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Preface CVII-STENT 2017

MICCAI 2017 is again hosting the Joint MICCAI-Workshops on Computing and
Visualization for Intravascular Imaging and Computer Assisted Stenting (MICCAI
CVII-STENT), focusing on the technological and scientific research surrounding
endovascular procedures. This series of workshops has become an important annual
platform for the interchange of knowledge and ideas for medical experts and techno-
logical researchers in the field.

This year, we have much to celebrate with the launch earlier this year of the
CVII-STENT book, published by Elsevier. Many of the authors have been involved
with the workshop since its infancy and continue to be part of this research community.

We look forward to this year’s invited talks and presentations on the state of the art
in imaging, treatment, and computer-assisted interventions in the field of endovascular
interventions. We also extend our thanks to the reviewers, who have helped ensure the
high quality of the papers presented at CVII-STENT.

September 2017 Su-Lin Lee
Simone Balocco
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Stefanie Demirci

Luc Duong
Shadi Albarqouni
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Preface LABELS 2017

The second international workshop on Large-scale Annotation of Biomedical data and
Expert Label Synthesis (LABELS) was held in Quebec City on September 14th, 2017,
in conjunction with the 20th International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI).

Supervised learning techniques have been of increasing interest to the MICCAI
community. However, the effectiveness of such approaches often depends on their
access to sufficiently large quantities of labeled data. Despite the increasing amount of
clinical data, the availability of ready-to-use annotations is still limited. To address
these issues, LABELS gathers contributions and approaches focused on either adapting
supervised learning methods to learn from external types of labels (e.g., multiple
instance learning, transfer learning) and/or acquiring more, or more informative,
annotations, and thus reducing annotation costs (e.g., active learning, crowdsourcing).

Following the success of LABELS 2016, a decision was made to organize the
second workshop in 2017. The workshop included three invited talks by Danna Gurari
(University of Texas at Austin), Emanuele Trucco (University of Dundee), and Tanveer
Syeda-Mahmood (IBM), as well as several contributed papers and abstracts. After peer
review, a total of 11 papers and 4 abstracts were selected. The papers appear in this
volume, and the abstracts are available for viewing on our website, http://www.
labels2017.org. The variety of approaches for dealing with few labels, from transfer
learning to crowdsourcing, are well-represented within the workshop. Unlike many
workshops, the contributions also feature “insightfully unsuccessful” results, which
illustrate the difficulty of collecting annotations in the real world.

We would like to thank all the speakers and authors for joining our workshop, the
Program Committee for their excellent work with the peer reviews, our sponsor -
understand. AI - for their support, and our advisory committee and the workshop chairs
for their help with the organization of the second LABELS workshop.

September 2017 Veronika Cheplygina
Diana Mateus

Lena Maier-Hein
Eric Granger

Marc-André Carbonneau
Gustavo Carneiro

http://www.labels2017.org
http://www.labels2017.org
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Robust Detection of Circles in the Vessel
Contours and Application to Local Probability

Density Estimation

Luis Alvarez1(B), Esther González1, Julio Esclaŕın1, Luis Gomez2,
Miguel Alemán-Flores1, Agust́ın Trujillo1, Carmelo Cuenca1, Luis Mazorra1,

Pablo G. Tahoces3, and José M. Carreira4

1 CTIM, Departamento de Informática y Sistemas, Universidad de Las Palmas de
Gran Canaria, Las Palmas, Spain

{lalvarez,esther.gonzalez,julio.esclarin,miguel.aleman,
agustin.trujillo,carmelo.cuenca,lmazorra,luis.gomez}@ulpgc.es

2 CTIM, Dpto. de Ingenieŕıa Electrónica y Automática, Universidad de Las Palmas
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{pablo.tahoces,josemartin.carreira}@usc.es

4 Complejo Hospitalario Universitario de Santiago (CHUS), A Coruñna, Spain

Abstract. In this work we propose a technique to automatically esti-
mate circular cross-sections of the vessels in CT scans. First, a circular
contour is extracted for each slice of the CT by using the Hough trans-
form. Afterward, the locations of the circles are optimized by means of
a parametric snake model, and those circles which best fit the contours
of the vessels are selected by applying a robust quality criterion. Finally,
this collection of circles is used to estimate the local probability density
functions of the image intensity inside and outside the vessels. We present
a large variety of experiments on CT scans which show the reliability of
the proposed method.

Keywords: Vessels · Circle Hough transform · Seed point · Histogram
analysis · CT images

1 Introduction

Most of the techniques for the segmentation of vessels require seed points inside
the vessels and an analysis of the intensity histogram to separate the vessels
from the surrounding tissues. For instance, in [1], the authors use an initial
circle inside the aortic lumen and two intensity thresholds for CT images in
order to track the geometry of the aortic lumen by using an elliptical model of
its cross-sections. In [4], the authors propose a region growing-based strategy for
vessel segmentation which starts by manually placing one or more seed points
in the vessel(s) of interest. From these seed points, more neighboring voxels
are included in the segmentation using some image intensity thresholds. In [7], a
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): CVII-STENT/LABELS 2017, LNCS 10552, pp. 3–11, 2017.
DOI: 10.1007/978-3-319-67534-3 1



4 L. Alvarez et al.

review of 3D techniques for the segmentation of the vessel lumen is presented. In
particular, some of the techniques which are studied use probability distribution
models of the aorta and the surrounding tissues.

The usual way to automatically compute a seed point inside the vessels con-
sists in using the Hough transform to search for circular vessel contours. In [2],
the authors propose the Hough transform to automatically locate a circle in the
descending aorta in MR images. In [8], the authors propose to use the most cau-
dal image slice to locate the position of the aorta using the Hough transform.
In [9], the authors propose to use the Hough transform to detect the ascending
aorta using the prior knowledge about the expected range for the diameter of
the ascending aorta (from 22 mm to 34 mm).

In this paper we propose to combine the Hough transform with the following
parametric snake model proposed in [6] to estimate accurately circle locations:

E(R, c̄) =
1

2π

∫ 2π

0
∇Iσ(C(θ)) · n̄(θ)dθ (1)

+ α−

(∫∫
A− (Iσ(C(θ)) − I−)2rdrdθ

|A−|

) 1
2

+ α+

(∫∫
A+

(Iσ(C(θ)) − I+)2rdrdθ

|A+|

) 1
2

where C(θ) = (cx +R · cos(θ), cy +R · sin(θ)), Iσ is the original image convolved
with a Gaussian kernel, α−, α+ ≥ 0, A−, A+ are annulus in both sides of the
circle contour, and I−, I+ are the average of Iσ in A−, A+. The local minima of
this energy correspond to circles which fit high image contrast areas. We point
out that, using the Hough transform, the locations of the circle centers and their
radii are usually given in integer (or low) precision. Using the circles provided by
the Hough transform as initialization, the application of the parametric snake
model improves the accuracy of the circle locations and provides a measure
of the quality of the circles. The lower the value of E(R, c̄), the higher the
quality of the circle. In fact, in this paper we combine several circle quality
estimators to select the “best” circle along the image slices in a robust way.
By measuring the similarity with the “best” circle, we select a collection of
circles which correspond to vessel contours. This collection of circles is used
to estimate, in a local way, the probability density functions of the intensity
inside and outside the vessels by using a kernel density estimation. We point out
that these probability distributions are very useful pieces of information for the
automatic segmentation of the vessels.
The main contributions of this paper are:

– A new method for the automatic and robust computation of a collection of
circular cross-sections of the vessels based on the combination of the Hough
transform, a snake parametric model and a new quality criterion for the
circle selection. The centers of such circles can be used as seed points for the
automatic segmentation of vessels.

– A new technique for the kernel density estimation of the local probability
density functions inside and outside the vessels based on the sampling of the
image intensity values inside the collection of circles and in a neighborhood
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of those circles. We point out that, as the collection of circles is distributed
along the slices of the 3D image, by considering a neighborhood around each
circle, we obtain a reliable sample of the intensities in a neighborhood of the
whole vessel.

The rest of the paper is organized as follows: In Sect. 2, we present the proposed
method to compute a collection of circles on the vessel contours. In Sect. 3, we
study how to estimate the probability density distributions of the image intensity
values inside and outside the vessels. In Sect. 4, we present some experiments and,
in Sect. 5, we present the main conclusions.

2 Detection of Circles in the Vessel Contours

Let I be a 3D image consisting of N slices. That is, I = {Iz}z=1,..,N . For each
slice Iz, using the circle Hough transform, we compute the most voted circle,
Cz, with center (cz

x, cz
y) and radius Rz for a range of circle radii in the interval

[Rmin, Rmax] (in the experiments presented in this paper we use Rmin = 5mm,
Rmax = 15mm). The locations of such circles are then optimized to fit the vessel
contour by minimizing the energy criterion proposed in [6] (equation (6)) using
a parametric snake model. From the collection of circles {Cz}, we select, in a
robust way, the “best”one by combining several quality criteria. The main goal
is that the contour of the selected circle belongs to the vessel contour with a
high probability. The quality criteria we use are:

1. The voting score V z, provided by the Hough transform. The higher the value
of V z, the better.

2. The circle energy Ez, provided by the method proposed in [6], which measures
how well the circle fits an image contour. The lower the value of Ez, the better.

3. The standard deviation σz of the image intensity values Iz inside the circle.
We assume that the variation of the image intensity inside the vessel is low,
so that the lower the value of σz, the better.

4. In general, the location of the circles Cz across the sequence is expected to be
stable in the slices of the CT scan where the vessel contours have a circular
shape. Therefore, we use the distance Dz between the circle centers (cz

x, cz
y)

and (cz+1
x , cz+1

y ) as quality measure. Since this estimation is very local, we
convolve {Dz} with a Gaussian kernel to obtain a more reliable estimation.
The lower the value of Dz, the better.

Next, we combine the above quality measures in the following way to obtain a
robust and reliable circle quality criterion Qz:

Qz =
V z

median{V z} − Ez

median{Ez} − σz

median{σz} − Dz

median{Dz} . (2)

The higher the value of Qz, the better the circle. Then we select the “best”
reference circle Czopt as the one which maximizes Qz. We observe that we can
include different weights as parameters in the combination of the quality criteria
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in the definition of Qz. However, to simplify the exposition, in this paper we use
the fixed combination given by the above equation.

Once the reference circle Czopt has been obtained, we use it to select, by sim-
ilarity, a collection of circles {Czi} ⊂ {Cz} which belong to the vessel contours.
We assume that Czi lies entirely inside the vessel if Qzi is big enough and the
mean and standard deviation of the image intensity values inside Czi , μzi and
σzi respectively, are similar to those for Czopt . That is,

{Czi} = {Cz : Qz > pQ and
|μz − μzopt |

μzopt
< pμ and

|σz − σzopt |
median{σz} < pσ}, (3)

where pQ, pμ, pσ > 0 are parameters of the algorithm. We point out that, with
the proposed approach, we avoid the detection of circles on non-vascular struc-
tures, as shown in the experimental results. Indeed, there exist other organs,
like the trachea or the backbone, where the CT cross-sections may have a cir-
cular shape. However, with our approach, the circles in the trachea are not
selected because they correspond to dark circles surrounded by a brighter back-
ground (and the proposed method looks for the opposite, that is, bright circles
in a darker background). In the backbone, the standard deviation of the image
intensity inside the circle is much higher than in the vessels, so that our quality
criterion penalizes such circles with respect to the circles in the vessels.

3 Application to the Local Analysis of the Histogram
Around the Vessels

Let {Czi} be the collection of circles in the vessel contours estimated using the
proposed method. Given λ > 0, we define Czi

λ as the circle with the same center
as Czi and area equal to λ ·AREA(Czi). Based on the collection of circles {Czi

λ },
we define the sample Sλ, of the image intensity values as

Sλ = {Izi(x) : x ∈ Czi

λ } . (4)

We use a kernel density estimation (KDE) to approximate the probability
density function of the sample Sλ. That is, the kernel density estimator is

f̂λ
h (s) =

1
|Sλ|h

∑

sk∈Sλ

K

(
s − sk

h

)
, (5)

where K(·) is the kernel (in this paper we use the normal distribution N(0, 1)
as K(·)) and h is the bandwidth (in the experiments we fix the value of h to 5).

We point out that f̂1
h(s) is an approximation of the probability density inside

the vessels and f̂2
h(s) is an approximation of the probability density in a local

neighborhood of the vessels. Next, from f̂1
h(s) and f̂2

h(s), we estimate the prob-
ability density of the image intensity values in S2 outside the vessels, ĝ1,2

h (s).
First we observe that

f̂2
h(s) = af̂1

h(s) + (1 − a)ĝ1,2
h (s), (6)
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where a > 0, is the proportion of points in S2 which are inside the vessels. To
estimate a, we assume that, locally, there are no points outside the vessels with
an intensity value close to the median of the intensity values inside the vessels.
That is, we assume that ĝ1,2

h (s) ≈ 0 for s ∈ [p1, p2], where p1, p2 are percentile
values of f̂1

h(s) around its median (in the experiments shown in this paper, we
use p1 as the 40th percentile value and p2 as the 60th percentile value). Then,
we estimate a as

a = median

{
f̂2

h(s)

f̂1
h(s)

}

s∈[p1,p2]

. (7)

Once a is estimated, we approximate ĝ1,2
h (s) as

ĝ1,2
h (s) =

1
M

max

{
f̂2

h(s) − af̂1
h(s)

1 − a
, 0

}
, (8)

where M > 0 is fitted in such a way that ĝ1,2
h (s) integrates to one.

4 Experimental Results

First, we study the ability of criterion (2) to obtain robust and reliable circles
in the contours of the vessels. To obtain the initial circle in each slice, we use a
gradient-based Hough transform which takes into account that, in a CT scan,
the intensity values are usually brighter inside the vessels than in the surround-
ing tissues. For comparison purposes, we also use a standard implementation of
the Hough transform. In our dataset, we use 10 high-quality contrast-enhanced
MDCT scans provided by the University Hospital Complex of Santiago de Com-
postela (CHUS) and 332 contrast-enhanced scans from the database LIDC-IDRI
(see [3,5]). This database has been designed for lung cancer screening and the
images are, in general, of poor quality for our purpose.

In Table 1, we show the region where the reference circle is located when
we use the standard Hough circle transform maximizing the voting score, and
when we apply the proposed method maximizing the circle quality score Qz.

Table 1. Location of the reference circle obtained by maximizing the voting score using
the standard Hough circle transform, and by using the proposed method maximizing
the circle quality score Qz for the image databases we use.

aorta innominate
trunk

backbone trachea other

Standard Hough (CHUS database) 9 0 1 0 0

Proposed method (CHUS database) 10 0 0 0 0

Standard Hough (LIDC database) 238 1 44 32 17

Proposed method (LIDC database) 324 8 0 0 0
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Fig. 1. Circle obtained by maximizing Qz along the image slices for 8 images of the
LIDC-IDRI database.

Fig. 2. Examples of images of the LIDC-IDRI database where the circle which maxi-
mizes the standard Hough transform is located in the backbone.

We point out that, in the backbone and in the trachea, the image contours may
have a circular shape and the standard Hough transform could therefore provide
the reference circle in these areas. In a CT scan, the image intensity inside the
trachea is darker than outside it, so that the proposed method never selects
the trachea contour as circle because we assume that the intensity is brighter
inside the circle than outside it in the gradient-based Hough implementation. On
the other hand, in the quality criterion Qz, we consider the standard deviation
of the image intensity and the stability of the position of the circle across the
sequence. In general, these estimators are lower inside the vessel than in the
backbone, which reduces the probability of attaining the minimum of Qz in the
backbone. In Fig. 1, we show the circle obtained by maximizing Qz along the
image slices for 8 CT scans of LIDC-IDRI database. In Fig. 2, we show 4 images of
the LIDC-IDRI database where the circle which maximizes the standard Hough
transform is located in the backbone. In Fig. 3, we show 4 images of the LIDC-
IDRI database where the circle which maximizes the standard Hough transform
is located in the trachea. Another limitation of the standard Hough transform is
that, in some cases, the circle which maximizes the voting score cannot properly
fit the vessel contours. This is illustrated in Fig. 4. This lack of accuracy is solved
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Fig. 3. Examples of images of the LIDC-IDRI database where the circle which maxi-
mizes the standard Hough transform is located in the trachea.

Fig. 4. Examples of images of the LIDC-IDRI database where the circle which maxi-
mizes the standard Hough transform does not properly fit the vessel contours.

in the proposed method in 2 ways. On the one hand, we consider the standard
deviation of the image intensity inside the circle and, on the other hand, we
improve the circle location using the parametric snake model introduced in [6].
In Fig. 5, for one tomography of CHUS database, we show 8 out of 234 circles
selected by similarity with the reference one using criterion (3). All 234 circles
are inside the vessels, most of them in the aorta. The first selected circle is in
the innominate trunk and the last one is in the iliac artery. We point out that
we consider that our method works properly if all selected circles are inside the
vessels.

Fig. 5. Examples of some of the 234 circles selected by similarity with the reference
one using criterion (3) for one image of the CHUS database.
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In Fig. 6, we show, for 4 images of the CHUS database, the KDE of the
probability distribution of the image intensity inside the vessels (f̂1

h(s)), in a
neighborhood of the vessels (f̂2

h(s)), and outside the vessels (ĝ1,2
h ), computed

using the proposed approach. We observe that the value of a is close to 0.5. This
is due to the fact that the size of the sample S2 in the vessel neighborhood is
the double of the area of the sample S1 inside the vessels.
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Fig. 6. KDE of the probability distribution of the image intensity inside the vessels,
f̂1

h(s), in a neighborhood of the vessels, f̂2
h(s), and outside the vessels, ĝ1,2

h (s), computed
using the proposed approach for 4 images of the CHUS database. For each case, we
also show the estimated proportion of vessel points, a, using (7).

5 Conclusions

In this paper we propose a new method for the automatic and robust compu-
tation of a collection of circles in the vessel contours and a quality criterion for
the circle selection. From this information, we compute the KDE of the local
probability density function inside and outside the vessels, which can be very
useful in vessel segmentation techniques. Moreover, the centers of the selected
circles can be used as seed points inside the vessels. As shown in the experi-
mental results, the Hough transform voting score alone is not a reliable criterion
for circle selection. The circle quality criterion proposed in this paper provides
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a much more robust estimation and the results in a large variety of CT scans
are very promising. The shapes of the KDE estimations, shown in Fig. 6, suggest
that the usual normal distribution model to approximate the probability distri-
bution inside the vessels is not very accurate. This is likely due to the fact that
the image intensity values are lowered near the boundary of the vessels because
of the influence of the surrounding tissues.
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Abstract. An intraluminal coronary stent is a metal scaffold deployed
in a stenotic artery during Percutaneous Coronary Intervention (PCI).
Intravascular Ultrasound (IVUS) is a catheter-based imaging technique
generally used for assessing the correct placement of the stent. All the
approaches proposed so far for the stent analysis only focused on the
struts detection, while this paper proposes a novel approach to detect
the boundaries and the position of the stent along the pullback. The
pipeline of the method requires the identification of the stable frames of
the sequence and the reliable detection of stent struts. Using this data, a
measure of likelihood for a frame to contain a stent is computed. Then, a
robust binary representation of the presence of the stent in the pullback
is obtained applying an iterative and multi-scale approximation of the
signal to symbols using the SAX algorithm. Results obtained comparing
the automatic results versus the manual annotation of two observers on
80 IVUS in-vivo sequences shows that the method approaches the inter-
observer variability scores.

1 Introduction

An intraluminal coronary stent is a metal mesh tube deployed in a stenotic artery
during Percutaneous Coronary Intervention (PCI). Ideally, the stent should
be implanted and optimally expanded along the vessel axis, considering vessel
anatomical structures such as bifurcations and stenoses.

Intravascular Ultrasound (IVUS) is a catheter-based imaging technique gen-
erally used for assessing the correct expansion, aposition and precise placement
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of the stent. The IVUS images can be visualized in long-axis view, allowing a
pullback-wise analysis and in short axis view allowing a frame-wise analysis (see
Fig. 1(a and b)). The physician examines both views, identifying the presence
of struts. The analysis of a single short-axis image sometimes is not sufficient
for accurately assessing if struts are present. In most of ambiguous cases, the
physician has to scroll the pullback back and forward, analyzing adjacent frames
until the stent boundaries are detected.

(a)

(b) (c) (d)

Fig. 1. Example of IVUS image in long axis view (a) and in short axis view (b, c). The
IVUS image is represented in polar (b) and in cartesian (c) coordinates, along with the
corresponding classification maps of the short-axis cartesian image (d). The detected
struts are represented using a yellow (c) and black (d) star markers. The automatic
stent shape is represented in dashed blue line. (Color figure online)

To date, all the approaches for automatic stent analysis in IVUS assume that
the analyzed frame always contains a stent [1–5], and no strategies have been
proposed so far for detecting the boundaries and the position of the stent along
the pullback. Instead, this paper extends a previously published stent detection
method [1] by identifying the presence (location and extension) of the stent along
the pullback.

The pipeline of the framework requires the identification of the stable frames
of the sequence using an image-based gating technique [6] and the reliable detec-
tion of stent struts [1]. Then, this paper introduces a measure of likelihood for
a frame to contain a stent, which we call stent presence. A temporal series is
obtained by computing such likelihood along the whole sequence. The mono-
dimensional signal is modeled as a train of rectangular waves by using an iter-
ative and multi-scale approximation of the signal to symbols using the SAX
algorithm [7], which allows to obtain a robust binary representation of the pres-
ence of the stent in the pullback.
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In order to extensively validate the proposed CAD system, we collected a set
of 80 IVUS in-vivo sequences. The data sets includes about 700 IVUS images
containing metallic stents.

2 Method

2.1 Gating

Let us define an IVUS pullback as a sequence of frames I = {fi} where i is the
frame number of the sequence. In the proposed pipeline, we first pre-process the
pullback by applying an image-based gating procedure. Gating is a necessary
step in order to make the analysis robust to two kinds of artifacts generated
by the heart beating: the swinging effect (repetitive oscillations of the catheter
along the axis of the vessel) and the roto-pulsation effect (irregular displacement
of the catheter along the direction perpendicular to the axis of the vessel). For
this purpose, the method presented by Gatta et al. [6] is applied to the IVUS
pullback, which selects a sequence of gated frames G = {fgj

} that are processed
by the system.

2.2 Struts Detection

The detection of stent struts was performed by applying the Computer-Aided
Detection (CAD) framework proposed by Ciompi et al. [1] to each gated frame
independently. The method, provides a reliable identification of the stent struts,
by contemporaneously considering the textural appearance of the stent and the
vessel morphology. The CAD system uses the Multi-Scale Multi-Class Stacked
Sequential Learning (M2SSL) classification scheme to provide a comprehensive
interpretation of the local structure of the vessel. In the classification problem,
the class Strut is considered as one of the six considered classes (defined as
Blood area, Plaque, Calcium, Guide-wire shadow, Strut and external Tissues).
For semantic classification purposes, tailored features used for classification to
the problem [8] are used.

For each pixel p(x, y) of a gated IVUS image, a classification map M is
obtained (see Fig. 1(c)). A curve approximating the stent shape Sshape is ini-
tially estimated considering vascular constrains and classification results. For
each region of M labelled as stent (M{S}), a strut candidate is considered. The
selected struts ps(x, y) were selected among the candidates, considering both
local appearance and distance with respect to the stent shape Sshape. Conse-
quently false positives candidates were discarded, and the regions containing a
selected strut struts M∗

{S} are a subset of M{S}.

2.3 Stent Presence Assessment

The frames of the pullback corresponding to the vessel positions where the stent
begins and ends can be identified by analyzing the detected struts. We model the
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Fig. 2. Piecewise Aggregate Approximation of a generic signal (a) and quantization of
γ(t) after gaussian normalization (b). In (c) iterations of the SAX algorithm over an
exemplar signal γ(t) are illustrated.

presence of stent as a rectangular function �(t), where the variable t indicates the
spatial position in the pullback. We estimate the binary signal �(t) by processing
a real-valued signal γ(t), which we define stent presence, corresponding to the
frame-based likelihood of finding a stent in each frame of the IVUS sequence.
The value of γ(t) for each position t in the sequence is computed by considering
both the number of struts and their area, thus negatively weights small struts
areas of the images which have an high probability to be incorrect an detection.
The function γ(t) is defined as follows:

γ(t) =
∑

p∈M∗
{S}

p|ps∈M∗
{S} (1)

where ps ∈ M∗
{S} indicates the pixels of the IVUS frame labeled as strut con-

taining an selected strut. An example of signal γ(t) is depicted in Fig. 2(c).
The signal γ(t) may contain several transitions between low and high ampli-

tudes, due to the variability in the number of struts visible in consecutive frames
and to suboptimal struts detection. For this reason, we filter the γ(t) signal by
considering its local statistics applying the SAX algorithm [7]. SAX is a symbolic
representation algorithm that estimates a quantization of the time series based
on global signal measurements and on local statistics of subsequent neighbor
samples. Given the signal γ(t) and a window size w, the algorithm calculates a
Piecewise Aggregate Approximation (PAA) γ̂(t), which is obtained by comput-
ing the local average values of γ(t) over nw segments w-wide. Each average value
is then normalized over the signal γ(t). The procedure firstly computes a vector
γ(t) =

(
q1, ...qnw

)
where each of qi is calculated as follows:

qi =
1
w

w·i∑

j=w(i−1)+1

qj , (2)

where i, j ∈ N. Then, considering a Gaussian distribution of the samples, the
quantified values q̂i are obtained by normalizing qi by the mean μγ and standard
deviation σγ of the signal γ(t):
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q̂i =
qi − μγ

σγ
(3)

In Fig. 2(a, b) a scheme illustrates how the PPA of a generic signal is computed
by applying SAX. The values μγ and σγ of each γ(t) are different, since the
amplitude of γ(t) is expected to be low in case of a pullback not containing a
stent, and vice-versa. Therefore, in order to obtain a global estimation of such
variables valid for any pullbacks, it is necessary to estimate mean and standard
deviation over a training set consisting of a representative collection of stent
pullbacks.

The SAX algorithm is iterated Nsax times, until converging to flat intervals
along the signal γ(t). Figure 2(c) illustrates the iteration of the SAX algorithm
over an exemplar signal γ(t). The maximum iteration number Nsax is achieved
when the difference between subsequent iterations of SAX is zero. The other
parameters of the SAX algorithm is the number of quantized values assigned
to the signal Lsax. The iterative SAX algorithm is described by the following
equation:

γ(t)k+1 = SAX
(
γ(t)k, σtrainsax

k , μtrainsax

k , Ltrainsax
)

(4)

where k ∈ 1..Nsax and σtrainsax

k and μtrainsax

k are the mean and standard
deviation computed on the training set at the iteration k, and the number of
quantized values Lsax is a constant that has been optimized using the training
set. When the SAX algorithm reaches the maximum iteration number Nsax,
the binary signal indicating the stent presence of the stent is obtained as
�(t) = γ(t)Nsax

> μtrainsax

Nsax
.

3 Validation

3.1 Material

A set of 80 IVUS sequences containing a stent was collected. Roughly 50% of the
frames contained a stent. The IVUS sequences were acquired using iLab echo-
graph (Boston Scientific, Fremont, CA) with a 40 MHz catheter. The pullback
speed was 0.5 mm/s.

Two experts (one clinician and one experienced researcher) manually anno-
tated the beginning and the end of the stent in each sequence; more than one
annotation per pullback was allowed when several stents were implanted in sub-
sequent segments of the same artery.

3.2 Experiments on Stent Presence Assessment

The assessment of stent presence is based on the analysis of the mono-
dimensional signal γ(t). In order to evaluate the performance, the manual anno-
tations of beginning and end of the stent were converted into binary signals
γman(t) indicating the presence of the stent in the pullback. Successively, the



Intra-coronary Stent Localization in Intravascular Ultrasound Sequences 17

signals �(t) indicating the segments of the pullback in which a stent is likely
to be present, were compared against the sections indicated by the observers
γman(t). The performance were evaluated applying the algorithm to the sets
testmet and testabs and measures of Precision (P), Recall (R), F-Measure (F),
and Jaccard-index (J) were considered.

In our experiments, we used the training set trainmet to estimate σtrainsax

k ,
μtrainsax

k and Ltrainsax . The optimal number of quantized values assigned to the
signal Lsax was chosen via cross-validation finding the value of Lsax = 36 as
optimal.

Table 1. Quantitative evaluation the pullback analysis stage on both testmet and
testabs data-sets. For each data-set the performance of the automatic method versus
each manual annotation are reported. Then the inter-observer variability is shown.

Precision mean
(std)

Recall mean
(std)

F-measure
mean (std)

Jaccard mean
(std)

testmet auto vs obs-1 85.4% (13.2%) 85.7% (7.7%) 84.8% (5.3%) 73.8% (13.7%)

auto vs obs-2 89.5% (12.0%) 76.0% (10.6%) 80.7% (6.7%) 68.0% (13.8%)

obs-1 vs obs-2 81.4% (11.3%) 98.8% (7.7%) 87.2% (7.8%) 80.7% (11.8%)

The quantitative results for the pullback-wise analysis is reported in Table 1.
As IVUS is highly challenging to interpret, the two observers sometimes disagrees
as shown Table 1. The precision approaches the inter-observer variability, while
the recall is in general 10% lower than the results of the manual annotation. The
obtained F-measure and the Jaccard measure of the automatic performance show
satisfactory results when compared with manual annotations.

4 Results and Discussion

Examples of processed signals for the stent detection in IVUS frames are depicted
in Fig. 3. In Fig. 3-(A1 and B1), both initial and final frame of the sequence are
accurately identified. The result is not obvious since in (a) the amplitude of the
signal γ(t) is almost null in two sections of the pullback. However, the SAX
algorithm allowed to detect the presence of stent, based on the statistics of
the frames in the neighbourhood. On the other hand, in Fig. 3(A2), the central
section of the pullback where γauto(t) is almost null is correctly classified by the
SAX algorithm as absence of stent. This is coherent with the manual annotation
of the two observers, where two stents are labeled. In Fig. 3(B1 and B2), regions
of high signal separated from the main stent have been identified as a secondary
implanted stent. It might be noticed that this error happens only when strong
spikes in the signal are present, for instance when a calcified plaque is mistaken
for a deployed stent.
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Fig. 3. Qualitative evaluation on testmet. The signal γ(t) is illustrated in the first row,
while in the second the result of the SAX quantization is reported. Finally in the third
row, three binary signals representing the presence or the absence of the signal are
compared: the first correspond to the automatic results, while the second and the third
are the annotations of the two observers.

5 Conclusion

In this paper, a framework for the automatic identification of stent presence
along the pullback (location and extension) has been presented. The analysis of
the stent presence signal has been performed using the SAX algorithm with pro-
vides an unsupervised classification of the stent location in a fast and statistically
robust fashion. The method has been implemented in Matlab and the computa-
tion time of the pullback analysis is about 4.1 s, one order of magnitude lower
than the time required for detecting the stents [1] (33 s per pullback). Future
work will be addressed towards validating the method with a larger data-set,
including bio-absorbable stents.
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Abstract. The topologies of vascular trees embedded inside soft tissues
carry important information which can be successfully exploited in the
context of the computer-assisted planning and navigation. For example,
topological matching of complete and/or partial hepatic trees provides
important source of correspondences that can be employed straightfor-
wardly by image registration algorithms. Therefore, robust and reliable
extraction of vascular topologies from both pre- and intra-operative med-
ical images is an important task performed in the context of surgical plan-
ning and navigation. In this paper, we propose an extension of an existing
graph-based method where the vascular topology is constructed by com-
putation of shortest paths in a minimum-cost spanning tree obtained
from binary mask of the vascularization. We suppose that the binary
mask is extracted from a 3D CT image using automatic segmentation
and thus suffers from important artefacts and noise. When compared to
the original algorithm, the proposed method (i) employs a new weight-
ing measure which results in smoothing of extracted topology and (ii)
introduces a set of tests based on various geometric criteria which are
executed in order to detect and remove spurious branches. The method is
evaluated on vascular trees extracted from abdominal contrast-enhanced
CT scans and MR images. The method is quantitatively compared to
the original version of the algorithm showing the importance of pro-
posed modifications. Since the branch testing depends on parameters,
the parametric study of the proposed method is presented in order to
identify the optimal parametrization.

Keywords: Skeletonization · Segmentation · Computer-aided surgery ·
Hepatic vascular structures

1 Introduction

Liver cancer is the 7th most common cause of cancer death in Europe with
around 62,200 deaths in 2012 [1]. In order to improve the success rate of inter-
ventional liver cancer treatment, several computer-aided approaches have been
proposed for both intervention planning and navigation.
c© Springer International Publishing AG 2017
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The common factor of methods proposed to facilitate hepatic interventions
remains the necessity of reliable and robust extraction and analysis of the hepatic
vascular structures. The liver vascularization plays an important role in many
aspects: the volume that is removed during the hepatectomy depends directly on
the topology of the vascular network [2]. Similarly, the registration methods often
rely on vascular landmarks [3]. Furthermore, accurate biomechanical models that
are to be used in the augmented-reality applications must take into account the
mechanical properties of the vascular trees [4,5].

While extremely important, the automatic robust analysis of liver vascu-
larization remains a challenging problem. First, the liver displays a high inter-
patient anatomic variability. Further, the acquisitions following the injection of
a contrast agent, necessary for the pre-operative identification of vascular trees,
often suffer from noise due to the respiratory motion which in turn deteriorates
the quality of segmentation that is necessary for the extraction of the topological
structure in the process known as skeletonization.

