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Abstract. Analysis of vascular and airway trees of circulatory and res-
piratory systems is important for many clinical applications. Automatic
segmentation of these tree-like structures from 3D data remains an open
problem due to their complex branching patterns, geometrical diversity,
and pathology. On the other hand, it is challenging to design intuitive
interactive methods that are practical to use in 3D for trees with tens
or hundreds of branches. We propose SwifTree, an interactive software
for tree extraction that supports crowdsourcing and gamification. Our
experiments demonstrate that: (i) aggregating the results of multiple
SwifTree crowdsourced sessions achieves more accurate segmentation; (ii)
using the proposed game-mode reduces time needed to achieve a pre-set
tree segmentation accuracy; and (iii) SwifTree outperforms automatic
segmentation methods especially with respect to noise robustness.

1 Introduction

Analysis of anatomical branching trees in the human body (i.e. vascular and air-
way trees of circulatory and respiratory systems) is important for a wide range
of application (e.g., [22,24]). There are numerous methods for segmenting tree-
like structures from 2D and 3D images, which may be generally classified into
automatic (e.g., [5,15]) and interactive (e.g., [2,8,12,20,21,26]). Fully automatic
tree segmentation methods are not yet completely accurate and reliable as they
are often sensitive to parameters setting, are prone to leaking into nearby struc-
tures or to missing true bifurcating branches [15]. On the other hand, among
interactive methods, optimal path techniques are commonly employed, which
require the definition of start and end points (seeds) for each target branch
(e.g., vessel) [8,26]. Other works proposed manual correction techniques to be
applied after automatic segmentation [20,27]. Generally, interactive methods are
hard to design and utilizing them for complex branching 3D trees with tens or
hundreds of branches, which is not uncommon, is impractical.

There is a growing need for large numbers of segmented 3D imaging datasets
for training machine learning systems and for validating newly proposed meth-
ods, however, there is a scarcity of segmented complex 3D trees. This work,
which leverages gamification and crowdsourcing, is a first step towards enabling
the collection of large numbers of segmented anatomical trees.
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The objective of gamification is to transform a mundane task into an immer-
sive and engaging experience. Gamification has been leveraged in many ways,
e.g., improving work productivity, patient rehabilitation, education and enhanc-
ing cognitive skills, etc. Crowdsourcing, on the other hand, provides a possible
source of labelled (so called ground truth) data by leveraging humans’ cognitive
abilities and intelligence. Crowdsourcing is increasing in popularity and target
applications, e.g., missing person search, disaster management, astronomy, and
rehabilitation.

Table 1. Comparison of closest works. The meanings of the column headings are as
follows. Crowd: method leverages crowdsourcing; Game: offers a “game” mode; MIA:
designed for medical image analysis; 3D: handles 3D data; View: provides a view within
the 3D volume; Control: controls the viewing position and angle; Tree: supports extract-
ing branching tree-like structures; Skeleton: extracts centerline; Hierarchy: generates
abstract representation of tree hierarchy.

Work Crowd Game MIA 3D View Control Tree Skeleton Hierarchy

Donath et al. [9] �
Albarqouni et al. [3] � �
Maier-Hein et al. [19] � �
Chavez-Aragon et al. [6] � �
Maier et al. [18] � �
Luengo et al. [17] � � �
Albarqouni et al. [4] � � �
Hennersperger et al. [13] � � �
Sommer et al. [23] � � �
Poon et al. [21] � � �
Vickerman et al. [26] � � � �
Abeysinghe et al. [2] � � � �
Yu et al. [27] � � � � �
Marks et al. [20] � � � � �
Straka et al. [25] � � � �
Abdoulaev et al. [1] � � � �
Edmond et al. [10] � � � � �
Coburn et al. [7] � � � � � �
Heng et al. [12] � � � � � �
Diepenbrock et al. [8] � � � � � �
Proposed SwifTree � � � � � � � � �

Table 1 contrasts our proposed work with some of the most related literature.
Although there has been several works that deployed gamification and/or crowd-
sourcing for medical image analysis, to the best of our knowledge, this is the first
work to utilize gamification and crowdsourcing for vascular/airway tree extrac-
tion from 3D images. We argue that without the user confirming the segmenta-
tion everywhere along all branches of the tree, there is significant possibility of
erroneously segmented regions. Therefore, we set out to develop SwifTree, a tool
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that allows the user to quickly and intuitively traverse and extract the anatomical
tree in its entirety in a 3D volume, while supporting and leveraging gamification
and crowdsourcing. Briefly, using SwifTree, the operator steers their way down
along the bifurcating tree branches using intuitive controls. To address the mun-
dane and time-consuming nature of delineating many branches, SwifTree employ
gamification concepts. Finally, leveraging crowdsourcing, SwifTree allows multi-
ple users to cooperate and generate multiple results that are then aggregated to
produce the final extracted tree.

