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Abstract. Different works have shown that the combination of mul-
tiple loss functions is beneficial when training deep neural networks
for a variety of prediction tasks. Generally, such multi-loss approaches
are implemented via a weighted multi-loss objective function in which
each term encodes a different desired inference criterion. The importance
of each term is often set using empirically tuned hyper-parameters. In
this work, we analyze the importance of the relative weighting between
the different terms of a multi-loss function and propose to leverage the
model’s uncertainty with respect to each loss as an automatically learned
weighting parameter. We consider the application of colon gland analysis
from histopathology images for which various multi-loss functions have
been proposed. We show improvements in classification and segmentation
accuracy when using the proposed uncertainty driven multi-loss function.

1 Introduction

Although deep learning models have shown remarkable results on a variety of pre-
diction tasks, recent works applied to medical image analysis have demonstrated
improved performance by incorporating additional domain-specific information
[1]. In fact, medical image analysis datasets are typically not large enough for
learning robust features, however, there exist a variety of expert knowledge that
can be leveraged to guide the underlying learning model. Such knowledge or
cues are generally considered as a set of auxiliary losses that serve to improve or
guide the learning of a primary task (e.g. image classification or segmentation).
Specifically, these cues are incorporated in the training of deep convolutional
networks using a multi-loss objective function combining a variety of objectives
learned from a shared image representation. The combination of multiple loss
functions can be interpreted as a form of regularization as it constrains search
space for possible candidate solutions for the primary task.

Different types of cues can be combined in a multi-loss objective function
to improve the generalization of deep networks. Multi-loss functions have been
proposed for a variety of medical applications: colon histology images, skin der-
moscopy images or chest X-Ray images. Chen et al. [2] proposed a multi-loss
learning framework for gland segmentation from histology images in which fea-
tures from different layers of a deep fully convolutional network were combined
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through auxiliary loss functions and added to a per-pixel classification loss. Ben-
Taieb et al. [3] proposed a two-loss objective function combining gland classifi-
cation (malignant vs benign) and segmentation (gland delineation) and showed
that both tasks were mutually beneficial. Additionally, authors also proposed a
multi-loss objective function for gland segmentation that equips a fully convolu-
tional network with topological and geometrical constraints [4] that encourage
learning topologically plausible and smooth segmentations. Kawahara et al. [5]
used auxiliary losses to train a multi-scale convolutional network to classify skin
lesions. More recently, adversarial loss functions were also proposed as addi-
tional forms of supervision. Dai et al. [6] leveraged an adversarial loss to guide
the segmentation of organs from chest X-Ray images. While these previous works
confirm the utility of training deep networks with a multi-loss objective function,
they do not clearly explain how to set the contribution of each loss.

Most existing works use an empirical approach to combine different losses.
Generally, all losses are simply summed with equal contribution or manually
tuned hyper-parameters are used to control the trade-off among all terms. In
this work, we investigate the importance of an appropriate choice of weighting
between each loss and propose a way to automate it. Specifically, we utilize
concepts from Bayesian deep learning [7,8] and introduce an uncertainty based
multi-loss objective function. In the proposed multi-loss, the importance of each
term is learned based on the model’s uncertainty with respect to each loss. Uncer-
tainty was leveraged in many medical image analysis applications (e.g. segmen-
tation [9], registration [10]). However, to the best of our knowledge, uncertainty
was only explored for the task of image registration in the context of deep learn-
ing models for medical images. Yang et al. [11] proposed a CNN model for image
registration and showed how uncertainty helps highlighting misaligned regions.
Previous works did not consider automating or using uncertainty for guiding the
training of multi-loss objective functions designed for medical image analysis.

We illustrate our approach on the task of colon gland analysis leveraging the
multi-loss objective functions proposed in previous works [3,4]. We extend these
previous works by re-defining the proposed loss functions with an uncertainty
driven weighting. We linearly combine classification, segmentation, topology and
geometry losses weighted by the model’s uncertainty for each of these terms. In
the proposed uncertainty driven multi-loss, the uncertainty captures how much
variance there is in the model’s predictions. This variance or noise in the pre-
dictions varies for each term and thus reflects the uncertainty inherent to the
classification, segmentation, topology or geometry loss.

Our contributions in this work can be summarized as follows: (i) we show how
uncertainty can be used to guide the optimization of multi-loss deep networks
in an end-to-end trainable framework; (ii) we combine a series of objectives
that have been shown successful for gland analysis and adapt them to encode
uncertainty driven weighting; (iii) we analyze the influence of different trade-offs
controlling the importance of each loss in a multi-loss objective function and
draw some conclusions on the adaptability of neural networks.
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Fig. 1. Multi-loss network architecture. We use an encoder-decoder architecture with
skip connections [12]. z is an input image. f¢(x) are the activations from the last
convolution layer of the encoder and are used to predict class labels (i.e. malignant vs
benign tissue). f¢(z) are per-pixel activations from the last convolutional layer of the
decoder that are used to predict segmentations. The building blocks of the network
are layers of convolution (Conv.), ReLU activation functions and batch normalization
(BN). Dashed lines represent skip connections.

