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Abstract A Killing p-form on a Riemannian manifold .M; g/ is a p-form whose
covariant derivative is totally antisymmetric. If M is a connected, oriented,
4-dimensional manifold admitting a non-parallel Killing 2-form  , we show that
there exists a dense open subset of M on which one of the following three exclusive
situations holds: either  is everywhere degenerate and g is locally conformal to
a product metric, or g gives rise to an ambikähler structure of Calabi type, or,
generically, g gives rise to an ambitoric structure of hyperbolic type, in particular
depends locally on two functions of one variable. Compact examples of either types
are provided.

Keywords Ambikähler structures • Ambitoric structures • Hamiltonian forms •
Killing forms

1 Introduction

On any n-dimensional Riemannian manifold .M; g/, an exterior p-form  is called
conformal Killing [13] if its covariant derivative r is of the form

rX D ˛ ^ X[ C Xyˇ; (1)
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for some . p � 1/-form ˛ and some . p C 1/-form ˇ, which are then given by

˛ D .�1/p
n � p C 1

ı ; ˇ D 1

p C 1
d : (2)

Conformal Killing forms have the following conformal invariance property: if  
is a conformal Killing p-form with respect to the metric g, then, for any positive
function f , Q WD f pC1  is conformal Killing with respect to the conformal metric
Qg WD f 2 g. In other words, if L denotes the real line bundle jƒnTMj 1n and `; Q̀ denote
the sections of L determined by g; Qg, then, for any Weyl connection D relative to the
conformal class Œg�, the section  WD  ˝ `pC1 D Q ˝ Q̀pC1 of ƒpT�M ˝ LpC1
satisfies

DX D ˛ ^ X C Xyˇ; (3)

for some section ˛ of ƒp�1T�M ˝ Lp�1 and some section ˇ of ƒpC1T�M ˝ LpC1
(depending on D), cf. e.g. [4, Appendix B].

The p-form is called Killing, resp. �-Killing, with respect to g, if satisfies (1)
and ˛ D 0, resp. ˇ D 0. In particular, Killing forms are co-closed, �-Killing forms
are closed, and, if M is oriented and � denotes the induced Hodge star operator,  
is Killing if and only if � is �-Killing.

Although the terminology comes from the fact that Killing 1-forms are just
metric duals of Killing vector fields, and thus encode infinitesimal symmetries of
the metric, no geometric interpretation of Killing p-forms exists in general in terms
of symmetries when p � 2, except in the case of Killing 2-forms in dimension
4, which is special for various reasons, the most important being the self-duality
phenomenon.

On any oriented four-dimensional manifold .M; g/, the Hodge star operator �,
acting on 2-forms, is an involution and, therefore, induces the well known orthogo-
nal decomposition

ƒ2M D ƒCM ˚ƒ�M; (4)

where ƒ2M stands for the vector bundle of (real) 2-forms on M and ƒ˙M for the
eigen-subbundle for the eigenvalue ˙1 of �. Accordingly, any 2-form  splits as

 D  C C  �; (5)

where  C, resp.  �, is the self-dual, resp. the anti-self-dual part of  , defined by
 ˙ D 1

2
. ˙ � /. Since � acting on 2-forms is conformally invariant, a 2-form

 is conformal Killing if and only if  C and  � are separately conformal Killing,
meaning that

rX C D .˛C ^ X[/C; rX � D .˛� ^ X[/� (6)
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for some real 1-forms ˛C; ˛�, and  is Killing, resp. �-Killing, if, in addition,

˛C D �˛�; resp. ˛C D ˛�: (7)

Throughout this paper, .M; g/ will denote a connected, oriented, 4-dimensional
Riemannian manifold and  D  C C  � a non-trivial �-Killing 2-form on M (the
choice of the �-Killing , instead of the Killing 2-form � is of pure convenience).
We also discard the non-interesting case when  is parallel.

On the open set, MC
0 , resp. M�

0 , where  C, resp.  �, is non-zero, the associated
skew-symmetric operators‰C; ‰�, are of the form‰C D fC JC, resp.‰� D f� J�,
where JC, resp. J�, is an almost complex structure inducing the chosen, resp.
the opposite, orientation of M, and fC, resp. f�, is a positive function. It is then
easily checked, cf. Sect. 2 below, that the first, resp. the second, condition in (6)
is equivalent to the condition that the pair .gC WD f �2C g; JC/, resp. the pair
.g� WD f �2� g; J�/, is Kähler. On the open set M0 D MC

0 \ M�
0 , which is actually

dense in M, cf. Lemma 2.1 below, we thus get two Kähler structures, whose metrics
belong to the same conformal class and whose complex structures induce opposite
orientations (in particular, commute), hence an ambikähler structure, as defined in
[4]. This actually holds if  is simply conformal Killing and had been observed
in the twistorial setting by Pontecorvo in [12], cf. also [4, Appendix B2]. The
additional coupling condition (7), which, on M0, reads JCdfC D J�df�, cf. Sect. 2,
then has strong consequences, that we now explain.

A first main observation, cf. Proposition 3.3, is that the open subset, MS, where
 is of maximal rank, hence a symplectic 2-form, is either empty or dense in M.

The case when MS is empty is the case when  is decomposable, i.e.  ^ D 0

everywhere; equivalently, j Cj D j �j everywhere; on M0, we then have fC D f�,
hence gC D g� DW gK , and .M0; gK/ is locally a product of two (real) Kähler
surfaces .†; g†; !†/ and . Q†; g Q†; ! Q†/, with fC D f� constant on Q†, cf. Sect. 6. In
this case, no non-trivial Killing vector field shows up in general, but a number of
compact examples involving Killing vector fields are provided, coming from [9].

The case when MS is dense is first handled in Proposition 2.4, where we show
that the vector field K1 WD � 1

2
˛] is then Killing with respect to g—the chosen

normalization is for further convenience—and that each eigenvalue of the Ricci
tensor, Ric, of g is of multiplicity at least 2; moreover, on the (dense) open set
M1 D MS \ M0, K1 is Killing with respect to gC; g� and Hamiltonian with respect
to the Kähler forms !C WD gC.JC�; �/ and !� WD g�.J��; �/; also, Ric is both
JC- and J�-invariant, cf. Proposition 2.4 below. On M1, the ambikähler structure
.gC; JC; !C/, .g�; J�; !�/ is then of the type described in Proposition 11 (iii) of [4].

In Sect. 3, we set the stage for a separation of variables by introducing new
functions x; y, defined by x D 1

2
. fC C f�/ and y D 1

2
. fC � f�/, which, up to a

factor 2, are the “eigenvalues” of  , and whose gradients are easily shown to be
orthogonal. In Proposition 3.1, we show that jdxj2 D A.x/ and jdyj2 D B.y/, for
some positive functions A and B of one variable. In terms of the new functions x; y,
the dual 1-form of K1 with respect to g is simply JCdx C JCdy. Furthermore, in
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Proposition 3.2 a second Killing vector field, K2, shows up, whose dual 1-form is
y2 JCdx C x2 JCdy and which turns out to coincide, up to a constant factor, with
the Killing vector field constructed by W. Jelonek in [8, Lemma B], cf. also the
proof of Proposition 11 in [4], namely the image of K1 by the Killing symmetric

endomorphism S D ‰C ı‰� C . f 2
C

Cf 2�/

2
I, cf. Remark 3.1.

In Proposition 3.3, we then show that either K2 is a (positive) constant multiple
of K1, and we end up with an ambikähler structure of Calabi type, according to
Definition 5.1 taken from [1], or K1;K2 are independent on a dense open subset of
M, determining an ambitoric structure, as defined in [3, 4].

The Calabi case is considered in Sect. 5, where it is shown that, conversely, any
ambikähler structure of Calabi type gives rise, up to scaling, to a 1-parameter family
of pairs .g.k/;  .k//, where g.k/ is a Riemannian metric in the conformal class and
 .k/ a �-Killing 2-form with respect to g.k/, cf. Theorem 5.1 and Remark 5.1. The
example of Hirzebruch-like ruled surfaces is described in Sect. 8.

The ambitoric case is the case when dx and dy are independent on a dense open
subset of M. In Sect. 4, we show that x; y can be locally completed into a full system
of coordinates by the addition of two “angular coordinates”, s; t, in such a way that
K1 D @

@s and K2 D @
@t and giving rise to a general Ansatz, described in Theorem 4.1.

As an Ansatz for the underlying ambikähler structure, this turns out to be the same as
the ambitoric Ansatz of Proposition 13 in [4] for the “quadratic” polynomial q.z/ D
2z, hence in the hyperbolic normal form of [4, Section 5.4], when the functions x; y
are identified with the adapted coordinates x; y in [4].

The main observation at this point is that, while the adapted coordinates in [4] are
obtained via a quadratic transformation, cf. [4, Section 4.3], the functions x; y are
here naturally attached to the �-Killing 2-form  which determines the ambitoric
structure. This is quite reminiscent of the orthotoric situation, described in [1]
in dimension 4 and in [2] in all dimensions, where the separation of variables—
and the corresponding Ansatz—are similarly obtained via the “eigenvalues” of a
Hamiltonian 2-form, which share the same properties as the “eigenvalues” x; y of
the �-Killing 2-form  .

In spite of this, the �-Killing 2-forms considered in this paper are not Hamilto-
nian 2-forms in general—for a general discussion about Killing or �-Killing 2-forms
versus Hamiltonian 2-forms, cf. [10], in particular Theorem 4.5 and Proposition 4.8,
and, also, [2, Appendix A]—but, in many respects, at least in dimension 4, the role
played by Hamiltonian 2-forms in the orthotoric case is played by �-Killing 2-forms
in the (hyperbolic) ambitoric case.

The three situations described above, namely the decomposable, the Calabi
ambikähler and the ambitoric case, cf. Proposition 3.3, are nicely illustrated in the
example of the round 4-sphere described in Sect. 7, on which every �-Killing form
can be written as the restriction of a constant 2-form a 2 so.5/ ' ƒ2

R
5, which

is also the 2-form associated to the covariant derivative of the Killing vector field
induced by a. If a has rank 2, the same holds for its restriction on a dense open
subset of the sphere, so this corresponds to the decomposable case. Otherwise, a can
be expressed as � e1 ^ e2 C � e3 ^ e4—cf. Sect. 7 for the notation—with �;� both
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positive, and, depending on whether � and � are equal or not, we obtain on a dense
subset of the sphere an ambikähler structure of Calabi type or a hyperbolic ambitoric
structure respectively. By using the hyperbolic ambitoric Ansatz of Sect. 4, it is
eventually shown that the resulting �-Killing 2-forms are actually �-Killing with
respect to infinitely many non-isometric Riemannian metrics on S4, cf. Remark 7.2.

