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Abstract. Cerebrovascular diseases are one of the main causes of death
and disability in the world. Within this context, fast and accurate
automatic cerebrovascular segmentation is important for clinicians and
researchers to analyze the vessels of the brain, determine criteria of
normality, and identify and study cerebrovascular diseases. Neverthe-
less, automatic segmentation is challenging due to the complex shape,
inhomogeneous intensity, and inter-person variability of normal and mal-
formed vessels. In this paper, a deep convolutional neural network (CNN)
architecture is used to automatically segment the vessels of the brain
in time-of-flight magnetic resonance angiography (TOF MRA) images
of healthy subjects. Bi-dimensional manually annotated image patches
are extracted in the axial, coronal, and sagittal directions and used as
input for training the CNN. For segmentation, each voxel is individually
analyzed using the trained CNN by considering the intensity values of
neighboring voxels that belong to its patch. Experiments were performed
with TOF MRA images of five healthy subjects, using varying numbers
of images to train the CNN. Cross validations revealed that the proposed
framework is able to segment the vessels with an average Dice coefficient
ranging from 0.764 to 0.786 depending on the number of images used for
training. In conclusion, the results of this work suggest that CNNs can
be used to segment cerebrovascular structures with an accuracy similar
to other high-level segmentation methods.

Keywords: Vessel segmentation · Deep learning · Cerebrovascular seg-
mentation · Convolutional neural networks

1 Introduction

Vascular diseases have led the ranking of major causes of death in the last fif-
teen years, according to reports of the world health organization (WHO) [1]. In
particular, cerebrovascular diseases that lead to stroke were responsible for more
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than six million deaths only in 2015 [1]. Consequently, clinicians and researchers
require fast and accurate tools, which aid them to detect, analyze, and treat cere-
brovascular diseases, such as aneurysms, arteriovenous malformations (AVMs),
and stenoses.

Segmentation of the vascular system in medical images allows clinicians to
identify and isolate vessels from other surrounding types of tissue, thus, allowing
better visualization and quantitative analysis. However, manual vessel segmen-
tation is a time-consuming, error-prone task, which is subject to inter-observer
variability. Consequently, research has been focused on developing faster and
more accurate automatic vessel segmentation methods.

Lesage et al. [2] review paper lists a considerable number of automatic vessel
segmentation approaches. The referenced methods range from approaches that
are based on computing Hessian-based features of vessels, proposed by Frangi
et al. [3] and Sato et al. [4], to atlas or model-based approaches, other feature-
based methods, and extraction schemes, such as level-sets [5]. In all cases, dif-
ferent handcrafted features are used to guide the segmentation process, such
as image intensities, Hessian eigenvalues, curvature values, gradient flow, and
many others. It is the researcher who decides, based on experiments related to
each particular application, which features are used to extract the to the most
accurate segmentation results.

Deep convolutional neural networks (CNN) is a recent and popular strategy,
with successful results solving different medical image analysis problems [6],
which proposes to let the computer learn in an automatic and supervised manner,
and decide which features are relevant to generate accurate segmentation results.
Automatic vessel segmentation methods that use deep CNN have been used to
segment 2D images of the retina [7], ultrasound images of the femoral region of
the body [8], and computed tomography (CT) volumes of the liver [9], with a
high performance in all cases.

To our knowledge, no study has been performed yet to adapt and apply
deep CNN to segment the vessels of the brain, mainly due to the technical
difficulties to obtain manually segmented brain datasets, the novelty of deep
learning methods, and its associated long execution times. However, given the
successful performance of CNN, as it has permeated the entire field of medical
image analysis [6], this paper presents an initial strategy to apply deep CNN to
segment the vascular system in time-of-flight magnetic resonance angiography
(TOF MRA) images of the brain.

2 Vascular Segmentation of TOF MRA Images Using
Deep CNN

TOF MRA is a medical imaging modality, which allows the acquisition of non-
contrast enhanced images of the brain vascular system with a high spatial reso-
lution [10]. TOF MRA images are affected by noise artifacts that do not allow
the establishment of fixed intensity values to identify different types of tissue.
Additionally, the intricate shape of the vascular tree, and its high inter-person
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variability, make it hard to define a common atlas that can be used for segmen-
tation, as often conducted for different organs [11].

Given the variability of the intensity profile and complex shape of the vascular
system in TOF MRA and other imaging modalities, defining suitable character-
istics to identify and segment vessels represents a challenging problem. In order
to solve this problem, deep CNN approaches have been used to let the computer
discover and learn those characteristics by itself, in a supervised manner [8,12].

