
Witnessing Network Transformations

Chaoqiang Deng1 and Kedar S. Namjoshi2(B)

1 New York University, New York, USA
deng@cs.nyu.edu

2 Bell Laboratories, Nokia, Murray Hill, USA
kedar.namjoshi@nokia-bell-labs.com

Abstract. Software-defined networking (SDN) is transforming the way
networks are managed, as fixed distributed protocols give way to flexible
route calculation software. The shift brings to the forefront the issue of
software errors, which may produce wrong routes, and cause significant
network disruption. We propose a run-time certification mechanism that
rejects any wrongly calculated route before it is installed in the network.
Certification is done through a strategy called witnessing, where a wit-
ness (i.e., a justification) is generated by the software for each routing
decision. The witness provided for a route change is validated against the
original user request, using a formal network model, before the change
is installed on the real network. Witnessing shifts trust away from the
complex system software to a relatively simple witness checker. We define
a formal language to specify connection-based user requests (“intents”),
witnesses for each type of intent, and the checking algorithm. We also
formulate a notion of refinement between networks, and show that it
preserves the realizability of intents across abstraction levels.

1 Introduction

Computer networks have long been managed with standardized, distributed pro-
tocols. The advent of software-defined networking (SDN) (cf. [9]) is radically
transforming this view to one where flexible, programmable routing engines oper-
ate on a formal network model. This makes it possible to apply sophisticated
route selection algorithms and to experiment with variations.

Such flexibility, however, comes with potential dangers. Increasing algorith-
mic sophistication increases the likelihood of errors in their implementation. A
miscalculated route may fail to meet the original request or, worse still, disrupt
traffic on existing routes by over-committing available bandwidth. In this work,
we design a run-time certification mechanism to detect wrongly calculated routes
and prevent them from being installed on the real network. The central concept
is to require all route selection programs to produce a formal justification – which
we call a “witness” – for each routing decision. A valid witness guarantees that
the associated routing changes do not adversely affect active routes.

We show how to instantiate this design for an emerging class of network
operating systems (NOS’s) – examples include ONOS [1] and OpenDaylight [2]

c© Springer International Publishing AG 2017
S. Lahiri and G. Reger (Eds.): RV 2017, LNCS 10548, pp. 155–171, 2017.
DOI: 10.1007/978-3-319-67531-2 10



156 C. Deng and K.S. Namjoshi

– which use SDN principles to unify the management and operation of a collec-
tion of networks built with different technologies (e.g., IP, optical, and wireless),
each with its own protocols and management software. To facilitate this goal,
all networks, regardless of the underlying technology, are represented uniformly
as graphs with capacitated connections between nodes. In response to a con-
nectivity request, a global route is calculated by the NOS on the graph model;
individual route segments are later configured locally in technology-specific ways.
Existing NOS’s do not guard against errors in global route calculation, nor do
they have a principled mechanism for defining connectivity patterns. Our work
makes a number of contributions beyond efficient certification.

– We define a formal language of connectivity patterns on graphs, called intents.
This includes common patterns such as paths, chains, and trees, with con-
straints on bandwidth and delay, and allowance for backup paths

– We propose an augmented architecture of a certifying NOS. Route selection
programs are required to generate a witness (a set of paths) as justification
for each routing decision

– We show that witness checking has worst-case linear complexity in the size of
the witnesses and in the number of intents. An incremental checking algorithm
further reduces the complexity in the common case. Experimental results on
a family of synthetic networks support the theoretical analysis

– We define a formal notion of refinement between networks which preserves
the realizability of intents: i.e., any intent satisfied on the abstract network
can be realized in the concrete network. This allows route selection algorithms
to operate on smaller abstract networks, reducing complexity.

The architecture of a certifying network operating system ensures that new
route selection algorithms can be implemented and tested quickly, with the
“safety-net” guarantee that certification makes it impossible to install erroneous
routes that may disrupt network operation. The refinement notions ensure that
solutions computed on an abstract network remain realizable at more concrete
levels, which makes it possible to chain route selection algorithms operating at
different levels of granularity. Taken together, these mechanisms significantly
increase the robustness and the safety of a network operating system.

1.1 Overview

A network operating system computes and installs routes on the fly in response
to a stream of incoming user requests. The ideal is a formally verified OS, whose
output is guaranteed to be correct. Constructing a formally verified network
operating system is, however, an enormously difficult undertaking. We propose
an alternative solution based on the run-time certification of the results com-
puted by the operating system.

A schematic view of a network operating system (NOS, for short) is shown
in Fig. 1(a). The operating system reacts to explicit external requests for routes
(referred to as “intents”), and implicitly to changes in the underlying network,



Witnessing Network Transformations 157

Fig. 1. Network operating system structure: (a) current, (b) with formal certification.
(Color figure online)

such as failure or degradation of nodes or links (referred to as “events”). In
response, the system uses route selection algorithms to make decisions to set
up new routes and, possibly, to move old routes, aiming to preserve all active
intents. Those decisions are then configured and installed on the real network.
A network operating system is, in essence, a network transformer; it maps a
network with allocated routes and a request to a network with modified routes.
The standard architecture in Fig. 1(a) leaves no room for error: one must trust
the correctness of the route selection algorithms and their implementations. A
mistake in either may result in a routing decision that disrupts network traffic.