Several methods of skeletonization of vascular structures have been proposed
in the literature. In [6], the thinning is applied to the binary mask to obtain the
skeleton. Since the thinned structure remains a binary image, additional analysis
is needed to extract the topological information. A skeletonization method is also
proposed in [7], however, since the method works with surface meshes, it requires
the extraction of such a mesh from the binary mask. In [8], another method based
on Dijkstra minimum-cost spanning tree and which takes as input a binary mask
is presented. In their paper, the authors test the method on phantom and clinical
data acquired in neurosurgery. The same method is further extended and tested
for airways tree skeletonization in [9].

In this paper, we focus on the skeletonization of vascular trees extracted from
medical patient-specific data. We suppose that the skeletonization is performed
on binary maps obtained by the automatic segmentation [10]. In this case, the
resulting binary map typically suffers from artefacts, such as important surface
bumps (see Fig. 1), making the skeletonization process very challenging. There-
fore, we propose an extension of a graph-based method presented in [8] and [9]:
first, we modify the algorithm to make is less sensitive w.r.t. the quality of the
input data. Second, we propose a set of tests allowing for automatic removal
of spurious or false branches relying on geometric criteria. The proposed skele-
tonization method is evaluated on 3 porcine and 32 human vascular trees and
the results are compared to the original version of the algorithm. Moreover, a
parametrization study is presented, showing the influence of method parameters
on the quality of constructed skeleton.

2 Methods

2.1 Minimum-Cost Spanning Tree

The method based on the minimum-cost spanning tree [8] is applied directly
to the binary map of the vascular structure which is converted into a weighted
3D graph where each voxel belonging to the segmented volume is represented
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Fig. 1. Illustration of the automatically segmented binary map of hepatic
vascularization.

by a weighted node. The method constructs the skeleton in two steps: First,
the spanning tree is constructed iteratively starting from the root voxel. In the
actual version of the algorithm, the root voxel is selected interactively in the
area close to the root of the vascular tree. This is the only step of the method
which currently requires manual intervention. Then, the edges between voxels
are constructed recursively using a sorted heap: in each step, the head of the
heap having the minimal weight is marked and all its unmarked neighbors are
inserted into the heap. In [8], the sorting weight w(v) of a voxel v is defined
as 1

rb(v)
, where rb(v) is the shortest distance of the voxel v from the boundary

of the segmented vessel. We employ a modified definition the sorting weight
w(v) = w(u) + d(u,v)

rb(v)k
where u is the voxel preceding v in the minimum-cost

spanning tree, and d(u, v) is the Euclidean distance between the voxels u and v.
The metric rb(v) is pre-computed for each voxel of the input binary map. The
modified definition of the heap-sorting weight makes the skeletonization process
less sensitive to the bumps of the segmented vascular tree illustrated in Fig. 1.
For each visited voxel, its distance from the tree root dr is stored.

In the second phase of the method, the centerlines are extracted recursively
from the spanning tree as in [8]:

– The 0-order path P0 is constructed as the shortest path connecting the root
and the voxel with the highest dr in the graph, that is the voxel which is at
the farest outlet from the root.

– Any n-order path Pn for n > 0 is extracted in three steps. First, an expansion
step is performed so that for each voxel r of the path Pn−1, a set Vr of all voxels
accessible throught the minimum-cost spanning tree from r is constructed. Vr

is the set of all voxels that are linked to r and not belonging to Pn−1. Second,
a voxel t ∈ Vv having the maximum value dr is found. Finally, the new path
is constructed as the shortest path from r to t, denoted as (r, t).
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2.2 Typical Artefacts of Graph-Based Skeletonization

The algorithm of the centerline extraction performs well on the synthetic data
as well as real data where the vascular structures are represented by smooth and
well-formed pipes. However, when applied to real data obtained using automatic
segmentation of hepatic veins, artefacts appear resulting in false branches, i. e.,
redundant bifurcations.

First, directly during the construction of a path (r, t), it is verified that none
of the voxels except r is already included in a path constructed before, i. e. there is
no collision between the new path and any previously constructed path. While
such situation should not happen due to the properties of the spanning tree,
exceptions might occur, i. e. when holes or plate-shaped structures are present
in the input binary mask.

The second type of artefacts is introduced by scenarios depicted in Fig. 2:
for the sake of reference, we divide the scenarios in T-shapes (Fig. 2a, b) and
V-shapes (Fig. 2c, d). In the case of T-shapes, the bumps (a) created by the
automatic segmentation are difficult to distinguish from real branches (b). In the
case of V-shapes, the problematic scenarios occur when a redundant centerline
appears in the graph due to the vessel thickening (c). While from the anatomical
point of view, such phenomenon is improbable, it is not rare in binary masks
produced by the automatic segmentation.

2.3 Filtering of Spurious Branches

In order to prevent the extraction of false branches, we propose to filter the
branches directly during the extraction of paths based on several criteria. First,
let us denote R the geometrical position in Cartesian coordinates of the branch
candidate root voxel r, T the position of its tip voxel t and finally C the position
of voxel c on the parent branch which has the lowest Euclidean distance from
T . In the following description of the algorithm, we always refer to Fig. 2.

Fig. 2. Different scenarios occurring during skeletonization of automatically segmented
vessels. T-shape scenarios: (a) false path due to the surface bump, (b) correct branch.
V-shape scenarios: (c) false path due to the vessel thickening, (d) correct branch: the
background voxels shown in red. (Color figure online)
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Table 1. Evaluation of the graph-based algorithm on the swine hepatic tree.

# path candidates # accepted # rejected

all T-shape(b) V-shape(d) all collision T-shape(a) V-shape(c)

Flank hepatic 5797 259 62 197 5538 530 5006 2

Flank portal 2064 57 12 45 2007 90 1916 1

Supine hepatic 4027 144 95 49 3883 249 3632 2

1. If |TR| < Lthrdb(r), the branch candidate is rejected. Here, the db(r) is dis-
tance from boundary of the root voxel r and Lthr is a parameter, length
threshold. This parameter is a unitless quantity which determines the relative
ratio between a child branch having an acceptable length and the thickness
of the parent branch. The goal of this step is to eliminate the short false
branches produced either inside the tube of the parent branch or due to the
bumps (a).

2. In the next step, the correct V-shapes are identified (d). In this case, there
exist voxels on the line CT (connecting the voxels c and t) located outside of
the binary mask. Such background voxels guarantee that path is located in a
child branch which is correctly detached from the parent branch. Therefore,
in this step, the path candidate for which such voxels exist is directly accepted
as a new path and the algorithm proceeds with extraction of another path.

3. The branch candidate that made it to this step is sufficiently long but has
no background voxel. Therefore, it corresponds either to valid T-shape (b) or
invalid V-Shape (c). In order to distinguish the two cases, we introduce the
second parameter, angle threshold Athr. The path candidate is accepted if the
angle ∠CRT > Athr, otherwise, it is rejected.

The algorithm stops when no new branches are added in the actual order.

3 Results

In all the tests, the skeletonization was always stopped after the extraction of
paths of order 5, as the segmentations used for validation contained no reliable
branches of a higher order.

3.1 Data

The porcine data sets were acquired from abdominal CT volumes of a female
pig scanned in flank and supine positions with voxel resolution of 0.5 × 0.5×
0.5 mm3. While both portal and venous phases were obtained for the flank
position, only the venous phase was available for the supine configuration, thus
resulting in three data sets. The human data sets were acquired from abdominal
CT and MR volume with voxel resolution of 0.68×0.68×2.0 mm3 and 1.0×1.0×
2.5 mm3, respectively. A retrospective cohort of fifteen patients (4 women, 11
men) that received a bi-phasic magnetic resonance angiography (MRA) and
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computed tomography angiography (CTA) on the same day were included in
this study. The MRA images were acquired on the Achieva 3T scanner (Philips
Healthcare, Best, The Netherlands) using a 3D mDIXON sequence and on the
Discovery MR450 scanner (GE medical Systems, Milwaukee,WI,USA) using the
3D LAVA sequence. CTA images were acquired using the helical mode on the
Brillance 64 scanner (Philips Healthcare, Best, The Netherlands) and the Bright-
Speed system (GE Medical Systems, Milwaukee, WI, USA). Vascular structures
were segmented in each data set using an automatic method [10].

3.2 Evaluation of the Skeletonization

The graph-based skeletonization is evaluated in Table 1 for each vascular tree.
First, a large number of path candidates is extracted from the spanning tree. The
most significant reduction of candidates happens due to the insufficient length of
the candidate branch: more than 85% of candidates are false child branches, i. e.
too short when compared to the thickness of the parent branch. Less than 10%
of candidates are removed because of crossing with other branches (potential
cycles). Finally, less then 5% of candidates are accepted as new paths: majority
of them are accepted as V-shape vessels.

3.3 Method Parametrization

As introduced in Sect. 2.3, the graph-based skeletonization method requires two
parameters: the length threshold Lthr and the parent–child angle threshold Athr.
As for the latter, very low sensitivity was observed w.r.t. this parameter: only
from 1 to 2 false V-shape candidates appeared during the extraction and were
eliminated by setting the threshold to 20◦. This observation confirms that the
construction of the spanning tree already prevents the formation false V-shape
paths.

In contrast, the value of Lthr influences the filtering significantly. Intuitively,
a logical choice for this parameter is 1; it should be sufficient to filter all the
candidates having the length shorter that the thickness of the parent branch.
However, this assumption is not valid when bumps are present in the input data
(Fig. 2). The size of the bumps can make it difficult to distinguish them from
short real branches; see Fig. 1 showing a sample of the real data used for testing.

In order to study the influence of Lthr on the skeletonization of the vascular
trees, we have performed a scaling of the parameter starting from 1.0 to 2.0;
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Fig. 3. Number of accepted branches w.r.t. the length threshold.
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the result is presented in Fig. 3. The plot shows that the number of accepted
branches decreases rapidly from 1.0 to 1.4; then, the decreasing slope becomes
less steep. Although it is not possible to specify the cut-off value which would
allow for reliable filtering of the false branches while keeping the real ones, we
propose using the value 1.4 as the threshold. The values in Table 1 have been
obtained with this parameter.

3.4 Original vs. Modified Skeletonization Method

In order to assess the method, we have compared the proposed approach to the
method presented in [8]. We used 32 segmentations performed using the ITK-
Snap semi-automatic segmentation algorithm based on active contour (Snakes,
[11]) on computed tomography and magnetic resonance images. The segmenta-
tions corresponds either to human hepatic and splenic arteries or to the human
hepatic portal vascular system.

The best accuracy computed as the number of accepted branches, i. e. the
value for which the error in the branch number is minimal, is obtained for both
algorithms with Lthr = 2.5 regardless the values of the other parameters. Thus,
this value was used for the comparison of the two methods. With higher values
true branches are rejected as outliers. Figure 4 shows the number of accepted
branches by the two algorithms versus the real number of branches determined
manually by an expert. The consistency of the branches were checked manually
for all datasets. The evaluation shows that the number of branches extracted
with the original algorithm proposed by Verscheure is slightly superior when
compared to the values obtained by our algorithm. Most of the time, a false
branch detected by Verscheure’s algorithm runs in parallel to another branch
(see Fig. 5). Interestingly, even without an angle threshold, our modified method

Fig. 4. Comparison of the number of accepted branches; cN stands for the case N.
The results given by our method are displayed in blue and green. The color gradient
corresponds to increased values of k from k = 1 (blue) to k = 7 (green). The results
of Verscheure’s algorithm are displayed in yellow. The red horizontal line depicts the
number of real branches for each case. (Color figure online)
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(a) (b)

Fig. 5. False branches running parrallel to another branch. Results obtained by
Verscheure’s algorithm.

produces on average 3 times less parallel branches when compared to the origi-
nal method. The failing cases are encountered for very noisy segmentation maps
for which the bumps are too large for the false branches to be filtered out by
the length threshold. Another important source of differences between the two
algorithms is given by false loops which occur when distance between distinct
branches remains under the resolution of the segmented image, leading to topo-
logical errors.

The shape of the extracted centerlines depend also on the exponent k

employed in the definition of the heap-sorting weight w(v) = w(u) + d(u,v)
rb(v)k

:
For k ≤ 3, the centerlines tend to be rather straight and do not follow the shape
of the vessel properly. This is particularly obvious for tortuous vessels such as
the splenic arteries. Therefore, we recommend to use k > 3.

4 Conclusions

In this paper, we have presented a method of automatic skeletonization of vascu-
lar trees. The algorithm was assessed on binary masks automatically segmented
from abdominal CT scans of a porcine liver. It was shown that it is possible to
select parametrization to suppress the false branches introduced by the noise in

Fig. 6. Complete skeleton of the hepatic tree in porcine liver.
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the input data. In the actual case, we have further smoothed the extracted skele-
ton using cubic splines. The illustration of the complete tree is shown in Fig. 6.

In the future work, we plan to integrate the algorithm to an automatic
pipeline employed in an augmented-reality framework for the intra-operative
navigation in hepatic surgery.
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Abstract. Computerized Tomography Angiography (CTA) based
assessment of Abdominal Aortic Aneurysms (AAA) treated with
Endovascular Aneurysm Repair (EVAR) is essential during follow-up to
evaluate the progress of the patient along time, comparing it to the pre-
operative situation, and to detect complications. In this context, accu-
rate assessment of the aneurysm or thrombus volume pre- and post-
operatively is required. However, a quantifiable and trustworthy eval-
uation is hindered by the lack of automatic, robust and reproducible
thrombus segmentation algorithms. We propose an automatic pipeline
for thrombus volume assessment, starting from its segmentation based on
a Deep Convolutional Neural Network (DCNN) both pre-operatively and
post-operatively. The aim is to investigate several training approaches to
evaluate their influence in the thrombus volume characterization.

Keywords: AAA · EVAR · Thrombus · Segmentation · DCNN ·
Volume

1 Introduction

An abdominal aortic aneurysm (AAA) is a focal dilation of the aorta that exceeds
its normal diameter in more than 50%. If not treated, it tends to grow and
may rupture, with a high mortality rate [1]. Lately, AAA treatment has shifted
from open surgery to a minimally invasive alternative, known as Endovascular
Aneurysm Repair (EVAR) [2]. This technique consists in the transfemoral inser-
tion and deployment of a stent using a catheter. Although better peri-operative
outcomes are achieved, long-term studies show similar mortality rates between
patients treated with EVAR and patients treated with open surgery [3]. This
is due to the appearance of EVAR related complications, known as endoleaks,
c© Springer International Publishing AG 2017
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which translate into a recurrent blood-flow into the thrombus area that causes
its continuous growing, with the associated rupture risk and possible reinter-
vention. Thus, post-operative surveillance is required to evaluate changes and
detect possible complications, for which Computed Tomography Angiography
(CTA) is the preferred imaging modality. This follow-up is traditionally based
on the observation of CTA scans at different times and the manual measurement
of the maximum aneurysm diameter, although AAA volume has been reported
as a better predictor of the disease progression [4]. In [5], a fully-automatic
thrombus segmentation approach based on a Deep Convolutional Neural Net-
work (DCNN) was proposed, specifically designed for post-operative thrombus
segmentation. Our aim is to extend that work by providing segmentation for
both pre-operative and post-operative scenarios and to provide a full pipeline
for thrombus volume assessment, investigating the influence of network training
strategies in the automatic segmentation quality and volume quantification.

2 State-of-the-art

Historically, aneurysm size, measured through its largest diameter, has been the
most commonly employed rupture risk indicator. This evaluation is done both
pre-operatively, to determine if an intervention is required, and post-operatively,
to assess the patient’s progression. Thrombus volume seems to be a better rup-
ture risk indicator [4], but it is hardly used in the clinical practice due to the lack
of automatic thrombus segmentation methods. The thrombus appears as a non-
contrasted structure in the CTA, its shape varies and its borders are fuzzy, which
makes it difficult to develop robust automatic segmentation approaches. Thus,
the subsequent precise and automatic thrombus characterization is unfeasible.

Currently there are only few dedicated software that provide assistance to
EVAR-treated aneurysm follow-up: VesselIQ Xpress (GE) [6] and Vitrea Imag-
ing (Toshiba) [7] allow the semi-automatic segmentation and volume quantifica-
tion of the thrombus. Hence, recent research work aims at obtaining a robust,
automatic thrombus segmentation algorithm easily applicable in the clinical
practice. Traditionally proposed methods combine intensity information with
shape constraints to minimize a certain energy function [8–10]. Machine learning
approaches have also been proposed [11], as well as radial model methods [12].
In [13] a deformable model-based approximation was introduced and recently
another deformable model approximation, validated in a large number of pre-
operative and post-operative datasets has been presented in [14]. However, these
algorithms require user interaction and/or prior lumen segmentation along with
centerline extraction and their performance highly depends on multiple parame-
ter tuning, affecting their robustness and clinical applicability.

Lately, DCNNs have gained attention in the scientific community for solv-
ing complex segmentation tasks, surpassing the previous state-of-the-art perfor-
mance in many problems. In [15] a novel and automatic patch-based approach
to pre-operative AAA region detection and segmentation is described, based on
Deep Belief Networks (DBN). Comparison with ground truth segmentation was
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not provided. In [5], a DCNN for automatic post-operative thrombus segmenta-
tion and evaluation was presented. Our goal is to extend that work by providing
pre-operative and post-operative AAA segmentation and volume quantification,
training the network with more datasets and evaluating the influence of the
training approximation in the subsequent thrombus volume measurement.

3 Methods

We propose an automatic approach to thrombus segmentation and volume quan-
tification. Segmentation is based on a DCNN specifically designed to segment
the thrombus in post-operative datasets, initially presented in [5]. The network is
based on Fully Convolutional Networks [16] and Holistically-Nested Edge Detec-
tion network [17] and combines low-level features with coarser representations
that ensure the smooth contour of the thrombus is kept. To evaluate the influence
of the training strategy in the segmentation and volume quantification results,
we carry out three experiments: first we train and test the network with mixed
pre-operative and post-operative datasets; then, a separate training approach
using only pre-operative or only post-operative data is included to compare the
results and draw conclusions. Since the number of annotated quality data is lim-
ited, we train in a 2D slice-by-slice manner. Training in 2D provides advantages
regarding speed, lower memory consumption and the ability to use pretrained
networks and fine-tuning. These advantages are leveraged and the 3D coherence
of the output binary segmentation is provided in a subsequent post-processing
step. Finally, segmentation quality is evaluated by comparison with manually
delineated ground truth segmentations. Thrombus volume is computed from the
ground truth segmentation and the post-processed automatic segmentation to
check the ability of the proposed approach to characterize the thrombus. A visual
representation of these steps is shown in Fig. 1. Each step is further explained
in the following subsections.

Fig. 1. Pipeline for automatic thrombus segmentation and volume quantification.
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3.1 Abdominal Aortic Aneurysm Datasets

A total of 38 contrast-enhanced CTA datasets from different patients that present
infrarenal aneurysms were employed for our experiments. 20 of them are post-
operative datasets, while 18 of them correspond to pre-operative scans. These
datasets have been obtained with scanners of different manufacturers and have
a spatial resolution ranging from 0.725 to 0.977 in x and y, and 0.625-1 in z. They
also have varying contrast agent doses. The patient is always located in supine
position and the CTA starts around the diaphragm and expands to the iliac crest.
The data have been divided into training and testing sets. Training data consists
in 20 datasets, 11 post-operative and 9 pre-operative. Testing data is composed of
18 datasets, 9 post-operative and 9 pre-operative. None of the datasets correspond
to the same patient. We did not discard datasets of patients with outlying charac-
teristics, so the variability in the data is relatively large in terms of thrombus size
and shape or noise. In the post-operative datasets of patients with a favorable evo-
lution, endotension cases and datasets where a leak is visible have been included.
For all the patients manually obtained segmentations are available and used as
ground truths for the current study. Note that the number of pixels correspond-
ing to the thrombus is much smaller than the number of pixels corresponding to
background, with a mean ratio of approximately 1:8.

3.2 Experimental Setup: Thrombus Segmentation

As mentioned above, thrombus segmentation is based on a DCNN network,
trained slice-by-slice. Figure 2 is a visual representation of the network archi-
tecture. Our goal is to investigate the influence of the training approach by
performing three experiments. In the three of them, we train the same network
architecture, with the same hyperparameters and try to minimize the Softmax
loss, which reduces the influence of extreme values or outliers in the data and
provides the probability of each pixel corresponding to a certain class. Learning
rate is set 10e-3, with a step down policy of 33% and gamma equal to 0.1. The
Stochastic Gradient Descent solver is employed and training is done during 100
epochs, with a batch size of 4 images and no batch accumulation.

In the first experiment, we train our network with pre-operative and post-
operative data, all together. The network is trained with 2D slices of 11 post-
operative datasets and 2D slices of 9 pre-operative datasets. None of the datasets
correspond to the same patient. Data augmentation is applied in the form of
90 rotations and mirroring to enlarge the datasets and to prevent the network
from failing if a rotated dataset is introduced for testing. For testing, datasets
of additional different 18 patients are employed, 9 pre-operative and 9 post-
operative. The total number of slices for each stage is summarized in Table 1.

In the second and third experiments, 2 networks are trained separately, one
only with pre-operative data, the other one just with post-operative. For the
pre-operative, 9 pre-operative datasets are used for training and validation, and
9 different datasets are saved for testing purposes. These datasets are identical
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to those of the first experiment, and the same data augmentation is applied.
Testing is done on slices of patients not included in the training phase, as in the
first experiment. In the third experiment, corresponding to the post-operative
data, the same approximation is followed. The 11 post-operative datasets used
for training on the first experiment are utilized to train this network, and the
same 9 post-operative datasets are employed for testing. Data augmentation is
also equally applied. Table 1 summarizes the data for these experiments.

Table 1. Training, validation and testing slices used in each experiment.

Experiment 1 Experiment 2 Experiment 3

Train 4380 1835 2545

Validation 772 323 449

Testing 2878 1447 1431

3.3 Post-processing and Quantification

The output provided by the DCNN are 2D probability maps, where each inten-
sity value is the probability of that pixel being thrombus or not. Thus, an auto-
matic processing of these maps is included as the last step to obtain the 3D
binary mask segmentation. First, we reconstruct the 3D prediction map volume
and apply Gaussian filtering in the z-direction to ensure some continuity in this
direction. We set the sigma value to σ = 2∗Spacingz. Then, K-means clustering
of the 3D probability map is employed, where the number of clusters is fixed to 6,
experimentally. The output cluster image is filtered and binarized, by removing
the class with the lowest probability of being thrombus. A subsequent connected
component analysis is used to keep the largest object, which in our experiments
always corresponds to the thrombus. The Volume is measured based on the
Divergence Theorem Algorithm (DTA), by estimating the volume of the throm-
bus from its point-list, as explained in [18]. Finally, a comparison between the
automatic thrombus binary segmentation (source, S) and the expert delineated
ground truth (target, T) is included to evaluate segmentation quality in terms
of total overlap, Dice coefficient, false negative rate (FN) and false positive rate
(FP), as proposed in [19]. The volume difference between both segmentations is
also included.

Total overlap for thrombus region (r) : | Sr ∩ Tr | / | Tr |
Dice coefficient for thrombus region (r) : 2 | Sr ∩ Tr | /(| Sr | + | Tr |)
False negative error for thrombus region (r) : | Tr/Sr | / | Tr |
False positive error for thrombus region (r) : | Sr/Tr | / | Sr |
V olume difference : | VT − VS | /VT
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Fig. 2. Deep convolutional neural network architecture for thrombus segmentation.

4 Results

Table 2 summarizes the results for the first experiment, where the network is
trained and tested both with pre-operative and post-operative data. The mean
Dice similarity coefficient is 81.4%, being this coefficient higher in the post-
operative than in the pre-operative. Since the number of pre-operative slices is
smaller than the number of post-operative slices and the network was initially
designed for the post-operative scenario, a reduction in the accuracy in the pre-
operative could be expected. This also impacts the volume difference between
the automatically segmented thrombus and the ground truth, being this differ-
ence larger in the pre-operative than in the post-operative. The mean volume
difference is 12.8%, where the over-estimation of the volume is of 10.9% and the
sub-estimation is of 13.9%. Sub-estimation occurs in the double of cases where
over-estimation occurs. Qualitative results of this experiment are shown in Fig. 3.

In the second and third experiments, we trained the same network but only
with pre-operative or post-operative data. Results are reported in Table 2. In the
pre-operative, contrary to our initial hypothesis that an improvement should be
observed when training two networks separately, a reduction in the Dice coef-
ficient and an increase of the volume difference is obtained compared to the
first experiment. We attribute these results to the reduction in the number of
training samples, being only slices extracted from 9 different datasets. Hence,
the ability of the network to generalize diminishes. When testing, the variabil-
ity in the aneurysm shape affects more notably the segmentation quality, and
the results for one testing dataset have a stronger impact on the global mean.
The worst result for a pre-operative dataset corresponds to the case depicted
in Fig. 4, where there is contrasted blood inside the aneurysm area. Probably,
the network does not expect to find high-contrasted areas that are not lumen,
stent or calcifications, which always set the limits for the segmentation, and thus,
it understands that there is a border in this contrasted area and sub-segments
the aneurysm; without this dataset the mean Dice coefficient would be equal
to 72.8% and the volume difference would be 14%, which approximates to the
results of the first experiment, but with half the number of training images.
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Table 2. Testing results for the three experiments: 1) the network is trained and tested
both with pre-operative and post-operative data, 2) the network is trained only with
pre-operative data, 3) only post-operative data is employed.

Experiment Total overlap Dice FN FP Volume difference

1 Pre 0.784± 0.127 0.790± 0.102 0.216± 0.127 0.193± 0.103 0.134± 0.093

Post 0.817± 0.066 0.837± 0.062 0.183± 0.066 0.133± 0.095 0.121± 0.081

Mean 0.801± 0.103 0.814± 0.087 0.199± 0.103 0.163± 0.103 0.128± 0.088

2 Pre 0.616± 0.171 0.697± 0.132 0.384± 0.171 0.154± 0.076 0.265± 0.220

3 Post 0.886± 0.058 0.855± 0.065 0.134± 0.058 0.152± 0.087 0.086± 0.080

Fig. 3. Qualilative segmentation results of the first experiment. The manual ground
truth is shown in green and the automatic segmentation in yellow. (Color figure online)

With respect to the third experiment, related to the post-operative, an
increase of the Dice coefficient and a decrease on the volume difference is
observed, which agrees with our hypothesis that by training both scenarios sep-
arately, better results can be expected. A 33.9% improvement in the volume
difference is achieved, although only half the number of training images have
been utilized.

Fig. 4. Incorrect pre-operative AAA segmentation due to contrasted blood inside it.
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5 Conclusions

In this paper, we have investigated the influence of the DCNN training strategy
in the automatic segmentation and quantification of the AAA volume. Three
experiments have been performed: first, the network has been trained and tested
with both pre- and post-operative datasets; then, two networks have been trained
separately, only with pre- or post-operative data. The same training and testing
datasets are used for all the experiments, which correspond to different patients.
The results showed that by training separately for the pre-operative and the post-
operative scenarios, similar or even better results could be obtained compared to
training everything together. However, the number of training samples is smaller
when training separately and thus, outlier datasets impact more negatively the
results than when training together. We conclude that by training separately
with a larger number of cases more precise results could be obtained. Each
network would adapt to the specificities of each scenario, such as the appearance
of the stent in the post-operative, the bigger thrombus size in the post-operative
when the evolution is unfavorable or the appearance of leaks. Fine-tuning from
network weights learned from medical images could also improve the results.

Regarding volume quantification, the goal is to utilize thrombus volume dur-
ing follow-up to assess disease progression. EVAR reporting standards [20] state
that an increase in the aneurysm volume of 5% is considered clinically rele-
vant and a clinical failure after EVAR. Intra-observer and inter-observer vari-
ability for volume measurements have ranged between 3% and 5% from semi-
automatically segmented aneurysms [20–22]. From a clinical perspective, our
pipeline produces significant volume differences between the ground truth and
the automatic segmentation. These differences vary in the range of 8% to 12%
in the post-operative and 13% to 26% in the pre-operative and can equally
correspond to over-estimation or sub-estimation of the volume. The automatic
segmentation results are reasonably good, but the measured volume values still
need to be refined to be directly applicable in the clinical practice for quantita-
tive progression assessment. Future work aims at reducing the volume difference
between ground truth and automatically segmented thrombus, by adapting our
method to that purpose and analyzing the volume quantification results with
more data.
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Abstract. Cerebrovascular diseases are one of the main causes of death
and disability in the world. Within this context, fast and accurate
automatic cerebrovascular segmentation is important for clinicians and
researchers to analyze the vessels of the brain, determine criteria of
normality, and identify and study cerebrovascular diseases. Neverthe-
less, automatic segmentation is challenging due to the complex shape,
inhomogeneous intensity, and inter-person variability of normal and mal-
formed vessels. In this paper, a deep convolutional neural network (CNN)
architecture is used to automatically segment the vessels of the brain
in time-of-flight magnetic resonance angiography (TOF MRA) images
of healthy subjects. Bi-dimensional manually annotated image patches
are extracted in the axial, coronal, and sagittal directions and used as
input for training the CNN. For segmentation, each voxel is individually
analyzed using the trained CNN by considering the intensity values of
neighboring voxels that belong to its patch. Experiments were performed
with TOF MRA images of five healthy subjects, using varying numbers
of images to train the CNN. Cross validations revealed that the proposed
framework is able to segment the vessels with an average Dice coefficient
ranging from 0.764 to 0.786 depending on the number of images used for
training. In conclusion, the results of this work suggest that CNNs can
be used to segment cerebrovascular structures with an accuracy similar
to other high-level segmentation methods.

Keywords: Vessel segmentation · Deep learning · Cerebrovascular seg-
mentation · Convolutional neural networks

1 Introduction

Vascular diseases have led the ranking of major causes of death in the last fif-
teen years, according to reports of the world health organization (WHO) [1]. In
particular, cerebrovascular diseases that lead to stroke were responsible for more
c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-67534-3 5
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than six million deaths only in 2015 [1]. Consequently, clinicians and researchers
require fast and accurate tools, which aid them to detect, analyze, and treat cere-
brovascular diseases, such as aneurysms, arteriovenous malformations (AVMs),
and stenoses.

Segmentation of the vascular system in medical images allows clinicians to
identify and isolate vessels from other surrounding types of tissue, thus, allowing
better visualization and quantitative analysis. However, manual vessel segmen-
tation is a time-consuming, error-prone task, which is subject to inter-observer
variability. Consequently, research has been focused on developing faster and
more accurate automatic vessel segmentation methods.

Lesage et al. [2] review paper lists a considerable number of automatic vessel
segmentation approaches. The referenced methods range from approaches that
are based on computing Hessian-based features of vessels, proposed by Frangi
et al. [3] and Sato et al. [4], to atlas or model-based approaches, other feature-
based methods, and extraction schemes, such as level-sets [5]. In all cases, dif-
ferent handcrafted features are used to guide the segmentation process, such
as image intensities, Hessian eigenvalues, curvature values, gradient flow, and
many others. It is the researcher who decides, based on experiments related to
each particular application, which features are used to extract the to the most
accurate segmentation results.

Deep convolutional neural networks (CNN) is a recent and popular strategy,
with successful results solving different medical image analysis problems [6],
which proposes to let the computer learn in an automatic and supervised manner,
and decide which features are relevant to generate accurate segmentation results.
Automatic vessel segmentation methods that use deep CNN have been used to
segment 2D images of the retina [7], ultrasound images of the femoral region of
the body [8], and computed tomography (CT) volumes of the liver [9], with a
high performance in all cases.

To our knowledge, no study has been performed yet to adapt and apply
deep CNN to segment the vessels of the brain, mainly due to the technical
difficulties to obtain manually segmented brain datasets, the novelty of deep
learning methods, and its associated long execution times. However, given the
successful performance of CNN, as it has permeated the entire field of medical
image analysis [6], this paper presents an initial strategy to apply deep CNN to
segment the vascular system in time-of-flight magnetic resonance angiography
(TOF MRA) images of the brain.

2 Vascular Segmentation of TOF MRA Images Using
Deep CNN

TOF MRA is a medical imaging modality, which allows the acquisition of non-
contrast enhanced images of the brain vascular system with a high spatial reso-
lution [10]. TOF MRA images are affected by noise artifacts that do not allow
the establishment of fixed intensity values to identify different types of tissue.
Additionally, the intricate shape of the vascular tree, and its high inter-person
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variability, make it hard to define a common atlas that can be used for segmen-
tation, as often conducted for different organs [11].

Given the variability of the intensity profile and complex shape of the vascular
system in TOF MRA and other imaging modalities, defining suitable character-
istics to identify and segment vessels represents a challenging problem. In order
to solve this problem, deep CNN approaches have been used to let the computer
discover and learn those characteristics by itself, in a supervised manner [8,12].

Traditionally, three-dimensional patches are extracted from a set of training
images and used to optimize a deep CNN, which is then used to segment the
vascular system, but they have not been tested for the purpose of segmenting
cerebrovascular structures from 3D TOF MRA datasets yet.

2.1 CNN Architecture

Complex deep CNN architectures can lead to a possible over-fitting in the model
learning, as well as significantly increasing the processing time, when considering
TOF MRA images. For this reason, we propose a CNN architecture composed of
only two convolutional layers (C1 and C2) and two fully connected layers (FC3
and FC4). This architecture is shown in Fig. 1.

The first convolutional layer, C1, contains 32 filters with 5×5 voxels receptive
field, in a 2 voxels stride sliding (S1), sub sampled in a 3× 3 voxels max-pooling
(P1), in order to reduce translation variance. The next convolutional layer, C2,
has a receptive field of 3 × 3 voxels, with 64 filters, and no sub sampling. In
order to reduce the impact of the backpropagation vanishing problem, both
convolutional layers are followed by a rectified linear activation (Relu).

