Through analysis of the static game, we formally confirm
the emergence of realistic topologies from our model, and analytically
establish the criteria that lead to stable multi-hop network structures.

Keywords: Internet of Things · Topology control · Self-organization ·
Game theory

1 Introduction and Motivation

Through the past decade, the number of internet-enabled devices has been grow-
ing at an unprecedented rate. The paradigm of Internet of Things (IoT) envisions
an even more immersive and pervasive exploitation of internet connectivity by
enabling more objects and devices to connect. Emerging applications of this move
towards ubiquitous connectivity are wide and vast [1], ranging from domestic mon-
itoring and smart home solutions to healthcare solutions [2], smart grids [3], and
disaster monitoring [4]. It hence follows that instances of IoT will be comprised of
a great number of various devices, each with unique requirements and capabilities,
leading to heterogeneity both in terms of function and communications.

The inevitably high degree of heterogeneity and scalability of IoT, dim the
odds of feasibility and scalability for centralized control approaches [5]. An alter-
native to centralized architectures for IoT are those that rely on autonomic
management of connectivity and resources through self-configuration [6]. Such
solutions model the network as a system comprised of individual agents, each of
which aims to retain connectivity with the network while optimizing their objec-
tives, such as energy consumption and throughput. Even though this multi-agent
abstraction presents a promising approach towards scalability, the decentralized
nature of self-configuring IoT gives rise to many critical challenges in mechanism
design. Of the most critical of these challenges is the problem of topology con-
trol, which is further complicated by the heterogeneity of IoT devices. Owing
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
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to the similarity of distributed IoT and Ad Hoc networks, the literature on self-
organization and topological analysis of IoT are mainly focused on adopting
techniques that are originally developed for generic distributed networks such as
Wireless Sensor Networks (WSNs) [6]. Yet, unique features, such as the immense
diversity in capabilities and requirements in all aspects of IoT present major dis-
tinguishing factors that necessitate the development of techniques specific to the
challenges of this emerging technology (Fig. 1).

Internet

Disaster 
Monitoring

HealthcareSmart Grid and Cr cal 
Infrastructure 
Monitoring

Smart Home 
and Domes c 
Monitoring

Structural 
Monitoring

Fig. 1. Applications of IoT

The multi-agent model of IoT is comprised of opportunistic devices that aim
to maximize their success in fulfilling their individual objectives, such as preser-
vation of connectivity to the network, minimization of energy consumption and
maintenance of a minimum Quality of Service (QoS). The inherent limitation of
resources available to such opportunistic agents in any real-world deployment of
IoT gives rise to a competitive environment, which motivates a game theoretic
investigation of interactions in self-organizing IoT. The application of game the-
ory to distributed topology control and self-organization has been an active area
of research in recent years. Some of the notable literature in this area include the
work of Eidenbenz et al. [7] on the analysis of equilibria in topology control games,
Nahir et al.’s detailed investigation of applying game theory to various problems
of topology control [8], and Saad et al.’s proposal of a game theoretic algorithm for
cooperative relaying in [9], based on their earlier analysis of the formation of hier-
archical topologies in multi-hop networks [10]. The models presented in these and
many other topology control games, one critical limitation is the assumption on
homogeneity of the network. Recently, Meirom et al. proposed a model of topol-
ogy control games for heterogeneous AS-Level networks [11,12], which considers
some degree of heterogeneity, but only accounts homogeneous link costs.
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Based on the inevitable emphasis on the connectivity aspects of IoT net-
works, this paper builds on the aforementioned models to provide a framework
for analysis and design of distributed topology control mechanisms in IoT. The
proposed framework is based on modeling of self-organization as a Network For-
mation Game [13], in which the actions of players are establishment or severance
of links with other nodes in the IoT. Contrary to previous models, we consider
heterogeneity in both communications and link cost. The proposed model also
accounts for nodes equipped with multiple communication interfaces, thus sup-
porting modern devices such as smart phones. We provide an analytical deriva-
tion of the criteria required for formation of a clique topology between nodes
that are directly connected to the internet, and further develop this analysis to
present the necessary criteria which lead to formation of hierarchical and star
topologies between internet-connected nodes and the rest of the network.

The remainder of this paper is organized as follows: Sect. 2 details the model of
IoT networks, followed by the formulation of network formation game in Sect. 3.
Emergence of stable IoT topologies and their criteria is discussed in Sect. 4.
Finally, Sect. 5 concludes the paper with remarks on future areas of work.

2 IoT Network Model

The generic definition of IoT has given rise to numerous models for the network
structure and architecture [5]. In this work, IoT is considered to be a network
formed with the objective of enabling direct or relayed connectivity of hetero-
geneous nodes to the internet (or other backbone networks). Heterogeneity of
nodes entails diverse hardware and software parameters throughout the network,
such as the number and type of communication interfaces (e.g. WLAN, LTE,
Ethernet, etc.), energy constraints, and bandwidth requirements.

Accordingly, we model the IoT as a network G(P ) of N nodes P = {Pi |∀i ∈
{1, 2, ..., N}}, each with an arbitrary number of single channel radio interfaces.
This definition may be seamlessly extended to cover multi-channel radios as
well, via representing each as a group of single-channel radios. It is assumed
that all interfaces of a node can be active simultaneously, but as detailed in
Sect. 3, the effects of activating each additional interface on undesired aspects
such as co- and cross-interference, channel congestion, and energy consumption
may be suitably captured in the system cost function. The presented model also
allows that some, or all of the interfaces in nodes may remain idle throughout
the analyzed operation.

As the focus of this study is on topological properties, it is assumed that
nodes are static relative to each other. Also, we consider the case that every
node in the network is aware of its distance in terms of number of intermediate
hops with every other node in the network. This can be justified by reliance on
routing tables obtained from proactive network layer protocols such as OLSR
[14]. The extent of a node’s knowledge of the overall network topology is assumed
to be limited to its directly connected neighbors.

Nodes are classified in two categories: Those with direct connectivity to the
internet, such as WiFi Access Points and 3G/LTE Enabled Devices, and those



Game-Theoretic Model of Self-organization in IoT 77

which need to be connected to the internet via the nodes in the former group,
such as Bluetooth/Zigbee sensors. Let the set of Internet Connected (IC) nodes
GI ∈ P denote the set of nodes with direct connection to the internet, and
the set of non-ICs GS ∈ P\GI is the set of nodes that do not have a direct
connection to the internet. The emerging network is thus hierarchical with at
least two tiers: a higher tier formed by IC nodes, and a lower tier comprised
of non-IC nodes who aim to connect to the higher tier. Hence, an important
objective of IoT network controllers, whether centralized or distributed, is to
enable the connection to the internet to the non-IC node, via linking them to
one or more IC nodes. In line with practical network protocols, a further limit is
imposed to the maximum number of hops that may exist between each pair of
nodes, denoted by hMax. The following section provides the details of one such
controller based on a game theoretical framework known as Network Formation
Games.

3 Game Formulation

Formation of macro-scale topologies in distributed networks is the collective
result of the individual decisions made by each nodes on which set of nodes to
connect with, and which links to severe. With the assumption that every such
node aims at gaining more utility from its decisions and consequent actions, this
interaction of multiple decision makers can be formulated as a Network Forma-
tion Game [13]. Such games are comprised of competing agents who control the
set of nodes they are connected to, with the common objective of forming coali-
tions of nodes that is most profitable for the deciding agent. It is evident that
the game being considered in this work is of the non-cooperative type, since the
decisions are made independently. Another assumption adopted in our proposal
is that a link between two nodes is established if, and only if, both nodes consent
to its establishment. This assumption emulates the real-world phenomenon that
occurs in cost-optimizing distributed networks. A simple, yet realistic example
is depicted in Fig. 2. This figure illustrates a network formation game in which
the objective of all players is to minimize their cost while maintaining their
reachability from any other player by at most one intermediate hop - a property
that we shall label as one-hop-reachable. The cost incurred to each player of this
game is the cost of establishing their immediate links (denoted by edge weights
in Fig. 2), which is assumed to be the same for both of the linked nodes. If two
nodes are not one-hop-reachable, their cost is set to be infinity. For instance,
the cost incurred to node B is the cost of establishing the link BC plus the
cost of establishing BD, i.e. 2 + 4 = 6. As is shown in the figure, for node C
to be one-hop-reachable to node A, the minimum cost is obtained by relaying
through node D. Yet for node D, establishment of a link to node C does not
bring any utility but losses, as node D has already established a cheaper path
to C via node B, and is directly connected to node A. Hence, node D will not
consent to spending its limited bandwidth and energy to relay a transmission
that gains him no benefits. Consequently, nodes A and C settle on establishing
an expensive direct link to avoid the infinite cost of unreachability.
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Fig. 2. Example of the mutual consent in Myerson games

Network formation games that are based on consensual establishment of links
are known as bilateral linking or Myerson games [15], which is a widely adopted
model in game theoretic distributed topology control, mainly due to its agree-
ment with the opportunistic behavior of agents in decentralized networks. Our
proposed framework builds atop of the previous work on bilateral link formation
by extending the application of the Myerson model to considerations beyond that
of minimizing energy consumption as the sole objective of the game, replacing
the abstracted link establishment parameters with those of real wireless inter-
face characteristics and propagation model, and filling the gap in self-organizing
IoTs by providing a novel cross-layer framework for analytical design and eval-
uation of protocols and parameters involved in the distributed formation of IoT
topologies.

Even though the real phenomenon of network formation in ad hoc communi-
cations networks is of a dynamic nature, this work concentrates on the analysis
of a static bilateral linking game, with the aim of gaining insights on the charac-
teristics of emerging stable topologies, along with the criteria that leads to their
emergence. Similar to every other game, our proposed Myerson game is formed
of players, set of strategies, and a payoff/cost structure, the details of each are
presented in this section.

3.1 Players

Let P = {p1, p2, ...pN} denote a group of N agents. Each agent pi is characterized
by the following features:

– Ordered set of its radio interfaces Ri, where |Ri| is the number of interfaces
and Ri(r ∈ {1, 2, ..., |Ri|}) ∈ {0, 1} is a binary value, indicating whether the
interface is currently being used or not.

– Frequency of operation for each radio interface fi,r
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– Maximum bandwidth for each radio interface bi,r

– Minimum required bandwidth bMax
i

– Maximum transmit power for each radio interface τi,r

– Receiver sensitivity for each radio interface §i,r

– Maximum antenna gain for each radio interface xi,r

– 2-D Position γi = (xi, yi)
– Feature tuple for each interface wi,r = (fi,r, bi,r, b

Max
i , τi,r, Si,r, xi,r, γi)

Define the network topology G = {gij : i, k ∈ P, i �= j}. If a bidirectional
link is established between pi and pj , then gij = (ri, rj), where ri ∈ Ri is the
interface chosen by the node i to communicate with the corresponding interface
in node j, i.e. rj ∈ Rj . If there is no direct link between i and j, gij = (−1,−1).

3.2 Strategies

Let Ci denote the cost function for every node pi. Any node pi ∈ P may form
a link gij = (ri, rj) with any node pj in the neighborhood M(i), defined as the
set of all nodes that fall within the maximum communications range of i, if:

1. Nodes must have at least one type of radio interface available and in common,
i.e.:

2. ΔC(pi, G + (ri, rj)) < 0
3. ΔC(pj , G + (ri, rj)) < 0

Where ΔC(pK , G+(rk, rl)) = C(pk, G∪{(rk, rl)})−C(pk, G) is the difference
between the total cost to node pk by establishing the link (rk, rl) and the total
cost to pk without the establishment of this link.

Agent pi may remove a link with agent pj in M ′ ⊂ Rc
k{Ri(k) �= (−1,−1)} if:

ΔC(pi, G − (ri, rj)) < 0

Where ΔC(pk, G− (rk, rl)) = C(pk, G\{(rk, rl)})−C(pk, G) is the difference
between the cost incurred by node pk removing the link (rk, rl) and the cost
incurred by maintaining this link.

3.3 Payoff Structure

For each node pi, the payoff of forming a direct link is dependent on the set of
objectives listed below:

1. Minimize the total cost of link establishment
∑deg(pi)

z=1 L′
i(z)

2. Minimize the hop distance to all nodes in the network, with priority over
minimizing distance to the nodes directly connected to the internet.

3. Minimize energy consumption by avoiding excessive relay transmissions
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The corresponding cost function for each node is thus formulated as:

C(i, G) = Ci =
deg(pi)∑

z=1

L′
i(z) + Γ

∑

j∈GI

h(i, j)

+
∑

k∈GS

h(i, k) + Bi (1)

Where L′
i(z) is the cost of establishing the z-th link of pi, with deg(pi) denot-

ing the number of links established by pi. Let Li(z) be the link between nodes i
and z. To model the link cost, the following factors are considered:

– Li(z) is directly proportional to the minimum transmission power required
for z to receive the signal. The transmission power depends on the fading
model and noise on the channel, which generally is inversely proportional to
the Euclidean distance between nodes, their antenna gains, and the receiver
sensitivity. Every interface has a maximum budgeted transmit power , beyond
which Li(z) = ∞

– L − i(z) is directly proportional to the number of connections established on
interface Ri(r). The more this number is, the more congestion is expected
and hence the throughput suffers.

– Li(z) is inversely proportional to bandwidth. Higher the bandwidth, higher
the throughput will be.

Hence, a generic formulation for Li(z) is constructed as:

deg(pi)∑

z=1

L′
i(z) =

|Ri|∑

r=1

Ri(r)
∑

z∈Ps.t.giz=(Ri(r),o)

α.ρi.
σir

βir
(2)

Where α is a constant factoring the effect of each additional link on interface
Ri(r), ρi is the relative importance of preserving energy to achieving the desired
throughput, σir is the power transmitted by pi on this link, and βir is the ratio
of the available bandwidth to the required bandwidth, i.e.:

βir =
bir

bMin
i

(3)

The factor Γ ≥ 1 is the weighting factor for tuning the emphasize on min-
imizing the shortest hop-distance h(i, j) to every IC node j ∈ GI . Bi is the
bridging coefficient of node pi, estimating the local burden of bridging commu-
nities and thus modeling the relative amount of relay transmissions that pi may
have to handle for its neighbors. It is shown in [16,17] that the higher values
of bridging coefficient represent a higher risk of congestion, as well as collisions.
Bridging coefficient is calculated as:

Bi =
1

deg(i)
∑

j∈{k:gik �=(−1,−1)}
1

deg(j)

(4)
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4 Equilibrium Topologies in Static Game

This section investigates the criteria which enable the emergence of stable and
efficient topologies from the proposed network formation mechanism. Having a
game theoretic abstraction of the problem, we study the characteristics of stable
networks by analyzing the equilibria of our model. One of the most intuitive types
of equilibrium is the Nash equilibrium, defined as strategy profiles at which no
player can increase its profit by unilaterally deviating from that profile, hinting
at a stable outcome. Yet, Nash equilibrium is shown to be a weak notion for
stability in network formation games [18]. Considering the bilateral nature of link
formation in such games, stability of outcomes is characterized more accurately
by considering bilateral deviations. To satisfy this requirement, we consider the
notion of pairwise stability [18]. A strategy profile is said to be pairwise stable
if no unilateral or bilateral deviations could increase the utility of the players.
Formally, a topology G is pairwise stable if the following conditions are met:

1. ∀i, ij ∈ G,C(i, G) ≤ C(i, G − ij)
2. ∀i, j /∈ G, if C(i, G + ij) < C(i, G) then C(j,G + ij) > C(j,G)

In the following subsections, we utilize pairwise stability in the formal analysis
of stable topologies that can emerge from the proposed model.

4.1 Formation of Cliques

A notable number of recent literature on bilateral link formation games are based
on models that result in systematical limitation of pairwise stability to forest and
tree topologies (e.g. [19,20]) This property greatly neuters the applicability of
such models to IoT. As discussed in Sect. 2, nodes in IoT are categorized as either
Internet-Connected (IC) or non-IC. It is intuitive to assume that each IC node
is directly connected to every other IC nodes through the internet connection,
thereby the set of all IC nodes inherently forms a clique. Therefore, if the cost of
link establishment is bounded by a critical value, it is expected that the clique
remains stable. In the following theorem, we prove that under certain criteria,
this topology is indeed pairwise stable.

Theorem 1. Let Li(k) be the maximum cost for any internet-connected node
pi ∈ GI to establish a link with node pk ∈ GI . If Li(k) < Γ − 1, then the nodes
in GI form a clique.

Proof. Assume a node pi that is yet to establish connections to any node in G.
For any node pk ∈ GI , the cost difference of establishing a link is given by:

C(pi, G + gik) = C(pi, G ∪ {ri, rk)}) − C(pk, G)
= Li(k) + Γ (−1) + 0 + ΔBi (5)
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Where

ΔBi =
1

deg(i)+1
∑

j∈{∀ζ|giζ �=(−1,1)}
1

deg(j) + 1

−
1

deg(i)
∑

j∈{∀ζ|giζ �=(−1,1)}
1

deg(j)

(6)

Considering the minimum and maximum values of deg(i) and∑
j∈{∀ζ|giζ �=(−1,1)}

1
deg(j)}, it is trivial to show that:

0 < ΔBi < 1

Hence, the maximum valid value of the cost difference is given by:

ΔC(pi, G + gik) = Li(k) − Γ + 1 (7)

For this cost difference to be feasible for all nodes in GI , the following con-
dition must be satisfied:

ΔC(pi, G + gik) < 0
⇒ Li(k) − Γ + 1 < 0

⇒ Li(k) < Γ − 1 (8)

If this condition holds true, establishment of a link between any pair of nodes
in GI decreases the cost for both nodes, hence leading to a clique topology.
Inversely, severing any link in the resulting clique by any node i ∈ GI would
impose a higher cost to i than gain. Therefore, this criteria leads to cliques that
are pairwise-stable.

4.2 Formation of Stars and Hierarchies

Having established the criteria for the proposed model to result in a realistic
stable topology for IC nodes, we study the topologies that emerge under this
criteria for non-IC nodes. First, we derive the conditions that result in every
non-IC node being linked to at most one of the IC nodes. Then, we derive the
necessary conditions for formation of star clusters between non-IC nodes and IC
nodes.

Theorem 2. If Li(k) < Γ − 1, the maximum number of links between any non-
IC node j ∈ GS and the set of Internet-connected nodes GI is 1.

Proof. Assuming there already exists a link between i ∈ GI and j ∈ GS , the
maximum cost difference of establishing a second link from another node i′ ∈
GI\{i} to j is:

ΔC(i′, G + gi′j) = Li′(j) − Γ + 0 + 1 (9)
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For this link to be feasible for i′, the following condition must be met:

ΔC(i′, G + gi′j) < 0
⇒ Li′(j) < Γ − 1 (10)

Therefore, if the minimum cost of connection to a node j ∈ GS satisfies
Li′(j) > Γ − 1, every non-IC node is connected to at most one IC node.

In the following theorem, we derive the conditions under which every non-
IC node is directly connected to an IC node, thus forming star-shaped clusters
whose centers are IC nodes.

Theorem 3. Let Li(k) < Γ −1 and Li′(j) > Γ −1, the maximum degree of any
non-IC node j ∈ GS is 1 iff ∀j′ ∈ GS \ j, Lj(j′) > 1

2 .

Proof. Theorem 2 proves that under the aforementioned conditions, the maximum
number of links between any non-IC node and all IC nodes is 1. Assume that j
establishes is a second link to a node j′ ∈ GS . The cost difference is given by:

ΔC(j,G + gjj′) = Lj(j′) + 0 − 1 +
1
2

(11)

For this action to be infeasible, the cost difference must be positive. Therefore:

Lj(j′) + 0 − 1 +
1
2

> 0

⇒ Lj(j′) >
1
2

(12)

As a corollary of Theorem 3, it is worth noting that if G is connected and
the conditions of Theorems 1 and 2 are satisfied, but condition of Theorem 3 is
not, then the resulting topology contains nodes that have one link to the IC set,
but are connected to one or more non-IC nodes. Such nodes act as gateways and
relays for other non-IC nodes connected to them, and the emerging topologies
have more than the original 2 levels of hierarchy, namely IC and non-IC. Conse-
quently, this model allows for resource planning by determination of nodes that
are bound to become relays, and therefore require higher communications and
processing capabilities.

5 Conclusions

In this paper, we proposed a model for self-organization in IoT based on bilat-
eral link formation strategies. The model captures the heterogeneity of devices
in IoT, as well as the emphasis on connectivity to the internet in the proposed
cost function. The subsequent analysis of the static game established the cri-
teria for emergence of cliques between the set of internet-connected nodes, as
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well as multi-hop and star structures. Following the proposed model, further
analysis of the static game may provide insights into the efficiency of emerging
topologies, and establish the criteria for derivation of optimal network struc-
tures. Furthermore, this model provides a foundation for design and evaluation
of dynamic games and algorithms for distributed self-organization in heteroge-
neous networks such as IoT.
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Abstract. We study a dynamic mechanism design problem for a net-
work of interdependent strategic agents with coupled dynamics. In con-
trast to the existing results for static settings, we present a dynamic
mechanism that is incentive compatible, individually rational, budget
balanced, and social welfare maximizing. We utilize the correlation
among agents’ states over time, and determine a set of inference sig-
nals for all agents that enable us to design a set of incentive payments
that internalize the effect of each agent on the overall network dynamic
status, and thus, align each agent’s objective with the social objective.

Keywords: Security games · Dynamic mechanism design · Epidemics
over networks

1 Introduction

Recently there has been a growing body of literature studying the dynamic
behavior of networked strategic agents, where each agent’s state and utility is
affected by his interactions with his neighbors in the network. This literature
is motivated by various applications that include opinion dynamics in social
networks, epidemics spreading in networks, dynamic adoption of new products
and technologies over networks, and network security. In this paper, we study a
model of dynamic networked agents motivated by a network security application.

We consider a dynamic network with strategic agents who privately observe
their own security state and are only interested in maximizing their own utility.
We formulate a mechanism design problem for a network manager whose objec-
tive is to dynamically allocate his limited security resources in the network so
as to maximize the overall security of the whole network over time.

We assume that an agent’s utility depends on his own private security state as
well as the externality he receives from his neighbors in the network. Moreover,
an agent’s security state dynamically evolves over time; its evolution depends
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on the security resources the agent receives from the network manager, as well
as direct external attacks launched from outside of the network and indirect
internal attacks launched from his unsafe local neighbors in the network. There-
fore, the network manager needs to design a dynamic incentive mechanism for
agents with correlated types and interdependent valuations so as to align their
selfish objectives with his own objective, which is the maximization of the overall
security of the whole network.

We propose a dynamic incentive mechanism that is individually rational and
budget balanced [3], and enables the network manager to achieve the socially
efficient outcome. Our result is in contrast with the existing impossibility results
for incentive mechanisms that are socially efficient, individually rational, incen-
tive compatible, and budget balanced in the static settings [22]. We exploit the
dynamic correlation among the agents’ security states and determine a set of
inference signals for all agents over time. Utilizing the proposed set of inference
signals, we characterize a dynamic incentive mechanism that ensures the agents’
incentive compatibility and individual rationality, achieves a socially efficient
outcome, and is ex-ante budget balanced.

There is a growing body of literature on network security games (see [18] and
references therein). One set of papers assume that network agents are cooper-
ative, and study the interactions between the network as a whole and an out-
side attacker as a two-player attacker-defender game [4,13,17]. Another set of
papers assume an exogenously-fixed attack behavior from outside the network,
and study the interactions between strategic agents within the network as a net-
work game problem (see [9,15] and references therein). For instance, the work of
[10] studies a network security game with strategic agents, and shows that the
equilibrium outcome of the game can be very poor compared to the social opti-
mum, and this gap tends to increase with the increase in network size and the
agents’ interdependence. In our work, we study the dynamic interactions among
agents within the network. However, we take the mechanism design approach
rather than analyzing the resulting security game for a given environment.