2 Killing 2-Forms and Ambikähler Structures

In what follows, .M; g/ denotes a connected, oriented, 4-dimensional Riemannian
manifold admitting a non-parallel Killing 2-form ', and  WD �' denotes the
corresponding �-Killing 2-form; we then have

rX D ˛ ^ X[; (8)

for some real, non-zero, 1-form ˛, where r denotes the Levi-Civita connection of
g and X[ the dual 1-form of X with respect to g, cf. [13]. By anti-symmetrizing and
by contracting (8), it is easily checked that  is closed and that

ı D 3˛; (9)

where ı denotes the codifferential with respect to g. Denote by  C D 1
2
. C � /,

resp.  � D 1
2
. � � /, the self-dual, resp. the anti-self-dual, part of  , where � is

the Hodge operator induced by the metric g and the chosen orientation. Then, (8) is
equivalent to the following two conditions

rX C D �
˛ ^ X[

�
C D 1

2
˛ ^ X[ C 1

2
Xy � ˛;

rX � D �
˛ ^ X[

�
� D 1

2
˛ ^ X[ � 1

2
Xy � ˛:

(10)

Here, we used the general identity:

� .X[ ^ �/ D .�1/p Xy � �; (11)

for any vector field X and any p-form � on any oriented Riemannian manifold.
In particular,  C and  � are conformally Killing, cf. [13]. The datum of a (non-
parallel) �-Killing 2-form  on .M; g/ is then equivalent to the datum of a pair
. C;  �/ consisting of a self-dual 2-form  C and an anti-self-dual 2-form  �,
both conformally Killing and linked together by

d C C d � D 0; (12)
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or, equivalently, by

ı C D ı �: (13)

We denote by ‰, ‰C, ‰� the anti-symmetric endomorphisms of TM associated
to  ,  C,  � respectively via the metric g, so that g.‰.X/;Y/ D  .X;Y/,
g.‰C.X/;Y/ D  C.X;Y/, g.‰�.X/;Y/ D  �.X;Y/. On the open set, M0, of
M where ‰C and ‰� have no zero, denote by JC, J� the corresponding almost
complex structures:

JC WD ‰C
fC
; J� WD ‰�

f�
; (14)

where the positive functions fC; f� are defined by

fC WD j‰Cjp
2
; f� WD j‰�jp

2
(15)

(here, the norms j‰Cj, j‰�j, are relative to the conformally invariant inner product
defined on the space of anti-symmetric endomorphisms of TM by .A;B/ WD
� 1
2
tr.A ı B/); the open set M0 is then defined by the condition

fC > 0; f� > 0: (16)

Notice that JC and J� induce opposite orientations, hence commute to each other,
so that the endomorphism

� WD �JCJ� D �J�JC; (17)

is an involution of the tangent bundle of M0.
From (8), we get

rX‰ D ˛ ^ X; (18)

with the following general convention: for any 1-form ˛ and any vector field X,
˛ ^ X denotes the anti-symmetric endomorphism of TM defined by .˛ ^ X/.Y/ D
˛.Y/X � g.X;Y/˛], where ˛] is the dual vector field to ˛ relative to g (notice that
the latter expression is actually independent of g in the conformal class Œg� of g).
Equivalently:

rX‰C D .˛ ^ X/C; rX‰� D .˛ ^ X/�: (19)
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We infer .rX‰C; ‰C/ D 1
2
.dj‰Cj2/.X/ D .‰C; ˛ ^ X/ D �

‰C.˛/
�
.X/, hence

‰C.˛/ D 1
2
dj‰Cj2. Similarly, ‰�.˛/ D 1

2
dj‰�j2. By using (14), we then get

˛ D �2‰C
�

dj‰Cj
j‰Cj

�
D �2JCdfC

D �2‰�
�

dj‰�j
j‰�j

�
D �2J�df�:

(20)

In particular,

JCdfC D J�df�: (21)

Remark 2.1 For any �-Killing 2-form  as above, denote by ˆ D ‰C � ‰� the
skew-symmetric endomorphism associated to the Killing 2-form ' D � and by S
the symmetric endomorphism defined by

S D �1
2
ˆ ıˆ D ‰C ı‰� C 1

2
. f 2C C f 2�/ I D 1

2
‰ ı‰ C . f 2C C f 2�/ I; (22)

where I denotes the identity of TM. Then, S is Killing with respect to g, meaning
that the symmetric part of rS is zero or, equivalently, that g..rXS/X;X/ D 0 for
any vector field X, cf. [11], [4, Appendix B]. This readily follows from the fact that
rXˆ.X/ D Xy � .˛ ^ X/ D 0, so that g.rXS.X/;X/ D �2g.rXˆ.X/; ˆ.X// D 0,
for any vector field X.

Lemma 2.1 The open subset M0 defined by (16) is dense in M.

Proof Denote by M0̇ the open set where f˙ ¤ 0, so that M0 D MC
0 \ M�

0 . It is
sufficient to show that each M0̇ is dense. If not, f˙ D 0 on some non-empty open
set, V , of M, so that ˙ D 0 on V , hence is identically zero, since ˙ is conformally
Killing, cf. [13]; this, in turn, implies that ˛, hence also r , is identically zero, in
contradiction to the hypothesis that  is non-parallel. ut

In view of the next proposition, we recall the following definition, taken from [4]:

Definition 2.1 ([4]) An ambikähler structure on an oriented 4-manifold M consists
of a pair of Kähler structures,

�
gC; JC; !C D gC.JC�; �/� and

�
g�; J�; !� D

g�.J��; �/�, where the Riemannian metrics gC; g� belong to the same conformal
class, i.e. g� D f 2 gC, for some positive function f , and the complex structure JC,
resp. the complex structure J�, induces the chosen orientation, resp. the opposite
orientation; equivalently, the Kähler forms !C and !� are self-dual and anti-self-
dual respectively.

We then have:

Proposition 2.1 Let .M; g/ be a connected, oriented, 4-dimensional Riemannian
manifold, equipped with a non-parallel �-Killing 2-form  D  C C  � as above.
Then, on the dense open subset, M0, of M defined by (16), the pair .g;  / gives
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rise to an ambikähler structure .gC; JC; !C/, .g�; J�; !�/, with g˙ D f �2˙ g and
J˙ D f �1˙ ‰˙, by setting f˙ D j‰˙j=p2. In particular, this ambikähler structure
is equipped with two non-constant positive functions fC; f�, satisfying the two
conditions

f D fC
f�
; (23)

where g� D f 2 gC, and

�.dfC/ D df�: (24)

Conversely, any ambikähler structure .gC; JC; !C/, .g� D f 2 gC; J�; !�/
equipped with two non-constant positive functions fC; f� satisfying (23)–(24) arises
from a unique pair .g;  /, where g is the Riemannian metric in the conformal class
ŒgC� D Œg�� defined by

g D f 2C gC D f 2� g�; (25)

and  is the �-Killing 2-form relative to g defined by

 D f 3C !C C f 3� !�: (26)

Proof Before starting the proof, we recall the following general facts. (i) For any
two Riemannian metrics, g and Qg D '�2 g, in a same conformal class, and for
any anti-symmetric endomorphism, A, of the tangent bundle with respect to the
conformal class Œg� D ŒQg�, the covariant derivatives r QgA and rgA are related by

r Qg
XA D rg

XA C
�

A;
d'

'
^ X

�
D A

�
d'

'

�
^ X C d'

'
^ A.X/; (27)

by setting A
�

d'
'

	
D � d'

'
ı A. (ii) For any 1-form ˇ and any vector field X, we have

.ˇ ^ X/C D 1

2
ˇ ^ X � 1

2
JCˇ ^ JCX � 1

2
ˇ.JCX/ JC

D 1

2
ˇ ^ X C 1

2
J�ˇ ^ J�X C 1

2
ˇ.J�X/ J�;

(28)

and

.ˇ ^ X/� D 1

2
ˇ ^ X � 1

2
J�ˇ ^ J�X � 1

2
ˇ.J�X/ J�

D 1

2
ˇ ^ X C 1

2
JCˇ ^ JCX C 1

2
ˇ.JCX/ JC;

(29)
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for any orthogonal (almost) complex structures JC and J� inducing the chosen and
the opposite orientation respectively.

From (14), (19), (20) and (28), we thus infer

rXJC D �2
�

JC
�

dfC
jfCj

�
^ X

�

C
� dfC

fC
.X/ JC

D �JC
�

dfC
fC

�
^ X � dfC

fC
^ JCX C dfC

fC
.X/ JC � dfC

fC
.X/ JC

D �JC
�

dfC
fC

�
^ X � dfC

fC
^ JCX D

�
dfC
fC

^ X; JC
�

(30)

which, by using (27), is equivalent to

rgC JC D 0; (31)

where rgC denotes the Levi-Civita connection of the conformal metric gC D f �2C g,
meaning that the pair .gC; JC/ is Kähler. Similarly, we have

rXJ� D
�

df�
f�

^ X; J�
�

(32)

or, equivalently:

rg�J� D 0; (33)

where rg� denotes the Levi-Civita connection of the conformal metric g� D f �2� g,
meaning that the pair .g�; J�/ is Kähler as well. We thus get on M0 an ambikähler
structure in the sense of Definition 2.1. Moreover, because of (21), fC and f�
evidently satisfy (23)–(24).

For the converse, define g by

g D f 2C gC D f 2� g� (34)

and denote by r the Levi-Civita connection of g. By defining ‰C D fC JC, ‰� D
f� J� and ‰ D ‰C C‰�, we get

rX‰C D rX. fC JC/

D rgC

X . fC JC/C
�

dfC
fC

^ X; fC JC
�

D dfC.X/ JC � JCdfC ^ X � dfC ^ JCX

D �2.JCdfC ^ X/C:

(35)
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Similarly,

rX‰� D �2 .J�df� ^ X/�: (36)

By using (21), we obtain

rX‰ D ˛ ^ X; (37)

with ˛ WD �2 JCdfC D �2 J�df�, meaning that the associated 2-form  .X;Y/ WD
g.‰.X/;Y/, is �-Killing. Finally  D fC g.JC�; �/C f� g.J��; �/ D f 3C !C C f 3� !�.

ut
Remark 2.2 The fact that the pair .gC D f �2C g; JC/, resp. the pair .g� D f �2� g; J�/,
is Kähler only depends on, in fact is equivalent to, ‰C D fC JC, resp. ‰� D f� J�,
being conformal Killing, i.e.  being conformally Killing. This was observed in a
twistorial setting by Pontecorvo in [12], cf. also Appendix B2 in [4].
We now explain under which circumstances an ambikähler structure satisfies the
conditions (23)–(24).

Proposition 2.2 Let M be an oriented 4-manifold equipped with an ambikähler
structure .gC; JC; !C/, .g� D f 2 gC; J�; !�/. Assume moreover that f is not
constant. Then, on the open set where f ¤ 1, there exist non-constant positive
functions fC; f� satisfying (23)–(24) of Proposition 2.1 if and only if the 1-form

� WD �.df /

1 � f 2
(38)

is exact.

Proof For any ambikähler structure .gC; JC; !C/, .g� D f 2 gC; J�; !�/ and any
positive functions fC, f� satisfying (23)–(24), we have

.1 � f 2/
dfC
fC

D df

f
C �.df /;

.1 � f 2/
df�
f�

D f df C �.df /:

(39)

On the open set where f ¤ 1, this can be rewritten as

dfC
fC

D df

f .1 � f 2/
C �.df /

.1 � f 2/
;

df�
f�

D fdf

.1 � f 2/
C �.df /

.1 � f 2/
I

(40)

in particular, � is exact on this open set. Conversely, if � is exact, but not identically
zero, then � D d'

'
, for some, non-constant, positive function, ', and we then define
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fC; f� by dfC
fC

D d'
'

C df
f .1�f 2/

and df�
f�

D d'
'

C f df
.1�f 2/

, hence by fC WD f '

j1�f 2 j 12
and

f� WD '

j1�f 2 j 12
, which clearly satisfy (23)–(24). ut

Remark 2.3 It follows from (39) that if f D k, where k is a constant different
from 1, then fC and f� are constant and the corresponding �-Killing 2-form  is
then parallel. More generally, the existence of a pair .g;  / inducing an ambikähler
structure depends on the chosen relative scaling of the Kähler metrics. More
precisely, if the ambikähler structure .gC; JC; !C/, .g� D f 2 gC; J�; !�/ arises
from a �-Killing 2-form in the conformal class, in the sense of Proposition 2.1,
then for any positive constant k ¤ 1, the ambikähler structure .gC; JC; !C/, .Qg� D
k2 g�; J�; k2!�/ does not arise from a �-Killing 2-form, unless �.df / D ˙df . This
is because the 1-forms �.df /

.1�f 2/
and �.df /

.1�k2 f 2/
would then be both closed, implying that

�.df / D � df for some function �; since j�.df /j D jdf j, we would then have
� D ˙1.