Traditionally, three-dimensional patches are extracted from a set of training
images and used to optimize a deep CNN, which is then used to segment the
vascular system, but they have not been tested for the purpose of segmenting
cerebrovascular structures from 3D TOF MRA datasets yet.

2.1 CNN Architecture

Complex deep CNN architectures can lead to a possible over-fitting in the model
learning, as well as significantly increasing the processing time, when considering
TOF MRA images. For this reason, we propose a CNN architecture composed of
only two convolutional layers (C1 and C2) and two fully connected layers (FC3
and FC4). This architecture is shown in Fig. 1.

The first convolutional layer, C1, contains 32 filters with 5×5 voxels receptive
field, in a 2 voxels stride sliding (S1), sub sampled in a 3× 3 voxels max-pooling
(P1), in order to reduce translation variance. The next convolutional layer, C2,
has a receptive field of 3 × 3 voxels, with 64 filters, and no sub sampling. In
order to reduce the impact of the backpropagation vanishing problem, both
convolutional layers are followed by a rectified linear activation (Relu).

After the convolutional layers, two more fully connected layers are added. The
first fully connected layer, FC3, reduces the dimensionality from 256 (2×2×64)
to 100 neurons, and FC4 can be seen as a decision layer that determines the
likelihood of belonging to a vessel or not. These layers have hyperbolic tangent
(Tanh) and sigmoid (Sigm) activation functions, respectively.

2.2 CNN Training

In order to identify the best weights for our model, we selected a balanced
number of patches from vessel and non-vessel regions in our training dataset. In
particular, we used a number of vessel and non-vessel patches equal to half the
number of voxels in the vessel region of each dataset, in the axial, coronal, and
sagittal planes. Through a mini-batch gradient descent approach, the squared
error over the entire training set was minimized, considering a mini-batch of 50
elements. This learning approach is applied through 40 epochs, while considering
a learning rate of 0.001 and a gradient momentum of 0.9.
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Fig. 1. Network architecture, composed of two convolutional layers, C1 and C2, and
two fully connected layers, FC1 and FC2. After C1, we include a stride S1 of two voxels.
All layers are also followed by a Relu, Tanh or Sigmoid function as indicated.

3 Materials and Methods

3.1 Data Acquisition and Image Preprocessing

Five TOF MRA datasets of healthy subjects were used to analyze and evaluate
the proposed deep learning cerebrovascular segmentation method. The datasets
were acquired on a 3T Intera MRI scanner (Philips, Eindhoven, the Netherlands)
without application of contrast agent using a TE = 2.68 ms, a TR = 15.72 ms, a
20◦ flip angle, and a spatial resolution of 0.35 × 0.35 × 0.65 mm3. The datasets
size is 512 × 512 × 120 voxels.

For preprocessing, slab boundary artefact correction was performed using the
method described by Kholmovski et al. [13] followed by intensity non-uniformity
correction using the N3 algorithm [14]. A skull stripping algorithm [15] was also
applied to mask the brain images and their corresponding binary segmentations.
The vessels were manually segmented in each dataset by a medical expert based
on the preprocessed TOF MRA datasets.

3.2 Classification

For all voxels inside the brain region, we define a cubic region of 29 × 29 × 29
around this voxel, where the axial, coronal, and sagittal patches are extracted,
as in [9]. All patches have 29×29×1 voxels, as they are a bi-dimensional slice of
each axis. Each patch is fed to the CNN, which calculates the vessel likelihood, so
that three probability maps (for each orientation) are available after application
of the CNN. A voxel is defined as a vessel voxel if at least one of the probability
values (for the three directions) is above a threshold t and defined background
otherwise. In this work, an empirically defined threshold of t = 0.95 was used
for all experiments.
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3.3 CNN Evaluation

The performance of the deep CNN is evaluated by selecting random sets of TOF
MRA images for training. The number of images used for training is increased
from one to four images, to evaluate if increasing the number of training images
generates more accurate results. Initially, one TOF MRA image is randomly
selected to train the CNN, which is used to segment the test image. The selected
training image is different for each test image. Then, the number of training
images is consecutively incremented up to four, always guaranteeing that the
training set does not contain the test image.

