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Abstract. Enumerating consistent global states of a computation is a
fundamental problem in parallel computing with applications to debug-
ging, testing and runtime verification of parallel programs. Breadth-first
search (BFS) enumeration is especially useful for these applications as it
finds an erroneous consistent global state with the least number of events
possible. The total number of executed events in a global state is called
its rank. BFS also allows enumeration of all global states of a given rank
or within a range of ranks. If a computation on n processes has m events
per process on average, then the traditional BFS (Cooper-Marzullo and

its variants) requires O(mn−1

n
) space in the worst case, whereas our algo-

rithm performs the BFS requires O(m2n2) space. Thus, we reduce the
space complexity for BFS enumeration of consistent global states expo-
nentially, and give the first polynomial space algorithm for this task. In
our experimental evaluation of seven benchmarks, traditional BFS fails
in many cases by exhausting the 2 GB heap space allowed to the JVM. In
contrast, our implementation uses less than 60 MB memory and is also
faster in many cases.

1 Introduction

Parallel programs are not only difficult to design and implement, but once imple-
mented are also difficult to debug and verify. The technique of predicate detec-
tion [12,17] is helpful in verification of these implementations as it allows inference
based analysis to check many possible system states based on one execution trace.
The technique involves execution of the program, and modeling of its trace as a
partial order. Then all possible states of the model that are consistent with the
partial order are visited and evaluated for violation of any constraints/invariants.
A large body of work uses this approach to verify distributed applications, as well
as to detect data-races and other concurrency related bugs in shared memory par-
allel programs [11,14,19,23]. Finding consistent global states of an execution also
has critical applications in snapshotting of modern distributed file systems [1,27].

A fundamental requirement for this approach is the traversal of all possible
consistent global states, or consistent cuts, of a parallel execution. Let us call
the execution of a parallel program a computation. The set of all consistent cuts
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of a computation can be represented as a directed acyclic graph in which each
vertex represents a consistent cut, and the edges mark the transition from one
global state to another by executing one operation. Moreover, this graph has a
special structure: it is a distributive lattice [24]. Multiple algorithms have been
proposed to traverse the lattice of consistent cuts of a parallel execution. Cooper
and Marzullo’s algorithm [12] starts from the source — a consistent cut in which
no operation has been executed by any process — and performs a breadth-
first-search (BFS) visiting the lattice level by level. Alagar and Venkatesan’s
algorithm [2] performs a depth-first-search (DFS) traversal of the lattice, and
Ganter’s algorithm [15] enumerates global states in lexical order.

The BFS traversal of the lattice is particularly useful in solving two key
problems. First, suppose a programmer is debugging a parallel program to find
a concurrency related bug. The global state in which this bug occurs is a counter-
example to the programmer’s understanding of a correct execution, and we want
to halt the execution of the program on reaching the first state where the bug
occurs. Naturally, finding a small counter example is quite useful in such cases.
The second problem is to check all consistent cuts of given rank(s). For example,
a programmer may observe that her program crashes only after k events have
been executed, or while debugging an implementation of Paxos [22] algorithm,
she might only be interested in analyzing the system when all processes have
sent their promises to the leader. Among the existing traversal algorithms, the
BFS algorithm provides a straightforward solution to these two problems. It is
guaranteed to traverse the lattice of consistent cuts in a level by level manner
where each level corresponds to the total number of events executed in the
computation. This traversal, however, requires space proportional to the size of
the biggest level of the lattice which, in general, is exponential in the size of the
computation. In this paper, we present a new algorithm to perform BFS traversal
of the lattice in space that is polynomial in the size of the computation. In short,
the contribution of this paper are:

– For a computation on n processes such that each process has m events on
average, our algorithm requires O(m2n2) space in the worst case, whereas the
traditional BFS algorithm requires O(m

n−1

n ) space (exponential in n).
– Our evaluation on seven benchmark computations shows the traditional BFS

runs out of the maximum allowed 2 GB memory for three of them, whereas
our implementation can traverse the lattices by using less than 60 MB memory
for each benchmark.

The exponential reduction in space may come at the cost of a longer runtime
to perform the BFS traversal. In the worst case, our algorithm may take O(m2n2)
time per consistent cut. However, our experimental evaluation shows our runtimes
are within the same order of magnitude to those of the traditional BFS.

2 Background

We model a computation P = (E,→) on n processes {P1, P2, . . . , Pn} as a partial
order on the set of events, E. The events are ordered by Lamport’s happened-
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before (→) relation [21]. This partially ordered set (poset) of events is partitioned
into chains:

Definition 1 (Chain Partition). A chain partition of a poset places every
element of the poset on a chain that is totally ordered. Formally, if α is a chain
partition of poset P = (E,→) then α maps every event to a natural number such
that

∀x, y ∈ E : α(x) = α(y) ⇒ (x → y) ∨ (y → x).

Generally, a computation on n processes is partitioned into n chains such
that the events executed by process Pi (1 ≤ i ≤ n) are placed on ith chain.