After the convolutional layers, two more fully connected layers are added. The
first fully connected layer, FC3, reduces the dimensionality from 256 (2×2×64)
to 100 neurons, and FC4 can be seen as a decision layer that determines the
likelihood of belonging to a vessel or not. These layers have hyperbolic tangent
(Tanh) and sigmoid (Sigm) activation functions, respectively.

2.2 CNN Training

In order to identify the best weights for our model, we selected a balanced
number of patches from vessel and non-vessel regions in our training dataset. In
particular, we used a number of vessel and non-vessel patches equal to half the
number of voxels in the vessel region of each dataset, in the axial, coronal, and
sagittal planes. Through a mini-batch gradient descent approach, the squared
error over the entire training set was minimized, considering a mini-batch of 50
elements. This learning approach is applied through 40 epochs, while considering
a learning rate of 0.001 and a gradient momentum of 0.9.
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Fig. 1. Network architecture, composed of two convolutional layers, C1 and C2, and
two fully connected layers, FC1 and FC2. After C1, we include a stride S1 of two voxels.
All layers are also followed by a Relu, Tanh or Sigmoid function as indicated.

3 Materials and Methods

3.1 Data Acquisition and Image Preprocessing

Five TOF MRA datasets of healthy subjects were used to analyze and evaluate
the proposed deep learning cerebrovascular segmentation method. The datasets
were acquired on a 3T Intera MRI scanner (Philips, Eindhoven, the Netherlands)
without application of contrast agent using a TE = 2.68 ms, a TR = 15.72 ms, a
20◦ flip angle, and a spatial resolution of 0.35 × 0.35 × 0.65 mm3. The datasets
size is 512 × 512 × 120 voxels.

For preprocessing, slab boundary artefact correction was performed using the
method described by Kholmovski et al. [13] followed by intensity non-uniformity
correction using the N3 algorithm [14]. A skull stripping algorithm [15] was also
applied to mask the brain images and their corresponding binary segmentations.
The vessels were manually segmented in each dataset by a medical expert based
on the preprocessed TOF MRA datasets.

3.2 Classification

For all voxels inside the brain region, we define a cubic region of 29 × 29 × 29
around this voxel, where the axial, coronal, and sagittal patches are extracted,
as in [9]. All patches have 29×29×1 voxels, as they are a bi-dimensional slice of
each axis. Each patch is fed to the CNN, which calculates the vessel likelihood, so
that three probability maps (for each orientation) are available after application
of the CNN. A voxel is defined as a vessel voxel if at least one of the probability
values (for the three directions) is above a threshold t and defined background
otherwise. In this work, an empirically defined threshold of t = 0.95 was used
for all experiments.
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3.3 CNN Evaluation

The performance of the deep CNN is evaluated by selecting random sets of TOF
MRA images for training. The number of images used for training is increased
from one to four images, to evaluate if increasing the number of training images
generates more accurate results. Initially, one TOF MRA image is randomly
selected to train the CNN, which is used to segment the test image. The selected
training image is different for each test image. Then, the number of training
images is consecutively incremented up to four, always guaranteeing that the
training set does not contain the test image.

The Dice similarity coefficient (DSC) [16] is used to compare the CNN-based
segmentation and ground-truth manual segmentations, as it has been used in
other cerebrovascular segmentation methods, thus, allowing an easier compari-
son. It is defined as DSC = 2|A ∩ B|/(|A| + |B|), where A and B represent the
ground-truth and CNN segmentations, respectively.

A standard one-way analysis of variance (ANOVA) is applied to determine
if the segmentation accuracies using an increasing number of images are statis-
tically different, followed by the Tukey’s honest significant difference procedure.
The Statistical Package for the Social Sciences version 16.0 (SPSS Inc., Chicago,
IL, USA) was used for this statistical analysis, and the criterion of statistical
significance was set at p < 0.05.

3.4 Hardware Settings

Our deep CNN is implemented using version 2.7 of the python language, and the
Theano 0.9.0 library [17]. Experiments are executed on a desktop computer with
eight Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz processors, 32 GB of RAM
memory, and graphic card GeForce GTX 745 (NVIDIA corp., United States),
with 4 GB RAM memory. Testing and training were done using the graphic card
and cuDNN extensions for faster processing [18].

4 Results

The results of the CNN approach for segmentation of vessels in TOF MRA
images are reported in Table 1. The values correspond to the DSC when com-
paring the CNN segmentation with the manual ground-truths available for eval-
uation. Each row corresponds to a different dataset, and each column to the
corresponding DSC when using the indicated number of images to train the
deep neural network. The numbers in parenthesis identify the datasets used for
training. Average DSC values, training and testing times are reported in the
final rows.

The average DSC values for our deep learning approach vary between 0.764
and 0.786, depending on the number of images used for training. According to the
ANOVA analysis, there is not enough evidence to guarantee that the resulting
DSC values are significantly different (p >= 0.05). As expected, training times
increase with the number of images used. The testing times are independent of
the number of training images.
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Table 1. DSC values for each dataset, when using a different number of images to
train the deep neural network.

Dataset 1 image 2 images 3 images 4 images

1 0.774 (2) 0.763 (4, 5) 0.770 (2, 3, 4) 0.767

2 0.758 (5) 0.780 (3, 5) 0.759 (1, 3, 4) 0.765

3 0.769 (4) 0.784 (1, 4) 0.730 (1, 2, 4) 0.771

4 0.770 (2) 0.795 (1, 2) 0.804 (1, 3, 5) 0.781

5 0.751 (1) 0.809 (1, 3) 0.742 (1, 2, 4) 0.788

Average 0.764±0.010 0.786±0.017 0.761±0.028 0.774±0.010

Train (min) 40 65 92 120

Test (min) 30 30 30 30

5 Discussion

This paper presents a feasibility analysis of a deep CNN vessel segmentation
method for TOF MRA images of the brain, with promising accuracy results. The
CNN analyzes only in-plane neighboring voxels in the axial, coronal, and sagittal
planes, and not full three-dimensional patches. Additionally, the Theano library
with cuDNN extensions, and graphic card were used in the CNN implementation.

According to the executed statistical tests, using more images for training did
not lead to a significant increase in segmentation accuracy. This result clearly
highlights the benefit that a simple CNN, as described here, only needs very
few well segmented ground truth datasets to achieve proper results, making an
application in research or clinical settings more feasible.

Figure 2 shows 3D visualizations of the segmentation results for dataset 1,
using the indicated number of images to train the proposed deep CNN. Visually,
no considerable difference can be depicted between the segmentation results,
confirming by the quantitative analysis. In general, it can be noted that large
vessels are correctly identified. On the other hand, small vessels are partially
affected by noise, such that their shape is not correctly delineated.

Fig. 2. 3D renderings of segmentation results for dataset 1 using a deep CNN trained
with the indicated number of images.
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As a limitation, it has to be noted that a small sample size with five TOF
MRA images may not be enough to support general conclusions about the most
suitable deep CNN architecture for vessel segmentation. However, the promising
results of this initial analysis (as seen in Fig. 2) motivates further developments
and analyses of this approach.

6 Conclusion

This paper presents a first feasibility analysis to apply deep CNN for automatic
segmentation of the cerebrovascular system. Processing times were optimized
by using bi-dimensional patches to identify vessels, and by taking advantage of
the Theano library with cuDNN extensions, and graphic card of the system.
No significant accuracy differences were found when using different numbers of
images to train the deep CNN. The developed program calculates axial, coronal,
and sagittal vessel probability maps and applies a fixed threshold to determine
which voxels belong to vessels. It is expected that more complex approaches
based on the calculated probability maps would lead to more accurate results.
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Abstract. In this article, we present the work towards improving the
overall workflow of the Percutaneous Coronary Interventions (PCI) pro-
cedures by capacitating the imaging instruments to precisely monitor the
steps of the procedure. In the long term, such capabilities can be used to
optimize the image acquisition to reduce the amount of dose or contrast
media employed during the procedure. We present the automatic VOIDD
algorithm to detect the vessel of intervention which is going to be treated
during the procedure by combining information from the vessel image
with contrast agent injection and images acquired during guidewire tip
navigation. Due to the robust guidewire tip segmentation method, this
algorithm is also able to automatically detect the sequence corresponding
to guidewire navigation. We present an evaluation methodology which
characterizes the correctness of the guide wire tip detection and correct
identification of the vessel navigated during the procedure. On a dataset
of 2213 images from 8 sequences of 4 patients, VOIDD identifies vessel-
of-intervention with accuracy in the range of 88% or above and absence
of tip with accuracy in range of 98% or above depending on the test case.

Keywords: Interventional cardiology · PCI procedure modeling · Image
fusion · Coronary roadmap

1 Introduction

Percutaneous Coronary Intervention (PCI) is a procedure employed for the treat-
ment of coronary artery stenosis. PCI is a very mature procedure relying on the
deployment of a stent having the shape of the artery at the location of the steno-
sis. These procedures are performed under X-ray guidance with use of contrast
agent. Consequently they also have side effects such as the injection of contrast
agent based on iodine to the patient. The tolerance to this contrast agent is
limited to some amount. The other side effect is the use of ionizing radiation
which affects both the patient and the operator.

In the work presented here, we develop methods based on image processing to
combine the information from fluoroscopic image sequences acquired at different
steps of the procedure. More precisely, we consider two types of images: (i) the
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): CVII-STENT/LABELS 2017, LNCS 10552, pp. 47–56, 2017.
DOI: 10.1007/978-3-319-67534-3 6
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Fig. 1. VOIDD: (from left to right)Input image f ; centerline of segmented guidewire
tip; tip candidate (red) matched to vessel centerline (green) marked by pairings(blue);
corresponding location (green) of guidewire tip(red) inside vessel. (Color figure online)

images from reference sequence, which are injected with contrast agent to depict
the vasculature and (ii) the images from navigation sequence, which are acquired
during the navigation of the tool and especially the guide wire, which is navigated
from the ostia of the coronary artery down to the distal part after crossing the
lesion. The imaging of the vessel with contrast agent provides information on the
potential location of the stenosis. The ECG of the patient is recorded along with
the images. Standard algorithm as [4] can then be used to identify the subset of
the images where the coronary images are well opacified with the contrast agent.
In this subset, a reference sequence of about 10 to 15 images is then selected
that covers a full cardiac cycle and includes best opacified images. The navigation
sequence is obtained with a low dose acquisition mode called fluoroscopy. The
guidewire, a very thin (wire-like) object of diameter 0.014′′ has two sections. The
distal section, called as the tip, is more important and is enough radio opaque
to be seen with low dose X-ray mode. Our aim is to automatically identify
navigation sequence and determine the vessel-of-intervention which is going to
be treated in the following steps of the PCI procedure, such as lesion reparation
with angioplasty balloon, stenting, post-dilatation.

Several authors have worked on the task of segmenting the guidewire. For
electrophysiology clinical application as in [7], the size of the tip of the catheters
makes its contrast significant enough to enable the development of robust algo-
rithms. For PCI application as in [5], the weak contrast of the guidewire body
makes the task very challenging. Some manufacturers of interventional suite
have proposed or are still including in their offer, applications which facilitate
the visual appreciation of the relationship between the guidewire and the vessel.
The main idea is to combine a suite of consecutive injected images which visual-
ize the vessel along a cardiac cycle. These images are combined with the images
obtained during tool navigation. The images between these different times are
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paired mostly based on the ECG and up to our knowledge neither the breathing
motion, nor any slight deformation of the arteries caused by the introduction of
the guidewire are compensated. In [8], the correspondence between a location
identified in the fluoroscopic images acquired during tool navigation and the cine
images which depict the injected vessels is searched. The addressed clinical need
is the registration of intra-vascular images acquired with a sensor placed along
the guidewire with the vessel. By this means, the operator can easily correlate
the readings of the angiographic images and the intravascular images/signals. In
this situation, a full application is developed with a specific acquisition workflow
with the different steps of the image acquisition and processing being done based
on landmark points and appropriate images selected by an operator.

The main contribution of this article is the proposition and the assessment
of a method, called VOIDD, to automatically detect the so-called vessel-of-
intervention during the navigation of the guidewire. More precisely this algo-
rithm is able to recognize from the stream of fluoroscopic images following the
acquisition of the reference sequence, the period corresponding to the guidewire
navigation and to exploit it to determine the vessel-of-intervention (see Fig. 1).
In order to reach this goal a general tracking algorithm is proposed and explained
in Sect. 2.1. This algorithm relies on features extracted from the navigation and
reference images. Various methods can be adopted or designed to extract these
features to be used with our general tracking algorithm. In this article, these fea-
tures consists of vessel tree segmentation and of guidewire tip location candidates
detection with advanced approaches involving the use of min tree [9]. Graph-
based matching approaches derived from [2] are used to match the guidewire tip
with the vessel. These developments have been evaluated on 4 patient dataset.
We present an evaluation methodology which characterizes the correctness of
the guide wire tip detection and the correct identification of the vessel navigated
during the procedures. On a dataset of 4 patients, VOIDD identifies vessel-of-
intervention with accuracy in the range of 88% or above and absence of tip with
accuracy in range of 98% or above depending on the test case.

2 Vessel-of-Intervention Dynamic Detection (VOIDD)
Algorithm

In this section, we first elaborate the general tracking framework of the VOIDD
algorithm proposed in this article (in Sect. 2.1). We then explain (in Sect. 2.2)
how to extract the features (from the reference sequence and the navigation
sequence), which are used by the VOIDD algorithm.

2.1 General Tracking Framework

We aim to obtain the vessel-of-intervention by making a smart correspondence
between the input guidewire navigation sequence and the reference sequence.
Therefore, we propose an algorithm, called VOIDD, that is able to simultane-
ously detect the guidewire tip in the navigation sequence and the section of the
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Algorithm 1. VOIDD
Data: Guidewire navigation sequence and reference sequence R
Result: Tvessel Track of vessel-of-intervention and detected guidewire tips

1 Initialize T , Tbest = ∅ and dbest to track assignment distance threshold ;
2 foreach image I in the guidewire navigation sequence do
3 P := ExtractFeaturePairs(I,R);

// feature pairs are ranked in decreasing order of matching score

4 foreach P ∈ P do
5 foreach T ∈ T do
6 dij := T → TrackAssignmentDistance(P ) ;
7 if dij < dbest then
8 Tbest := T ; dbest := dij ;

9 if Tbest �= ∅ then
10 AssignTrack(Tbest,P );

11 if (P → TrackNotAssigned()) then
12 Tnew := MakeTrack(P ); T → AddTrack(Tnew) ;

13 Reset(Tbest, dbest);

14 Tvessel = T → LongestTrack() ;

coronary artery tree in which the guidewire is currently navigating in the refer-
ence sequence. From a broader perspective, the algorithm consists of: (i) detect-
ing feature pairs from the navigation and reference sequence; (ii) grouping these
feature pairs into tracks, a track being a sequence of features that are spatially
consistent in time; (iii) selecting the most relevant track as the detected vessel-of-
intervention. A feature pair is made of two corresponding curves. The first one,
called a tip candidate, is extracted from the guidewire navigation sequence and
possibly corresponds to the guidewire tip in the fluoroscopic image. The second
one, called a vessel-of-intervention (VOI) candidate is obtained from the refer-
ence sequence and is a part of the coronary vessels that optimally fits the associ-
ated tip candidate. The precise description of the VOIDD algorithm and of the
feature pairs extraction is given in Algorithm1 and in the Sect. 2.2 respectively.

VOIDD algorithm manages a dictionary of tracks T , where each track T ∈ T
is a sequence of feature pairs, with at most one pair per image in the guidewire
navigation sequence. For each time step of the navigation sequence, the essence
of the algorithm lies in optimally assigning the best detected feature pair to the
existing tracks. To this end, the feature pairs are ranked in decreasing order
of matching score, provided by the feature extraction algorithm. Then, a dis-
tance between feature pair and track, called the track assignment distance (TAD)
(described in the Sect. 2.3), is considered to optimally assign the considered fea-
ture pair to the track which is at least distance. A TAD threshold is computed
as the theoretically maximum possible value of TAD based on the length of the
guidewire tip and maximum observed guidewire speed. If TAD to the closest
track is above the TAD threshold then the feature pair is not assigned to any
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existing track but is used to initialize a new track in T . Once all the frames in the
navigation sequence are processed, the longest track (i.e. track with maximum
feature pairs) is selected as the vessel-of-intervention.

2.2 Feature Pairs Extraction

This section elaborates the extraction of the feature pairs, which are associations
between the images of the navigation sequence and the images of the reference
sequence. First, we explain the tip candidate extraction by segmentation and
morphological thinning. This is followed by the extraction of centerline of the
injected vessels to obtain vessel graph. Finally, we present the matching part to
find the possible associations (the VOI candidates) of the tip candidate in the
vessel graph. However, different methods can be adopted or designed to obtain
these feature pairs.

Tip candidate extraction. Guidewire tip appears as contrasted thin and
elongated object in the fluoroscopic image. We are interested to segment the
guidewire tip, using a component tree called min tree. The min tree [9] struc-
tures all the connected components of the lower-level sets of the grayscale image
based on inclusion relationship. We assign to any connected component C of the
min tree M, a shape attribute characterizing the shape and structural properties
of guidewire tip. Then, the considered attribute A describes the elongation of the
components. For any component C, A(C) = (π × lmax(C)2)/|C| , where |.| rep-
resents cardinality and lmax(C) is the length of the largest axis of the best fitting
ellipse for the connected component C. Since the guidewire tip is thin and long,
the component corresponding to the tip have high value of attribute A. A mere
thresholding of the elongation A is not sufficient, often giving other long and
elongated (unwanted) objects like pacing lead and filled catheters. Indeed, these
objects have higher elongation value than the guidewire tip. Hence, according to
physical properties of the guidewire tip, we set a upper bound value tmax on A to
maximum possible elongation value of the guidewire tip, to ensure that extracted
components contain guidewire tip. Even with this upperbound threshold keeping
the most elongated component does not always lead to the desired tip. Based
on min tree structure, the nested connected components that satisfy the cri-
terion are filtered to preserve the component with largest area (taking aid of
the inclusion relationship). Therefore, we adopt the shaping framework [10] that
allows us to efficiently extract significant connected components. The extracted
components constitute the tip candidates. Shaping extensively uses the min tree
structure to regularize the attributes and to select the relevant components. In
order to facilitate matching, we perform skeletonization [3] of the selected con-
nected component(s) to obtain centerline of the tip candidates. Figure 1 shows
the obtained centerline of segmented guidewire tip from the input image. This
centerline of the tip candidate C is modeled as a discrete polygonal curve.

Vessel centerline extraction. The coronary vessels from each fluoroscopic
image in the reference sequence are enhanced using a Hessian based technique [6]
followed by centerline extraction using Non-Maximum Supression and hysteresis
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thresholding. We represent these centerlines of vessels by a non-directed graph X
where the nodes are represented by bifurcations whereas the edges refer to curvi-
linear centerlines. Apparent bifurcations resulting from superimposing vessels in
2D X-ray projections also form nodes. Such graph is computed for each frame
in the reference sequence providing us with a representation for each phase of
the cardiac cycle.

Matching. An important step in the task of vessel-of-intervention detection is
to designate possible desirable associations of the corresponding location of the
guidewire tip inside the injected vessel. We refer to these locations in vessels as
vessel-of-interest (VOI) candidates. This step refers to building the correspon-
dences between the centerline of each tip candidate C extracted from navigation
sequence and the corresponding centerlines of the vessels X extracted from ref-
erence sequence by taking into account ECG information. We adopt the curve
pairing algorithm of [2] to perform this task. It is required to define a curve-
to-curve distance to compare the two sets of curves mentioned above. We use a
discrete version of Fréchet distance [1] as it takes into account the topological
structures of the curves. Thus, this Fréchet distance is computed from a mapping
between two ordered sets of discrete polygonal curves denoted by C and by XC ,
respectively. Imposed non-decreasing surjective mappings (reparameterization
mapping) in computation of Fréchet distance takes into account the order of
points along curves. This order also helps us in curve pairing described below,
to give scan direction along the curves.

The above step requires the selection of every admissible curve XC in
graph X . A curve in X is a path between two nodes, without visiting the
same edge twice. In order to restrict computational complexity of search, we
restrict the set of admissible curves to be in the neighborhood of the tip can-
didate extremities C[1] and C[n] and we construct all possible paths between
them in the graph. Indeed, these admissible curves are the VOI candidates.
These VOI candidates, together with the tip candidate C, is a set of feature
pairs P = {(C,XC) | XC is some curve in X matched to C}, which are fur-
ther filtered and ranked according to the shape similarity measure to prefer VOI
candidates with higher shape resemblance to the tip candidate. This term is
computed from residual Fréchet distance after the 2D transformation [2]. The
set of feature pairs P is computed for each image in the guidewire tip navigation
sequence by performing the matching with the vessel graph of the corresponding
cardiac phase.

2.3 Track Assignment Distance (TAD)

The TAD is computed as a distance between a proposed feature pair P = (C,XC)
and a track T . It is the average of tip candidate distance, VOI candidate distance
and graph distance. The tip candidate distance and the VOI candidate distance
are computed between the proposed feature pair and the latest added feature pair
of T . The tip candidate distance accounts for the geometrical shift between the
two tip candidates. The VOI candidate distance measures the mean Euclidean
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distance between the end-points of the VOI candidates. The graph distance is
computed between the proposed feature pair and the latest iso cardiac phase
feature pair in T . It is the length of the path between two VOI candidates from
two images in the same cardiac phase obtained from different cardiac cycles.
The VOI candidate distance and the graph distance helps to preserve temporal
coherency in the tracks. We transform these three distances with exponential
functions so that they belong in the same range [0–1[. The parameters of these
exponential functions are set according to the length of the guidewire tip.

3 Results

This section reports the performance of the VOIDD algorithm to detect the
vessel-of-intervention and assesses its potential to identify the guidewire tip nav-
igation sequence. An expert user annotated (with cross-validation) the center-
line of the branch of the artery navigated by the guidewire tip as the ground
truth. Ground truth was marked by a single expert user using a semi-automatic
software guided by the vessel centerline extracted by the method in Sect. 2.2.
This ground truth centerline is modeled as a discrete polygonal curve GT
= [GT [1] · · · GT [M ]]. A VOI candidate X selected by VOIDD is similarly mod-
eled as X = [X[1] · · · X[N ]] with N equidistantly spaced points chosen at sub-
pixel resolution. To assess the correctness of the automatically detected vessel,
we consider the following target-to-registration (TRE) error between X and GT

given by, TRE = 1
N

∑i=N
i=1 min

∀j∈1···M−1
|d(XC [i], GT (j, j + 1))|, where GT (j, j +1)

refers to the segment between point GT [j] and GT [j +1] and d refers to point to
segment distance converted to mm using known detector pixel size. If the tip is
correctly paired to vessel-of-intervention then this TRE error is governed by the
usual small difference between the estimated centerline and the expert marked
vessel centerline. The algorithm chosen tip and vessel-of-intervention are consid-
ered as a correct detection if the corresponding TRE error is less than 0.5 mm.
If TRE error is more than 0.5 mm, we consider that we have a wrong detection.
If the input image contains guidewire tip, but the algorithm do not provide any
detection, then the TRE error cannot be computed and a missed detection is
reported. This may occur due to the fact that, sometimes the tip appears to be
very blurred due to its sudden movement or due to reduced visibility of the tip
caused by small contrast media injection to guide the navigation. In order to fur-
ther evaluate the efficacy of the algorithm to identify the navigation sequence, we
analyze its robustness to detect navigated vessel in sequence with no guidewire
tip. In such sequence, if the algorithm detects a vessel-of-intervention in an
image, it is counted as a false detection.

Sequences A1, B1, C1 and D1 in Table 1 show the efficacy of VOIDD algo-
rithm to detect vessel-of-intervention during guidewire navigation in 4 patients
and over 1513 images. In summary, VOIDD algorithm is able to correctly
determine the location of tip in the vessel-of-intervention with an accuracy of
around 88%–92%. The sequences A2, B2, C2 and D2 in the Table 1 portray the
efficiency to identify navigation sequence over 690 images when guidewire tip is
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Table 1. Performance of VOIDD algorithm on 4 patients

Patient Sequence Number of
frames

Frames
with tips

Correct
detection

Wrong
detection

Missed
detection

False
Detection

A A1 164 164 92.07% 0% 7.92% NA

B B1 706 706 88.52% 5.80% 5.66% NA

C C1 449 449 92.20% 5.12% 2.67% NA

D D1 204 204 89.70% 2.94% 7.35% NA

A A2 156 0 NA NA NA 1.28%

B B2 172 0 NA NA NA 0.58%

C C2 264 0 NA NA NA 1.50%

D D2 98 0 NA NA NA 2.04%

absent in the fluoroscopic images. The VOIDD algorithm is able to detect these
sequences as sequence without guidewire tip with accuracy of 98%–99%. Ana-
lyzing the navigation sequence detection accuracy of VOIDD, we can use it to
automatically detect the arrival of the guidewire tip. The parameters involved
in various stages of the algorithm e.g. tip candidate extraction or TAD were
designed based on the physical properties of guidewire tip, permissible speed
of advancement of guidewire. Current implementation runs in average 0.33 s for
tracking on a Intel Core i7 cadenced at 2.80 GHz. Videos are available as sup-
plementary material1. Figure 2 shows the vessel of intervention obtained by the
VOIDD algorithm and corresponding ground truth on left.

Fig. 2. VOIDD result: ground truth (in green) and vessel of intervention obtained from
longest track (in red). In ground truth, the catheter is marked by the expert but not
part of the tracked vessel because the guidewire tip is not detected when it is still
inside the catheter. In this case, the vessel makes a very tight loop (blue arrow) in the
bottom. In the tracking, we fail to detect this loop. (Color figure online)

1 https://voidd-miccai17.github.io/.

https://voidd-miccai17.github.io/
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4 Conclusion and Future Work

We proposed in this paper a framework to determine the vessel-of-intervention
in fluoroscopic images during the PCI procedures. We also demonstrate the seg-
mentation of the guidewire tip and the accuracy of its detection. This algorithm
has the potential to be part of the software embarked by X-ray imaging systems
and capable of automatically monitoring the successive steps of the procedure
in view of continuously adapting the system behavior to the user needs. For
instance, the guidewire tip tracking can be used to determine the phases related
to the navigation of the guidewire, adding more semantic information, hence can
be a first step towards smart semantic monitoring of the procedure. In order to
perform such semantic analysis of the procedure, it is important to know the
position of different interventional tools like guidewire tip, marker balls, balloon
and this application opens the doors to ease the segmentation of these objects in
the vessel-of-intervention. Encouraging results have been obtained with success
rate above 88% for vessel of intervention detection. Future work includes the
collection of additional clinical cases. In the longer term, we will investigate the
detection of the other major tools and their integration into a semantic model
of the procedure.
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Abstract. Supervised learning is ubiquitous in medical image analysis.
In this paper we consider the problem of meta-learning – predicting which
methods will perform well in an unseen classification problem, given pre-
vious experience with other classification problems. We investigate the
first step of such an approach: how to quantify the similarity of different
classification problems. We characterize datasets sampled from six clas-
sification problems by performance ranks of simple classifiers, and define
the similarity by the inverse of Euclidean distance in this meta-feature
space. We visualize the similarities in a 2D space, where meaningful
clusters start to emerge, and show that the proposed representation can
be used to classify datasets according to their origin with 89.3% accu-
racy. These findings, together with the observations of recent trends in
machine learning, suggest that meta-learning could be a valuable tool
for the medical imaging community.

1 Introduction

Imagine that you are a researcher in medical image analysis, and you have expe-
rience with machine learning methods in applications A, B, and C. Now imagine
that a colleague, who just started working on application D, asks your advice
on what type of methods to use, since trying all of them is too time-consuming.
You will probably ask questions like “How much data do you have?” to figure
out what advice to give. In other words, your perception of the similarity of
problem D with problems A, B and C, is going to influence what kind of “rules
of thumb” you will tell your colleague to use.

In machine learning, this type of process is called meta-learning, or “learning
to learn”. In this meta-learning problem, the samples are the different datasets
A, B and C, and the labels are the best-performing methods on each dataset.
Given this data, we want to know what the best-performing method for D will be.
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): CVII-STENT/LABELS 2017, LNCS 10552, pp. 59–66, 2017.
DOI: 10.1007/978-3-319-67534-3 7
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The first step is to characterize the datasets in a meta-feature space. The meta-
features can be defined by properties of the datasets, such as sample size, or by
performances of simple classifiers [1–3]. Once the meta-feature space is defined,
dataset similarity can be defined to be inversely proportional to the Euclidean
distances within this space, and D can be labeled, for example, by a nearest
neighbor classifier.

Despite the potential usefulness of this approach, the popularity of meta-
learning has decreased since its peak around 15 years ago. To the best of our
knowledge, meta-learning is not widely known in the medical imaging commu-
nity, although methods for predicting the quality of registration [4] or segmen-
tation [5] can be considered to meta-learn within a single application. In part,
meta-learning seems less relevant today because of the superior computational
resources. However, with the advent of deep learning and the number of choices
to be made in terms of architecture and other parameters, we believe that meta-
learning is worth revisiting in the context of its use in applications in medical
image analysis.

In this paper we take the first steps towards a meta-learning approach for
classification problems in medical image analysis. More specifically, we investi-
gate the construction of a meta-feature space, where datasets known to be similar
(i.e. sampled from the same classification problem), form clusters. We represent
120 datasets sampled from six different classification problems by performances
of six simple classifiers and propose several methods to embed the datasets into
a two-dimensional space. Furthermore, we evaluate whether a classifier is able to
predict which classification problem a dataset is sampled from, based on only a
few normalized classifier performances. Our results show that even in this simple
meta-feature space, clusters are beginning to emerge and 89.3% of the datasets
can be classified correctly. We conclude with a discussion of the limitations of
our approach, the steps needed for future research, and the potential value for
the medical imaging community.

2 Methods

In what follows, we make the distinction between a “classification problem” -
a particular database associated with extracted features, and a “dataset” - a
subsampled version of this original classification problem.

We assume we are given datasets {(Di,Mi)}n1 , where Di is a dataset from
some supervised classification problem, and Mi is a meta-label that reflects some
knowledge about Di. For example, Mi could be the best-performing (but time-
consuming) machine learning method for Di. For this initial investigation, Mi is
defined as the original classification problem Di is sampled from.

We represent each dataset Di by performances of k simple classifiers. Each of
the n Dis is therefore represented by an k-dimensional vector xi which together
form a n × k meta-dataset Ak. Due to different inherent class overlap, the
values in Ak might not be meaningful to compare to each other. To address this
problem, we propose to transform the values of each xi by:
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– Normalizing the values to zero mean and unit variance, creating a meta-
dataset Nk

– Ranking the values between 1 and k, creating a meta-dataset Rk. In cases of
ties, we use average ranks.

The final step is to embed the meta-datasets Ak, Nk and Rk in a 2D space for
visualization, to obtain A2, N2 and R2. We use two types of embedding: multi-
dimensional scaling (MDS) [6] and t-stochastic nearest neighbor embedding (t-
SNE) [7]. These embeddings can help to understand complementary properties of
the data. MDS emphasizes large distances, and is therefore good at pointing out
outliers, whereas t-SNE emphasizes small distances, potentially creating more
meaningful visualizations. An overview of the approach is shown in Fig. 1.

Fig. 1. Overview of the method.

3 Experiments

Data and Setup. We sample datasets from six classification problems,
described in Table 1. The problems are segmentation or detection problems, the
number of samples (pixels or voxels) is therefore much higher than the number of
images. We sample each classification problem 20 times by selecting 70% of the
subjects for training, and 30% of the subjects for testing, to generate n = 120
datasets for the embedding. For each of dataset, we do the following:

– Subsample {100, 300, 1K, 3K, 10K} pixels/voxels from the training subjects
– Train k = 6 classifiers on each training set: nearest mean, linear discriminant,

quadratic discriminant, logistic regression, 1-nearest neighbor and decision
tree

– Subsample 10 K pixels/voxels from the test subjects
– Evaluate accuracy on the test set, to obtain 5 × 6 accuracies
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Table 1. Classification problems described by type of image, number of images (sub-
jects), number of classes and number and type of features: “Classical” = intensity and
texture-based, “CNN” = defined by output of the fully-connected layer of a convolu-
tional neural network.

Dataset Type Images Classes Features

Tissue [8] Brain MR 20 7 768, CNN [9]

Mitosis, MitosisNorm [10] Histopathology 12 2 200, CNN [11]

Vessel [12] Retinal 20 2 29, Classical [13]

ArteryVein [14] Retinal 20 2 30, Classical [14]

Microaneurysm [15] Retinal 381 2 30, Classical

– Transform the accuracies by ranking or normalizing
– Average the ranks/normalized accuracies over the 5 training sizes

We use balanced sampling for both training and test sets, in order to keep
performances across datasets comparable (and to remove the “easy” differences
between the datasets). The classifiers are chosen mainly due to their speed and
diversity (3 linear and 3 non-linear classifiers). The training sizes are varied to
get a better estimation of each classifier’s performance.

Embedding. We use the MDS algorithm with default parameters1, and t-SNE2

with perplexity = 5. Because of the stochastic nature of t-SNE, we run the
algorithm 10 times, and select the embedding that returns the lowest error. We
apply each embedding method to Ak, Nk and Rk, creating embeddings Atsne

2 ,
Amds

2 and so forth.