The 1-form � in Proposition 2.2 is clearly exact on the open set where f ¤ 1

whenever �.df / D df or �.df / D �df , and it readily follows from (40) that fC; f�
are then given by

fC D c f

j1 � f j ; f� D c

j1 � f j D ˙c C fC; (41)

if �.df / D df , or by

fC D c f

1C f
; f� D c

1C f
D c � fC; (42)

if �.df / D �df , for some positive constant c. If

TM0 D TC ˚ T�; (43)

denotes the orthogonal splitting determined by � , where � is the identity on TC and
minus the identity on T�—equivalently, JC, J� coincide on TC and are opposite on
T�—then �.df / D ˙df if and only if dfjT� D 0 and we also have:

Proposition 2.3 The distribution T˙ is involutive if and only if �.df / D ˙df .

Proof For a general ambikähler structure .gC; JC; !C/ and .g� D f 2 gC; J�; !�/,
with g� D f 2 gC, we have

df .Z/

f
!C.X;Y/ D �!C.ŒX;Y�;Z/;

df .Z/

f
!�.X;Y/ D !�.ŒX;Y�;Z/; (44)

for any X;Y in TC and any Z in T�, and

df .Z/

f
!C.X;Y/ D !C.ŒX;Y�;Z/;

df .Z/

f
!�.X;Y/ D �!�.ŒX;Y�;Z/; (45)
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for any X;Y in T� and any Z in TC. This can be shown as follows. Suppose that
X;Y are in TC and Z is in T�. Then, since the Kähler form !C.�; �/ D gC.JC�; �/
and !�.�; �/ D g.J��; �/ are closed and TC;T� are !C- and !�-orthogonal, we have

Z � !C.X;Y/ D !C.ŒX;Y�;Z/C !C.ŒY;Z�;X/C !C.ŒZ;X�;Y/; (46)

and

Z � !�.X;Y/ D !�.ŒX;Y�;Z/C !�.ŒY;Z�;X/C !�.ŒZ;X�;Y/; (47)

which can be rewritten as

Z � � f 2!C.X;Y/
� D �f 2 !C.ŒX;Y�;Z/C f 2 !C.ŒY;Z�;X/C f 2 !C.ŒZ;X�;Y/;

(48)

or else:

2
df .Z/

f
!C.X;Y/C Z � !C.X;Y/ D

� !C.ŒX;Y�;Z/C !C.ŒY;Z�;X/C !C.ŒZ;X�;Y/:
(49)

Comparing (46) and (49), we readily deduce the first identity in (44); the other three
identities are checked similarly. Proposition 2.3 then readily follows from (44)–(45).

ut
In the following statement, M0 stills denotes the (dense) open subset of M defined

by (16); we also denote by MS the open subset of M defined by

fC ¤ f�; (50)

on which  is a symplectic 2-form, and by M1 the intersection M1 WD M0 \ MS.

Proposition 2.4 Let .M; g/ be an oriented Riemannian 4-dimensional manifold
admitting a non-parallel �-Killing 2-form  . Denote by .gC D f 2C g; JC; !C/,
.g� D f 2� g; J�; !�/ the induced ambikähler structure on M0 as explained above.
Then, on the open set M1, the Ricci endomorphism, Ric, of g is JC- and J�-invariant,
hence of the form

Ric D a I C b �; (51)

for some functions a; b, where I denotes the identity of TM1 and � is defined by (17).
Moreover, the vector field

K1 WD JCgradgfC D J�gradgf� D �1
2
˛] (52)

is Killing with respect to g and preserves the whole ambikähler structure.
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Proof Let R be the curvature tensor of g, defined by

RX;YZ WD rŒX;Y�Z � ŒrX ;rY �Z; (53)

for any vector field X;Y;Z. We denote by Scal its scalar curvature, by Ric0 the
trace-free part of Ric, by W the Weyl tensor of g, and by WC and W� its self-dual
and anti-self-dual part respectively. As in the previous section, ‰ denotes the skew-
symmetric endomorphism of TM determined by  , ‰C its self-dual part, ‰� its
anti-self-dual part, with ‰C D fC JC and ‰� D f� J� on M0. Since g D f 2C gC D
f 2� g�, where gC and g� are Kähler with respect to JC and J� respectively, WC and
W� are both degenerate and WC.‰C/ D �C‰C, W�.‰�/ D ��‰�, for some
functions �C; ��. For any vector fields X;Y on M, the usual decomposition of the
curvature tensor reads:

RX;Y‰ D ŒR.X ^ Y/; ‰�

D Scal

12
ŒX[ ^ Y; ‰�C 1

2
ŒfRic0;X[ ^ Yg; ‰�

C ŒWC.X ^ Y/; ‰C�C ŒW�.X ^ Y/; ‰��;

(54)

by setting fRic0;X[ ^ Yg WD Ric0 ı .X[ ^ Y/C .X[ ^ Y/ ı Ric0 D Ric0.X/ ^ Y C
X ^ Ric0.Y/, cf. e.g. [5, Chapter 1, Section G]. On M0 we then have:

Scal

12
ŒX ^ Y; ‰� D �Scal

12

�
‰.X/ ^ Y C X ^‰.Y/�; (55)

1

2
ŒfRic0;X ^ Yg; ‰� D �1

2

�
‰
�
Ric0.X/

� ^ Y C Ric0.X/ ^‰.Y/

C‰.X/ ^ Ric0.Y/C X ^‰�Ric0.Y/
�	
;

(56)

and

WC
X;Y‰C D �C

2

�
‰C.X/^ Y C X ^‰C.Y/

�
;

W�
X;Y‰� D ��

2

�
‰�.X/ ^ Y C X ^‰�.Y/

�
:

(57)

We thus get

4X

iD1
eiyRei;Y‰ D

�
�C � Scal

6

�
‰C.Y/C

�
�� � Scal

6

�
‰�.Y/

C 1

2
ŒRic0; ‰�.Y/:

(58)
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Similarly,

4X

iD1
eiyRei;Y‰C D

�
�C � Scal

6

�
‰C.Y/C 1

2
ŒRic0; ‰C�.Y/ (59)

and

4X

iD1
eiyRei;Y‰� D

�
�� � Scal

6

�
‰�.Y/C 1

2
ŒRic0; ‰��.Y/: (60)

On the other hand, from (18), we get

RX;Y‰ D rY˛ ^ X � rX˛ ^ Y; (61)

hence

4X

iD1
eiyRei;Y‰ D �2rY˛; (62)

whereas, from (19), we obtain

RX;Y‰C D .rY˛^ X � rX˛^ Y/C; RX;Y‰� D .rY˛^ X � rX˛^ Y/�; (63)

hence

4X

iD1
eiyRei;Y‰C D �Yy .r˛/s � Yy.d˛/C; (64)

where .r˛/s denotes the symmetric part of r˛. Indeed, we have

4X

iD1
eiy
�rY˛ ^ ei � rei˛ ^ Y/C D 1

2

4X

iD1
eiy.rY˛ ^ ei/ � 1

2

4X

iD1
eiy.rei˛ ^ Y/

C 1

2

4X

iD1
eiy � .rY˛ ^ ei/ � 1

2

4X

iD1
eiy � .rei˛ ^ Y/

D �rY˛ � 1

2

4X

iD1
eiy � .rei˛ ^ Y/

D �rY˛ � 1

2
Yy � d˛ D �Yy.r˛/s � Yy.d˛/C;

(65)
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as ı˛ D 0 and eiy� .rY˛^ ei/ is clearly equal to zero thanks to the general identity
(11). We obtain similarly:

4X

iD1
eiyRei;Y‰� D �Yy .r˛/s � Yy.d˛/�: (66)

From the above, we infer

.d˛/C D
�

Scal

6
� �C

�
 C; .d˛/� D

�
Scal

6
� ��

�
 �;

.r˛/s D �1
2
ŒRic0; ‰C� D �1

2
ŒRic0; ‰��:

(67)

It follows that

ŒRic; ‰C� D ŒRic; ‰��; (68)

and that the vector field ˛]g is Killing with respect to g if and only if ŒRic; ‰C� D
ŒRic; ‰�� D 0. We now show that (68) actually implies ŒRic; ‰C� D ŒRic; ‰�� D 0

at each point where fC ¤ f�. Indeed, in terms of the decomposition (4), Ric, JC, J�
can be written in the following matricial form

Ric D
�

P Q
Q� R

�
; JC D

�
J 0
0 J

�
; J� D

�
J 0

0 �J

�
(69)

where J denotes the restriction of JC on TC and on T�, so that:

ŒRic0; JC� D
�
ŒP; J� ŒQ; J�
ŒQ�; J� ŒR; J�

�
; ŒRic0; J�� D

�
ŒP; J� �fQ; Jg

fQ�; Jg �ŒR; J�:
�

(70)

Then (68) can be expanded as

. fC � f�/ŒP; J� D 0;

. fC C f�/QJ D . fC � f�/ JQ;

. fC C f�/ŒR; J� D 0:

(71)

Since fC > 0 and f� > 0 on M0, from (71) we readily infer ŒR; J� D 0 and Q D 0,
meaning that

Ric D
�

P 0

0 R

�
: (72)

Moreover, on the open subset M1 D M0 \ MS, where fC � f� ¤ 0, we also infer
from (71) that ŒP; J� D 0, hence that ŒRic; JC� D ŒRic; J�� D 0. By (67), .r˛/s D 0,
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meaning that the vector field K1 WD � 1
2
˛] D JCgradgfC is Killing with respect to g.

Notice that

K1 D JCgradgfC D J�gradgf�

D �JCgradgC

1

fC
D �J�gradg�

1

f�
:

(73)

In particular, K1 is also Killing with respect to gC and g� and is (real) holomorphic
with respect to JC and J�. ut

3 Separation of Variables

In this section we restrict our attention to the open subset M1 WD M0 \ MS, defined
by the conditions (16) and (50). Recall that since  ^ D  C ^ C C � ^ � D
2. fC � f�/ vg, where vg denotes the volume form of g relative to the chosen
orientation, MS is the open subset of M where  is non-degenerate, hence a
symplectic 2-form. According to Proposition 2.4, on M1 the Ricci tensor Ric is
of the form (51), for some functions a; b and the vector field ˛] is Killing; we then
infer from (67) that r˛] can be written as:

r˛] D hC JC C h� J�; (74)

with

hC WD 1

2
fC
�

Scal

6
� �C

�
; h� WD 1

2
f�
�

Scal

6
� ��

�
: (75)

We then introduce the functions x; y defined by

x WD fC C f�
2

; y WD fC � f�
2

;

fC D x C y; f� D x � y:
(76)

Notice that .2x; 2y/, resp. .2x;�2y/, are the eigenvalues of the Hermitian operator
�JC ı‰ D fC I C f� � , resp. �J� ı‰ D fC �C f� I, relative to the eigen-subbundle
TC and T� respectively. From (16) and (50) we deduce that x; y are subject to the
conditions

x > jyj > 0; (77)

whereas, from (21), we infer

�.dx/ D dx; �.dy/ D �dy: (78)
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In particular, dx, JCdx D J�dx, dy and JCdy D �J�dy are pairwise orthogonal and

jdxj2 C jdyj2 D jdfCj2 D jdf�j2; jdxj2 � jdyj2 D .dfC; df�/: (79)

We then have:

Proposition 3.1 On each connected component of the open subset of M1 where
dx ¤ 0 and dy ¤ 0, the square norm of dx; dy and the Laplacians of x; y relative to
g are given by

jdxj2 D A.x/

.x2 � y2/
; jdyj2 D B.y/

.x2 � y2/
;

�x D � A0.x/
.x2 � y2/

; �y D � B0.y/
.x2 � y2/

;

(80)

where A;B are functions of one variable.