Mattern [24] and Fidge [13] proposed vector clocks, an approach for time-
stamping events in a computation such that the happened-before relation can
be tracked. For a program on n processes, each event’s vector clock is a n-length
vector of integers. Note that vector clocks are dependent on chain partition of the
poset that models the computation. For an event e, we denote e.V as its vector
clock. Throughout this paper, we use the following representation for interpreting
chain partitions and vector clocks: if there are n chains in the chain partition
of the computation, then the lowest chain (process) is always numbered 1, and
the highest chain being numbered n. A vector clock on n chains is represented
as a n-length vector: [cn, cn−1, ..., ci, ..., c2, c1] such that ci denotes the number
of events executed on process Pi. Hence, if event e was executed on process Pi,
then e.V [i] is e’s index (starting from 1) on Pi. Also, for any event f in the
computation: e → f ⇔ ∀j : e.V [j] ≤ f.V [j] ∧ ∃k : e.V [k] < f.V [k]. A pair of
events, e and f , is concurrent iff e �→ f ∧ f �→ e. We denote this relation by e||f .
Figure 1a shows a sample computation with six events and their corresponding
vector clocks. Event b is the second event on process P1, and its vector clock is
[0, 2]. Event g is the third event on P2, but it is preceded by f , which in turn is
causally dependent on b on P1, and thus the vector clock of g is [3, 2].

e

[1, 0]

f

[2, 2]

g

[3, 2]

a

[0, 1]

b

[0, 2]

c

[0, 3]

P2

P1

(a) Computation

[0, 0]

[1, 0] [1, 1] [1, 2] [2, 2] [3, 2]

[0, 1] [0, 2] [0, 3] [1, 3] [2, 3]

[3, 3]

(b) Lattice of consistent cuts

Fig. 1. A computation with vector clocks of events, and its consistent cuts

Definition 2 (Consistent Cut). Given a computation (E,→), a subset of
events C ⊆ E forms a consistent cut if C contains an event e only if it contains
all events that happened-before e. Formally, (e ∈ C) ∧ (f → e) =⇒ (f ∈ C).
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A consistent cut captures the notion of a possible global state of the system at
some point during its execution [6]. Consider the computation shown in Fig. 1a.
The subset of events {a, b, e} is a consistent cut, whereas {a, e, f} is not; because
b → f (b happened-before f) but b is not included in the subset.

Vector Clock Notation of Cuts: So far we have described how vector clocks
can be used to time-stamp events in the computation. We also use them to rep-
resent cuts of the computation. If the computation is partitioned into n chains,
then for any cut G, its vector clock is a n-length vector such that G[i] denotes
the number of events from Pi included in G. Note that in our vector clock rep-
resentation the events from Pi are at the ith index from the right.

For example, consider the state of the computation in Fig. 1a when P1 has
executed events a and b, and P2 has only executed event e. The consistent
cut for this state, {a, b, e}, is represented by [1, 2]. Note that cut [2, 1] is not
consistent, as it indicates execution of f on P2 without b being executed on P1.
The computation in Fig. 1a has twelve consistent cuts; and the lattice of these
consistent cuts (in their vector clock representation) is shown in Fig. 1b.

Rank of a Cut: Given a cut G, we define rank(G) =
∑

G[i]. The rank of a cut
corresponds to the total number of events, across all processes, that have been
executed to reach the cut.

In Fig. 1b, there is one source cut ([0, 0]) with rank 0, then there are two cuts
each of ranks 1 to 5, and finally there is one cut ([3, 3]) has rank 6.

2.1 Breadth-First Traversal of Lattice of Consistent Cuts

Consider a parallel computation P = (E,→). The lattice of consistent cuts,
C(E), of P is a DAG whose vertices are the consistent cuts of (E,→), and there
is a directed edge from vertex u to vertex v if state represented by v can be
reached by executing one event on u; hence we also have rank(v) = rank(u)+1.
The source of C(E) is the empty set: a consistent cut in which no events
have been executed on any process. The sink of this DAG is E: the con-
sistent cut in which all the events of the computation have been executed.
Breadth-first search (BFS) of this lattice starts from the source vertex and
visits all the cuts of rank 1; it then visits all the cuts of rank 2 and contin-
ues in this manner till reaching the last consistent cut of rank |E|. For exam-
ple, in Fig. 1b the BFS algorithm will traverse cuts in the following order:
[0, 0], [0, 1], [1, 0], [0, 2], [1, 1], [0, 3], [1, 2], [1, 3], [2, 2], [2, 3], [3, 2], [3, 3].

The standard BFS on a graph needs to store the vertices at distance d from
the source to be able to visit the vertices at distance d + 1 (from the source).
Hence, in performing a BFS on C(E) we are required to store the cuts of rank r
in order to visit the cuts of rank r + 1. Observe that in a parallel computation
there may be exponentially many cuts of rank r. Thus, traversing the lattice
C(E) requires space which is exponential in the size of input. The optimized
vector clock based BFS traversal takes O(n2) time per cut [16], where n is the
number of processes in the computation.
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2.2 Related Work

Cooper and Marzullo [12] gave the first algorithm for global states enumeration
which is based on breadth first search (BFS). Let i(P ) denote the total number
of consistent cuts of a poset P . Cooper-Marzullo algorithm requires O(n2 · i(P ))
time, and exponential space in the size of the input computation. The exponential
space requirement is due to the standard BFS approach in which consistent cuts
of rank r must be stored to traverse the cuts of rank r + 1.

