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Abstract. Many medical image classification tasks share a common unbal-
anced data problem. That is images of the target classes, e.g., certain types of
diseases, only appear in a very small portion of the entire dataset. Nowadays,
large collections of medical images are readily available. However, it is costly
and may not even be feasible for medical experts to manually comb through a
huge unlabeled dataset to obtain enough representative examples of the rare
classes. In this paper, we propose a new method called Unified LF&SM to
recommend most similar images for each class from a large unlabeled dataset for
verification by medical experts and inclusion in the seed labeled dataset. Our
real data augmentation significantly reduces expensive manual labeling time. In
our experiments, Unified LF&SM performed best, selecting a high percentage of
relevant images in its recommendation and achieving the best classification
accuracy. It is easily extendable to other medical image classification problems.
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1 Introduction

To use supervised machine learning in the medical domain, highly skilled expertise is
required to create a training dataset with sufficient representative images for all the
classes. Data imbalance is prevalent due to two major factors. For a given disease of
interest, there are more healthy patients than unhealthy ones. For a given patient,
typically there are more normal images than the abnormal ones. For instance, in a
colonoscopic procedure, most frames showing normal colon mucosa compared to no
frames or a few minutes of frames showing a polyp and a snare for polypectomy.

Traditional data augmentation is commonly used to address the data imbalance
problem [1, 2]. This approach applies image processing operators such as translation,
cropping, and rotation on images in the training dataset to create more images for the
classes with fewer labeled samples. However, the limitation is that, depending on the
parameters and image operators used, the generated samples may not represent image
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appearances in real data or the generated samples may be very similar to the existing
images in the training dataset. Random data dropout addresses the data imbalance
problem by randomly dropping out data of the class with many more examples (e.g.,
the normal class) [3]. However, this method does not increase the learning capability
for the rare classes.

We investigate a different paradigm that selects images from a large unlabeled
dataset and recommends them to the medical expert. We call this paradigm “real data
augmentation” since the recommended images are from a real dataset. One naive real
data augmentation method is to select images from the unlabeled dataset randomly
without replacement and ask the medical expert to assign them class labels. This
approach is time-consuming and costly to obtain enough representative examples of the
rare target classes. On the other hand, a self-training method [4] applies a probabilistic
classifier trained on the seed labeled dataset to predict the class of each unlabeled image
and recommend for each class the images with the highest probabilities of belonging to
that class. However, the low classification accuracy caused by the small training dataset
likely results in incorrect recommendations. Some real data augmentation methods were
introduced for text classification [5] and object recognition [6]. These methods use two
steps. First, the feature representation is learned. Then, a fixed distance function, (e.g.,
the L2 distance, the cosine similarity), is used to retrieve relevant samples.

Our contribution in this paper is as follows. (1) We propose a new real data
augmentation method called Unified Learning of Feature Representation and Similarity
Matrix (Unified LF&SM) using a single deep Convolution Neural Network
(CNN) trained on the seed labeled dataset. The method recommends top k similar
images to the training images for each class to augment the seed dataset for that class.
(2) We explore two more real data augmentation methods, the two-step method that
learns feature representation first then learns the similarity matrix later and the method
that learns only feature representation using a fixed similarity function. (3) We eval-
uated the effectiveness of the three methods and the self-training method. The effec-
tiveness is in terms of the number of relevant images in the top k recommended images
and the classification accuracy for the problem of 6-class classification of colonoscopy
and upper endoscopy images. We found Unified LF&SM most effective among the
four methods in our experiments.

2 Methods

We describe four methods for real data augmentation in this section. They differ in how
feature representations are obtained and the recommendation algorithm to select
unlabeled images. Let T be a labeled training image dataset, NC be the number of
classes desired for the classification problem, and Nj be the number of images in T
belonging to a class j. Let U be an unlabeled dataset with a cardinality of Ns. Our goal
is to recommend the set (Rj) of k most relevant images from U for each class j. We use
CNN as our supervised deep learning classification algorithm. In this paper, we
investigate the simplest recommendation algorithm, which recommends the top k most
similar images for each class to improve the robustness of CNN. The higher the value
of k is, the larger the variation in the recommended examples is. Note that even the
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most similar image is recommended, it is still useful since the image is from a different
video never seen in the training set.

