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Abstract. In this work we propose a technique to automatically esti-
mate circular cross-sections of the vessels in CT scans. First, a circular
contour is extracted for each slice of the CT by using the Hough trans-
form. Afterward, the locations of the circles are optimized by means of
a parametric snake model, and those circles which best fit the contours
of the vessels are selected by applying a robust quality criterion. Finally,
this collection of circles is used to estimate the local probability density
functions of the image intensity inside and outside the vessels. We present
a large variety of experiments on CT scans which show the reliability of
the proposed method.
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1 Introduction

Most of the techniques for the segmentation of vessels require seed points inside
the vessels and an analysis of the intensity histogram to separate the vessels
from the surrounding tissues. For instance, in [1], the authors use an initial
circle inside the aortic lumen and two intensity thresholds for CT images in
order to track the geometry of the aortic lumen by using an elliptical model of
its cross-sections. In [4], the authors propose a region growing-based strategy for
vessel segmentation which starts by manually placing one or more seed points
in the vessel(s) of interest. From these seed points, more neighboring voxels
are included in the segmentation using some image intensity thresholds. In [7], a
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review of 3D techniques for the segmentation of the vessel lumen is presented. In
particular, some of the techniques which are studied use probability distribution
models of the aorta and the surrounding tissues.

The usual way to automatically compute a seed point inside the vessels con-
sists in using the Hough transform to search for circular vessel contours. In [2],
the authors propose the Hough transform to automatically locate a circle in the
descending aorta in MR images. In [8], the authors propose to use the most cau-
dal image slice to locate the position of the aorta using the Hough transform.
In [9], the authors propose to use the Hough transform to detect the ascending
aorta using the prior knowledge about the expected range for the diameter of
the ascending aorta (from 22 mm to 34 mm).

In this paper we propose to combine the Hough transform with the following
parametric snake model proposed in [6] to estimate accurately circle locations:
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1
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where C(θ) = (cx +R · cos(θ), cy +R · sin(θ)), Iσ is the original image convolved
with a Gaussian kernel, α−, α+ ≥ 0, A−, A+ are annulus in both sides of the
circle contour, and I−, I+ are the average of Iσ in A−, A+. The local minima of
this energy correspond to circles which fit high image contrast areas. We point
out that, using the Hough transform, the locations of the circle centers and their
radii are usually given in integer (or low) precision. Using the circles provided by
the Hough transform as initialization, the application of the parametric snake
model improves the accuracy of the circle locations and provides a measure
of the quality of the circles. The lower the value of E(R, c̄), the higher the
quality of the circle. In fact, in this paper we combine several circle quality
estimators to select the “best” circle along the image slices in a robust way.
By measuring the similarity with the “best” circle, we select a collection of
circles which correspond to vessel contours. This collection of circles is used
to estimate, in a local way, the probability density functions of the intensity
inside and outside the vessels by using a kernel density estimation. We point out
that these probability distributions are very useful pieces of information for the
automatic segmentation of the vessels.
The main contributions of this paper are:

– A new method for the automatic and robust computation of a collection of
circular cross-sections of the vessels based on the combination of the Hough
transform, a snake parametric model and a new quality criterion for the
circle selection. The centers of such circles can be used as seed points for the
automatic segmentation of vessels.

– A new technique for the kernel density estimation of the local probability
density functions inside and outside the vessels based on the sampling of the
image intensity values inside the collection of circles and in a neighborhood
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of those circles. We point out that, as the collection of circles is distributed
along the slices of the 3D image, by considering a neighborhood around each
circle, we obtain a reliable sample of the intensities in a neighborhood of the
whole vessel.

The rest of the paper is organized as follows: In Sect. 2, we present the proposed
method to compute a collection of circles on the vessel contours. In Sect. 3, we
study how to estimate the probability density distributions of the image intensity
values inside and outside the vessels. In Sect. 4, we present some experiments and,
in Sect. 5, we present the main conclusions.

2 Detection of Circles in the Vessel Contours

Let I be a 3D image consisting of N slices. That is, I = {Iz}z=1,..,N . For each
slice Iz, using the circle Hough transform, we compute the most voted circle,
Cz, with center (cz

x, cz
y) and radius Rz for a range of circle radii in the interval

[Rmin, Rmax] (in the experiments presented in this paper we use Rmin = 5mm,
Rmax = 15mm). The locations of such circles are then optimized to fit the vessel
contour by minimizing the energy criterion proposed in [6] (equation (6)) using
a parametric snake model. From the collection of circles {Cz}, we select, in a
robust way, the “best”one by combining several quality criteria. The main goal
is that the contour of the selected circle belongs to the vessel contour with a
high probability. The quality criteria we use are:

1. The voting score V z, provided by the Hough transform. The higher the value
of V z, the better.

2. The circle energy Ez, provided by the method proposed in [6], which measures
how well the circle fits an image contour. The lower the value of Ez, the better.

3. The standard deviation σz of the image intensity values Iz inside the circle.
We assume that the variation of the image intensity inside the vessel is low,
so that the lower the value of σz, the better.