There is also a body of work on enumeration of consistent cuts in order
different than BFS. Alagar and Venkatesan [3] presented a depth first algorithm
using the notion of global interval which reduces the space complexity to O(|E|).
Steiner [29] gave an algorithm that uses O(|E|·i(P )) time, and Squire [28] further
improved the computation time to O(log|E| · i(P )). Pruesse and Ruskey [26]
gave the first algorithm that generates global states in a combinatorial Gray
code manner. The algorithm uses O(|E| · i(P )) time and can be reduced to
O(Δ(P ) · i(P )) time, where Δ(P ) is the in-degree of an event; however, the
space grows exponentially in |E|. Later, Jegou et al. [20] and Habib et al. [18]
improved the space complexity to O(n · |E|).

Ganter [15] presented an algorithm, which uses the notion of lexical order,
and Garg [16] gave the implementation using vector clocks. The lexical algorithm
requires O(n2 · i(P )) time but the algorithm itself is stateless and hence requires
no additional space besides the poset. Paramount [8] gave a parallel algorithm
to traverse this lattice in lexical order, and QuickLex [7] provides an improved
implementation for lexical traversal that takes O(n·Δ(P )·i(P )) time, and O(n2)
space overall.

3 Uniflow Chain Partition

P2

P1

(a)

P3

P2

P1

(b)

Fig. 2. Posets in uniflow partitions

A uniflow partition of a computation’s poset
P = (E,→) is its partition into nu chains
{Pi | 1 ≤ i ≤ nu} such that no element
(event of E) in a higher numbered chain is
smaller than any element in lower numbered
chain; that is if any event e is placed on
a chain i then all causal dependencies of e
must be placed on chains numbered lower
than i. For poset P = (E,→), chain parti-
tion μ is uniflow if

∀x, y ∈ P : μ(x) < μ(y) ⇒ ¬(y �→ x) (1)

Visually, in a uniflow chain partition all the edges, capturing happened-before
relation, between separate chains always point upwards because their dependen-
cies — elements of poset that are smaller — are always placed on lower chains.
Figure 2 shows two posets with uniflow partition. Whereas Fig. 3 shows two
posets with partitions that do not satisfy the uniflow property. The poset in
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Fig. 3. Posets in (a) and (c) are not in uniflow partition: but (b) and (d) respectively
are their uniflow partitions

Fig. 3(a) can be transformed into a uniflow partition of three chains as shown in
Fig. 3(b). Similarly, Fig. 3(c) can be transformed into a uniflow partition of two
chains shown in Fig. 3(d). Observe that:

Lemma 1. Every poset has at least one uniflow chain partition.

Proof. Any total order derived from the poset is a uniflow chain partition in
which each element is a chain by itself. In this trivial uniflow chain partition the
number of chains is equal to the number of elements in the poset.

The structure of uniflow chain partitions can be used for efficiently obtaining
consistent cuts of larger ranks.

Lemma 2 (Uniflow Cuts Lemma). Let P be a poset with a uniflow chain
partition {Pi | 1 ≤ i ≤ nu}, and G be a consistent cut of P . Then any Hk ⊆ P
for 1 ≤ k ≤ nu is also a consistent cut of P if it satisfies:

∀i : k < i ≤ nu : Hk[i] = G[i], and

∀i : 1 ≤ i ≤ k : Hk[i] = |Pi|.

Proof. Using Eq. 1, we exploit the structure of uniflow chain partitions: the
causal dependencies of any element e lie only on chains that are lower than
e’s chain. As G is consistent, and Hk contains the same elements as G for the
top nu − k chains, all the causal dependencies that need to be satisfied to make
Hk have to be on chain k or lower. Hence, including all the elements from all of
the lower chains will naturally satisfy all the causal dependencies, and make Hk

consistent.

For example, in Fig. 2(b), consider the cut G = [1, 2, 1] that is a consistent
cut of the poset. Then, picking k = 1, and using Lemma 2 gives us the cut
[1, 2, 3] which is consistent; similarly choosing k = 2 gives us [1, 3, 3] that is also
consistent. Note that the claim may not hold if the chain partition does not
have uniflow property. For example, in Fig. 3(c), G = [2, 2] is a consistent cut.
The chain partition, however, is not uniflow and thus applying the Lemma with
k = 1 gives us [2, 3] which is not a consistent cut as it includes the third event
on P1, but not its causal dependency — the third event on P2.
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3.1 Finding a Uniflow Partition

The problem of finding a uniflow chain partition is a direct extension of finding
the jump number of a poset [5,10,30]. Multiple algorithms have been proposed
to find the jump number of a poset; which in turn arrange the poset in a uniflow
chain partition. Finding an optimal (smallest number of chains) uniflow chain
partition of a poset is a hard problem [5,10]. Bianco et al. [5] present a heuristic
algorithm to find a uniflow partition, and show in their experimental evaluation
that in most of the cases the resulting partitions are relatively close to optimal.
We use a vector clock based online algorithm to find a uniflow partition for a
computation. We present this algorithm in the extended version of the paper
[9]. Note that we need to re-generate vector clocks of the events for the uni-
flow partition. This is a simple task using existing vector clock implementation
techniques, and we omit these details.