Proof By using (30) and (32) and setting g� .X;Y/ WD g.�.X/;Y/, we infer from
(20) and (74) that

rdfC D
�

�1
2

hC C jdfCj2
fC

�
g � 1

2
h� g�

� 1

fC
�
dfC ˝ dfC C JCdfC ˝ JCdfC

�
;

rdf� D
�

�1
2

h� C jdf�j2
f�

�
g � 1

2
hC g�

� 1

f�
�
df� ˝ df� C J�df� ˝ J�df�

�
:

(81)

In terms of the functions x; y, this can be rewritten as

rdx D � x

.x2 � y2/
.jdxj2 C jdyj2/� 1

4
.hC C h�/

�
g � 1

4
.hC C h�/ g�

� x

.x2 � y2/
.dx ˝ dx C dy ˝ dy/C y

.x2 � y2/
.dx ˝ dy C dy ˝ dx/

� x

.x2 � y2/
JC.dx C dy/˝ JC.dx C dy/;

rdy D �� y

.x2 � y2/
.jdxj2 C jdyj2/C 1

4
.hC � h�/

�
g C 1

4
.hC � h�/ g�

C y

.x2 � y2/
.dx ˝ dx C dy ˝ dy/ � x

.x2 � y2/
.dx ˝ dy C dy ˝ dx/

C y

.x2 � y2/

�
JC.dx C dy/˝ JC.dx C dy/

�
:

(82)
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In particular:

�x D .hC C h�/� 2x

.x2 � y2/
.jdxj2 C jdyj2/;

�y D .hC � h�/C 2y

.x2 � y2/
.jdxj2 C jdyj2/:

(83)

To simplify the notation, we temporarily put

F WD jdxj2; G WD jdyj2: (84)

By contracting rdx by dx and rdy by dy in (82), and taking (83) into account, we
obtain:

dF D �
�
�x C 2x F

.x2 � y2/

�
dx C 2y F

.x2 � y2/
dy;

dG D � 2x G

.x2 � y2/
dx �

�
�y � 2y G

.x2 � y2/

�
dy:

(85)

From (85), we get

d
�
.x2 � y2/F

� D ��.x2 � y2/�x
�

dx;

d
�
.x2 � y2/G

� D ��.x2 � y2/�y
�

dy:
(86)

It follows that .x2� y2/F D A.x/, for some (smooth) function A of one variable and
that A0.x/ D �.x2�y2/�x; likewise, .x2�y2/G D B.y/ and B0.y/ D �.x2�y2/�y.

ut
A simple computation using (83) shows that in terms of A;B, the functions

hC; h� appearing in (74) and their derivatives dhC, dh� have the following
expressions:

hC D �A0.x/C B0.y/
2.x2 � y2/

C .x � y/.A.x/C B.y//

.x2 � y2/2
;

h� D �A0.x/ � B0.y/
2.x2 � y2/

C .x C y/.A.x/C B.y//

.x2 � y2/2
;

(87)

dhC D �A00.x/dx C B00.y/dy

2.x2 � y2/

C A0.x/
�
.2x � y/ dx � y dy

�C B0.y/
�
x dx C .x � 2y/ dy

�

.x2 � y2/2

�
�
A.x/C B.y/

�
.x � y/

�
.3x � y/ dx C .x � 3y/ dy

�

.x2 � y2/3
;

(88)
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and

dh� D �A00.x/dx � B00.y/dy

2.x2 � y2/

C A0.x/
�
.2x C y/ dx � y dy

�C B0.y/
� � x dx C .x C 2y/ dy

�

.x2 � y2/2

�
�
A.x/C B.y/

�
.x C y/

�
.3x C y/ dx � .x C 3y/ dy

�

.x2 � y2/3
:

(89)

In particular:

JCdhC � J�dh� D
�

hC
fC

� h�
f�

�
: (90)

Proposition 3.2 The vector fields

K1 WD JCgradg.x C y/ D J�gradg.x � y/

D JCgradgC

� �1
x C y

�
D J�gradg�

� �1
x � y

� (91)

(which is equal to the vector field K1 D � 1
2
˛] appearing in Proposition 2.4), and

K2 WD y2 JCgradgx C x2 JCgradgy D y2 J�gradgx � x2 J�gradgy

D JCgradgC

�
xy

x C y

�
D J�gradg�

� �xy

x � y

� (92)

are Killing with respect to g; gC; g� and Hamiltonian with respect to !C and !�.
The momenta, �C

1 , �C
2 of K1;K2 with respect to !C, and the momenta, ��

1 , ��
2 , of

K1;K2 with respect to !�, are given by

�C
1 D �1

x C y
; �C

2 D xy

x C y
;

��
1 D �1

x � y
; ��

2 D �xy

x � y
;

(93)

and Poisson commute with respect to !C and !�, meaning that !˙.K1;K2/ D 0, so
that ŒK1;K2� D 0 as well. In particular, on the open set M1, the ambikähler structure
.gC; JC; !C/, .g�; J�; !�/ is ambitoric in the sense of [4, Definition 3].
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Proof In terms of A;B, (82) can be rewritten as

rdx D 1

4.x2 � y2/2

�
2x
�
A.x/C B.y/

�C .x2 � y2/A0.x/
	

g

� 1

4.x2 � y2/2

�
2x
�
A.x/C B.y/

� � .x2 � y2/A0.x/
	

g�

� x

.x2 � y2/
.dx ˝ dx C dy ˝ dy/C y

.x2 � y2/
.dx ˝ dy C dy ˝ dx/

� x

.x2 � y2/
JC.dx C dy/˝ JC.dx C dy/;

rdy D 1

4.x2 � y2/2

�
� 2y

�
A.x/C B.y/

�C .x2 � y2/B0.y/
	

g

� 1

4.x2 � y2/2

�
2y
�
A.x/C B.y/

�C .x2 � y2/B0.y/
	

g�

C y

.x2 � y2/
.dx ˝ dx C dy ˝ dy/� x

.x2 � y2/
.dx ˝ dy C dy ˝ dx/

C y

.x2 � y2/
JC.dx C dy/˝ JC.dx C dy/:

(94)

By taking (30)–(32) into account, we infer

r.JCdx/ D 1

2.x2 � y2/

�
.2y � x/A.x/C x B.y/

.x2 � y2/
C A0.x/

2

�
g.JC�; �/

� 1

2.x2 � y2/

�
xA.x/C xB.y/

.x2 � y2/
� A0.x/

2

�
g.J��; �/

� y dx ^ JCdx C x dy ^ JCdy

.x2 � y2/

C x .dx ˝ JCdy C JCdy ˝ dx/C y .dy ˝ JCdx C JCdx ˝ dy/

.x2 � y2/

(95)

and

r.JCdy/ D 1

2.x2 � y2/

�
.�y A.x/C .y � 2x/B.y/

.x2 � y2/
C B0.y/

2

�
g.JC�; �/

� 1

2.x2 � y2/

�
y A.x/C y B.y/

.x2 � y2/
C B0.y/

2

�
g.J��; �/

C y dx ^ JCdx C x dy ^ JCdy

.x2 � y2/

� x .dx ˝ JCdy C JCdy ˝ dx/C y .dy ˝ JCdx C JCdx ˝ dy/

.x2 � y2/
:

(96)
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In particular, the symmetric parts of r.JCdx/ and r.JCdy/ are opposite and given
by

�r.JCdx/
�s D ��r.JCdy/

�s Dx .dx ˝ JCdy C JCdy ˝ dx/

.x2 � y2/

C y .dy ˝ JCdx C JCdx ˝ dy/

.x2 � y2/
:

(97)

The symmetric parts of r.JCdx C JCdy/ and of r.y2JCdx C x2JCdy/ D
y2r.JCdx/ C x2r.JCdy/ C 2dy ˝ JCdx C 2xdx ˝ JCdy then clearly vanish,
meaning that K1 and K2 are Killing with respect to g. In view of the expressions of
K1;K2 as symplectic gradients in (91)–(92), K1 and K2 are Hamiltonian with respect
to !C and !�, their momenta are those given by (93) and their Poisson bracket with
respect to !˙ is equal to !˙.K1;K2/, which is zero, since dx lives in the dual of TC
and dy in the dual of T�. This, in turn, implies that K1 and K2 commute. ut
Remark 3.1 As already observed, the Killing vector field K1 appearing in Propo-
sition 3.2 is the restriction to M1 of the smooth vector field, also denoted by K1,
appearing in Proposition 2.4, which is defined on the whole manifold M by

K1 D �1
2
˛] D �1

6
ı‰: (98)

Similarly, it is easily checked that K2 is the restriction to M1 of the smooth vector
field, still denoted by K2, defined on M by

K2 D � 1

8
ı
�
. f 2C � f 2�/ .‰C �‰�/

�

D 1

8

�
‰C �‰�

� �
gradg. f 2C � f 2�/

�
(99)

(recall that the Killing 2-form ' D  C �  � D � is co-closed). It is also easily
checked that K2 and K1 are related by

K2 D 1

2
S.K1/; (100)

where, we recall, S denotes the Killing symmetric endomorphism defined by (22) in
Remark 2.1; this is because, on the dense open subset M0, S can be rewritten as

S D �.x2 � y2/ � C .x2 C y2/ I; (101)

whereas K[
1 D JC.dx C dy/, so that S.K[

1/ D 2y2 JCdx C 2x2 JCdy D 2K[
2; we thus

get (100) on M0, hence on M. In view of (100), the fact that K2 is Killing can then
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be alternatively deduced from [8, Lemma B], cf. also the proof of [4, Proposition 11
(iii)].

In view of the above, we eventually get the following rough classification:

Proposition 3.3 For any connected, oriented, 4-dimensional Riemannian manifold
.M; g/ admitting a non-parallel �-Killing 2-form  , the open subset MS defined
by (50) is either empty or dense and we have one of the following three mutually
exclusive cases:

(1) MS is dense; the vector fields K1;K2 are Killing and linearly independent on a
dense open set of M, or

(2) MS is dense; the vector fields K1;K2 are Killing and K2 D c K1, for some non-
zero real number c, or

(3) MS is empty, i.e.  is decomposable everywhere; then, K2 is identically zero,
whereas K1 is non-identically zero and is not a Killing vector field in general.

Proof Being Killing on M0 \ MS and zero on any open set where fC D f�, K2
is Killing everywhere on M. We next observe that, for any x in MS, K2.x/ D 0

if and only if K1.x/ D 0, as readily follows from (100) and from the fact that S is

invertible if and only if x belongs to MS, as the eigenvalues of S are equal to . fCCf�/2

2

and . fC�f�/2

2
.

Suppose now that MS is not dense in M, i.e. that M n MS contains some non-
empty open subset V; then, K2 vanishes on V , hence vanishes identically on M, as
K2 is Killing; from (99), we then infer 0 D ‰.K2/ D 1

8
. f 2C � f 2�/gradg. f 2C � f 2�/,

which implies that the (smooth) function . f 2C � f 2�/2 is constant on M, hence
identically zero, meaning that MS is empty. If MS is empty, then fC D f� everywhere
(equivalently,  ^  is identically zero); it follows that K2 is identically zero,
whereas K1, which is not identically zero since  is not parallel, is not Killing
in general, cf. Sect. 6.

If MS is dense, then K1 and K2 are both Killing vector fields on M, hence either
linearly independent on some dense open subset of M or dependent everywhere and,
by the above discussion, K2 is then a constant, non-zero multiple of K1. ut

In the next sections we consider in turn the three cases listed in Proposition 3.3.