The Dice similarity coefficient (DSC) [16] is used to compare the CNN-based
segmentation and ground-truth manual segmentations, as it has been used in
other cerebrovascular segmentation methods, thus, allowing an easier compari-
son. It is defined as DSC = 2|A ∩ B|/(|A| + |B|), where A and B represent the
ground-truth and CNN segmentations, respectively.

A standard one-way analysis of variance (ANOVA) is applied to determine
if the segmentation accuracies using an increasing number of images are statis-
tically different, followed by the Tukey’s honest significant difference procedure.
The Statistical Package for the Social Sciences version 16.0 (SPSS Inc., Chicago,
IL, USA) was used for this statistical analysis, and the criterion of statistical
significance was set at p < 0.05.

3.4 Hardware Settings

Our deep CNN is implemented using version 2.7 of the python language, and the
Theano 0.9.0 library [17]. Experiments are executed on a desktop computer with
eight Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz processors, 32 GB of RAM
memory, and graphic card GeForce GTX 745 (NVIDIA corp., United States),
with 4 GB RAM memory. Testing and training were done using the graphic card
and cuDNN extensions for faster processing [18].

4 Results

The results of the CNN approach for segmentation of vessels in TOF MRA
images are reported in Table 1. The values correspond to the DSC when com-
paring the CNN segmentation with the manual ground-truths available for eval-
uation. Each row corresponds to a different dataset, and each column to the
corresponding DSC when using the indicated number of images to train the
deep neural network. The numbers in parenthesis identify the datasets used for
training. Average DSC values, training and testing times are reported in the
final rows.

The average DSC values for our deep learning approach vary between 0.764
and 0.786, depending on the number of images used for training. According to the
ANOVA analysis, there is not enough evidence to guarantee that the resulting
DSC values are significantly different (p >= 0.05). As expected, training times
increase with the number of images used. The testing times are independent of
the number of training images.
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Table 1. DSC values for each dataset, when using a different number of images to
train the deep neural network.

Dataset 1 image 2 images 3 images 4 images

1 0.774 (2) 0.763 (4, 5) 0.770 (2, 3, 4) 0.767

2 0.758 (5) 0.780 (3, 5) 0.759 (1, 3, 4) 0.765

3 0.769 (4) 0.784 (1, 4) 0.730 (1, 2, 4) 0.771

4 0.770 (2) 0.795 (1, 2) 0.804 (1, 3, 5) 0.781

5 0.751 (1) 0.809 (1, 3) 0.742 (1, 2, 4) 0.788

Average 0.764±0.010 0.786±0.017 0.761±0.028 0.774±0.010

Train (min) 40 65 92 120

Test (min) 30 30 30 30

5 Discussion

This paper presents a feasibility analysis of a deep CNN vessel segmentation
method for TOF MRA images of the brain, with promising accuracy results. The
CNN analyzes only in-plane neighboring voxels in the axial, coronal, and sagittal
planes, and not full three-dimensional patches. Additionally, the Theano library
with cuDNN extensions, and graphic card were used in the CNN implementation.

According to the executed statistical tests, using more images for training did
not lead to a significant increase in segmentation accuracy. This result clearly
highlights the benefit that a simple CNN, as described here, only needs very
few well segmented ground truth datasets to achieve proper results, making an
application in research or clinical settings more feasible.

Figure 2 shows 3D visualizations of the segmentation results for dataset 1,
using the indicated number of images to train the proposed deep CNN. Visually,
no considerable difference can be depicted between the segmentation results,
confirming by the quantitative analysis. In general, it can be noted that large
vessels are correctly identified. On the other hand, small vessels are partially
affected by noise, such that their shape is not correctly delineated.

Fig. 2. 3D renderings of segmentation results for dataset 1 using a deep CNN trained
with the indicated number of images.
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As a limitation, it has to be noted that a small sample size with five TOF
MRA images may not be enough to support general conclusions about the most
suitable deep CNN architecture for vessel segmentation. However, the promising
results of this initial analysis (as seen in Fig. 2) motivates further developments
and analyses of this approach.

6 Conclusion

This paper presents a first feasibility analysis to apply deep CNN for automatic
segmentation of the cerebrovascular system. Processing times were optimized
by using bi-dimensional patches to identify vessels, and by taking advantage of
the Theano library with cuDNN extensions, and graphic card of the system.
No significant accuracy differences were found when using different numbers of
images to train the deep CNN. The developed program calculates axial, coronal,
and sagittal vessel probability maps and applies a fixed threshold to determine
which voxels belong to vessels. It is expected that more complex approaches
based on the calculated probability maps would lead to more accurate results.
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