4 Polynomial Space Breadth-First Traversal of Lattice

BFS traversal of the lattice of consistent cuts of any poset can be performed in
space that is polynomial in the size of the poset. We do so by first obtaining the
poset’s uniflow chain partition, and then using this partition for traversal of cuts
in increasing order of ranks. We start from the empty cut, and then traverse all
consistent cuts of rank 1, then all consistent cuts of rank 2 and so on. For rank
r, 1 ≤ r ≤ |E|, we traverse the consistent cuts in the following lexical order:

Definition 3 (Lexical Order on Consistent Cuts). Given any chain parti-
tion of poset P that partitions it into n chains, we define a total order called lexi-
cal order on all consistent cuts of P as follows. Let G and H be any two consistent
cuts of P . Then, G <l H ≡ ∃k : (G[k] < H[k]) ∧ (∀i : n ≥ i > k : G[i] = H[i]).

[1, 0] [2, 1]

[0, 1] [1, 2]

(a)

[0, 1, 0]

[0, 2, 1]

[0, 0, 1]

[1, 1, 1]

(b)

Fig. 4. Vector clocks of a computa-
tion in its original form, and in its
uniflow partition

Recall from our vector clock notation
(Sect. 2) that the right most entry in the
vector clock is for the least significant (low-
est) chain. Consider the poset with a non-
uniflow chain partition in Fig. 4(a). The
vector clocks of its events are shown against
the four events. The lexical order on the
consistent cuts of this chain partition is:
[0, 0] <l [0, 1] <l [1, 0] <l [1, 1] <l [1, 2] <l

[2, 1] <l [2, 2]. For the same poset, Fig. 4(b)
shows the equivalent uniflow partition, and
the corresponding vector clocks. The lexi-
cal order on the consistent cuts for this uniflow chain partition is: [0, 0, 0] <l

[0, 0, 1] <l [0, 1, 0] <l [0, 1, 1] <l [0, 2, 1] <l [1, 1, 1] <l [1, 2, 1]. Note that the
number of consistent cuts remains same for both of these chain partitions, and
there is a one-to-one mapping between the consistent cuts in the two partitions.
Hence, if the computation’s uniflow partition is different from its original chain
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Algorithm 1. TraverseBFSUniflow(P )
Input: A poset P = (E,→) that has been partitioned into a uniflow chain partition

of nu chains, and the vector clock of the events have been regenerated for this
partition.

1: G = new int[nu] // initial consistent cut
2: enumerate(G) // evaluate the predicate on empty cut G.
3: for (r = 1; r ≤ |E|; r + +) do
4: //make G lexically smallest cut of given rank
5: G = GetMinCut(G, r)
6: while G �= null do
7: enumerate(G) // evaluate the predicate on G.
8: //find the next bigger lexical cut of same rank
9: G = GetSuccessor(G, r)

partition, we re-map the consistent cuts in uniflow partition to cuts in original
partition.

Algorithm 1 shows the steps of our BFS traversal using a computation in a
uniflow chain partition. From Lemma 1, we know that every poset has a uniflow
chain partition. Recall that the vector clocks of the events depend on the chain
partition of the poset. Thus, in generating this input we need two pre-processing
steps: (a) finding a uniflow partition, and (b) regenerating vector clocks for
this partition. For example, given a computation on two processes shown in
Fig. 4(a), we will first convert it to the computation shown in Fig. 4(b). These
steps are performed only once for a computation, and are relatively inexpensive
in comparison to the traversal of lattice.

For each rank r, 1 ≤ r ≤ |E|, Algorithm 1 first finds the lexically small-
est consistent cut at of rank r. This is done by the GetMinCut (shown in
Algorithm 2) routine that returns the lexically smallest consistent cut of P big-
ger than G of rank r. For example, in Fig. 5, GetMinCut([0, 0, 0], 4) returns
[0, 1, 3]. Given a consistent cut G of rank r, we repeatedly find the next lexi-
cally bigger consistent cut of rank r using the routine GetSuccessor given in
Algorithm 3. For example, in Fig. 5, GetSuccessor([0, 0, 3], 3) returns the next
lexically smallest consistent cut [0, 1, 2].

The GetMinCut routine on poset P assumes that the rank of G is at most
r and that G is a consistent cut of the P . It first computes d as the difference
between r and the rank of G. We need to add d elements to G to find the smallest
consistent cut of rank r. We exploit the Uniflow Cut Lemma (Lemma 2) by
adding as many elements from the lowest chain as possible. If all the elements
from the lowest chain are already in G, then we continue with the second lowest
chain, and so on. For example in Fig. 5, consider finding smallest consistent cut
of rank 5 starting from G = [0, 0, 2]. In this case, we add all three elements from
P1 to reach [0, 0, 3], and then add first two elements from P2 to get the answer
as [0, 2, 3].