The existing literature on mechanism design for network security considers
mainly static incentive design problems. For instance, the work of [16] investi-
gates the role of cyber-insurance as an incentive instrument for agents to increase
their security investment in self-protection. The work of [22] studies the mech-
anism design problem for general networks with strategic agents in static set-
tings, and shows that there exists no incentive mechanism that can implement
the socially efficient outcome, while ensuring individual rationality, incentive
compatibility and (weak) budget balance. Our paper contributes to this set of
literature by showing that this impossibility result does not hold for dynamic
settings. The fact that the agents’ incentive problem improves in dynamic set-
tings has been previously shown by works that look at security games in repeated
settings (see [10,21]). Our work is different from those that consider repeated
game settings. First, we take a mechanism design approach rather than analyzing
a repeated game setting. Second, in repeated game settings there is no system
dynamics, and the existing results are based on the reputation that agents mutu-
ally form over time. Our work provides another insight for such improvements
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in dynamic settings by capitalizing on the coupling among the agents’ security
dynamics over time.

The model we consider in this paper is also related the literature on
Susceptible-Infected-Susceptible (SIS) epidemic models over networks with
strategic agents (see [23] and references therein). For instance, the works of [8,24]
study different variations of SIS epidemic models over networks with strategic
agents from a game-theoretical approach. The authors in [24], investigate a game
setting where agents make one-time investment decisions in their security which
then affect the epidemic process. The work of [8] studies a marketing problem on
networks using a SIS epidemic model, and investigates a game problem between
two firms which compete for market shares over the network.

The mechanism design problem we consider in this paper can also be viewed
as a dynamic resource allocation mechanism with strategic agents. The work
of [12] studies the resource allocation problem in networks with non-strategic
agents. The authors in [6,11] consider the resource allocation problem in sta-
tic networks with strategic agents, take an implementation theory approach,
and propose resource allocation mechanisms that are social welfare maximizing,
individually rational and budget balanced. In this paper, we consider a class of
dynamic resource allocation problems with strategic agents, and we present a
dynamic resource allocation mechanism that is social welfare maximizing, incen-
tive compatible, individually rational and ex-ante budget balanced.

The rest of the paper is organized as follows. We present our model in Sect. 2.
We formulate the dynamic incentive design problem and characterize its solution
in Sect. 3. We show that the dynamic incentive mechanism proposed in this paper
can implement the solution of the corresponding dynamic centralized optimal
resource allocation problem. In Sect. 4, we formulate such a centralized resource
allocation problem as a centralized stochastic control problem and provide its
solutions for a set of specific network topologies. The proofs of all the results
that appear in this paper can be found in [7].

2 Model

There are n strategic agents each one residing in a distinct node of an intercon-
nected network interacting over time t ∈ T := {0, 1, 2, . . .}. At each time t ∈ T ,
the security state of agent i is given by θi

t ∈ Θ := {0, 1}; the realization of θi
t

is agent i’s private information. Agent i’s state is safe if θi
t = 1 and is unsafe if

θi
t = 0. We refer to θi

t as agent i’s type at time t. There is a network manager
who takes security measures dynamically over time so as to defend the network
against external attacks and/or propagation of internal attacks. The security
state θi

t of agent i dynamically evolves over time; θi
t’s evolution depends on the

security state of his neighbors in the network, the network manager’s actions,
and the probability of external attacks.

System Dynamics. We represent the agents’ network by a directed graph
G = (N,L) where N = {1, ..., n} and L ∈ R

n×n
+ denote the set of agents and

the set of directed links between them, respectively. The state θi
t of agent i
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is affected by agent j if lji > 0. We define the set of agent i’s neighbors as
N i: = {j : lji > 0}. During each time t ∈ T , if agent i is in the safe state, i.e.
θi

t = 1, it may be attacked directly from outside with probability di, or indirectly
from any of his unsafe neighbors j ∈ N i with probability lji. The topology of the
network G and the probability of outside attacks di remains the same over time.

The goal of the network manager is to maximize the overall security of the
network over time, i.e. maximize the social welfare. At each time t, the manager
can choose one agent at ∈ N and apply a security measure to him. As a result
of applying the security measure to agent i, i.e. at = i, if agent i is in the unsafe
state he will switch to the safe state with probability h. The security measure
also protects the chosen agent against direct attacks from outside during time t
with the same probability h, but it does not affect the indirect spread of attacks
within the network.

Let θt = (θ1t , . . . , θn
t ) ∈ Θn denote the security state of the network at time

t. As a result of the network manger’s action at, new direct attacks from outside,
and the spread of indirect attacks within the network during time t, the network
state θt+1 has the following Markovian dynamics:

P{θt+1 = b|θt, at} =
n∏

i=1

P{θi
t+1 = bi|θt, at}, ∀b ∈ Θn, (1)

where,

P{θi
t+1=1|θt, at}=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, θi
t = 0, i �= at

h(1 − di(1 − h))
∏

j∈Ni:θj
t=0 (1 − lji), θi

t = 0, i = at

(1 − di)
∏

j∈Ni:θj
t=0 (1 − lji), θi

t = 1, i �= at

(1 − di(1 − h))
∏

j∈Ni:θj
t=0 (1 − lji), θi

t = 1, i = at

, (2)

and P{θi
t+1 = 0|θt, at} = 1 −P{θi

t+1 = 1|θt, at}. We note that by (1) and (2) we
assume that the outside attacks and attack spreads within network are indepen-
dent across different agents, and thus, conditioned on previous state θt and the
network manager’s action at, the agents’ security states evolve independently as
in (1). Equation (2) describes this evolution: (i) if agent i is in the unsafe state
and is not receiving any security measure from the network manager at t, he
remains in the unsafe state; (ii) if agent i is in the unsafe state and receives
the security measure from the network manager, he will restore his security if
the security measure is successful (prob. h), he is not the subject of new direct
attacks (prob. (1 − di(1 − h))), and he is not attacked by his unsafe neighbors
(prob.

∏
j∈Ni:θj

t=0 (1 − lji)); (iii) similarly, if agent i is in the safe state and is not
receiving a security measure, he will remain in the safe state if he is not attacked
from outside (prob. 1−di) and he is not attacked by his unsafe neighbors (prob.∏

j∈Ni:θj
t=0 (1 − lji)); (iv) if agent i is in the safe state and is receiving a secu-

rity measure from the network manager, he will remain in the safe state if he
is not attacked from outside (prob. 1 − di(1 − h)) and he is not attacked by his
neighbors that are in an unsafe state (prob.

∏
j∈Ni:θj

t=0 (1 − lji)).
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Agents’ Utilities. Each agent i ∈ N has a valuation for his security state θi
t as

well as the security state of his neighbors θj
t , j ∈ N i, and the security measures

he receives from the network manager; this valuation is given by,

vi(θt, at) = θi
t +

α

|N i|1{θi
t=1 or at=i}

∑

j∈Ni

θj
t , (3)

where 0 < α < 1 captures the value of a safe neighborhood to an agent i. As a
result of (3), agent i has a positive valuation for safe neighbors only if he is in
the safe state or he is receiving a security measure at t, i.e. {θi

t = 1 or at = i}.
Let pi

t denote the monetary payment made by agent i to the network manager
at t (pi

t ∈ R). Then the total utility of agent i at t is given by,

ui
t(θt, at, p

i
t) = vi(θt, at) − pi

t, (4)

Let δ ∈ (0, 1) denote the common discount factor. Then the total discounted
utility of agent i ∈ N , is

U i = (1 − δ)
∞∑

t=0

δtui
t(θt, at, p

i
t) = (1 − δ)

∞∑

t=0

δt(vi(θt, at) − pi
t) . (5)

The network manager’s objective is to maximize the social welfare W given by,

W = E{(1 − δ)
∞∑

t=0

δt
n∑

i=1

vi(θt, at)}. (6)

The network manager’s problem would be a standard control problem
(Markov decision problem) if the manager knew θt for all t. However, θt is not
known to the manager; θi

t, i ∈ N , is agent i’s private information. Thus, in order
to take a security measure at any time t, the manager has to elicit information
about each agent’s security status. Since all agents are selfish (strategic) and
want to maximize their own utility given by (5), they do not voluntarily reveal
their information to the manager. Therefore, the manager needs to design an
incentive mechanism so as to align the agents’ objectives with his own objective.
In this paper, we investigate such an incentive design problem, and formulate it
as a mechanism design problem in Sect. 3.

3 Dynamic Incentive Design Problem

We invoke the revelation principle for dynamic games [20], and, without loss
of generality, restrict attention to direct revelation mechanisms that are incen-
tive compatible. In a direct revelation mechanism, at every t ∈ T , the net-
work manager asks agents to report their current security state. Let ri

t denote
agent i’s report for time t, which is not necessarily the same as θi

t. Let
ht := {ri

s, i ∈ N, s ≤ t} denote the history of reports and Ht denote the set
of all possible histories at t. A direct mechanism is captured by a set of func-
tions (π(.), p(.)) = {πt(·), pi

t(·), i ∈ N, t ∈ T } that the network manager designs
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and commits to them, where πt : Ht → N determines which agent receives the
security measure at t, and pi

t : Ht → R, i ∈ N , determines the monetary pay-
ment (or the negative of the monetary incentive) that agent i makes (receives) at
time t based on the history up to t. A direct mechanism is incentive compatible
(IC) if at every t ∈ T every agent is willing to report truthfully his security state
given that the other agents report truthfully. That is, for every agent i ∈ N and
for all reporting strategies {σi

τ : Θ × Hτ → Δ(Θ), τ ≥ t}, truth telling results in
higher expected utility at every t ∈ T and ht ∈ Ht, i.e.

E{(1 − δ)
∑∞

τ=t δτ−t
[
vi(θτ , πτ (θ−i

τ , θi
τ )) − pi

τ (θ−i
τ , θi

τ )
]
} ≥

E{(1 − δ)
∑∞

τ=t δτ−t
[
vi(θτ , πτ (θ−i

τ , στ (θi
τ , hi

τ ))) − pi
τ (θ−i

τ , στ (θi
τ , hi

τ ))
]
},

(7)

where Δ(Θ) denotes the set of all probability distributions on Θ.
The network manager also needs to ensure that agents voluntarily participate

in the direct mechanism (π(.), p(.)). Let U i
0 ≥ 0 denote agent i’s expected utility

by opting out of the mechanism. Then, agents’ voluntary participation is ensured
by the following individual rationality (IR) constraints as follows,

E{(1 − δ)
∞∑

τ=0

δτ
[
vi

τ (θτ , πτ (θ−i
τ , θi

τ )) − pi
τ (θ−i

τ , θi
τ )

]
} ≥ U i

0,∀i ∈ N. (8)

Therefore, we can formulate the dynamic incentive design problem for the
network manager as follows:

max
π(·),p(·)

E{(1 − δ)
∞∑

t=0

δt
n∑

i=1

vi(θt, at)} (9)

subject to IC constraints (7) and IR constraints(8)

The incentive design problem formulated above is a dynamic mechanism
design problem with correlated types and interdependent valuations. It is a
dynamic mechanism design (in the strategic sense) since agents’ incentive con-
straints at any time t depend on their strategic decisions at other times. More-
over, since the evolution of security states, given by (2), are coupled among
agents, the agents’ types are correlated with each other and over time. Further-
more, each agent’s utility, given by (3), depends on his neighbor’s security states
in addition to his own security state, thus, agents have interdependent valuations.
As a result of the correlation among agents’ types and agents’ interdependent
valuations, the dynamic generalizations of the Vickrey–Clarke–Groves (VCG)
mechanism [2] and that of d’Aspremont and Gerard-Varet (AGV) mechanism
[1] cannot be used to solve the network manager’s problem (9).

In this paper, we present an alternative approach to the dynamic incen-
tive design problem by the network manager. We utilize the correlation among
agents’ security states over time to form a set of cross inference signals that
enable us to internalize the effect of each agent’s security state on the overall
network security through incentive payments. The idea of utilizing the correla-
tion among agents’ types to extract their private information was first exploited



92 F. Farhadi et al.

by Cremer and McLean in a static setting [5]. They formed a cross inference
signal for each agent by utilizing the correlation among the realization of agents’
types, determined appropriate incentive payments that depend on the cross infer-
ence signals, and extracted the agents’ private information. Liu [19] considered
a dynamic setting with coupled dynamics, and utilized the inter-temporal cor-
relation among agents’ types to form cross inference signals for each agent that
lead to truthful reporting at each time instant.

We provide a similar approach as the one in [19]. We utilize the inter-temporal
correlation between agent i’s security state θi

t at t and other agents’ security state
θj

t+1, j �= i, at t + 1 and form a cross inference signal that determines agent i’s
payment over time. We show that such cross inference signals enable the network
manager to align the agents’ self-interests with the overall social interest, and
maximize the social welfare W .

3.1 Specification of the Mechanism

In this section we present a ‘Dynamic Cross Inference’ (DCI) mechanism that
maximizes the social welfare subject to the IC and IR constraints (9). The
description of our mechanism is divided into two parts: the allocation policy
{πt(·), t ∈ T }, and the monetary transfers {pi

t(·), i ∈ N, t ∈ T }.

Allocation Policy. The specification of the allocation policy is based on the
premise that the mechanism is incentive compatible. In an incentive compati-
ble mechanism the agents report their security states truthfully. Therefore, the
network manager is faced with a stochastic control problem with complete infor-
mation. We design the allocation policy of our mechanism to be an optimal
solution to this problem which we denote by π∗, i.e., πt = π∗(rt), ∀t ∈ T . In
Sect. 4, we discuss how the network manager can find such an optimal policy.

Monetary Transfers. To obtain an incentive compatible mechanism, we design
monetary transfers so that they exactly align the incentives of each agent with
the social welfare. Since agents’ valuations are interdependent, we cannot use the
idea of Groves’ mechanism by simply paying each agent i the total valuations
of other agents, because the valuations of agents except i depend directly on
the report of agent i, and this creates incentive for misreporting. To fix this, we
utilize the correlation between agent i’s security state θi

t at t and other agents’
security states θj

t+1, j �= i, at t + 1 and form a cross inference signal about the
security state of agent i which is independent of his own reports. We use this
cross inference signal to align the objective of agent i with the social welfare.

Specifically, let r−i
t denote the report profile of all agents except agent i at

time t. We define the cross inference signal for agent i at time t as follows:

mi
t =

{
0, if rj

t+1 = 0,∀j ∈ Oi,

1, otherwise,
(10)

where Oi := {j ∈ N : i ∈ N j} is the set of output neighbors of agent i. If at time
t+1, all output neighbors of agent i report to be unsafe, the manager interprets
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this as a signal that agent i was unsafe at time t. Otherwise, he assesses agent i
as a safe agent.

By using the cross inference signal mi
t, we construct payments pi

t+1 such that,
in expectation, at time t+1 agent i receives the sum of time-t flow valuations of
all other agents. So agent i’s continuation payoff at time t is equal to the social
surplus from time t onward. With this in mind, we define the tax pi

t+1(m
i
t, r

−i
t , at)

to be paid by each agent i at time t + 1, as the solution to the following system
of linear equations:

P(mi
t = 0|θi

t, r
−i
t , at)pi

t+1(0, r−i
t , at) + P(mi

t = 1|θi
t, r

−i
t , at)pi

t+1(1, r−i
t , at) =

− 1
δ

∑

j �=i

vj(θt, at),∀θi
t ∈ Θ, (11)

where P(mi
t|θi

t, r
−i
t , at) is the probability of mi

t given θi
t, r−i

t and at, assuming
truthful reports of agents except i, i.e. r−i

τ = θ−i
τ , τ = t, t + 1.

Lemma 1. For any at and r−i
t , the system of equations (11) has a solution.

Therefore, payments pi
t+1 are always well-defined. Using these payments the

network manager is able to align the objective of each agent with the social
welfare since,

vi(θt, at) − δ E{pi
t+1(m

i
t,θ

−i
t , at)} =

∑

j∈N

vj(θt, at). (12)

This feature is the key to proving the main result of this paper stated below.

Theorem 1. The DCI mechanism maximizes the social welfare and satisfies
the IC and IR constraints, therefore, it is an optimal solution to the dynamic
incentive design problem (9) for the network manager.

3.2 Budget Balance

The DCI mechanism proposed in Sect. 3.1 efficiently solves the problem net-
work manager faces (9), however, the transfers are not budget balanced. When
the agents adopt truthful strategies, the total amount of monetary transfers
the network manager receives from the agents is negative. This means that the
mechanism runs large deficits subsidizing agents. In this section we show that
this budget deficit can be alleviated by introducing a set of participation fees.

At time t = 0 and before realizing the first period’s security states θi
0, each

agent i can decide whether or not to participate in the mechanism1. If he decides
to participate, he should pay a participation fee p̃i

0. We construct participation
fees such that in expectation, their total amount is equal to the total amount of
future subsidies. We define the participation fee of agent i by

p̃i
0 =

−1
N − 1

∑

j �=i

E{
∞∑

t=0

δtpj
t}, (13)

1 Equivalently, we can assume that all agents start from the safe state θi
0 = 1.
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where the expectation is taken with respect to agents’ strategies determined by
the mechanism, the initial distribution of the security states which is assumed
to be known to the network manager and the agents, and the dynamics of the
security network. Adding these fees balances the budget as

∑

i

p̃i
0 + E{

∞∑

t=0

δtpi
t} = −E{

∞∑

t=0

δtpi
t} + E{

∞∑

t=0

δtpi
t} = 0. (14)

Therefore, the DCI mechanism with participation fees is ex-ante budget bal-
anced. With the introduction of the participation fees, an agent might rather
stay out of the mechanism to avoid paying the participation fee while he still
enjoys the positive externality that he receives from other agents’ participation
in the mechanism. Below, we show that for sufficiently patient agents, all agents
voluntarily participate in the DCI mechanism with participation fees.

Theorem 2. For δ sufficiently close to 1, the DCI mechanism with participa-
tion fees is ex-ante budget balanced, satisfies the IC and IR constraints, and
maximizes the social welfare W .

4 Dynamic Optimal Policy for the Network Manager

In this section, we study the control problem that the network manager must
solve to find an optimal allocation policy π∗, when the agents reveal their secu-
rity states {θt} truthfully. In this case, the network manager is faced with a
Markov decision process (MDP) with perfect observations, where the transition
probabilities are given by (1) and (2) and the instantaneous reward is given by

r(θt, at) :=
n∑

i=1

vi(θt, at). Using dynamic programming [14], the network man-

ager can solve this problem numerically, and find an optimal policy. However,
there are some settings where qualitative properties of an optimal policy can be
derived analytically. In the following, we discover qualitative properties of an
optimal policy within the context of a specific network topology.

Example. Consider a circular network with n = 4 agents, where h = 1, di = 0,
and lij = l ≤ 0.5, for all i, j that are adjacent agents. The next proposition fully
describes an optimal policy for this setting and the behavior of the corresponding
value function.

Proposition. (i) An optimal policy π∗ applies the security measure to one of
the head ends of the shortest ‘run of unsafe agents’. A run of unsafe agents of
length k is a succession of k unsafe agents consecutively located between two
safe agents.

(ii) The value function V ∗(.) induces a complete ordering on the set of states,
such that a state with a greater number of safe agents is strictly preferred to a
state with smaller number of safe agents. In the case of equality, the state with
a longer run of unsafe agents is strictly preferred.
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The above proposition provides two metrics in comparing security states: (1)
the number of safe agents and (2) how close the unsafe agents are to one another.
Numerical results show that these two metrics still work in symmetric circular
networks with an arbitrary number of agents. This means that if l is below a
certain threshold, an optimal policy tries to first maximize the number of safe
agents, and then, bring the unsafe agents close to one another. To do so, the
network manager applies the security measure to one of the head ends of the
shortest run of unsafe agents.
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Abstract. In a finite game the Stochastically Stable States (SSSs) of
adaptive play are contained in the set of minimizers of resistance trees.
Also, in potential games, the SSSs of the log-linear learning algorithm
are the minimizers of the potential function. The SSSs can be charac-
terized using the resistance trees of a Perturbed Markov Chain (PMC),
they are the roots of minimum resistance tree. Therefore, computing the
resistance of trees in PMC is important to analyze the SSSs of learn-
ing algorithms. A learning algorithm defines the Transition Probability
Function (TPF) of the induced PMC on the action space of the game.
Depending on the characteristics of the algorithm the TPF may become
composite and intricate. Resistance computation of intricate functions
is difficult and may even be infeasible. Moreover, there are no rules or
tools available to simplify the resistance computations. In this paper,
we propose novel rules that simplify the computation of resistance. We
first, give a generalized definition of resistance that allows us to overcome
the limitations of the existing definition. Then, using this new definition
we develop the rules that reduce the resistance computation of compos-
ite TPF into resistance computation of simple functions. We illustrate
their strength by efficiently computing the resistance in log-linear and
payoff-based learning algorithms. They provide an efficient tool for char-
acterizing SSSs of learning algorithms in finite games.

Keywords: Potential games · Learning algorithms · Log-linear learn-
ing · Perturbed Markov Chains · Resistance of transitions

1 Introduction

In a finite repeated game if players sometimes make mistakes in choosing an
optimal strategy and if all mistakes are possible and are time-independent then
a perturbed Markov process is induced on the action space of the game. As the
probability of mistakes goes to zero the stationary distribution of the process
concentrates on particular equilibria. These are known as stochastically stable
equilibria or Stochastically Stable States (SSS) of the game [1]. The SSSs corre-
spond to the roots of minimum resistance trees where the resistance of a transi-
tion in a tree can be seen as the cost of deviating from the optimal strategy [2].
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Therefore, the computation of resistance of transitions of a Perturbed Markov
Chain (PMC) is important.

The learning algorithm used by the player of the game defines the Transition
Probability Function (TPF) of the induced PMC. Depending on the character-
istics of the learning algorithm the TPF can be composite and intricate. The
resistance computation of intricate TPF is difficult and may even be infeasible
for some functions. Moreover, there are no rules and no tools available in the lit-
erature to simplify the computation of resistance. We focus on developing novel
rules to simplify the resistance computations of a general class of TPF.

As the perturbation slowly decreases the limiting stationary distribution of
a PMC exists and is unique [2]. The support of the stationary distribution is
the root of the minimum resistance tree. Exploring these results many learning
algorithms for games are analyzed in the literature. In the following, we discuss
a few such algorithms.

A log-linear learning algorithm is used for a potential game that models the
load balancing problem of a heterogeneous wireless network [3]. In this algo-
rithm, the log of TPF is linear functions of the payoffs of the players [3–5]. This
algorithm induces a PMC on the action space of the game. The convergence
of this algorithms is analyzed as follows. First, using the TPF in (5) [5] the
expression of resistance of transition is (6) [5] is obtained. We observe that the
derivation of this expression requires a careful insight into the TPF to reduce it
into a simplified form so that the resistance can be obtained. Otherwise, in case
the TPT cannot be reduced into a simple form then the resistance may not be
feasible to compute. Second, the resistance of a feasible path in a tree is obtained
using the structure of potential games. Finally, the SSSs of the game are char-
acterized by using the minimum resistance tree definition. A binary log-linear
learning algorithm is a reduced information algorithm, in which the log TPF is
a linear function of the two most recent payoffs [5]. This algorithm was used to
distributively balance the loads in heterogeneous networks using near-potential
games [6]. The computation resistance of transition is difficult in this case. The
convergence of this algorithm to the SSSs of a potential game is analyzed in a
similar way as in log-linear algorithm [5,6].

A payoff-based learning algorithm is obtained by combining log-linear algo-
rithm and binary log-linear algorithm [5]. Due to the combination of two algo-
rithms, the TPF is much involved. Therefore, the computation of resistance of
transition is much involved and difficult. The convergence of this algorithm is also
analyzed in a similar way as in log-linear algorithm. Adaptive play algorithm was
applied to an acyclic game to characterize its SSSs using the resistance trees [2].
A class of trial and error learning algorithms for any finite game are also ana-
lyzed using the resistance trees [7,8]. Due to the different modes of learning in
these algorithms, the TPF becomes complicated and the resistance computation
is difficult.