2.1 Data Augmentation Based on Probabilities (CNN + Probability)

After training a CNN classifier on T , we apply the classifier to each image Ii in U and
obtain the corresponding value pði;jÞ indicating the probability of the image Ii belonging
to a class j using the soft-max function at the last layer of the CNN. Figure 1 shows the
recommendation algorithm. The structure of the CNN we used is described in
Sect. 3.1.

2.2 Data Augmentation Based on Distance Function Learning
(CNN + Bilinear)

We train a CNN classifier on the training dataset T . Then we extract the feature
representation vi for the image Ii using the trained CNN. Next, we apply OASIS [7] to
learn a bilinear similarity function SW ðvi; vjÞ in Eq. 1 that assigns higher similarity
scores to images in the same class. Figure 2 shows our method based on the bilinear
similarity function to find similar images.

Fig. 1. Recommendation algorithm—“CNN + Probability”

Fig. 2. Recommendation algorithm—“CNN + Bilinear”
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SW vi; vj
� � ¼ vTi Wvj ð1Þ

2.3 Data Augmentation Based on Feature Learning (Triplet + L2)

We train Facenet triplet learning model [8] on the seed training dataset T that aims at
learning an embedding (feature representation) function FðIiÞ, from an image Ii into its
corresponding feature vector by minimizing the overall loss L calculated using Eq. 2.
We want to achieve the goal that the squared distance between the image Ii and the
image I þi of the same class as Ii must be at least a smaller than the squared distance
between the image Ii and image I�i of a different class as Ii as shown in Eq. 3. The
second term k

P

h2P
h2 in Eq. 2 is the regularization term [9] to prevent overfitting and

obtain a smooth model. k is the weight decay.
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where a is an enforced margin between positive and negative pairs; P is the set of all
parameters in FðIiÞ; I þi (positive) is an image from the same class as Ii. I�i (negative) is
an image from a different class as Ii. C is the set of all possible triplets in the training set
and has cardinality NC. Figure 3 shows our method based on the learned embedding
function using the squared distance function (L2) to find similar images.

2.4 Unified Learning of Feature Representation and Similarity Matrix

We describe our proposed Unified Learning of Feature Representation and Similarity
Matrix (Unified LF&SM). Figure 4 shows the new model structure which is trained on
the seed training dataset T . We aim at finding a similarity score model SðF ;WÞ Ii; Ij

� �
,

which is a pair of an embedding function FðIiÞ mapping an image Ii into a feature

Fig. 3. Recommendation algorithm—“Triplet + L2”
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vector and a bilinear similarity matrix W , such that the similarity score between the
image Ii and the image I þi of the same class as Ii must be at least a bigger than the
similarity score between the image Ii and image I�i of a different class as Ii as shown in
Eqs. 4 and 5.

SðF ;WÞ Ii; I
þ
i

� �
[ SðF ;WÞ Ii; I

�
i

� �þ a; 8ðIi; I þi ; I�i Þ 2 C ð4Þ

SðF ;WÞ Ii; Ij
� � ¼ F Iið Þð ÞTWF Ij

� � ð5Þ

We minimize the loss function as shown in Eqs. 6 and 7 to obtain the above
mentioned similarity score model.
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where the definition of a, NC, I�i and I þi are the same as in Sect. 2.3; P is the set of all
parameters in FðIiÞ and W . Unlike the Facenet model that uses L2 distance and
optimizes for the feature representation, the new model does joint optimization on both

Fig. 4. The model consists of a batch input layer to a CNN followed by L2 normalization, which
results in the embedding using the triplet loss based on the Bi-linear distance.

Fig. 5. Recommendation algorithm—“Unified LF&SM”
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the feature representation and the similarity learning function. Figure 5 shows our
recommendation algorithm using the learned similarity matrix and the learned feature
representation to find unlabeled images similar to the training images for each class.

3 Experiments

To evaluate the performance of the four data augmentation methods, we selected two
image classification problems in endoscopy video analysis: the instrument image
detection [10] and the retroflexion image detection [11]. These two problems share a
common unbalanced data problem; instrument images and retroflexion images are rare as
the proportions of these images are very small as shown in Table 1. Figure 6 shows
sample images for left cable body, right cable body, forceps head, snare head,
retroflexion, and no object class for common endoscopy images without any of the
aforementioned objects.We solve these two problems using one six-class CNN classifier.