Classification. To quantify the utility of each embedding, we also perform a
classification experiment. We train a 1-nearest neighbor classifier to distinguish
between the different classification problems, based on the meta-representation.
The classifiers are trained with a random subset of {5, 10, 20, 40, 60} meta-
samples 5 times, and accuracy is evaluated on the remaining meta-samples.

4 Results

Embedding. The embeddings are shown in Fig. 2. The embeddings based on
accuracy are the best at discovering the true structure. Although we sampled
the datasets in a balanced way in an attempt to remove some differences in
accuracy, it is clear that some problems have larger or smaller class overlap, and
therefore consistently lower or higher performances. Both t-SNE and MDS are
able to recover this structure.

1 http://prtools.org/.
2 https://lvdmaaten.github.io/tsne/.

http://prtools.org/
https://lvdmaaten.github.io/tsne/
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Fig. 2. 2D embeddings of the datasets with t-SNE (left) and MDS (right), based on
accuracy (top), ranks (middle) and scaling (bottom).

Looking at N2 and R2, t-SNE appears to be slightly better at separating
clusters of datasets from the same classification problem. This is particularly
clear when looking at the ArteryVein datasets. Visually it is difficult to judge
whether N2 or R2 provides a more meaningful embedding, which is why it is
instructive to look at how a classifier would perform with each of the embeddings.

Looking at the different clusters, several patterns start to emerge. ArteryVein
and Microaneurysm are quite similar to each other, likely to to the similarity
of the images and the features used. Furthermore, Mitosis and MitosisNorm
datasets are quite similar to each other, which is expected, because the same
images but with different normalization are used. The Tissue dataset is often the
most isolated from the others, being the only dataset based on 3D MR images.
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Not all similarities can be explained by prior knowledge about the datasets.
For example, we would expect the Vessel to be similar to the ArteryVein and
Microaneurysm datasets, but it most embeddings it is actually more similar to
Mitosis and MitosisNorm. This suggests that larger sample sizes and/or more
meta-features are needed to better characterize these datasets.

Classification. The results of the 1-NN classifier, trained to distinguish between
different classification problems, are shown in Fig. 3 (left). The performances
confirm that the t-SNE embeddings are better than MDS. As expected, A2 is
the best embedding. Between N2 and R2, which were difficult to assess visually,
N2 performs better. When trained on half (=60) of the meta-samples, 1-NN
misclassifies 10.7% of the remaining meta-samples, which is low for a 6-class
classification problem.

To assess which samples are misclassified, we examine the confusion matrix
of this classifier in Fig. 3 (right). Most confusion can be found between Mitosis
and MitosisNorm, ArteryVein and Microaneyrism and between Vessel and the
Mitosis datasets, as would be expected from the embeddings.

Fig. 3. Left: Learning curves of 1-NN classifiers trained on different-size samples from
six meta-datasets. Right: confusion matrix of classifier trained on 60 samples from
N tsne

2 . Each cell shows what % of the true class (row) is classified as (column).

5 Discussion and Conclusions

We presented an approach to quantify the similarity of medical imaging datasets,
by representing each dataset by performances of six linear and non-linear classi-
fiers. Even though we used small samples from each dataset and only six classifiers,
this representation produced meaningful clusters and was reasonably successful
(89.3% accuracy) in predicting the origin of each dataset. This demonstrates the
potential of using this representation in a meta-learning approach, with the goal of
predicting which machine learning method will be effective for a previously unseen
dataset.
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The main limitation is the use of artificial meta-labels, based on each
dataset’s original classification problem. Ideally the labels should reflect the
best-performing method on the dataset. However, we would not expect the best-
performing method to change for different samplings of the same dataset. There-
fore, since we observe clusters with these artificial meta-labels, we also expect to
observe clusters if more realistic meta-labels are used. Validating the approach
with classifier-based meta-labels is the next step for a more practical application
of this method.

Furthermore, we considered features as immutable properties of the clas-
sification problem. By considering the features as fixed, our approach would
only be able to predict which classifier to apply to these already extracted fea-
tures. However, due to recent advances in CNNs, where no explicit distinction
is made between feature extraction and classification, we would want to start
with the raw images. A challenge that needs to be addressed is how to rep-
resent the datasets at this point: for example, performances of classifiers on
features extracted by CNNs pretrained on external data, or by some intrinsic,
non-classifier-based characteristics. In a practical application, perceived similar-
ity of the images (for example, obtained via crowdsourcing) could be used in
addition to these features.

Despite these limitations, we believe this study reaches a more important
goal: that of increasing awareness about meta-learning, which is largely over-
looked by the medical imaging community. One opportunity is to use meta-
learning jointly with transfer learning or domain adaptation, which have similar
goals of transferring knowledge from a source dataset to a target dataset. For
example, pretraining a CNN on the source, and extracting features on the tar-
get, is a form of transfer. In this context, meta-learning could be used to study
which source datasets should be used for the transfer: for example, a single most
similar source, or a selection of several, diverse sources.

Another opportunity is to learn more general rules of thumb for “what works
when” by running the same feature extraction and classification pipelines on
different medical imaging datasets, such as challenge datasets. In machine learn-
ing, this type of comparison is already being facilitated by OpenML [16], a large
experiment database allows running different classification pipelines on already
extracted features. We believe that a similar concept for medical imaging, that
would also include preprocessing and feature extraction steps, would be a valu-
able resource for the community.
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Abstract. Many medical image classification tasks share a common unbal-
anced data problem. That is images of the target classes, e.g., certain types of
diseases, only appear in a very small portion of the entire dataset. Nowadays,
large collections of medical images are readily available. However, it is costly
and may not even be feasible for medical experts to manually comb through a
huge unlabeled dataset to obtain enough representative examples of the rare
classes. In this paper, we propose a new method called Unified LF&SM to
recommend most similar images for each class from a large unlabeled dataset for
verification by medical experts and inclusion in the seed labeled dataset. Our
real data augmentation significantly reduces expensive manual labeling time. In
our experiments, Unified LF&SM performed best, selecting a high percentage of
relevant images in its recommendation and achieving the best classification
accuracy. It is easily extendable to other medical image classification problems.

Keywords: Real data augmentation � Unbalanced data � Image classification

1 Introduction

To use supervised machine learning in the medical domain, highly skilled expertise is
required to create a training dataset with sufficient representative images for all the
classes. Data imbalance is prevalent due to two major factors. For a given disease of
interest, there are more healthy patients than unhealthy ones. For a given patient,
typically there are more normal images than the abnormal ones. For instance, in a
colonoscopic procedure, most frames showing normal colon mucosa compared to no
frames or a few minutes of frames showing a polyp and a snare for polypectomy.

Traditional data augmentation is commonly used to address the data imbalance
problem [1, 2]. This approach applies image processing operators such as translation,
cropping, and rotation on images in the training dataset to create more images for the
classes with fewer labeled samples. However, the limitation is that, depending on the
parameters and image operators used, the generated samples may not represent image
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appearances in real data or the generated samples may be very similar to the existing
images in the training dataset. Random data dropout addresses the data imbalance
problem by randomly dropping out data of the class with many more examples (e.g.,
the normal class) [3]. However, this method does not increase the learning capability
for the rare classes.

We investigate a different paradigm that selects images from a large unlabeled
dataset and recommends them to the medical expert. We call this paradigm “real data
augmentation” since the recommended images are from a real dataset. One naive real
data augmentation method is to select images from the unlabeled dataset randomly
without replacement and ask the medical expert to assign them class labels. This
approach is time-consuming and costly to obtain enough representative examples of the
rare target classes. On the other hand, a self-training method [4] applies a probabilistic
classifier trained on the seed labeled dataset to predict the class of each unlabeled image
and recommend for each class the images with the highest probabilities of belonging to
that class. However, the low classification accuracy caused by the small training dataset
likely results in incorrect recommendations. Some real data augmentation methods were
introduced for text classification [5] and object recognition [6]. These methods use two
steps. First, the feature representation is learned. Then, a fixed distance function, (e.g.,
the L2 distance, the cosine similarity), is used to retrieve relevant samples.

Our contribution in this paper is as follows. (1) We propose a new real data
augmentation method called Unified Learning of Feature Representation and Similarity
Matrix (Unified LF&SM) using a single deep Convolution Neural Network
(CNN) trained on the seed labeled dataset. The method recommends top k similar
images to the training images for each class to augment the seed dataset for that class.
(2) We explore two more real data augmentation methods, the two-step method that
learns feature representation first then learns the similarity matrix later and the method
that learns only feature representation using a fixed similarity function. (3) We eval-
uated the effectiveness of the three methods and the self-training method. The effec-
tiveness is in terms of the number of relevant images in the top k recommended images
and the classification accuracy for the problem of 6-class classification of colonoscopy
and upper endoscopy images. We found Unified LF&SM most effective among the
four methods in our experiments.

2 Methods

We describe four methods for real data augmentation in this section. They differ in how
feature representations are obtained and the recommendation algorithm to select
unlabeled images. Let T be a labeled training image dataset, NC be the number of
classes desired for the classification problem, and Nj be the number of images in T
belonging to a class j. Let U be an unlabeled dataset with a cardinality of Ns. Our goal
is to recommend the set (Rj) of k most relevant images from U for each class j. We use
CNN as our supervised deep learning classification algorithm. In this paper, we
investigate the simplest recommendation algorithm, which recommends the top k most
similar images for each class to improve the robustness of CNN. The higher the value
of k is, the larger the variation in the recommended examples is. Note that even the
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most similar image is recommended, it is still useful since the image is from a different
video never seen in the training set.

2.1 Data Augmentation Based on Probabilities (CNN + Probability)

After training a CNN classifier on T , we apply the classifier to each image Ii in U and
obtain the corresponding value pði;jÞ indicating the probability of the image Ii belonging
to a class j using the soft-max function at the last layer of the CNN. Figure 1 shows the
recommendation algorithm. The structure of the CNN we used is described in
Sect. 3.1.

2.2 Data Augmentation Based on Distance Function Learning
(CNN + Bilinear)

We train a CNN classifier on the training dataset T . Then we extract the feature
representation vi for the image Ii using the trained CNN. Next, we apply OASIS [7] to
learn a bilinear similarity function SW ðvi; vjÞ in Eq. 1 that assigns higher similarity
scores to images in the same class. Figure 2 shows our method based on the bilinear
similarity function to find similar images.

Fig. 1. Recommendation algorithm—“CNN + Probability”

Fig. 2. Recommendation algorithm—“CNN + Bilinear”
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SW vi; vj
� � ¼ vTi Wvj ð1Þ

2.3 Data Augmentation Based on Feature Learning (Triplet + L2)

We train Facenet triplet learning model [8] on the seed training dataset T that aims at
learning an embedding (feature representation) function FðIiÞ, from an image Ii into its
corresponding feature vector by minimizing the overall loss L calculated using Eq. 2.
We want to achieve the goal that the squared distance between the image Ii and the
image I þi of the same class as Ii must be at least a smaller than the squared distance
between the image Ii and image I�i of a different class as Ii as shown in Eq. 3. The
second term k

P

h2P
h2 in Eq. 2 is the regularization term [9] to prevent overfitting and

obtain a smooth model. k is the weight decay.

L ¼
XNC

i¼1
max 0; F Iið Þ � F I þi

� ��� ��2
2 þ a� F Iið Þ � F I�i

� ��� ��2
2

� �
þ k

X
h2P h

2 ð2Þ

F Iið Þ � F I þi
� ��� ��2

2 þ a\ F Iið Þ � F I�i
� ��� ��2

2; 8ðIi; I þi ; I�i Þ 2 C ð3Þ

where a is an enforced margin between positive and negative pairs; P is the set of all
parameters in FðIiÞ; I þi (positive) is an image from the same class as Ii. I�i (negative) is
an image from a different class as Ii. C is the set of all possible triplets in the training set
and has cardinality NC. Figure 3 shows our method based on the learned embedding
function using the squared distance function (L2) to find similar images.

2.4 Unified Learning of Feature Representation and Similarity Matrix

We describe our proposed Unified Learning of Feature Representation and Similarity
Matrix (Unified LF&SM). Figure 4 shows the new model structure which is trained on
the seed training dataset T . We aim at finding a similarity score model SðF ;WÞ Ii; Ij

� �
,

which is a pair of an embedding function FðIiÞ mapping an image Ii into a feature

Fig. 3. Recommendation algorithm—“Triplet + L2”
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vector and a bilinear similarity matrix W , such that the similarity score between the
image Ii and the image I þi of the same class as Ii must be at least a bigger than the
similarity score between the image Ii and image I�i of a different class as Ii as shown in
Eqs. 4 and 5.

SðF ;WÞ Ii; I
þ
i

� �
[ SðF ;WÞ Ii; I

�
i

� �þ a; 8ðIi; I þi ; I�i Þ 2 C ð4Þ

SðF ;WÞ Ii; Ij
� � ¼ F Iið Þð ÞTWF Ij

� � ð5Þ

We minimize the loss function as shown in Eqs. 6 and 7 to obtain the above
mentioned similarity score model.

L ¼
XNC

i¼1
lF ;W Ii; I

þ
i ; I�i

� �þ k
X

h2P h
2 ð6Þ

¼
XNC

i¼1
max 0; a� SðF ;WÞ Ii; I

þ
i

� �þ SðF ;WÞ Ii; I
�
i

� �� �þ k
X

h2P h
2 ð7Þ

where the definition of a, NC, I�i and I þi are the same as in Sect. 2.3; P is the set of all
parameters in FðIiÞ and W . Unlike the Facenet model that uses L2 distance and
optimizes for the feature representation, the new model does joint optimization on both

Fig. 4. The model consists of a batch input layer to a CNN followed by L2 normalization, which
results in the embedding using the triplet loss based on the Bi-linear distance.

Fig. 5. Recommendation algorithm—“Unified LF&SM”
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the feature representation and the similarity learning function. Figure 5 shows our
recommendation algorithm using the learned similarity matrix and the learned feature
representation to find unlabeled images similar to the training images for each class.

3 Experiments

To evaluate the performance of the four data augmentation methods, we selected two
image classification problems in endoscopy video analysis: the instrument image
detection [10] and the retroflexion image detection [11]. These two problems share a
common unbalanced data problem; instrument images and retroflexion images are rare as
the proportions of these images are very small as shown in Table 1. Figure 6 shows
sample images for left cable body, right cable body, forceps head, snare head,
retroflexion, and no object class for common endoscopy images without any of the
aforementioned objects.We solve these two problems using one six-class CNN classifier.

Training dataset: We extracted and labeled one frame for every five frames from
25 de-identified full-length endoscopic videos of colonoscopy and upper endoscopy
captured using Fujinon or Olympus scopes. Finally, we get a training set of 9300
images (1400 training images and 150 validation images for each class, NC = 6).
Table 1 shows the average percentage of images belonging to each class calculated on
the 25 training videos.

Fig. 6. Sample images for the six classes. From left to right: left cable body, right cable body,
forceps head, snare head, retroflexion, and no object.

Table 1. Average percentage of images
belonging to each class calculated on the
25 training videos.

Class name Ratio (%)

Left cable body 2.01
Right cable body 3.82
Forceps head 2.04
Snare head 1.51
Retroflexion 0.80
No object 89.8

Table 2. Our CNN structure. The input and
output sizes are described in rows � cols � #
nodes. The kernel is specified as rows �
cols � #filters, stride.

Layer Size-in Size-out Kernel

Convl 64 � 64 � 3 64 � 64 � 16 3 � 3 � 16,1

Pooll 64 � 64 � 16 32 � 32 � 16 2 � 2 � 16,2

Conv2 32 � 32 � 16 32 � 32 � 32 3 � 3 � 32,1

Pool2 32 � 32 � 32 16 � 16 � 32 2 � 2 � 32,2

Conv3 16 � 16 � 32 16 � 16 � 64 3 � 3 � 64,1

Pool3 16 � 16 � 64 8 � 8 � 64 2 � 2 � 64,2

Conv4 8 � 8 � 64 8 � 8 � 128 3 � 3 � 128,1

Pool4 8 � 8 � 128 4 � 4 � 128 2 � 2 � 128,2

Conv5 4 � 4 � 128 1 � 1 � 256 4 � 4 � 256,1
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Unlabeled dataset U consists of 600,000 unlabeled images (Ns = 600,000) from
228 endoscopic videos by automatically extracting one frame for every ten frames.
Each unlabeled video is different from any training video.

Test dataset consists of 21000 images (3500 test images for each class) from
58 endoscopic videos by automatically extracting one frame for every five frames.
Each test video is different from any training video and unlabeled video. The test
dataset contains many rare-class images with quite different appearances (e.g., different
instrument colors or shapes) from the training images.

3.1 Model Parameters

Considering the fact that only a small training set is available, we use a CNN structure
which is similar to the VGG Net [12], but has much fewer parameters, as shown in
Table 2. Our CNN models accept RGB images with the size of 64 � 64 pixels. These
images are from resizing the raw endoscopic images. We implemented our CNN
models using Python and Google’s TensorFlow library [13]. When training the CNN
classifiers described in Sects. 2.1 and 2.2, we set the batch size as 256 and the epoch
number as 400. When training the CNN models described in Sects. 2.3 and 2.4, we set
the enforced margin a as 0.2, the weight decay k as 0.001, the epoch number as 200
(400 batches per epoch, 6 classes per batch, and 512 images by random selection per
class). We learned the bilinear similarity function in Sect. 2.2 using the Matlab code
provided by the author of OASIS and set the iteration number as 108. The feature
vector of each image comes from the output of the “Conv5” in Table 2. To show the
advantage of the proposed real data augmentation over the traditional data augmen-
tation, we used KERAS [14] to apply rotation (0°–30°), shearing (0–0.01), translation
(0–0.01), zooming (0–0.01), and whitening on each image in the seed training dataset
and synthesized 5600 images for each class to expand the seed training dataset.

3.2 Performance Metrics and Comparison

3.2.1 Classification Performance
We trained the new CNN classifier by adding the new correctly recommended images
(k = 5000) to the seed dataset for each recommendation model and computed the
average recall and average precision on the six classes. When training the CNN
classifier for each method, we used the same CNN structure, weight decay, and
learning rate.

Table 3. Comparison of 6-class image classification performance for different models.

Method Average recall Average precision

Baseline 80.3% 80.8%
Traditional augmentation 83.2% 84.0%
CNN + Probability 84.4% 85.0%
CNN + Bilinear 85.8% 86.0%
Triplet + L2 88.9% 89.2%
Unified LF&SM 89.3% 89.3%
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In Table 3, Baseline represents the CNN classifier trained on the seed dataset.
Table 3 shows that we can get the best average recall and average precision when using
the Unified LF&SM to do real data augmentation. Table 3 also shows that, compared
to the Baseline, the Unified LF&SM improved the average recall and the average
precision by 9% and 8.5%, respectively. Table 3 also shows that even the simple
method of selecting top k similar images still outperforms the traditional data aug-
mentation that is commonly used. This result shows that our real data augmentation
method is very useful for improving the image classification accuracy. Although the
classification performance between Triplet + L2 and Unified LF&SM is very close, we
will see next that Unified LF&SM reduces the efforts of manual labeling the most.

3.2.2 Efforts of Domain Experts
We define the number of true accepts (correct recommendations) in the top k recom-
mended images for the class j as TA j; kð Þ. We define TA kð Þ as the average true accepts
considering all classes for each k, a desired number of recommend images. We define
TAmin kð Þ as the number of true accepts for the class with the least correct recom-
mendations among all the classes. We use the actual number instead of precision to
reflect the medical experts’ efforts to verify the recommended results.

TA kð Þ ¼ PNc
j¼1 TA j; kð Þ=Nc TAmin kð Þ ¼ min1� j�Nc TA j; kð Þ ð8Þ

As shown in Fig. 7, the difference in true accepts increases as k increases. When
k is small (<=1000), the difference in the correctness of the recommendation is small.
As k becomes larger, the better technique makes more correct recommendations.
Figure 7 also shows that Unified LF&SM outperforms the three other methods by
recommending 80–454 more true accepts (average number) and recommending
249–1311 more true accepts (minimum number) for the top 5000 recommendations.
Although the difference on classification performance between Triplet + L2 training
and Unified LF&SM in Table 3 is very small, but Unified LF&SM reduces the manual

(a) (b) 

Fig. 7. (a)–(b) TA kð Þ and TAminðkÞ for the top k recommended images.
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labeling workload as shown in Fig. 7. Figure 7(b) shows that when comparing the
minimum number of true accepts for all classes, Unified LF&SM and “Triplet + L2”
show a much better result than “CNN + Bilinear” and “CNN + Probability.” The
explanation is that the two latter methods have the class “snare head” as the class with
the least correct recommendations and recommended fewer relevant images for the
class “snare head”. One reason to explain the large performance difference is that the
models using the triplet have many more training samples (N3 in theory where N is the
number of images in the training set) than those of the models using the single image
input (only N) in the training process.

Assume we want to get k number of images belonging to the class j and the ratio of
images belonging to the class j in the training video is r as shown in Table 1, then we
estimate the number of images to be labeled using random selection as k=r in the fourth
column of Table 4. For example, the estimated number is 202720 � 3061=ð1:51%Þ for
the class “snare head”. Table 4 shows that, to obtain the same number of true accepts for a
rare target class, medical experts have to verify at least 26 (130680=5000 � 26) times the
number of images if using random selection of unlabeled images compared to if using
Unified LF&SM. With Unified LF&SM, medical experts spend far less time on anno-
tating ground truth, and still give adequate representative images for the rare target class.

3.3 Applicability to Other Types of Medical Images

Our Unified LF&SM automatically learns the image feature vector and the similarity
matrix to recommend images when only given a small labelled image dataset.
Therefore, the Unified LF&SM does not require specific domain knowledge on medical
images and is easily extendable to other medical image classification problems.

4 Conclusion

We have presented and evaluated our Unified LF&SM with the goal to decrease the
time needed for creating the training data by medical experts. We achieved this goal for
the classification problems of instrument and retroflexion images. Our future work
includes investigating a better recommendation algorithm, exploring active learning by
repeatedly recommending images in iterations using the proposed Unified LF&SM,
and extending the approach for object localization and temporal scene segmentation for
medical image and video analysis.

Table 4. Comparison of the number of images to be labeled using random selection and Unified
LF&SM for each rare target class to obtain the same number of true accepts.

Class name #True accepts # Unified LF&SM #Random selection

Left cable 4600 5000 228860
Right cable 4992 5000 130680
Forceps head 2809 5000 137700
Snare head 3061 5000 202720
Retroflexion 2923 5000 365380

Real Data Augmentation for Medical Image Classification 75



References

1. Tajbakhsh, N., et al.: Convolutional neural networks for medical image analysis: full training
or fine tuning? TMI 35(5), 1299–1312 (2016)

2. Chatfield, K., et al.: Return of the devil in the details: delving deep into convolutional nets.
arXiv preprint (2014). arXiv:1405.3531

3. Shin, H.C., et al.: Learning to read chest x-rays: recurrent neural cascade model for
automated image annotation. In: CVPR, pp. 2497–2506 (2016)

4. Zhu, X.: Semi-supervised Learning Literature Survey (2005)
5. Lu, X., et al.: Enhancing text categorization with semantic-enriched representation and

training data augmentation. JAMIA 13(5), 526–535 (2006)
6. Xu, Z., et al.: Augmenting strong supervision using web data for fine-grained categorization.

In: ICCV, pp. 2524–2532 (2015)
7. Chechik, G., et al.: Large scale online learning of image similarity through ranking. J. Mach.

Learn. Res. 11, 1109–1135 (2010)
8. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition

and clustering. In: CVPR, pp. 815–823 (2015)
9. Bishop, C.: Pattern Recognition and Machine Learning, pp. 144–146. Springer, New York

(2007)
10. Zhang, C., et al.: Cable footprint history: spatio-temporal technique for instrument detection

in gastrointestinal endoscopic procedures. In: IPCV, pp. 308–314 (2015)
11. Wang, Y., et al.: Near real-time retroflexion detection in colonoscopy. JBHI 17(1), 143–152

(2013)
12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image

recognition. arXiv preprint (2014). arXiv:1409.1556
13. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed

systems. arXiv preprint (2016). arXiv:1603.04467
14. Chollet, F.: Keras. https://github.com/fchollet/keras

76 C. Zhang et al.

http://arxiv.org/abs/1405.3531
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1603.04467
https://github.com/fchollet/keras


Detecting and Classifying Nuclei on a Budget

Joseph G. Jacobs1,2(B), Gabriel J. Brostow2, Alex Freeman3,
Daniel C. Alexander1,2, and Eleftheria Panagiotaki1,2

1 Centre for Medical Image Computing, University College London, London, UK
j.jacobs@cs.ucl.ac.uk

2 Department of Computer Science, University College London, London, UK
3 Department of Histopathology, University College London Hospitals

NHS Foundation Trust, University College London, London, UK

Abstract. The benefits of deep neural networks can be hard to realise
in medical imaging tasks because training sample sizes are often mod-
est. Pre-training on large data sets and subsequent transfer learning to
specific tasks with limited labelled training data has proved a successful
strategy in other domains. Here, we implement and test this idea for
detecting and classifying nuclei in histology, important tasks that enable
quantifiable characterisation of prostate cancer. We pre-train a convo-
lutional neural network for nucleus detection on a large colon histology
dataset, and examine the effects of fine-tuning this network with differ-
ent amounts of prostate histology data. Results show promise for clinical
translation. However, we find that transfer learning is not always a viable
option when training deep neural networks for nucleus classification. As
such, we also demonstrate that semi-supervised ladder networks are a
suitable alternative for learning a nucleus classifier with limited data.

1 Introduction

Measures of cell nuclei show increasing promise for improving cancer charac-
terization, providing useful diagnostic and prognostic information for different
pathologies. For instance, the amount of different types of cells in prostate tissue
(epithelial, fibroblast, etc.) strongly correlates to the Gleason grade of prostate
cancer [3,5]. Lee et al. [7] show that nuclei orientation entropy in prostatectomies
is a predictor of biochemical recurrence in cancer patients. However, such quan-
titative histological analysis is rarely used in clinical practice: manual nucleus
detection and classification is extremely time consuming due to the high resolu-
tion of histological images, and the requisite expertise is also expensive. There
is a critical need for computer-aided diagnosis tools for nuclei in histology.

Automatic nucleus detection is a well studied problem [1,6]. The current
state-of-the-art systems use convolutional neural networks (CNNs) to perform
spatial regression for predicting the location of nuclei [12,15]. Similarly, the best
nucleus type classification methods also use CNNs. Sirinukunwattana et al. [12]
use an ensemble of CNN predictions to classify images containing previously
detected nuclei. Wang et al. [14] go a step further and train CNNs for simultane-
ous nucleus detection and classification in lung biopsies while Bayramoglu and
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): CVII-STENT/LABELS 2017, LNCS 10552, pp. 77–86, 2017.
DOI: 10.1007/978-3-319-67534-3 9
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Fig. 1. Pipeline for detecting and classifying nuclei in histology.

Heikkilä [2] show that transfer learning from natural images is useful for improv-
ing both the training time and performance of nucleus classification CNNs. While
these perform impressively, a limitation of CNNs is that they typically require
fully supervised training with thousands of labelled nuclei to prevent overfitting.
This can be a major barrier for entry within the medical community as the data
needs to be labelled by expert clinicians, which makes producing large labelled
datasets expensive, both in time and cost.

This paper examines methods for learning a prostate nucleus detector and
classifier given modest amounts of labelled prostate nuclei data. Specifically,
we explore the viability of transfer learning for prostate nucleus detection by
fine-tuning CNNs pre-trained on colon data and semi-supervised learning with
Γ-ladder networks for prostate nucleus classification. These methods attempt to
exploit the availability of large amounts of data from other domains (transfer
learning) and large amounts of unlabelled prostate data (semi-supervised learn-
ing) respectively. The following sections describe the detail of these methods
(Sect. 2) and our experiments (Sect. 3).

2 Methods

This section describes the CNN models (Subsect. 2.1), the fine-tuning procedure
used to perform transfer learning (Subsect. 2.2) and the ladder network archi-
tecture used for semi-supervised learning (Subsect. 2.3).

2.1 Detecting and Classifying Nuclei with CNNs

Nucleus Detection. Like [6,12,15] we formulate nucleus detection as a regres-
sion task as seen in Fig. 1. Given an input histology image, the nucleus detector
predicts a function d(x) that expresses the proximity of each pixel x to the
nearest nucleus centroid. The local maxima in the resulting proximity map cor-
respond to predicted nucleus centroids. We use the proximity function from [6]:

d(x) = I

[
D(x) ≤ dmax

](
e
α

(
1− D(x)

dmax

)
− 1

)
(1)

where I[a] is an indicator function, D(x) is the Euclidean distance from x to
the nearest nucleus centroid while α and dmax control the height and radius of



Detecting and Classifying Nuclei on a Budget 79

Table 1. The fully convolutional network for nucleus detection.

# Type Filter size Stride Padding

1 Convolution 7 × 7 × 3 × 16 1 × 1 3 × 3

2 ReLU

3 Max pooling 3 × 3 1 × 1 1 × 1

4 Convolution 5 × 5 × 16 × 16 1 × 1 2 × 2

5 ReLU

6 Max pooling 3 × 3 1 × 1 1 × 1

7 Convolution 5 × 5 × 16 × 16 1 × 1 2 × 2

8 ReLU

9 Max pooling 3 × 3 1 × 1 1 × 1

10 Convolution 11 × 11 × 16 × 128 1 × 1 5 × 5

11 ReLU

12 Convolution 1 × 1 × 128 × 128 1 × 1 0 × 0

13 ReLU

14 Convolution 1 × 1 × 128 × 1 1 × 1 0 × 0

peaks in d(x). We introduce a novel fully convolutional network (FCN) architec-
ture (Table 1) that performs inference on an entire image in a single pass. This
significantly speeds up both training and test time compared to sliding window
methods1.

Nucleus Type Classifier. The nucleus type classifier is a standard multi-class
classification CNN that takes as input a 27 × 27px nucleus patch and classifies
it as either epithelial, inflammatory or miscellaneous. The network structure is
the standard single patch predictor model described in [12].

2.2 Transfer Learning with CNNs

Unlike other machine learning methods, CNNs do not require hand-engineered
input features. The convolutional layers in a CNN act as feature extractors that
are learnt directly from data. However, this can be a major limitation as these
convolutional filters need to be trained on large datasets to prevent overfitting.
One way to avoid re-learning the convolutional filters for every task is by transfer
learning. Instead of training a CNN from scratch, we begin with a model that
is pre-trained on a separate, large dataset. This ensures that the model has
useful convolutional filters when we begin training. The training procedure then
fine-tunes these CNN weights for a particular task.

1 It takes approximately 80min to process a 107 250 × 103 168 whole-slide prostatec-
tomy image on an NVIDIA GTX980 (incl. disk I/O), comparable to [16].
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We examine the suitability of using transfer learning for reducing the amount
of training data required to train both nucleus classifiers and detectors. For both
tasks, we pre-train CNNs on a publicly available dataset of labelled colon nuclei
[12] and fine-tune the entire CNN with varying amounts of prostate data. This
allows investigation of the trade-off between the amount of labelled prostate
training data and performance of nucleus detection/classification CNNs.

2.3 Semi-supervised Learning with Ladder Networks

Another method for reducing the amount of labelled training data required is
by using a semi-supervised learning framework. Given a dataset of N labelled
images and M unlabelled images where often M � N , semi-supervised learning
frameworks attempt to learn classification models that exploit both the labelled
and unlabelled images. In this instance, we explore the suitability of the ladder
network architecture [11] for learning a nucleus classifier. Ladder networks turn
a standard neural network into a semi-supervised model by treating it as the
encoder in a denoising autoencoder.

A standard neural network is turned into a ladder network by (i) adding
a decoder network to turn the network into an autoencoder and (ii) adding
skip connections from every layer in the encoder to the corresponding layer in
the decoder. During training, noise is added to the outputs of each layer in
the encoder and the training objective is to minimise the weighted sum of the
supervised cost function and the unsupervised cost functions2. A special case of
ladder networks is the Γ-ladder network where we only consider the denoising
cost in the top-most layer of decoder network (i.e. we set the denoising cost
weights of all other decoder layers to zero). In our experiments, we use the
Γ-ladder CNNs to perform semi-supervised learning of nucleus classifiers as they
are faster to train and have fewer hyperparameters to adjust.

3 Results and Discussion

3.1 Experimental Setup

Dataset. All experiments were run on a dataset of H&E stained prostate biop-
sies collected from 34 cancer patients. The biopsies were digitised at 20× magni-
fication (0.55µm per pixel) with a Leica SCN400 slide scanner and we extracted
400 250×250px images. A histopathologist with over 10 years experience in gen-
itourinary pathology (AF) dot annotated 16,562 nuclei in these images. 10,062
of these were also labelled with one of three nuclei type labels: 4212 epithelial,
1866 inflammatory (lymphocytes, plasma cells and macrophages) and 3984 mis-
cellaneous (fibroblasts, blood vessel walls, nerves, etc.). We divided this data
into three patient-stratified sets: 40% for training, 10% for validation and 50%
for testing.
2 The supervised objective is the cross entropy cost at the top of the encoder while

the unsupervised objectives are the denoising mean squared errors at each decoder
layer. We refer the reader to [11] for a more detailed description of ladder networks.
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Fig. 2. Sample nuclei from the prostate (row A) and colon (row B) datasets. Columns
1 & 2 are epithelial nuclei, 3 & 4 are inflammatory nuclei and 5 & 6 are other miscel-
laneous nuclei.