In the above literature survey, we see that the computation of resistance is
used for characterizing the SSSs of many learning algorithms in games. Therefore,
in this paper, we develop new rules that ease the computation of resistance of
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intricate TPF. To do this, we first give a generalized definition of resistance
for any positive function. The new definition overcomes the limitation of the
existing old definition of resistance. For example, the limit in the old definition
of resistance is not always feasible to evaluate for some functions, see Sect. 3. The
new definition allows us to define resistance for any positive function. Thereby,
allowing us to propose new rules for computing resistance. The proposed rules
reduce the resistance computation of composite TPF into resistance computation
of simple functions. These rules provide a powerful tool that can be used for
analyzing the convergence properties of learning algorithms in finite games.

The rest of the paper is organized as follows. In Sect. 2, we give an overview
of resistance trees of PMC. In Sect. 3, we present new rules for resistance com-
putation and provide their proves. In Sect. 4, we illustrate the application of the
proposed rules. Conclusions are summarized in Sect. 5.

2 Overview of Resistance Trees

In this section, we first give a brief overview of resistance trees of a PMC. Then,
using resistance trees we illustrate the convergence of log-linear learning algo-
rithm in potential games. For more details see [2,5].

2.1 Resistance Trees of PMC

A perturbed Markov process is characterized by a set {P τ} of transition matrices
over a state space X indexed by a parameter τ . Wherein, τ ∈ (0, τh] is a para-
meter that controls the perturbation, τh is constant. Probabilities P 0

ab and P τ
ab

denote the transition probabilities from state a to b in the unperturbed and the
perturbed Markov chains, respectively. The definition of resistance of transitions
and the definition of a regular perturbed Markov process are below [2].

Definition 1 (Resistance of transition). A perturbed Markov process {P τ}
is a regular if it satisfies the following conditions [2]:

1. P τ is aperiodic and irreducible for all τ ∈ (0, τh],
2. limτ→0 P τ

ab = P 0
ab,

3. for a strictly positive TPF P τ
ab there exists a non-negative number Rab called

the resistance of transition such that 0 < limτ→0+ e
Rab

τ P τ
ab < ∞.

Note that if P 0
ab > 0 then Rab = 0.

A tree, T , rooted at a state a, is a set of |X| − 1 directed edges such that,
from every other state a′, there is a unique directed path in the tree to a. The
resistance of the directed edge a → b is denoted as Rab. The resistance of a rooted
tree, T , is the sum of the resistances on its edges R(T ) =

∑
a,b∈T Rab. Let T (a)

be defined as the set of trees rooted at the state a. The stochastic potential of
the state a is defined as γ(a) = minT∈T (a) R(T ). A minimum resistance tree is a
tree that has the minimum stochastic potential, that is, any tree T that satisfies
R(T ) = mina∈X γ(a).

The following theorem by [2, Lemma 1] gives the existence and uniqueness
of the stationary distribution of a PMC.
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Theorem 1. Let {P τ} be a regular perturbed Markov process, and for each τ > 0,
let μτ be the unique stationary distribution of P τ . Then limτ→0 μτ exists and the
limiting distribution μ0 is a stationary distribution of P 0. The stochastically stable
states are the roots of minimum resistance trees.

2.2 Convergence of Log-Linear Learning Algorithm Using
Resistance Trees [5]

Log-linear learning algorithm induces a regular perturbed Markov process over
the action space X of a n-player potential game [5]. Let a = (ai, a−i) denotes an
action profile of the players where ai denote the action of player i and a−i denotes
the actions of all the other players. Let Xi and X−i denote the action space of
player i and action space of other players, respectively. Let b = (a′

i, a−i) denotes
another action profile where player i changes its action. For a ∈ X, let φ(a)
and Ui(a) denote the potential function and utility of player i, respectively. In a
potential game, for all ai, a

′
i ∈ Xi and for all a−i ∈ X−i, we have φ(a) − φ(b) =

Ui(a) − Ui(b). Assuming that the player is selected with uniform probability
the transition probability function of log-linear learning algorithm is given as
below [5, (5)].

P τ
ab =

1
n

exp
(

Ui(a
′
i,a−i)
τ

)

∑
ai∈Xi

exp
(

Ui(ai,a−i)
τ

) (1)

The first step in the proof of convergence is to derive an expression of resis-
tance of transition. Let V (a−i) := maxai∈Xi

Ui (ai, a−i) and Bi (ai) denotes the
set of actions that have the maximum utility. Multiplying the numerator and

denominator of (1) by e
V (a−i)

τ , we obtain

P τ
ab =

1
n

exp
(

V (a−i)−Ui(a
′
i,a−i)

τ

)

∑
ai∈Xi

exp
(

V (a−i)−Ui(ai,a−i)
τ

) . (2)

After simplifying the above equation, we obtain

lim
τ→0+

P τ
ab

exp
(

V (a−i)−Ui(a′
i,a−i)

τ

) =
1

n |Bi (ai)|
. (3)

Since, the above limit is positive and finite the induced process is a regular
Markov process and the resistance according to Definition 1 is

Rab = V (a−i) − Ui(a′
i, a−i). (4)

Second step is to obtain the resistance of a path in the resistance trees. This
is obtained in Lemma [5, Lemma 3.2] that we present below.

Lemma 1. Let P =
{
a0 → a1 → . . . → am

}
and PR =

{
am → am−1 → . . .

→ a0
}

be feasible forward path and reverse path, respectively. If all the players
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in a n-player potential game with potential function φ : X → R, adhere to
log-linear learning algorithm then the difference of resistance of paths is

R (P) − R
(
PR

)
= φ

(
a0

)
− φ (am) . (5)

The final step is to prove that the stochastically stable states of the log-linear
algorithm are the potential function maximizers of the potential game. This is
accomplished by using Lemma 1 and minimum resistance tree definition. The
detailed proof of the following theorem can be found in Proposition [5, 3.1].

Theorem 2. If all the players of a potential game adhere to log-linear learning
algorithm then the stochastically stable states are the potential function maxi-
mizers.

3 Rules for Computing Resistance

The resistance in Definition 1 can be computed in case the transition function
can be factorized into a simple function and in case the limit can be evaluated
as shown in Sect. 2.2. However, transition functions can be composite and intri-
cate that cannot always be simplified. Moreover, the limit in Definition 1 cannot
always be feasible to evaluate. For example, when P τ

ab = τ , the limit cannot be
evaluated. To overcome these limitations of Definition 1 we first give a new gen-
eralized definition of resistance that allows us to develop easy rules to compute
the resistance of any positive function.

Let o (.) and ω (.) denote little “o” order and little “ω” order, respectively.

Definition 2 (Resistance of positive function). The resistance of a strictly
positive function f(τ) is Res(f) if there exists a strictly positive function g(τ)
such that g ∈ o

(
ek/τ

)
and g ∈ ω

(
e−k/τ

)
for any k > 0; and

lim
τ→0

f(τ)

g(τ)e− Res(f)
τ

= 1. (6)

Remark 1. Note that Definition 2 includes Definition 1, in which g(τ) = κ, 0 <
κ < ∞. Now, we can evaluate the resistance of P τ

ab = τ , i.e., Res(τ) = 0.

Remark 2. Note that (6) is equivalent to

f(τ) = g(τ)e− Res(f)
τ + h(τ), (7)

where h(τ) ∈ o
(
g(τ)e− Res(f)

τ

)
.

Remark 3. We call g(τ) as a sub-exponential function if g ∈ o
(
ek/τ

)
and g ∈ ω

(
e−k/τ

)
for any k > 0. Note that it is equivalent to |log g| ∈ o

(
1
τ

)
.
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Lemma 2. Consider any two sub-exponential functions g1(τ) and g2(τ). Con-
sider two real numbers R1 and R2. If R1 < R2 then

g2(τ)e−R2/τ ∈ o
(
g1(τ)e−R1/τ

)
. (8)

Proof. Let k be a real number. Then

lim
τ→0

g2(τ)e−R2/τ

g1(τ)e−R1/τ
= lim

τ→0

g2(τ)
e−(R2−k)/τ

[
g1(τ)

e−(R1−k)/τ

]−1

. (9)

The above limit goes to zero when we choose R1 < k < R2. This is because the
first factor goes to zero as R2 − k > 0. Also, the second factor goes to zero as
R1 − k < 0. Recall that it is because g1 and g2 are sub-exponential.

Lemma 3. If Res(f) exists then it is unique.

Proof. Assume that function f have two different resistances R1 and R2. Then,
there exist g1, g2, h1, h2 such that

f(τ) = g1(τ)e− R1
τ + h1(τ) = g2(τ)e− R2

τ + h2(τ), (10)

where h1(τ) ∈ o
(
g1(τ)e− R1

τ

)
and h2(τ) ∈ o

(
g2(τ)e− R2

τ

)
. Let R1 < R2. Using

Lemma 2, we have h2 ∈ o
(
g1(τ)e− R1

τ

)
. Rearranging terms in (10), we have

1 +
h1(τ)

g1(τ)e− R1
τ

=
g2(τ)e− R2

τ

g1(τ)e− R1
τ

+
h2(τ)

g1(τ)e− R1
τ

. (11)

Using Lemma 2 to evaluate the limit of the above equation as τ goes to zero, we
arrive at contradiction that 1 = 0.

The following proposition gives the rules for computing Res(f).

Proposition 1. Let f, f1 and f2 be strictly positive functions. Let κ be a positive
constant. If Res(f1) and Res(f2) exist then

I f1(τ) is sub-exponential if and only if Res(f1) = 0. In particular Res(κ) = 0,
II Res(e−κ/τ ) = κ,

III Res(f1 + f2) = min {Res(f1), Res(f2)},
IV Res(f1 − f2) = Res(f1), ifRes(f1) < Res(f2),
V Res(f1f2) = Res(f1) + Res(f2),

VI Res( 1
f ) = −Res(f),

VII If f1(τ) ≤ f2(τ), Res(f1) and Res(f2) exist then Res(f2) ≤ Res(f1),
VIII Let f1(τ) ≤ f(τ) ≤ f2(τ), If Res(f1) = Res(f2) then Res(f) exists and

Res(f) = Res(f1).

Remark 4. In Rule IV, if Res(f1) = Res(f2) then we cannot compute Res(f1−f2)
because in general the difference of sub-exponential functions may not be a sub-
exponential function. For example, choose f1(τ) = 1+ e−k/τ and f2(τ) = 1 with
k > 0 then Res(f1) = Res(f2) = 0 but Res(f1 − f2) = k.
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Remark 5. For Rule VIII, in general if f1(τ) ≤ f(τ) ≤ f2(τ) and Res(f1) �=
Res(f2) then Res(f) may not exist. For example, for f(τ) = λ(τ)f1+(1−λ(τ))f2,
λ(τ) = 1

2

(
cos

(
1
τ

)
+ 1

)
the Res(f) does not exist.

Proof. Proof of Rule I: Let f(τ) be a sub-exponential function. Choosing
g(τ) = f(τ) and substituting Res(f) = 0 in (6) we get limτ→0

f(τ)

f(τ)e− Res(f)
τ

= 1.

Therefore, we have Res(f) = 0.
Assume Res(f) = 0. From (7), we have f(τ) = g(τ) + h(τ), which is a sub-

exponential function.
Let f(τ) = κ and g(τ) = κ then g(τ) ∈ o

(
e

κ
τ

)
and g(τ) ∈ ω

(
e− κ

τ

)
, κ > 0.

Substituting these in (6) we have Res(κ) = 0.

Proof of Rule II: Substituting f(τ) = e−κ/τ and g(τ) = 1 in (6)we getRes(f) = κ.

Proof of Rule III: Let Res(f1) and Res(f2) be the resistances of functions f1

and f2, respectively. Then, from (7) we have f1(τ) = g1(τ)e− Res(f1)
τ + h1(τ),

f2(τ) = g2(τ)e− Res(f2)
τ + h2(τ), where h1(τ) ∈ o

(
g1(τ)e− Res(f1)

τ

)
, h2(τ) ∈

o
(
g2(τ)e− Res(f2)

τ

)
. The sum of two functions can be written as

f1(τ) + f2(τ) = g1(τ)e− Res(f1)
τ

(

1 +
h1(τ)

g1(τ)e− Res(f1)
τ

+
g2(τ)e− Res(f2)

τ

g1(τ)e− Res(f1)
τ

+
h2(τ)

g1(τ)e− Res(f1)
τ

)

,

(12)

Consider the case when Res(f1) < Res(f2). Using Lemma 2 we have
h2 ∈ o

(
g1(τ)e− Res(f1)

τ

)
. Therefore, f1(τ)+f2(τ) = g1(τ)e− Res(f1)

τ +h3(τ), where

h3(τ) ∈ o
(
g1(τ)e− Res(f1)

τ

)
. According to (7), we have Res(f1 + f2) = Res(f1).

The case of Res(f1) = Res(f2) leads to the same result as shown below.

f1(τ) + f2(τ) = e−Res(f1)
τ [g1(τ) + g2(τ)] + h1(τ) + h2(τ). (13)

Note that sum of sub-exponential functions g1(τ) + g2(τ) is a sub-exponential
function. Observe that h1(τ) + h2(τ) ∈ o

(
[g1(τ) + g2(τ)] e−Res(f1)

τ

)
. As in the

previous case, according to (7) we have Res(f1 + f2) = Res(f1)

Proof of Rule IV: Also, it can be shown similarly to the proof of rule III that if
Res(f1) < Res(f2) then Res(f1 − f2) = Res(f1).

Proof of Rule V:

lim
τ→0

f1(τ)

g1(τ)e− Res(f1)
τ

lim
τ→0

f2(τ)

g2(τ)e− Res(f2)
τ

= lim
τ→0

f1(τ)f2(τ)

g1(τ)g2(τ)e− Res(f1)+Res(f1)
τ

= 1. (14)

Therefore, Res(f1f2) = Res(f1) + Res(f2).
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Proof of Rule VI: Since Res(f) exists, inverting both sides of (6), we have

lim
τ→0

f(τ)

g(τ)e− Res(f)
τ

= 1 = lim
τ→0

1
f(τ)

1
g(τ)e

− −Res(f)
τ

. (15)

Note that 1
g(τ) is sub-exponential. Therefore, we have Res( 1

f ) = −Res(f).

Proof of Rule VII: Assume that Res(f1) < Res(f2). Using Lemma 2, we have
g2(τ)e−Res(f2)/τ ∈ o

(
g1(τ)e−Res(f1)/τ

)
and h2 ∈ o

(
g1(τ)e−Res(f1)/τ

)
.

f1 ≤ f2, (16)

g1(τ)e−Res(f1)/τ + h1(τ) ≤ g2(τ)e−Res(f2)/τ + h2(τ), (17)

1 +
h1(τ)

g1(τ)e−Res(f1)/τ
≤ g2(τ)e−Res(f2)/τ + h2(τ)

g1(τ)e−Res(f1)/τ
. (18)

As τ → 0, we arrive at a contradiction that 1 ≤ 0. Therefore, Res(f1) ≥ Res(f2).

Proof of Rule VIII: We have 1 ≤ f(τ)
f1(τ)

≤ f2(τ)
f1(τ)

and Res
(

f2(τ)
f1(τ)

)
= Res(f2) −

Res(f1) = 0. By Rule I f2(τ)
f1(τ)

is sub-exponential. This implies that f(τ)
f1(τ)

is also
sub-exponential. Therefore, there exists g01(τ) such that

1 = lim
τ→0

f(τ)
f1(τ)

g01(τ)
= lim

τ→0

f(τ)

g01(τ)g1(τ)e− Res(f1)
τ

lim
τ→0

g1(τ)e− Res(f1)
τ

f1(τ)
, (19)

= lim
τ→0

f(τ)

g01(τ)g1(τ)e− Res(f1)
τ

, (20)

where the product g01(τ)g1(τ) is also a sub-exponential function. Therefore,
Res(f) exists and Res(f) = Res(f1) = Res(f2).

4 Application of Proposed Rules

In this section, we illustrate the application and robustness of the proposed rules
for computing the resistance of composite TPFs.

4.1 Resistance of Log-Linear Learning Algorithm

By using Rule V and VI the resistance of Res (P τ
ab) (1) is obtained as below.

Res (P τ
ab) = Res

(
1
n

)

+ Res
(

e
Ui(a′

i,a−i)
τ

)

− Res

(
∑

ai∈Xi

e
Ui(ai,a−i)

τ

)

. (21)

Applying the Rule III to the above equation, we have

Res (P τ
ab) = Res

(
1
n

)

+ Res
(

e
Ui(a′

i,a−i)
τ

)

− min
ai∈Xi

Res
(

e
Ui(ai,a−i)

τ

)

. (22)

Applying the Rule I and II, we get

Res (P τ
ab) = −Ui(a′

i, a−i) − min
ai∈Xi

(−Ui(ai, a−i)) = V (a−i) − Ui(a′
i, a−i). (23)
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4.2 Resistance of Payoff-Based Learning Algorithm

In this subsection, we illustrate the application of the proposed rules by obtain-
ing the expression of resistance payoff-based algorithm as in [5, Claim 6.1].
Let denotes two states of PMC of this algorithm as z1 :=

[
a0, a1, x1

]
and

z2 :=
[
a1, a2, x2

]
, where a0, a1, a2 are action profiles and x1, x2 denotes the

vectors representing whether the players have experimented or not, x1
i = 0 and

x2
i = 1 represents that the player i had experimented. The transition proba-

bility function of Payoff-based algorithm is much involved as can be seen in
[5, Claim 6.1].

P τ
z1→z2 =

⎛

⎝
∏

i:x1
i=0,x2

i=0

(
1 − e− m

τ

)
⎞

⎠

⎛

⎝
∏

i:x1
i=0,x2

i=1

e− m
τ

|Xi|

⎞

⎠

⎛

⎝
∏

i:x1
i=1,a2

i=a0
i

e
Ui(a0)

τ

e
Ui(a0)

τ + e
Ui(a1)

τ

⎞

⎠

⎛

⎝
∏

i:x1
i=1,a2

i=a1
i

e
Ui(a1)

τ

e
Ui(a0)

τ + e
Ui(a1)

τ

⎞

⎠ (24)

Using the Rule V, we have

Res
(
P τ

z1→z2

)
=

∑

i:x1
i =0,x2

i =0

Res
(
1− e− m

τ

)
+

∑

i:x1
i =0,x2

i =1

Res

(
e− m

τ

|Xi|

)

∑

i:x1
i =1,a2

i =a0
i

Res

⎛

⎝ e
Ui(a0)

τ

e
Ui(a0)

τ + e
Ui(a1)

τ

⎞

⎠+
∑

i:x1
i =1,a2

i =a1
i

Res

⎛

⎝ e
Ui(a1)

τ

e
Ui(a0)

τ + e
Ui(a1)

τ

⎞

⎠ (25)

Applying the Rules III, IV, V, and VI, we have

Res (P τ
z1→z2) =

∑

i:x1
i=0,x2

i=0

min
{
Res (1) ,Res

(
e− m

τ

)}

+
∑

i:x1
i=0,x2

i=1

[

Res
(
e− m

τ

)
+ Res

(
1

|Xi|

)]

+
∑

i:x1
i=1,a2

i=a0
i

[

Res
(

e
Ui(a0)

τ

)

− Res
(

e
Ui(a0)

τ + e
Ui(a1)

τ

)]

+
∑

i:x1
i=1,a2

i=a1
i

[

Res
(

e
Ui(a1)

τ

)

− Res
(

e
Ui(a0)

τ + e
Ui(a1)

τ

)]

(26)
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Simplifying further by applying the Rules I and II, we get

Res (P τ
z1→z2) =

∑

i:x1
i=0,x2

i=0

min {0,m} +
∑

i:x1
i=0,x2

i=1

[m]

+
∑

i:x1
i=1,a2

i=a0
i

[
−Ui(a0) − min

{
−Ui(a0),−Ui(a1)

}]

+
∑

i:x1
i=1,a2

i=a1
i

[
−Ui(a1) − min

{
−Ui(a0),−Ui(a1)

}]
(27)

Let V (a0, a1) = max
{
Ui(a1), Ui(a2)

}
, then we have

Res (P τ
z1→z2) =

∑

i:x1
i=0,x2

i=1

m +
∑

i:x1
i=1,a2

i=a0
i

(
V (a0, a1) − Ui(a0)

)

+
∑

i:x1
i=1,a2

i=a1
i

(
V (a0, a1) − Ui(a1)

)
(28)

The above obtained expression of resistance is same as in [5, (13)], verifying it.

5 Conclusion

Novel rules are proposed for computing the resistance of transition of a perturbed
Markov chain. These rules reduce the computation of resistance of composite
and intricate transition probability function into the computation of resistance
of simple functions. These rules are simple and yet are powerful. The strength of
these rules is illustrated by using them to calculate efficiently the resistance of
transition of the well-known log-linear learning algorithm and the payoff-based
learning algorithm. These calculations are verified by comparing the obtained
expressions with that of in the literature. These rules provide an efficient tool that
can be used to characterize the stochastically stable states of learning algorithms
in finite games. We hope to apply these rules for analyzing new algorithms based
on perturbed Markov chains as well as new game settings like potential games
with noisy rewards [9].
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Abstract. The emergence of new diseases, such as HIV/AIDS, SARS,
and Ebola, represent serious problems for the public health and med-
ical science research to address. Despite the rapid development of vac-
cines and drugs, one challenge in disease control is the fact that one
pathogen sometimes generates many strains with different spreading fea-
tures. Hence it is of critical importance to investigate multi-strain epi-
demic dynamics and its associated epidemic control strategies. In this
paper, we investigate two controlled multi-strain epidemic models for
heterogeneous populations over a large complex network and obtain the
structure of optimal control policies for both models. Numerical exam-
ples are used to corroborate the analytical results.

Keywords: Bi-virus models · Epidemic process · Optimal control ·
Structured population

1 Introduction

Infectious diseases remain a serious medical burden all around the world with
15 million deaths per year estimated to be directly related to infectious diseases.
The emergence of new diseases such as HIV/AIDS, the severe acute respiratory
syndrome (SARS) and, most recently, the rise of Ebola, represent a few examples
of the serious problems that the public health and medical science research need
to address.

While for centuries mankind seemed helpless against these sudden epidemics,
in recent time, our ability to control future epidemic outbreaks has been facili-
tated by the advances in modern science. The cures for a number of dangerous
pathogens are available and can be developed and manufactured faster than
ever before thanks to the genetic revolution new drugs to prevent and reduce
the health consequences of new epidemics. The vaccine against new influenza A
(H1N1) has been developed rapidly to be available only a few months after the
beginning of the epidemic.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
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However, one challenge in disease control is the fact that one pathogen
sometimes generates many strains with different spreading features, and hence
a detailed investigation of multi-strain epidemic dynamics has great relevance
[1–3]. For example, the human immunodeficiency virus (HIV) (which causes
acquired immune deficiency syndrome (AIDS)) has many genetic varieties and
can be divided into several distinct strains, such as strain HIV-1 and strain
HIV-2 [4]. On the other hand, one pathogen is always incorporated with other
pathogens [5]. The influenza A (H1N1) virus has the potential to develop into
the first influenza pandemic of the twenty-first century [6], and it is accompanied
by seasonal influenza [7].

In this paper, we establish a control-theoretic model to design disease control
strategies through quarantine and immunization to mitigate the impact of epi-
demics on our society. Disease transmission in epidemics can be represented by
dynamics on a graph where vertices denote individuals and an edge connecting a
pair of vertices indicates an interaction between individuals. Due to a large popula-
tion of people involved in the process of disease transmission, randomgraph models
such as the small-world networks in [8] or scale-free networks in [9] are convenient
to capture the heterogeneous patterns in the large-scale complex network.

We investigate two controlled multi-strain epidemic models for heteroge-
neous populations over a large complex network. One is the Susceptible-Infected-
Recovered (SIR) epidemic process. The control is to quarantine a fraction of the
infected nodes. Another model is the Susceptible-Infected-Susceptible (SIS) epi-
demic process. The control in this model is to provide treatment to the infected
individuals, while treated individuals can become susceptible again to the infec-
tion of the disease.