4 The Ambitoric Ansatz

In this section, we assume that MS is dense and that K1;K2 are linearly independent
on some dense open set U . In the remainder of this section, we focus our attention on
U , i.e. we assume that dx and dy are linearly independent everywhere—equivalently,
�.df / ¤ ˙df everywhere—so that fdx; JCdx D J�dx; dy; JCdy D �J�dyg form a
direct orthogonal coframe. By Proposition 3.1, the metric g and the Kähler forms
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!C, !� can then be written as

g D .x2 � y2/

�
dx ˝ dx

A.x/
C dy ˝ dy

B.y/

�

C .x2 � y2/

�
JCdx ˝ JCdx

A.x/
C JCdy ˝ JCdy

B.y/

�
;

(102)

!C D .x � y/

.x C y/

�
dx ^ JCdx

A.x/
C dy ^ JCdy

B.y/

�
;

!� D .x C y/

.x � y/

�
dx ^ JCdx

A.x/
� dy ^ JCdy

B.y/

�
;

(103)

and we also have:

Proposition 4.1 The functions Scal D 4a and b appearing in the expression (51)
of the Ricci tensor of g are given by:

Scal D �A00.x/C B00.y/
.x2 � y2/

; (104)

and

b D �A00.x/� B00.y/
4.x2 � y2/

C xA0.x/C yB0.y/
.x2 � y2/2

� A.x/C B.y/

.x2 � y2/2
: (105)

Proof Since ˛] is Killing, the Bochner formula reads:

Ric.˛]/ D ır˛] (106)

whereas, by (51),

Ric.˛]/ D a ˛] C b �.˛]/: (107)

By using

˛ D fC ıJC D f� ıJ�; (108)

which easily follows from (30)–(32), we infer from (74) that

ır˛] D hC
fC
˛ C h�

f�
˛ � JCdhC � J�dh�: (109)

By putting together (106), (109) and (90), we get

a ˛ C b �.˛/ D 2

�
hC
fC
˛ � JCdhC

�
D 2

�
h�
f�
˛ � J�dh�

�
; (110)
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hence

dhC D
�

a � 2
hC
fC

C b

�
dx C

�
a � 2hC

fC
� b

�
dy;

dh� D
�

a � 2
h�
f�

C b

�
dx C

�
�a C 2

h�
f�

C b

�
dy:

(111)

We thus get

a D 1

2

�
@hC
@x

C @hC
@y

�
C 2hC

x C y
D 1

2

�
@h�
@x

� @h�
@y

�
C 2h�

x C y

b D 1

2

�
@hC
@x

� @hC
@y

�
D 1

2

�
@h�
@x

C @h�
@y

�
:

(112)

By using (87), we obtain (104) and (105). ut
Recall that a function ' is called JC-pluriharmonic if d.JCd'/ D 0 and J�-

pluriharmonic if d.J�d'/ D 0.

Proposition 4.2

(i) The space of real JC-pluriharmonic functions, modulo additive constants, of
the form 'C D 'C.x; y/ is generated by 'C

1 , 'C
2 defined by:

'C
1 .x; y/ D

Z x 	2d	

A.	/
�
Z y 	2d	

B.	/
; 'C

2 .x; y/ D
Z x d	

A.	/
�
Z y d	

B.	/
; (113)

where
R x, resp.

R y, stands for any primitive of the variable x, resp. y.
(ii) The space of real J�-pluriharmonic functions, modulo additive constants, of the

form '� D '�.x; y/ is generated by '�
1 , '�

2 defined by:

'�
1 .x; y/ D

Z x 	2d	

A.	/
C
Z y 	2d	

B.	/
; '�

2 .x; y/ D
Z x d	

A.	/
C
Z y d	

B.	/
: (114)

Proof From (95)–(96), we readily infer the following expression of d.J˙dx/ and
d.J˙dy/:

d.JCdx/ D d.J�dx/ D
�

A0.x/
A.x/

� 2x

x2 � y2

�
dx ^ JCdx

C 2y A.x/

.x2 � y2/B.y/
dy ^ JCdy;

(115)
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and

d.JCdy/ D �d.J�dy/ D � 2x B.y/

.x2 � y2/A.x/
dx ^ JCdx

C
�

B0.y/
B.y/

C 2y

x2 � x2

�
dy ^ JCdy:

(116)

Let ' D '.x; y/ be any function of x; y and denote by 'x; 'y; 'xx; etc: : : : its
derivative with respect to x; y. Then

d.JCd'/ D 'x d.JCdx/C 'y d.JCdy/

C 'xx dx ^ JCdx C 'yy dy ^ JCdy

C 'xy .dx ^ JCdy C dy ^ JCdx/:

(117)

By (115)–(116), ' is JC-pluriharmonic if and only if 'xy D 0—meaning that ' is of
the form '.x; y/ D C.x/C D.y/—and C;D satisfy

C00.x/C
�

A0.x/
A.x/

� 2x

x2 � y2

�
C0.x/ � 2x B.y/D0.y/

.x2 � y2/A.x/
D 0;

D00.y/C
�

B0.y/
B.y/

C 2y

x2 � y2

�
D0.y/C 2y A.x/C0.x/

.x2 � y2/B.y/
D 0

(118)

or, equivalently, by multiplying the first equation by A.x/ and the second by B.y/,
which are both positive, and by setting F.x/ WD A.x/C0.x/, G.y/ WD B.y/D0.y/:

F0.x/ � 2x
�
F.x/C G.y/

�

x2 � y2
D 0; G0.y/C 2y

�
F.x/C G.y/

�

x2 � y2
D 0: (119)

It is easily checked that the general solution of this system is given by:

F.x/ D k1 x2 C k2; G.y/ D �k1 y2 � k2; (120)

for real constants k1; k2. We thus get Part (i) of Proposition 4.2. Part (ii) is obtained
similarly. ut
In view of Proposition 4.2, we (locally) define s and t, up to additive constants, by

JCd'C
1 D J�d'�

1 D ds; JCd'C
2 D J�d'�

2 D �dt: (121)
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Equivalently:

ds D x2 JCdx

A.x/
� y2 JCdy

B.y/
; dt D �JCdx

A.x/
C JCdy

B.y/
: (122)

Notice that ds ^ dt D .x2�y2/
A.x/B.y/ JCdx ^ JCdy; it then follows from Proposition 3.1 that

dx ^ dy ^ ds ^ dt D vg

.x2 � y2/
; (123)

where vg denotes the volume form of g with respect to the orientation induced by
JC, showing that dx; dy; ds; dt form a direct coframe. In view of (102), (103), (122),
on the open set where x; y; s; t form a coordinate system, the metrics g; gC; g�, the
complex structures JC; J�, the involution � and the Kähler forms !C; !� have the
following expressions:

g D .x2 � y2/

�
dx ˝ dx

A.x/
C dy ˝ dy

B.y/

�

C A.x/

.x2 � y2/
.ds C y2 dt/˝ .ds C y2 dt/

C B.y/

.x2 � y2/
.ds C x2 dt/˝ .ds C x2 dt/

D .x C y/2 gC D .x � y/2 g�

(124)

JCdx D J�dx D A.x/

.x2 � y2/
.ds C y2 dt/

JCdy D �J�dy D B.y/

.x2 � y2/
.ds C x2 dt/

JCdt D dx

A.x/
� dy

B.y/
; J�dt D dx

A.x/
C dy

B.y/

JCds D �x2 dx

A.x/
C y2 dy

B.y/
; J�ds D �x2 dx

A.x/
� y2 dy

B.y/

(125)

�.dx/ D dx; �.dy/ D �dy

�.ds/ D .x2 C y2/

.x2 � y2/
ds C 2x2y2

.x2 � y2/
dt

�.dt/ D �2
.x2 � y2/

ds � .x2 C y2/

.x2 � y2/
dt;

(126)
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!C D dx ^ .ds C y2 dt/C dy ^ .ds C x2 dt/

.x C y/2

!� D dx ^ .ds C y2 dt/� dy ^ .ds C x2 dt/

.x � y/2

I (127)

while it follows from (26) that the �-Killing 2-form  is given by

 D 2x dx ^ .ds C y2 dt/C 2y dy ^ .ds C x2 dt/: (128)

Notice that, in view of (124), the (local) vector fields @
@s and @

@t are Killing with
respect to g and respectively coincide with the Killing vector fields K1 and K2
appearing in Proposition 3.2 on their domain of definition.

It turns out that the expressions of .gC D .x C y/�2 g; JC; !C/ and .g� D
.x � y/�2 g; J�; !�/ just obtained coincide with the ambitoric Ansatz described in
[4, Theorem 3], in the case where the quadratic polynomial is q.z/ D 2z, which is
the normal form of the ambitoric Ansatz in the hyperbolic case considered in [4,
Paragraph 5.4].

The discussion in this section can then be summarized as follows:

Theorem 4.1 Let .M; g/ be a connected, oriented, 4-dimensional manifold admit-
ting a non-parallel, �-Killing 2-form  D  C C  � and assume that the open set,
MS, where j Cj ¤ j �j is dense, cf. Proposition 3.3. On the open subset, U , of
MS where  C and  � have no zero and dj Cj ^ dj �j ¤ 0, the pair .g;  / gives
rise to an ambitoric structure of hyperbolic type, in the sense of [4], relative to the
conformal class of g, which, on any simply-connected open subset of U , is described
by (124)–(125)–(127), where the Hermitian structures .gC D .x C y/�2 g; JC; !C/
and .g� D .x � y/�2g; J�; !�/ are Kähler, while  is described by (128).

Conversely, on the open set, U , of R
4, of coordinates x; y; s; t, with x >

jyj > 0, the two almost Hermitian structures .gC D .x C y/�2 g; JC; !C/,
.g� D .x � y/�2g; J�; !�/ defined by (124)–(125)–(127), with A.x/ > 0 and
B.y/ > 0, are Kähler and, together with the Killing vector fields K1 D @

@s and
K2 D @

@t , constitute an ambitoric structure of hyperbolic type, while the 2-form  

defined by (128) is �-Killing with respect to g.

Proof The first part follows from the preceding discussion. For the converse, we
first observe that the 2-forms !C and !� defined by (127) are clearly closed and
not degenerate. To test the integrability of the almost complex structures JC and J�
defined by (125), we consider the complex 1-forms:

ˇC D dx C i JCdx D dx C i
A.x/

.x2 � y2/
.ds C y2 dt/;


C D dy C i JCdy D dy C i
B.y/

.x2 � y2/
.ds C x2 dt/;

(129)
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which generate the space of .1; 0/-forms with respect to JC. We then have:

dˇC D i

�
.x2 � y2/A0.x/C x A.x/

�

.x2 � y2/
dx ^ .ds C y2 dt/

C i
2y A.x/

.x2 � y2/
dy ^ .ds C x2 dt/

D
�
A0.x/� 2x A.x/

�

A.x/
dx ^ ˇC C 2y A.x/

B.y/
dy ^ 
C;

d
C D i

�
.x2 � y2/B0.y/C 2y B.y/

�

.x2 � y2/
dy ^ .ds C x2 dt/

� i
2x B.y/

.x2 � y2/
dx ^ .ds C y2 dt/

D
�
B0.y/C 2y B.y/

�

B.y/
dy ^ 
C � 2x B.y/

A.x/
dx ^ ˇC;

(130)

which shows that JC is integrable. For J�, we likewise consider the complex 1-
forms:

ˇ� D dx C i J�dx D ˇC D dx C i
A.x/

.x2 � y2/
.ds C y2 dt/;


� D dy C i J�dy D dy � i
B.y/

.x2 � y2/
.ds C x2 dt/;

(131)

which generate the space of .1; 0/-forms with respect to JC. We then get

dˇ� D dˇC

D
�
A0.x/� 2x A.x/

�

A.x/
dx ^ ˇ� � 2y A.x/

B.y/
dy ^ 
�;

d
� D �d
C

D
�
B0.y/C 2y B.y/

�

B.y/
dy ^ 
� C 2x B.y/

A.x/
dx ^ ˇ�;

(132)

which, again, shows that J� is integrable. It follows that the almost Hermitian
structures .gC D .x C y/�2 g; JC; !C/ and .g� D .x � y/�2 g; J�; !�/ are both
Kähler and thus determine an ambikähler structure onU . Moreover, the vector fields
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@
@s and @

@t are clearly Killing with respect to g; gC; g�, and satisfy:

@

@s
y!C D � dx C dy

.x C y/2
D d

�
1

x C y

�
;

@

@s
y!� D �dx C dy

.x � y/2
D d

�
1

x � y

�
;

@

@t
y!C D �y2 dx C x2 dy

.x C y/2
D �d

�
xy

x C y

�
;

@

@t
y!� D �y2 dx � x2 dy

.x � y/2
D d

�
xy

x � y

�
;

(133)

meaning that they are both Hamiltonian with respect to !C and !�, with momenta
given by (93) in Proposition 3.2. This implies that @

@s and @
@t preserve the two Kähler

structures .gC; JC; !C/ and .g�; J�; !�/ and actually coincide with the vector field
K1 and K2 respectively defined in a more general context in Proposition 3.2. We thus
end up with an ambitoric structure, as defined in [4]. According to Theorem 3 in [4],
it is an ambitoric structure of hyperbolic type, with “quadratic polynomial” q.z/ D
2z. To check that the 2-form  defined by (128)—which is evidently closed—is
�-Killing with respect to g, denote by fC; f� the positive functions on U defined by
fC D x C y, f� D x � y, so that gC D f �2C g, g� D f �2� g and  D f 3C !C C
f 3� !�; it then follows from (126) that �.dfC/ D df�, hence that  is �-Killing by
Proposition 2.1. ut

5 Ambikähler Structures of Calabi Type

The second case listed in Proposition 3.3, which is considered in this section, can
be made more explicit via the following proposition:

Proposition 5.1 Let .M; g/ be a connected, oriented, Riemannian 4-manifold
admitting a non-parallel �-Killing 2-form D  CC �. In view of Proposition 3.3,
assume that the open set MS—where  is non-degenerate—is dense in M and that
the Killing vector fields K1;K2 defined by (98)–(99) are related by K2 D c K1, for
some non-zero real number c. Then, c is positive and one of the following three
cases occurs:

(1) fC.x/C f�.x/ D 2
p

c, for any x in M, or
(2) fC.x/� f�.x/ D 2

p
c, for any x in M, or

(3) f�.x/� fC.x/ D 2
p

c, for any x in M,

with the usual notation: fC D j Cj=p2 and f� D j �j=p2.