Our proposal is shown in Fig. 1(b). Two key aspects are the use of formal
network models and the generation and checking of witnesses (i.e., justifications)
for each intent. The new architecture requires the route selection algorithm to
provide a witness, a collection of paths in the network, for every decision. The
checker has to perform two tasks: (1) ensure that the route decision (which could
be presented in a different format, e.g., as a sequence of commands) is consistent
with the supplied witness paths; and (2) check that the supplied paths prove
that the network meets the new intent and continues to meet all earlier intents.
Only if these checks succeed are the changes instantiated on the real network.

The certification step shifts trust away from the complex operating software
to a relatively simple checker. There is no need to verify the implementation
of the routing algorithm: if a mistake results in a wrong route or an incorrect
witness, the error is detected by the checker. The route installation process
(lower blue rectangle in the NOS figure) relies on standardized mechanisms such
as NETCONF [3] and is a trusted component.

In this paper, we address task (2), defining a formal language of intents, their
witnesses, and an algorithm for witness checking. We do not address task (1), as



158 C. Deng and K.S. Namjoshi

it is specific to the format used by the NOS to represent its routing decision. A
general strategy for task (1) is to simulate the route-change commands on the
network model and verify that network links are reconfigured exactly as stated
in the witness paths.

Real networks have an immense amount of detail, not all of which is relevant
for route selection. In the second part of this paper, we formulate a network
abstraction notion, and show that it preserves realizability: i.e., every intent
realizable on the abstract model is also realizable on the concrete network.

Detailed proofs and additional explanations are provided in the extended
version of this paper [7].

2 Networks and Intents

We define the formal network model, the intent language, and intent satisfaction.

2.1 Network Model

A network is a hierarchical system of graphs. It is defined by a vector of graphs,
say (G0, G1, . . . , Gn), for n ≥ 0. A graph Gi is either a primitive graph with a
single node, or a non-primitive graph where each node is a reference to a copy
of a graph Gj , where j < i, giving the entire network a hierarchical structure.
The graph Gn is the root of the hierarchy.

A network attribute is a quantity such as bandwidth, bit-error rate (BER),
cost, or delay, which takes values from the appropriate domain. An attribute vec-
tor is a map from the set of attributes to their domains. E.g., “(bandwidth=1.0,
BER=1.0E-5, cost=20, delay=2.5)” is an example vector. For concreteness, we
focus on two important attributes: bandwidth and delay, so the vector is writ-
ten as (bandwidth, delay). Attribute vectors are ordered by a partial relation,
� (read as “better than”), defined appropriately. For bandwidth and delay, the
relation (b, d) � (b′, d′) is defined as (b ≥ b′) ∧ (d ≤ d′). I.e., (b, d) is better than
(b′, d′) if b represents more bandwidth than b′, and d represents a smaller delay
than d′. The inverse relation, �, is read as “worse than”.

A primitive graph has only one node whose ports are all external. It represents
an atomic building block of the network. There can be zero or more internal links
between each pair of ports. Each link is associated with a capability, which is
an attribute vector. The implicit understanding is that all links in a primitive
graph represent independent connections. The capability of the i’th link from
port p to port q of node n (if defined) is denoted cap(n, p, q, i).

Examples of primitive graphs are channels and mux/demux elements. A chan-
nel has one input port and one output port. A multiplexer (mux ) has one output
port, say q, and multiple input ports; a link is defined only for pairs (x, q), where
x �= q. A demultiplexer has one input port, say p, and multiple output ports; a
link is defined only for pairs (p, x), where p �= x.

A non-primitive graph, Gi, has internal structure that is given by a pair
(N,C), where N is a set of nodes, and C is a set of connections. Every node



Witnessing Network Transformations 159

has an associated set of ports. A connection is a pair of the form ((n, p), (n′, p′)),
indicating that port p of node n is to be identified with port p′ of node n′. The
external ports of a graph are those ports that are not part of any connection.
Every node of Gi contains a reference to a graph Gj , where j < i, along with an
isomorphism between the ports of the node and the external ports of Gj . Nodes
may have region labels, used to state routing constraints that require paths to
stay within a certain geographic or network region.

A flat (i.e., non-hierarchical) network can be obtained by starting from Gn

and recursively expanding each node into a copy of the graph to which it refers,
if that graph is non-primitive. The satisfaction of intents is defined over the
flattened graph, which may be exponentially larger than the network description.
For convenience, by the links of a node we mean the links of its primitive graph.

Paths. The tuple (p′
i, ni, li, wi, pi+1) represents the li’th link between input

port p′
i and output port pi+1 on node ni, with an associated attribute weight

vector wi. A path from port p of node n to port q of node m, represented
as (p′

0, n0, l0, w0, p1), (p′
1, n1, l1, w1, p2), . . . , (p′

k, nk, lk, wk, pk+1), is a sequence of
such links, with k ≥ 0, (p′

0, n0) = (p, n), and (nk, pk+1) = (m, q). A path should
meet the following conditions.