2 Method

Overview: After a 3D image is loaded into SwifTree, the image is processed
to extract image features for controlling the properties of glyphs placed in a
3D scene to provide helpful cues to the user. In order to provide the user with
multiple alternative views of the 3D scene, multiple virtual cameras at suitable
vantage points are used. Each user is provided with controls (e.g. keyboard
shortcuts) to facilitate navigating through the tree within the 3D image. In
the crowdsourcing setup, the users travel virtually through the tree branches
to construct trees in, both, a 3D spatial layout and in an abstract graph tree
representation (an example is shown in Fig. 1). The results are aggregated to
yield the final extracted tree and graph. The details follow.

Fig. 1. Illustration of the sequence of steps which SwifTree uses to extract a 3D tree.
Top: 3D spatial domain; bottom: corresponding abstract tree graph.

Image processing and glyph visualization: Figure 2 shows a schematic of
the components that comprise a SwifTree 3D scene. The user interrogates differ-
ent locations within the volume via a 3D polyhedral cursor. In a first attempt to
visualize the image data for the user, we found that surface rendering (via march-
ing cubes) and volume rendering (e.g. via ray casting) of the image data to over-
crowd the scene. Instead we used slices and glyphs as described next. A grayscale
oblique slice, cutting through the 3D volume, is rendered facing the user’s view-
ing direction so that the slice would depict the cross-section of a branch as a
single bright disk. As the user moves towards a bifurcation, the disk gradu-
ally splits into two, one for each child branch. We also render gradient glyphs
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based on the 3D image intensity gradient to highlight an estimate of the surface
boundary surrounding the tree branches. To highlight the voxels in the interior
to tree branches, we use tree-core glyphs calculated using the Frangi filter [11].
We experimented with different glyph densities (i.e. at every voxel or not), opac-
ity values, sizes and shapes, and found the following settings to provide useful
cues with minimal clutter: the size of each glyph was close to the size of a single
voxel; the glyphs were rendered only at voxels with a strong response (i.e. gradi-
ent magnitude and tubularness surpassed an empirically-set threshold); and the
opacity of a glyph was set proportional to the response magnitude. 3D glyphs
were used for the tree-core glyphs but, for the gradient glyphs, flat 2D poly-
gons with their normals pointing along the gradient direction were used in order
to visually capture the local edges. Additionally, two virtual cameras are added
to the scene: one camera provides a first-person local view whereas the other
displays a more global bird’s-eye view.

Fig. 2. Elements of SwifTree 3D scene (see text).

Navigation and movement: The aforementioned 3D cursor can be moved and
rotated interactively by the user (move-forward, rotate-left, etc.). Additionally,
once the user encounters a bifurcation (by observing the branch cross-section
splitting), they press a key to push the current state parameters (i.e. location
and camera viewpoints) into a bifurcation stack. After the user traverses one of
the child branches (and optionally the grandchild branches), they pop the state
parameters, to move the cursor and cameras back up the tree hierarchy to a
previously-identified bifurcation location, so that the other child branches can
be explored. Note that a trail of glyphs is left along the path explored by the
user in order to ensure that the user does not explore the same branch twice.

Interactive and game mode: In SwifTree’s game-mode, the cursor is an avatar
that possesses a velocity controlled by the player. The player navigates the 3D
volume by ‘flying’ through branches and identifying bifurcation locations using
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game-like controls (e.g., speed up, slow down, turn left). Also in game mode, the
tree-core glyphs are set to be collectibles, i.e., as the user’s cursor passes over
these glyphs, they are collected and hidden with an accompanying sound effect
and a score increment. The gradient glyphs, on the other hand, are avoidables
that reduce the score, since they represent branch boundaries that should not
be crossed. In SwifTree’s non-game interactive mode, the user’s cursor can be
seen as an inertia-less paintbrush manipulated by the user.

Crowdsourcing and aggregation: We recruit multiple users or players to
carry out a tree (or part of the tree) extraction session. The collected tree
branches for the same image across all sessions are first unioned together and
then a 3D spherical kernel is used to perform morphological closing. Then a
medial axis transform is applied to extract the tree skeleton and network analy-
sis is performed to create the abstract graph tree representation [14].

Implementation details: We used MATLAB (R2015b) to test several visu-
alization and interaction mechanisms. Then we ported SwifTree to: (i) the
cross-platform game engine Unity3D (unity3d.com) and (ii) an online cross-
browser version using JavaScript (v6.0) and the WebGL-based 3D graphics
library Three.js (r83) (threejs.org), with PHP and MySQL to automatically col-
lect the tree segmentation data generated by the users.

3 Results

Data: In-silico phantoms, physical phantom, and real images were used in our
experiments. Refer to Fig. 3 for details.

Fig. 3. Datasets: (a–c) In-silico phantoms: Y-Junc (60× 60× 60 voxels; 1 mm isotropic
voxel), Helix (50× 50× 100; 1 mm isotropic), and VascuSynth (101× 101× 101;
1 mm isotropic); (d) Physical phantom (168× 168× 159; 1 mm isotropic);
(e) Renal MRA (576× 448× 72; 0.625× 0.625× 1.4 mm3); (f) Brain CTA
(352× 448× 176; 0.5134× 0.5134× 0.8 mm3); (g) Airways in CT (512× 512× 587;
0.5859× 0.5859× 0.6 mm3).