Proof First recall that .‰C C ‰�/ ı .‰C � ‰�/ D �. f 2C � f 2�/ I. From (99) and
K1 D JCgradgfC D J�gradgf�, we then infer

‰.K1/ D �1
2

gradg

�
f 2C C f 2�

�
;

‰.K2/ D � 1

16
gradg

��
f 2C � f 2�

�2	
:

(134)
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On MS, where ‰ is invertible, the identity K2 D c K1 then reads:

. f 2C � f 2�/d. f 2C � f 2�/ D 4c
�
df 2C C df 2�

�
; (135)

or, else:

. f 2C � f 2� � 4 c/ df 2C D . f 2C � f 2� C 4 c/ df 2�: (136)

Since jdfCj D jdf�j on M0, on M1 D M0 \ MS we then get:

f 2C. f 2C � f 2� � 4 c/2 � f 2�. f 2C � f 2� C 4 c/2 D 0: (137)

Since M1 is dense this identity actually holds on the whole manifold M. It can be
rewritten as

. f 2C � f 2�/
�
. fC C f�/2 � 4 c

��
. fC � f�/2 � 4 c

� D 0I (138)

this forces c to be positive—if not, f 2C � f 2� would be identically zero—and we
eventually get the identity:

. f 2C � f 2�/. fC C f� C 2
p

c/. fC C f� � 2pc/. fC � f� � 2
p

c/. fC � f� C 2
p

c/ D 0:

(139)

Denote by QM the open subset of M obtained by removing the zero locus K�1
1 .0/

of K1 from M (notice that QM is a connected, dense open subset of M, as K�1
1 .0/

is a disjoint union of totally geodesic submanifolds of codimension a least 2). It
readily follows from (139) that QM is the union of the following four closed subsets
QF0 WD F0 \ QM, QFC WD FC \ QM, QF� WD F� \ QM and QFS WD FS \ QM of QM, where
F0;FC;F�;FS denote the four closed subsets of M defined by:

F0 WD fx 2 M j fC.x/C f�.x/ D 2
p

cg;
FC WD fx 2 M j fC.x/� f�.x/ D 2

p
cg;

F� WD fx 2 M j f�.x/� fC.x/ D 2
p

cg;
FS WD fx 2 M j fC.x/� f�.x/ D 0g:

(140)

We now show that if the interior, V , of QF0 is non-empty then QF0 D QM (and thus
F0 D M by density); this amounts to showing that the boundary B WD NV n V of V in
QM is empty. If not, let x be any element of B; then, x belongs to QF0, as QF0 is closed,

and it also belongs to QFC or QF�: otherwise, there would exist an open neighbourhood
of x disjoint from QFC [ QF�, hence contained in QF0 [ QFS; as QFS has no interior,
this neighbourhood would be contained in contained in QF0, which contradicts the
fact that x sits on the boundary of V . Without loss, we may thus assume that x
belongs to QFC, so that fC.x/ D 2

p
c and f�.x/ D 0; since K1.x/ ¤ 0—by the very
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definition of QM—fC is regular at x, implying that the locus of fC D 2
p

c is a smooth
hypersurface, S, of QM near x; moreover, since QFC and QF� are disjoint, f� D 0 on S,
meaning that‰� D 0 on S; for any X in TxS we then have rX‰� D 0. On the other
hand, rX‰ D .˛.x/ ^ X/�, for any X in TxM, cf. (19), and we can then choose X
in TxS in such a way that .˛.x/^ X/� be non-zero, hence rX � ¤ 0, contradicting
the previous assertion. We similarly show that M D FC or M D F� whenever the
interior of QFC or of QF� is non-empty. ut
A direct consequence of Proposition 5.1 is that on the (dense) open subset M0, the
associated ambikähler structure .gC D f �2C g; JC D f �1C ‰C; !C/, .g� D f �2� g D
f 2 gC; J� D f �1� ‰�; !�/, with f D fC=f�, satisfies

�.df / D �df (141)

in the first case listed in Proposition 5.1, and

�.df / D df (142)

in the remaining two cases. The ambikähler structure is then of Calabi type,
according to the following definition, taken from [1]:

Definition 5.1 An ambikähler structure .gC; JC; !C/, .g�; J�; !�/, with gC D
f �2 g�, is said to be of Calabi type if df ¤ 0 everywhere, and if there exists a
non-vanishing vector field K, Killing with respect to gC and g� and Hamiltonian
with respect to !C and !�, which satisfies

�.K/ D ˙ K; (143)

with � D �JCJ� D �J�JC.
By replacing the pair .JC; J�/ by the pair .JC;�J�/ if needed, we can assume,
without loss of generality, that �.K/ D �K. In the following proposition, we
recall some general facts concerning this class of ambikähler structures, cf. e.g. [1,
Section 3]:

Proposition 5.2 For any ambikähler structure of Calabi type, with �.K/ D �K:

(i) The Killing vector field K is an eigenvector of the Ricci tensor, RicgC , of gC
and of the Ricci tensor, Ricg� , of g�; in particular, RicgC and Ricg� are both
JC- and J�-invariant;

(ii) the Killing vector field K is a constant multiple of J�gradg�
f D JCgradgC

1
f .

Proof By hypothesis, K D JCgradgC
zC D J�gradg�

z�, for some real functions zC
and z�. Since J�K D �JCK, we infer gradgC

zC D �gradg�
z�, hence

dzC D �f �2 dz�: (144)
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Since df ¤ 0 everywhere, this, in turn, implies that

zC D F. f /; z� D G. f / (145)

for some real (smooth) functions F;G defined on R
>0 up to an additive constant and

satisfying:

G0.x/ D �x2 F0.x/: (146)

Moreover,

�.df / D �df : (147)

Since K has no zero and satisfies �.K/ D �K, we have

JC D K[ ^ JCK

jKj2 C �K[ ^ JCK

jKj2 ; J� D �K[ ^ JCK

jKj2 C �K[ ^ JCK

jKj2 ; (148)

so that

JC � J� D 2K[ ^ JCK

jKj2 ; (149)

In (148)–(149), the dual 1-form K[ and the square norm jKj2 are relative to any
metric in ŒgC� D Œg��. For definiteness however, we agree that they are both relative
to gC. Since gC D f �2 g�, we have:

rgC

X J� D J�
df

f
^ X C df

f
^ J�X: (150)

By using (24), we then infer from (149):

rgC

X .JC � J�/ D �rgC

X J� D JC
df

f
^ X � df

f
^ J�X

D 2rgC

X K[ ^ JCK C 2K[ ^ JCrgC

X K

jKj2

� X � jKj2
jKj2 .JC C J�/:

(151)
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By contracting with K, and by using K[ D F0 JCdf and JCrgC

X K D rJCXK (as K
is J˙-holomorphic), we obtain

rgC

X K D � jKj2
2f F0 JCX C 1

2f F0
�
K[ ^ JCK

�
.X/

C 1

2

djKj2
jKj2 .X/K C 1

2

JCdjKj2
jKj2 .X/ JCK:

(152)

Since K is Killing with respect to gC, rgCK is anti-symmetric; in view of (152),
this forces jKj2 to be of the form

jKj2 D H. f /; (153)

for some (smooth) function H from R
>0 to R

>0, hence

djKj2
jKj2 D H0. f /

H. f /
df D � H0. f /

H. f /F0. f /
JCK[: (154)

By substituting (154) in (152), we eventually get the following expression of rgC K:

rgC K D ˆC. f / JC �ˆ�. f / J�; (155)

with

ˆC D 1

4

�
H0. f /

F0. f /
� H. f /

f F0. f /

�
; ˆ� D 1

4

�
H0. f /

F0. f /
C H. f /

f F0. f /

�
: (156)

Since K is Killing with respect to gC, it follows from the Bochner formula that

RicgC.K/ D ırgCK; (157)

whereas, from (155) we get

.rgC/2X;Y K D ˆ0C df .X/ JC.Y/ �ˆ0� df .X/ J�.Y/

�ˆ�
�rgC

X J�
�
.Y/;

(158)

and, from rgC

X J� D ŒJ�; df
f ^ X�:

ıJ� D �
 

4X

iD1
rgC

ei J�

!

.ei/ D �2JC
df

f
D � 2

fF0. f /
K[: (159)
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By putting together (155), (157)–(159), we get

RicgC.K/ D �K; (160)

with

� D �
�

f ˆ0C. f /C f ˆ0�. f /� 2ˆ�. f /
�

f F0. f /
: (161)

Since the metric gC is Kähler with respect to JC, in particular is JC-invariant, (160)
implies that the two eigenspaces of RicgC are the space fK; JCKg generated by
K and JCK (where J� D JC) and its orthogonal complement, fK; JCKg? (where
J� D �JC). It follows that RicgC is both JC- and J�-invariant. This establishes the
part (i) of the proposition (it is similarly shown that Ricg� is JC- and J�-invariant).

Before proving part (ii), we first recall the general transformation rules of the
curvature under a conformal change of the metric. If g and Qg D ��2 g are two
Riemannian metrics in a same conformal class Œg� in any n-dimensional Riemannian
manifold .M; g/, n > 2, then the scalar curvature, ScalQg, and the trace-free part, RicQg

0,
of Qg are related to the scalar curvature, Scalg, and the trace-free part, Ricg

0, of g by

ScalQg D �2
�
Scalg � 2.n � 1/ � �g� � n.n � 1/ jd�j2g

�
; (162)

and

RicQg
0 D Ricg � .n � 2/

.rgd�/0
�

; (163)

where .rgd�/0 is the trace-free part of the Hessian rgd� of � with respect of g,
cf. e.g. [5, Chapter 1, Section J]. Applying (163) to the conformal pair .g�; gC D
f �2 g�/, we get

Ric
gC

0 D Ricg�

0 � 2 .rg� df /0
f

: (164)

Since RicgC and RicgC are both JC- and J�-invariant, it follows that .rg�df /0 is
J�-invariant, as well as rg� df , since all metrics in ŒgC� D Œg�� are JC- and J�-
invariant. This means that the vector field gradg�

f is J�-holomorphic, hence that
J�gradg�

f is Hamiltonian with respect to !�, hence Killing with respect to g�;
since J�gradg�

f D 1
G0. f / K, we conclude that G0. f / is constant, hence, by using

(146), that F. f / and G. f / are of the form

F. f / D a

f
C b; G. f / D a f C c; (165)
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for a non-zero real constant a and arbitrary real constants b; c. This, together with
(24), establishes part (ii) of the proposition. ut
Theorem 5.1 Let .M; g/ be a connected, oriented 4-manifold admitting a non-
parallel �-Killing 2-form  D  C C  �, satisfying the hypothesis of Proposi-
tion 5.1, corresponding to Case (2) of Proposition 3.3. Then, on the dense open set
M0 n K�1

1 .0/ the associated ambikähler structure is of Calabi type, with respect to
the Killing vector field K D K1, with �.K/ D �K in the first case of Proposition 5.1
and �.K/ D K in the two remaining cases.