(a) p′
i and pi+1 are ports of ni for all i, and li is a valid link between those ports

(b) wi represents an allocation that is worse than the capability of its link,
i.e., wi � cap(ni, p

′
i, pi+1, li) for all i (I.e., wi allocates less bandwidth and

assumes a higher delay than the actual capability of the link), and
(c) For all i such that i < k, the pair ((ni, pi+1), (ni+1, p

′
i+1)) is a connection.

The allocated weight of a path π is an attribute vector (b, d) such that b is
the least bandwidth entry and d is the sum of all the delay entries in the set of
weights {wi}. The capability of π is the attribute vector (b′, d′) such that b′ is
the least bandwidth entry and d′ is the sum of all the delay entries in the set of
capabilities {cap(ni, p

′
i, pi+1, li)}. Requirement (b) ensures that the capability of

a path is better than its allocated weight.

2.2 Network Intents: Syntax

An intent is a connectivity pattern between a set of ports. The pattern includes
constraints on minimum bandwidth, or maximum delay. A region constraint is
defined by a requirement to either avoid or to stay within the region. We define
three common types of intents, and show later how these can be considered as
examples of a quite general class of polynomially-checkable intents.

(Basic Segment). A basic segment specifies a connection between port p of
node n and port q of node m, with constraints on attributes and regions.

(Protected Segment). A protected segment specifies a connection between
port p of node n and port q of node m that has a degree of failure pro-
tection. The protection is defined as a set of basic segments between (n, p)
and (m, q). For simplicity, in this paper we suppose that there are only two



160 C. Deng and K.S. Namjoshi

such segments, one referred to as the primary, and the other as the backup.
This is commonly referred to as 1 + 1 protection. Each basic segment has its
own constraints on attributes and regions.

(Chain). A chain is specified as a sequence of segments where the end point
of each segment in the chain is connected to the start point of its successor
segment (if any). Each segment is specified independently, i.e., some may be
protected, while others are basic. A chain may also have end-to-end attribute
constraints (i.e., between its endpoints), and globally applicable region con-
straints. Chains are used to represent paths that must pass through a series
of so-called middle-boxes in the network where packet processing occurs.

2.3 Network Intents: Semantics

Consider path π = (p′
0, n0, l0, w0, p1), (p′

1, n1, l1, w1, p2), . . . , (p′
k, nk, lk, wk, pk+1).

It satisfies a minimum bandwidth B if the bandwidth entry in each of the weights
{wi} is at least B. It satisfies a maximum delay D if the sum of all the delay
entries in the set of weights {wi} is at most D. It satisfies an avoids(R) constraint,
for region R, if none of the nodes on the path is labeled with R, and a within(R)
constraint if all of the nodes on the path are labeled with R. We can now define
what it means for an intent to be satisfied.

(Basic Segment). A basic segment between port p of node n and port q of
node m is satisfied if there exists a path π from (n, p) to (m, q) such that π
satisfies all the attribute and region constraints for the segment.

(Protected Segment). A protected segment between (n, p) and (m, q) with
two basic segments x0, x1 is satisfied if there are two paths, π0, π1 from (n, p)
to (m, q) such that for each i, path πi satisfies the requirements of the segment
xi and, moreover, π0 and π1 have no node-port combination in common except
the two end points. i.e., the paths are node and port disjoint. Operationally,
this implies that a single node or port failure cannot affect both paths, unless
it is at the originating or terminating end.

(Chain). A chain from (n, p) to (m, q) is satisfied if there exist path(s) asso-
ciated with each segment of the chain such that (i) the constraints for each
segment are satisfied by its associated path(s), (ii) the end point (i.e., (node,
port)) of the path witnessing a segment has a connection to the start point of
the path witnessing the next segment, and (iii) the end-to-end constraints and
global region constraints for the chain are satisfied on all end-to-end paths
that can be constructed from the per-segment paths.

2.4 Witnesses and Satisfaction

For each satisfied intent, there is a network path (or paths) that explain why
the intent is satisfied. That set of paths is called the witness for that intent.
Figure 2 illustrates the three types of intents, corresponding witnesses, and how
to check that a witness meets its intent. For instance, the witness for the pro-
tected segment is a pair of paths connecting Los Angeles to New York: green for



Witnessing Network Transformations 161

Fig. 2. Example: three types of intents and corresponding witnesses. (Color figure
online)

the primary and red for the backup segment. To determine if this witness is cor-
rect, one checks that the witness paths are valid in the network, the constraints
on attribute and regions are be satisfied, and that the paths are disjoint.

Joint Satisfaction. A collection of intents is jointly satisfied if there are witnesses
for each intent such that the witness paths together do not over-subscribe the
bandwidth on any common link. Given a set of intents, if all the intents can
be jointly satisfied, then each individual intent can be satisfied. However, the
converse is not necessarily true. A trivial counter-example is a graph with a
single channel of bandwidth 2. It is possible to individually satisfy intents with
min. bandwidth 1 and with bandwidth 1.5, but joint satisfaction is impossible.