2 Method

Our goal is to learn how to combine multiple terms relevant to gland image analy-
sis into a single objective function. For instance, gland classification and gland
segmentation can both benefit from a joint learning framework and information
about the geometry and topology of glands can facilitate learning plausible seg-
mentations. Note that we refer to gland’s geometry and topology in terms of
smooth boundaries as well as containment and exclusion properties between dif-
ferent parts of objects (the lumen is generally contained within a thick epithelial
border and surrounded by stroma cells that exclude both the lumen and the
border, see Fig. 3 for an example of gland segmentation).

We train a fully convolutional network parameterized by 6, from a set
of training images x and their corresponding ground truth segmentation
masks S along with their tissue class label binary vector C' represented by
{(z(™, 8 CM):n=1,2,..., N}. We drop (n) when referring to a single image
z, class label C' or segmentation mask S. We note K the total number of image
class labels (e.g. K = 2 for malignant or benign tissue images of colon adeno-
carcinomas) and L the total number of region labels in the segmentation mask
(e.g. L = 3 for lumen, epithelial border and stroma). The network’s architecture
is shown in Fig. 1. To predict class labels C, we use the network’s activations
f%(x) from the last layer of the encoder as they correspond to a coarser rep-
resentation of z. To obtain a crisp segmentation of a color image x, we use
the activations f(x) from the last layer of the decoder and we assign a vector
Sy = (55,52,...,5F) € {0,1}F to the p-th pixel z, in z, where S7 indicates
whether pixel x,, belongs to region r, and L is the number of region labels. We
assume region labels r are not always mutually exclusive such that containment
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properties (e.g. glands’ lumen is contained within the epithelial border) are valid
label assignments.

Multi-loss networks: A multi-loss objective function is defined as follows:

Litotar (23 0) Z)\ Li(z;0) (1)

where 6 represents the network’s parameters learned by minimizing Liotar; T is
the total number of loss functions £; to minimize with respect to the network’s
parameters, and J\; is a scalar coefficient controlling the importance of each loss,
generally found via grid-search or set equally for all terms.

In the context of gland analysis, we define a multi-loss objective function that
encodes classification, segmentation as well as gland’s topology and geometry.
We learn the relative weights of each term in the objective using a measure of
uncertainty that reflects the amount of noise or variance in the model’s predic-
tions for each term. Using uncertainty to weight each term results in reducing
the influence of uncertain terms on the total loss and hence on the model’s
parameters update. Formally, we write the total objective function as follows:

Liotal (x; 9, O0c¢,05,0t, Ug) = Lc(x§ 07 Uc) + ‘Cs(x; 97 Us) + Et(-m 07 Ut) + ﬁg(x; 97 Ug)

(2)
where L., Ls, Ly, L4 are the classification, segmentation, topology and geome-
try loss functions and o.,0s, 0,04 are learned scalar values representing the
uncertainty for each loss (or amount of variance in the prediction).

Uncertainty guided classification: Similarly to Gal et al. [8], we define the
classification loss £, with uncertainty as:

K exp(Z £ (x))
Lo(@:i0,00) = > ~Crlog P(Cy = 1]z,0,00), P(Cy = 1|z,0,0.) = ——— = (3)
=1 > exp(a%ffk, (z))
k/=1 <

where K is the total number of classes, P(Ck|z, 6, 0.) corresponds to the soft-
max function over the network’s activations f?(z) weighted by the classification
prediction’s uncertainty coefficient o.. Note how higher values of o, reduce the
magnitude of activations f?(x) over all classes (which corresponds to encouraging
uniform probabilities P(Cy|x,0,0.)) and thus reflect more uncertain predictions
(i.e. high activation values will be weighted lower when o.; the uncertainty, is
high).
1

Assuming -1 >z Zexp( 0 (x )) (Zexp( (x ))) K [7], we can re-write

the uncertainty- gulded classification loss as follows:

K
Le(w;0,00) = —Cjlog (exp( )) + log Z exp(— 2, (1)) (4)
k=1 k=1
| X
b Z —Cylog P(Cy, = 1|xp;0) + log o2. (5)

¢ k=1
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Note how large scale values of o2 corresponding to high uncertainty will reduce
the contribution of the classification loss. The second term in Eq. (5) avoids
02 from becoming infinity and thus avoids the loss from becoming zero. We
extend the above softmax with uncertainty cross-entropy classification loss to
the segmentation losses.