Supplementary material: The reader is referred to a simplified web-based
version of SwifTree at http://swiftree-org.stackstaging.com and to the supple-
mentary video https://youtu.be/AReIFQc47H4.

Evaluation criteria: We adopt the following criteria as described by Lo
et al. [16]: branch count (BC); branches detected (BD); tree length (TL); tree
length detected (TLD); leakage count (LC); and false positive rate (FPR).

http://unity3d.com
http://threejs.org
http://swiftree-org.stackstaging.com
https://youtu.be/AReIFQc47H4
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Table 2. Accuracy of tree extraction by ITK-Snap, Gorgon and SwifTree. Highest
accuracy in bold.

Data Y-Junc Helix VascuSynth Phantom Kidney Brain Airway
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BC 3 1 3 3 1 3 58 27 87 47 28 52 13 5 21 30 † 82 57 † 151

BD(%) 100 33 100 100 33 100 52 24 79 72 43 80 56 21 91 24 † 65 19 † 51

TL(cm) 4 1 5 15 1 22 75 40 99 90 56 84 40 19 47 34 † 64 28 † 91

TLD(%) 86 5 90 51 1 75 53 28 70 77 48 72 55 27 66 30 † 56 17 † 55

LC 1 2 1 35 1 5 273 85 152 45 98 27 57 9 1 82 † 144 81 † 284

FPR(%) 2 85 1 37 97 1 59 72 14 9 43 4 42 79 5 19 † 12 11 † 19

†: software froze and could not handle the complex tree.

Fig. 4. Benefits of crowdsourcing. Top: The temporal progress of each of 10 ses-
sions running SwifTree on the Brain dataset. As time advances and more sessions
are included, the aggregated tree becomes more accurate and complete. Bottom: Plots
of TLD vs time, for all data sets. Each solid colored curve corresponds to one tree
extraction session. The black dashed curve, with better tree detection (i.e. higher than
other curves), corresponds to the aggregated tree from all 10 sessions.

Tree extraction accuracy: Table 2 compares SwifTree to the ITK-
Snap (itksnap.org) and Gorgon (gorgon.wustl.edu) tools. In ITK-Snap the user
had to visit different slices to annotate pixels as tree branches, whereas in
Gorgon, the user selected the end points of branches. We see that SwifTree
gives the highest BD accuracy for all datasets, the highest TLD for all datasets
except Phantom, and the lowest FPR for all datasets except Airway.

http://itksnap.org
https://gorgon.wustl.edu
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Fig. 5. Benefit of gamification. Results on 3 dataset: Y-Junc (top row); VascuSynth
(middle); and Airway (bottom). Left: TLD vs time for game-mode (green) and inter-
active (non-game) mode (red). Right: Progress of tree extraction shown at 4 instants.
Game-mode sessions extract more branches quicker than non-game mode. (Color figure
online)

Fig. 6. Robustness to noise. Left: Comparison of Frangi filter, ImageJ Skeletonize3D
and SwifTree in terms of robustness to noise. BD, TLD, and FPR are reported for the 3
methods across 3 datasets: Y-Junc (top), VascuSynth (middle) and Kidney (bottom).
Right: Sample slices from each dataset at selected noise levels for illustration.

Benefit of crowdsourcing: We collected the results from 10 tree extraction
sessions for each dataset using SwifTree (i.e., 70 sessions). The results are aggre-
gated to obtain a single tree per dataset. As can be seen in Fig. 5, the tree
aggregated from all participating sessions gives a more complete tree than any
of the trees from the individual sessions. Also, the aggregated tree has the
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highest tree length detected with the highest initial slope (i.e. fastest increase).
A small dip can be seen in the TLD of the aggregated tree due to false positive
branches from some sessions.

Benefit of gamification: Figure 4 shows that enabling SwifTree game-mode
features (i.e. velocity, sound effects, score, collectibles, and avoidables) reduces
the time needed to reconstruct a pre-set tree compared to the non-game mode.

Robustness to noise: In Fig. 6, we compare SwifTree’s results to those obtained
by Frangi filter and ImageJ Skeletonize3D plug-in under different levels of
Gaussian noise. We see that Frangi filter and Skeletonize3D report high detection
rates of branches and trees (top and middle rows). However, they suffer from
a high number of false positives (bottom row). SwifTree’s false positive rate is
much lower.

4 Conclusion

We proposed SwifTree, a novel tool for extracting tree-like structures from 3D
images. We showed that by leveraging gamification and crowdsourcing, SwifTree
can achieve more accurate results faster and is more robust to noise than tradi-
tional segmentation tools. The next phase of our work involves releasing SwifTree
publicly as a “Human Intelligence Task” (HIT) on the established crowdsourcing
platform Amazon Mechanical Turk, then analyzing the results collected from a
large scale study involving hundreds of workers or “Turkers”. There are several
directions to explore that can improve the performance of the tool, such as more
elaborate game design (e.g. improved visualization, sound, scoring system, and
game-levels); an aggregation approach that gives higher weights to more expert
users; detecting branch thickness; as well as performing large-scale user studies.
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