The inability to decompose the satisfaction of intents is one reason why
route selection algorithms have high complexity. In a graph where all links have
bandwidth 1, two basic segments between the same endpoints with bandwidth
at least 1 require disjoint paths, which is an NP-complete problem on directed
graphs. Another source of complexity is that intents must be satisfied in an on-
line fashion, which may lead to sub-optimal decisions. E.g., consider two points



162 C. Deng and K.S. Namjoshi

connected by disjoint paths π and π′, with resp. bandwidths 1 and 2. A request
for bandwidth 1 can be satisfied by either path; say it is assigned to π′. A
following request for bandwidth 2 cannot then be satisfied, unless the first is
re-assigned to π.

Witness Generation. For these reasons, the actual route selection algorithm
may be quite complex. However, its natural output is the set of paths that form
the witness. With standard algorithmic schemes, no additional work is needed.
Such algorithms allocate new routes on a residual capacity network, where the
capacity of a link is the amount that remains after satisfying previous intents.
If a new request is met on the residual network, its witness does not interfere
with those for previous intents, so the algorithm merely reports previously stored
witnesses. However, the algorithm may need to backtrack to recover from sub-
optimal decisions. In that case, the set of witnesses it needs to report are for the
intents that are re-assigned paths. In either case, witness generation does not
require additional work. As the validation procedure checks joint satisfaction,
witness paths for all intents are provided with each routing decision.

3 Witness Checking

The algorithm to check whether a witness matches a basic intent type on a flat
network model is shown in Fig. 3. The algorithm follows quite directly from the
definitions, as formalized in Sect. 2, and is easy to implement. For each intent
type, the algorithm checks that the witness paths provided are (a) valid paths in
the network, and (b) satisfy the attribute and region constraints specified for the
intent. The capacity of the network is reduced by the bandwidth consumed by
the witness paths; the algorithm outputs a network with the remaining capacity.
The algorithm operates in linear time in the size of witness. (The disjointness
check in Case 2 can be done in linear time on average using hashing.)

The algorithm works on a fully flattened network, which is obtained by flat-
tening the hierarchical network before a NOS is deployed to receive intents. An
optimization is to retain the hierarchical form, and flatten only those sections
of the network which are traversed by the witness paths. It is an open question
whether the check can be performed in polynomial time without flattening, we
conjecture that this may not be possible. As the check removes bandwidth from
the components through which a witness path passes, copies of the same com-
ponent may, over time, diverge in the set of feasible paths. This is not the case
for pure reachability queries, which can be checked without flattening [4].

General Forms of Intents. The intent types discussed so far fit the following
general form, which is inspired by Fagin’s beautiful characterization of NP in
terms of existential second order formulae on graphs [8]. An intent specifies a
sub-graph over a set of points, H, such that there exist sub-graphs X0, . . . , Xn

for which ϕ(H,X0, . . . , Xn) holds, where ϕ is a polynomial-time checkable prop-
erty. As an illustration, for a protected segment, the two endpoints (defining H)



Witnessing Network Transformations 163

Function wcheck(i : intent, w : witness,M : flat network) : flat network
Check that each witness path in w is a valid path in network M
if i is a basic segment then

Check that the path defined by w satisfies the attribute and region
constraints in i as defined in Section 2

Let M ′ be obtained from M by reducing the bandwidth on each link by
the amount reserved for that link on w

return M ′

else if i is a protected segment of intents i0, i1 with witnesses w0, w1 then
Check that the paths w0, w1 are node and port disjoint
M0 := wcheck(i0, w0,M)
M1 := wcheck(i1, w1,M0)
return M1

else i is a chain of intents i0, . . . , in with witnesses w0, . . . , wn, end-to-end
constraints delay D and bandwidth B, and global region constraints

Dn := D
for k from n down to 0 do

if k > 0 then
Check that start point of wk is connected to end point of wk−1

end
Let i′k be ik with additional constraints of min. bandwidth B, max.
delay Dk and global region constraints.

M := wcheck(i′k, wk,M)
Dk−1 := Dk −maxdelay(wk)

end
return M

end

Fig. 3. Witness checking algorithm

are connected by path-shaped sub-graphs X0 and X1, with ϕ asserting that the
paths are disjoint and satisfy the attribute and region constraints. The witness
for an intent in general form is the instantiation given to X0, . . . , Xn, while wit-
ness checking is the evaluation of ϕ on this instantiation. A number of practically
useful connectivity patterns can be specified in this manner. Examples include
broadcast and multicast trees, possibly with disjoint backup paths; virtual net-
works that interconnect several ports; and grid topologies.

3.1 Incremental Checking

Starting from the un-allocated network model, the algorithm above is used to
check each witness in succession. This takes time linear in the number of active
intents. We describe an efficient incremental algorithm, which checks only those
intents whose witnesses have changed.

The key underlying observation is that the order in which a set of witnesses
are checked does not matter. Consider witnesses w and w′ provided for intents
a and a′, respectively. Starting from a network M , if the check succeeds in the



164 C. Deng and K.S. Namjoshi

order w;w′, it must also succeed in the order w′;w. This is because the check can
be split into a step which determines the connectivity of witness paths, ignoring
capacity; and another that reduces network capacity along the witness paths,
while ensuring that the residual capacity on each link is non-negative. If no link
has negative capacity when witness paths are allocated in the order w;w′, that
is also true for the reverse order w′;w.