The GetSuccessor routine (Algorithm 3) finds the lexical successor of G
at rank r. The approach for finding a lexical successor is similar to counting
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numbers in a decimal system: if we are looking for successor of 2199, then we
cannot increment the two 9 s (as we are only allowed digits 0–9), and hence the
first possible increment is for entry 1. We increment it to 2, but we must now
reset the entries at lesser significant digits. Hence, we reset the two 9 s to 0 s,
and get the successor as 2200.

Algorithm 2. GetMinCut(G, r)
Input: G: a consistent cut of poset P

from Algorithm 1
Output: Smallest consistent cut of rank

r that is lexically greater than or equal
to G.

1: d = r−rank(G) // difference in ranks
2: for (j = 1; j ≤ nu; j = j + 1) do
3: if d ≤ |Pj | − G[j] then
4: G[j] = G[j] + d
5: return G
6: else // take all the elements from

chain j
7: G[j] = G[j] + |Pj |
8: d = d − |Pj |

Algorithm 3. GetSuccessor(G, r)
Input: G: a consistent cut of rank r
Output: K: lexical successor of G of rank

r
1: K = G // Create a copy of G in K
2: for (i = 2; i ≤ nu; i++) do // lower

chains to higher
3: if next element on Pi exists then
4: K[i] = K[i] + 1 // increment cut
5: for (j = i − 1; j > 0; j − −) do
6: K[j] = 0 // reset lower chains

7: //fix dependencies on lower
chains

8: for (j = i + 1; j ≤ nu; j + +) do
9: for (k = i− 1; k > 0; k−−) do

10: vc = vector clock of event
11: number G[j] on Pj

12: K[k] = MAX(vc[k], K[k])

13: if rank(K) ≤ r then
14: return GetMinCut(K, r)

15: return null // no candidate cut

P3

[1, 2, 0] [2, 2, 0] [3, 2, 2]

P2

[0, 1, 0] [0, 2, 0] [0, 3, 1]

P1

[0, 0, 1] [0, 0, 2] [0, 0, 3]

Fig. 5. Illustration: GetSuccessor

In our GetSuccessor routine, we start at the second lowest chain in a
uniflow poset, and if possible increment the cut by one event on this chain.
We then reset the entries on lower chains, and then make the cut consistent
by satisfying all the causal dependencies. If the rank of the resulting cut is less
than or equal to r, then calling the GetMinCut routine gives us the lexical
successor of G at rank r. Line 1 copies cut G in K. The for loop covering lines
2–13 searches for an appropriate element not in G such that adding this element
makes the resulting consistent cut lexically greater than G. We start the search
from chain 2, instead of chain 1, because for a non-empty cut G adding any
event from the lowest chain to G will only increase G’s rank as there are no
lower chains to reset. Line 3 checks if there is any possible element to add in
Pi. If yes, then lines 4–6 increment K at chain i, and then set all its values for
lower chains to 0. To ensure that K is a consistent cut, for every element in K,
we add its causal dependencies to K in lines 7–11. Line 12 checks whether the
resulting consistent cut is of rank ≤ r. If rank(K) is at most r, then we have
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found a suitable cut that can be used to find the next lexically bigger consistent
cut and we call GetMinCut routine to find it. If we have tried all values of i
and did not find a suitable cut, then G is the largest consistent cut of rank r
and we return null.

In Fig. 5, consider the call of GetSuccessor ([1, 2, 3], 6). As there is no
next element in P1, we consider the next element in P2. After line 5, the value
of K is [1, 3, 0], which is not consistent. Lines 7–10 make K a consistent cut,
now K = [1, 3, 1]. Since rank(K) is 5, we call GetMinCut at line 13 to find
the smallest consistent cut of rank 6 that is lexically bigger than [1, 3, 1]. This
consistent cut is [1, 3, 2].

The proof of correctness is given in the extended version of the paper [9].

4.1 Optimization for Time Complexity

We can find the lexical successor of any consistent cut in O(n2
u) time, instead of

O(n3
u) time taken in GetSuccessor, by using additional O(n2

u) space.

Algorithm 4. ComputeProjections(G)
Input: G: a consistent cut of rank r
1: for (i = nu; i ≥ 1; i−−) do // go top to bottom
2: val = G[i] // event number in G on chain i
3: vc = vector clock of event num val on chain i
4: if i == nu then // on highest chain
5: proj[i] = vc
6: else // process relevant entries in vector
7: for (j = i; j > 0; j − −) do
8: //projection on chain i:
9: proj[i][j] =MAX(vc[j], proj[i + 1][j])

Observe that GetSuc-

cessor routine iterates over
nu − 1 chains in the outer
loop at line 2, and the two
inner loops at lines 8 and 9
perform O(n2

u) work in the
worst case. When we cannot
find a suitable cut of rank less
than or equal to r (check per-
formed at line 12), we move
to a higher chain (with the
outer loop at line 2). Thus, we
repeat a large fraction of the
O(n2

u) work in the two inner loops at lines 8 and 9 for this higher chain. We can
avoid this repetition by storing the combined causal dependencies from higher
chains on each lower chain.