The paper is organized as follows. Section 2 presents the controlled SIR math-
ematical model. Section 3, using Pontryagin’s minimum principle, defines the
structure optimal control policies. Section 4 presents the optimal control prob-
lem for controlled SIS model. Section 5 focuses on the analysis of the optimal
control of SIS model. Numerical examples will be presented in Sect. 6. Section 7
concludes the paper and presents future research directions.

2 SIR Model for Two-Strain Viruses

Denote by Sk(t), Rk(t) the population densities of the Susceptible and Recovered
nodes with degree k at time t. We consider two strains of viruses co-exist in the
network. I1k(t), I2k(t) are the population densities of the Infected nodes of degree
k at time t. We assume that the total population is constant in the network for
all t, i.e., Sk(t) + I1k(t) + I2k(t) + Rk(t) = 1. We have extended the simple SIR
model introduced by [10] to describe the situation with two virus types over a
complex network.

dSk

dt = −δ1SkI1kΘ1 − δ2SkI2kΘ2;
dI1

k

dt = (δ1SkΘ1 − σ1 − u1
k)I1k ;

dI2
k

dt = (δ2SkΘ2 − σ2 − u2
k)I2k ;

dRk

dt = (σ1 + u1
k)I1k + (σ2 + u2

k)I2k ,

(1)

where δi are infection rates for virus Vi, i = 1, 2, and σi are recovered rates.
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At the beginning of epidemic process t = 0, most of nodes in the network
belong to the susceptible subgroup, and small subgroup in total population is
infected; and the remaining nodes are in the recovered subgroup. Hence initial
states are 0 < Sk(0) < 1, 0 < I1k(0) < 1, 0 < I2k(0) < 1, Rk(0) = 1 − Sk(0) −
I1k(0) − I2k(0). Θi(t) can be written in general (see [11], [12]) as

Θi(t) =
∑

k′

τ(k′)P (k′|k)Ij
k′

k′ , i = 1, 2, (2)

where τ(k) denotes the infectivity of a node with degree k. P (k′|k) describes
the probability of a node with degree k pointing to a node with degree k′, and
P (k′|k) = k′P (k′)

k′ , where 〈k〉 =
∑
k′

kP (k). For scale-free node distribution P (k) =

C−1k−2−γ , 0 < γ ≤ 1, where C = ζ(2 + γ) is Riemann’s zeta function, which
provides an appropriate normalization constant for sufficiently large networks.

The control parameters which can be used to protect the network from the
propagation of the virus with k links are defined as uk = (u1

k, u2
k). Here, ui

k are
the fractions of the infected nodes which are quarantined in the population. The
rates σi are the coefficients of “self-recovery”, which can be interpreted as the
activity of stationary antivirus software or firewalls.

The objective function: We minimize the overall cost in time interval [0, T ].
At any given t, the following costs f1(I1k(t)), f2(I2k(t)) are treatment costs;
g(Rk(t)) is utility of having Rk(t) fraction of nodes recovered at time t;
h1(u1

k(t)), h2(u2
k(t)) are costs for using antivirus patches or quarantine that help

to reduce epidemic spreading, kI1
k
, kI2

k
, kR represent the cost and benefit for the

infected and the recovered in the end of the epidemic, respectively. Here, func-
tions fi(t) are non-decreasing and twice-differentiable, convex functions, with
fi(0) = 0, fi(Ii

k) > 0 for Ii
k > 0, i = 1, 2; g(Rk(t)) is non-decreasing and differ-

entiable, and g(0) = 0; hi(ui
k(t)) is a twice-differentiable and increasing function

in ui
k(t) such that hi(0) = 0, hi(ui

k) > 0, i = 1, 2 when ui
k > 0.

The aggregated system cost is given by

J =

T∫

0

f1(I1k(t)) + f2(I2k(t)) − g(Rk(t)) + h1(u1
k(t))

+ h2(u2
k(t))dt + kI1

k
I1k(T ) + kI2

k
I2k(T ) − kRk

Rk(T ) (3)

and the optimal control problem is to minimize the cost, i.e., min{u1
k,u2

k} J . To
simplify the analysis, we consider the case where kI1

k
= kI2

k
= kRk

= 0.
Treatment or isolation can be considered as the control parameters that can

reduce the fraction of infected nodes in network. We define uk = (u1
k, u2

k) as
control variables with 0 ≤ u1

k(t) ≤ 1, 0 ≤ u2
k(t) ≤ 1, for all t.

3 Optimal Control of SIR Model

We use Pontryagin’s minimum principle [13] to find the optimal solution uk(t) =
(u1

k(t), u2
k(t)) to the problem described above. Define the associated Hamiltonian
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H and adjoint functions λSk
, λI1

k
, λI2

k
, λRk

as follows:

H = f1(I1k(t)) + f2(I2k(t)) − g(Rk(t)) + h1(u1
k(t))

+h2(u2
k(t)) + (λI1

k
(t) − λSk

(t))δ1Sk(t)I1k(t)Θ1(t)
+ (λI2

k
(t) − λSk

(t))δ2Sk(t)I2k(t)Θ2(t)
+ (λRk

(t) − λI1
k
(t))σ1I

1
k(t) + (λRk

(t) − λI2
k
(t))σ2I

2
k(t)

− (λI1
k
(t) − λRk

(t))I1k(t)u1
k − (λI2

k
(t) − λRk

(t))I2k(t)u2
k(t).

(4)

Here, we have used the condition R = 1 − Sk − I1k − I2k . We construct the
associated adjoint system as follows:

λ̇S(t) = −∂H
∂S = −(λI1

k
− λSk

)δ1I1kΘ1 − (λI2
k

− λSk
)δ2I2kΘ2;

λ̇I1
k
(t) = − ∂H

∂I1
k

= −f ′
1(I

1
k) + (λSk

− λI1
k
)δ1SkΘ1

− (λRk
− λI1

k
)σ1 + (λI1

k
− λRk

)u1
k;

λ̇I2
k
(t) = − ∂H

∂I2
k

= −f ′
2(I

2
k) + (λSk

− λI2
k
)δ2SkΘ2

− (λRk
− λI2

k
)σ1 + (λI2

k
− λRk

)u2
k;

λ̇Rk
(t) = − ∂H

∂Rk
= g′(Rk);

(5)

with the transversality conditions given by

λI1
k
(T ) = 0, λI2

k
(T ) = 0, λSk

(T ) = 0, λRk
(T ) = 0. (6)

According to Pontryagin’s minimum principle [13], there exist continuous and
piecewise continuously differentiable co-state functions λi that at every point
t ∈ [0, T ] where u1

k and u2
k is continuous, satisfying (5) and (6). In addition, we

have
(u1

k, u2
k) ∈ arg min

u1
k,u2

k∈[0,1]
H(λ, (Sk, I1k , I2k , Rk), (u1

k, u2
k)), (7)

where λ = (λSk
, λI1

k
, λI2

k
, λRk

).

4 Structure of Optimal Control

Based on previous research, e.g., [13–15], in this section, we show that an optimal
control uk(t) = (u1

k(t), u2
k(t)) has the structure summarized in Proposition 1.

Proposition 1. The following statements hold for the optimal control problem
described in Sect. 2:

– If hi(·) are concave, then there exist time moment t1 (0 < t1 < T ) such that:

ui
k(t) =

{
1, for φi

k < hi(1), 0 < t < t1;
0, for φi

k > hi(1), t1 < t < T.

– If hi(·) are strictly convex, then exists t0, t1 (0 < t0 < t1 < T ):

ui
k(t) =

⎧
⎨

⎩

0, φi
k ≤ h′

i(0), i = 1, 2, t ∈ (t1;T ];
h′−1(φi

k), h′
i(0) < φi

k ≤ h′
i(1), i = 1, 2, t ∈ (t0; t1];

1, h′
i(1) < φi

k, i = 1, 2, t ∈ [0; t1].
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Lemma 1. Functions φi
k, i = 1, 2 are decreasing functions of t, for all t ∈ [0, T ].

Lemma 2. For all 0 ≤ t ≤ T , we have (λI1
k

− λSk
) > 0, (λI2

k
− λSk

) > 0,
(λRk

− λI1
k
) > 0.

The construction of optimal controls for the structured population follows the
Pontryagin’s minimum principle [13] and similar approaches used in [14], [15].

5 SIS Model with Two Virus Strains

A set of nodes N is divided into two subgroups: the Susceptible (S), the Infected
(I). We suppose that two different viruses with different strains circulate in the
network at time t. Let Sk(t), I1k(t), I2k(t) be the densities of the susceptible and

infected nodes with degree k at time t. λi =
δi

σi
, where δi is infection rate and

infected nodes are cured and become again susceptible with rate σi, i = 1, 2.

dSk

dt
= −λ1kSk(t)Θ1 − λ2kSk(t)Θ2

+u1
kI1k(t) + u2

kI2k(t) + I1k(t) + I2k(t);
dI1k
dt

= λ1kSk(t)Θ1 − I1k(t) − u1
k(t)I1k(t);

dI2k
dt

= λ2kSk(t)Θ2 − I2k(t) − u2
k(t)I2k(t).

(8)

Objective function. We will minimize the overall cost in time interval [0, T ]. At
any given t, the following costs exist in the system: fi(Ii

k(t)) are infected costs;
hi(ui

k(t)) are costs for medical measures (i.e. quarantining) that help reduce
the epidemic spreading. Here, the functions fi(Ii

k(t)) are non-decreasing, twice-
differentiable, and convex with fi(0) = 0, fi(Ii

k(t)) > 0 for Ii
k > 0, g(Sk(t)) non-

decreasing and differentiable function, describing the benefits of using control,
where Sk(t) = 1 − I1k(t) − I1k(t) and g(0) = 0; hi(ui

k(t)) are twice-differentiable
and increasing function in ui

k(t) such that hi(0) = 0, hi(ui
k) > 0 when ui

k > 0
with feasible controls ui

k ∈ [0, 1].
The aggregated system cost is given by

J =

T∫

0

f1(I1k(t)) + f2(I2k(t)) + h1(u1
k(t))

+ h2(u2
k(t)) − g(Sk(t))dt. (9)

and the optimal control problem is to minimize the cost, i.e., minu1
k,u2

k∈[0,1] J .
System (8) describes the propagation of two different strains of viruses in the
network. The propagation of the viruses is controlled by parameters ui

k, i = 1, 2.
Here, ui

k are antivirus policies.
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We use Pontryagin’s minimum principle to find the optimal control uk(t) =
(u1

k(t), u2
k(t)) which yields the minimum solution to the functional (9) for the

problem described above. Consider the Hamiltonian:

H = −l0(f1(I1k(t)) + f2(I2k(t)) + h1(u1
k(t)) + h2(u2

k(t))
−g(Sk(t))) + l1(t)(−λ1(t)kSk(t)Θ1(t)
−λ2(t)kSk(t)Θ2(t) + u1

k(t)I1k(t) + u2
k(t)I2k(t) + I1k(t)

+I2k(t)) + l2(t)(λ1kS(t)Θ1(t) − I1k(t) − u1
k(t)I1k(t))

+l3(t)(λ2(t)kSk(t)Θ2(t) − I2k(t) − u2
k(t)I2k(t)).

(10)

where l0 = 1. The adjoint systems are

l̇1(t) = − ∂H
∂Sk

= −g′(Sk) − l1(−λ1Θ1I
1
k − l2λ2Θ2I

2
k) − l2λ1Θ1I

1
k − l3λ2Θ2I

2
k ;

l̇2(t) = − ∂H
∂I1

k
= f ′

1(I
1
k) − l1(−λ1Θ1Sk + u1

k + 1) − l2(λ1SkΘ1 − 1 − u1
k);

l̇3(t) = − ∂H
∂I2

k
= f ′

2(I
2
k) − l1(−λ2SkΘ2 + u2

k + 1) − l3(λ2SkΘ2 − 1 − u2
k),

(11)
with the transversality condition:

li(T ) = 0. (12)

Consider next derivatives:

∂H

∂u1
k

= h′
1(u

1
k) + (l1 − l2)I1k ;

∂H

∂u2
k

= h′
2(u

2
k) + (l1 − l3)I2k . (13)

According to Pontryagin’s minimum principle, there exist continuous and piece-
wise continuously differentiable co-state functions li that at every point t ∈ [0, T ]
where uk is continuous, satisfy (11) and (12). In addition, we have l(t) =
(l0(t), l1(t), l2(t), l3(t))

ui
k ∈ arg max

ui
k∈[0,1]

H(l, (Sk, I1k , I2k), ui
k). (14)

Since hi(ui
k) is non-increasing function, then h′

i(u
i
k) ≥ 0, Ii

k ≥ 0 as a fraction
of infected nodes, then condition (13) is satisfied only if ψi

k > 0, where

ψ1
k = (l1 − l2)I1k ; ψ2

k = (l1 − l3)I2k . (15)

is defined as the switching function.
Then, to establish the optimal vaccination policy, we formulate the next

proposition.

Proposition 2. The optimal vaccination policy has following structure: If h(·)
are concave, then exists time moment 0 < t1 < T such that:

ui
k(t) =

{
0, if ψi

k < hi(1), t ∈ (t1;T ];
1, if ψi

k > hi(1), t ∈ [0; t1].
(16)
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If h(·) is strictly convex, then exists t0, t1 (0 < t0 < t1 < T ) such that:

ui
k(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 , if ψi
k ≤ ∂hi(0)

∂ui
k

, t ∈ (t1;T ];

h′−1(ψi
k) , if ∂hi(0)

∂ui
k

< ψi
k ≤ ∂hi(1)

∂ui
k

, t ∈ (t0; t1];

1 , if ψi
k > ∂hi(1)

∂ui
k

, t ∈ [0; t0].

(17)

Lemma 3. Functions ψ̇i ≤ 0 are decreasing over the time interval [0, T ).

Lemma 4. Function (l1 − l2) ≤ 0 and (l1 − l3) ≤ 0 over the time interval [0, T ).

To prove the proposition 2, we follow the same techniques as in [13], [14],
[15].

6 Numerical Simulation

In this section, we present numerical simulations which are used to corroborate
the results of main propositions. We depict optimal policies for SIR and SIS
models for different cases if cost functions hi(ui

k) are strictly convex and concave.

Fig. 1. The example of scale-free network for N = 20. Group S = 5 (blue dots), group
I = 3, (yellow dots), group R = 12, (red dots). (Color figure online)

Here we take a piecewise linear infectivity,

τ(k) = min(αk,A), (18)

where α and A are positive constants, 0 < α ≤ 1. We set the infectivity para-
meter α = 0.02, then for k ∈ [1, 10] the infectivity rises and from k > 10 the
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individuals have the same infectivity equals to A = 0.2. To generate a net-
work with scale-free exponent 3 we use the preferential attachment algorithm
of Barabási and Albert (parameter γ = 1) [11,16]. The example of scale-free
network for γ = 1, N = 20, 〈k〉 = 13.9, maximum degree k = 19 is presented in
Fig. 1 [17] (Figs. 2 and 3).

Fig. 2. Experiment I. SIR model with-
out applying of control (degree k = 10).
Initial states are I1k(0) = 0.2, I2k(0) =
0.3, the maximum values are I1max =
0.26, I2max = 0.67. Epidemic peaks are
reached at T = 20. Average connectiv-
ity 〈k〉 = 13.9.

Fig. 3. Experiment I. SIR multi-strain
controlled model (degree k = 10).
Cost functions hi(·) are strictly convex.
Average connectivity 〈k〉 = 13.9.

Experiment I. We use the following values for SIR model:initial fractions of
susceptible, infected and recovered nodes are S(0) = 0.5, I1(0) = 0.2, I2(0) = 0.3
and R(0) = 0; infection rates are δ1 = 0.3 and δ2 = 0.4; recovered rates are σ1 =
0.003 and σ2 = 0.001; epidemic duration is T = 20 and costs function fI1

k
= 8I1k ,

fI2
k

= 10I2k , g(Rk) = 0.1Rk; hi(ui
k) are convex functions h1(u1

k) = 0.4(u1
k)2 and

h2(u2
k) = 0.5(u2

k)2. The optimal control policy is shown in Fig. 4.

Experiment II. Numerical simulations for SIS multi-strain model use the fol-
lowing values: initial fractions of susceptible and infected nodes are S(0) = 0.7,
I1(0) = 0.1, I2(0) = 0.2; infection rates are δ1 = 0.3 and δ2 = 0.4; recovered
rates are σ1 = 0.003 and σ2 = 0.001; epidemic duration is T = 20 and costs func-
tion fI1

k
= 8I1k , fI2

k
= 10I2k , g(Rk) = 0.1Rk; hi(ui

k) are strictly convex functions
h1(u1

k) = 0.4(u1
k)2 and h2(u2

k) = 0.5(u2
k)2 (Figs. 5, 6 and 7).

For both experiments, we have that the shape of control curves is the same for
each k and we have used the same class of functionals for SIR and SIS dynamic
systems.
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Fig. 4. Experiment I: Optimal control
in SIR model, costs functions hi(u

i
k)

are strictly convex. Switching points
are t1 = 1.4 and t2 = 1.8.

Fig. 5. Experiment I: Comparison of
the aggregated costs of SIR model: the
cost of controlled case is J = 36.39, the
cost of uncontrolled case is J = 701.3.

Fig. 6. Experiment II: SIS multi-strain
model without control (degree k = 10).
Initial states are I1k(0) = 0.1, I2k(0) =
0.2, the maximum values are I1max =
0.12, I2max = 0.73. Epidemic peaks are
reached at T = 20. Average connectiv-
ity 〈k〉 = 13.9.

Fig. 7. Experiment II: SIS multi-strain
controlled model (degree k = 10). Cost
functions hi(·) are strictly convex. The
average connectivity is 〈k〉 = 13.9.

7 Conclusion

This paper has investigated the optimal control of two epidemic models of two
co-existing virus strains for heterogeneous populations over a large complex net-
work. We have obtained the structure of the optimal controller in the form of a
threshold policy for a specific class of cost functions. Numerical examples have
been used to corroborate the results. We would further explore the stability
properties of the epidemic process under the optimal control.
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Abstract. The persistent pursuit of reliability dates back to the birth
of power system. In the era of smart grid, the harsh requirement extends
to the whole system including communication infrastructure. The con-
centration of wide area synchronized measurements within large system
is challenging. In this paper, we investigate the data aggregation issue
of phasor measurement units (PMU) data stream in the synchropha-
sor network, where large latencies lead to unnecessary packet loss. We
reduce the final packet loss rate by formulating the data aggregation
problem as a multiple stopping time problem. Based on simulation, the
success rate booms when compared with single optimal stopping time
and multiple fixed-stopping time approaches. Our result could benefit
the future development of protocol design, system state estimation and
missing data recovery techniques.

1 Introduction

Nowadays, the synchronized PMUs based wide area measurement system
(WAMS) accelerates the implementation of smart grid. Unlike the traditional
power system, where measurements were gathered in supervisory control and
data acquisition (SCADA) in an asynchronous fashion, all these synchronized
measurements are marked with GPS time stamp and exchanged through the
communication networks in real time to monitor, protect and control the
dynamic operation of large area power system. The salient advantages of such
system are the inborn time alignment and direct measurement of state instead
of indirect system state estimation in the old time. The communication network
becomes a critical component to build on. Just like a clot in the vein could
cause severe damage to human brain, packet loss in a switch-based communica-
tion network for the smart grid system could blind the SCADA and lead to the
catastrophic disasters.

However, most available communication infrastructures are built on the prin-
ciple of probability and only promise to do the best under most circumstances.
With no guarantee of the worst case packet loss and latency, the power commu-
nity is reluctant to accept additional communication infrastructure although the
potential benefits are huge. To reassure the doubt, more efforts should be made
to mitigate and improve the system design considering the protocol, device and
algorithm as a whole system.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
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The concept of phasor network was proposed by 1990 s and has been imple-
mented in the power system since the 21 century [1]. Within the rapid develop-
ment of computing capability of modern computer and the boom of communi-
cation bandwidth in the past two decades, the once reasonable system design is
worthy more consideration with new technology. Recently there are some debates
on the existence of phasor data concentrator (PDC), mainly because of the addi-
tional latency introduced during the data transmission. Moreover, it appears that
the time alignment function will magnify the packet loss problem in the large
geographic system in two perspectives. The first factor is that current protocol
will consider the messages arriving later than the deadline as lost, which con-
verts part of the arrived packets as lost. The second negative factor is caused by
the aggregated function in PDC. From the perspective of upper level receiver, a
single packet loss from PDC means all the aggregated measurements from lower
level are lost.

In [2], authors studied the missing data recovery using the matrix completion.
However, it cannot recover the spike signal in the missing data. It is always better
to attain the original measurements as much as possible when compared with
possible post-recovery process. The authors in [3] discussed two scenarios where
a dynamic waiting time is determined by the distributional information of all the
latencies of different links. Then it becomes an optimal stopping time problem
which could be solved by mathematical tools.

Unlike smart meter system, the phaser network are mostly constructed with
wired network, especially fiber communication infrastructure. With the decreas-
ing cost of bandwidth, it is preferable to trade bandwidth with reliability. Here
we extend it to a multiple time data aggregation problem in one period with two
simple observations. First, the communication bandwidth is considerably cheap
compared with old days. We could watch 4 K videos stream on-line while the
sample of PMUs are on the level of kbps. Today most of the synchrophasor net-
works are connected with optical fiber, where the bandwidth could be considered
as huge pipe carrying a small stream, yet the reliability are not full optimized.
Second, a second chance for packets arriving later than a conservative deadline
will always improve the system packet loss rate. There are physical laws which
we cannot break in any situation. However, current PDCs may be conserva-
tive to limit the deadline to be far ahead of this physical limit. More aggregated
packets consisting of later arrived measurements will provide a more comprehen-
sive vision for SCADA. The simulation result validates our assumption, which
is given later in details.

The remainder of this paper is organized as follows. The system structure
of synchrophasor network and the details of multiple aggregation in PDC are
briefed in Sect. 2. Then in Sect. 3 we will give our system model and algorithm.
Later we analyze the performance bound on our algorithm. Numerical simulation
is compared with the original one in Sect. 4, and conclusions are drawn in Sect. 5.
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2 Background of Synchrophasor Network and System
Structure

Based on current standards of synchrophasor [4–6], the synchrophasor network
consists of PMUs and PDCs in which data streams initiate from the lower level
substations where PMUs are located, and then are sent to PDCs in a real time
fashion. Typically, one PDC could aggregate these data streams from multiple
PMUs in various key locations. Then these intermediate nodes could implement
various sophisticated functions on the data streams for monitoring, control or
protection.

The ownership of these PDCs usually belongs to different utilities or ISOs.
Therefore, the network topology could be complicated as a directed acyclic graph
or simple as a tree where measurements are gathered in one or multiple place.
The system structure is shown in Fig. 1.

Fig. 1. Synchrophasor network

2.1 Data Aggregation in PDC

In the protocol [6], a PDC could perform different functions, such as data aggre-
gation, data forwarding, data transfer protocols conversion, data latency calcu-
lation, redundant data handling etc., to relieve the burden of pre-process in the
upper level control center. The specific configuration could be adjusted based on
the need. This hierarchical structure usually offers great flexibility and scalability
for a large distributed system.

Among all the functions, data aggregation and data forwarding are the most
basic and core functions that PDC has. For data aggregation, it could be per-
formed with or without time alignment. PDC should preserve data quality, time
quality and time synchronization indication from each signal. For the case with
time alignment, it refers to waiting for data with a given time stamp from all
sources, placing that data in a packet, and forwarding it to next level. All the



124 J. Bao and H. Li

data coming to a PDC has been timestamped by the PMU with a time refer-
enced to an absolute time. The PDC aligns received PMU/PDC data according
to their timestamps, not their arrival order or arrival time, and transmits the
combined data in one or more output data streams to other PDCs or applications
such as archiving, visualization, or control.