4. In general, the location of the circles Cz across the sequence is expected to be
stable in the slices of the CT scan where the vessel contours have a circular
shape. Therefore, we use the distance Dz between the circle centers (cz

x, cz
y)

and (cz+1
x , cz+1

y ) as quality measure. Since this estimation is very local, we
convolve {Dz} with a Gaussian kernel to obtain a more reliable estimation.
The lower the value of Dz, the better.

Next, we combine the above quality measures in the following way to obtain a
robust and reliable circle quality criterion Qz:

Qz =
V z

median{V z} − Ez

median{Ez} − σz

median{σz} − Dz

median{Dz} . (2)

The higher the value of Qz, the better the circle. Then we select the “best”
reference circle Czopt as the one which maximizes Qz. We observe that we can
include different weights as parameters in the combination of the quality criteria
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in the definition of Qz. However, to simplify the exposition, in this paper we use
the fixed combination given by the above equation.

Once the reference circle Czopt has been obtained, we use it to select, by sim-
ilarity, a collection of circles {Czi} ⊂ {Cz} which belong to the vessel contours.
We assume that Czi lies entirely inside the vessel if Qzi is big enough and the
mean and standard deviation of the image intensity values inside Czi , μzi and
σzi respectively, are similar to those for Czopt . That is,

{Czi} = {Cz : Qz > pQ and
|μz − μzopt |

μzopt
< pμ and

|σz − σzopt |
median{σz} < pσ}, (3)

where pQ, pμ, pσ > 0 are parameters of the algorithm. We point out that, with
the proposed approach, we avoid the detection of circles on non-vascular struc-
tures, as shown in the experimental results. Indeed, there exist other organs,
like the trachea or the backbone, where the CT cross-sections may have a cir-
cular shape. However, with our approach, the circles in the trachea are not
selected because they correspond to dark circles surrounded by a brighter back-
ground (and the proposed method looks for the opposite, that is, bright circles
in a darker background). In the backbone, the standard deviation of the image
intensity inside the circle is much higher than in the vessels, so that our quality
criterion penalizes such circles with respect to the circles in the vessels.

3 Application to the Local Analysis of the Histogram
Around the Vessels

Let {Czi} be the collection of circles in the vessel contours estimated using the
proposed method. Given λ > 0, we define Czi

λ as the circle with the same center
as Czi and area equal to λ ·AREA(Czi). Based on the collection of circles {Czi

λ },
we define the sample Sλ, of the image intensity values as

Sλ = {Izi(x) : x ∈ Czi

λ } . (4)

We use a kernel density estimation (KDE) to approximate the probability
density function of the sample Sλ. That is, the kernel density estimator is

f̂λ
h (s) =

1
|Sλ|h

∑

sk∈Sλ

K

(
s − sk

h

)
, (5)

where K(·) is the kernel (in this paper we use the normal distribution N(0, 1)
as K(·)) and h is the bandwidth (in the experiments we fix the value of h to 5).

We point out that f̂1
h(s) is an approximation of the probability density inside

the vessels and f̂2
h(s) is an approximation of the probability density in a local

neighborhood of the vessels. Next, from f̂1
h(s) and f̂2

h(s), we estimate the prob-
ability density of the image intensity values in S2 outside the vessels, ĝ1,2

h (s).
First we observe that

f̂2
h(s) = af̂1

h(s) + (1 − a)ĝ1,2
h (s), (6)
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where a > 0, is the proportion of points in S2 which are inside the vessels. To
estimate a, we assume that, locally, there are no points outside the vessels with
an intensity value close to the median of the intensity values inside the vessels.
That is, we assume that ĝ1,2

h (s) ≈ 0 for s ∈ [p1, p2], where p1, p2 are percentile
values of f̂1

h(s) around its median (in the experiments shown in this paper, we
use p1 as the 40th percentile value and p2 as the 60th percentile value). Then,
we estimate a as

a = median

{
f̂2

h(s)

f̂1
h(s)

}

s∈[p1,p2]

. (7)

Once a is estimated, we approximate ĝ1,2
h (s) as

ĝ1,2
h (s) =

1
M

max

{
f̂2

h(s) − af̂1
h(s)

1 − a
, 0

}
, (8)

where M > 0 is fitted in such a way that ĝ1,2
h (s) integrates to one.

4 Experimental Results

First, we study the ability of criterion (2) to obtain robust and reliable circles
in the contours of the vessels. To obtain the initial circle in each slice, we use a
gradient-based Hough transform which takes into account that, in a CT scan,
the intensity values are usually brighter inside the vessels than in the surround-
ing tissues. For comparison purposes, we also use a standard implementation of
the Hough transform. In our dataset, we use 10 high-quality contrast-enhanced
MDCT scans provided by the University Hospital Complex of Santiago de Com-
postela (CHUS) and 332 contrast-enhanced scans from the database LIDC-IDRI
(see [3,5]). This database has been designed for lung cancer screening and the
images are, in general, of poor quality for our purpose.

In Table 1, we show the region where the reference circle is located when
we use the standard Hough circle transform maximizing the voting score, and
when we apply the proposed method maximizing the circle quality score Qz.