For the fine-tuned models we pre-train the CNNs on a publicly available
colon biopsy dataset [12]. The images are also H&E stained and digitised at 20×
magnification. The dataset contains 29,756 dot annotated nuclei, with type labels
for 22,444 nuclei: 7,722 epithelial, 6,971 inflammatory and 7,751 miscellaneous.

CNN Training. The CNN weights were randomly initialised from a normal
distribution with mean 0 and standard deviation of 10−2. The data was aug-
mented with 90◦, 180◦ and 270◦ rotations as well as flips along the horizontal
and vertical axes. We trained the networks using stochastic gradient descent with
Nesterov momentum [13] with a learning rate of 10−4 and minibatch sizes of
2 250 × 250px image patches for the nucleus detectors3 and 128 27 × 27 nucleus
patches for the nucleus classifiers. To prevent overfitting, the number of training
epochs was determined independently for each network based on the value of
the cost function on the held-out validation set. The optimal number of epochs
ranged from as few as 20 training epochs for classification networks pre-trained
on colon data to 5,000 training epochs for fully supervised classification CNNs
trained using just 1% of labelled prostate training data. Other hyperparameters
such as the unsupervised cost weight were similarly optimised on the held-out
validation set independently for each network to prevent overfitting.

Evaluation Metrics. We quantify the performance of a model by measuring
the number of true positives (TP), false positives (FP) and false negatives (FN)
produced by the model. TPs, FPs and FNs are well defined for classification
problems. For nucleus detection, we define a TP as a predicted centroid that falls
within a 6px radius of the ground truth annotation. FPs are predictions that
do not meet this criterion and FNs are ground truth annotations not associated

3 We note that since the FCN performs dense prediction on an input image, train-
ing/testing with a single 250 × 250px image patch is equivalent to training/testing
with 62, 500 neighbouring patches using a patch-based method.
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with predictions. Based on these, we report four metrics for nucleus detection: (i)
precision, P = TP

TP+FP (ii) recall, R = TP
TP+FN , (iii) F1 score, F1 = 2PR

P+R and (iv)
the area under the precision-recall curve (AUPR). For nucleus classification, we
report the overall accuracy, the individual class F1 scores, unweighted average
of class F1 scores (macro F1) and the weighted average of class F1 scores.

3.2 Nucleus Detection

Table 2 compares the baseline method (a CNN trained from scratch with the
given labelled images) against a fine-tuned CNN pre-trained with colon data.
The precision, recall and F1 scores reported on the table are for the point on
the precision-recall curve with the highest F1 score. The results show that fine-
tuned CNNs consistently outperform the baseline method. Although the pre-
cision, recall and F1 scores of the baseline methods are similar to that of the
fine-tuned models, the more revealing metric is the AUPR. The fine-tuned CNNs
have much higher AUPR than baseline CNNs. Using just 1% of labelled prostate
data, the fine-tuned CNN AUPR is comparable to that of the baseline method
that uses 100% of labelled data (Fig. 3). This indicates that the fine-tuned CNNs
are more robust to the choice of the threshold parameter used to discard false
positives. The results also suggest that the convolutional filters learnt with the
colon data are generalisable to prostate data for this task.

Table 2. Precision, recall, F1 score and AUPR for nucleus detectors trained with
different amounts of labelled prostate images.

Labelled Metrics Baseline CNN Fine-tuned CNN

Precision 0.805 ± 0.002 0.827 ± 0.007
1% Recall 0.862 ± 0.012 0.873 ± 0.004

2 images F1 Score 0.833 ± 0.006 0.849 ± 0.003
AUPR 0.866 ± 0.004 0.896 ± 0.001

Precision 0.825 ± 0.005 0.836 ± 0.012
3% Recall 0.863 ± 0.009 0.872 ± 0.015

6 images F1 Score 0.844 ± 0.003 0.853 ± 0.001
AUPR 0.877 ± 0.006 0.899 ± 0.005

Precision 0.824 ± 0.007 0.845 ± 0.002
5% Recall 0.875 ± 0.005 0.865 ± 0.003

10 images F1 Score 0.849 ± 0.003 0.855 ± 0.002
AUPR 0.885 ± 0.003 0.901 ± 0.001

Precision 0.843 ± 0.013 0.846 ± 0.004
100% Recall 0.885 ± 0.007 0.882 ± 0.004

200 images F1 Score 0.864 ± 0.005 0.864 ± 0.003
AUPR 0.910 ± 0.003 0.911 ± 0.004
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Fig. 3. Precision-recall curves for the baseline models and the 1% fine-tuned model.

3.3 Nucleus Classification

For nucleus classification, we compare our baseline method (a fully supervised
CNN) against a fine-tuned CNN and a Γ-ladder CNN (Table 3). The results show
that fine-tuning does not work very well when using 1% of labelled training data.
Despite a 4–5% increase across the mean F1 scores, we note that the scores
have larger standard deviations compared to the baseline and Γ-ladder CNN,
especially for inflammatory nuclei. The Γ-ladder CNN performs substantially
better than the other two models across the different metrics using just 1%
of the labelled data. The Γ-ladder CNN trained with 1% of labelled data even
outperforms the baseline trained on 3% of labelled data on five of the six metrics.

We see a considerable jump in performance for the baseline and fine-tuned
models when 3% of labelled data is used for training. While the Γ-ladder CNN
improves as well and is still the best performing of the three models, the increase
in performance is less substantial. Similarly, there is a marginal improvement in
performance of all the three models as we increase the amount of labelled data
to 5%. When using 100% of labelled data, we see identical performance for all
models, with Γ-ladder CNNs performing marginally better than the other two.

The experiments indicate that Γ-ladder CNNs are the most robust of the
three models. They perform well even when given a very small amount of labelled
data and either matches or improves the performance of fully supervised and
fine-tuned models when we increase the amount of labelled data. The large vari-
ation in inflammatory nucleus classification performance at 1% of labelled data
could be explained by the small fraction of inflammatory nuclei in the prostate
dataset compared to the other classes. However, as previously noted there is an
even larger variation in inflammatory nucleus classification performance for the
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Table 3. F1 metrics for nucleus classifiers trained with different amounts of labelled
prostate nuclei patches.

Labelled F1 Scores Baseline CNN Fine-tuned CNN Γ-ladder CNN

Weighted F1 0.672 ± 0.007 0.721 ± 0.043 0.757 ± 0.017

1%
Macro F1 0.639 ± 0.021 0.695 ± 0.061 0.738 ± 0.019

40 nuclei
Epithelial F1 0.719 ± 0.031 0.765 ± 0.027 0.806 ± 0.015
Inflammation F1 0.486 ± 0.089 0.574 ± 0.145 0.654 ± 0.034
Other F1 0.713 ± 0.018 0.746 ± 0.017 0.755 ± 0.014

Weighted F1 0.739 ± 0.008 0.763 ± 0.010 0.774 ± 0.008

3%
Macro F1 0.725 ± 0.012 0.752 ± 0.008 0.762 ± 0.010

120 nuclei
Epithelial F1 0.778 ± 0.009 0.810 ± 0.007 0.810 ± 0.009
Inflammation F1 0.664 ± 0.033 0.703 ± 0.006 0.707 ± 0.018
Other F1 0.733 ± 0.013 0.743 ± 0.018 0.769 ± 0.006

Weighted F1 0.772 ± 0.002 0.780 ± 0.009 0.779 ± 0.007

5%
Macro F1 0.761 ± 0.003 0.769 ± 0.007 0.765 ± 0.008

200 nuclei
Epithelial F1 0.811 ± 0.006 0.821 ± 0.007 0.822 ± 0.008
Inflammation F1 0.713 ± 0.012 0.720 ± 0.012 0.704 ± 0.019
Other F1 0.758 ± 0.003 0.765 ± 0.017 0.770 ± 0.009

Weighted F1 0.831 ± 0.004 0.828 ± 0.002 0.835 ± 0.004

100%
Macro F1 0.820 ± 0.005 0.819 ± 0.002 0.825 ± 0.004

∼4000 nuclei
Epithelial F1 0.868 ± 0.003 0.863 ± 0.002 0.872 ± 0.003
Inflammation F1 0.772 ± 0.006 0.775 ± 0.003 0.778 ± 0.011
Other F1 0.821 ± 0.006 0.818 ± 0.001 0.824 ± 0.003

fine-tuned CNN compared to the other models. This could potentially be
explained by differences between the colon and prostate datasets. Inflammatory
cells in the prostate dataset are mainly lymphocytes (Fig. 2, A3) while inflamma-
tory cells in the colon are mainly macrophages (Fig. 2, B3) which are active and
therefore look very similar to abnormal epithelial cells (Fig. 2, B2) with visible
nucleoli.

4 Conclusions and Future Work

This paper adapts the general principles of transfer learning and semi-supervised
learning for detecting and classifying cell nuclei on a budget. We demonstrate
that transfer learning is suitable for learning nucleus detectors and classifiers
given limited labelled data. However, it could potentially cause problems if there
are biological differences in the tissue characteristics between the dataset used
for pre-training and the dataset used for fine-tuning, as seen when attempting to
learn a nucleus classifier with transfer learning. In this instance, we demonstrate
that semi-supervised learning with Γ-ladder networks is a suitable alternative.

In future work, we will explore methods for including the full ladder network
architecture, as well as histology from different organs and pathologies that could
benefit from this application (e.g. breast cancer). Additionally, a limitation of
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ladder networks is that they have more hyperparameters to optimise compared to
standard neural networks. As such, future work will explore adapting other semi-
supervised learning for neural networks [8], possibly adding query selection [4].

Acknowledgments. We thank the EPSRC for funding EP’s (EP/N021967/1), DA’s
(EP/M020533) and GB’s (EP/K015664/1, EP/K503745/1) work on this topic, the
UCL Department of Computer Science for JJ’s studentship and the UCL Computer
Science Cluster team.

References

1. Arteta, C., Lempitsky, V., Noble, J.A., Zisserman, A.: Learning to detect cells
using non-overlapping extremal regions. In: Ayache, N., Delingette, H., Golland, P.,
Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 348–356. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33415-3 43
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Abstract. Annotating large collections of medical images is essential
for building robust image analysis pipelines for different applications,
such as disease detection. This process involves expert input, which is
costly and time consuming. Semiautomatic labeling and expert sourcing
can speed up the process of building such collections. In this work we
report innovations in both of these areas. Firstly, we have developed an
algorithm inspired by active learning and self training that significantly
reduces the number of annotated training images needed to achieve a
given level of accuracy on a classifier. This is an iterative process of
labeling, training a classifier, and testing that requires a small set of
labeled images at the start, complemented with human labeling of diffi-
cult test cases at each iteration. Secondly, we have built a platform for
large scale management and indexing of data and users, as well as for
creating and assigning tasks such as labeling and contouring for big data
medical imaging studies. This is a web-based platform and provides the
tooling for both researchers and annotators, all within a simple dynamic
user interface. Our annotation platform also streamlines the process of
iteratively training and labeling in algorithms such as active learning/self
training described here. In this paper, we demonstrate that the combi-
nation of the platform and the proposed algorithm significantly reduces
the workload involved in building a large collection of labeled cardiac
echo images.

1 Introduction

Over the last few years machine learning has found its way to many real-world
applications. In certain tasks, it has enabled machine performance at or even
above human level. However, to build robust and accurate machine learning
solutions, large amounts of data need to be curated and labeled. While in many
applications, such as image and speech recognition, large collections of labeled
data can be easily obtained through crowd-sourcing over the Web, in the med-
ical domain the situation is different. Although it is becoming clear that machine
learning can aid clinicians to provide accurate diagnosis faster than before, the
penetration of machine learning into the medical field has been hampered due
to lack of high-quality labeled data. Since medical data is collected in the course
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of routine clinical practice and cannot leave secure networks due to privacy reg-
ulations, its availability is limited. In addition to that, medical data needs to
be labeled by experts, but expert resources are scarce and costly. Some of these
problems were tackled in [2,8] through expert and crowd-sourcing in the con-
text of computer-assisted minimally-invasive surgery (MIS) and image modality
detection. Other solutions have been proposed in the form of utilizing accompa-
nying text sources to establish weak preliminary labels for the data [3].

In this paper, we take a general approach for expert-sourcing and introduce
two complementary solutions to address the problem of labeling large collections
of medical images. Firstly, we have developed a semi-supervised algorithm to
reduce the number of expert-labeled samples needed to achieve a certain level
of classification accuracy. This solution combines active learning [7] and self
training [9]. Regardless of the classifier of choice, our algorithm improves the
efficiency of data preparation.

Secondly, we built a web-based platform for user and data management that
allows contouring and labeling of anonymized data through remote browsers,
while the data remains at the clinical repository. This platform can be deployed
on any server that stores medical data, and allows researchers to log in and
create collections, labeling/contouring task templates, and assign them to users.
Medical images are stored in a database structure that allows search and retrieval
across labels and patient attributes for building and managing training and
testing sets for machine learning.

We describe these two contributions in the context of two different experi-
ments. In the first experiment, we use a convolutional neural network (CNN) for
automatic labeling of ultrasound images for mode. In the second example, we use
a support vector machine (SVM) to classify patients for presence and severity
of aortic stenosis based on automatically extracted archival features. We show
that one can significantly reduce the amount of data needed to be labeled by
clinicians without compromising the accuracy, by implementing the proposed
algorithm of semi-automatic labeling using our platform.

2 Semi-automatic Labeling

Active Learning is a semi-supervised approach in machine learning that addresses
the problem of labeling big datasets while reducing manual labeling effort. It is
based on an iterative process of training, prediction, and samples selection for
manual labeling [7]. In active learning only manually labeled data is used to train
a classifier. Self-training is another approach in which a classifier is trained on
classifier-labeled data. In this section, we introduce an algorithm that is based
on these two approaches and uses all the available data to achieve high classi-
fier accuracy while dramatically reducing manual labeling effort. The platform
introduced in Sect. 3 is an inseparable part of this process, as it streamlines the
labeling process and makes it very efficient.

Our starting point is a small set of labeled images D0 = {(xi, yi)|i = 1, . . . , N0}
where N0 is the number of samples, and yi is the label of sample xi. We first train
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a classifier using D0 and produce a model M0. The model accuracy is tested in all
the steps on a separate and fixed validation set, V. We have a larger dataset of N1

unlabeled samples, S1 = {(xi, ?)|i = 1, . . . , N1}. We want to build an improved
classifier using this dataset, without needing to manually label all the samples.

We start by automatically labeling S1 using M0, where the outcome is a label
M0(xi) = yi and a vector of class likelihoods per sample:

P(yi|xi) = {P (yi = 0|xi), P (yi = 1|xi), . . . , P (yi = k − 1|xi)} , (1)

where k is the number of classes in the problem. Then we select a subset
of samples for manual annotation by looking at the class likelihoods. All the
samples with the largest class likelihood below a threshold t ∈ (0, 1), that is,
max(P (yi|xi)) < t, are considered as “hard cases” and selected for manual
labeling, while labels with a class likelihood above the threshold are accepted as
correct labels. For each of the hard cases, the predicted label is presented to an
annotator on our annotation platform (Sect. 3), to accept or change. Once the
manual labeling is completed, all the labels are combined to form a fully labeled
set S1. Then, we create a new training set D1 = D0 ∪ S1 and produce a learned
model M1, which is used to label a new set of unlabeled samples S2.

Fig. 1. The proposed algorithm for semi-automatic labeling based on our web-based
annotation platform.

This process of labeling new sets in a semi-automatic fashion followed by
re-training is repeated every time more data becomes available, or until the
classifier reaches a desired accuracy on the validation set. See Fig. 1 for an overall
description of this methodology. In experiments performed here, we divided all
the available data into batches, and iterated the active learning cycle on the
batches while monitoring the performance on an independent validation set. The
validation set needs to be composed carefully by including equally distributed
representatives from all the classes in the problem. Note that this approach is
not specific to one classifier or another, as long as the classifier in hand provides
class likelihood measures.

3 Web-Based Expert Sourcing of Image Annotations

In this section, we introduce the system we have developed for labeling and
annotation of medical images on the web. The system addresses two problems in
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labeling large collections of medical images. It allows the efficient use of limited
resources through expert sourcing. Secondly, it solves data and user manage-
ment issues, allowing multiple annotators for a project, multiple annotations per
image, and the ability to index and search across collections and annotations.
The system provides the tooling for different annotation tasks, from image level
labeling to object contouring, and is built with three design criteria in mind: flex-
ibility of user interface in adding new features; scalability across image, tasks,
users and tools dimensions; search capabilities across all labels, users, and task
templates through indexing. In fact the main distinguishing factor of this sys-
tem compared to some of the previous efforts in annotation through web browser
such as [5] is an extensive machinery for data and user management that allows
for streamlined use of data in machine learning algorithms, such as the active
learning/self training process described in the previous section.

The platform is comprised of a user interface supported by three main back-
end modules:

1. User management: Provides the tools needed to register users in a data-
base, control access to specific images and collections. Information about the
annotators’ expertise is also registered to allow for algorithmic matching of
annotators to tasks.

2. Collections management: A collection is modeled as a set of images with their
meta data, along with a task, and list of annotators. Our data model for a
collection can handle multiple annotators across tasks, multiple annotations
for the same attribute by different annotators for cross-validation, as well as
one image as part of many collections. Collections only index the web address
of anonymized images that are served through a secure HIPPA-compliant
server. Collections and the annotations are also indexed in a database that
allows search and retrieval across different image and label attributes such as
mode, modality/specialty, and annotated clinical features.

3. Annotations management: Supports all the operations of defining annota-
tion tasks, assigning annotators to collections based on their expertise, and
tracking work progress by providing annotation completeness reports. The
task and assignments per collection are also stored in the collections data-
base. The process of task and collection assignment to annotators is done by
authorized administrators, who have access to the image archive and the user
database. User interfaces are built to support all these operations.

The flexibility of task building is obtained through a toolkit that allows a user
to build a template. The template defines the type of task (such as contouring,
labeling, measurement recording) and also the tools needed for performing the
task. The user interface automatically interprets the template and shows the
right tools and forms with the assigned collection of images. An example is
shown in Fig. 2. In the example, users are expected to mark keypoint and draw
a number of contours. The main features of the UI are described in Fig. 2.
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Fig. 2. User interface of our web-based annotation tool. This page is preceded by a user
login, and task desktop for users. Toolbar (1) provides some common drawing tools with
zooming and panning abilities. Green frames (2) indicate the annotated images. Blue
frame (3) indicates the selected image. Red frame (4) indicate the image which has not
been annotated yet. Annotation template (5) is used to set and save the annotation
values and is supported by a task-specific template generating pipeline. Statistical
frame (6) gives some key information to the user about status of the annotation task.
Such as, number of total and annotated image counts and allows the user to navigate
through the entire collection, or change the arrangement/number of images on page.
(Color figure online)

4 Combining the Platform and Algorithm: Use Cases

In this section we demonstrate the use of the proposed algorithm and the devel-
oped platform on two use cases with different classifiers. The first example is built
upon a convolutional neural network (CNN), while the second is built upon a
support vector machine (SVM) classifier.

4.1 Mode Labeling in Cardiac Echo

In a cardiac echo exam, sonographers collect images of a variety of modes. Ultra-
sound mode in not always recorded in the DICOM header, but it needs to be
detected for further analysis by systems that perform archival analysis of med-
ical images such as [6]. The first use case described here is the task of building a
convolutional neural network that classifies a given image in one of six possible
modes. These are B-Mode, M-Mode, PW-Doppler, CW-Doppler, Color-Doppler,
text-panels (Fig. 3). We started with a dataset of 980 images labeled by clini-
cians. This dataset was used to generate the initial learned model by training
AlexNet [1] after reducing the number of network outputs to 6. The network was
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Fig. 3. Top image: Ultrasound mode labeling using our web-based platform. The anno-
tator views the images, and label them by selecting the correct label from the top right
menu and saving. Bottom image: The 6 classes in our problem. From left to right:
B-mode, M-mode, PW-Doppler, CW-Doppler. Color-Doppler, and text-panel.

trained for 30 epochs with a batch size of 128 images, and was validated on a
dataset of 3502 samples pre-labeled by clinicians.

4.2 Disease/Healthy Labels for Cardiac Echo Images

A second experiment was performed for the task of classifying patients for the
presence of aortic stenosis, based on noisy measurements of maximum blood flow
velocity and pressure gradient through the aortic valve, extracted from archival
sources and automatic analysis of CW Doppler images. In our experiment, the
described annotation platform was used for clinicians to examine CW Doppler
images and label them for presence of aortic stenosis as the ground truth label for
the patient. The classifier used in this experiment was a binary SVM, trained
on a nine dimensional feature vector similar to the one described in [6]. 900
cases where available for the training phase of this experiment, along with an
additional 100 cases solely used for testing. The SVM model was initially trained
on 5 cases and data was added in batches of size 20.

5 Results

5.1 Ultrasound Mode Classification

The measured accuracy of the initial network trained on 980 manually labeled
samples was 85.6% when tested on the independent validation set. We performed
4 iterations of semi-automatic labeling on equal size datasets consisting of 2060
images each. In each iteration we followed the steps described in Sect. 2. That is,
we automatically labeled one batch of 2060 images using the model produced in
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the previous iteration. Then, we selected for manual labeling the samples with
class likelihood of less than 0.9, and accepted the labels with likelihood above
that threshold. Manual labeling was performed using our web-based platform
where the images were organized in single label collections based on the net-
work prediction. This way of organizing the data helped make manual labeling
more efficient, as the annotator could quickly go through the images and rela-
bel only the misclassified ones. After all the misclassification of hard cases were
corrected, we formed a new training set by combining the new labeled samples
(both hard cases and network-labeled cases) with the training set from the pre-
vious iteration, and retrained the network. This process was repeated until all
4 datasets were labeled. As shown in Fig. 4, after retraining with the first set of
semi-automatically labeled samples, the classifier reached an accuracy of 97.4%
that stabilized at 98% after the third labeling iteration. Moreover, the number
of samples selected by the class likelihood criterion for manual labeling dropped
dramatically from around 36% (771 samples) at the first iteration, to around
4% (85 samples) at the last iteration. Thus, by using this approach we reduced
the labeling workload by a factor of 25 without compromising the accuracy. For
reference, we compared the likelihood-based sampling strategy to random sam-
pling at a constant rate of 25%. Our strategy outperformed random sampling
and converged to a higher classifier accuracy with less manual labeling effort.

Fig. 4. Semi-automatic labeling with likelihood-based sampling vs. random sampling.
Left figure: The CNN model accuracy as a function of the number of training samples.
In random sampling the classifier accuracy converged to 97.6% vs. 98% in our approach.
Right figure: The percentage of manually labeled samples in each iteration based on
our selection criterion. The manual labeling rate using likelihood dropped from 100%
in the initial set to only 4%.

5.2 Aortic Stenosis Detection

In the second experiment, the initial accuracy of stenosis detection for the clas-
sifier was 72%. We witnessed that after reaching 200 training samples, the clas-
sification accuracy saturated at 93%. We compared this trend with labeling and
adding training data randomly without considering class likelihoods produced by
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the classifier. The same level of accuracy was achieved only after all 900 samples
were labeled and included in training. In other words, the proposed algorithm
reduced the labeling effort by 78%.

6 Conclusions

In this paper we introduced two innovations to address the problem of annotating
large collections of medical images. We introduced an iterative semi-automatic
image annotation approach that uses the web-based platform to reduce man-
ual labeling effort by using a trained classifier. We demonstrated this approach
on ultrasound mode labeling and achieved a classifier accuracy of 98% while
reducing the manual labeling effort to 4% of an unlabeled samples set. We also
introduced a web-based platform for expert sourcing of annotation tasks. This
is built upon a comprehensive system for users, image collections, and annota-
tions management to streamline machine learning studies of the type described
here. Note that the algorithm and the platform described here are not limited to
image labeling. For example, one can use a classifier like U-Net [4] to perform seg-
mentation, and use our platform for expert feedback on selected samples before
retraining the classifier. This and other use cases are currently under study.
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Abstract. This paper investigates what quality of ground truth might
be obtained when crowdsourcing specialist medical imaging ground truth
from non-experts. Following basic tuition, 34 volunteer participants inde-
pendently delineated regions belonging to 7 pathological patterns in 20
scans according to expert-provided pattern labels. Participants’ annota-
tions were compared to a set of reference annotations using Dice simi-
larity coefficient (DSC), and found to range between 0.41 and 0.77. The
reference repeatability was 0.81. Analysis of prior imaging experience,
annotation behaviour, scan ordering and time spent showed that only the
last was correlated with annotation quality. Multiple observers combined
by voxelwise majority vote outperformed a single observer, matching the
reference repeatability for 5 of 7 patterns. In conclusion, crowdsourcing
from non-experts yields acceptable quality ground truth, given sufficient
expert task supervision and a sufficient number of observers per scan.

1 Introduction

Crowdsourcing is gaining in popularity as a method for sourcing labels for the
very large amounts of data required to train machine learning algorithms [7]. Pre-
vious experiments have shown that it is possible to use non-experts for cheaply
and readily crowdsourcing medical imaging ground truth [3,14], perhaps using
gamification [1,11], at least for reasonably straightforward problems.

This paper investigates whether it is feasible to commission non-experts to
undertake a relatively specialist imaging annotation task — that of recognising
and segmenting the pathological patterns which are seen in interstitial lung dis-
ease. To this end, a toy exercise was designed in which participants were recruited
to annotate the same representative set of twenty scan slices. In order to ren-
der the task accessible to the layperson, we restricted it to be one of annotation
rather than diagnosis. Each scan slice was provided with expert labels indicating
the presence of the main patterns to be labelled, and participants were asked
to annotate regions belonging to these patterns. These labels are usually noted
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in a radiology report; thus the objective was for the routine expert diagnosis
to direct the non-expert in the rather time-consuming work of delineating the
pathological regions. To assess performance, we quantitatively and qualitatively
compared the annotations to those of an expert medical researcher (A.O.) and
two experienced radiologists (J.M. and E.v.B.) respectively.

The contributions of this paper are as follows:

– To demonstrate how a specialist medical imaging ground truth task may
be simplified such that a non-expert (given some basic training) performs
comparably to an expert.

– To analyse which factors are predictive of good performance.
– To demonstrate how (and how many) non-expert observers should be assigned

and combined for each scan in a real world crowdsourcing task, in order to
improve label robustness.

– To provide practical recommendations for how this task might be better con-
ducted in future.

2 Methodology

2.1 Ground Truth for Interstitial Lung Disease

Identification of the presence, volume and distribution of different pathological
patterns is helpful for the diagnosis and prognosis of interstitial lung disease [8].
Training machine learning algorithms to recognise and segment such patterns
requires large amounts of labelled data. Thus, for this paper, the ground truth
exercise was to label regions representing each of the common lung disease pat-
terns: consolidation, emphysema, ground glass opacity (GGO), ground glass opac-
ity+reticulation, honeycombing, micronodules, and reticulation. This is the same
labelling system as used by Anthimopoulos et al. [2] for the same publicly available
data [4], but with the addition of an emphysema class. Examples of these patterns
are shown in Fig. 1.

(a) (b) (c) (d) (e) (f) (g)

Fig. 1. Pathological lung patterns (a) Consolidation (b) Emphysema (c) GGO
(d) GGO+Reticulation (e) Honeycombing (f) Micronodules (g) Reticulation

2.2 Data

Twenty computed tomography (CT) scan slices were selected from twenty dif-
ferent subjects in the MedGift ILD database [4]. The slices were chosen to span
the range of disease labels, and each was labelled with one or two key patterns
to be annotated by participants. Table 1 shows the pattern labels and medical
diagnosis of each scan.
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Table 1. Scan diagnoses (3 unknown) and patterns to label (C = Consolidation, E =
Emphysema, G = GGO, GR = GGO+Reticulation, H = Honeycombing, M = Micron-
odules, R = Reticulation)

N Diagnosis Labels N Diagnosis Labels

1 Idiopathic pulmonary fibrosis E 11 Miliary tuberculosis C, M

2 Idiopathic pulmonary fibrosis H 12 Pulmonary Fibrosis GR

3 Hypersensitivity pneumonitis G, GR 13 Hypersensitivity pneumonitis G

4 Miliary tuberculosis M 14 – H

5 – E 15 Chronic eosinophilic pneumonia R

6 Pulmonary fibrosis R 16 Pulmonary tuberculosis C

7 – C 17 Hypersensitivity pneumonitis R, GR

8 Cryptogenic organizing pneumonia C, G 18 Hypersensitivity pneumonitis G

9 Hypersensitivity pneumonitis R, GR 19 Pulmonary fibrosis E, GR

10 Hypersensitivity pneumonitis H 20 Pulmonary fibrosis H

2.3 Recruitment of Participants

The exercise was completed by 34 volunteers from a company which makes
medical imaging software. The participants have a variety of roles and levels of
expertise, including junior scientists and software engineers, senior managers,
and clinical experts. Entry and exit questionnaires were completed by all the
participants. The entry questions were designed to ascertain each participant’s
level of experience, and the factors motivating their participation. The exit ques-
tionnaire gathered feedback on participants’ experience of the exercise, and sug-
gestions for improvement.

2.4 Annotation Task

Prior to the annotation task, all participants received a one-hour long tutorial
on interstitial lung disease and the patterns of interest (based on the Fleischner
Society Glossary of Terms for Thoracic Imaging [5]), given by a biomedical sci-
ences graduate (A.O.) who had recently attended a one-day hands-on training
course on interstitial lung disease run by the British Institute of Radiology.

Participants were provided with the twenty pre-selected slices and asked to
annotate patterns belonging to provided labels. Each participant annotated the
images in a random order, to allow measurement of any training effect over
the course of annotating the scans. Annotations were created using a tool that
allowed users to draw polygonal regions of interest (ROIs) and assign a pattern
class label to each ROI. The task was expected to take approximately two hours
to complete. The use of online resources such as Radiology Assistant and Google
was allowed and even encouraged, although collaboration between participants
was prohibited.
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3 Results

3.1 Evaluation of Non-expert Versus Expert Performance

Each annotation was scored by comparison to those of the reference annota-
tor (A.O.) using Dice Similarity Score (DSC). The overall DSC was computed
for each participant by weighting scans equally, and weighting patterns equally
within a scan. Per-pattern DSC metrics were calculated for each participant
by averaging over all examples of a pattern. In addition, the reference annota-
tor repeated the annotations 10 days later to assess repeatability (the overall
repeatability DSC was 0.806). Figure 2 summarises the results.

0 0.2 0.4 0.6 0.8 1

Reticulation

Micronodules

Honeycombing

GGO+Reticulation

GGO

Emphysema

Consolidation

Overall

DSC

Fig. 2. The box plots indicate the median, upper and lower quartiles, and minimum
and maximum DSC compared to the reference. The circles indicate the reference repeat
scores.

There is clear variation in performance between classes, showing that some
were more straightforward than others. It was known in advance that the dis-
tinction between e.g. GGO, GGO+Reticulation, and Reticulation might be open
to interpretation. Also, there were a few cases of mistaken identity, with partic-
ipants labelling vessels (pulmonary vessels and aorta) as pathology.

Following the exercise, interviews were held with two experienced pulmonary
radiologists (J.M. and E.v.B.), who confirmed the veracity of the provided labels,
and annotated the images with some obvious examples of each pattern. Figure 3
shows some qualitative results of four interesting cases, showing the radiologist
and reference annotations overlaid on the results of the crowd.

It can be seen that for A (Emphysema) and B (GGO) in Fig. 3, the range of
variation of the crowd is comparable to the agreement (or disagreement) between
the two radiologists. In each case, one radiologist is more sensitive and the other
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Fig. 3. Some example results: (A) Emphysema (B) GGO (C) Consolidation (D) Hon-
eycombing. Scan slices are shown on the left and annotations are shown on the right.
The greyscale background is proportional to the number of participants who annotated
the label i.e. white = no annotations and black = all 34 annotations. The reference
results are shown in magenta (dotted line for the repeat). The radiologists’ annotations
are shown in blue and green. (Color figure online)
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more specific for the given pattern, and the crowd approximately ranges between
the two.

Examples C and D illustrate where improvements could be made. In C (con-
solidation), it is difficult to distinguish vessels from consolidation. It can be seen
that the radiologists were cautious with their labelling compared with the ref-
erence, who outlined both vessel and consolidation where they were adjacent
and therefore not separable. The crowd generally followed the philosophy of the
reference, but some of the crowd confused what is definitely vessel with consol-
idation. In D (honeycombing), both radiologists were stricter on the definition
of honeycombing than the reference, and both raised the differential diagnosis
with bronchiectasis. Honeycombing and bronchiectasis lie on a spectrum [12],
and the bronchiectasis label was not included in our labelling system.

In summary, it was observed that in many cases the variability of the crowd
matched the variability between the two radiologists, and this variability was
reflective of underlying ambiguity in the pattern definition — or the ambiguity
of the boundary between patterns such as GGO versus GGO+reticulation. How-
ever, in future the whole volume should be provided to the annotator rather than
single slices, such that vessels can be better tracked and distinguished from con-
solidation (with appropriate teaching examples). We should also consider adding
further labels such as bronchiectasis and fibrosis (fibrosis not illustrated here).

3.2 Factors Predicting Performance

None of the participants had specific prior experience of interstitial lung dis-
ease images. However, it was predicted that there may be a correlation between
prior imaging experience and performance, particularly if insufficient training
was provided for the task. Participants rated their level of experience with med-
ical imaging data, from level 0 (little to none), to level 4 (clinical researcher).
Figure 4 shows a plot of performance versus experience level. There is no signif-
icant correlation, suggesting that adequate guidance was provided for this task.
Further, it was hypothesised that a training effect might be observed, however
no correlation was measured between the scan ordering (randomised between
participants) and each participant’s performance.