However, unlike most traffic in commercial networks, the measurement
streams in synchrophasor network is more time-critical. A large latency in
switched network reduces the value of measurements for some time-stringent
applications, especially protection or advanced control in the future. With data
aggregation enabled, each level in phasor network would set a latency deadline,
which inevitably introduces more latencies for the measurements arriving earlier
than the deadline. Moreover, it will further lessen the time conservation of data
transmission between this node and next level nodes, and the packets are prone
to losses. We will provide detailed discussions in the following.

2.2 Packet Loss and Latency Thresholds

For synchrophasor networks, two metrics are used for measuring the perfor-
mance. One is packet loss, while the other is latency. However, the problem is
more troublesome in current situation.

Fig. 2. Single deadline vs multiple grouping in PDC

Today, an empirical and conservative method is single fixed deadline policy,
where the waiting time is determined by the empirical latency measurements
and dedicated tuned with the best guess. The source of latency varies. To better
demonstrate the problem, we compare two scenarios in Fig. 2. Here we denote
the single waiting time by τ . With one time slot, there are m PMUs reporting
to a common PDC, whose latency is noted by Li. The total latency allowance
D from PMUs to SCADA is determined by the specific application. The PDC
will wait and aggregate whatever it receives before the deadline τ and then
report to the SCADA in an integrated packet. From the view of SCADA, all



Better Late Than Never 125

these packets have a latency equaling τ instead of Li ≤ τ1. On the other hand, it
further compresses the transmission time for PDC from D−Li to D−TD, which
translates to a higher packet loss rate since it increases the probability that this
integrated packet arrives later than D. In addition to that, these packets arrived
after τ are ignored by the PDC and considered as lost from the view of SCADA.

Based on the above discussion, the latency in communication system exacer-
bates packet loss. With the advancement of communication techniques, the cost
of reasonable high bandwidth decreases dramatically yet quality of service(QoS)
such as packet loss rate has not been improved equally. The idea comes naturally
to trade bandwidth for better packet loss rate. Specifically, it means we could
arrange PDC to send multiple combined packets to SCADA instead a single one.
The benefits are manifold. The first group of measurement sent by τ1 ≤ τ has a
better chance to reach SCADA in time. On the other hand, the next few groups,
such as τ2, are not abandoned from PDC and could have a considerate proba-
bility to be successfully received by the destination. The last but not the least,
the shooting time for single deadline approach is really conservative since you
do not want to take a risk to choose shooting time with a very low success rate.
However, you can choose a shooting time in a larger time period than the single
deadline approach, because it could be accepted in the multiple-time aggregation
framework.

With all the benefits mentioned, how to choose the shooting time delicately
to maximize the benefits remains a unsolved problem. The balance between
shooting times and bandwidth cost has not been studied before in the literature.
We will attack the problem in the next section by modeling it as a multiple
optimal stopping time issue.

3 Multiple Optimal Stopping Time Problem in Data
Aggregation

The requirement of latency, denoted by D, varies based the time scale of appli-
cations. However, some applications could be more stringent than others. The
communication system should and has to satisfy the most stringent application
with top priority. Here we assume that D is pre-determined.

3.1 Problem Formulation

Without loss of generality, we assume that one PDC has m PMU data streams to
gather. Each link has latency Li while the latency from PDC to control center is
L̂. In our analysis, Li and L̂ follow an arbitrary distribution and mutually inde-
pendent, yet not necessarily identically distributed. Since PDCs are equipped
with latency calculation function, it can be safely assumed that we know the
stochastic information of all latencies. Furthermore, we have 0 < j ≤ n dead-
line τj as stopping time. Then, at any moment t, the total number of received
measurements is given by

N(t) =
m∑

i=1

1Li<t (1)
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where 1{} is the indicator function.
When t = τj , we define the reward function as

R(τj) = |N(τj) − N(τj−1)|FL̂(D − τj) − c. (2)

In the above equation, F{} is the cumulative distribution function of random
variable L̂. It can be considered as a discount factor for the received yet unsent
measurements. The later it sends, the less reward we will get. c is a constant cost
for sending one combined packet from PDC to SCADA, which could force the
PDC to send with patience and save the bandwidth. Here we ignored the process
time for PDC since it can be considered as a fixed time for specific equipment
and can be easily incorporated into the requirement of D.

If we have n shooting times, then the total reward is given as

R =
n∑

j=1

[|N(τj) − N(τj−1)|FL̂(D − τj) − c]. (3)

To simplify the notation, we let N(τ0) = 0 and τ0 = 0. By maximizing reward R,

R∗ = arg max
0<τ1<τ2···<τn

R(τ1, τ2, . . . , τn) (4)

provides the best aggregation strategy for PDC. Please notice that we neither
assign nor limit the numbers of shooting times n in the PDC; however it should be
automatically determined by the algorithm. The decision of these shooting times
are similar to a sequential decision problem from the view of PDC over time.
Therefore it is ready to be optimally solved by stochastic dynamic programming.

3.2 Stochastic Dynamic Programming

We consider a discrete time model for the PDC queue in which each time interval
last ts. The PDC will make a observation for the states. For simplicity, we let
K = D

ts
be an integer and time t ∈ {0, 1, . . . ,K}. The system has two states

during the process. First one is the PMU measurements N(t) received by time
t. The other state S(t) is the record of measurements that have been sent by
PDC. We use X(t) to represent the tuple (N(t), S(t)) concisely.

Action and Strategy: During each time slot, PDC need to make a decision
of whether it transmits the messages received by then. We use

a(t) = u(X(t), t) =
{

1 if PDC reach a stopping time.
0 otherwise.

as the action. Therefore, the number of shooting is determined by how many
a(t) is non-zero over one period.
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Dynamic of System States: N(t) could be considered a stochastic process
and it can be simplified as a Markov chain with transition probability P (N(t+1)
|N(t)) under certain assumption. S(t) = a(t)N(t) + (1 − a(t)) × S(t − 1). It will
not change until an shooting action is carried out and S(τj) is updated as N(τj).

Benefit Function: Given all states and action of t, we define the gain function
in each time slot.

C(X(t), a(t)) = a(t)[(N(t) − S(t))FPDC(D − t) − c]

Bellman’s Function: The key challenge of this scheduling algorithm is how
to choose the shooting time given no knowledge of the evolution of states in
the future. The action made before current time will have an impact on the
expectation of future gain. Given above elements, we have following expectation
form of Bell function.

Jt(X(t)) = max
a(t)∈{0,1}

(C(X(t), a(t)) + E[Jt+1(X(t + 1))|X(t)])

In the next section, we will analyze the performance in the simulation.

4 Numerical Results

Given the problem formulation, we conducted the numeral simulation to verify
the performance. Without loss of generality, we assume one PDC between m
PMUs and SCADA. We applied Monte Carlo method to generate the random
latencies to calculate the average packet loss rates and average numbers of packet
that have been sent in one period. We compared our method with other two
strategies — single optimal stopping aggregation method proposed in [3] and
the scheme of multiple fixed shooting times. The multiple fixed shooting times
Tfixed(i) are determined by number H of the average packets that have been sent.
First we need to find the maximum positive integer �H� in different scenarios,
and then Tfixed(i) = D

�H�+1 × i where 0 < i ≤ �H�. All the latencies Li and L̂

are modeled as independent random variables following exponential distribution
with parameter λ. The parameters we used in the simulation are listed in Table 1.
We compare these approaches by varying one of these simulation parameters.
Before we gave detailed results, some general results are summarized based on
all cases.

4.1 General Result

As can be seen from all scenarios, our approach outperforms other approaches.
However, in most cases, the scheme of multiple fixed shooting times outperforms
the one optimal stopping time, if the average sending times are larger than 2.
It shows that the packets arrived later than simple deadline should not be aban-
doned, as long as it does not reach the physical distance limitation. All these
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Table 1. Parameters of simulation setup

Cost 0.6

λ1 5

λ2 5

PMU Number 15

Latency D 30 ms

simulations demonstrate that there is still great room for improvement on packet
loss in synchrophasor networks.

PMU Number: We varied PMU number m in the simulation scenario but the
packet loss rate barely changed as showed in Fig. 3. However, from the average
packet number in the figure, we learned that it increases with number of PMU
data steams. Considering more PMUs could lead to more processing time in
PDC node, it might be efficient to limit the number of PMUs within a small
range to reduce the bandwidth cost and preserve more time for the net latency
allowance.

Cost per Packet: This coefficient put a penalty on the total shooting time. By
adjusting the cost per packet c in the objective function, we could see that the
packet success rate decreases with the cost, which fits our intuition. At the same
time, the average shooting time also decreases, which reduces the bandwidth
cost. Based on the simulation result, we could guarantee a better packet loss
rate by reserving a higher bandwidth.

Latency Distribution: In this part, we change the parameter λ of exponen-
tial distribution and result is showed in Figs. 5 and 6. Since the total latency
allowance D is fixed, the packet loss rate is negatively correlated with λ as
shown in the figures. Since the expected latency increases with λ, we expect
that the total budget becomes tighter and thus, more packets can not reach the
sink in time. However, the average shooting time also increases with λ in general.
We believe that PDC is trying to send more packets at the latter segment of the
period. However, the success rate becomes lower due to the increasing expected
latency between PDC and PMUs. In a nutshell, an over-tight total latency will
waste both bandwidth and PMU measurements (Fig. 4).

Total Latency Allowance D: In Fig. 7, three methods finally reach the same
level as we relax on the requirement of D. However, our method still beats
others under more stringent situations in which total latency allowances are
very limited.



Better Late Than Never 129

Number of PMU 

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Su
cc

es
s R

ate

Multi
Single
Fixed

(a) Success Rate

10 12 14 16 18 20 10 12 14 16 18 20
Number of PMU 

2.2

2.4

2.6

2.8

3

3.2

Av
era

ge
 Pa

ck
et 

Nu
mb

er

(b) Average Shooting Time

Fig. 3. The impact of number of PMUs
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Fig. 4. The impact of cost per packet
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Fig. 5. The impact of distribution λ1 of PMU latency
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Fig. 7. The impact of total latency D

5 Conclusion

The motivation of WAMS is to maintain a stable system state based on the
measurements of geographically dispersed sensors. The latencies of measure-
ments cannot be overlooked and need to be delicately treated to guarantee the
QoS in such complex system. In this paper, we have discussed the packet loss
issues caused by latency, and offered a simple yet effective approach to mitigate
this problem. Without breaking the current protocol and system, the simulation
results have shown that it outperforms existing methods. Beyond this result, we
will further study more general cases with non-uniform distributions, where the
number of states grows exponentially and some approximations are needed to
avoid the curse of dimension.
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Abstract. Due to the intermittent production of renewable energy and
the time-varying power demand, microgrids (MGs) can exchange energy
with each other to enhance their operational performance and reduce
their dependence on power plants. In this paper, we investigate the
energy trading game in smart grids, in which each MG chooses its energy
trading strategy with its connected MGs and power plants according
to the energy generation model, the current battery level, the energy
demand, and the energy trading history. The Nash equilibria of this game
are provided, revealing the conditions under which the MGs can satisfy
their energy demands by using local renewable energy generations. In a
dynamic version of the game, a Q-learning based strategy is proposed for
an MG to obtain the optimal energy trading strategy with other MGs and
the energy plants without being aware of the future energy consumption
model and the renewable generation of other MGs in the trading market.
We apply the estimated renewable energy generation model of the MG
and design a hotbooting technique to exploit the energy trading experi-
ences in similar scenarios to initialize the quality values in the learning
process to accelerate the convergence speed. The proposed hotbooting
Q-learning based energy trading scheme significantly reduces the total
energy that the MGs in the smart grid purchase from the power plant
and improves the utility of the MG.

Keywords: Energy trading · Game theory · Reinforcement learning ·
Smart grids

1 Introduction

As important entities in smart grids, microgrids (MGs) are small-scale power
supply networks that consist of renewable energy generators, such as wind tur-
bines and solar panels, local electrical consumers and energy storage devices [1].
Each MG is aware of the local energy supply and the demand profiles of other
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MGs and the nearby power plant such as the energy selling prices using wireless
networks [2]. Therefore, microgrids with extra energy can sell energy to other
microgrids with insufficient energy to reduce their dependence on the energy
generated by the power plants with fossil fuel and save the long-distant energy
transmission loss.

Game theory is an important tool to study the energy trading in smart
grids [3–8]. For example, the energy demand of consumers and the response
of utility companies are formulated as a Stackelberg game in [4], yielding a
reserve power management scheme to decide energy trading price. The energy
trading of a power facility controller to buy energy from the power plant and
multiple residential users was studied in [6], which yields a charging-discharging
strategy to minimize the total energy purchase cost. The energy exchange game
for MGs formulated in [7] analyzes the subjectivity decision of end-users in the
energy exchange with prospect theory. The energy exchange game developed in
[8] addresses energy cheating with the indirect reciprocity principle.

However, to our best knowledge, the game theoretical study on energy trad-
ing among multiple MGs with heterogeneous and autonomous operators and
renewable energy supply are still open issues. In this paper, we formulate the
energy exchange interactions among interconnected MGs and the power plant as
an energy trading game, in which each MG chooses the amount of energy to sell
to or purchase from the connected MGs and the power plants in the smart grid
based on its battery level, the energy generation model and the trading history.
The MGs negotiate with each other on the amount of trading energy according
to the time-varying renewable energy generation and power demand of the MGs.
The energy generation model such as [13] is incorporated in the energy trading
game to estimate the renewable energy generation. The Nash equilibrium (NE)
of this game is derived, disclosing the conditions that the MGs are motivated
to provide their extra renewable energy to other MGs and purchase less energy
from the power plants.

Reinforcement learning techniques, such as Q-learning can be used by smart
grids to manage the energy storage and generation. For example, a temporal
difference-learning based storage control scheme proposed in [9] for the residen-
tial users can minimize the electric bill without knowing the power conversion
efficiencies of the DC/AC converters. The Q-learning algorithm based hetero-
geneous storage control system with multiple battery types proposed in [10]
improves the system efficiency. In a two-layer Markov model based on reinforce-
ment learning investigated in [11], generators choose whether to participate in
the next days generation process in the power grid to improve both the day-ahead
and real-time reliability. However, these works focus on the energy storage and
generation rather than the energy trading among the MGs.

In this paper, a Q-learning based energy trading strategy is proposed for the
MG to derive the optimal policy via trial-and-errors without being aware of the
energy demand model and the storage level of other MGs in the dynamic game.
To accelerate the learning speed, we exploit the renewable energy generation
model in the learning process and design a hotbooting technique that applies



Energy Trading Game for Microgrids Using Reinforcement Learning 133

the trading experiences in similar smart grid scenarios to initialize the quality
values of the Q-learning algorithm at the beginning of the game. Simulation
results show that the hotbooting Q-learning based energy trading scheme further
promotes the energy trading among the connected MGs in a smart grid, reduces
the reliance on the energy from the power plants, and significantly improves the
utility of the MGs.

The rest of this paper is organized as follows: The energy trading game is
formulated in Sect. 2, and the NE of the game is provided in Sect. 3. A hotbooting
Q-learning based energy trading strategy is proposed for the dynamic game in
Sect. 4. Simulation results are provided in Sect. 5, and conclusions are drawn in
Sect. 6.

2 Energy Trading Game

We consider an energy trading game consisting of N MGs that are connected
with each other and a power plant in the main grid via a substation. Each MG
is equipped with renewable power generators, active loads, electricity storage
devices, and the power transmission lines connecting with other MGs and the
power plant. A microgrid has energy supply from other microgirds, the power
plant, and local renewable energy generators based on wind, photovoltaic, bio-
mass, and tidal energy.

The renewable energy generation such as wind power is local-independent,
intermittent and time-varying. The amount of the energy generated by renew-
able power generators in MG i at time k denoted by g

(k)
i can be estimated via

the power generation history and the modeling method such as [13], yielding
an estimated amount of the generated power denoted by ĝ

(k)
i . For simplicity,

the estimation error regarding g
(k)
i is assumed to follow a uniform distribution,

given by

g
(k)
i − ĝi

(k) ∼ G · U(−1, 1), (1)

where G is the maximum estimation error.
In a smart grid, the energy trading interaction among the MGs can be for-

mulated as an energy trading game that consists of N players. The amount of
energy that MG i intends to sell to (or buy from) MG j before the bargaining
is denoted by x

(k)
ij , which is chosen by MG i based on the observed state of the

smart grid, such as its battery level, the energy trading prices, and its current
energy production, and the energy demand. The trading strategy of MG i at
time k is denoted by x

(k)
i = [x(k)

ij ]1≤j≤N ∈ X, where X is the feasible action set

of the MGs and x
(k)
ii is the amount of energy that MG i intends to trade with

the power plant. If x
(k)
ij > 0, MG i intends to sell its extra energy to MG j or

the power plant. If x
(k)
ij < 0, MG i aims to buy energy.

Note that sometimes two MGs intend to sell energy to each other at the
same time, i.e., x

(k)
ij x

(k)
ji > 0. This problem has to be addressed with the energy
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trading bargaining. The resulting actual trading strategy of MG i at time k is
denoted by y

(k)
i = [y(k)

ij ]1≤j≤N , where y
(k)
ii and y

(k)
ij denote the amounts of the

energy sold if positive by MG i to the power plant and MG j, respectively, or
the amount of the energy purchased from them if negative, with |y(k)

ij | ≤ C, in
which C is the maximum amount of energy exchange between two MGs. The
time index k is omitted, if no confusion incurs. Therefore, the actual amount of
trading energy between MG i and MG j after the bargaining is based on their
intention trading interactions and given by

yij =

⎧
⎪⎨

⎪⎩

−min(−xij , xji), if xij < 0, xji > 0
min(xij ,−xji), if xij > 0, xji < 0
0, o.w.

(2)

In this way, we can ensure that yij + yji = 0, ∀ i �= j. The amount of the energy
that MG i trades with the energy plant is given by

yii =
∑

1≤i�=j≤N

xij −
∑

1≤i�=j≤N

yij . (3)

Energy storage devices, such as batteries, can charge energy if the load in the
MG is low and discharge if the load is high. The battery level of MG i, denoted
by b

(k)
i , cannot exceed the storage capacity denoted by B, with 0 < b

(k)
i ≤ B.

The estimated amount of the local energy demand is denoted by d
(k)
i , with 0 ≤

d
(k)
i ≤ Di, where Di represents the maximum amount of local energy required

by MG i. The battery level of MG i depends on the amount of trading energy,
the local energy generation, and the energy demand at that time. For the smart
grid with N MGs, we have

b
(k)
i = b

(k−1)
i + g

(k)
i − d

(k)
i +

N∑

j=1

y
(k)
ij . (4)

The energy gain of MG i, denoted by Gi(b), is defined as the benefit that MG i
obtains from the battery level b, which is nondecreasing with b with G(0) = 0. As
the logarithmic function is widely used in economics for modeling the preference
ordering of users and for decision making [4], we assume that

Gi(b) = βi ln(1 + b), (5)

where the positive coefficient βi represents the ability that MG i satisfies the
energy demand of the users.

To encourage the energy exchange among MGs, the local market provides
a lower selling price for the trade between MGs denoted by ρ−(k) and a higher
buying price denoted by ρ+(k), compared with the prices offered by the power
plant which are denoted by ρ

−(k)
p and ρ

+(k)
p , respectively, i.e., ρ−(k) > ρ

−(k)
p and

ρ+(k) < ρ
+(k)
p .
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The utility of MG i at time k, denoted by u
(k)
i , depends on the energy gain

and the trading profit, given by

u
(k)
i (y) =β ln

⎛

⎝1 + b
(k−1)
i + g

(k)
i − d

(k)
i +

N∑

j=1

yj

⎞

⎠ −
N∑

j �=i

yj

(
I(yj ≤ 0)ρ−(k)

+ I(yj > 0)ρ+(k)
)

− yi

(
I(yi ≤ 0)ρ−(k)

p + I(yi > 0)ρ+(k)
p

)
,

(6)

where I(·) be an indicator function that equals 1 if the argument is true and 0
otherwise.

3 NE of the Energy Trading Game

We first consider the NE of the energy trading game with N = 2 MGs, which is
denoted by x∗

i = [x∗
ij ]1≤j≤2. Each MG chooses its energy trading strategy at the

NE state to maximize its own utility, if the other MG applies the NE strategy.
By definition, we have

u1(x∗
1,x∗

2) ≥ u1(x1,x
∗
2),∀x1 ∈ X (7)

u2(x∗
1,x2) ≤ u2(x∗

1,x∗
2),∀x2 ∈ X. (8)

Theorem 1. The energy trading game with N = 2 microgrids and a power plant
has an NE (x∗

1, x
∗
2) given by

x∗
1 =

[

0,
β

ρ
− 1 − b

(k−1)
1 − g

(k)
1 + d

(k)
1

]

(9)

x∗
2 =

[
β

ρ − 1
− 1 − b

(k−1)
2 − g

(k)
2 + d

(k)
2 , 0

]

, (10)

if
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ− = ρ+ = ρ+p − 1 = ρ−
p + 1 = ρ (11a)

0 <
β

ρ
− 1 − b

(k−1)
1 − g

(k)
1 + d

(k)
1

< − β

ρ − 1
+ 1 + b

(k−1)
2 + g

(k)
2 − d

(k)
2 (11b)

|x12| ≤ |x21| (11c)
x12 > 0, x21 < 0. (11d)

Proof. If (11) holds, by (2) and (3), we have x11 = x22 = 0 and y12 =
min(x12,−x21) = x12, and thus (6) can be simplified into

u1(x1,x
∗
2) = β ln

(
1 + b

(k−1)
1 + g

(k)
1 − d

(k)
1 + x12

)
− x12ρ, (12)

u2(x∗
1,x2) = β ln

(
1 + b

(k−1)
2 + g

(k)
2 − d

(k)
2 + x21

)
− x21(ρ − 1) + x∗

12. (13)
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Thus, we have

du1(x1,x
∗
2)

dx12
=

β

1 + b
(k−1)
1 + g

(k)
1 − d

(k)
1 + x12

− ρ, (14)

and

d2u1(x1,x
∗
2)

dx2
12

= − β
(
1 + b

(k−1)
1 + g

(k)
1 − d

(k)
1 + x12

)2 < 0, (15)

indicating that u1(x1,x
∗
2) is convex in terms of x1. Thus the solution of

du1(x1,x
∗
2)/dx12 = 0 is given by (10). Thus u1(x1,x

∗
2) is maximized by x∗

1

in (9), indicating that (7) holds. Similarly, we can prove that (8) holds.

Corollary 1. At the NE of the energy trading game with N = 2 MGs if (11)
hold, MG 1 buys y∗

12 amount of energy from MG 2, and the latter sells −y∗
22

energy to the power plant, with

y∗
12 =

β

ρ
− 1 − b

(k−1)
1 − g

(k)
1 + d

(k)
1 (16)

− y∗
22 = β

2ρ − 1
ρ(ρ − 1)

+ 2 +
N∑

i=1

(
b
(k−1)
i + g

(k)
i − d

(k)
i

)
, (17)

and the utility of MG 1 and that of MG 2 are given respectively by

u1 =β

(

ln
β

ρ
− 1

)

+ ρ
(
1 + b

(k−1)
1 + g

(k)
1 − d

(k)
1

)
(18)

u2 =β

(

ln
1

ρ − 1
− 1 +

1
ρ

)

+ ρ
(
1 + b

(k−1)
2 + g

(k)
2 − d

(k)
2

)

− 2 −
2∑

i=1

(
b
(k−1)
2 + g

(k)
2 − d

(k)
2

)
. (19)

4 Energy Trading Based on Hotbooting Q-Learning

The repeated interactions among N MGs in a smart grid can be formulated as a
dynamic energy trading game. The amounts of the energy that MG i trades with
the power plant and other MGs impact on its future battery level and the future
trading decisions of other MGs as shown in (2) and (4). Thus the next state
observed by the MG depends on the current energy trading decision, indicating
a Markov decision process. Therefore, an MG can use Q-learning to derive the
optimal trading strategy without knowing other MGs’ battery levels and energy
demand models in the dynamic game. More specifically, the amount of the energy
that MG i intends to sell or purchase in the smart grid at time k, i.e. x

(k)
i ,

is chosen based on its quality function or Q-function denoted by Qi(·), which
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describes the expected discounted long-term reward for each state-action pair.
The state observed by MG i at time slot k, denoted by s

(k)
i , consists of the current

local energy demand, the estimated amount of the renewable energy generated at
time k and the previous battery level of the MG, i.e., s(k)i =

[
d
(k)
i , ĝ

(k)
i , b

(k−1)
i

]
.