Training dataset: We extracted and labeled one frame for every five frames from
25 de-identified full-length endoscopic videos of colonoscopy and upper endoscopy
captured using Fujinon or Olympus scopes. Finally, we get a training set of 9300
images (1400 training images and 150 validation images for each class, NC = 6).
Table 1 shows the average percentage of images belonging to each class calculated on
the 25 training videos.

Fig. 6. Sample images for the six classes. From left to right: left cable body, right cable body,
forceps head, snare head, retroflexion, and no object.

Table 1. Average percentage of images
belonging to each class calculated on the
25 training videos.

Class name Ratio (%)

Left cable body 2.01
Right cable body 3.82
Forceps head 2.04
Snare head 1.51
Retroflexion 0.80
No object 89.8

Table 2. Our CNN structure. The input and
output sizes are described in rows � cols � #
nodes. The kernel is specified as rows �
cols � #filters, stride.

Layer Size-in Size-out Kernel

Convl 64 � 64 � 3 64 � 64 � 16 3 � 3 � 16,1

Pooll 64 � 64 � 16 32 � 32 � 16 2 � 2 � 16,2

Conv2 32 � 32 � 16 32 � 32 � 32 3 � 3 � 32,1

Pool2 32 � 32 � 32 16 � 16 � 32 2 � 2 � 32,2

Conv3 16 � 16 � 32 16 � 16 � 64 3 � 3 � 64,1

Pool3 16 � 16 � 64 8 � 8 � 64 2 � 2 � 64,2

Conv4 8 � 8 � 64 8 � 8 � 128 3 � 3 � 128,1

Pool4 8 � 8 � 128 4 � 4 � 128 2 � 2 � 128,2

Conv5 4 � 4 � 128 1 � 1 � 256 4 � 4 � 256,1
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Unlabeled dataset U consists of 600,000 unlabeled images (Ns = 600,000) from
228 endoscopic videos by automatically extracting one frame for every ten frames.
Each unlabeled video is different from any training video.

Test dataset consists of 21000 images (3500 test images for each class) from
58 endoscopic videos by automatically extracting one frame for every five frames.
Each test video is different from any training video and unlabeled video. The test
dataset contains many rare-class images with quite different appearances (e.g., different
instrument colors or shapes) from the training images.

3.1 Model Parameters

Considering the fact that only a small training set is available, we use a CNN structure
which is similar to the VGG Net [12], but has much fewer parameters, as shown in
Table 2. Our CNN models accept RGB images with the size of 64 � 64 pixels. These
images are from resizing the raw endoscopic images. We implemented our CNN
models using Python and Google’s TensorFlow library [13]. When training the CNN
classifiers described in Sects. 2.1 and 2.2, we set the batch size as 256 and the epoch
number as 400. When training the CNN models described in Sects. 2.3 and 2.4, we set
the enforced margin a as 0.2, the weight decay k as 0.001, the epoch number as 200
(400 batches per epoch, 6 classes per batch, and 512 images by random selection per
class). We learned the bilinear similarity function in Sect. 2.2 using the Matlab code
provided by the author of OASIS and set the iteration number as 108. The feature
vector of each image comes from the output of the “Conv5” in Table 2. To show the
advantage of the proposed real data augmentation over the traditional data augmen-
tation, we used KERAS [14] to apply rotation (0°–30°), shearing (0–0.01), translation
(0–0.01), zooming (0–0.01), and whitening on each image in the seed training dataset
and synthesized 5600 images for each class to expand the seed training dataset.

3.2 Performance Metrics and Comparison

3.2.1 Classification Performance
We trained the new CNN classifier by adding the new correctly recommended images
(k = 5000) to the seed dataset for each recommendation model and computed the
average recall and average precision on the six classes. When training the CNN
classifier for each method, we used the same CNN structure, weight decay, and
learning rate.

Table 3. Comparison of 6-class image classification performance for different models.