The algorithm stores the residual capacity network, M , and the list of active
intent-witness pairs, W , with the invariant that M represents the residual capac-
ity after processing W on the un-allocated network N . Route selection produces
a list of intent-witness pairs, W ′, listing only the intents that have new witnesses.
The incremental algorithm proceeds as follows.

1. For each (i, w′) in W ′, if there is an entry for intent i, say (i, w), in W , undo
the capacity reduction effect of checking w by adding back the capacity used
by links w to M . Remove the (i, w) entry from W

2. Add into M the effects of any network change that reduces the capacity of a
link l; if the new capacity of l is negative, stop with error

3. Add into M the effects of any network change that adds new links or increases
link capacity. We suppose that such links are disjoint from those whose capac-
ity has been reduced

4. Check the intent-witness entries in W ′ on M with the wcheck algorithm,
updating the residual capacity in M

5. Append W ′ to W to obtain the new active list

Incremental algorithms usually trade off increased state (e.g., storage for
partial results) for speed. It is interesting that this algorithm uses no additional
space. We show the following correctness theorem.

Theorem 1. The incremental and basic algorithms produce the same result.

4 Experiments

This section presents an experimental evaluation of our witness checking imple-
mentation. We do not have access to real network designs, so the experiments
are on a synthetic network, a parameterized grid of size n, shown in Fig. 6, where
each link has bandwidth and delay 1. The parameterization makes it simple to
scale up network size to assess its influence on witness checking.

For the experiments, a grid network is set up for a particular value of n.
Then endpoints and intents connecting them are generated at random. The type
of intent (basic or protected) is also chosen at random. Corresponding witnesses
paths are calculated via depth first search (DFS) while keeping track of residual
capacity. The search is prioritized to prefer links closer to the destination node.
The DFS algorithm approximates the work of actual route selection algorithms
used in networks. It suffices for our purpose, which is to measure the performance
of witness checking, not the quality of the chosen routes.

The implementation is in Java, it includes network creation, intents gener-
ation, witness calculation and checking. The checker is about 300 lines of Java



Witnessing Network Transformations 165

code. All of the experiments are performed on a MacBook Pro machine with a
2.4 GHz Intel Core i7, and 8GB 1600 MHz DDR3, running on Mac OS X 10.10.5.

In the experiment, we simulate networks of size from 10 to 1000; accordingly,
the number of nodes varies from one hundred to one million. In each network,
500 intents are randomly generated, and corresponding witnesses are calculated
and checked by our algorithm in Fig. 3. The results are shown in Fig. 4. The
x-axis shows the network size n (there are n2 network nodes). The left-hand
y-axis shows the average time cost of checking a witness for a single intent, and
the right-hand y-axis shows the average size of a witness. It is clear that the
average time cost of checking is negligible (e.g. for a large network of one million
nodes, checking a witness takes only about 1 ms, in the meanwhile, according to
our experiment log which is not presented here, witness generation by DFS takes
about 20 ms). The graph shows also that the cost of checking is proportional to
the witness size, both of which scale as O(n), on average. A second experiment
fixes the network size to 1000 but varies the number of intent requests. The
results support the theoretical analysis, showing that the cost of the incremental
algorithm is essentially constant, while that of the basic algorithm increases
linearly with the number of requests.

Fig. 4. Time cost of witness checking on networks of n2 nodes.

5 Network Abstraction

The witness checking algorithm introduced in previous sections works on the
complete network. It is, however, often the case that only a small part of a
network needs to be examined to select routes. E.g., for an intent requesting a



166 C. Deng and K.S. Namjoshi

connection between two cities in the east coast, say New York City and Washing-
ton DC, it would be superfluous to examine networks in the west coast, as well
as tedious to use detailed information about networks inside a single city. Thus,
we propose to operate algorithms on abstracted networks. It is vital, however,
that the routes discovered at an abstract level are realizable as routes at the
concrete level; otherwise, there is no benefit to perform the abstraction.

In this section we introduce network abstraction. The general idea is to get an
abstract network by collapsing a specified sub-network of a concrete real network
into a single node. We define a notion of refinement from the concrete to the
abstract level, and show that this preserves the realizability of routes.

5.1 Abstraction and Refinement with Single Nodes

We consider the case where a graph G is abstracted to a new primitive graph H
whose external ports are isomorphic to the external ports of G. The key question
is to define a relation between paths and capabilities in G with those in H, so
that routes in H can be realized as routes in G. As H is primitive, routes in H
are links between ports; routes in G are paths through the graph G.

Refinement. A refinement map R from H to G is a function such that the
following properties hold:

(a) Each link (n, p, q, i) in H (i.e., the i’th link between port p and q of node n)
is mapped by R to a path π between ports p and q in G, where the capability
of π in G is better than the capability of link (n, p, q, i) in H, and

(b) The set of paths {R(n, p, q, i) | (n, p, q, i) is a link in H} are node and port
disjoint in G, and

(c) Node n and all nodes of G have the same abstract region labels.