The value function Vi (s) is the maximal Q function over the feasible actions
at state s. The Q function and the value function of MG i are updated, respec-
tively, by the following:

Qi

(
s
(k)
i ,x

(k)
i

)
← (1 − α)Qi

(
s
(k)
i ,x

(k)
i

)
+ α

(
u
(k)
i + γVi

(
s
(k+1)
i

))
(20)

Vi

(
s
(k)
i

)
= max

x∈X
Qi

(
s
(k)
i ,x

)
, (21)

where α ∈ (0, 1] is the learning rate representing the weight of current expe-
rience in the learning process, and the discount factor γ ∈ [0, 1] indicates the
uncertainty of the microgrid regarding the future utility.

The standard Q-learning algorithm initializes the Q-function with an all-zero
matrix, which is usually not the optimal value and thus degrades the learning
performance at the beginning. Therefore, we design a hotbooting technique to
initialize the Q-value based on the training data obtained from the large-scale
experiments performed in similar smart grid scenarios. This saves the random
explorations at the beginning of the game and thus accelerates the convergence
rate. More specifically, we perform I similar energy trading experiments before
the start of the game, as shown in Algorithm 1.

Algorithm 1. Hotbooting process for MG i.

Initialize α, γ, Q∗
i (si,xi)=0, and V ∗

i (si)=0, ∀si,xi

Set b
(0)
i = 0

For t = 1, 2, · · · , I
Emulate a similar energy trading scenario for N MGs
For k = 1, 2, · · · , K

Observe ĝ
(k)
i and d

(k)
i

Obtain state s
(k)
i =

[
d
(k)
i , ĝ

(k)
i , b

(k−1)
i

]

Choose x
(k)
i ∈ X via Eq. (22)

For j = 1, 2, · · · , N
If j �= i

Negotiate with MG j to obtain y
(k)
ij via (2)

Sell or purchase |y(k)
ij | amount of the energy to or from MG j

Else

Calculate y
(k)
ii via (3)

Sell or purchase |y(k)
ii | amount of the energy to or from the power plant

End if
End for

Obtain u
(k)
i

Observe b
(k)
i

Calculate Q∗
i

(
s
(k)
i ,x

(k)
i

)
via (20)

Calculate V ∗
i

(
s
(k)
i

)
via (21)

End for
End for
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Algorithm 2. Hotbooting Q-learning based energy trading of MG i.

Initialize α, γ, Qi=Q∗
i , and Vi=V ∗

i

Set b
(0)
i = 0

For k = 1, 2, · · ·
Estimate ĝ

(k)
i and d

(k)
i

Obtain state s
(k)
i =

[
d
(k)
i , ĝ

(k)
i , b

(k−1)
i

]

Select the trading strategy x
(k)
i via Eq. (22)

For k = 1, 2, · · · , K
If j �= i

Negotiate with MG j to obtain y
(k)
ij via (2)

Sell or purchase |y(k)
ij | amount of the energy to or from MG j

Else

Calculate y
(k)
ii via (3)

Sell or purchase |y(k)
ii | amount of the energy to or from the power plant

End if
End for

Obtain u
(k)
i

Observe b
(k)
i

Update Qi

(
s
(k)
i ,x

(k)
i

)
via Eq. (20)

Update Vi

(
s
(k)
i

)
via Eq. (21)

End for

To balance the exploitation and exploration in the learning process, an ε-
greedy policy is applied to choose the amount of the energy to trade with other
MGs and the energy plant, i.e., x(k)

i is given by

Pr(x(k)
i = Θ) =

⎧
⎨

⎩

1 − ε, Θ = arg max
x∈X

Qi

(
s
(k)
i ,x

)

ε
|X| , o.w.

(22)

MG i chooses x
(k)
i according to ε-greedy strategy and negotiates with other

MGs to determine the actual amounts of the energy in the trading yk
i according

to (2). As shown in Algorithm 2, the MG observes the reward and the next state.
According to the resulting utility u

(k)
i , the MG updates its Q function via (20)

and (21).

5 Simulation Results

Simulations have been performed to evaluate the performance of the hotbooting
Q-learning based energy trading strategy in the dynamic game with N = 2 MGs.
In the simulation, if not specified otherwise, the energy storage capacity of each
MG is B = 4, and the energy gain is β = 8. The local energy demands, the energy
trading prices, and the renewable energy generation models of each MG in the
simulations are retrieved from the energy data of microgrids in Hong kong in [13].
As benchmarks, we consider the Q-learning based trading scheme and the greedy
scheme, in which each MG chooses the amount of selling/buying energy according
to its current battery level to maximize its estimated immediate utility.
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Fig. 1. Performance of the energy trading strategies in the dynamic game with N = 2,
B = 4 and β = 8

As shown in Fig. 1, the proposed Q-learning based energy trading strategy
outperforms the greedy strategy with less energy bought from the power plant
and a higher utility of the MG. For example, the Q-learning based strategy
decreases the average amount of the energy purchased from the power plant by
47.7% and increases the utility of the MG by 11.6% compared with the greedy
strategy at the 1500-th time slot in the game. The performance of the Q-learning
based strategy is further improved with the hotbooting technique that exploits
similar energy trading experiences to accelerate the learning speed. As shown
in Fig. 1, the hotbooting Q-learning based energy trading strategy decreases the
amount of the energy purchased from the power plant by 33.7% and increases
the utility of the MG by 9.5% compared with the Q-learning based strategy at
the 1500-th time slot.

6 Conclusion

In this paper, we have formulated an MG energy trading game for smart grids
and derived the NE of the game, disclosing the conditions under which the MGs
in a smart grid trade with each other and reduce the dependence on the power
plant. A Q-learning based energy trading strategy has been proposed for each
MG to choose the amounts of the energy to trade with other MGs and the power
plant in the dynamic game with time-varying renewable energy generations and
power demands. The learning speed is further improved by the hotbooting Q-
learning technique. Simulation results show that the proposed hotbooting Q-
learning based energy trading technique improves the utility of MG and reduces
the amount of the energy purchased from the power plant, compared with the
benchmark strategy.
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Abstract. In this paper, we study a vertically differentiated duopoly
market, where competitors (mobile service providers) offer mobile sub-
scriptions to customers, who diversify in their preferences regarding price
and quality. We consider a two-stage game where the players first select
the quality and then begin a competitive process for the price or quan-
tity, which is widely known as Bertrand or Cournot game, respectively.
To capture the service provider strategy, we first introduce variable costs
to improve the quality, which are linear in quality per a subscription,
and then derive the market-related metrics of interest for the tractable
uniform distribution of the customer’s taste parameter. Further relax-
ing this strong assumption, we provide with a numerical procedure that
helps characterize an arbitrary taste distribution as well as an arbitrary
cost function. Finally, selected numerical examples report on the com-
parison between the uniform and the truncated exponential distribution,
thus accentuating the importance of choosing an appropriate customer
taste model.

1 Introduction

The telecommunications industry has already entered a new phase of its evolu-
tion, where the focus has shifted from the conventional multimedia transmission
to the ubiquitous connectivity and massive traffic volumes driven by growing
human demand for data as well as supported by the emerging innovations, such
as the Internet of Things, wearables, and more far-fetched autonomous vehi-
cles [1]. On this market that crossed the 100% penetration mark, competition of
mobile service providers for increased market share and retention of customers
becomes a vital part of their strategy.

One of the key marketing strategies for competitors to seek profitable niches
is product differentiation and pricing [2]. In particular, horizontal differentiation
refers to immeasurable distinctions in virtually identical products, such as in
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design or color, which are not sufficient for the mobile service provider (SP) to
attract new customers, who are willing to acquire a better level of service. In
contrast to that, vertical market differentiation is objectively measurable and
based on diverse quality levels of the products [3]. Here, customers are sensitive
with respect to the relation between the quality and the price levels, and may
have diverse preferences regarding it [4].

Generally, the market and pricing models have already attracted significant
attention of the wireless community across a wide range of various problems,
from market entrance decisions for mobile SPs [5] and competition over spec-
trum [6] to specific studies of social welfare in case when SPs exploit unlicensed
spectrum [7]. However, to the best of our knowledge no prior work on vertical
differentiation of mobile service markets has been contributed so far. In this
paper, we study a duopoly model where mobile SPs first determine the specifi-
cation of their offered services and then decide on the prices or the quantities of
services they offer according to the Bertrand or Cournot competition models [8]
(the initial market entry [9] is assumed to have been completed).

We consider both the price and the quantity competition as they lead to
dissimilar equilibrium points, while there is still no consensus in past literature
as to which type of competition should be preferred. We thus analyze both
game models in order to reveal the dependence of the corresponding results on
the optimal choice of the SP strategies, namely, whether SPs eventually offer
a homogeneous product (as shown by the Cournot game) or two differentiated
products (as illustrated by the Bertrand game). Since both situations may occur
in the real market, one model cannot be preferred over another upfront.

Further, in modeling the mobile service markets an important role belongs
to characterizing the costs of offering improved service quality. The majority of
existing studies as in [9–11] assume zero or fixed quality improvement cost, as
well as adopt diminishing [12] or quadratic [13] formulations. This work assumes
linear costs of quality improvement per unit of product as this can be tackled
easily while being close to what the SPs may experience in practice.

As an indicator of customer preferences, we adopt the standard utility func-
tion [14], where the willingness of a customer to pay for a better quality ser-
vice is represented by a random taste parameter [14]. While most of the game-
theoretical references study the formulations by example of analytically tractable
but arguably unrealistic uniform distribution of the taste parameter from “poor”
to “rich”, we in this work offer guidance on how to handle an arbitrary taste dis-
tribution and an arbitrary cost function.

The remainder of this paper is organized as follows. In Sect. 2, we outline
our system model as well as describe the two-stage game played to divide the
market and set the optimal price or quantity (in Bertrand or Cournot game,
respectively). Our contributions appear in Sects. 3 and 4, where, correspond-
ingly, we provide analytical calculations for the conventional tractable example
under the linear cost assumption and then detail our flexible numerical procedure
to cope with an arbitrary formulation. Finally, we provide numerical comparison
of the two considered options based on representative examples.
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2 System Model

In this work, we study a vertically differentiated mobile service market under the
simplifying assumption of two operating SPs (service providers). In our formula-
tion, the SP i may be characterized by a pair “price-quality” (pi, si) and offer an
unconstrained number of mobile subscriptions, each of which guaranteeing the
announced mobile service quality si for the price pi. Thus offered subscriptions
(e.g., SIM-cards) may be purchased by a potentially large number of consumers,
hereinafter named customers. Based on their preferences, customers may select
only one SP or else refrain from buying anything.

We emphasize here that the products on a vertically differentiated market (in
our case, subscriptions) may differ in both their quality and price. Moreover, the
customers are not identical in their preferences due to diverse taste or budget
restrictions, which results in varying willingness to pay for the offer [4,15].

2.1 Characterization of the Customers

Utility Function of Customers. For differentiated markets, it is typically
assumed that all of the customers agree on ranking the mobile service offers (sub-
scriptions) in the order of quality preference according to some utility function
based on a taste parameter [13]. The taste parameter θ reflects the customer’s
preference i.e., the more a customer agrees to pay for a better quality service –
the higher the parameter θ becomes. In our study, we adopt the following utility
function of θ [15], given the price pi and the quality si offered by the SP i:

U(θ, si, pi) = θ · si − pi, (1)

where, si = s(Ti) is an increasing quality function of data volume or rate Ti

guaranteed by the SP. The function s(Ti) is typically non-linear and often rep-
resented in literature by a logarithmic dependence, but may also be replaced by
another, more appropriate choice.

Strategy of Customers. All of the customers are assumed to be rational i.e.,
the strategy of any customer is to maximize its utility U(θ, s, p) by choosing
exactly one subscription of the SP i characterized by a pair (pi, si) or, alterna-
tively, refraining from buying anything at all. We note that zero utility value
U(θ, si, pi) ≤ 0 is equivalent to not purchasing the product i, and the case
U(θ, si, pi) = U(θ, sj , pj) yields customer’s indifference to buying product i or j.

Distribution of Customers. In order to be able to apply the Cournot compe-
tition model, we further assume that the considered market is not covered i.e.,
there always are customers who never participate [11,15]. Therefore, θ should be
distributed over the interval [0, θmax], where θmax corresponds to customers able
to pay the most for a better quality. We assume that within this interval θ is dis-
tributed according to a certain probability density hθ(θ). Below, we compare two
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distinct distributions hθ(θ): the conventional and analytically tractable uniform
distribution as well as the more realistic truncated exponential distribution, for
which a numerical solution may be produced.

Fig. 1. Illustration of the target market structure.

2.2 Characterization of the SPs

Demand of the SPs. Without loss of generality, we reorder our SPs such that
s1 ≥ s2. Due to the assumption on the rationality of customers, prices should
also be rearranged in the non-decreasing order p1 ≥ p2. For the fixed price and
quality levels, we may obtain the following points of indifference for a tagged
customer [13]:

– point of indifference to buying or not buying the service of the SP 2 is denoted
by the parameter θ∅,2 = p2

s2
(follows from U(θ, s2, p2) = 0),

– point of indifference to buying the service of the SP 2 or of the SP 1
corresponds to the parameter θ2,1 = p1−p2

s1−s2
(follows from U(θ, s1, p1) =

U(θ, s2, p2)).

The demand of the SPs may then be established as D1(s;p) =
∫ θmax

θ2,1
h(θ)dθ and

D2(s;p) =
∫ θ2,1

θ∅,2
h(θ)dθ, where h(θ) is the probability density function (PDF) of

the taste parameter θ.

Profit of the SPs. When making their decisions, the SPs abide by the principle
of maximizing their profit, which is determined by the financial flow from the
subscribed customers and depends on the structure of the costs. We assume that
linear costs are incurred when improving the claimed quality si per user, so that
the SP would be ready to support the respective quality of service (QoS) level
for its subscribed customers. Hence, the total costs depend both on the number
of served customers and on the selected quality level. These costs may reflect,
for example, the initial investments into a fixed-term spectrum lease and/or the
amounts of spectrum that could be resold (as e.g., in [16] or [17]).

Further, our profit function may be written as Πi(s,p) = Di(s,p) (pi − νsi),
where ν is the quality cost coefficient. The latter may be roughly estimated
from the value of the spectrum license costs to support the announced QoS,
normalized by unit time as well as the total number of customers in the region
of interest. We note that our assumption on the linear costs is relaxed in Sect. 4
and replaced by another suitable function.
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2.3 Two-Stage Differentiated Market Game

In this work, we model both alternatives: the price and the quantity competition,
which are known as the Bertrand and Cournot competition models, correspond-
ingly. We focus on a differentiated market game with the following two phases :

1. In the first phase, both SPs select the quality level si (equivalent to e.g., a
data rate package with the announced throughput). Importantly, at this stage
the SPs are aware of each other, but make their decisions sequentially.

2. Second, given the fixed quality level si the SPs compete in price or, alterna-
tively, in quantity. More specifically, in the Bertrand game the SPs decide on
the prices pi, i = 1, 2 that are announced to the customers purchasing their
subscriptions. In contrast to that, in the Cournot game the SPs decide on
the quantity, which in our modeling translates into the number of subscribed
customers or, equivalently, sold subscriptions.

Further, we aim at determining the Nash equilibrium of our game and to do so
we apply the principle of backward induction. Accordingly, we begin by finding
an equilibrium for the second phase (price/quantity competition for the fixed
levels of si) and then obtain the optimal values of si which are selected in the
first phase.

3 Conventional Example: Uniform Taste Distribution

In this section, we consider a tractable example of the customer taste distribution
h(θ), namely, a uniform distribution hU (θ) = 1

θmax
over the said interval [0, θmax]

and thus the expressions for the demand may be rewritten as:

D1(s;p) = 1
θmax

(θmax − θ2,1), D2(s;p) = 1
θmax

(θ2,1 − θ∅,2). (2)

In what follows, we consider the Bertrand price competition and the Cournot
quantity competition models separately for both options.

3.1 Bertrand Price Competition for the Uniform Distribution

In the Bertrand game, the SP selects its own price pi in order to maximize the
profit Πi(s;p) = Di(s;p) (pi − νsi) for the selected quality function values si.
By differentiating Πi over pi, one may calculate the optimal prices (can be
verified for ν = 0 by [13]) for the fixed levels of quality, while the solution is
readily obtained as follows:

p∗
1(s) = s1

2θmax(s1−s2)+v(2s1+s2)
4s1−s2

, p∗
2(s) = s2

θmax(s1−s2)+3s1v
4s1−s2

. (3)

It can be easily demonstrated that the latter is a unique point of maximum
for 0 ≤ s2 ≤ s1, which is achieved during the price competition if all of the
participants maximize their profits. The solution (3) represents a result of long-
term price adjustment.
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At the next step of our backward induction, we consider the first phase of the
game, when the SPs select the quality si. Each of them maximizes the function
Πi(s) over the only varying argument si, where:

Π1(s) = 4s21
(θmax−ν)2(s1−s2)

θmax(4s1−s2)2
, Π2(s) = s1s2

(θmax−ν)2(s1−s2)
θmax(4s1−s2)2

. (4)

The first-order condition of maximum for these two independent optimization
problems may be formulated as follows:

4 s1 (θmax−v)2 (4 s1
2−3 s1 s2+2 s2

2)
θmax(4 s1−s2)

3 = 0, s1
2 (4 s1−7 s2) (θmax−v)2

θmax(4 s1−s2)
3 = 0. (5)

Denoting s1
s2

as x, we may then locate the maximum points for both SPs. We note
that due to the absence of roots for the first equation and the fact that ∂Π1

∂s1
> 0,

the maximum is located at the border s∗
1 = smax, while the optimal quality

s∗
2 =smaxξ, where ξ=4/7 (the second-order condition of maximum ∂2Π2

∂s2
2

∣
∣
∣
s∗
1 ,s∗

2

<0

could be verified easily). The latter corresponds to the rule of 4/7 [11].

Theorem 1. The obtained solution for the Bertrand game is unique and repre-
sents the Nash equilibrium.

Proof. The proof is fairly straightforward and is based on demonstrating that
the following holds:

Πi(s∗
1, s

∗
2) ≥ Πi(s1, s∗

2), for any s1 < s∗
1,

and Πi(s∗
1, s

∗
2) ≥ Πi(s∗

1, s2), for any s2 �= s∗
2,

(6)

which is based on the fact that the sought points are the points of maximum for
the respective functions. Uniqueness of the sought point follows from uniqueness
of p∗(s) and the solution (s∗

1, s
∗
2).

Substituting the sought point (smax, ξsmax) into the price, demand, and profit
functions, we obtain the key indicators at the equilibrium point. Then, we addi-
tionally calculate the consumer surplus by characterizing the integral benefit of
all customers as a difference between the maximum price that they could have
paid for the quality si (i.e., θsi) and what they actually spend (pi):

CS =
θmax∫

θ1,2

(θs1 − p1) 1
θmax

dθ +
θ1,2∫

θ∅,2

(θs2 − p2) 1
θmax

dθ = 7smax(θmax−ν)2

24θmax
. (7)

3.2 Cournot Quantity Competition for the Uniform Distribution

While in the Bertrand game the price pi is controlled by the SP i and the share
of connected customers is then determined through the demand function, in the
Cournot game the SPs control the quantity (i.e., the number of subscriptions)
and then the prices are derived through the inverted system of demand functions:

p1(s;D) = −θmax(D1s1 − s1 + D2s2),
p2(s;D) = −θmaxs2(D1 + D2 − 1). (8)
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Substituting the above into the expression for the SP profit Πi = Di(pi − vsi),
we may establish the quantity response functions that maximize the profit for
the fixed qualities s1 and s2:

D1(s) = (2s1−s2)(θmax−ν)
θmax(4s1−s2)

, D2(s) = s1(θmax−ν)
θmax(4s1−s2)

.

After substituting these functions into (8), we obtain the prices set by the SPs:

p1 = s1
2θmaxs1−θmaxs2+2s1ν

(4s1−s2)
, p2 = s2

θmaxs1+3s1v−s2ν
(4s1−s2)

,

and, correspondingly, characterize the resulting profit:

Π1(s)= s1(2s1−s2)
2(θmax−ν)2

θmax(4s1−s2)2
, Π2(s)= s2

1s2(θmax−ν)2

θmax(4s1−s2)2
. (9)

In the second phase of the backward induction, we derive the optimal level of
qualities that maximize the profit (9) by finding the stationary points of the
following equations:

∂Π1(s)
∂s1

= (θmax−ν)2(2s1−s2)(8s2
1−2s1s2+s2

2)
θmax(4s1−s2)3

, ∂Π2(s)
∂s2

= (θmax−ν)2s2
1(4s1+s2)

θmax(4s1−s2)3
. (10)

Denoting s1
s2

as x, we may conclude that there exists no solution x > 1 for (10).

Since both ∂Π1(s)
∂s1

and ∂Π2(s)
∂s2

> 0, the point of maximum is located at the right
border of the interval for s, that is, s∗

1 = smax and s∗
2 = smax. Therefore, we

have established a candidate solution for the Cournot game and can formulate
a theorem similar to the one before.

Theorem 2. The obtained solution for the Cournot game is unique and repre-
sents the Nash equilibrium.

Proof. The proof is easy to produce similarly to that of the above Theorem for
the Bertrand game.

Since the Cournot prices and qualities are equivalent, two SPs divide the cor-
responding market in equal proportions, if we assume that there is no weighted
preference towards a certain brand. Hence, the consumer surplus in this case
may be derived as:

CS =
θmax∫

θ1,2

(θs1 − p1)h(θ)dθ = 2smax(θmax−ν)2

9θmax
. (11)

4 Arbitrary Taste Distribution and Cost Function

In this section, we contribute an algorithm that allows for establishing an equilib-
rium point for an arbitrary taste distribution and cost function. As a particular
example, we refer to the truncated exponential distribution:

hU (θ) = λe−λθ

1−e−λθmax , θ ∈ [0, θmax], HU (θ) = 1−e−λθ

1−e−λθmax , θ ∈ [0, θmax]. (12)
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The use of the exponential shape follows from [18], where the authors ana-
lyze a real mobile service market by polling the consumers and processing the
results. Further, we truncate the exponential distribution by θmax to provide a
better correspondence with the parameter of the uniform distribution. Hence,
the corresponding expressions for the demand may be rewritten as:

D1(s;p) = C0

(
e−λ

p1−p2
s1−s2 − e−θmaxλ

)
, D2(s;p) = C0

(
e− λp2

s2 − e−λ
p1−p2
s1−s2

)
,

where C0 = 1
1−e−λθmax is a constant introduced for brevity. We build our numer-

ical comparison later on in Sect. 5 on the example of the truncated exponential
distribution, which we believe to better represent the properties of the target
market. However, below we formulate the essential steps of our proposed proce-
dure in a general form as well as introduce an arbitrary cost function.

4.1 Bertrand Price Competition for an Arbitrary Distribution

The profit function in its general form is defined as Πi = Dipi − Difc(si),
where fc(si) is the cost per a subscription represented by the twice differentiable
function of quality si. In this general case, we therefore have:

Π1(s;p) =
(
1 − H

(
p1−p2
s1−s2

))
(p1 − fc(s1)),

Π2(s;p) =
(
H

(
p1−p2
s1−s2

)
− H

(
p2
s2

))
(p2 − fc(s2)),

(13)

where H (x) is the cumulative distribution function (CDF) of the taste parame-
ter and H (θmax) = 1. After differentiating both expressions separately by the
corresponding quality variable, we obtain a condition for further optimization:

∂Π1(s;p)
∂p1

= 1 − H
(

p1−p2
s1−s2

)
− h

(
p1−p2
s1−s2

)
p1−fc(s1)

s1−s2
,

∂Π2(s;p)
∂p2

= H
(

p1−p2
s1−s2

)
− H

(
p2
s2

)
− h

(
p1−p2
s1−s2

)
p2−fc(s2)

s1−s2
− h

(
p2
s2

)
p2−fc(s2)

s2
.