Uncertainty guided segmentation: We learn pixel-wise predictions using a
combination of a sigmoid cross entropy loss L5 with two higher order penalty
terms (proposed in [4]): a topology loss L; enforcing a hierarchy between labels
and a pairwise loss £, enforcing smooth segmentations.

Lo(2:60,00) = — ZZ —S;log P(S) = 1|z,0) +logo? (6)

Is peQ r=1

where L represents the number of regions in the segmentation mask, €2 is the
set of pixels in a given image z, P(S, = 1|z,0,0,) is the output of the sigmoid
function applied to the segmentation activations f¢(z,) and o2 represents the
model’s uncertainty for L.

The topology loss defined in [4] was originally formulated as a modified soft-
max cross entropy loss in which the probabilities are defined to encode contain-
ment and exclusion as a hierarchy between labels. Per-pixel hierarchical prob-
abilities are defined to penalize topologically incorrect label assignments such
that their probability is set to zero. Formally, the hierarchical probabilities used
to compute £; are defined as:

L
1 D T
(S ‘mw = Z I |eXP (fs wp p7 Z = E Pt(sp|‘riﬂ;0) (7)
r=1

where Z is a normalizing factor, ]St(S;|:vp;9) is the un-normalized probability
and V(S,) is a binary indicator function that identifies topologically valid label
assignments (V(S,) = 1) from invalid ones (V(S,) = 0). Using these proba-
bilities defined in [4] and applying the same simplification as in Eq. (5), £; is
formulated as the following uncertainty guided cross entropy loss where o7 is the
uncertainty:

Li(x;0,0¢) g ZZ —S, log P(S,, = 1|z,0) +logo?. (8)

T4 peQ r=1

It is worth noting that the fundamental assumption behind the sigmoid cross
entropy loss L is that all segmentation labels are mutually independent whereas
in the defined topology loss £; inclusion and exclusion relations between the
segmentation labels are set as hard constraints (i.e. enforcing containment and
exclusion properties). Thus, the combination of £; and £; results in a soft con-
straint over the topology properties (as opposed to the hard constraint originally
proposed in [4]).

Finally, to include uncertainty in the geometry loss, we re-define the original
loss proposed in [4] such that it is weighted with an uncertainty coefficient o,.
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Fig. 2. Trade-off between different loss functions and influence on the network’s gener-
alization. The learning rate was kept fixed to le-2 in all experiments. Each graph
represents the classification and segmentation accuracy on the Warwick-QU colon
adenocarcinoma test set.

The geometry loss £, favours smooth segmentations by minimizing the ratio
of log probabilities between neighbouring pixels sharing the same labels in the
ground truth segmentation.

Ly(x;0,0,) = QZZZST

9 peQr=1qeNP

Py(S) |5 0)
Py(Sg|zq;0)

‘ Bp,q +log 03 9)

where NP corresponds to the 4-connected neighborhood of pixel p. £, trains
the network to output regularized pairs of log-sigmoid label probabilities for
neighbouring pixels p and ¢ when the binary indicator variable B, , = 1 (i.e.
when p and ¢ share the same label in the ground truth segmentation). 03 is the
uncertainty for loss £,. Note that in this formulation, we minimize the difference
between log-probabilities so the assumption utilized in Eq. (5) still holds.

Implementation details: We implement the model using Tensorflow [13]. We
train a fully convolutional architecture as describe in Fig. 1 using the proposed
multi-loss function Eq. (2) optimized with stochastic gradient descent. All uncer-
tainty parameters o; are learned along with the model’s parameters 6. In prac-
tice, we trained the network to predict logo? for numerical stability [8].

3 Experiments and Discussion

We used the publicly available Warwick-QU colon adenocarcinoma dataset [14],
which consists of 85 training (37 benign and 48 malignant) and 80 test images
(37 benign and 43 malignant). In this dataset, each tissue image is composed
of multiple glands and is labelled as benign or malignant and provided with a
corresponding segmentation mask delineating each gland’s lumen and epithelial
border (see Fig.3). In all experiments, we used 70 images for training, 15 for
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validation and 80 for test. We extracted patches of size 250 x 250 pixels and used a
series of elastic and affine transforms to augment the training dataset by a factor
of ~100. We used (image-level) classification accuracy to evaluate the model’s
capacity to correctly predict benign vs malignant tissue images. To evaluate the
predicted segmentation masks, we used three different metrics: pixel accuracy
to evaluate the accuracy in predicting a pixel as either background, lumen or
epithelial border; object Dice and Hausdorff Distance to evaluate the capacity
of the model in correctly identifying individual glands in an image. Object Dice
and Hausdorff distance are particularly useful in evaluating the accuracy of the
predicted segmentations at objects borders.