Conversely, there is a weak correlation between the time spent on the task and
performance (see Fig. 4). The times shown are self-reported estimates. It is likely
that those participants who performed better took time to do more research
and/or took more care with their annotations. Visible annotation behaviour
(number of regions, number of polygon vertices, rate of polygon vertices) was
also analysed and found to exhibit no correlation with performance.

3.3 Crowdtruthing in the Real World: Assigning and Combining
Multiple Observers

The previous results have shown the range in annotation quality between
observers. It is likely that more consistent results could be achieved by com-
bining annotation results from multiple observers, and this is true also of expert
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Fig. 4. Factors predicting performance. Level of expertise and time spent are plotted
against DSC compared to the reference. Correlation coefficients are shown (Spearman’s
rank and Pearson’s for the first and second plots respectively).

annotations, since human error or variations in pattern interpretation might be
identified and corrected. In a real world crowdsourcing exercise, some questions
would thus arise. How many observers should be assigned to each scan? How
are their annotations best combined to give an annotation of predictable and
reasonable quality?

To investigate this, different odd numbers of observers between one and fif-
teen were combined using majority vote at each voxel. For each number of
observers, 200 combinations were randomly drawn from the 34 annotations, after
omitting the few cases where the annotation was zero i.e. the participant had for-
gotten or was unable to label the key pattern. As in earlier DSC computations,
the problem is simplistically treated as binary (i.e. a one-vs-all approach taken
when evaluating each pattern), even where more than one pattern was labelled
in a scan. The graphs in Fig. 5 show the median, minimum and maximum values,
both overall and for each pattern, averaged across the twenty scans.

In summary, multiple observers give a better result than a single observer.
The median increases and the range in DSC metrics narrows increasingly as
more observers are added, with little improvement beyond the k = 9 observer.
Note that the minimum, maximum and median converge at the limit of n = 34
observers, where there is just one possible combination of observers. For 5 of
7 patterns, the median DSC matches the repeat DSC and the range converges
whilst k � n, showing that when sufficient observers are combined, the limit of
accuracy is reached. For GGO and GGO+Reticulation, combination of multiple
observers does not bring the crowd into agreement with the reference, suggesting
that observers generally had a different idea to the reference for where the thresh-
old between ground glass opacity and healthy tissue lies. STAPLE [15] methods
were also tried (results not shown), initialised using both uniform (0.99999) and
learnt rater sensitivities and specificities (learnt from the first ten scans and
applied to the second ten), and STAPLE gave worse results than the majority
vote. This is in line with what other authors have found [9,10].
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Fig. 5. Graphs showing the number of observers (x-axis) versus the reference DSC
(y-axis) for the consensus (combined) annotation, for different pathological patterns.
The solid lines indicate the median and the grey shading indicates the span from
minimum to maximum (figures are the mean minimum, median and maximum across
all scans). The dashed lines indicate the reference repeatability score.
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4 Discussion

Overall, the crowd performed well relative to the reference segmentations, with
some observers for some patterns matching the reference repeatability. Where
there was variation, this was often indicative of genuine ambiguity between pat-
terns. The greater range of disagreement for e.g. ground glass opacity compared
to emphysema in this exercise has been observed by other authors measuring
agreement between radiologists [13]. In fact, the combined annotations displayed
as greyscale values in Fig. 3 could be interpreted as probabilities associated with
the respective labels, and even used as soft labels for a machine learning algo-
rithm in line with the “dark matter” idea promoted by Hinton et al. [6]. Note
that agreement both between non-experts and between radiologists would be
increased with a more stringent ground truth protocol (this might involve e.g.
prescribing a Hounsfield Unit range for ground glass opacity).

Experiments regarding combination of observers showed that multiple
observers outperformed a single observer. For many patterns, when sufficient
observers are combined, the median DSC matches the reference repeatability
DSC and the DSC range converges around the reference repeatability DSC,
showing that the limit of accuracy is reached. Improvements as discussed ear-
lier (additional teaching for distinguishing normal anatomy such as vessels from
pathology, provision of three-dimensional context, additions to the labelling sys-
tem, a more stringent ground truth protocol), should both raise the repeatability
DSC and reduce the number of observers required to achieve a consistent result.

In conclusion, given sufficient expert task supervision and a sufficient number
of observers per scan, crowdsourcing with non-experts can yield ground truth fit
for use in image analysis algorithms.

Acknowledgements. Many thanks to Phil Tolland who developed the software for
the ground truth collection tool, and to all of the employees at Toshiba Medical
Visualization Systems who took part in this study: Allan Barklie, Erin Beveridge,
Antony Brown, Gerald Chau, Alasdair Corbett, Ross Davies, Matt Daykin, Ben
Docherty, Venkatesh Gaddam, Keith Goatman, Marta Guarisco, Joseph Henry, Corné
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Abstract. Many recent machine learning approaches used in medical
imaging are highly reliant on large amounts of image and ground truth
data. In the context of object segmentation, pixel-wise annotations are
extremely expensive to collect, especially in video and 3D volumes. To
reduce this annotation burden, we propose a novel framework to allow
annotators to simply observe the object to segment and record where
they have looked at with a $200 eye gaze tracker. Our method then esti-
mates pixel-wise probabilities for the presence of the object throughout
the sequence from which we train a classifier in semi-supervised setting
using a novel Expected Exponential loss function. We show that our
framework provides superior performances on a wide range of medical
image settings compared to existing strategies and that our method can
be combined with current crowd-sourcing paradigms as well.

1 Introduction

Ground truth annotations play a critical role in the development of machine
learning methods in medical imaging. Indeed, advances in deep learning strate-
gies, coupled with the advent of image data in medicine have greatly improved
performances for tasks such as structure detection and anatomical segmentation
across most imaging modalities (e.g. MRI, CT, Endoscopy, Microscopy) [1,2].
Yet the process of acquiring ground truth data or annotations remains laborious
and challenging, especially in video and 3D image data such as those depicted
in Fig. 1.

To mitigate manual annotation dependence, semi- and unsupervised methods
have been key research areas to reduce the overall annotation burden placed on
domain experts (e.g. radiologist, biologist, surgeon etc.). Most notably, Active
Learning (AL) [3,4], Transfer Learning (TL) [5,6] and Crowd-Sourcing (CS) [7,8]
provide frameworks for learning with either limited or noisy ground truth data
and have been applied to a larger number of applications. Yet in AL domain
experts are still necessary to actively provide ground truth data, sequentially or
in batch. Similarly, CS relies on manual annotators to follow carefully crafted
labeling tasks in order to leverage non-experts, which produces highly variable
ground truth quality [8].

c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): CVII-STENT/LABELS 2017, LNCS 10552, pp. 106–115, 2017.
DOI: 10.1007/978-3-319-67534-3 12
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Fig. 1. Examples of volume and video data with a structure to annotate. Left to right:
Brain tumor (3D-MRI), cochlea (3D-CT); surgical instrument (video endoscopy); optic
disc (video microscope). Green contours highlight ideal ground truth regions. (Color
figure online)

Alternatively, Vilariño et al. [9] used an eye gaze tracker to annotate polyps
in video colonoscopy. In their approach an expert passively viewed a video
and stared at polyps. From these, they trained an SVM classifier to label the
sequence, treating regions around each gaze location as positives and the rest of
the image domain as negative samples. As we show in our experiments however,
this approach is limited to detecting objects of fixed size and does not extend well
to pixel-wise segmentation tasks. Also related is the work in [10] which mapped
out regions of interest using a gaze tracker on individual frames observed for
extended periods of time. More recently, the work of [11] is closely related to our
setting, with the important distinction that our data is viewed in one pass and
applied to video and volumetric data.

To overcome this limitation, we propose a novel framework to produce pixel-
wise segmentation for an object present in a volume (or video sequence) using
gaze observations collected from a $200 off-the-shelf gaze tracker. Assuming a
single target is present throughout the image data, we cast our problem as a
semi-supervised problem where samples are either labeled as positive (gazed
image locations) or unknown (the rest of the image data which could be posi-
tive or negative). To learn in this regime, we introduce a new Expected Expo-
nential loss function that can be used within a traditional gradient boosting
framework. In particular, the expectation is taken with respect to the unknown
labels, requiring a label probability estimate. We describe how to estimate these
with a novel strategy and show that our approach not only provides superior
performances over existing methods in a variety of medical imaging modalities
(i.e. laparoscopy, microscopy, CT and MRI) but can be used in a crowd-sourcing
context as well.

2 Gaze-Based Pixel-Wise Annotation

Our goal is to produce a pixel-wise segmentation of a specific structure of interest
located in a video or in a volume (i.e. we treat a volume as a video sequence). To
do this, we ask a domain expert to watch and follow the structure throughout the
sequence. While viewing the sequence, we track the persons eye gaze by means
of a commercially available eye gaze tracker. In our setting, this provides a single
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Fig. 2. Example Gaze-based annotating. A surgical instrument must be annotated in
a sequence. (1) A domain expert watches the sequences and has their gaze collected
during the viewing. (2) Our method then estimates object likelihoods over the sequence
and (3) we then train a classifier with an Expected Exponential loss function using a
subset of the image data. (4) The classifier is then used to evaluate the remainder of
the sequence.

gaze location for each viewed image and we assume the observer is compliant in
the task.

To produce ground truth annotations, we cast this problem as a binary semi-
supervised machine learning problem, where one must determine a pixel-wise
segmentation of the structure of interest in each of the images using only the
sequence itself and the gaze locations. We assume that gaze locations correspond
to the structure and propose a novel Expected Exponential loss function that
explicitly takes into account that some labels are known while others are not.
This loss leverages probability estimates regarding the unknown labels and we
present a strategy to estimate these effectively. Note that, we do not focus on
learning a function that generalizes to other similar sequences, but one that
annotates the given sequence as well as possible.

For a given image sequence, our approach is organized as follows and is
illustrated in Fig. 2: (1) the expert views the sequence and 2D gaze locations
are collected; (2) we estimate the label probability by using the image data and
the gaze information; (3) we then train a gradient boosted classifier with our
proposed loss on a subset of the image data; (4) using the trained classifier,
we predict the remainder of the image data. We will detail these steps in the
following sections but first define some notation used throughout this paper.

Notation: Let an image sequence (or volume) be denoted I = [I0, . . . , IT ]
and let G = {gt}Tt=0 such that gt ∈ R

2 is a 2D gaze pixel location in It. While
we ideally would like a pixel-wise segmentation, we choose to decompose each
image using a temporal superpixel strategy [12] and operate at a superpixel level
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instead. We thus let It be described by the set of non-overlapping superpixels
St = {Sn

t }Nt
n=0 and define the set of all superpixels across all images as S =

{St}Tt=0. We denote the set P = {Sn
t |gt ⊂ Sn

t , t = 0, . . . , T, n = 0, . . . Nt} as all
superpixels observed and the rest as U = S \ P. We associate with each Sn

t a
binary random variable Y n

t ∈ {−1, 1} = Y, such that Y n
t = 1 if Sn

t is part of
the object and -1 otherwise. In particular, we defined Yn as a Bernoulli random
variable, Y n

t ∼ Ber(εSn
t
), εSn

t
∈ (0, 1). Note that for superpixels observed by gaze

Sn
t ∈ P, we consider these as part of the object and let Y n

t = 1 with εSn
t

= 1.

3 Learning with an Expected Exponential Loss

Expected Exponential Loss (EEL): Our goal is to train a prediction func-
tion, f : S → Y that takes into account observed superpixels as well as the
unobserved ones. To do this we propose the following EEL function

EE = E
Y

⎡
⎣ ∑
S∈{P,U}

e−f(S)Y

⎤
⎦ (1)

where the expectation is taken with respect to all Y s. By linearity of expectation
and the fact that labeled superpixels have no uncertainty in their label, we can
rewrite the loss for all superpixels as

EE =
∑
S∈P

e−f(S) +
∑
S∈U

(
εSe−f(S)Y + (1 − εS)ef(S)Y

)
(2)

Note that this Eq. (2) is a generalization of the Exponential Loss (EL) [13]. In
the case where labels are known, the loss is the same as the traditional loss as
the expectation is superfluous. For unknown samples, the value of εS weighs the
impact of the superpixels. For instance, if εS is close to 0.5 then the sample does
not affect the loss. Conversely values of εS close to 1 (or 0) will strongly impact
the loss.

Implementation: We implemented the above EEL within a traditional Gra-
dient Boosting classifier [13], by regressing to the residual given by the derivate
of Eq. (2). For all experiments, we used stumps as weak learners, a shrinkage
factor of 1 and the line search was replaced by a constant weight of 1. The
weak learner stumps operate on features extracted from the center of the super-
pixel. In particular, we used generic Overfeat features [14] which provide a rich
characterization of a region and its context (e.g. 4086 sized feature vector).

During training we used all superpixels in P and used 10% of those in U . A
total of 50 boosting rounds was performed in all cases. To predict segmentations
for the entire volume, we predicted the remaining 90% of superpixels in U .

4 Probability Estimation for Unknown Labels

To estimate εS in Eq. (2), we take inspiration from the Label Propagation
method [15], which uses a limited number of positive and negative samples to



110 L. Lejeune et al.

iteratively propagate labels to unobserved samples. In our setting however, we
only propagate positive samples to unlabeled samples using the gaze information
as well as pixel motion estimation to constrain the probability diffusion.

We let P0 = [p0, . . . , pN ] be a vector of initial probabilities for all superpixels
in a given image, where pn = P (Y = 1|P) is the probability that superpixel Sn

is part of the object. In practice, we estimate pn by computing a gaze dependent
Lab color model using all gaze locations and assessing how likely a superpixel
Sn is part of the object. That is, we compute

pn = max
S∈P

N (Sn|μS , ΣS), (3)

where N is a Gaussian distribution such that μS and ΣS are the color mean and
covariance of pixels in a superpixel S that was gazed at. For superpixels that
were gazed at, their probability is fixed at 1. To propagate probabilities, we also
define a N × N affinity matrix, denoted W with values

wij = exp(−|θi − θj |2/2σ2
a) exp(−|C(Si) − C(Sj)|2/2σ2

d), (4)

where for superpixel Si, C(Si) is its center and θi is its average gradient orien-
tation. In cases where Si and Sj are separated by more than τ pixels, wij = 0.
σa and σd are model parameters reflecting the variance in angle difference and
the impact of neighboring superpixels, respectively.

Propagation can then be computed iteratively by solving

Pm+1 = αΩPm + (1 − α)P0, (5)

where α ∈ (0, 1) is a diffusion parameter, D is a diagonal matrix with entries
dii =

∑
j wij and Ω = D−1/2WD−1/2. Figure 3 shows the initial P0, the associ-

ated optical flow regions and the final propagated probability for a given image.
While the original method described in [15] hinged on a minimum of one posi-
tive and one negative sample to prove the existence of a closed form convergence
solution, the same cannot be said of the current setting where no negative sam-
ples are known. For this reason, we iterate a total of 10 times and then use the
estimates for the εS values in Eq. (2). This value was experimentally determined
and shown to perform well for a number of image sequences (see Sect. 5). The
process is repeated for all frames in the sequence.

Note that the probability estimate is computed from a single gaze sequence
and the corresponding image data. As such, if more than one domain expert
viewed the same sequence, as it is the case in Crowd-Sourcing tasks, this process
can be repeated for each observer and averaged over all observers. In our exper-
iments, we show that doing so brings increased performances over that given by
a single observer.

5 Experiments

To evaluate the performance of our method we compare it to the method pre-
sented in Vilariño et al. [9]. We also show how the EEL approach compares with
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Fig. 3. Probability propagation. Left to right: original image with the gaze location
highlighted in green; Initial P0 estimate from the gaze-based color model; Image regions
with high optical flow; Estimated probability after propagation. Dark blue regions
depict low probability while warmer regions correspond to higher probabilities. (Color
figure online)

that of using εS estimates only (see Sect. 4), as well using εS , with a traditional
EL when binarizing the labels using a fixed threshold εS = 0.5. The following
parameters were kept constant: α = 0.95, σa = 0.5, σd = 50, τ = 50 and the
superpixel size was set to match 1◦ on the viewing monitor.

We evaluated each of the above mentioned methods on 4 very different image
sequences (see Fig. 1 for examples): (1) a 3D brain MRI containing a tumor
to annotate from the BRATS challenge [16] consisting of 73 slices, (2) a 30
frame surgical video sequence from the MICCAI EndoVision challenge1 where
a surgical instrument must be annotated, (3) a 95-slice 3D CT scan where a
cochlea must be annotated and (4) a slit-lamp video recording (195 frames) of
a human retina where the optic disk must be segmented. Pixel-wise annotated
ground truth on all frames of each sequence was either available or produced by
a domain expert. In all sequences, one and only one object is present throughout
the sequence.

Our method was implemented in MATLAB and takes roughly 30 min to
segment a 30 frame volume with 720 × 576 sized frames, of which the bulk of
time is used to compute temporal superpixels and training our classifier. Even
though real-time requirements are not necessary in this application, we believe
this computation time could be reduced with an improved implementation

Gaze locations were collected with an Eye Tribe Tracker (Copenhagen, Den-
mark) which provide 1◦ degree tracking accuracy. To collect gaze locations, a
computer monitor and the tracker was placed roughly 1 m from the experts face.
Device-specific calibration was performed before all recordings (i.e. a 2-minute
long procedure done once before each viewing). 2D gaze locations were collected
and mapped to the viewed image content using the manufacturers API. Domain
experts were instructed to stare at the target and avoid looking at non-object
image regions. Once each sequence was observed, the different methods inferred
the object throughout the entire image data.

Results – Annotation accuracy: Table 1 reports the Area Under the
Curve (AUC) and the F-score performances of each method applied to each
dataset. In general, we report that the proposed combined label estimation and

1 Endoscopic vision challenge: https://endovis.grand-challenge.org.

https://endovis.grand-challenge.org
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EEL function provide the highest AUC and F-score values across the tested
sequences. Figure 4 visually depicts example frames from each sequence and the
outcome of each method, as well as the ground truth. To generate these binary
images, a %5 false positive threshold was applied (i.e. threshold was determined
using the ground truth). One can see that in cases where the object to segment
occupies large areas of the image, as is the case for the surgical instrument,
both the traditional loss approach and that of [9] do not perform as well since
they treat significant portions of the background as positive samples during their
respective learning phases.

Table 1. Area under the curve (AUC) and performances for each approach on each
dataset. highlight maximum values in bold.

Dataset Metric Vilarino et al. [9] Probability Est EL EEL

Brain tumor AUC 0.687 0.963 0.974 0.976

F-score 0.551 0.428 0.482 0.592

Cochlea AUC 0.687 0.963 0.974 0.976

F-score 0.223 0.239 0.431 0.631

Surgical instr. AUC 0.346 0.949 0.959 0.985

F-score 0.239 0.711 0.725 0.851

Optic disc AUC 0.687 0.963 0.974 0.976

F-score 0.506 0.367 0.494 0.665

Fig. 4. Qualitative results. Each row shows a different dataset with an example image,
the associated desired ground truth and the produced outcome of [9], using the prob-
ability estimation approach, EL approach and the proposed EEL. Binary images were
generated by thresholding results at a 5% False Positive Rate.
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Fig. 5. (left) ROC performance variability on the same data but induced with different
gaze sequences. (right) Performance in a crowd-sourcing setting.

Results – Gaze variance: In order to estimate the variance in annota-
tions obtained with our strategy, 7 gaze observations were performed on the
same laparoscopic image sequence. From these gaze observations, we ran our
method on each set independently. Figure 5(left) shows the average ROC curve
and standard error associated with our approach. In addition, we show simi-
lar performances when using the EL and when using the estimated labels only.
On average we see that the EL does no better than the label estimation process,
while the label estimation approach has slightly less variability. Overall, the EEL
approach not only outperforms the other settings, but has lower variance as well.

Results – Crowd-Sourcing context: From the 7 gaze observations col-
lected, we consider a Crowd-Sourcing context where the label estimation is com-
bined as described in Sect. 4 in order to generate the associated ground truth.
Figure 5(right) illustrates the performance attained when doing so. While the
overall trend is no different to the previous experiment, the performance reached
by the EEL approach is vastly higher. This is unsurprising given that more gaze
information is provided in this setting (i.e. 7 annotators) and that more of the
object is in fact viewed, yielding thus more positive samples, as well as better
εS estimates.

6 Conclusion

In this work we have presented a strategy for domain experts to provide useful
pixel-wise annotations in a passive way. By leveraging cheap eye gaze track-
ing technology, we have showed that gaze information can be used to produce
segmentation ground truth in a variety of 3D or video imaging modalities. We
achieved this by introducing a novel EEL function that is robust to large amounts
of unlabeled data and few positive samples. We also demonstrated that our app-
roach could be used in the context of crowd-sourcing where multiple annotators
are available.
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While this work presents an initial attempt, a number of aspects of this
work need to be explored moving forward. In particular, we plan to tackle the
case when the object is not present during the entire sequence, as well as cases
where multiple objects are present. Naturally, asking more of the user would
provide additional information, but our goal is to keep this to a minimum. For
this reason, we also plan on determining how our method could work with noisy
object observations, as %100 compliant users may not always be possible.
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Foundation Grant 200021 162347 and the University of Bern.
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Abstract. Analysis of vascular and airway trees of circulatory and res-
piratory systems is important for many clinical applications. Automatic
segmentation of these tree-like structures from 3D data remains an open
problem due to their complex branching patterns, geometrical diversity,
and pathology. On the other hand, it is challenging to design intuitive
interactive methods that are practical to use in 3D for trees with tens
or hundreds of branches. We propose SwifTree, an interactive software
for tree extraction that supports crowdsourcing and gamification. Our
experiments demonstrate that: (i) aggregating the results of multiple
SwifTree crowdsourced sessions achieves more accurate segmentation; (ii)
using the proposed game-mode reduces time needed to achieve a pre-set
tree segmentation accuracy; and (iii) SwifTree outperforms automatic
segmentation methods especially with respect to noise robustness.

1 Introduction

Analysis of anatomical branching trees in the human body (i.e. vascular and air-
way trees of circulatory and respiratory systems) is important for a wide range
of application (e.g., [22,24]). There are numerous methods for segmenting tree-
like structures from 2D and 3D images, which may be generally classified into
automatic (e.g., [5,15]) and interactive (e.g., [2,8,12,20,21,26]). Fully automatic
tree segmentation methods are not yet completely accurate and reliable as they
are often sensitive to parameters setting, are prone to leaking into nearby struc-
tures or to missing true bifurcating branches [15]. On the other hand, among
interactive methods, optimal path techniques are commonly employed, which
require the definition of start and end points (seeds) for each target branch
(e.g., vessel) [8,26]. Other works proposed manual correction techniques to be
applied after automatic segmentation [20,27]. Generally, interactive methods are
hard to design and utilizing them for complex branching 3D trees with tens or
hundreds of branches, which is not uncommon, is impractical.

There is a growing need for large numbers of segmented 3D imaging datasets
for training machine learning systems and for validating newly proposed meth-
ods, however, there is a scarcity of segmented complex 3D trees. This work,
which leverages gamification and crowdsourcing, is a first step towards enabling
the collection of large numbers of segmented anatomical trees.
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): CVII-STENT/LABELS 2017, LNCS 10552, pp. 116–125, 2017.
DOI: 10.1007/978-3-319-67534-3 13
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The objective of gamification is to transform a mundane task into an immer-
sive and engaging experience. Gamification has been leveraged in many ways,
e.g., improving work productivity, patient rehabilitation, education and enhanc-
ing cognitive skills, etc. Crowdsourcing, on the other hand, provides a possible
source of labelled (so called ground truth) data by leveraging humans’ cognitive
abilities and intelligence. Crowdsourcing is increasing in popularity and target
applications, e.g., missing person search, disaster management, astronomy, and
rehabilitation.

Table 1. Comparison of closest works. The meanings of the column headings are as
follows. Crowd: method leverages crowdsourcing; Game: offers a “game” mode; MIA:
designed for medical image analysis; 3D: handles 3D data; View: provides a view within
the 3D volume; Control: controls the viewing position and angle; Tree: supports extract-
ing branching tree-like structures; Skeleton: extracts centerline; Hierarchy: generates
abstract representation of tree hierarchy.

Work Crowd Game MIA 3D View Control Tree Skeleton Hierarchy

Donath et al. [9] �
Albarqouni et al. [3] � �
Maier-Hein et al. [19] � �
Chavez-Aragon et al. [6] � �
Maier et al. [18] � �
Luengo et al. [17] � � �
Albarqouni et al. [4] � � �
Hennersperger et al. [13] � � �
Sommer et al. [23] � � �
Poon et al. [21] � � �
Vickerman et al. [26] � � � �
Abeysinghe et al. [2] � � � �
Yu et al. [27] � � � � �
Marks et al. [20] � � � � �
Straka et al. [25] � � � �
Abdoulaev et al. [1] � � � �
Edmond et al. [10] � � � � �
Coburn et al. [7] � � � � � �
Heng et al. [12] � � � � � �
Diepenbrock et al. [8] � � � � � �
Proposed SwifTree � � � � � � � � �

Table 1 contrasts our proposed work with some of the most related literature.
Although there has been several works that deployed gamification and/or crowd-
sourcing for medical image analysis, to the best of our knowledge, this is the first
work to utilize gamification and crowdsourcing for vascular/airway tree extrac-
tion from 3D images. We argue that without the user confirming the segmenta-
tion everywhere along all branches of the tree, there is significant possibility of
erroneously segmented regions. Therefore, we set out to develop SwifTree, a tool
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that allows the user to quickly and intuitively traverse and extract the anatomical
tree in its entirety in a 3D volume, while supporting and leveraging gamification
and crowdsourcing. Briefly, using SwifTree, the operator steers their way down
along the bifurcating tree branches using intuitive controls. To address the mun-
dane and time-consuming nature of delineating many branches, SwifTree employ
gamification concepts. Finally, leveraging crowdsourcing, SwifTree allows multi-
ple users to cooperate and generate multiple results that are then aggregated to
produce the final extracted tree.

2 Method

Overview: After a 3D image is loaded into SwifTree, the image is processed
to extract image features for controlling the properties of glyphs placed in a
3D scene to provide helpful cues to the user. In order to provide the user with
multiple alternative views of the 3D scene, multiple virtual cameras at suitable
vantage points are used. Each user is provided with controls (e.g. keyboard
shortcuts) to facilitate navigating through the tree within the 3D image. In
the crowdsourcing setup, the users travel virtually through the tree branches
to construct trees in, both, a 3D spatial layout and in an abstract graph tree
representation (an example is shown in Fig. 1). The results are aggregated to
yield the final extracted tree and graph. The details follow.

Fig. 1. Illustration of the sequence of steps which SwifTree uses to extract a 3D tree.
Top: 3D spatial domain; bottom: corresponding abstract tree graph.

Image processing and glyph visualization: Figure 2 shows a schematic of
the components that comprise a SwifTree 3D scene. The user interrogates differ-
ent locations within the volume via a 3D polyhedral cursor. In a first attempt to
visualize the image data for the user, we found that surface rendering (via march-
ing cubes) and volume rendering (e.g. via ray casting) of the image data to over-
crowd the scene. Instead we used slices and glyphs as described next. A grayscale
oblique slice, cutting through the 3D volume, is rendered facing the user’s view-
ing direction so that the slice would depict the cross-section of a branch as a
single bright disk. As the user moves towards a bifurcation, the disk gradu-
ally splits into two, one for each child branch. We also render gradient glyphs
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based on the 3D image intensity gradient to highlight an estimate of the surface
boundary surrounding the tree branches. To highlight the voxels in the interior
to tree branches, we use tree-core glyphs calculated using the Frangi filter [11].
We experimented with different glyph densities (i.e. at every voxel or not), opac-
ity values, sizes and shapes, and found the following settings to provide useful
cues with minimal clutter: the size of each glyph was close to the size of a single
voxel; the glyphs were rendered only at voxels with a strong response (i.e. gradi-
ent magnitude and tubularness surpassed an empirically-set threshold); and the
opacity of a glyph was set proportional to the response magnitude. 3D glyphs
were used for the tree-core glyphs but, for the gradient glyphs, flat 2D poly-
gons with their normals pointing along the gradient direction were used in order
to visually capture the local edges. Additionally, two virtual cameras are added
to the scene: one camera provides a first-person local view whereas the other
displays a more global bird’s-eye view.

Fig. 2. Elements of SwifTree 3D scene (see text).

Navigation and movement: The aforementioned 3D cursor can be moved and
rotated interactively by the user (move-forward, rotate-left, etc.). Additionally,
once the user encounters a bifurcation (by observing the branch cross-section
splitting), they press a key to push the current state parameters (i.e. location
and camera viewpoints) into a bifurcation stack. After the user traverses one of
the child branches (and optionally the grandchild branches), they pop the state
parameters, to move the cursor and cameras back up the tree hierarchy to a
previously-identified bifurcation location, so that the other child branches can
be explored. Note that a trail of glyphs is left along the path explored by the
user in order to ensure that the user does not explore the same branch twice.

Interactive and game mode: In SwifTree’s game-mode, the cursor is an avatar
that possesses a velocity controlled by the player. The player navigates the 3D
volume by ‘flying’ through branches and identifying bifurcation locations using
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game-like controls (e.g., speed up, slow down, turn left). Also in game mode, the
tree-core glyphs are set to be collectibles, i.e., as the user’s cursor passes over
these glyphs, they are collected and hidden with an accompanying sound effect
and a score increment. The gradient glyphs, on the other hand, are avoidables
that reduce the score, since they represent branch boundaries that should not
be crossed. In SwifTree’s non-game interactive mode, the user’s cursor can be
seen as an inertia-less paintbrush manipulated by the user.

Crowdsourcing and aggregation: We recruit multiple users or players to
carry out a tree (or part of the tree) extraction session. The collected tree
branches for the same image across all sessions are first unioned together and
then a 3D spherical kernel is used to perform morphological closing. Then a
medial axis transform is applied to extract the tree skeleton and network analy-
sis is performed to create the abstract graph tree representation [14].

Implementation details: We used MATLAB (R2015b) to test several visu-
alization and interaction mechanisms. Then we ported SwifTree to: (i) the
cross-platform game engine Unity3D (unity3d.com) and (ii) an online cross-
browser version using JavaScript (v6.0) and the WebGL-based 3D graphics
library Three.js (r83) (threejs.org), with PHP and MySQL to automatically col-
lect the tree segmentation data generated by the users.

3 Results

Data: In-silico phantoms, physical phantom, and real images were used in our
experiments. Refer to Fig. 3 for details.

Fig. 3. Datasets: (a–c) In-silico phantoms: Y-Junc (60× 60× 60 voxels; 1mm isotropic
voxel), Helix (50× 50× 100; 1 mm isotropic), and VascuSynth (101× 101× 101;
1 mm isotropic); (d) Physical phantom (168× 168× 159; 1 mm isotropic);
(e) Renal MRA (576× 448× 72; 0.625× 0.625× 1.4 mm3); (f) Brain CTA
(352× 448× 176; 0.5134× 0.5134× 0.8 mm3); (g) Airways in CT (512× 512× 587;
0.5859× 0.5859× 0.6 mm3).

Supplementary material: The reader is referred to a simplified web-based
version of SwifTree at http://swiftree-org.stackstaging.com and to the supple-
mentary video https://youtu.be/AReIFQc47H4.

Evaluation criteria: We adopt the following criteria as described by Lo
et al. [16]: branch count (BC); branches detected (BD); tree length (TL); tree
length detected (TLD); leakage count (LC); and false positive rate (FPR).

http://unity3d.com
http://threejs.org
http://swiftree-org.stackstaging.com
https://youtu.be/AReIFQc47H4
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Table 2. Accuracy of tree extraction by ITK-Snap, Gorgon and SwifTree. Highest
accuracy in bold.

Data Y-Junc Helix VascuSynth Phantom Kidney Brain Airway
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BC 3 1 3 3 1 3 58 27 87 47 28 52 13 5 21 30 † 82 57 † 151

BD(%) 100 33 100 100 33 100 52 24 79 72 43 80 56 21 91 24 † 65 19 † 51

TL(cm) 4 1 5 15 1 22 75 40 99 90 56 84 40 19 47 34 † 64 28 † 91

TLD(%) 86 5 90 51 1 75 53 28 70 77 48 72 55 27 66 30 † 56 17 † 55

LC 1 2 1 35 1 5 273 85 152 45 98 27 57 9 1 82 † 144 81 † 284

FPR(%) 2 85 1 37 97 1 59 72 14 9 43 4 42 79 5 19 † 12 11 † 19

†: software froze and could not handle the complex tree.

Fig. 4. Benefits of crowdsourcing. Top: The temporal progress of each of 10 ses-
sions running SwifTree on the Brain dataset. As time advances and more sessions
are included, the aggregated tree becomes more accurate and complete. Bottom: Plots
of TLD vs time, for all data sets. Each solid colored curve corresponds to one tree
extraction session. The black dashed curve, with better tree detection (i.e. higher than
other curves), corresponds to the aggregated tree from all 10 sessions.