The refinement map constrains the capabilities, not the weights of the corre-
sponding paths. Hence, it is possible that a different algorithm can be applied
to G to arrange the weights.

b=2, d=1 

b=2, d=1 

b=2, d=1 
b=1, d=1 

b=2, d=2 

b=2, d=1 

b=2, d=1 

b=2, d=5 

p 

p q 

q 

b=1, d=4 

p q 

b=1, d=5 

p q 

b=2, d=4 

p q 

Abstraction 

G 

H 

Fig. 5. Collapsing a sub-network into a single node via refinement.



Witnessing Network Transformations 167

Example. A simple example of refinement is shown in Fig. 5. For the sake of
clarity, we do not use the formal notion of graph references, but rather show the
details directly. Ports are shown as circles, a long rectangle is a channel, and a
triangle is a mux/demux. A dashed line between two ports is a link, and a dashed
ellipse with two ports inside shows that those ports are part of a connection. (E.g.
in G, the right port of left channel is connected to the left port of demux.) The
capability of the single link for each pair of ports is shown near the host node.
(E.g. in G, “b = 2, d = 1” above the left triangle means that, for the upper link
inside the demux, the bandwidth is 2 and delay is 1.) Between ports p and q in
G, there are two non-disjoint paths: one path goes through the upper channel
in the middle, and has capability “b = 1, d = 4”; the other path goes through
the lower channel in the middle, and has capability “b = 2, d = 5”. We show
four possible abstractions; the upper three are correct (i.e. there is a refinement
connecting H to G). The first two represent the capabilities of the paths in G
described above; the third is a manufactured capability representing the worst
of the two paths. The bottom abstraction is incorrect, however, as there is no
path in G from p to q with capability better than “b = 2, d = 4”.

5.2 Abstraction and Refinement for Networks

We say that network A is an abstraction of network C = (G0, G1, . . . , Gn) if
there is a chosen subset GS of {G0, G1, . . . , Gn}, and A is gained from C by
replacing each graph Gi in GS with a primitive graph Hi such that there is a
refinement Ri from primitive graph Hi to graph Gi. The size of abstraction is
defined as the cardinality of GS.

Example. Figure 7 illustrates the process of network abstraction. The concrete
network C has two graphs (G0, G1), where G1 contains two connected nodes
referring to G0. There is a refinement relation from the primitive graph H0

to G0, thus by replacing G0 with H0 we obtain an abstract network (H0, G
′
1)

where G′
1 = G1[G0 := H0] (the brackets indicate substitution of references to

G0 by references to H0). The size of this abstraction is 1. Furthermore, another
abstraction of size 1 can be performed on (H0, G

′
1) by replacing it with the

primitive graph H1, since there is an abstraction refinement from H1 to G′
1. Now

an ultimately abstract network (H0,H1) is obtained, and no more abstraction
can be applied. Furthermore, H0 can be removed since it is not referred by any
network. It is not difficult to find that for any set of intents that can be jointly
satisfied in the abstract network (H1), it can be jointly satisfied in the original
network (G0, G1) too.

Theorem 2. Let network A be an abstraction of network C. Every set I of
intents that can be jointly satisfied in A can also be jointly satisfied in C.

Proof Sketch: Suppose the size of abstraction from C to A is k. We generate
a series of networks N1 = A,N2, N3, . . . , Nk = C such that Ni+1 is a refinement
of Ni+1 with an abstraction of size 1. We show that any set of intents that can



168 C. Deng and K.S. Namjoshi

D0 

1 3 

2 

0 

D1 

D0 D0 

D0 D0 

D0 

D0 

D0 D0 D0 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

n

n

Fig. 6. Virtual network of size n.

b=2, d=1 

b=2, d=1 

b=2, d=1 
b=1, d=1 

b=2, d=2 

b=2, d=1 

b=2, d=1 

p q 

G0 

b=1, d=4 

p q 

H0 

p q r s 

G1 

G0 G0 

p q r s 

G 1 

H0 H0 

b=1, d=4 

p q 

H0 b=1, d=8 

p s 

H1 

Abstraction 

Abstraction 

Fig. 7. Network abstraction

be jointly satisfied in Ni, can also be jointly satisfied in Ni+1. By induction,
it follows that any set I of intents that is jointly satisfied in A is also jointly
satisfied in C. EndProof.

As illustrated in Fig. 7, realizability is preserved across multiple abstract
levels, i.e. if network A abstracts B and B abstracts C, then any set of intents
that can be jointly satisfied in A can also jointly satisfied in C.

6 Related Work and Conclusions

The certification strategy is inspired by research on methods to verify compiler
transformations. Run-time compiler verification, generally referred to as Trans-
lation Validation, uses heuristics to determine whether the resulting program
refines the behavior of the original (cf. [20,22,27]). Our recent proposal [19],
building on the idea of proof certificates [21,23], suggests having the compiler
itself generate candidate refinements; valid refinements are called witnesses. We
adopt this general scheme and terminology.

There are, however, fundamental differences between Translation Validation
and network validation. For compiler optimizations, correctness is established
by showing that the optimized program refines the behavior of the original. A
routing decision, however, may change routes arbitrarily so long as the intent is
met; thus, correctness does not correspond to a natural refinement on networks.
Instead, the criterion adopted here is that the transformed network should satisfy



Witnessing Network Transformations 169

all active intents with the particular route witnesses supplied by the network
transformation algorithm. This differs from the model-checking question “Does
the transformed network satisfy all intents?”, which implicitly checks for the
existence of satisfying routes.