(14)

We note that an analytical solution of the system
(

∂Πi(s;p)
∂pi

= 0
)

i=1,2
may

not always be produced for complex distribution shapes of fc(si). In order to
follow the steps described previously in Sect. 3, for an arbitrary distribution we
may apply a numerical procedure to solve the system of non-linear equations
(14) for any fixed point s, 0 < s2 < s1. If the second-order condition of the local
maximum holds, the obtained solution p∗(s) is set as an output of the function
FindOptimalPrices( s1, s2), which corresponds to the second phase of our game
(see Algorithm 1 below).

Continuing the search of the optimal solution, we consider again the second
phase (the quality competition) and maximize the profit Πi(s1, s2) by varying
si. Importantly, the functions Πi(s1, s2) are numerical and produced by the pro-
posed function FindOptimalPrices( s1, s2). The optimization can be conducted
via explicit search, but the following theorem simplifies the needed calculations:
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Theorem 3. Maximum of the profit function Π1(s1, s2) by s1 ∈ (0, smax] for
the SP that makes its decision the first is always located at the point smax, which
means that for any new SP the maximum quality yields the highest profit.

Proof. The proof is omitted here due to the space limitations.

Employing this result, it only remains to maximize the profit of another SP
Π2(s1, s2) by s2 ∈ (0, s1], which is a simple one-dimensional optimization that
always has a solution. The entire procedure is briefly summarized in Algorithm 1.
The sought variables (s∗

1, s
∗
2; p

∗
1, p

∗
2) correspond to the Nash equilibrium, where

no player could change its strategy (that is, price and quality for the SPs and SP
choice for the customers) without decreasing its profit. Based on the obtained
equilibrium, we may easily estimate the corresponding market shares D∗

i , the
equilibrium profit Π∗

i , and the consumer surplus CS as provided in Sect. 5.

4.2 Cournot Quantity Competition for an Arbitrary Distribution

In order to characterize the Cournot quantity competition for an arbitrary taste
distribution and cost function, we follow the steps similar to those in Sect. 3. In
particular, we write down the expression for the SPs demands:

D1(s;p) = 1 − H
(

p1−p2
s1−s2

)
, D2(s;p) = H

(
p1−p2
s1−s2

)
− H

(
p2
s2

)
, (15)

where H (x) is the CDF of the taste parameter. From the first equation, we may
establish p1(D) = F (1 − D1) (s1 − s2) + p2, where F = H−1 is the function
inverse to the CDF. Substituting it into the second equation and calculating p2,
we may obtain the following:

p1(D) = F (1 − D1) (s1 − s2) + p2, p2(D) = F (1 − D2 − D1) s2. (16)

We substitute this produced expression for price into the profit function
Πi(s;D) = Di(pi(D)−fc(si)). By analogy with Subsect. 4.1, we find the optimal
prices after differentiating the profit by the demand Di and then solving the
system

(
∂Π1(s;D)

∂D1
= 0

)

i=1,2
as:

∂Π1(s;D)
∂D1

=p1(D1)−fc(s1)− D1(s1−s2)
h(1−D1)

, ∂Π1(s;D)
∂D1

=p2(D2)−fc(s2)− D2s2
h(1−D2−D1)

,

(17)
where h(θ) is the given PDF. We note that the system (17) is equivalent to (14)
for the Bertrand competition. Assuming that the function FindOptimalQuanti-
ties( s1, s2) returns the solution of (17) and then replacing prices with qualities
D in Algorithm 1, we arrive at the final equilibrium (s∗

1, s
∗
2;D

∗
1 ,D

∗
2) and may

calculate all of the respective metrics.
Even though existence and uniqueness of the Nash equilibrium constitute

an open question for different classes of distributions, in case of our truncated
exponential example we can formulate the following Theorem.
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Theorem 4. For the truncated exponential distribution, there exists a unique
Nash equilibrium for both the Bertrand and the Cournot game, so that the
Bertrand competition results in product differentiation, while equilibrium quality
for the Cournot competition is given by (smax, smax)1.

Proof. We leave this proof out of scope of this paper.

Importantly, cooperative games for either price or quantity competition yield
different solutions e.g., product differentiation in the Cournot game.

Algorithm 1. Algorithm based on the Bertrand price competition
1: s∗

1 = smax

2: s∗
2 = MaximizeProfit2(s∗

1)
3: p∗ = FindOptimalPrices(s1, s2)
4: function MaximizeProfit2(s∗

1) � Maximize profit of the SP 2 by s2
5: return s∗

2 = arg maxs2 Profit i(s∗
1, s2)

6: function Profit i(s1, s2) � Profit of the SP based on the optimal prices
7: p∗ = FindOptimalPrices(s1, s2)
8: return Πi(s1, s2;p

∗)
9: function FindOptimalPrices(s1, s2) � Prices maximizing the profit for fixed s

10: return p∗: solution of the system (14)

5 Numerical Results and Conclusion

In total, we analyze four scenarios: Bertrand and Cournot competition for both
the conventional and the realistic distribution each. Even though our approach
is suitable for any cost function, for the sake of comparison this section considers
the same linear costs for all of the cases. Minding a multitude of possible choices,
below we only provide several representative examples for comparison.

We remind that for a particular distribution we quantify the following para-
meters in our model: the maximum quality smax (set by default to 100), the
cost coefficient v (0.1), and the “richest” customer θmax (6.6). In Fig. 2a–c, we
illustrate the evolution of our market for varying smax. As it is demonstrated
in Fig. 2a, the equilibrium quality for both the uniform (UD) and the exponen-
tial (ED) distribution (with λ = 5) behaves similarly and confirms an identical
choice for the Cournot game as well as a clear product differentiation for the
Bertrand game. Importantly, we note that the latter results in the same quality
for both taste distributions h(θ).

1 We remind that if s∗
1 = s∗

2 then p∗
1 = p∗

2, and the active customers with the positive
utility are indifferent to choosing either of the SPs. In this case, the demand is
equally shared between the SPs and leads to equal market indicators for them.
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Fig. 2. Evolution of equilibrium indicators for maximum quality smax: (a) equilibrium
quality for both distributions, (b, c) equilibrium price and quality for UD and ED.

Further, Fig. 2b, c highlight the difference in prices and profits of the SPs.
Intuitively, on a market where the majority of customers are “poor” (ED) the
equilibrium prices as well as the profits appear to be much lower. The Cournot
competition results in prices that are generally higher than those in the Bertrand
competition, but for the ED market this difference diminishes together with the
degree of price differentiation between the SPs.

Fig. 3. Evolution of market shares vs. cost coefficient v: Bertrand and Cournot game
for (a) UD and (b) ED.

Then, we investigate the impact of costs on the total demand of the SP 1,
the SP 2, as well as the share of the market that is not covered. In Fig. 3a, b, we
observe the volume of the market that belongs to either of these three groups.
While the “wealthier” UD market is less sensitive to changes, on the ED market
an increase in costs entails a rise of the equilibrium price as well as a dramatic
reduction in the market shares of SPs. Customer churn eventually leads to a
significant decrease in the SP profits.

Finally, we analyze all four scenarios in question by varying θmax, which
determines the “richest” customer on the market. As for the ED, the market
shares stabilize with the growing range of taste, whereas for the UD the market
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Fig. 4. Market evolution for variable restricting parameter θmax: (a, b) consumer sur-
plus for UD and ED, and (c) market shares.

broadens significantly by covering more and more customers (see Fig. 4c, where
dotted lines correspond to the ED market). Further, in Fig. 4a, b for the UD and
the ED, respectively, we may observe the total consumer surplus and the separate
components for customers of the SP 1 and the SP 2. The relative differences
are rather marginal and suggest that the Cournot game is more beneficial for
the market than the Bertrand game. However, the absolute values indicate a
considerable difference between the UD and the ED in terms of the resultant
benefits.

In summary, this paper considered both the price and the quantity competi-
tion in a vertically differentiated market. In particular, we analyzed a tractable
example with linear costs of quality improvement and proposed a numerical pro-
cedure to relax the restrictive assumptions. In contrast to most past studies, we
not only evaluated the mobile service market under more realistic assumptions
on the customer taste distribution, but also provided a detailed comparison of
the key market indicators. While demonstrating similar general behavior, the two
considered distributions – the uniform and the truncated exponential – indicate
a dramatic difference in the resulting market sensitivity to the changes. The
latter confirms that the choice of appropriate customer taste distribution is a
crucial factor in analyzing a competitive market, while the general market trends
could be understood from simpler assumptions.
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Abstract. Critical infrastructure systems spanning from transportation
to nuclear operations are vulnerable to cyber attacks. Cyber-insurance
and cyber-threat information sharing are two prominent mechanisms to
defend cybersecurity issues proactively. However, standardization and
realization of these choices have many bottlenecks. In this paper, we dis-
cuss the benefits and importance of cybersecurity information sharing
and cyber-insurance in the current cyber-warfare situation. We model a
standard game theoretic participation model for cybersecurity informa-
tion exchange (CYBEX) and discuss the applicability of economic tools
in addressing important issues related to CYBEX and cyber-insurance.
We also pose several open research challenges, which need to be addressed
for developing a robust cyber-risk management capability.

Keywords: Cybersecurity information sharing · Cyber-insurance ·
Cyber-threat intelligence · Cyber Security Information Sharing Act
(CISA)

1 Introduction

Despite the enormous efforts from security researchers, government agencies, and
industries toward developing robust security solutions, intelligent adversaries
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find their way in with advanced exploits. Cyber breaches have expanded their
breadth not only in the financial sector but also in healthcare, government,
educational, defense, and transportation sectors. It was reported that 75% of
top 20 financial corporations (banks) are affected by various malwares [1] and
some instances include 2014 JP Morgan Data Breach, 2012 DDoS attacks and
2016 SWIFT hack [2]. Losses due to cyber crimes are increasing at an alarming
rate and expected to reach $6 trillion by 2021 [3].

In order to abate the impacts of cyber attacks, the organizations, govern-
ments, and policy makers are investigating the criticality of ongoing cyber war
and proposing mechanisms to effectively defend cyber attacks. The Cyberse-
curity National Action Plan (CNAP) from U.S. government was proposed in
the year 2016 to come up with long-term strategies for fostering cybersecurity
awareness, maintain public safety, and protect privacy. The initiative includes
establishment of national cybersecurity commission, modernizing government IT
infrastructure, and invest more than $19 billion toward cybersecurity research [4].
Besides the efforts from federal level, it must be a customary to adopt best
cybersecurity practices at an organizational/individual level. Thus, organiza-
tions require the most up-to-date information about attack incidents so as to
take proactive measures toward fostering security awareness and better under-
standing the threat landscape. Since the intelligent attackers can tactfully mod-
ify the existing exploits and reuse these exploits for attacking multiple targets,
the organizations must collaborate with each other by sharing their vulnerabil-
ity related information to derive Cyber-Threat Intelligence (CTI) for preventing
similar cyber attacks that another firm might have already seen. The bill from
U.S congress, “S.754-Cybersecurity Information Sharing Act (CISA) of 2015” [5],
encourages DHS to develop a sharing process to facilitate real-time exchange of
threat indicators and defensive measures [6] in an automated manner. The bill
also provides liability protections to the volunteering parties who share their
threat information with other entities or government.

Despite this initiative and advantages of cyber-threat information sharing,
organizations are hesitant to take part in such process due to several reasons: (1)
lack of trust on the incident exchange process since it may enable competitive
advantage to the rivals in the market; (2) possibilities of privacy leak including
personal and financial data during the process of sharing that may lead mali-
cious participants to exploit the trust relationship; (3) absence of standardized
sharing platform on which organizations can rely upon; (4) insecure feeling of
organization to participate in the framework due to the fear of reputation loss; (5)
absence of incentivization models to attract corporations toward sharing cyberse-
curity information; (6) possibility of free-riding, where other organizations take
advantages of the shared information without giving anything in return. For
availing a globally common format for cyber-information sharing, ITU-T (Inter-
national Telecommunication Union-Telecommunication) has taken the initiative
to adopt a framework called CYBersecurity information EXchange (CYBEX) [7].
However, the framework does not address the fundamental issues, such as trust
agreements, governance, or any non-technical aspects, of information sharing.
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By addressing these challenges, it can be expected that organizations would be
inclined to participate in the threat exchange process so as to strengthen their
proactive defense capabilities. At the same time, participation may bring positive
externality effect and thereby reducing the investments toward cyber-insurance
and self-security expenses.

In this paper, we investigate the need of both cyber-insurance and cyber-
security information sharing in developing a resilient cyberspace for the orga-
nizations. We provide the motivations and incremental progresses in this area
over the recent past years and discuss how economic models are applicable in
addressing several crucial problems related to cyber-insurance and CTI sharing.
Given the organizations could reap real-time cyber-related knowledge out of the
sharing capability, we discuss how an organization’s participation decision can
be captured using game theoretic approach. Also, we provide a 2-player game
model that aims to resolve the trade-off of deciding whether to participate in
CYBEX and share or not. We also present several other research challenges that
are yet to be addressed.

The paper is organized as follows. We briefly discuss about the background
research in Sect. 2. Need of cyber-insurance and cybersecurity information shar-
ing is presented in Sect. 3. Section 4 presents a sample participation game model
and some open research challenges are posed in Sect. 5. Finally, Sect. 6 concludes
the paper.

2 Related Works

This topic has gained significant attention and is being investigated by govern-
ment, policy makers, economists, non-profit organizations, industries, cybersecu-
rity and network professionals with researches in this particular area still emerg-
ing [8–10]. Considering the need of cybersecurity information sharing, Gordon
et al. [11] analyzed the economic (dis)advantages of this activity and derived its
relationship with accounting aspects of an organization Through game theoretic
model, they prove that such exchange activity improves the social welfare as well
as security level of the firms at a reduced expenditure. Furthermore, an incentive
mechanism is provided to eliminate the free-rider problem so that no firm can
gain more by making under-investment. It is trivial that nature of information
plays a major role in deciding economic losses of an organization, however this
component was not addressed in [11]. Authors of [12] have proposed a similar
game theoretic model to determine the IT security investment levels and com-
pare it with the outcome of a decision theoretic approach that considers various
components, such as vulnerability, payoff from investment etc.

Organizations, especially small scale enterprises, are bounded by a limited
budget toward cybersecurity, which is why it is necessary to determine the impact
of CTI sharing on the investments altogether. Therefore, authors in [13,14] study
to determine the optimal expenditure amount in presence of cyber-information
exchange that assists organizations in maximizing their overall payoff. Research
works presented in [15,16] have looked into this problem by considering a central-
ized social planner that guides the organizations in choosing the above mentioned



Risk Management Using CTI Sharing and Cyber-Insurance 157

decision parameters so as to maximize their social welfare. Departing from the
traditional inter-networked cyber users, authors of [17] model a non-cooperative
game to analyze decision of security investment and information sharing in cloud
computing domain, where virtual machines reside on a common hypervisor and
there exists possibility of side-channel attacks.

On the other hand, cyber-insurance market is emerging [18] due to the high
occurrence of targeted cyber breaches over the years. However, the compo-
nents such as interdependent security, correlated risks, and information asym-
metries [19,20] make it challenging to model appropriate policies for the orga-
nizations. Nash equilibrium analysis and social optima concepts are applied to
model security games in [21] that consider above three components into account
and decide how investment can be used for both public good (protection) and a
private good (insurance). Full insurance and partial insurance coverage models
are proposed in [22] and study the impact of cooperation on self-defense invest-
ments. Another quantitative framework is proposed in [23] that applies opti-
mization technique to provide suggestions to the network users and operators
on investments toward cybersecurity insurance by minimizing the overall cyber
risks. Although both of the risk reduction strategies are promising in nature
there are several avenues that are untouched and yet to be explored.

3 Information Exchange for Balancing Privacy
and Security in Cyber-insurance Market

Cyber-insurance preserves market autonomy and is designed to provide cover-
ages for insureds experiencing losses from cyberspace incidents. The premiums
for coverages are determined based on insurance applicants underwriting char-
acteristics, which are the key factors chosen by insurers as indicators of appli-
cants risk levels. The cyber-insurance market is characterized by volatile revenue
growth, high demand, low capacity and covered loss is much smaller than total
loss. However, the unique issue that many cyber-insurance providers are facing
is that information regarding the insured is very opaque to insurers and the link

Fig. 1. Public private partnership
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between cyber-incidents and financial losses is not well established. There is a
lack of quantitative cyber risk assessment and a lot of underwriting is done based
on results from questionnaires and interviews [24].

The need to balance privacy and security for facilitating the sharing cyber
incidents has generated several debates of legal policy. Private information is held
by both the private and public sectors separately and secured to the maximum
extent. Any information sharing framework should consider the categories of
private information held by both sectors, and the information-sharing program
would be narrowly tailored to emphasize the categories of information that would
be the most useful to the other side for improving cybersecurity, while excluding
the categories of information that would put privacy or national security at
risk. Figure 1 illustrates current status of open information sharing [24] and the
possible future of open information sharing under a regime like CISA.

Figure 1 illustrates examples of types of information that the different sectors
might wish to keep secret [24]. However, in the interest of national security, some
types of information would routinely be withheld. For example, while an agency
may be forthcoming about recent attempts to hack into its systems, it may be a
bad idea to give too much information about the specific vulnerability that was
exploited. A privately owned utility company might benefit from information
about the vulnerability, but the current paradigm does not have an efficient
mechanism for public-private cooperation in cyber-threat information sharing.
Information in the right circle could be accessible to the government through
existing legal processes. The reluctance to share may be because it could harm
a company’s reputation or make them into a more attractive target for hackers.
This is a major reason why we encourage an organized and largely anonymized
system for exchange of vulnerabilities and intrusions.

Fig. 2. Conceptual illustration for sector-wide information sharing
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Figure 2 illustrates the conceptual illustration for combining the right types
of private information without overshare to create a circle of trust [24]. We char-
acterize the middle circle of Fig. 2 as representing a circle of trust managed by
a trusted third party. As visualized in Fig. 2, this conceptual illustration would
maintain government secrecy for classified military activities and geopolitical
information, and would maintain private market secrecy for consumer informa-
tion, including information about consumers’ online activities. In the middle
oval, we have placed the types of information that we think could provide the
clearest benefits to each sector when shared. Private cybersecurity researchers
could benefit from information about intrusion attempts and details about vul-
nerabilities uncovered by government actors. Government agencies could benefit
from up-to-date information about private cybersecurity innovations and the
identification of vulnerabilities by private firms. Both sides could benefit from
information about different security measures and their rate of success. Some
existing laws would need to be revised to implement this proposal, such as the
Electronic Communications Privacy Act, which currently may limit the ability of
security researchers to share information between firms or with the government.

4 Game Theoretic Model of CYBEX Participation

This Section presents a game model to demonstrate how cybersecurity decisions
of interacting organizations are addressable using economic analysis. Despite of
understanding the benefits of CTI sharing, most of the organizations are not so
motivated to take the risk of participating in CYBEX. Thus, the participation
decision requires to be resolved using a cost-benefit approach.

CYBEX Participation Game Model [25]:

In this model, a pair of rational organizations interact with each other to decide
whether to participate in the CYBEX or not. Here, CYBEX is a governing entity
in the system that imposes participation costs/incentives on the firms to induce
participation. The necessity of game theory comes to resolve the following hidden
conflict. If CYBEX charges high participation cost, the firms may get deterred
from participation, eventually reducing CYBEX’s revenue. Whereas, if CYBEX
charges too low to attract firms, the revenue generated by CYBEX might be
insufficient to sustain in the market. The generic payoff model for organizations
must include following two components.

Sharing and Investment Gain: Since organizations are assumed to invest for
their own cybersecurity R&D, and infrastructure (firewall, antivirus, and other
security products), they receive a direct benefit in term of reduced amount of
cyber attacks. Furthermore, the organizations also take advantage of the shared
information that leads to additional sharing benefit, which helps to strengthen a
firm’s proactive cyber-defense capabilities. Subjectively, this benefit comes out
of the assistance in strengthening an organization’s proactive defense from the
received information about vulnerabilities, patches, and fixes.
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Cost Components: The involvement in CYBEX requires a participation cost
that is imposed by CYBEX to maintain and restrict its utilization by providing
liability protections to the firms. In addition to that, sharing of cyber-information
has a cost associated which may refer to the combination of extra efforts needed
in preparing the information to share and reputation loss incurred due to sharing.

Participation Game in Strategic Form: The participation game can be
formalized in a strategic form presented in Table 1, where each firm has the
binary strategy set SS = {Participate and Share in CYBEX,Not Participate}.

Table 1. Payoffs in strategic-form for participation game

Participate & Share Not Participate

Participate & Share
Sa log(1 + I) − x− c,

Sa log(1 + I) − x− c

a log(1 + I) − x− c,

a log(1 + I)

Not Participate
a log(1 + I),

a log(1 + I) − x− c

a log(1 + I),

a log(1 + I)

From the Table 1, we can observe that when the interacting organizations
are not participating, their benefits come only from the self-investment, which
is presented in a logarithmic variant, a log(1 + I) > 0, where I is the investment
amount and a is a scaling parameter. When both organizations take part in
the information exchange, they benefit from sharing as well as self-investment
but at a cost of participation (c) and information sharing (x). The combined
reward is Sa log(1 + I), where S represents the sharing benefits and assumed
to be greater than 1. The top-right and bottom-left corners of the table refers
to the payoff scenario when one of the organization does not participate while
other one does. Thus, the one who is not participating gets reward only out of
its own investment, while the participating firm pays for the participation and
sharing but gets no sharing benefits in return.

Analysis: By conducting best response analysis, we can observe that irrespec-
tive of what strategy the row player takes, the column player’s best strategy
depends on the choice of sharing benefits (S) and the cost components. Thus, if
cost of participation and sharing dominates the total reward, then organizations
will preferably opt for the risk averse strategy of “Not Participate”. Then, the
Nash Equilibrium (NE) solution of the single-shot game will be (“Not Partici-
pate”, “Not Participate”). However, the single stage scenario does not apply in
practice, rather the organizations take time to figure out the long term optimal
strategy. Considering the CYBEX is interested in enabling full participation in
the system, incentives are necessary to motivate the players to participate. The
detailed analysis of such multistage evolutionary model along with incentiviza-
tion scheme is given in our prior work [26]. However, we feel that this research
needs further extension by relaxing some of the natural constraints assumed in
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the prior works. In the following, we briefly discuss on various avenues to broaden
the scope of this model.

Discussions: The extension ideas are numerated in the following. (E1) In the
above model, it is assumed that the organizations have a fixed investment toward
security. However, in reality such assumption may not hold true. Therefore, it
would be interesting to analyze the participation scenario, when organizations
have a differentiated cyber-investments and the amount of information sharing
is no longer homogeneous. (E2) The cost of information sharing may not be
straightforward as it is depicted in the game, rather a concrete cost model with
consideration of attack possibility and privacy would make the case more realis-
tic. (E3) Since some organizations may not be truthful regarding their sharing,
this fact will impact the overall participation in the system. Therefore, rigor-
ous analysis is necessary to understand the limits and bounds of maliciousness
during information exchange to ensure sustainability of the sharing system.

5 Open Research Challenges

Besides the above directions to extend the CYBEX participation model, there are
several challenges exist, which indirectly affect the information sharing decisions
of organizations. In the following, we briefly discuss some of these issues.