Tree extraction accuracy: Table 2 compares SwifTree to the ITK-
Snap (itksnap.org) and Gorgon (gorgon.wustl.edu) tools. In ITK-Snap the user
had to visit different slices to annotate pixels as tree branches, whereas in
Gorgon, the user selected the end points of branches. We see that SwifTree
gives the highest BD accuracy for all datasets, the highest TLD for all datasets
except Phantom, and the lowest FPR for all datasets except Airway.

http://itksnap.org
https://gorgon.wustl.edu


122 M. Huang and G. Hamarneh

Fig. 5. Benefit of gamification. Results on 3 dataset: Y-Junc (top row); VascuSynth
(middle); and Airway (bottom). Left: TLD vs time for game-mode (green) and inter-
active (non-game) mode (red). Right: Progress of tree extraction shown at 4 instants.
Game-mode sessions extract more branches quicker than non-game mode. (Color figure
online)

Fig. 6. Robustness to noise. Left: Comparison of Frangi filter, ImageJ Skeletonize3D
and SwifTree in terms of robustness to noise. BD, TLD, and FPR are reported for the 3
methods across 3 datasets: Y-Junc (top), VascuSynth (middle) and Kidney (bottom).
Right: Sample slices from each dataset at selected noise levels for illustration.

Benefit of crowdsourcing: We collected the results from 10 tree extraction
sessions for each dataset using SwifTree (i.e., 70 sessions). The results are aggre-
gated to obtain a single tree per dataset. As can be seen in Fig. 5, the tree
aggregated from all participating sessions gives a more complete tree than any
of the trees from the individual sessions. Also, the aggregated tree has the
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highest tree length detected with the highest initial slope (i.e. fastest increase).
A small dip can be seen in the TLD of the aggregated tree due to false positive
branches from some sessions.

Benefit of gamification: Figure 4 shows that enabling SwifTree game-mode
features (i.e. velocity, sound effects, score, collectibles, and avoidables) reduces
the time needed to reconstruct a pre-set tree compared to the non-game mode.

Robustness to noise: In Fig. 6, we compare SwifTree’s results to those obtained
by Frangi filter and ImageJ Skeletonize3D plug-in under different levels of
Gaussian noise. We see that Frangi filter and Skeletonize3D report high detection
rates of branches and trees (top and middle rows). However, they suffer from
a high number of false positives (bottom row). SwifTree’s false positive rate is
much lower.

4 Conclusion

We proposed SwifTree, a novel tool for extracting tree-like structures from 3D
images. We showed that by leveraging gamification and crowdsourcing, SwifTree
can achieve more accurate results faster and is more robust to noise than tradi-
tional segmentation tools. The next phase of our work involves releasing SwifTree
publicly as a “Human Intelligence Task” (HIT) on the established crowdsourcing
platform Amazon Mechanical Turk, then analyzing the results collected from a
large scale study involving hundreds of workers or “Turkers”. There are several
directions to explore that can improve the performance of the tool, such as more
elaborate game design (e.g. improved visualization, sound, scoring system, and
game-levels); an aggregation approach that gives higher weights to more expert
users; detecting branch thickness; as well as performing large-scale user studies.
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Abstract. Classification of emphysema patterns is believed to be useful
for improved diagnosis and prognosis of chronic obstructive pulmonary
disease. Emphysema patterns can be assessed visually on lung CT scans.
Visual assessment is a complex and time-consuming task performed by
experts, making it unsuitable for obtaining large amounts of labeled data.
We investigate if visual assessment of emphysema can be framed as an
image similarity task that does not require expert. Substituting untrained
annotators for experts makes it possible to label data sets much faster
and at a lower cost. We use crowd annotators to gather similarity triplets
and use t-distributed stochastic triplet embedding to learn an embedding.
The quality of the embedding is evaluated by predicting expert assessed
emphysema patterns. We find that although performance varies due to
low quality triplets and randomness in the embedding, we still achieve a
median F1 score of 0.58 for prediction of four patterns.

Keywords: Crowdsourcing · Emphysema · Similarity learning

1 Introduction

Emphysema is a lung pathology common to chronic obstructive pulmonary dis-
ease that is a major cause of morbidity and mortality world wide [3]. Emphysema
is characterized by destruction of lung tissue. Lung CT scans can reveal emphy-
sema and visual scoring can be used to rate the extent and type of emphysema
in the lungs [14]. Visual scores can be used for training classifiers to automati-
cally assess presence and extent of emphysema [9,11]. However, visual scoring of
emphysema by experts is both expensive and prone to high rater disagreement
[14]. Instead of performing a full visual scoring, which requires expert knowledge

c© Springer International Publishing AG 2017
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of the lungs, we investigate whether it is possible to reduce emphysema assess-
ment to a simpler task that can be performed by untrained raters, or crowds.

In fields such as computer vision, crowdsourcing - outsourcing simple tasks
to a crowd of online users, often without any specific training - has been used
successfully to gather labels for training and validation of classifiers [4]. Most of
this research focuses on collecting labels that directly characterize the content
of the image, for instance presence of an object or indicating regions of inter-
est. Motivated by the fact that some categorization tasks may be difficult for
non-experts, a few others instead focus on collecting assessments of similarities
between images. For example, Wah et al. [13] collect similarities between images
of different bird species, which most people do not know by name, but can eas-
ily assess their visual similarity. The similarities can then be used to learn an
embedding that can aid classification.

Due to the success of crowdsourcing in computer vision, there have also
been several efforts to apply it to medical imaging [1,2,6,8]. Similar to methods
from the computer vision field, these works focus on collecting labels for images,
targeting classification or segmentation tasks. For example, the crowd can be
asked to grade retinal images as normal or abnormal [8] or to segment airways
in 2D slices of chest CT images [2]. To the best of our knowledge, this work is
the first to gather crowdsourced similarities for medical images, as well as to
apply a crowdsourcing approach to classification of emphysema patterns.

2 Materials and Methods

2.1 Data

We used 40 chest CT scans from the a national lung cancer screening trial [10]
and visual assessment of emphysema from [14]. Visual assessment is performed by
considering the full 3D volume and splitting each lung in three regions. The top,
middle and lower regions are defined as above carina, between carina and inferior
pulmonary vein, and below inferior pulmonary vein. The volume is assigned a
label indicating the predominant emphysema pattern and each region is assigned
an estimate of the extent of emphysema in the region. The 40 scans were selected
amongst those where raters agreed on visual assessment of both predominant
pattern and emphysema extent in the upper right region. We excluded scans
with panlobular emphysema due to low prevalence. We grouped candidate scans
based on predominant pattern: normal (N), centrilobular (C), paraseptal (P),
mixed (M), and chose ten scans from each group. For the three emphysema
groups (C, P, M) we chose the scans with highest extent, and for the normal
group we chose ten scans at random. We used lung fields segmented from the
scans obtained from [5].

We extracted nine coronal slices from the top region of the right lung of each
scan. The slices were evenly spaced (10 mm) and located such that the center
slice coincided with the center slice of the region. In this way we covered a depth
of 80 mm and avoided slices at the very boundary of the lungs. An example
of an extracted set of slices is given in Fig. 1. The slices are extracted from



128 S.N. Ørting et al.

a subject with a large extent of centrilobular emphysema. We see that while
texture patterns vary a lot throughout the region, patterns are similar between
neighboring slices. It is also clear that size and shape of the lung region varies
with slice location. To avoid having workers focus on the differences in lung size
and shape, we stratify slices by their location in the lung when sampling triplets.

Fig. 1. Nine slices extracted from a single volume. There is a large extent of centrilob-
ular emphysema. We can see that neighboring slices tend to have more similar texture
patterns than slices that are far away from each other. White border added for clarity.

2.2 Crowdsourced Triplets

We used Amazon MTurk1 to collect similarity triplets. MTurk centers on the
concept of a human intelligence task (HIT), a self-contained task that can be
solved by a worker. We designed our HIT as a set of three image triplets where
the task is to provide similarity assessment of each of the three triplets. A screen-
shot showing part of a HIT is given in Fig. 2. We asked workers to choose one of
two images on the right with the most similar disease patterns to the image on
the left. We instructed workers to look for emphysema patterns, defined as areas
of low intensity, and consider the distribution of patterns of these areas: scat-
tered throughout the lung or concentrated. We emphasized that workers should
ignore differences in size and shape of the lung. We asked three different workers
to perform each HIT. We required workers that had at least 1000 previously
approved HITs and a 95% approval rate. The reward for each task was $0.10.

We collected 9720 similarity triplets for 3240 unique image triplets. 150 dif-
ferent workers worked on the HITs, with a median number of HITs per worker
of 6.5 (19.5 similarity triplets). The median work time per HIT was 55 s. The
most productive worker submitted 131 HITs and the lowest work time for a HIT
was 4 s. More than 92% of the HITs were finished within 30 min of the first HIT
being available. The total cost was $388.80.

2.3 Similarity Embedding

We used t-distributed stochastic triplet embedding (t-STE) [12] to learn an n-
dimensional Euclidean embedding from the similarity triplets. t-STE searches for
an embedding X that maximizes the probability of observing the given triplets.

1 https://www.mturk.com.

https://www.mturk.com
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Fig. 2. Amazon MTurk user interface for collecting the similarity triplets

Let T be the set of known triplets and ijl ∈ T a triplet indicating that d(i, j) <
d(i, l). The probability of ijl given xi, xj , xl ∈ X is

pijl =

(
1 + ||xi−xj ||2
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)− α+1
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The optimization problem is

min
X

−
∑

ijl∈T

log pijl (2)

which is solved with gradient descent using the implementation from Michael
Wilber2.

Crowdsourced similiarity triplets are very likely to contain inconsistent and
redundant triplets. When multiple workers perform the same HIT this is defi-
nitely the case. McFee and Lanckriet [7] give empirical evidence that pruning
triplets for consistency and redundancy reduces computation time without affect-
ing performance. However, they compare against a baseline where directly dis-
agreeing triplets are removed. Removing triplets where workers disagree removes
information about the uncertainty of the triplets. We can implicitly model this
uncertainty by keeping all triplets. It can be shown that for x = xi, xj , xl the
conflicting triplets satisfy

∂

∂x
pijl = − ∂

∂x
pilj , (3)

and the sum of the derivatives becomes
∂
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− 1
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)
(4)

2 https://github.com/gcr/cython tste.

https://github.com/gcr/cython_tste
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which will drive the triplets to become equally probable, i.e. ||xi−xj || = ||xi−xl||.
In the case where ijl occur cj times and ilj occur cl the gradient will depend on
both the ratio cj/cl and the distances ||xi − xj ||, ||xi − xl||. In this way workers
uncertainty about triplets will be accounted for in the optimization.

We used k-fold cross-validation with a multinomial log-linear model to esti-
mate the predictive performance of the obtained embeddings. We enforced that
each test fold contained exactly one sample from each class. For four classes with
ten scans each this resulted in 10-fold cross-validation. We used the predomi-
nant pattern from the expert visual scoring of the regions as class labels. The
model was fitted as a neural network with one hidden layer using the multinom
function from the nnet package3.

3 Experiments and Results

3.1 Simulated Similarity Triplets

To estimate how many triplets are needed to reveal an underlying pattern
we performed a simulation experiment. We defined a distance function that
encodes a similarity hierarchy of visually assessed patterns and emphysema
extent. Paraseptal emphysema often appear as a small number of large holes,
whereas centrilobular emphysema often appear as a large number of small holes.
We therefore expect most raters will consider normal and centrilobular patterns
more similar than normal and paraseptal patterns. We also expect both cen-
trilobular and paraseptal patterns to be considered more similar to the mixed
pattern than to each other. For images with the same pattern class we used
absolute distance on emphysema extent. This simple distance function does not
account for variability in patterns and it is unlikely that image based similar-
ity triplets will match the visual assessment perfectly. However, it does provide
some insight into the amount of triplets necessary. We used three sets of ran-
domly selected triplets with sizes of 120, 240, and 360. For each set of triplets we
generated 100 2D embeddings and estimated the prediction performance of the
embedding with the multinomial model described above. We used the F1 score
to measure performance

F1 = 2 · precision · recall
precision + recall

. (5)

The median F1 score for 120 triplets was 0.8 and improved to 0.9 for 240 triplets
and to 1.0 for 360 triplets. There was some variation in performance for 120 and
240 triplets, whereas almost all 360 triplet embeddings gave perfect prediction.
Representative embeddings for 120 and 240 triplets are given in Fig. 3. We can see
that the embedding matches the distance function quite well, with normal and
paraseptal being furthest from each other and mixed in between centrilobular
and paraseptal. We also see some class overlap for 120 triplets and almost no
overlap for 240 triplets. We used these results to guide the crowdsourcing to
gather relatively many triplets for a small number of scans.
3 https://cran.r-project.org/web/packages/nnet.

https://cran.r-project.org/web/packages/nnet
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Fig. 3. Example embeddings from simulated triplets. Left: 120 triplets. Right: 240
triplets. While there is no overlap between emphysema and normal classes in both
cases, there is some overlap between emphysema classes for 120 triplets.

3.2 Crowdsourced Similarity Triplets

We estimated the quality of the crowdsourced triplets by measuring the agree-
ment with a small set of validation triplets. The validation triplets were labeled
by one of the authors and consist of 52 triplets that the authors view as easy
to reproduce. The overall agreement was 71% with a large variation between
workers. We expected most workers to work on one or more validation triplets.
However, due to the large number of workers only 41% of workers worked on
a validation triplet and only 11% on more than two validation triplets. While
agreement was lower than anticipated, and some workers had very poor agree-
ment, we decided to include all triplets.

We varied the embedding dimensionality d from 1− 10. We set α = max(d−
1, 1) for all experiments and used a random initialization of t-STE. From the
similarity triplets we learned an embedding of slices. Due to the stratification of
triplets by slice location it is not meaningful to embed different slice locations
simultaneously. We therefore concatenated the slice feature vectors to obtain
a region embedding. We normalized each slice embedding to avoid that slice
locations with numerically large distances dominated the region embedding. As
an alternative to embedding each slice location separately we added triplets
between slice locations and embedded all slice locations simultaneously. The
extra triplets were derived by exploiting that neighboring slices in a region, in
general, are more similar than slices further away from each other. This “neighbor
similarity” was encoded with the distance function

d(slicei, slicei+1) < d(slicei, slicei+3), i ∈ [1 : 6],
d(slicei, slicei−1) < d(slicei, slicei−3), i ∈ [4 : 9],
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and the corresponding triplets were added to T . We refer to the first approach as
stratified and the second as combined. All embeddings were repeated 100 times
to account for variability arising from the random initialization of t-STE.
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Fig. 4. Distribution of mean F1 scores for classification of emphysema type. Left strat-
ified, right combined. The dashed red line indicate random performance (F1 = 0.25).
(Color figure online)

Figure 4 shows the mean F1 score over all classes for increasing embedding
dimension for stratified and combined embeddings. Best median performance
was achieved with D8 for stratified (F1 = 0.58) and with D9 for combined
(F1 = 0.55). In both plots we see a large variation in performance. Adding the
extra triplets for combined embedding seems to make performance more similar
across dimensions, but does not decrease variation within each dimension. The
direct source of the variation is the random initialization of t-STE. However,
as the simulation showed, having a large consistent set of triplets will drive the
variation in prediction performance to 0. The extra triplets for combined, that
as subset is consistent, did not reduce variation, so the main underlying cause
is likely having too many inconsistent triplets.

Figure 5 show performance by class. In all cases we see best performance on
centrilobular and normal. For D > 5 we see consistently higher performance on
centrilobular than on normal. Performance on centrilobular seems to be the main
cause for the higher mean scores at D8 and D9. Treating mixed and paraseptal
as one pattern makes the performance similar to performance on centrilobular
(results not shown). This indicates that the main difficulty is in distinguishing
paraseptal and mixed.
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Fig. 5. F1 scores for classification of emphysema type. Left for stratified, right for
combined. The dashed red line indicate random performance (F1 = 0.25). Symbols
indicate median values and bars indicate ±1 median absolute deviation. (Color figure
online)

4 Discussion and Conclusion

Although there was large variation in prediction performance, it was in all but
a few cases substantially better than random. The results from the simulation
experiment show that more triplets improve median prediction performance and
reduce variance. However, the simulation experiment uses triplets that perfectly
encodes a distance function on patterns. While more crowdsourced triplets might
improve performance and reduce variance, it is possible that higher quality set
of triplets is needed to see significant gains.

Pruning triplets could improve quality. Directly inconsistent triplets, i.e.
ijl, ilj ∈ T , can arise from poorly performing workers or difficult decisions.
If we assume they represent difficult decisions, then they contain important
information that we would like to keep. Pruning triplets is shown by [7] to be
NP-hard and can only be solved approximately. Using the information from the
direct inconsistencies to guide the pruning could be an interesting approach to
improve the quality of the triplet set.

Direct inconsistencies due to poorly performing workers should not guide
anything, but be removed. One approach is to rank workers and discard triplets
from the least trustworthy workers. Ranking could be done by ensuring all work-
ers perform tasks with a reference. Alternatively, it could be based on how well
each worker agree with other workers. The first case requires expert labels and
that each worker perform a minimum number of reference tasks. The second
case requires that workers perform a large number of tasks and that tasks over-
lap with many different workers. In the future we intend to use one or both
approaches to improve the quality of the triplet set.
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An alternative to filtering triplets from poorly performing workers is to only
enlist high performing workers. This could be done by splitting the tasks into
many small sets and only allow the best performing workers to work on a new set.
In this way the workforce would be trained to solve the tasks to our specification.
Another option is recruiting workers that find the tasks worth doing beyond
the financial gain. One worker expressed interest in working more on this type
of tasks and asked “Am I qualified to be a pulmonologist now?”. Compared to
many other crowdsourcing tasks, medical image analysis seems like a good fit for
community research, where people outside the traditional research community
play an active part. It requires a larger degree of openness and communication
about the research process but could be a tool to recruit high quality workers.

In this work we aimed at keeping HITs as simple as possible, hence the choice
of collecting triplets. Instead of similarity triplets it is possible to ask workers to
label the images. We believe that asking untrained workers to assess emphysema
pattern and extent would be overly optimistic. However, focusing on a few simple
questions might work well, for example “Are there dark holes in the lung?”, “Are
holes present in more than a third of the lung?”, “Are the holes predominantly at
the boundary of the lung?”. These types of questions correspond to a model we
have of emphysema and could be used to derive emphysema pattern and extent
labels. The downside is that we need to know exactly what we want answered
at the risk of missing important unknowns in the data.

Regardless of the high variance in performance, we conclude that untrained
crowd workers can perform emphysema assessment when it is framed as a ques-
tion of image similarity. No quality assurance, beyond requiring that workers
had experience with MTurk, was performed. It is likely that large improvements
can be gained by quality assurance of similarity triplets.
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Abstract. Computer Aided Diagnosis (CAD) systems are adopting
advancements at the forefront of computer vision and machine learn-
ing towards assisting medical experts with providing faster diagnoses.
The success of CAD systems heavily relies on the availability of high-
quality annotated data. Towards supporting the annotation process
among teams of medical experts, we present a web-based platform devel-
oped for distributed annotation of medical images. We capitalize on the
HTML5 canvas to allow for medical experts to quickly perform segmen-
tation of regions of interest. Experimental evaluation of the proposed
platform show a significant reduction in the time required to perform
the annotation of abdominal computerized tomography images. Further-
more, we evaluate the relationship between the size of the harvested
regions and the quality of the annotations. Finally, we present additional
functionality of the developed platform for the closer examination of 3D
point clouds for kidney cancer.

1 Introduction

Medical imaging modalities contain a wealth of useful information for the diag-
nosis of a wide range of ailments, rendering them an essential component of
the diagnostic process. A plethora of tools for the accurate identification of risk
markers for different pathologies in medical images has been developed (e.g.
[2–6]). Such inference schemes require large amounts of annotated data, which
are used for the training of supervised or semi-supervised models. Unfortunately,
the very high cost of the annotation process associated with medical images
results in a lack of publicly available benchmarks (e.g. [8,9]). The high cost can
be attributed to the requirement of highly trained experts for providing the
annotations. This scarcity of annotated data is prohibitive to the development
of Computer Aided Diagnosis (CAD) for a variety of pathologies.

The overall objective of this study is concerned with the development of
a CAD scheme for the localization and the health assessment of kidneys from
abdominal Computerized Tomography (CT) scans. In that direction, two sub-
problems can be identified; first the accurate localization and segmentation of
c© Springer International Publishing AG 2017
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the organ (kidney) and the aorta and, second, the automated identification of
abnormal masses (malignant tissue, benign tissue and cysts).

With the support of our medical collaborators, a collection of several hundred
abdominal CT scans of kidney cancer patients has been acquired. A majority of
the patients’ pathologies are clear cell Renal Cell Carcinomas (RCCs) but pap-
illary RCCs, angiomyolipomas, renal oncocytomas, and papillary urothelials are
represented as well. Our intention is to create a rich collection of accurate delin-
eations of abnormalities developed by the kidneys. This introduces an annotation
burden which is distributed among urologists at different locations.

A large variety of tools is available for the generic annotation of images.
Such tools were designed with much different tasks in mind and have a large
number of extraneous features which, for an application like the one in hand,
would unnecessarily increase the complexity of the annotation sessions. Two
examples of such tools are the GNU Image Manipulation Program1 and Adobe
Photoshop2.

Furthermore, the anticipated high data volume creates the need for a cen-
tralized storage and backup platform. In that way, users are not required to
manually update annotation repositories after each session, and only necessi-
tates redundancies at the server level, rather than the personal computer level.

2 Related Work

A number of specialized tools tailored to the task of high-volume image anno-
tation have been created. One such platform is the Automated Slide Analysis
Platform (ASAP)3. ASAP was built for the specific task of annotating whole
slide histopathology images. It includes a large collection of tools for this task
including the ability to draw polygons from sets of points and to create splines.

According to our partnering medical experts, certain features of ASAP are
more relevant to the annotation of histopathological data. In our case, the most
convenient way to segment our regions of interest was to simply draw outlines
and fill them. Therefore, many of ASAP’s features are vestigial to our task and
would introduce unnecessary complexity. Additionally, ASAP is a desktop tool
which requires the users to store a copy of the data locally. This is not ideal for
our task for the reasons discussed in the previous section. Further, in order to
save an annotation and move on to the next image or feature, at least 5 clicks
are required by the user, on top of decisions he or she must make about where
to store the annotation and which file to open next. This introduces a significant
amount of unnecessary work which frustrates users and reduces efficiency.

Another platform that was created for this task is MIT CSAIL’s LabelMe [1]
website. This platform is well-made and better suited for our task than ASAP
since it is web-based with central data management and requires only a single

1 https://www.gimp.org/.
2 https://www.adobe.com/products/photoshop.html.
3 https://github.com/GeertLitjens/ASAP.
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click to move to the next image. However, it is missing features which are crit-
ically important to our design objective. For instance, the tool only supports
drawing using point-defined polygons. According to the experts we talked to,
this is not ideal. Additionally, LabelMe draws with full opacity, and a simple
experiment showed us that full opacity leads to higher variability among anno-
tators and overall lower accuracies. Furthermore, the LabelMe interface does
not have a “previous” button which medical experts told us was essential to
their ability to accurately annotate, presumably so that they could conveniently
flip back and forth between sequential frames in order to make better informed
decisions about which regions are which.

In contrast, our platform was designed with the following three core require-
ments, namely, (i) distributed capabilities, (ii) robust and secure centralized data
storage and, (iii) a lightweight interface focusing on the task in hand. Our use of
the HTML5 canvas elementmakes this realizable. Additionally, in order to ensure a
user-friendly presentation, our platform capitalizes on the Bootstrap4 framework.

3 The Interface

The interface of the developed scheme was based on the the Bootstrap frame-
work. In particular, we used Start Bootstrap’s SB Admin template5, since it
allows for the landing page to provide the user with information on the state of
the system. In our case, this is to display the annotation progress on a particu-
lar project. This landing page is depicted in Fig. 1. When the user clicks on the

Fig. 1. The four colored cards correspond to the number of images belonging to each of
the four bins: unannotated, pending, validated, and rejected. The proportions in each
bin are visualized by the graph below the cards. This screen capture was taken when
no images were yet annotated. (Color figure online)

4 http://getbootstrap.com/.
5 https://startbootstrap.com/template-overviews/sb-admin/.

http://getbootstrap.com/
https://startbootstrap.com/template-overviews/sb-admin/
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unannotated card or the annotate button on the top left, it brings them to the
image-set selection page. Here, the user sees a vertical list of image-sets, each
corresponding to a set of slices from a single CT scan. If an image-set has been
annotated by another user in the past hour, it shows the name of the user who
made the most recent annotation and the time at which it was submitted. The
user also has the option of selecting auto in which case the system will direct
the user to either the last set he/she annotated, or a random unannotated set.
A screen capture of this page is depicted in Fig. 2.

Once the user selects an image-set to annotate, it brings them to the page
depicted in Fig. 3. Here, he/she is presented with an image in the center of
the screen, with thumbnails of the features already annotated below it, and a
toolbar above it. Among the tools are previous and next buttons, a bar of small
thumbnails of each slice to choose from, and submit buttons for each feature.
The user may use the bucket icon to switch his/her tool to a bucket fill, or simply
by right clicking which also performs this action.

The platform makes use of the CSS3 filter element to adjust its brightness and
contrast. Medical experts have particular preferences for brightness and contrast
for CT images that depend on which part of the body it depicts, and which
organs they are studying. We selected abdomen brightness and contrast values
(170% and 300%, respectively) by iteratively adjusting and getting feedback
from expert urologists.

For this annotation task, we would like segmentation data for five regions of
interest: left kidney, right kidney, left mass, right mass, and aorta. If a particular
region doesn’t exist in an image, the user simply omits that submission, or
submits a blank canvas. Once an annotation is submitted, it falls to its respective
thumbnail under the large image. Until then, those thumbnails remain gray
placeholders.

Fig. 2. The leftmost text of an image-set is that image-set ID, the first denoting patient
2, set 0. Next in from the left is a breakdown of the bins each image in the set resides
in. Next is the aforementioned notice of recent activity. Finally we have the annotate
and validate buttons.
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Fig. 3. The interface with which users create their drawn annotations.

The users also have the option to validate annotations. This is a simple
binary feedback process on an interface that follows the design of the annotation
interface, but instead of five submit buttons, there are only two: accept or reject,
after which it stores the response and presents the next annotation. This feature
was deployed for ensuring the high quality of the harvested annotations.

4 The Backend

In this section we briefly discuss the backend of this platform. The platform
stack is Linux Apache MySQL PHP (LAMP) with some flat files of structured
data (JSONs) used for configuration and databasing. The software would likely
run slightly faster if the flat files were migrated to MySQL, but as of now, speed
is not a major concern.

During annotation, the brush strokes and fill commands from the user are
individually stored locally to allow for undo and redo operations. Once the anno-
tation is submitted, it is stored on the server as a whole image.

5 Evaluation

There are two components to the task of evaluating this platform, namely (i)
evaluate the interface of the platform from a general standpoint of interaction
design and ease of use, and (ii) evaluate the interface’s capacity for allowing
users to produce highly accurate image annotations.

5.1 Evaluating Interaction Design and Ease of Use

In addition to the design guidelines given by medical experts during this plat-
form’s initial development, we conducted a heuristic evaluation using the Nielsen
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Norman Group’s 10 heuristics [7]. This technique was selected because it has
been shown to be a very effective and low-cost method for identifying weak-
nesses in a user interface. In that way, the types of flaws that a user study might
miss are also identified. As is standard practice, the platform was evaluated by
3 experts trained in heuristic evaluation. Each expert compiled a list of heuris-
tic violations independently. Then, the collected information was consolidated
and each violation received and ordinal (0-4) severity score. Those were then
averaged to yield the final evaluation score.

Our heuristic evaluation identified 13 violations. Only one violation received a
3, the rest were rated 2 or lower, and highly ranked one was identified as a known
issue which at the time of writing was being worked on and near resolution. For
brevity, we refrain from listing each violation here, but some clusters we noticed
were (i) our platform suffers from the so-called “pottery barn principle” where
certain actions have no or limited undo functionality, so users sometimes feel as
though they are walking around in a pottery barn, which significantly impairs
the user experience, and (ii) our error messages lack informative and constructive
feedback about how to proceed in the event of each error. Improvements which
address these issues have been slated for development and will likely be deployed
a few weeks after writing.

5.2 Evaluating Data Quality

It is important to ensure that the annotations completed with this platform
accurately represent the intentions of the expert performing them. We identified
region size as a factor which impacts annotation precision. Towards developing
size guidelines for freehand annotations, we performed a study in which a single
user annotated the same kidney 16 times at each of 8 different levels of zoom.
In addition to the annotations, we recorded the time of continuous annotation
that the user took during each of the sessions.

To measure precision, for every possible pair in the 16 annotations, we com-
puted the proportion of pixels that are highlighted in one annotation but not in
the other, to the number of pixels highlighted in the union of the annotations.
We multiplied this by 100 and computed the mean over all pairs which we inter-
pret as the average percentage of deviation at a given level of zoom. The results
of this study are shown in Fig. 4.

Our results suggest that there is an inverse correlation between the size of the
feature on the screen and the users’ error in consistently annotating that feature.
The near-highest level of consistency can be seen to occur at feature sizes larger
than 10 cm. Further, there appears to be a positive correlation between the size
of the feature and the average annotation time.

The focus of this work was to construct a platform for distributing the anno-
tation load across different locations. We wanted to achieve this in such a way
that minimized the time elapsed for the pertinent tasks to the annotation. These
include saving the annotations properly, and finding and opening the next image.
These tasks are cumbersome in the existing more general-purpose GNU Image
Manipulation Program (GIMP). In a similar experiment with the same user, we
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Fig. 4. The downward sloping line (blue) corresponds to the left y-axis and the upward
sloping line (red) corresponds to the right y-axis. This chart suggests that for the task
of highlighting kidneys, increasing the size of the kidney on the screen up to about
10 cm will improve the annotation consistency, but beyond that, little to no further
gains can be made. (Color figure online)

found the mean annotation time using GIMP to be ∼106 s per region of interest
at a scaled width of 8.125 cm and ∼123 s per region of interest at a scaled width
of 11.375 cm. This suggests that our platform provides a 54% time improvement
over GIMP, while no significant difference in consistency was found.

In order to better understand the nature of the deviations, we conducted a
follow-up study in which a user who was not familiar with the previous experi-
ment selected a level of zoom at which he/she felt comfortable to perform accu-
rate annotations, and provided 60 annotations of the same feature. A visualiza-
tion of these annotations are shown in Fig. 5. This user was instructed to focus
only on annotation consistency and told that time was not a factor.

Fig. 5. The background of each image is identical. The left has no overlay, the right
is overlaid with each pixel’s variance, and the right is overlaid with each pixel’s mean.
The color-map used is OpenCV’s COLORMAP HOT. We omit a numerical scale since
the translucent overlay invalidates any correspondence and the figure is only intended
to show a trend. (Color figure online)
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The level of zoom that the user selected corresponded to a feature width of
less than 4 cm, and that user was very surprised to find that annotations varied,
on average, by 11%. This suggests that users’ intuition is not accurate at guessing
the expected consistency amongst annotations, and that such evaluation studies
are deemed necessary prior to investing large amounts of resources in labeling.

6 Future Work

In the near future we intend to release this project as open source software so that
other groups can install and serve the platform for their own research purposes.
Before we do this, however, there are a number of scheduled improvements to
both code clarity and the platform itself.

6.1 UI Improvements

A limited number of potential improvements in the appearance and interac-
tion patterns have been identified from both the heuristic evaluation and the
user studies conducted. Most of those could be addressed with relatively little
development time. The improvements we intend to make include (i) making the
interface more conducive to annotating highly zoomed images, (ii) modifying
error messages to be more informative and constructive, (iii) introducing addi-
tional functionality to enable users to undo/redo pieces of their brush strokes
individually, and (iv) extending the platform such that new annotation projects
can be added with a simple addition to a configuration file.

6.2 Added Functionality

The main focus of this work is to reduce the time required by experts to anno-
tate regions of interest. With that in mind, we plan studying the possibility of
developing schemes which suggest annotations for each region of interest. These
would then be further tuned by the experts, rather than requiring the experts
to start drawing from scratch, as implemented in the present version.

Furthermore, the development and evaluation of a system which offers a
number of different annotation suggestions and asks the user to select the best
among them, is under construction. This process could iterate until the expert
is satisfied with the suggestion windows provided by the tool. Heuristically we
believe that either of these schemes, or a combination of the two, would result in
a significant time improvement over the current method, without compromising
the annotation quality.

6.3 Further Evaluation of Annotation Quality

It is imperative that we not only ensure that annotations are performed quickly,
but also that they accurately reflect the features they are attempting to segment.
We plan to further study this issue through large scale auditing throughout the
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annotation process. Certain randomly selected image-sets will be duplicated and
blindly assigned to additional users to evaluate consistency and identify any
biases that certain annotators might hold. This work will further inform our
development efforts to mitigate this issue moving forward.

6.4 Utilizing 3D Information

When paired with the annotation data–or conceivably, the segmentations pro-
duced by our network–the marching cubes [10] algorithm can be used to create a
3D reconstruction of the features. This reconstruction could be useful for inform-
ing treatment decisions or for giving surgeons a better visualization of an area
they may be preparing to operate on. We wrote an offline script which, given
these annotations, creates this reconstruction. An example is shown in Fig. 6.

Fig. 6. A 3D reconstruction of a kidney (blue) and tumor (red) based on annotations
of slices using our system. (Color figure online)

We plan to further explore ways to present these reconstructions to medical
professionals so as to maximize their utility. One idea is to integrate this presen-
tation into the current interface using the WebGL library. Another is to import
our meshes into a virtual reality platform.