P1

P2

P3

G = [1, 3, 2]

proj[3] = [1, 0, 0]

proj[2] = [1, 3, 1]

proj[1] = [1, 3, 2]

Fig. 6. Projections of a cut on chains

Let us illustrate this with an
example. Consider the uniflow com-
putation shown in Fig. 6. Suppose we
want the lexical successor of G =
[1, 3, 2]. Then, for each chain, start-
ing from the top we compute the pro-
jection of events included in G on
lower chains. For example, G[3] = 1,
and thus on the top-most chain, the
projection is only the vector clock of
the first event on P3, which is [1, 0, 0]. Thus proj[3] = [1, 0, 0]. On P2, the projec-
tion must include the combined vector clocks of G[3] and G[2] — the events from
top two chains. As G[2] = 3, we use the vector clock of third event on P2, which
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is [0, 3, 1] as that event is causally dependent on first event on P1. Combining
the two vectors gives us the projection on P2 as proj[2] = [1, 3, 1].

Algorithm 4 shows the steps involved in computing the projections of a cut
on each chain. We create an auxiliary matrix, proj, of size nu×nu, to store these
projections. In GetSuccessor routine, once we have computed a new successor
by using some event on chain i, we need to update the stored projections on
chains lower than i; and not all nu chains. This is because the projections for
unchanged entries in G above chain i will not change on chain i, or any chain
above it. Hence, we only update the relevant rows and columns — rows and
columns with number i or lower — in proj; i.e. only the upper triangular part
of the matrix proj. We keep track of the chain that gave us the successor cut,
and pass it as an additional argument to Algorithm 4. We read and update n2

u/2
entries in the matrix, and not all n2

u of them.
Hence, the optimized implementation of finding the lexical successor of G

requires two changes. First, every call of GetSuccessor (G, r) starts with first
computing the projections of G using Algorithm 4. Second, we replace the two
inner for loops at lines 8 and 9 in GetSuccessor by one O(nu) loop to compute
the max of the two vector clocks: vector clock of K[i], and proj[i]. See the
extended version of the paper for details [9].

4.2 Re-mapping Consistent Cuts to Original Chain Partition

The number of consistent cuts of a computation is independent of the chain parti-
tion used. Their vector clock representation, however, varies with chain partitions
as the vector clocks of events in the computation depend on the chain partition
used to compute them. There is a one-to-one mapping between a consistent cut
in the original chain partition of the computation on n chains (processes), and its
uniflow chain partition on nu chains. We now show how to map a consistent cut
in a uniflow chain partition to its equivalent cut in the original chain partition
of the computation. Let P = (E,→) be a computation on n processes, and let
nu be the number of chains in its uniflow chain partition. If Gu is a consistent
cut in the uniflow chain partition, then its equivalent consistent cut G for the
original chain partition (of n chains) can be found in O(nu + n2) time.

We do so by mapping two additional entries with the new vector clock of
each event for uniflow chain partition: the chain number c, and event number
e from the original chain partition over n chains. For example, in Fig. 4(b), for
uniflow vector clock [1, 1, 1], its chain number in original poset is 1, and its
event number on that chain is 2. When generating the uniflow vector clocks,
we populate these entries in a map. Given a uniflow vector clock uvc, the call
to OriginalChain(uvc) returns c, and OriginalEvent(uvc) returns e. To
compute G from Gu, we use these two values from the corresponding event for
each entry in Gu. We start with I as an all-zero vector of length n. Now, we
iterate over Gu, and we update I by setting I[c] = max(I[c], e). As vector Gu

has length nu, this step takes O(nu) time. We now initiate G as an all-zero
vector clock of length n, and for each entry I[k], 1 ≤ k ≤ n, we get the vector
clock, vce, of event I[k] on chain k in the original computation. We then set G
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to the component-wise maximum of G and vce. As there are n entries in I, and
for each non-zero entry we perform O(n) work in updating G (in lines 11–14 in
Algorithm 5) the total work in this step is O(n2).

Algorithm 5. Remap(Gu, nu, n)
Input: Gu: a consistent cut in uniflow chain partition on nu chains
Output: G: equivalent consistent cut in original chain partition on n chains
1: G = new int[n] // allocate memory for G
2: I = new int[nu] // reduction vector
3: for (i = nu; i ≥ 1; i − −) do // go over all the uniflow chains
4: uvc =event number Gu[i]’s vector-clock on uniflow chain i
5: //chain of this event in original poset
6: c = OriginalChain(uvc)
7: //uvc’s event number on chain c in original poset
8: e = OriginalEvent(uvc)
9: if I[c] < e then // update indicator with e

10: I[c] = e

11: for (j = n; i ≥ 1; i − −) do // go over chains in original poset
12: vce =event number I[j]’s vector-clock on chain j in original poset
13: for (k = n; k ≥ 1; k − −) do // update G entries
14: G[k] =MAX(G[k], vce[k])

15: return G

4.3 Traversing Consistent Cuts of a Given Rank

A key benefit of our algorithm is that it can traverse all the consistent cuts of a
given rank, or within a range of ranks, without traversing the cuts of lower ranks.
In contrast, the traditional BFS traversal must traverse, and store, consistent
cuts of rank R−1 to traverse cuts of rank R, which in turn requires it to traverse
cuts of rank R − 2 and so on.