Method Average recall Average precision

Baseline 80.3% 80.8%
Traditional augmentation 83.2% 84.0%
CNN + Probability 84.4% 85.0%
CNN + Bilinear 85.8% 86.0%
Triplet + L2 88.9% 89.2%
Unified LF&SM 89.3% 89.3%
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In Table 3, Baseline represents the CNN classifier trained on the seed dataset.
Table 3 shows that we can get the best average recall and average precision when using
the Unified LF&SM to do real data augmentation. Table 3 also shows that, compared
to the Baseline, the Unified LF&SM improved the average recall and the average
precision by 9% and 8.5%, respectively. Table 3 also shows that even the simple
method of selecting top k similar images still outperforms the traditional data aug-
mentation that is commonly used. This result shows that our real data augmentation
method is very useful for improving the image classification accuracy. Although the
classification performance between Triplet + L2 and Unified LF&SM is very close, we
will see next that Unified LF&SM reduces the efforts of manual labeling the most.

3.2.2 Efforts of Domain Experts
We define the number of true accepts (correct recommendations) in the top k recom-
mended images for the class j as TA j; kð Þ. We define TA kð Þ as the average true accepts
considering all classes for each k, a desired number of recommend images. We define
TAmin kð Þ as the number of true accepts for the class with the least correct recom-
mendations among all the classes. We use the actual number instead of precision to
reflect the medical experts’ efforts to verify the recommended results.

TA kð Þ ¼ PNc
j¼1 TA j; kð Þ=Nc TAmin kð Þ ¼ min1� j�Nc TA j; kð Þ ð8Þ

As shown in Fig. 7, the difference in true accepts increases as k increases. When
k is small (<=1000), the difference in the correctness of the recommendation is small.
As k becomes larger, the better technique makes more correct recommendations.
Figure 7 also shows that Unified LF&SM outperforms the three other methods by
recommending 80–454 more true accepts (average number) and recommending
249–1311 more true accepts (minimum number) for the top 5000 recommendations.
Although the difference on classification performance between Triplet + L2 training
and Unified LF&SM in Table 3 is very small, but Unified LF&SM reduces the manual

(a) (b) 

Fig. 7. (a)–(b) TA kð Þ and TAminðkÞ for the top k recommended images.
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labeling workload as shown in Fig. 7. Figure 7(b) shows that when comparing the
minimum number of true accepts for all classes, Unified LF&SM and “Triplet + L2”
show a much better result than “CNN + Bilinear” and “CNN + Probability.” The
explanation is that the two latter methods have the class “snare head” as the class with
the least correct recommendations and recommended fewer relevant images for the
class “snare head”. One reason to explain the large performance difference is that the
models using the triplet have many more training samples (N3 in theory where N is the
number of images in the training set) than those of the models using the single image
input (only N) in the training process.

Assume we want to get k number of images belonging to the class j and the ratio of
images belonging to the class j in the training video is r as shown in Table 1, then we
estimate the number of images to be labeled using random selection as k=r in the fourth
column of Table 4. For example, the estimated number is 202720 � 3061=ð1:51%Þ for
the class “snare head”. Table 4 shows that, to obtain the same number of true accepts for a
rare target class, medical experts have to verify at least 26 (130680=5000 � 26) times the
number of images if using random selection of unlabeled images compared to if using
Unified LF&SM. With Unified LF&SM, medical experts spend far less time on anno-
tating ground truth, and still give adequate representative images for the rare target class.

3.3 Applicability to Other Types of Medical Images

Our Unified LF&SM automatically learns the image feature vector and the similarity
matrix to recommend images when only given a small labelled image dataset.
Therefore, the Unified LF&SM does not require specific domain knowledge on medical
images and is easily extendable to other medical image classification problems.

4 Conclusion

We have presented and evaluated our Unified LF&SM with the goal to decrease the
time needed for creating the training data by medical experts. We achieved this goal for
the classification problems of instrument and retroflexion images. Our future work
includes investigating a better recommendation algorithm, exploring active learning by
repeatedly recommending images in iterations using the proposed Unified LF&SM,
and extending the approach for object localization and temporal scene segmentation for
medical image and video analysis.

Table 4. Comparison of the number of images to be labeled using random selection and Unified
LF&SM for each rare target class to obtain the same number of true accepts.

Class name #True accepts # Unified LF&SM #Random selection

Left cable 4600 5000 228860
Right cable 4992 5000 130680
Forceps head 2809 5000 137700
Snare head 3061 5000 202720
Retroflexion 2923 5000 365380
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