Conversely, let .gC; JC; !C/, .g� D f 2 gC; J�; !�/ be any ambikähler structure
of Calabi type with non-vanishing Killing vector field K, defined on some oriented
4-dimensional manifold M. If �.K/ D �K, there exist, up to scaling, a unique metric
g in the conformal class ŒgC� D Œg�� and a unique non-parallel �-Killing 2-form  

with respect to g, inducing the given ambikähler structure. If �.K/ D K, such a pair
.g;  / exists and is unique outside the locus f f D 1g.

Proof The first part of the proposition has already been discussed in the preceding
part of this section. Conversely, let .gC; JC; !C/, .g� D f 2 gC; J�; !�/ be an
ambikähler structure of Calabi type, with respect to some non-vanishing Killing
vector field K, with �.K/ D �K or �.K/ D K. Then, according to Proposition 5.2,
K can be chosen equal to

K D JCgradg�
f D JCgradgC

1

f
; (166)

if �.K/ D �K, or

K D JCgradg�
f D �JCgradgC

1

f
; (167)

if �.K/ D K. According to Proposition 2.2 and (42), if �.K/ D �K, hence �.df / D
�df , the ambikähler structure is then induced by the metric g, in the conformal class
ŒgC� D Œg��, defined by g D f �2C gC D f �2� g�, with

fC D c f

1C f
; f� D c

1C f
D c � fC; (168)

for some positive constant c, and the �-Killing 2-form  defined by

 D f 3

.1C f /3
!C C 1

.1C f /3
!�: (169)
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If �.K/ D K, hence �.df / D df , it similarly follows from Proposition 2.2 and (41)
that the ambikähler structure is induced by the metric g D f 2C gC D f 2� g�, with

fC D c f

1 � f
; f� D c

1 � f
D c C f C; (170)

for some constant c, positive if f < 1, negative if f > 1, and the �-Killing 2-form

 D f 3

.1 � f /3
!C C 1

.1 � f /3
!�; (171)

but the pair .g;  / is only defined outside the locus f f D 1g. ut
Remark 5.1 Any ambikähler structure .gC; JC; !C/, .g�; J�; !�/ generates, up
to global scaling, a 1-parameter family of ambikähler structures, parametrized
by a non-zero real number k, obtained by, say, fixing the first Kähler structure
.gC; JC; !C/ and substituting .g.k/� D k�2 g� D f 2k gC; J.k/� D �.k/ J�; !.k/� D
�.k/ k�2 !�/ to the second one, with �.k/ D k

jkj and fk D f
jkj . Assume that the

ambikähler structure .gC; JC; !C/, .g�; J�; !�/ is of Calabi type, with �.df / D
�df . For any k in R n f0g, we then have �.k/.dfk/ D ��.k/ dfk, by setting �.k/ D
�JCJ.k/� D �J.k/� JC D �.k/ � , whereas, from (40) we infer:

f .k/C D f

jk C f j ; f .k/� D jkj
jk C f j ; (172)

up to global scaling; the ambikähler structure .gC; JC; !C/, .g.k/� ; J.k/� ; !.k/� / is then
induced by the pair .g.k/;  .k//, where g.k/ is defined in the conformal class by

g.k/ D f 2

.k C f /2
gC D .1C f /2

.k C f /2
g; (173)

and  .k/ is the �-Killing 2-form with respect to g.k/ defined by

 .k/ D f 3

jk C f j3 !C C k

jk C f j3 !�; (174)

both defined outside the locus f f C k D 0g.

Remark 5.2 As observed in [1, Section 3.1], any ambikähler structure of Calabi
type .gC; JC; !C/, .g� D f 2 gC; J�; !�/, with �.df / D df , admits a Hamiltonian
2-form, �C, with respect to the Kähler structure .gC; JC; !C/ and a Hamiltonian
2-form, ��, with respect to the .g�; J�; !�/, given by

�C D f �1 !C C f �3 !�; �� D f 3 !C C f !�: (175)
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6 The Decomposable Case

Assume now that .M; g;  / is as in Case (3) in Proposition 3.3, that is, that the �-
Killing 2-form D  CC � is degenerate (or decomposable). This latter condition
holds if and only if  ^  D 0, if and only if j Cj D j �j, i.e. fC D f� DW ', or
f D 1, meaning that gC D g� DW gK , whereas g D '2 gK . Denote by rK the Levi-
Civita connection of gK . Then from (31)–(33) we get rKJC D rKJ� D rK� D 0,
which implies that .M; gK/ is locally a Kähler product of two Kähler curves of the
form M D .†; g†; J†; !†/ � . Q†; g Q†; J Q†; ! Q†/, with

gK D g† C g Q†;

JC D J† C J Q†; J� D J† � J Q†;

!C D !† C ! Q†; !� D !† � ! Q†:

(176)

Moreover, from (21) we readily infer �.d'/ D d', meaning that ' is the pull-
back to M of a function defined on †. Conversely, for any Kähler product M D
.†; g†; J†; !†/ � . Q†; g Q†; J Q†; ! Q†/ as above and for any positive function ' defined
on †, regarded as a function defined on M, the metric g WD '2 .g† C g Q†/ admits a
�-Killing 2-form  , given by

 D '3 !†; (177)

whose corresponding Killing 2-form � is given by

�  D '3 ! Q†: (178)

Note that by (9) ˛ D 1
3
ıg D 1

'2
�† d', so K1 D � 1

2
˛] is not a Killing vector field

in general.
The above considerations completely describe the local structure of 4-manifolds

with decomposable �-Killing 2-forms. They also provide compact examples, simply
by taking † and Q† to be compact Riemann surfaces. We will show, however, that
there are compact 4-manifolds with decomposable �-Killing 2-forms which are not
products of Riemann surfaces (in fact not even of Kähler type). They arise as special
cases (for n D 4) of the classification, in [9], of compact Riemannian manifolds
.Mn; g/ carrying a Killing vector fields with conformal Killing covariant derivative.

It turns out that if  is a non-trivial �-Killing 2-form which can be written as
 D d�[ for some Killing vector field � on M, then either  has rank 2 on M,
or M is Sasakian or has positive constant sectional curvature (Proposition 4.1 and
Theorem 5.1 in [9]). For n D 4, the Sasakian situation does not occur, and the case
when M has constant sectional curvature will be treated in detail in the next section.
The remaining case—when  is decomposable—is the one which we are interested
in, and is described by cases 3. and 4. in Theorem 8.9 in [9]. We obtain the following
two classes of examples:
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1. .M; g/ is a warped mapping torus

M D .R � N/=.t;x/�.tC1;'.x//; g D �2d2 C gN ;

where .N; gN/ is a compact 3-dimensional Riemannian manifold carrying a
function �, such that d�] is a conformal vector field, ' is an isometry of N
preserving �, � D @

@
and  D d�[ D 2�d� ^ d . One can take for instance

.N; gN/ D S
3 and � a first spherical harmonic. Further examples of manifolds N

with this property are given in Section 7 in [9].
2. .M; g/ is a Riemannian join S

2 �
;� S
1, defined as the smooth extension to S4

of the metric g D ds2 C 
2.s/gS2 C �2.s/d2 on .0; l/ � S2 � S1, where l > 0

is a positive real number, 
 W .0; l/ → R
C is a smooth function satisfying the

boundary conditions


.t/ D t.1C t2a.t2// and 
.l � t/ D 1

c
C t2b.t2/; 8 jtj < �;

for some smooth functions a and b defined on some interval .��; �/, �.s/ WDR l
s 
.t/dt, � D @

@
and  D 2�.s/�0.s/ds ^ d .

In particular, we obtain infinite-dimensional families of metrics on S3 � S1 and on
S4 carrying decomposable �-Killing 2-forms.

7 Example: The Sphere S
4 and Its Deformations

We denote by S4 WD .S4; g/ the 4-dimensional sphere, embedded in the standard way
in the Euclidean space R

5, equipped with the standard induced Riemannian metric,
g, of constant sectional curvature 1, namely the restriction to S

4 of the standard inner
product .�; �/ of R5. We first recall the following well-known facts, cf. e.g. [13]. Let
 D  C C � be any �-Killing 2-form with respect to g, so that rX‰ D ˛ ^ X, cf.
(8). Since g is Einstein, the vector field ˛] is Killing and it follows from (74)–(75)
that r˛ D  . Conversely, for any Killing vector field Z on S

4, it readily follows
from the general Kostant formula

rX.rZ/ D RZ;X ; (179)

that, in the current case, rX.rZ/ D Z ^ X, so that the 2-form  WD rZ[ is �-
Killing with respect to g. The map Z 7→ rZ[ is then an isomorphism from the space
of Killing vector fields on S

4 to the space of �-Killing 2-forms.
It is also well-known that there is a natural 1 � 1-correspondence between the

Lie algebra so.5/ of anti-symmetric endomorphisms of R5 and the space of Killing
vector fields on S

4: for any a in so.5/, the corresponding Killing vector field, Za, is
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defined by

Za.u/ D a.u/; (180)

for any u in S
4, where a.u/ is viewed as an element of the tangent space TuS

4, via
the natural identification TuS

4 D u?.
By combining the above two isomorphisms, we eventually obtained a natural

identification of so.5/ with the space of �-Killing 2-forms on S
4 and it is easy to

check that, for any a in so.5/, the corresponding �-Killing 2-form,  a, is given by

 a.X;Y/ D .a.X/;Y/; (181)

for any u in S
4 and any X;Y in TuS

4 D u?; alternatively, the corresponding
endomorphism‰a is given by

‰a.X/ D a.X/� .a.X/; u/ u; (182)

for any X in TuS
4 D u?.