To traverse all the cuts of rank R, we only need to change the loop bounds at
line 3 in Algorithm 1 to for (r = R; r ≤ R; r + +). Thus, starting with an empty
cut we can find the lexically smallest consistent cut of rank r in O(nu) time with
the GetMinCut routine. Then we repeatedly find its lexical successor of the
same rank, until we have traversed the lexically biggest cut of rank R. Similarly,
consistent cuts between the ranks of R1 and R2 can be traversed by changing
the loop at line 3 in Algorithm 1 to: for (r = R1; r ≤ R2; r + +).

Lemma 3. Let Lk denote the number of consistent cuts of rank k for a com-
putation (E,→). Then, traversing consistent cuts of rank r takes O(n2

uLr) time
with Algorithm 1. For the same traversal, the traditional BFS algorithm requires
O(n2

∑r
k=1 Lk) time, and Lex algorithm takes O(n2

∑|E|
k=1 Lk) time.
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5 Time and Space Complexity

Algorithm 1 requires a computation in its uniflow chain partition. Multiple poly-
nomial time algorithms exist to find a non-trivial uniflow chain partition of a
poset, and we give a vector clock based online algorithm to find one that takes
O(n) time per event. We analyze the worst case time and space complexities of
our algorithms.

Given any computation on n processes and E events, we can find its trivial
uniflow chain partition in O(n|E|log|E|) time by lexically ordering the vector
clocks of all the events. Suppose the number of chains in the uniflow partition is
nu, then the step of computing new vector clocks takes O(nu|E|·Δ) time where Δ
is the maximum in-degree of any event in the computation; note that Δ ≤ n. The
GetMinCut sub-routine has only one for loop that iterates over the chains of
the uniflow partition. Hence, it takes O(nu) time in the worst case. The optimized
version of finding the successor, sub-routine GetSuccessorOptimized, takes
O(n2

u) time in the worst case due to the two nested for loops at lines 3, and
10. Hence, for any rank, our algorithm requires O(n2

u) time per consistent cut
in the uniflow partition. Re-mapping this cut to the original computation takes
O(nu + n2) time. Thus, we take O(n2

u + n2) time per consistent cut.

Theorem 1. Given a computation P = (E,→) on n processes, Algorithm 1
performs breadth-first traversal of its lattice of consistent cuts using O((nu +
n)|E|) space which is polynomial in the size of the computation.

Proof. Storing the original computation requires O(n|E|) space — each event’s
vector clock having at most n integers. Vector clocks for the uniflow chain par-
tition with nu chains takes O(nu) space per event. Thus, we require O(nu)|E|
additional space overall to store the computation in its uniflow form. Traversing
the lattice as per Algorithm 1 only requires O(n2

u) space as at most two vectors
of length nu are stored/created during this traversal, and we use the auxiliary
matrix of nu × nu size in the optimized implementation of GetSuccessor.
From Lemma 1 we know that nu ≤ |E|. Thus, the worst case space complexity
is O(|E|2 + n|E|) which is polynomial in the size of the input.

6 Experimental Evaluation

We conduct an experimental evaluation to compare the space and time required
by BFS, Lex, and our uniflow based traversal algorithm to traverse consistent
cuts of specific ranks, as well as all consistent cuts up to a given rank. We do not
evaluate DFS implementation as previous studies have shown that Lex imple-
mentation outperforms DFS based traversals in both time and space [7,8,16].
Lexical enumeration is significantly better for enumerating all possible consis-
tent cuts of a computation [7,8]. However, it is not well suited for only travers-
ing cuts of specified ranks, or finding the smallest counter example. For these
tasks, BFS traversal remains the algorithm of choice. We optimize the tradi-
tional BFS implementation as per [16] to enumerate every global state exactly
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once. We use seven benchmark computations from recent literature on traversal
of consistent cuts [7,8]. The details of these benchmarks are shown in first four
columns of Table 1. Benchmarks d-100, d-300 and d-500 are randomly generated
posets for modeling distributed computations. The benchmarks bank, and hedc
are computations obtained from real-world concurrent programs that are used
by [11,14,31] for evaluating their predicate detection algorithms. The bench-
mark bank contains a typical error pattern in concurrent programs, and hedc is a
web-crawler. Benchmarks w-4 and w-8 have 480 events distributed over 4 and 8
processes respectively, and help to highlight the influence of degree of parallelism
on the performance of enumeration algorithms. We conduct two sets of experi-
ments: (a) complete traversal of lattice of consistent cuts (of the computation)
in BFS manner, and (b) traversal of cuts of specific ranks. We conduct all the
experiments on a Linux machine with an Intel Core i7 3.4 GHz CPU, with L1, L2
and L3 caches of size 32 KB, 256 KB, and 8192 KB respectively. We compile and
run the programs on Oracle Java 1.7, and limit the maximum heap size for Java
virtual machine (JVM) to 2 GB. For each run of our traversal algorithm, we use
the online partition algorithm (see Appendix B in [9]) to find the uniflow chain
partition of the poset. The runtimes and space reported for our uniflow traversal
implementation include the time and space needed for finding and storing the
uniflow chain partition of the poset.