Table 1. Location of the reference circle obtained by maximizing the voting score using
the standard Hough circle transform, and by using the proposed method maximizing
the circle quality score Qz for the image databases we use.

aorta innominate
trunk

backbone trachea other

Standard Hough (CHUS database) 9 0 1 0 0

Proposed method (CHUS database) 10 0 0 0 0

Standard Hough (LIDC database) 238 1 44 32 17

Proposed method (LIDC database) 324 8 0 0 0
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Fig. 1. Circle obtained by maximizing Qz along the image slices for 8 images of the
LIDC-IDRI database.

Fig. 2. Examples of images of the LIDC-IDRI database where the circle which maxi-
mizes the standard Hough transform is located in the backbone.

We point out that, in the backbone and in the trachea, the image contours may
have a circular shape and the standard Hough transform could therefore provide
the reference circle in these areas. In a CT scan, the image intensity inside the
trachea is darker than outside it, so that the proposed method never selects
the trachea contour as circle because we assume that the intensity is brighter
inside the circle than outside it in the gradient-based Hough implementation. On
the other hand, in the quality criterion Qz, we consider the standard deviation
of the image intensity and the stability of the position of the circle across the
sequence. In general, these estimators are lower inside the vessel than in the
backbone, which reduces the probability of attaining the minimum of Qz in the
backbone. In Fig. 1, we show the circle obtained by maximizing Qz along the
image slices for 8 CT scans of LIDC-IDRI database. In Fig. 2, we show 4 images of
the LIDC-IDRI database where the circle which maximizes the standard Hough
transform is located in the backbone. In Fig. 3, we show 4 images of the LIDC-
IDRI database where the circle which maximizes the standard Hough transform
is located in the trachea. Another limitation of the standard Hough transform is
that, in some cases, the circle which maximizes the voting score cannot properly
fit the vessel contours. This is illustrated in Fig. 4. This lack of accuracy is solved
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Fig. 3. Examples of images of the LIDC-IDRI database where the circle which maxi-
mizes the standard Hough transform is located in the trachea.

Fig. 4. Examples of images of the LIDC-IDRI database where the circle which maxi-
mizes the standard Hough transform does not properly fit the vessel contours.

in the proposed method in 2 ways. On the one hand, we consider the standard
deviation of the image intensity inside the circle and, on the other hand, we
improve the circle location using the parametric snake model introduced in [6].
In Fig. 5, for one tomography of CHUS database, we show 8 out of 234 circles
selected by similarity with the reference one using criterion (3). All 234 circles
are inside the vessels, most of them in the aorta. The first selected circle is in
the innominate trunk and the last one is in the iliac artery. We point out that
we consider that our method works properly if all selected circles are inside the
vessels.

Fig. 5. Examples of some of the 234 circles selected by similarity with the reference
one using criterion (3) for one image of the CHUS database.
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In Fig. 6, we show, for 4 images of the CHUS database, the KDE of the
probability distribution of the image intensity inside the vessels (f̂1

h(s)), in a
neighborhood of the vessels (f̂2

h(s)), and outside the vessels (ĝ1,2
h ), computed

using the proposed approach. We observe that the value of a is close to 0.5. This
is due to the fact that the size of the sample S2 in the vessel neighborhood is
the double of the area of the sample S1 inside the vessels.
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Fig. 6. KDE of the probability distribution of the image intensity inside the vessels,
f̂1

h(s), in a neighborhood of the vessels, f̂2
h(s), and outside the vessels, ĝ1,2

h (s), computed
using the proposed approach for 4 images of the CHUS database. For each case, we
also show the estimated proportion of vessel points, a, using (7).

5 Conclusions

In this paper we propose a new method for the automatic and robust compu-
tation of a collection of circles in the vessel contours and a quality criterion for
the circle selection. From this information, we compute the KDE of the local
probability density function inside and outside the vessels, which can be very
useful in vessel segmentation techniques. Moreover, the centers of the selected
circles can be used as seed points inside the vessels. As shown in the experi-
mental results, the Hough transform voting score alone is not a reliable criterion
for circle selection. The circle quality criterion proposed in this paper provides
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a much more robust estimation and the results in a large variety of CT scans
are very promising. The shapes of the KDE estimations, shown in Fig. 6, suggest
that the usual normal distribution model to approximate the probability distri-
bution inside the vessels is not very accurate. This is likely due to the fact that
the image intensity values are lowered near the boundary of the vessels because
of the influence of the surrounding tissues.

Acknowledgement. This research has partially been supported by the MINECO
projects references TIN2016-76373-P (AEI/FEDER, UE) and MTM2016-75339-P
(AEI/FEDER, UE) (Ministerio de Economı́a y Competitividad, Spain). The authors
acknowledge the National Cancer Institute and the Foundation for the National Insti-
tutes of Health, and their critical role in the creation of the free publicly available
LIDC/IDRI Database used in this study.

References

1. Alvarez, L., Trujillo, A., Cuenca, C., González, E., Esclaŕın, J., Gomez, L., Mazorra,
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