Since, for any u in S
4, the volume form of S4 is the restriction to TuS

4 of the
4-form uyv0, where v0 stands for the standard volume form of R5, namely v0 D
e0 ^ e1 ^ e2 ^ e3 ^ e4, for any direct frame of R5 (here identified with a coframe
via the standard metric), we easily check that, for any a in so.5/, the corresponding
Killing 2-form � a has the following expression

.� a/.X;Y/ D .uy �5 a/.X;Y/ D �5.u ^ a/.X;Y/; (183)

for any u in S
4 and any X;Y in TuS

4 D u?; here, �5 denotes the Hodge operator on
R
5 and we keep identifying vector and covectors via the Euclidean inner product.
From (182), we easily infer

j‰aj2 D jaj2 � 2ja.u/j2; (184)

at any u in S
4, where the norm is the usual Euclidean norm of endomorphisms,

whereas the Pfaffian of  a is given by:

pf. a/ WD  a ^  a

2 vg
D . a;� a/

2
D u ^ a ^ a

2 v0
: (185)

On the other hand, when fC; f� are defined by (15), we have

j‰aj2 D 4. f 2C C f 2�/; (186)

and

pf. a/ D f 2C � f 2�: (187)
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For any a in so.5/, we may choose a direct orthonormal basis e0; e1; e2; e3; e4 of R5,
with respect to which a has the following form

a D � e1 ^ e2 C � e3 ^ e4; (188)

for some real numbers �;�, with 0 � � � �. Then,

jaj2 D 2.�2 C �2/;

a.u/ D �.u1e2 � u2e1/C �.u3e4 � u3e3/;

ja.u/j2 D �2.u21 C u22/C �2.u23 C u24/;

u ^ a ^ a D 2 �� u0 e0 ^ e1 ^ e2 ^ e3 ^ e4;

(189)

for any u D P4
iD0 ui ei in S

4. We thus get

f 2C C f 2� D 1

2

�
�2 C �2 � �2.u21 C u22/ � �2.u23 C u24/

�
;

f 2C � f 2� D �� u0;

(190)

hence

fC.u/ D 1

2

�
.�C � u0/

2 C .�2 � �2/ .u21 C u22/
� 1
2

D 1

2

�
.�C � u0/

2 C .�2 � �2/ .u23 C u24/
� 1
2 ;

f�.u/ D 1

2

�
.� � � u0/

2 C .�2 � �2/ .u21 C u22/
� 1
2

D 1

2

�
.� � � u0/

2 C .�2 � �2/ .u23 C u24/
� 1
2 :

(191)

From (190)–(191), we easily obtain the following three cases, corresponding, in the
same order, to the three cases listed in Proposition 3.3:

Case 1: a is of rank 4—i.e. � and � are both non-zero—and � < �. Then:

(i) fC.u/ D f�.u/ if and only if u belongs to the equatorial sphere S
3 defined

by u0 D 0;
(ii) fC.u/ D 0 if and only u belongs to the circle CC D fu0 D � �

�
; u1 D u2 D

0g, and we then have f�.u/ D �
2
;

(iii) f�.u/ D 0 if and only if u belongs to the circle C� D fu0 D �
�
; u1 D u2 D

0g, and we then have fC.u/ D �
2
;
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(iv) the 2-form df 2C^df 2� is non-zero outside the 2-spheres S2C D fu1 D u2 D 0g
and S2� D fu3 D u4 D 0g; this is because

df 2C ^ df 2� D ��.�2 � �2/
2

du0 ^ .u1 du1 C u2 du2/

D ��.�2 � �2/

2
du0 ^ .u3 du3 C u4 du4/;

(192)

which readily follows from (190).

Case 2: a is of rank 4 and � D �. Then

fC.u/ D �

2
.1C u0/; f�.u/ D �

2
.1 � u0/I (193)

in particular,

fC C f� D �I (194)

moreover, fC.u/ D 0 if and only if u D �e0 and f�.u/ D 0 if and only if u D e0.
Case 3: a is of rank 2, i.e. � D 0. Then, fC � f� is identically zero and fC.u/ D

f�.u/ vanishes if and only if u belongs to the circle C0 D fu0 D u1 D u2 D 0g.

Remark 7.1 Consider the functions x D fCCf�
2

; y D fC�f�
2

defined in Sect. 3, as
well as the functions of one variable, A and B, appearing in Proposition 3.1. If a is
of rank 4, with 0 < � < �, corresponding to Case 1 in the above list, we easily infer
from (190) that

u0 D 4xy

��
;

u21 C u22 D .�2 � 4x2/.�2 � 4y2/

�2.�2 � �2/
;

u23 C u24 D .�2 � 4x2/.�2 � 4y2/

�2.�2 � �2/
:

(195)

Since x � jyj, the above identities imply that the image of .x; y/ in R
2 is the rectangle

R WD 

�
2
;
�

2

� � 
��
2
; �
2

�
. A simple calculation then shows that A and B are given by

A.z/ D �B.z/ D �
�

z2 � �2

4

��
z2 � �2

4

�
: (196)

Notice that A.x/ and B.y/ are positive in the interior of R, corresponding to the open
set of S4 where dx; dy are linearly independent, and vanish on its boundary. Also
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notice that the above expressions of A;B fit with the identities (104)–(105), with
Scal D 12 and b D 0.

Remark 7.2 By using the ambitoric Ansatz in Theorem 4.1, the above situation can
easily be deformed in Case 1, where a is of rank 4, with 0 < � < �, and the 2-
form  a defined by (181) is �-Killing with respect to the round metric (We warmly
thank Vestislav Apostolov for this suggestion.) On the open set U D S

4n�S2C [ S2�
�
,

where fC ¤ 0, f� ¤ 0 and dfC ^ df� ¤ 0, the round metric of S4 takes the form
(124), where A and B are given by (196), x 2 �

�
2
;
�

2

�
, y 2 ���

2
; �
2

�
are determined

by (195) and ds, dt are explicit exact 1-forms determined by the last two equations
of (125). It can actually be shown that outside the 2-spheres S2C and S2�, ds and dt
are given by:

ds D 2

�2 � �2

�
�

u1du2 � u2du1
u21 C u22

� � u3du4 � u4du3
u23 C u24

�

D 2

�2 � �2
d

�
� arctan

u2
u1

� � arctan
u4
u3

�
;

dt D 8

�2 � �2

�
� 1
�

u1du2 � u2du1
u21 C u22

C 1

�

u3du4 � u4du3
u23 C u24

�

D 8

�2 � �2
d

�
� 1
�

arctan
u2
u1

C 1

�
arctan

u4
u3

�
:

(197)

Moreover, a is given by (128) with respect to these coordinates.
Consider now a small perturbation QA, QB of the functions A and B such that QA.x/ D

A.x/ near x D �
2

and x D �

2
and QB.y/ D B.y/ near y D ˙�

2
. If the perturbation is

small enough, the expression analogue to (124)

Qg WD .x2 � y2/

�
dx ˝ dx

QA.x/ C dy ˝ dy
QB.y/

�

C QA.x/
.x2 � y2/

.ds C y2 dt/˝ .ds C y2 dt/

C
QB.y/

.x2 � y2/
.ds C x2 dt/˝ .ds C x2 dt/

(198)

is still positive definite so defines a Riemannian metric on U , which coincides with
the canonical metric on an open neighbourhood of S4 n U D S2C [ S2�, and thus
has a smooth extension to S

4 which we still call Qg. Since the expression (128) of the
�-Killing form in the Ansatz of Sect. 4 does not depend on A and B, the 2-form a is
still �-Killing with respect to the new metric Qg. We thus get an infinite-dimensional
family (depending on two functions of one variable) of Riemannian metrics on S4

which all carry the same non-parallel �-Killing form.
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8 Example: Complex Ruled Surfaces

In general, a (geometric) complex ruled surface is a compact, connected, complex
manifold of the form M D P.E/, where E denotes a rank 2 holomorphic vector
bundle over some (compact, connected) Riemann surface, †, and P.E/ is then the
corresponding projective line bundle, i.e. the holomorphic bundle over †, whose
fiber at each point y of† is the complex projective line P.Ey/, where Ey denotes the
fiber of E at y. A complex ruled surface is said to be of genus g if † is of genus g.

In this section, we restrict our attention to complex ruled surfaces P.E/ as above,
when E D L ˚ C is the Whitney sum of some holomorphic line bundle, L, over
† and of the trivial complex line bundle † � C, here simply denoted C: M is then
the compactification of the total space of L obtained by adding the point at infinity
ŒLy� WD P.Ly ˚ f0g/ to each fiber of M over y. The union of the points at infinity
is a divisor of M, denoted by †1, whereas the (image of) the zero section of L,
viewed as a divisor of M, is denoted †0; both †0 and †1 are identified with † by
the natural projection, � , from M to †. The open set M n .†0 [†1/, denoted M0,
is naturally identified with L n†0. We moreover assume that the degree, d.L/, of L
is negative and we set: d.L/ D �k, where k is a positive integer.

Complex ruled surfaces of this form will be called Hirzebruch-like ruled
surfaces. When g D 0, these are exactly those complex ruled surfaces introduced
by F. Hirzebruch in [7]. When g � 2, they were named pseudo-Hirzebruch in [14].

In general, the Kähler cone of a complex ruled surface P.E/ was described by A.
Fujiki in [6]. In the special case considered in this section, when M D P.L ˚ C/ is
a Hirzebruch-like ruled surface, if Œ†0�, Œ†1� and ŒF� denote the Poincaré duals of
the (homology class of) †0, †1 and of any fiber F of � in H2.M;Z/, the latter is
freely generated by Œ†0� and ŒF� or by Œ†1� and ŒF�, with Œ†0� D Œ†1�� k ŒF�, and
the Kähler cone is the set of those elements, �a0;a1

, of H.M;R/ which are of the
form �a0;a1

D 2�
� � a0 Œ†0�C a1 Œ†1�

�
, for any two real numbers a0; a1 such

that 0 < a0 < a1.
We assume that† comes equipped with a Kähler metric .g†; !†/ polarized by L,

in the sense that L is endowed with a Hermitian (fiberwise) inner product, h, in such
a way that the curvature, Rr , of the associated Chern connection, r, is related to the
Kähler form !† by Rr D i!; in particular, Œ!†� D 2� c1.L�/, where Œ!†� denotes
the de Rham class of !†, L� the dual line bundle to L and c1.L�/ the (de Rham)
Chern class of L�. The natural action of C� extends to a holomorphic C�-action on
M, trivial on †0 and †1; we denote by K the generator of the restriction of this
action on S1 � C

�. On M0 D L n†0, we denote by t the function defined by

t D log r; (199)

where r stands for the distance to the origin in each fiber of L determined by h; on
M0, we then have

ddct D ��!†; dct.K/ D 1 (200)
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(beware: the function t defined by (199) has nothing to do with the local coordinate
t appearing in Sect. 4). Any (smooth) function F D F.t/ of t will be regarded as
function defined on M0, which is evidently K-invariant; moreover:

1. F D F.t/ smoothly extends to †0 if and only if F.t/ D ˆC.e2t/ near t D �1,
for some smooth function ˆC defined on some neighbourhood of 0 in R

�0, and
2. F D F.t/ smoothly extends to †1 if and only if F.t/ D ˆ�.e�2t/ near t D 1,

for some smooth function ˆ� defined on some neighbourhood of 0 in R
�0, cf.

e.g. [14], [1, Section 3.3].

For any (smooth) real function ' D '.t/, denote by !' the real, J-invariant 2-
form defined on M0 by

!' D ' ddct C ' 0 dt ^ dct; (201)

where ' 0 denotes the derivative of ' with respect to t. Then, !' is a Kähler form
on M0, with respect to the natural complex structure J D JC, of M, if and only if
' is positive and increasing as a function of t; moreover, !� extends to a smooth
Kähler form on M, in the Kähler class �a0;a1

, if and only if ' satisfies the above
asymptotic conditions (1)–(2), with ˆC.0/D a0 > 0, ˆ0C.0/ > 0, ˆ�.0/D a1 >

0,ˆ0�.0/ < 0. Kähler forms of this form on M, as well as the corresponding Kähler
metrics

g' D ' ��g† C ' 0 .dt ˝ dt C dct ˝ dct/; (202)

are called admissible.
Denote by J� the complex structure, first defined on the total space of L by

keeping J on the horizontal distribution determined by the Chern connection and
by substituting �J on the fibers, then smoothly extended to M. The new complex
structure induces the opposite orientation, hence commutes with JC D J.

Any admissible Kähler form !' is both JC- and J�-invariant, as well as the
associated 2-form Q!' defined by

Q!' WD 1

'
ddct � ' 0

'2
dt ^ dct; (203)

which is moreover Kähler with respect to J�, with metric

Qg' D 1

'2
g': (204)

We thus obtain an ambikähler structure of Calabi-type, as defined in Sect. 5, with
f D 1

'
and �.K/ D �K. According to Theorem 5.1 and Remark 5.1, for any k in
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R n f0g, the metric g.k/ defined, outside the locus f1C k ' D 0g, by

g.k/' D 1

.1C k '/2
g'; (205)

there admits a non-parallel �-Killing 2-form  
.k/
' , namely

 .k/' D 1

.1C k '/3
!� C k '3

.1C k '/3
Q!'

D '

.1C k '/2
ddct C .1 � k '/' 0

.1C k '/3
dt ^ dct:

(206)

Notice that the pair .g.k/' ;  
.k/
' / smoothly extends to M for any k 2 R n Œ� 1

a0
;� 1

a1
�,

including k D 0 for which we simply get the Kähler pair .g'; !C/.
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