Table 1. Benchmark details, heap-space consumed (in MB) and runtimes (in seconds)
for two BFS implementations to traverse the full lattice of consistent cuts. Tpart= time
(seconds) to find uniflow partition; × = out-of-memory error

Name n |E| Approx. # of cuts nu Tpart Traditional BFS Uniflow BFS

Space Time Space Time

d-100 10 100 1.2×106 26 0.030 108 0.48 31 0.37

d-300 10 300 4.3×107 68 0.031 842 16.84 33 46.20

d-500 10 500 4.9×109 112 0.033 893 108.07 34 607.55

bank 8 96 8.2×108 8 0.023 × × 59 73.2

hedc 12 216 4.5×109 26 0.028 × × 56 1129

w-4 4 480 9.3×106 121 0.036 258 0.99 25 8.59

w-8 8 480 7.3×109 63 0.032 × × 40 1445.57

Table 1 compares the size of JVM heap and runtimes for traditional BFS and
our uniflow based BFS traversal of lattice of consistent cuts of the benchmarks.
The traditional BFS implementations runs out of memory on hedc, bank, and
w-8. Our implementation requires significantly less memory, and even though it
is slower, it enables us to do BFS traversal on large computations — something
that is impossible with traditional BFS due to its memory requirement.

Table 2 highlights the strength of our algorithm in traversing consistent cuts
of specific ranks. We compare our implementation with traditional BFS as well
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Table 2. Runtimes (in seconds) for tbfs: Traditional BFS, lex: Lexical, and uni: Uniflow
BFS implementations to traverse cuts of given ranks

Name r =
|E|
4

r =
|E|
2

r =
3|E|
4

r ≤ 32

tbfs lex uni tbfs lex uni tbfs lex uni tbfs lex uni

d-100 0.12 0.10 0.04 0.22 0.11 0.05 0.20 0.89 0.04 0.19 0.93 0.12

d-300 0.39 1.23 0.05 2.70 1.15 0.07 6.33 1.25 0.13 0.20 1.22 0.14

d-500 2.29 5.73 0.11 7.83 6.52 0.33 67.59 6.86 1.48 0.19 4.93 0.19

bank 3.36 16.80 0.27 × 16.34 3.07 × 17.02 0.32 45.43 16.87 5.70

hedc 4.72 16.50 0.40 × 152.76 15.70 × 153.54 0.51 0.23 128.60 0.12

w-4 0.09 0.18 0.07 0.53 0.18 0.10 0.93 0.19 0.09 0.01 0.13 0.05

w-8 26.39 143.08 0.72 × 171.23 120.27 × 169.21 3.09 0.02 196.21 0.05

as the implementation of Lexical traversal. For traversing consistent cuts of three
specified ranks (equal to quarter, half, and three-quarter of number of events)
our algorithm is consistently and significantly faster than both traditional BFS,
as well as Lex algorithm. Thus, it can be extremely helpful in quickly analyzing
traces when the programmer has knowledge of the conditions when an error/bug
occurs. In addition, there are many cases when we are not interested in checking
all consistent cuts of a computation. It has been argued that most concurrency
related bugs can be found relatively early in execution traces [4,25]. We also
perform well in visiting all consistent cuts of rank less than or equal to 32.
Hence, our implementation is faster on most benchmarks for smaller ranks, and
requires much less memory (memory consumption details for this experiment
are given in the extended version of the paper at [9]). These results emphasize
that our algorithm is useful for practical debugging tasks while consuming less
resources.

7 Future Work and Conclusion

Algorithm 1 can perform the BFS traversal without regenerating the vector
clocks for uniflow chain partitions. This is particularly beneficial for the compu-
tations in which |E| >> n, and hence the O(|E|2) space needed to regenerate
the vector clocks is expensive. Observe that any chain partition, including a
uniflow chain partition, of a computation is only an arrangement of its graph.
Hence, we can implement Algorithm 1 without regenerating new vector clocks,
and by only finding the positions of the events in the uniflow chain partition. To
do so, we assign a unique id to each event, and then place this event id on its
corresponding uniflow chain. We also store a mapping of original vector clocks
against the event ids. The space requirement for our algorithm will reduce to
O(nu · n) as we do not regenerate vector clock, and computation of projections
can be performed using nu ×n space instead of nu ×nu space. As a future work,
we plan to implement and evaluate this strategy.
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As Algorithm 1 traverses cuts of rank r +1 independently of those of rank r,
we can parallelize rank traversals using a parallel-for loop at line 3 of Algorithm 1.
We intend to implement this parallel approach and compare its performance
against parallel traversal algorithms such as Paramount [8].

For verification and analysis of parallel programs, breadth-first-search based
traversal of global states is a crucial routine. We have reduced the space complex-
ity of this routine from exponential to quadratic in the size of input computation.
This reduction in space complexity allows us to analyze computation with high
degree of parallelism with relatively small memory footprint — a task that is
practically impossible with traditional BFS implementations.
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