Emerging network operating systems based on SDN principles (cf. [24]),
such as ONOS [1] and OpenDaylight [2], make it easy to replace route selection
methods. These NOS’s do not, however, guard against potential network disrup-
tion caused by miscalculated routes. The lack of error-checking is a significant
omission, which this work aims to fill.

There is a growing body of work on formalization of various aspects of SDN at
the IP level: reasoning frameworks such as NetKAT [5], verified compilers [12] for
OpenFlow [18] and model checkers for network invariants (cf. [6,14,17]). Run-
time checking has been investigated at the IP level: the Veriflow [15] system
checks routing table modifications against fixed network properties such as the
absence of a forwarding loop. Reachability properties can be checked off-line by
the system in [16]. As discussed in the introduction, our work applies to NOS’s
that work at a different (higher) level of abstraction, managing combinations of
networks with diverse technologies. Thus, the existing techniques do not apply.

The network model in this paper is inspired by NetML [10,25], which was
designed to describe connectivity in multi-layered networks. Our model expands
on NetML to include link attributes such as bandwidth and delay. In turn, this
requires new forms of abstraction to preserve the realizability of intents. Work
on abstraction in the IP model includes [26], which describes an IP network
as a virtual “big switch” (cf. [13]); routes programmed at the virtual level are
then refined into routes on a physical topology. This refinement notion preserves
reachability but may not preserve path disjointness.

Network management is clearly moving towards increasing levels of abstrac-
tion and programmability. With increasing sophistication, however, comes the
danger that software errors may result in significant disruption in large area
networks. This work has presented a run-time certification method which acts
as a safety net, preventing incorrect routing decisions from affecting network
operations. The checking process is efficient, and naturally handles a variety of
user-defined specifications and dynamic network changes. A promising direction
is to explore witnessing for IP networks, particularly where model checking is dif-
ficult (e.g., checking reachability in the presence of packet filters is NP-hard [17]).

Acknowledgements. We wish to thank colleagues at Bell Labs for many helpful
comments. Kedar Namjoshi was supported, in part, by NSF grant CCF-1563393 during
the preparation of this paper.

References

1. ONOS: Open Network Operating System. http://onosproject.org/
2. Open Daylight. https://www.opendaylight.org/
3. RFC 6241 - Network Configuration Protocol (NETCONF). https://tools.ietf.org/

html/rfc6241

http://onosproject.org/
https://www.opendaylight.org/
https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc6241


170 C. Deng and K.S. Namjoshi

4. Alur, R., Yannakakis, M.: Model checking of hierarchical state machines. ACM
Trans. Program. Lang. Syst. 23(3), 273–303 (2001). doi:10.1145/503502.503503

5. Anderson, C.J., Foster, N., Guha, A., Jeannin, J., Kozen, D., Schlesinger, C.,
Walker, D.: NetKAT: semantic foundations for networks. In: Jagannathan, S.,
Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2014, San Diego, CA, USA, January
20–21, 2014, pp. 113–126. ACM (2014). doi:10.1145/2535838.2535862

6. Canini, M., Venzano, D., Pereśıni, P., Kostic, D., Rexford, J.: A NICE way to test
openflow applications. In: Gribble and Katabi [11], pp. 127–140. https://www.
usenix.org/conference/nsdi12/technical-sessions/presentation/canini

7. Deng, C., Namjoshi, K.S.: Witnessing network transformations (2017). Extended
version of this paper, at http://cs.nyu.edu/∼deng/

8. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets.
In: Karp, R. (ed.) Complexity of Computation, SIAM-AMS Proc., pp. 27–41 (1974)

9. Feamster, N., Rexford, J., Zegura, E.W.: The road to SDN: an intellectual history
of programmable networks. Comput. Commun. Rev. 44(2), 87–98 (2014). doi:10.
1145/2602204.2602219

10. Fortune, S.: Equivalence and generalization in a layered network model. J. Comput.
Syst. Sci. 81(8), 1698–1714 (2015). doi:10.1016/j.jcss.2015.06.004

11. Gribble, S.D., Katabi, D. (eds.) Proceedings of the 9th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2012, San Jose, CA,
USA, April 25–27, 2012. USENIX Association (2012). https://www.usenix.org/
publications/proceedings/?f[0]=im group audience%3A279

12. Guha, A., Reitblatt, M., Foster, N.: Machine-verified network controllers. In:
Boehm, H., Flanagan, C. (eds.) ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2013, Seattle, WA, USA, June 16–19,
2013, pp. 483–494. ACM (2013). doi:10.1145/2462156.2462178

13. Kang, N., Liu, Z., Rexford, J., Walker, D.: Optimizing the “one big switch” abstrac-
tion in software-defined networks. In: Almeroth, K.C., Mathy, L., Papagiannaki, K.,
Misra, V. (eds.) Conference on emerging Networking Experiments and Technolo-
gies, CoNEXT 2013, Santa Barbara, CA, USA, December 9–12, 2013, pp. 13–24.
ACM (2013). doi:10.1145/2535372.2535373