– Insurance based mechanism for information sharing: The participa-
tion cost may exhibit the characteristics of insurance which may be a cost
or incentive and can be used to motivate socially optimal sharing behavior
(through “carrot” incentives like liability protections). However, due to the
limited academic literature on cyber-insurance, understanding the effective-
ness of cyber-insurance as an incentive/deterrence to induce sharing behavior
has become challenging. Also, it is required to know, how long incentives may
be applied to develop the sharing attitude without any external incentive.
To model cyber-insurance, the coverage and premium for the insurance will
depend on the sharing level, frequency of cyber attack, and attack severity
level. As the frequency of attack increases the premium for the insurance
gets incremented compared to previous cycle, however periodically the pre-
mium amount decreases depending on how successfully the an organization
strives against cyber attacks with the help of cooperation. In the following
we present a direction toward premium function Cprm(t) which can be used
to model the expected premium amount that an organizations need to pay
towards insurance.

Ct
prm =

{
Ct−1

prm − δ−α1t if no attack until t and Ct−1
prm ≥ Cthres + δ−α1t

Ct−1
prm + δ

α2d
tdiff if attack occured at t

where tdiff is the time gap between current time and the last occurrence of
cyber attack, δ is the premium exponent defined by the insurance provider, d
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is the severity level of the cyber attack and Cthres > 0, is the min. mandatory
premium amount that must be charged to an organization by the insurance
agency. C0

prm = c0 is the initial premium amount decided by mutual under-
standing of both organization and insurance company.

Two primary challenges in designing such a cyber-insurance mechanism are
(i) uncertainty (incomplete information) about the information disclosure and
(ii) enforcing truthfulness on information exchange, especially in the case when
each organization pays differently based on their reliability and reputations.

– CYBEX with incomplete information: What if the firms have only par-
tial or incomplete information in this game? How will the competition evolve
if some common information now varies or only an estimate is available to all
the players in this game? Thus, it becomes important to also consider these
assumptions in while making sharing decisions. While, in the above scenario,
we emphasized on fixed investment and “participation” vs. “no participation”
with pure strategy, it also becomes necessary to extend the game model to
consider possibility of continuous domain of investment (0 < Ii < Imax) as
well as mixed strategy for the firms’ participation inclination depending on
their feedback from the previous stages and payoffs.

– Measuring cyber risk: Cyberinsurance has been recognized as an effective
way to improve resilience because it speeds up the process of recovery from
financial losses after major cyber attack incidents. It also serves as a com-
plement to self-protection as it creates financial incentives for the insured to
mitigate cyber-risks in their systems. The cyberinsurance market is premised
on being able to develop a comprehensive understanding and assessment of
cyber risk. Lack of measurable cyber risks will hinder the ability to develop
policies commensurate with the risk profile.

– Information asymmetry (Adverse selection): Companies with poor self
protection need insurance to have risks covered. However, it is difficult to
distinguish the companies with different self-protection and cyber-risks. There
needs to be incentive for companies to share such information. If not, insurer
will charge premium based on high risk standard to reduce losses. Thereby, the
expensive premium will drive away low-risk companies, which will eventually
lead to remaining policies in insurer’s portfolio filled with bad risk pooling.

– Information asymmetry (Moral hazard): Upon receiving coverage, the
policyholder may alter its risk characteristics by reducing self-protection to
cut cost. After a loss event, policyholder may ask the insurer to pay unneces-
sary but covered costs. Hence, there are need for game theoretic approaches
to address the moral hazard and adverse selection problems.

6 Concluding Remarks

Traditional management of cybersecurity risks requires a strong taskforce and
heavy security investment. However, the traditional approaches are more of reac-
tive in nature. Adopting collaborative approach of cyber-threat information shar-
ing could potentially help the organizations to stay on top of the cyber risks.



Risk Management Using CTI Sharing and Cyber-Insurance 163

Furthermore, cyber-insurance could help in transferring risks to the third-party
insurers. While both approaches look promising, there exists several research
issues that are unresolved. In addition to discussing the advantages these two risk
management methods could bring, we have presented the applicability of game
theory in addressing CYBEX participation problem. The open research chal-
lenges related to these two mechanisms are briefly discussed to further extend
the scope of cybersecurity research and particularly CTI sharing.
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Abstract. In this paper, we consider a routing game in a network that
contains lossy links. We consider a multi-objective problem where the
players have each a weighted sum of a delay cost and a cost for losses.
We compute the equilibrium and optimal solution (which are unique). We
discover here in addition to the classical Kameda type paradox another
paradoxical behavior in which higher loss rates have a positive impact on
delay and therefore higher quality links may cause a worse performance
even in the case of a single player.

Keywords: Routing game · Multi-objective problem · Lossy links ·
Nash equilibrium · Price of anarchy · Paradox

1 Introduction

There has been much work on routing games with additive costs (cost associated
with a route is additive over the links of the route) [6,7]. This has been extended
to multi-objective additive criteria, see e.g., [4,6,8]. Little is known however on
routing games with non additive costs. There has been some work on routing
games for some given simple topologies with non-additive costs [6] triggered by
networking applications (e.g., [3,5]).

In this work, we consider costs related to weighted sum of two different types
of performances: the delay which is additive, and losses which are not. We focus
on a simple network model that has been studied in the case of a single objective
by [2,3]. We first derive explicit expression of the equilibrium and then study
numerically its properties.

In case of a single objective, it has been shown that a Braess type paradox
exists for the topology that we consider [2,3]. We identify a new type of paradox
which has some surprising behavior. We then compute the price of anarchy
(defined as in [1]).

The rest of the paper is organized as follows: In Sect. 2, we describe the system
model and the performance measures adopted throughout the paper. In Sect. 3,
we compute the global optimum. The Nash equilibrium is computed in Sect. 4.
Simulation results along with the discussion are presented in Sect. 6. Section 8
concludes the paper.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
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2 The Model and Performance Measures

We shall use the load balancing network topology introduced in [2] consisting of
three nodes: two source nodes Sr and Sl (r stands for right and l for left) and one
common destination node D (see Fig. 1). There are 2N sources of flows, S(i),
i = 1, . . . , 2N . Each flow consists of an independent Poisson distributed point
process with a rate φ. Packets from source i = 1, . . . , N arrive at node Sl (left),
whereas packets from source i = N +1, . . . , 2N arrive at node Sr (right). Source
i = 1, . . . , N can split its flow between its direct path SlD and the indirect one
SlSrD. Source i = N + 1, . . . , 2N can split its flow between its direct path SrD
and the indirect one SrSlD.

More precisely, whenever a packet arrives from source i, the source flips a coin
that has a probability pi to have an outcome called “direct” and a probability of
1 − pi to have an outcome called “indirect”. If the outcome is “direct” then the
packet is routed over the direct route, and otherwise it is routed over the indirect
one. The process of packets originating from source i that take the direct path
is thus Poisson with rate φpi. The process of packets that arrive at node i and
that take the indirect path is Poisson with rate φ(1 − pi). Let xi

l be the rate
of flow sent by source i through link l. Links SrSl and SlSr are assumed to be
wireless so that packets sent over SrSl and SlSr suffer independent losses with
some fix probability q. The delay over these links is assumed to be a constant
denoted by δ. Links SlD and SrD are assumed to be lossless but they incur a
congestion cost per flow unit that uses them of Tl(x) = 1/(C − xl). Here, C is
the link capacity and xl is the total flow going through link l. Therefore for each
player i, consider the arrival process of packets that arrive at node Sk and that
are rerouted to the indirect path SkSmD (where k = l, r,m �= k). It is a Poisson
process as well and its rate is φp(1 − pi)(1 − q).

Fig. 1. The competitive routing model.
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Let i ≤ N . The cost for source i is a weighted sum of the average delay of
its flow and its loss rate:

Ji(p) =
φpi

C − φ
∑N

j=1 pj − φq
∑2N

i=N+1(1 − pj)

+
φ(1 − q)(1 − pi)

C − φ
∑2N

j=N+1 pj − φq
∑N

i=1(1 − pj)

+ φδ(1 − q)(1 − pi) + γφq(1 − pi).

(1)

The three first terms correspond to the delay cost and the last term corre-
sponds to the cost of losses. The first term corresponds to the congestion cost
in the direct path of i and the two following terms correspond to the conges-
tion cost along the indirect path. The optimal symmetric solution is obtained
by minimizing

∑
i Ji(p) over pi and adding the constraint that pi are the same

for all i (we then omit i from the notation pi).
Let

Xl(x) = φ

N∑

j=1

pj + φq

2N∑

j=N+1

(1 − pj)

be the rate of packets that use link SlD. We assume that the link cost per unit
of flow are linear in the flow through them. This amounts to use the first term
in the Taylor’s expansion of (1). Ji(p) is thus approximated by

Ji(p) = φpi(axl + b) + φ(1 − q)(1 − pi)(axl + b) + δφ(1 − pi) + γφq(1 − pi)

where a and b are some positive constants.

3 Global Optimum Calculation

The global optimal solution is obtained by solving

∂

∂p

2N∑

i=1

Ji(p) = 0

(unless it is on the boundary). We obtain the unique solution:

p =
1
2

aφN(2q2 − 2q + 1) + bq − γq − δ

φaqN(q − 1)
.

We find it convenient in the numerical investigation to write z = γq + δ since
the dependence of the global optimum or the equilibrium on each one of the two
parameters δ and γ (for fixed q) appears only through the value of z. Thus, p
can be written:

p =
1
2

aφN(2q2 − 2q + 1) + bq − z

φaqN(q − 1)
.
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Note that

J ′(p) = 2aφ2q2N(1 − p) + φbq + φ2aN + 2aφ2qN(p − 1) − φz.

J ′(p) = 0 for
z = −2aφqN(((1 − p)(1 − q)) + bq + aφN

J ′(p) is positive if z < φaN(2q(q − 1)(1 − p) + 1) + qb. In this case J is an
increasing function, and the minimum is reached on 0.

On the other hand, if z > φaN(2q(q − 1)(1 − p) + 1) + qb, J is a decreasing
function, and the minimum is reached on 1.

Note that

– p < 1 if z < aφN + qb
– p > 0 if z > aφN(2q2 − 2q + 1) + qb.

4 Equilibrium Calculation

The equilibrium is obtained by setting pi = p to be the same for all i except
for i = 1 where it is taken to be equal to p̂. We then find for each value p the
best response p̂ = f(p) for player 1. A fixed point of this equation provides the
equilibrium. We did the same as below and get the Nash equilibrium which is
equal to:

p1 =
1
2

−aφqN(p + q − pq) + q(φap + φa − b + γ) − φa + δ

φaq
.

Let p̂ be the point obtained by replacing p1 by p, we obtain:

p̂ =
aφNq2 + aφ(1 − q) + qb − γq − δ

aφq(qN − N − 1)
.

p̂ =
aφNq2 + aφ(1 − q) + qb − z

aφq(qN − N − 1)
.

We have qN < N < N + 1, so the denominator is negative.
By differentiating the cost function with respect to p̂ and setting the deriva-

tive equal to zero, we get for equilibrium these conditions:

– J is an increasing function if: z > 2aφqN − aφN + bq,
– J is a decreasing function if: z < 2aφqN − aφN + bq.

Also note that

– p̂ < 1 if z < aφ(qN + 1) + bq
– p̂ > 0 if z > aφq2N + aφ(1 − q) + bq
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5 Price of Anarchy and Paradoxes

The price of anarchy is the ratio of the worst case objective function value of
a Nash equilibrium and that of an optimal outcome. That measures how the
efficiency of a system degrades due to selfish behavior of its agents. The price of
anarchy [1] is a method to measure the inefficiency of equilibrium, it has been
used to measure the inefficiency in congestion networks. In this case, each user
of the network has a source and destination and they must pay a cost to travel
from their source to their destination. In this case it is given by:

PoA =
2NJi(p̂)
2NJi(p)

We say that a paradox occurs if when replacing links with higher quality ones
result in worse performance. In our case, a higher quality link could mean a link
with smaller delay δ or one with a smaller loss probability q. For example, there
is a paradox if the derivative J ′(δ) of J at the equilibrium w.r.t. the delay δ is
negative, where

J ′(δ) =
aφ + aφN2(1 + q2) + 2aφNq(1 − N) + 2bq − 2δ − 2γq

aq(qN − N − 1)2

In a similar network with a single objective for each player, a paradoxes
been observed [2,3,5] in which, for suitable parameters, improving the quality
of the link(s) between Sr and Sl results in worse performance for all players.
We may search for a similar paradox in our problem in which the quality of the
link stands for its delay (higher quality means lower delay) or loss rate (higher
quality means lower loss rate). The condition for this type of paradox is then
that J at equilibrium would be decreasing in the network parameter (e.g., in the
delay δ). Thus, the derivative of J at equilibrium should be decreasing where
the latter is given by

J ′(δ) =
aφ + aφN2(1 + q2) + 2aφNq(1 − N) + 2bq − 2z

aq(qN − N − 1)2

Note that J is a decreasing function if

z >
1
2
φa(1 + N2) − 1

2
φaqN(2N − qN − 2) + bq

6 Numerical Results

Let us now validate our theoretical findings through numerical simulations. We
consider a = 1, b = 1, N = 4, φ = 1, q = 0.5. Notice that the domain of existence
of z in this case is [2.2, 3].

Figure 2 depicts the equilibrium p̂ and the optimal solution p as function
of z. As expected, we observe that both p̂ and p are increasing in z, while
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the equilibrium p̂ dominates the optimal solution p. Figure 3 depicts the cost
function of the optimal solution J(p) and the equilibrium J(p̂) as a function
of z. We observe that both curves are increasing functions. In Fig. 4, we present
respectively the variation of the cost function at the optimal solution and at the
equilibrium as a function of the loss probability q. Figure 5 depicts the variation
of the cost function at the equilibrium as a function of the link delay δ. The
price of anarchy is presented in Fig. 6. As expected, for low values of z, the price
of anarchy tends to 1.

Fig. 2. The optimal solution and the equilibrium as a function of z.

Fig. 3. The cost function at the optimal solution and the equilibrium as a function
of z.
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Fig. 4. The cost function J as a function of the loss probability q.

Fig. 5. J(p̂) as a function of the link delay δ.

Fig. 6. The price of anarchy.
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7 Discussion

New paradox: We identify in Fig. 4 a new type of paradox: the cost is seen
not to be monotone in the quality of the link (the loss probability q). This
phenomenon is due to the particular multi-objective structure of our problem.
Indeed, higher q increases the cost related to losses, but contributes to decreasing
the global cost as more losses results in lower congestion and thus in lower delays.

Kameda-paradox: We obtain in Fig. 5 the paradox already observed in [2,3,5]
in which larger link delay are beneficial for all users. Investing in faster links
increases the delay and deteriorates the performance for all players.

8 Conclusion

In this paper, we have studied the routing game with lossy links and congestion.
The cost included both a delay component as well as one corresponding to the
losses. After computing the unique optimal solution and the symmetric equilib-
rium, we have showed that even in the case of global optimization there may
be a paradox due to the fact that increasing the loss rate may be advantageous
when delays are high. In addition the Kameda-paradox has been also shown to
occur here.

References

1. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Proceedings of
STACS (1999)

2. Kameda, H., Altman, E., Kozawa, T., Hosokawa, Y.: Braess-like paradoxes in dis-
tributed computer systems. IEEE Trans. Autom. Control 45(9), 1687–1690 (2000)

3. Altman, E., Kuri, J., El-Azouzi, R.: A routing game in networks with lossy links.
In: 7th International Conference on NETwork Games Control and OPtimization
(NETGCOOP 2014), October 2014, Trento (2014)

4. Wu, Y., Peng, Y., Peng, L., Xu, L.: Super efficiency of multicriterion network equi-
librium model and vector variational inequality. J. Optim. Theor. Appl. 153(2),
485–496 (2012)

5. Altman, E., El-Azouzi, R., Abramov, V.: Non-cooperative routing in loss networks.
Perform. Eval. 49(1–4), 43–55 (2002)

6. Altman, E., Boulogne, T., El Azouzi, R., Jimenez, T., Wynter, L.: A survey on
networking games in telecommunications. Comput. Oper. Res. 33, 286–311 (2006)

7. Wynter, L., Altman, E.: Equilibrium, games, and pricing in transportation and
telecommunications networks. Netw. Spacial Econ. 4(1), 7–21 (2004). Special Issue
of on Crossovers between Transportation Planning and Telecommunications

8. El-Azouzi, R., Altman, E.: Constrained traffic equilibrium in routing. IEEE Trans.
Autom. Control 48(9), 1656–1660 (2003)



Author Index

Ali, Mohammed Shabbir 97
Altman, Eitan 16, 165
Andreev, Sergey 141
Aradhye, Aditya 16
Araniti, Giuseppe 141
Avin, Chen 29

Bao, Jingchao 121
Behzadan, Vahid 74
Boukoftane, Amina 165

Coucheney, Pierre 97
Coupechoux, Marceau 97

Dai, Canhuang 131
Dalkılıç, Mehmet Emin 51
Daltrophe, Hadassa 29

El-Azouzi, Rachid 16

Farhadi, Farzaneh 86

Galinina, Olga 141
Golestani, Jamal 86
Gubar, Elena 108

Haddad, Majed 165
Hota, Mohit 40

Iera, Antonio 141

Kamhoua, Charles A. 154
Kapoor, Sanjiv 40
Kesan, Jay P. 154
Khalili, Mohammad Mahdi 63
Koucheryavy, Yevgeni 141

Li, Husheng 121
Li, Yanda 131
Liu, Mingyan 63
Lotker, Zvi 29

Militano, Leonardo 141

Naghizadeh, Parinaz 63

Orsino, Antonino 141
Oukid, Nadia 165

Pavel, Lacra 3
Peleg, David 29

Rekabdar, Banafsheh 74

Salehisadaghiani, Farzad 3
Sengupta, Shamik 154
Shetty, Sachin 154

Tavafoghi, Hamidreza 86
Taynitskiy, Vladislav 108
Teneketzis, Demosthenis 86
Tosh, Deepak K. 154

Vargün, Aycan 51

Xiao, Liang 131
Xiao, Xingyu 131

Zhou, Changhua 131
Zhu, Quanyan 108


	Preface
	Organization
	Contents
	Games in Networks
	Nash Equilibrium Seeking with Non-doubly Stochastic Communication Weight Matrix
	1 Introduction
	2 Problem Statement: Game with a Complete Interference Digraph
	3 Asynchronous Gossip-Based Algorithm
	4 Convergence for Diminishing Step Sizes
	5 Game with a Partial Interference Digraph
	6 Asynchronous Gossip-Based Algorithm Adapted to GI
	7 Convergence of the Algorithm Adapted to GI
	8 Simulation Results
	8.1 Social Media Behavior

	References

	A Multitype Hawk and Dove Game
	1 Introduction
	2 Model
	3 Threshold Strategy
	4 Other Equilibria
	5 Price of Stability
	References

	Assortative Mixing Equilibria in Social Network Games
	1 Introduction
	2 Related Work
	3 Network and Game Model
	3.1 Biased Preferential Attachment Model
	3.2 Evolving Heterogeneous Network Games

	4 Degree Maximization Game
	5 Utilitiy Maximization Game
	6 Discussion
	References

	Nash Equilibrium and Stability in Network Selection Games
	1 Introduction
	1.1 Network Model

	2 Nash Equilibrium in Throughput Games
	2.1 Nash Equilibrium in Uniform Priority Throughput Games
	2.2 -Approximate Nash Equilibrium for Uniform Priority Models
	2.3 Finding Equilibrium in Uniform Priority-and-Rate Games

	3 Nash Equilibrium in Rate-Dependent Priority Throughput Games
	3.1 Conditions for Convergence to a Stable Point

	4 Conclusions and Acknowledgements
	References

	On the Finite Population Evolutionary Stable Strategy Equilibrium for Perfect Information Extensive Form Games
	1 Introduction
	2 Adaptation of FpESS to Extensive Form Games in Induced Form
	2.1 FpESS Equilibria of Ultimatum and Dictatorship Games
	2.2 FPESS Equilibrium of an Instance of the Dollar Auction Game 

	3 Conclusion
	References

	Application of Network Games
	Designing Cyber Insurance Policies: Mitigating Moral Hazard Through Security Pre-Screening
	1 Introduction
	2 A Single Risk-Averse Agent
	3 The Role of Pre-screening in a Single Agent System
	4 A Network of Two Risk Averse Agents
	4.1 Case (i): Neither Agent Enters a Contract
	4.2 Case (ii): One of the Agents Enters a Contract
	4.3 Case (iii): Both Agents Purchase Contracts

	5 The Role of Pre-screening in a Two Agent Network
	6 Conclusion
	References

	A Game-Theoretic Model for Analysis and Design of Self-organization Mechanisms in IoT
	1 Introduction and Motivation
	2 IoT Network Model
	3 Game Formulation
	3.1 Players
	3.2 Strategies
	3.3 Payoff Structure

	4 Equilibrium Topologies in Static Game
	4.1 Formation of Cliques
	4.2 Formation of Stars and Hierarchies

	5 Conclusions
	References

	A Dynamic Incentive Mechanism for Security in Networks of Interdependent Agents
	1 Introduction
	2 Model
	3 Dynamic Incentive Design Problem
	3.1 Specification of the Mechanism
	3.2 Budget Balance

	4 Dynamic Optimal Policy for the Network Manager
	References

	Rules for Computing Resistance of Transitions of Learning Algorithms in Games
	1 Introduction
	2 Overview of Resistance Trees
	2.1 Resistance Trees of PMC
	2.2 Convergence of Log-Linear Learning Algorithm Using Resistance Trees 5

	3 Rules for Computing Resistance
	4 Application of Proposed Rules
	4.1 Resistance of Log-Linear Learning Algorithm
	4.2 Resistance of Payoff-Based Learning Algorithm

	5 Conclusion
	References

	Optimal Control of Multi-strain Epidemic Processes in Complex Networks
	1 Introduction
	2 SIR Model for Two-Strain Viruses
	3 Optimal Control of SIR Model
	4 Structure of Optimal Control
	5 SIS Model with Two Virus Strains
	6 Numerical Simulation
	7 Conclusion
	References

	Invited Papers
	Better Late Than Never: Efficient Transmission of Wide Area Measurements in Smart Grids
	1 Introduction
	2 Background of Synchrophasor Network and System Structure
	2.1 Data Aggregation in PDC
	2.2 Packet Loss and Latency Thresholds

	3 Multiple Optimal Stopping Time Problem in Data Aggregation
	3.1 Problem Formulation
	3.2 Stochastic Dynamic Programming

	4 Numerical Results
	4.1 General Result

	5 Conclusion
	References

	Energy Trading Game for Microgrids Using Reinforcement Learning
	1 Introduction
	2 Energy Trading Game
	3 NE of the Energy Trading Game
	4 Energy Trading Based on Hotbooting Q-Learning
	5 Simulation Results
	6 Conclusion
	References

	Comparing Customer Taste Distributions in Vertically Differentiated Mobile Service Markets
	1 Introduction
	2 System Model
	2.1 Characterization of the Customers
	2.2 Characterization of the SPs
	2.3 Two-Stage Differentiated Market Game

	3 Conventional Example: Uniform Taste Distribution
	3.1 Bertrand Price Competition for the Uniform Distribution
	3.2 Cournot Quantity Competition for the Uniform Distribution

	4 Arbitrary Taste Distribution and Cost Function
	4.1 Bertrand Price Competition for an Arbitrary Distribution
	4.2 Cournot Quantity Competition for an Arbitrary Distribution

	5 Numerical Results and Conclusion
	References

	Risk Management Using Cyber-Threat Information Sharing and Cyber-Insurance
	1 Introduction
	2 Related Works
	3 Information Exchange for Balancing Privacy and Security in Cyber-insurance Market 
	4 Game Theoretic Model of CYBEX Participation
	5 Open Research Challenges
	6 Concluding Remarks
	References

	Paradoxes in a Multi-criteria Routing Game
	1 Introduction
	2 The Model and Performance Measures
	3 Global Optimum Calculation
	4 Equilibrium Calculation
	5 Price of Anarchy and Paradoxes
	6 Numerical Results
	7 Discussion
	8 Conclusion
	References

	Author Index