Acknowledgments. We thank Maxwell Fite and Stamatios Morellas for their exper-
tise on heuristic evaluation, Drs. Christopher Weight, Niranjan Sathianathen, and
Suprita Krishna for their feedback on the initial development process, and Samit
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Abstract. Training deep convolutional neural network for classification
in medical tasks is often difficult due to the lack of annotated data sam-
ples. Deep convolutional networks (CNN) has been successfully used as an
automatic detection tool to support the grading of diabetic retinopathy
and macular edema. Nevertheless, the manual annotation of exudates in
eye fundus images used to classify the grade of the DR is very time consum-
ing and repetitive for clinical personnel. Active learning algorithms seek to
reduce the labeling effort in training machine learning models. This work
presents a label-efficient CNN model using the expected gradient length,
an active learning algorithm to select the most informative patches and
images, converging earlier and to a better local optimum than the usual
SGD (Stochastic Gradient Descent) strategy. Our method also generates
useful masks for prediction and segments regions of interest.

1 Introduction

Diabetes Mellitus is one of the leading causes of death according to statistics
of the World Health Organization.1 Diabetic Retinopathy (DR) is a condition
caused by prolonged diabetes, causing blindness in persons at a relatively young
age (20–69 years). The problem is that most persons have no symptoms and
suffer the disease without a timely diagnosis. Because the retina is vulnerable
to microvascular changes of diabetes and because diabetic retinopathy is the
most common complication of diabetes, eye fundus imaging is considered a non-
invasive and painless route to screen and monitor DR [6,12].

In the earliest stage of DR, small areas of inflammation called exudates
appear in the retinal blood vessels, the detection of these yellowish areas that
grow along the retina surface is an important step for the ophthalmologist to
grade the stage of DR. The manual segmentation of exudates in eye fundus
images, is very time consuming and repetitive for clinical personnel [6].

In recent years, deep learning techniques have increased the performance of
computer vision systems, deep convolutional neural networks (CNN) were used
1 http://www.who.int/diabetes/en/.
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to classify natural images and recognize digits and are now being used success-
fully in biomedical imaging and computer-aided diagnosis (CADx) systems [3].

CNN models play a major role in DR grading showing superior performance
in several settings and datasets compared to previous approaches. In 2015, the
data science competition platform Kaggle launched a DR Detection competi-
tion2. The winner and the top participants used CNNs on more than 35,000
labeled images, demonstrating that for a successful training of such algorithms a
significant amount of labeled data is required. In [4] the authors used more than
100,000 labeled eye fundus images to train a CNN with a performance compa-
rable to an ophthalmologist panel. This presents a challenge, as the algorithms
need to be fed with in the order of thousand of samples, which in practice is
both time-consuming and expensive. It is important to make well-performing
algorithms such as CNN less data intensive and thus able to learn with a few
selected examples. This is more realistic in clinical practice, also because imaging
devices change over time.

Active learning is an important area of machine learning research [10] where
the premise is that a machine learning algorithm can achieve good accuracy
with fewer training labels if the algorithm chooses the data from which it learns
intelligently. This idea is key for building more efficient CADx systems and for
reducing costs in building medical image datasets [13] where the expert annota-
tions are costly and time-consuming.

In [14], an active learning algorithm for convolutional deep belief networks
is presented with an application to sentiment classification of documents. In [2],
the authors show how to formally measure the expected change of model outputs
for Gaussian process regression showing an improvement in the area under the
ROC curve with fewer queries to the model than the usual random selection.
Active learning has also been applied to reduce the number of labeled samples
in training CAD systems for DR. Sánchez et al. [9] compare two active leaning
approaches, uncertainty sampling and query-by-bagging, showing that with the
former, just a reduced number of labeled samples is necessary for the system to
achieve a performance of 0.8 in area under the receiving operating characteristic
curve. Nevertheless, this approach is computationally intensive for deep CNNs
because it is based on building multiple committees of classifiers to choose the
most informative sample, which translates into training multiple deep CNNs.

In this work we present a novel approach to detect exudates and highlight the
most interesting areas of the eye fundus images using an active learning algorithm
called expected gradient length (EGL) that works jointly with the CNN model
parameters to select the most informative patches and images to train without a
significant compromise in the model performance. Our method has the advantage
of computing a single backward-forward pass in order to obtain the samples that
lead to the most changes in the network parameters, i.e. the most informative
images and patches to learn. To the best of our knowledge, this is the first time
that an active learning method that uses the deep learning model parameters to
select the most relevant samples is presented in the medical imaging field.

2 https://www.kaggle.com/c/diabetic-retinopathy-detection.

https://www.kaggle.com/c/diabetic-retinopathy-detection
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2 Deep Learning Model

Convolutional Neural Networks (CNN) are a particular kind of a supervised
multi layer perceptrons inspired by the visual cortex. The CNNs are able to
detect visual patterns with minimal preprocessing. They are trained with the
robustness to respond to the distortion, variability and invariance to the exact
position of the pattern and benefit from data augmentation that uses subtle
transforms of the input for learning invariances. CNN models are one of the most
successful deep learning models for computer vision. The medical imaging field is
rapidly adapting these models to solve and improve a plethora of applications [3].

Fig. 1. Deep CNN architecture to classify between healthy and exudate patches.

Our deep learning model is based on a CNN architecture called LeNet [7]
with 7 layers as shown in Fig. 1, which is composed of a patch input layer fol-
lowed by two convolutions and max pooling operations to finalize in a softmax
classification layer that outputs the probability of a patch being healthy or exu-
date. We choose this architecture because of its good classification performance
with small input and because (as seen in Sect. 3) our model selects the samples
by performing a forward-backward pass over the net. A deeper network would
put a computational burden on our experiments.

3 EGL for Patch and Image Selection in Convolutional
Neural Networks

Traditional supervised learning algorithms use whatever labeled data is provided
to induce a model. Active learning, in contrast, gives the learner a degree of
control by allowing to select which instances are labeled and added to the training
set. A typical active learner begins with a small labeled set L, selects one or more
informative instances from a large unlabeled pool U , learns from these labeled
queries (that are added to L), and repeats until convergence. The principle
behind active learning is that a machine learning algorithm can achieve similar
or even better accuracy when trained with few training labels than with the
full training set if the algorithm is allowed to choose the data from which it
learns [10].
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An active learner may pose queries, usually in the form of unlabeled data
instances to be labeled by an oracle (e.g. an ophthalmologist annotator). Active
learning is well-motivated in many modern machine learning problems, where
unlabeled data may be abundant or easily obtained but labels are not. This is
an interesting direction for the so-called deep learning in the small data regime,
where the objective is to train time-consuming and high sample complexity algo-
rithms with fewer resources, as in the case of medical images.

Stochastic Gradient Descent (SGD) works by stochastically optimizing an
objective function J with respect to the model parameters θ. This means to find
the model parameters by optimizing with only one sample or sample batches
instead of the full training dataset:

θt+1 = θt − η∇Ji(θt)

where Ji(θt) is the objective function evaluated at the i-th sample tuple (xi, yi) at
iteration t, η is the learning rate and ∇ is the gradient operator. For computing
∇Ji(θ) we need the i-th sample representation and its corresponding label, if
we measure the norm of this term, i.e. the gradient length term‖∇Ji(θ)‖, this
quantifies how much the i-th sample and its label contribute to each component
of the gradient vector.

A natural choice for selecting the most informative patches for each batch
iteration of SGD is to select the instances that give the highest values for the
gradient length weighted by the probability of this sample having the yi label. In
other words, to select the instances that create the largest change to the current
model if we knew their labels:

Φ(xi) =
c∑

j=1

p(yi = j|xi)‖∇Ji(θ)‖ (1)

where c is the total number of labels or classes. The Expected Gradient Length
(EGL) works by sorting the Φ values from an unlabeled pool of samples and
then adding them to the training dataset by asking an oracle to give the ground
truth label of these samples. The EGL algorithm was first mentioned by Settles
et al. [11] in the setting of multiple-instance active learning. To the best of
our knowledge this is the first time the approach is used in the selection of
samples in CNN. For being able to select the most informative samples in a
CNN architecture we have to compute the two terms involved in equation (1).
For the probability of a sample having the j-th label we can perform a forward
propagation through the network and obtain the corresponding probabilities
from the softmax layer of the network. To measure the gradient length we can
perform a backward propagation through the network to measure the frobenius
norm of the gradient parameters. In a CNN architecture we have the flexibility to
compute the backward/forward phases up to a certain layer. In our experiments
we made the backward down to the first fully connected layer as experiments
showed no significant differences for in between layers. This process has to be
done over all possible labels for each sample. Once we have computed the Φ
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values for all samples, we sort them and select the k samples with the highest
EGL values.

Algorithm 1. EGL for Active Selection of patches in a CNN
Require: Patch Dataset L, Initial Trained Model M with patches in L′ ⊂ L, Number

k of most informative patches
1: while not converged do
2: Create and shuffle batches from L
3: for each batch do
4: Compute Φ(x) using M, ∀x ∈ batch
5: end for
6: Sort all the Φ values and return the highest k corresponding samples Lk

7: Update M using L′ ∪ Lk

8: end while

We begin with a small portion of labeled samples L′ ⊂ L to train an ini-
tial model M, and then incrementally adding the k samples to L′ to update M
parameters. We stop the training procedure when the algorithm converges i.e.
when the training and validation errors do not decrease significantly or when
the performance in terms of accuracy stays the same for more than one epoch.
Since we are able to compute the most significant patches it is straightforward
to extend the procedure to select not only the most informative patches but also
the most informative images within the training set. The modification is that
instead of computing the EGL values for all ground truth exudate and healthy
patches we compute the interestingness of an image by patchifying the image
with a given stride and then densely computing Φ. Then, images are sorted by
their top EGL values and finally, the patches that belong to the most interesting
image are added to the training set for further parameter updates using Algo-
rithm1 until convergence. We think that this is a more realistic scenario where
an ophthalmologist does not have the time to manually annotate all images but
only those that contain most information to train a label efficient system. The
full algorithm is described in Algorithm2.

4 Experimental Setup

4.1 Ophtha Dataset

The e-ophtha database with color fundus images was used in this work. The
database contains 315 images with a size ranging from 1440×960 to 2540×1690
pixels, 268 images have no lesion and 47 contain exudates that were segmented
by ophthalmologists from the OPHDIAT Tele-medical network under a French
Research Agency (ANR) project [1]. The labeled patch dataset was created with
cropped 48 × 48 pixel patches that contain both exudate and healthy examples.
We prevent over–fitting artificially creating new samples by generating artificially
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7 new label-preserving samples using a combination of flipping and 90, 180 and
270◦ rotations. After the preprocessing steps of cropping and data augmentation,
the dataset splits were built with randomly selected patches of each class as
follows: a training split with 8760 patches for each class, a validation split with
328 per class and a test split with 986. Images of a given patient could only
belong to a single group according to the described dataset distribution. At test
time, only patches of unseen patient images are evaluated.

4.2 Evaluation

The technique of Decencieriere et al. [1] was chosen as our baseline. The base
LeNet model was trained using stochastic gradient descent (SGD) from scratch
without any transfer learning from other datasets. The learning rate and batch
size were explored in a grid search and showed robustness in the range of 32–64
in terms of batch size with a learning rate of 0.01 when trained with all the
training patches. In our final experiments we set the batch size to 32 and 0.01
for the learning rate, using 30 as the number of epochs to train the model. The
model M is the LeNet CNN model described in Fig. 1 and initially trained with
5 batches of 32 samples.

The proposed approach was implemented in Python 2.7 and the Caffe deep
learning framework [5] that allows for efficient access to parameters and data in
memory. We use an NVIDIA GTX TITANX GPU for our experiments. During
all the experiments, training loss, validation loss, as well as the accuracy over
the validation set were monitored.

5 Results

We test our Algorithm 2 in the scenario where an ophthalmologist selects only
a few important or relevant images instead of patches to annotate and train

Algorithm 2. EGL for Active Selection of images in a Convolutional Neural
Network.
Require: Training Image Set T , Patch Dataset L, Number μ of initial images to look

at
Select an initial set Tµ of images randomly

2: Train initial model M using the ground truth patches from the μ images
while not converged do

4: for each image in T \ Tµ do

Patchify image and compute σimage =
∑

patch∈image

Φ(patch), using M

6: end for
Sort all the σimage values and return Imax, the image with higher sum

8: Tµ = Tµ ∪ Imax

Lµ = { patch ∈ LI , ∀I ∈ Tµ}
10: Update M with k selected patches using Algorithm 1 and the patches in Lµ

end while
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the model. In Fig. 2 the left side of the orange line is when the initial model
training is performed. Then, the Algorithm2 is used to select the most interesting
image for the model and subsequently to update the model. In our approach, the
convergence is reached at an earlier stage. As few as 15 batches are enough for
the model convergence, showing that in this more realistic scenario our strategy
also outperforms the standard way of training deep CNN models.

Fig. 2. Results for F-Measure, sensitivity and specificity, using the random strategy
(blue) and active learning using EGL (green) for Algorithm 2. In this setup only the
patches of the 4 initial training images were used for training the model in the first
6 SGD iterations, after this (orange line) we add the patches from the images with
maximum EGL value to the training set. (Color figure online)

Once we have an initial training of the model we can measure the interesting-
ness of a full image computing the sum of its EGL values. This was the criterion
to select images for the results of Algorithm 2. An example image with its inter-
estingness values over different training times is shown in Fig. 2. We can plot this
value and see how this evolves as the model sees more batches. These values are
illustrated in Fig. 3. Here we can see how the interestingness value decays after
the model has converged, so when the loss function does not decrease anymore
and the norm of the parameters is nearly 0.

Fig. 3. Interestingness over training time. After the model converges the interestingness
value decays to 0 because the norm of the gradient is close to 0.
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6 Discussion

This paper presents for the first time an active learning strategy to select the
most relevant samples and images for a sample efficient training of a deep con-
volutional neural network to classify exudate patterns in eye fundus images. The
proposed strategy was able to achieve a similar performance compared to the
model trained with the full dataset [8] but only using an informative portion
of the training data. Besides the speed-up for convergence, our algorithm also
brings an additional interpretation layer for deep CNN models that locates the
regions of the image that the ophthalmologist should label, improving the inter-
action between the model and the specialist that conventional CNN models lack.
Our approach presents a computational drawback when the number of unlabeled
data–samples to check is large, but we think that this could be overcome with
traditional sampling techniques. Despite our results showing good performance
using only a portion of the data, we would like to do further experimentation
using only the initially labeled portion and involving large–scale datasets where
the combination of our sample selection techniques with transfer learning could
lead to a performance boost. We think that active learning techniques have
a promising application landscape in the challenging tasks of medical imaging
using deep learning because of their potential to relief the need for large amounts
of labeled data. This will allow the usage of deep learning models in a broader
set of medical imaging tasks like detection and segmentation of structures in spe-
cialized domains such as histopathology image analysis or computed tomography
scans where the labels are costly.
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Abstract. Different works have shown that the combination of mul-
tiple loss functions is beneficial when training deep neural networks
for a variety of prediction tasks. Generally, such multi-loss approaches
are implemented via a weighted multi-loss objective function in which
each term encodes a different desired inference criterion. The importance
of each term is often set using empirically tuned hyper-parameters. In
this work, we analyze the importance of the relative weighting between
the different terms of a multi-loss function and propose to leverage the
model’s uncertainty with respect to each loss as an automatically learned
weighting parameter. We consider the application of colon gland analysis
from histopathology images for which various multi-loss functions have
been proposed. We show improvements in classification and segmentation
accuracy when using the proposed uncertainty driven multi-loss function.

1 Introduction

Although deep learning models have shown remarkable results on a variety of pre-
diction tasks, recent works applied to medical image analysis have demonstrated
improved performance by incorporating additional domain-specific information
[1]. In fact, medical image analysis datasets are typically not large enough for
learning robust features, however, there exist a variety of expert knowledge that
can be leveraged to guide the underlying learning model. Such knowledge or
cues are generally considered as a set of auxiliary losses that serve to improve or
guide the learning of a primary task (e.g. image classification or segmentation).
Specifically, these cues are incorporated in the training of deep convolutional
networks using a multi-loss objective function combining a variety of objectives
learned from a shared image representation. The combination of multiple loss
functions can be interpreted as a form of regularization as it constrains search
space for possible candidate solutions for the primary task.

Different types of cues can be combined in a multi-loss objective function
to improve the generalization of deep networks. Multi-loss functions have been
proposed for a variety of medical applications: colon histology images, skin der-
moscopy images or chest X-Ray images. Chen et al. [2] proposed a multi-loss
learning framework for gland segmentation from histology images in which fea-
tures from different layers of a deep fully convolutional network were combined
c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): CVII-STENT/LABELS 2017, LNCS 10552, pp. 155–163, 2017.
DOI: 10.1007/978-3-319-67534-3 17
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through auxiliary loss functions and added to a per-pixel classification loss. Ben-
Taieb et al. [3] proposed a two-loss objective function combining gland classifi-
cation (malignant vs benign) and segmentation (gland delineation) and showed
that both tasks were mutually beneficial. Additionally, authors also proposed a
multi-loss objective function for gland segmentation that equips a fully convolu-
tional network with topological and geometrical constraints [4] that encourage
learning topologically plausible and smooth segmentations. Kawahara et al. [5]
used auxiliary losses to train a multi-scale convolutional network to classify skin
lesions. More recently, adversarial loss functions were also proposed as addi-
tional forms of supervision. Dai et al. [6] leveraged an adversarial loss to guide
the segmentation of organs from chest X-Ray images. While these previous works
confirm the utility of training deep networks with a multi-loss objective function,
they do not clearly explain how to set the contribution of each loss.

Most existing works use an empirical approach to combine different losses.
Generally, all losses are simply summed with equal contribution or manually
tuned hyper-parameters are used to control the trade-off among all terms. In
this work, we investigate the importance of an appropriate choice of weighting
between each loss and propose a way to automate it. Specifically, we utilize
concepts from Bayesian deep learning [7,8] and introduce an uncertainty based
multi-loss objective function. In the proposed multi-loss, the importance of each
term is learned based on the model’s uncertainty with respect to each loss. Uncer-
tainty was leveraged in many medical image analysis applications (e.g. segmen-
tation [9], registration [10]). However, to the best of our knowledge, uncertainty
was only explored for the task of image registration in the context of deep learn-
ing models for medical images. Yang et al. [11] proposed a CNN model for image
registration and showed how uncertainty helps highlighting misaligned regions.
Previous works did not consider automating or using uncertainty for guiding the
training of multi-loss objective functions designed for medical image analysis.

We illustrate our approach on the task of colon gland analysis leveraging the
multi-loss objective functions proposed in previous works [3,4]. We extend these
previous works by re-defining the proposed loss functions with an uncertainty
driven weighting. We linearly combine classification, segmentation, topology and
geometry losses weighted by the model’s uncertainty for each of these terms. In
the proposed uncertainty driven multi-loss, the uncertainty captures how much
variance there is in the model’s predictions. This variance or noise in the pre-
dictions varies for each term and thus reflects the uncertainty inherent to the
classification, segmentation, topology or geometry loss.

Our contributions in this work can be summarized as follows: (i) we show how
uncertainty can be used to guide the optimization of multi-loss deep networks
in an end-to-end trainable framework; (ii) we combine a series of objectives
that have been shown successful for gland analysis and adapt them to encode
uncertainty driven weighting; (iii) we analyze the influence of different trade-offs
controlling the importance of each loss in a multi-loss objective function and
draw some conclusions on the adaptability of neural networks.
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Fig. 1. Multi-loss network architecture. We use an encoder-decoder architecture with
skip connections [12]. x is an input image. fθ

c (x) are the activations from the last
convolution layer of the encoder and are used to predict class labels (i.e. malignant vs
benign tissue). fθ

s (x) are per-pixel activations from the last convolutional layer of the
decoder that are used to predict segmentations. The building blocks of the network
are layers of convolution (Conv.), ReLU activation functions and batch normalization
(BN). Dashed lines represent skip connections.

2 Method

Our goal is to learn how to combine multiple terms relevant to gland image analy-
sis into a single objective function. For instance, gland classification and gland
segmentation can both benefit from a joint learning framework and information
about the geometry and topology of glands can facilitate learning plausible seg-
mentations. Note that we refer to gland’s geometry and topology in terms of
smooth boundaries as well as containment and exclusion properties between dif-
ferent parts of objects (the lumen is generally contained within a thick epithelial
border and surrounded by stroma cells that exclude both the lumen and the
border, see Fig. 3 for an example of gland segmentation).

We train a fully convolutional network parameterized by θ, from a set
of training images x and their corresponding ground truth segmentation
masks S along with their tissue class label binary vector C represented by
{(x(n), S(n), C(n));n = 1, 2, . . . , N}. We drop (n) when referring to a single image
x, class label C or segmentation mask S. We note K the total number of image
class labels (e.g. K = 2 for malignant or benign tissue images of colon adeno-
carcinomas) and L the total number of region labels in the segmentation mask
(e.g. L = 3 for lumen, epithelial border and stroma). The network’s architecture
is shown in Fig. 1. To predict class labels C, we use the network’s activations
fθ

c (x) from the last layer of the encoder as they correspond to a coarser rep-
resentation of x. To obtain a crisp segmentation of a color image x, we use
the activations fθ

s (x) from the last layer of the decoder and we assign a vector
Sp = (S1

p , S2
p , ..., SL

p ) ∈ {0, 1}L to the p-th pixel xp in x, where Sr
p indicates

whether pixel xp belongs to region r, and L is the number of region labels. We
assume region labels r are not always mutually exclusive such that containment
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properties (e.g. glands’ lumen is contained within the epithelial border) are valid
label assignments.

Multi-loss networks: A multi-loss objective function is defined as follows:

Ltotal(x; θ) =
T∑

i=1

λiLi(x; θ) (1)

where θ represents the network’s parameters learned by minimizing Ltotal; T is
the total number of loss functions Li to minimize with respect to the network’s
parameters, and λi is a scalar coefficient controlling the importance of each loss,
generally found via grid-search or set equally for all terms.

In the context of gland analysis, we define a multi-loss objective function that
encodes classification, segmentation as well as gland’s topology and geometry.
We learn the relative weights of each term in the objective using a measure of
uncertainty that reflects the amount of noise or variance in the model’s predic-
tions for each term. Using uncertainty to weight each term results in reducing
the influence of uncertain terms on the total loss and hence on the model’s
parameters update. Formally, we write the total objective function as follows:

Ltotal(x; θ, σc, σs, σt, σg) = Lc(x; θ, σc) + Ls(x; θ, σs) + Lt(x; θ, σt) + Lg(x; θ, σg)
(2)

where Lc,Ls,Lt,Lg are the classification, segmentation, topology and geome-
try loss functions and σc, σs, σt, σg are learned scalar values representing the
uncertainty for each loss (or amount of variance in the prediction).

Uncertainty guided classification: Similarly to Gal et al. [8], we define the
classification loss Lc with uncertainty as:

Lc(x; θ, σc) =

K∑

k=1

−Ck log P (Ck = 1|x, θ, σc), P (Ck = 1|x, θ, σc) =
exp( 1

σ2
c

fθ
ck

(x))

K∑

k′=1
exp( 1

σ2
c

fθ
c
k′ (x))

(3)

where K is the total number of classes, P (Ck|x, θ, σc) corresponds to the soft-
max function over the network’s activations fθ

c (x) weighted by the classification
prediction’s uncertainty coefficient σc. Note how higher values of σc reduce the
magnitude of activations fθ

c (x) over all classes (which corresponds to encouraging
uniform probabilities P (Ck|x, θ, σc)) and thus reflect more uncertain predictions
(i.e. high activation values will be weighted lower when σc; the uncertainty, is
high).

Assuming 1
σ2

c

∑
k

exp
(

1
σ2

c
fθ

ck
(x)

)
≈

( ∑
k

exp(fθ
ck

(x))
) 1

σ2
c [7], we can re-write

the uncertainty-guided classification loss as follows:

Lc(x; θ, σc) =
K∑

k=1

−Ck log (exp(
1
σ2

c

fθ
ck

(x))) + log
K∑

k′=1

exp(
1
σ2

c

fθ
ck′ (x)) (4)

≈ 1
σ2

c

K∑

k=1

−Ck log P (Ck = 1|xp; θ) + log σ2
c . (5)
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Note how large scale values of σ2
c corresponding to high uncertainty will reduce

the contribution of the classification loss. The second term in Eq. (5) avoids
σ2

c from becoming infinity and thus avoids the loss from becoming zero. We
extend the above softmax with uncertainty cross-entropy classification loss to
the segmentation losses.

Uncertainty guided segmentation: We learn pixel-wise predictions using a
combination of a sigmoid cross entropy loss Ls with two higher order penalty
terms (proposed in [4]): a topology loss Lt enforcing a hierarchy between labels
and a pairwise loss Lg enforcing smooth segmentations.

Ls(x; θ, σs) =
1

σ2
s

∑

p∈Ω

L∑

r=1

−Sr
p log P (Sr

p = 1|x, θ) + log σ2
s (6)

where L represents the number of regions in the segmentation mask, Ω is the
set of pixels in a given image x, P (Sr

p = 1|x, θ, σs) is the output of the sigmoid
function applied to the segmentation activations fθ

s (xp) and σ2
s represents the

model’s uncertainty for Ls.
The topology loss defined in [4] was originally formulated as a modified soft-

max cross entropy loss in which the probabilities are defined to encode contain-
ment and exclusion as a hierarchy between labels. Per-pixel hierarchical prob-
abilities are defined to penalize topologically incorrect label assignments such
that their probability is set to zero. Formally, the hierarchical probabilities used
to compute Lt are defined as:

Pt(S
r
p |xp; θ) =

1

Z
V (Sp)

L∏

r=1

exp
(
fθ

sr
(xp)
)× Sr

p , Z =
L∑

r=1

P̃t(S
r
p |xp; θ) (7)

where Z is a normalizing factor, P̃t(Sr
p |xp; θ) is the un-normalized probability

and V (Sp) is a binary indicator function that identifies topologically valid label
assignments (V (Sp) = 1) from invalid ones (V (Sp) = 0). Using these proba-
bilities defined in [4] and applying the same simplification as in Eq. (5), Lt is
formulated as the following uncertainty guided cross entropy loss where σ2

t is the
uncertainty:

Lt(x; θ, σt) =
1
σ2

t

∑

p∈Ω

L∑

r=1

−Sr
p log Pt(Sr

p = 1|x, θ) + log σ2
t . (8)

It is worth noting that the fundamental assumption behind the sigmoid cross
entropy loss Ls is that all segmentation labels are mutually independent whereas
in the defined topology loss Lt inclusion and exclusion relations between the
segmentation labels are set as hard constraints (i.e. enforcing containment and
exclusion properties). Thus, the combination of Ls and Lt results in a soft con-
straint over the topology properties (as opposed to the hard constraint originally
proposed in [4]).

Finally, to include uncertainty in the geometry loss, we re-define the original
loss proposed in [4] such that it is weighted with an uncertainty coefficient σg.
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Fig. 2. Trade-off between different loss functions and influence on the network’s gener-
alization. The learning rate was kept fixed to 1e–2 in all experiments. Each graph
represents the classification and segmentation accuracy on the Warwick-QU colon
adenocarcinoma test set.

The geometry loss Lg favours smooth segmentations by minimizing the ratio
of log probabilities between neighbouring pixels sharing the same labels in the
ground truth segmentation.

Lg(x; θ, σg) =
1
σ2

g

∑

p∈Ω

L∑

r=1

∑

q∈N p

Sr
p

∣∣∣∣log
Pt(Sr

p |xp; θ)
Pt(Sr

q |xq; θ)

∣∣∣∣ Bp,q + log σ2
g (9)

where N p corresponds to the 4-connected neighborhood of pixel p. Lg trains
the network to output regularized pairs of log-sigmoid label probabilities for
neighbouring pixels p and q when the binary indicator variable Bp,q = 1 (i.e.
when p and q share the same label in the ground truth segmentation). σ2

g is the
uncertainty for loss Lg. Note that in this formulation, we minimize the difference
between log-probabilities so the assumption utilized in Eq. (5) still holds.

Implementation details: We implement the model using Tensorflow [13]. We
train a fully convolutional architecture as describe in Fig. 1 using the proposed
multi-loss function Eq. (2) optimized with stochastic gradient descent. All uncer-
tainty parameters σi are learned along with the model’s parameters θ. In prac-
tice, we trained the network to predict log σ2

i for numerical stability [8].

3 Experiments and Discussion

We used the publicly available Warwick-QU colon adenocarcinoma dataset [14],
which consists of 85 training (37 benign and 48 malignant) and 80 test images
(37 benign and 43 malignant). In this dataset, each tissue image is composed
of multiple glands and is labelled as benign or malignant and provided with a
corresponding segmentation mask delineating each gland’s lumen and epithelial
border (see Fig. 3). In all experiments, we used 70 images for training, 15 for
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validation and 80 for test. We extracted patches of size 250×250 pixels and used a
series of elastic and affine transforms to augment the training dataset by a factor
of ∼100. We used (image-level) classification accuracy to evaluate the model’s
capacity to correctly predict benign vs malignant tissue images. To evaluate the
predicted segmentation masks, we used three different metrics: pixel accuracy
to evaluate the accuracy in predicting a pixel as either background, lumen or
epithelial border; object Dice and Hausdorff Distance to evaluate the capacity
of the model in correctly identifying individual glands in an image. Object Dice
and Hausdorff distance are particularly useful in evaluating the accuracy of the
predicted segmentations at objects borders.

Table 1. Performance of different loss functions combined with manually tuned loss
weights and uncertainty-guided weights. Results are reported on the Warwick-QU
original test set.

Loss Weights Classification
accuracy

Pixel
accuracy

Object
dice

Hausdorff
distance

Lc Ls Lt Lg

Lc 1 0 0 0 0.87 – – –

Ls 0 1 0 0 – 0.79 0.81 8.2

Lt 0 0 1 0 – 0.75 0.77 8.6

Ls + Lt + Lg 0 1 1 1 – 0.83 0.84 7.3

Lc + Ls 0.5 0.5 0 0 0.90 0.79 0.80 8.4

Lc + Ls + Lt 0.33 0.33 0.33 0 0.94 0.78 0.80 8.4

Lc + Ls + Lt + Lg 0.25 0.25 0.25 0.25 0.91 0.81 0.83 7.6

Lc + Ls + Lt + Lg 0.1 0.6 0.22 0.08 0.95 0.86 0.85 7.1

Lc + Ls Trained with uncertainty 0.95 0.78 0.80 8.4

Lc + Ls + Lt 0.94 0.79 0.81 8.2

Lc + Ls + Lt + Lg 0.95 0.85 0.87 7.0

Multi-loss vs single-loss: We first tested if the combination of different loss
functions without uncertainty guidance influences the classification and segmen-
tation accuracy. We used Ltotal = λLc + (1 − λ)Ls and explored different values
for λ ∈ [0, 1]. Figure 2 shows the classification as well as the per-pixel accuracy on
the Warwick-QU original test set of 80 images for different values of λ. Overall,
we observed that learning with multiple losses improved both segmentation and
classification performance. In fact, we observed up to 3% (i.e. λ = {0.5, 0.6, 0.7})
increase in classification accuracy when using a combination of Lc and Ls com-
pared to using Lc only (i.e. λ = 1). Similarly, for segmentation, we observed the
performance improved up to 6% (i.e. λ = 0.3) in pixel accuracy when combining
both losses compared to using Ls only (i.e. λ = 0). A similar result is shown in
Table 1 when comparing Lc vs Lc + Ls with equal weights.

Penalty terms trade-off: We also tested the trade-off between the topology
and geometry soft constraints when combined with the segmentation loss. We
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used different weighting coefficients λ and trained the network with Ltotal =
Ls + λLt + (1 − λ)Lg. We only varied the importance of the soft constraints.
It is interesting to note that there is a wide range of weighting coefficients for
which the network produces similar (or almost identical) results. In fact, we
observed a minimal change (≤1e–2) when varying the importance of each term
by ±20% around λ = 0.5, which reflects the flexibility of deep networks to
adapt to different regularization terms. We also observed that generally sigmoid
cross entropy loss Ls was more stable than Lt or Lg-only and outperformed
these other losses when each of them was used alone (see Table 1, Ls only vs Lt

only). However, for certain weighting configurations for each penalty term, we
observed improved performance (up to 5%, see Fig. 2) in terms of pixel accuracy
and object Dice (e.g. λ = 0.1 vs. λ = 0.5).

Uncertainty driven trade-off: To evaluate the utility of using uncertainty
to guide the trade-off between the different loss functions, we tested different
combinations of losses with uncertainty to form the total multi-loss function.
Table 1 shows the performance of each tested loss configuration in terms of class
accuracy, pixel accuracy, object Dice and Hausdorff distance. Overall, adding
uncertainty to weigh each loss achieves competing results with other strategies
(e.g. equally weighted losses) and can even outperform the best set of weights
we could find using a finer grid search (in terms of classification accuracy, object
Dice and Hausdorff Distance, see Table 1). Note that finding the best set of
weights shown in Table 1 involved training more than 30 networks with different
weights for each loss whereas using the proposed uncertainty driven weights only
involved training a single network. Examples of the segmentation predictions
obtained using the proposed method (Eq. 2) are shown in Fig. 3.

Fig. 3. Examples of predicted segmentations. Colors on the segmentation masks rep-
resent gland’s central area or lumen (purple), the epithelial border surrounding the
lumen (yellow) and the stroma or background (black). (Color figure online)
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4 Conclusion

We showed that the combination of different loss terms with appropriate weight-
ing can improve model generalization in the context of deep neural networks.
We proposed to use uncertainty as a way to combine multiple loss functions that
were shown useful for the analysis of glands in colon adenocarcinoma and we
observed that this strategy helps improve classification and segmentation per-
formance and can thus bypass the need for extensive grid-search over different
weighting configurations. An interesting extension to our work could be to intro-
duce per-instance uncertainty (as opposed to per-loss) which may be useful in
situations where the data or labels are noisy.
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