14. Kazemian, P., Varghese, G., McKeown, N.: Header space analysis: static checking
for networks. In: Gribble and Katabi[11], pp. 113–126. https://www.usenix.org/
conference/nsdi12/technical-sessions/presentation/kazemian

15. Khurshid, A., Zou, X., Zhou, W., Caesar, M., Godfrey, P.B.: Veriflow: Verify-
ing network-wide invariants in real time. In: Feamster, N., Mogul, J.C. (eds.)
Proceedings of the 10th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2013, Lombard, IL, USA, April 2–5, 2013, pp.
15–27. USENIX Association (2013). https://www.usenix.org/conference/nsdi13/
technical-sessions/presentation/khurshid

16. Lopes, N.P., Bjørner, N., Godefroid, P., Jayaraman, K., Varghese, G.: Checking
beliefs in dynamic networks. In: 12th USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI 15, Oakland, CA, USA, May 4–6, 2015,
pp. 499–512. USENIX Association (2015). https://www.usenix.org/conference/
nsdi15/technical-sessions/presentation/lopes

http://dx.doi.org/10.1145/503502.503503
http://dx.doi.org/10.1145/2535838.2535862
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/canini
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/canini
http://cs.nyu.edu/~deng/
http://dx.doi.org/10.1145/2602204.2602219
http://dx.doi.org/10.1145/2602204.2602219
http://dx.doi.org/10.1016/j.jcss.2015.06.004
https://www.usenix.org/publications/proceedings/?f[0]=im_group_audience%3A279
https://www.usenix.org/publications/proceedings/?f[0]=im_group_audience%3A279
http://dx.doi.org/10.1145/2462156.2462178
http://dx.doi.org/10.1145/2535372.2535373
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/lopes
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/lopes


Witnessing Network Transformations 171

17. Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, B., King, S.T.: Debug-
ging the data plane with Anteater. In: Keshav, S., Liebeherr, J., Byers, J.W.,
Mogul, J.C. (eds.) Proceedings of the ACM SIGCOMM 2011 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communications,
Toronto, ON, Canada, August 15–19, 2011, pp. 290–301. ACM (2011). doi:10.1145/
2018436.2018470

18. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G.M., Peterson, L.L.,
Rexford, J., Shenker, S., Turner, J.S.: Openflow: enabling innovation in campus net-
works. Comput. Commun. Rev. 38(2), 69–74 (2008). doi:10.1145/1355734.1355746

19. Namjoshi, K.S., Zuck, L.D.: Witnessing program transformations. In: Logozzo, F.,
Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 304–323. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38856-9 17

20. Necula, G.: Translation validation of an optimizing compiler. In: Proceedings of
the ACM SIGPLAN Conference on Principles of Programming Languages Design
and Implementation (PLDI) 2000, pp. 83–95 (2000)

21. Necula, G., Lee, P.: Safe kernel extensions without run-time checking. In: OSDI
(1996)

22. Pnueli, A., Shtrichman, O., Siegel, M.: The code validation tool (CVT) - automatic
verification of a compilation process. Softw. Tools Technol. Transf. 2(2), 192–201
(1998)

23. Rinard, M.C., Marinov, D.: Credible compilation with pointers. In: FLoC Work-
shop on Run-Time Result Verification (1999)

24. Shenker, S., Casado, M., Koponen, T., McKeown, N.: The future of networking
and the past of protocols. Open Networking Summit (2011)

25. Simsarian, J.E., Choi, N., Kim, Y.J., Fortune, S., Thottan, M.K.: Netgraph data
model applied to multilayer carrier networks. In: OFC (2016). doi:10.1364/OFC.
2016.Th4G.2

26. Smolka, S., Eliopoulos, S.A., Foster, N., Guha, A.: A fast compiler for netkat. In:
Fisher, K., Reppy, J.H. (eds.) Proceedings of the 20th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2015, Vancouver, BC,
Canada, September 1–3, 2015, pp. 328–341. ACM (2015). doi:10.1145/2784731.
2784761

27. Zuck, L.D., Pnueli, A., Goldberg, B.: VOC: a methodology for the translation
validation of optimizing compilers. J. UCS 9(3), 223–247 (2003)

http://dx.doi.org/10.1145/2018436.2018470
http://dx.doi.org/10.1145/2018436.2018470
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1007/978-3-642-38856-9_17
http://dx.doi.org/10.1364/OFC.2016.Th4G.2
http://dx.doi.org/10.1364/OFC.2016.Th4G.2
http://dx.doi.org/10.1145/2784731.2784761
http://dx.doi.org/10.1145/2784731.2784761

	Witnessing Network Transformations
	1 Introduction
	1.1 Overview

	2 Networks and Intents
	2.1 Network Model
	2.2 Network Intents: Syntax
	2.3 Network Intents: Semantics
	2.4 Witnesses and Satisfaction

	3 Witness Checking 
	3.1 Incremental Checking 

	4 Experiments 
	5 Network Abstraction 
	5.1 Abstraction and Refinement with Single Nodes 
	5.2 Abstraction and Refinement for Networks

	6 Related Work and Conclusions
	References