Table 1. Performance of different loss functions combined with manually tuned loss
weights and uncertainty-guided weights. Results are reported on the Warwick-QU
original test set.

Loss Weights Classification |Pixel Object | Hausdorff
accuracy accuracy |dice distance
Lo |Ls |[Ly |Lyg

Le 1 0 0 0 0.87 - - -

Ls 0 1 0 0 - 0.79 0.81 8.2

Ly 0 0 1 0 - 0.75 0.77 8.6
Ls+Li+ Ly 0 1 1 1 - 0.83 0.84 7.3
Le+Ls 0.5 (0.5 |0 0 0.90 0.79 0.80 8.4
Le+Ls+ Ly 0.33/0.33/0.33|0 0.94 0.78 0.80 8.4
Le+Ls+ L+ Ly 0.25/0.25]0.25/0.25 0.91 0.81 0.83 7.6
Le+Ls+ L+ Ly 0.1 |06 [0.22/0.08 0.95 0.86 0.85 7.1
Le+ Ls Trained with uncertainty | 0.95 0.78 0.80 8.4
Lo+ Ls+ Ly 0.94 0.79 0.81 8.2
Lo+ Ls+ L+ Ly 0.95 0.85 0.87 |7.0

Multi-loss vs single-loss: We first tested if the combination of different loss
functions without uncertainty guidance influences the classification and segmen-
tation accuracy. We used Liotal = AL. + (1 — X)L, and explored different values
for A € [0, 1]. Figure 2 shows the classification as well as the per-pixel accuracy on
the Warwick-QU original test set of 80 images for different values of A. Overall,
we observed that learning with multiple losses improved both segmentation and
classification performance. In fact, we observed up to 3% (i.e. A = {0.5,0.6,0.7})
increase in classification accuracy when using a combination of £, and L5 com-
pared to using L. only (i.e. A = 1). Similarly, for segmentation, we observed the
performance improved up to 6% (i.e. A = 0.3) in pixel accuracy when combining
both losses compared to using L, only (i.e. A = 0). A similar result is shown in
Table 1 when comparing L. vs L. + L, with equal weights.

Penalty terms trade-off: We also tested the trade-off between the topology
and geometry soft constraints when combined with the segmentation loss. We
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used different weighting coefficients A and trained the network with Liota =
Ls+ A+ (1 — ALy We only varied the importance of the soft constraints.
It is interesting to note that there is a wide range of weighting coefficients for
which the network produces similar (or almost identical) results. In fact, we
observed a minimal change (<le-2) when varying the importance of each term
by +20% around A = 0.5, which reflects the flexibility of deep networks to
adapt to different regularization terms. We also observed that generally sigmoid
cross entropy loss £, was more stable than £, or Lg-only and outperformed
these other losses when each of them was used alone (see Table 1, £, only vs £,
only). However, for certain weighting configurations for each penalty term, we
observed improved performance (up to 5%, see Fig. 2) in terms of pixel accuracy
and object Dice (e.g. A =0.1 vs. A =0.5).

Uncertainty driven trade-off: To evaluate the utility of using uncertainty
to guide the trade-off between the different loss functions, we tested different
combinations of losses with uncertainty to form the total multi-loss function.
Table 1 shows the performance of each tested loss configuration in terms of class
accuracy, pixel accuracy, object Dice and Hausdorff distance. Overall, adding
uncertainty to weigh each loss achieves competing results with other strategies
(e.g. equally weighted losses) and can even outperform the best set of weights
we could find using a finer grid search (in terms of classification accuracy, object
Dice and Hausdorff Distance, see Table1). Note that finding the best set of
weights shown in Table 1 involved training more than 30 networks with different
weights for each loss whereas using the proposed uncertainty driven weights only
involved training a single network. Examples of the segmentation predictions
obtained using the proposed method (Eq.2) are shown in Fig. 3.

Fig. 3. Examples of predicted segmentations. Colors on the segmentation masks rep-
resent gland’s central area or lumen (purple), the epithelial border surrounding the
lumen (yellow) and the stroma or background (black). (Color figure online)
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Conclusion

We showed that the combination of different loss terms with appropriate weight-
ing can improve model generalization in the context of deep neural networks.
We proposed to use uncertainty as a way to combine multiple loss functions that
were shown useful for the analysis of glands in colon adenocarcinoma and we
observed that this strategy helps improve classification and segmentation per-
formance and can thus bypass the need for extensive grid-search over different
weighting configurations. An interesting extension to our work could be to intro-
duce per-instance uncertainty (as opposed to per-loss) which may be useful in
situations where the data or labels are noisy.
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