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Abstract. This paper investigates a surprising relationship between
decision theory and proof theory. Using constructions originating in proof
theory based on higher-order functions, so called quantifiers and selection
functions, we show that these functionals model choice behavior of indi-
vidual agents. Our framework is expressive, it captures classical theories
such as utility functions and preference relations but it can also be used
to faithfully model abstract goals such as coordination. It is directly
implementable in functional programming languages. Lastly, modeling
an agent with selection functions and quantifiers is modular and thereby
allows to seamlessly combine agents bridging decision theory and game
theory.

Keywords: Decision theory · Utility functions · Preferences · Higher-
order functions · Quantifiers

1 Introduction

A higher-order function (or functional) is a function whose domain is itself a
set of functions. In this paper we investigate a surprising and deep connec-
tion between decision theory on one side and a higher-order construction that
originated in proof theory [3,4] on the other side: We use a particular class of
higher-order functions as a way of describing the choice behavior of individual
agents.

Assume X is the overall set of alternatives, and R a set of observable outcomes
or measures. For instance, X could be the set of all books, and R = R

+ the non-
negative reals representing prices. We then see functions of type X → R as
describing the agent’s decision context, e.g. X → R

+ as the mapping from books
to prices.
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The core idea we explore here is to model agents’ decision goals as higher-
order functions of type (X → R) → R. Functionals of this type have been called
quantifiers [14], since the standard ∃ and ∀ logical quantifiers are particular
cases of these when R = B is the type of booleans. Going back to the example
of books and prices, an agent who prefers the cheapest book will be modeled by
the quantifier

min: (X → R
+) → R

+

saying that given any catalogue of prices p : X → R
+ the agent will choose to

pay the cheapest price on the catalogue min(p).
Therefore, quantifiers describe the outcome (e.g. price paid for the choice

of book) an agent considers to be good in any given decision context. A cor-
responding notion is that of a selection function, i.e. a higher-order function of
type (X → R) → X which calculates a concrete choice that meets the desired
goal. In the example above, the corresponding selection function would pick one
of the cheapest books according to the prices given in p : X → R

+.
Since the max: (X → R) → R operator is also a quantifier and the corre-

sponding argmax: (X → R) → X operator is a selection function, we have that
the standard approach of modeling preferences via utility functions or preference
relations are instances of our modeling framework. But, quantifiers and selection
functions can capture alternative decision criteria as well as decision heuristics.
We demonstrate this through several simple examples.

As we see it, there are three crucial advantages of adopting a higher-order
modeling of choice behavior: expressivity, modularity, and computability :

– Expressivity : We show that describing agent’s choices through higher-order
functionals captures existing standard approaches such as utility maximiza-
tion. Moreover, we can directly model at the level of higher-order functionals
and thereby faithfully describe the agent’s behavior. As an example, we intro-
duce a fixed-point operator which captures an agent’s goal to coordinate with
other agents.

– Modularity : By taking into account the decision context p : X → R when
describing an agent’s goal, we can fully describe the agent “locally”, without
having to refer to “global” utility functions or similar constructs. This allows
us to seamlessly combine individual agents into strategic games, bridging the
gap between decision theory and game theory.

– Computability : Finally, such higher-order function, as abstract as they might
appear, can be directly expressed and coded into functional programming
languages such as Haskell and Ocaml. In fact, most of the theory we have
developed here and in [8] has been implemented and tested in Haskell. This
Haskell code has also served to guide us in discovering new forms of game
equilibria which are available in this setting of higher-order decisions and
games.

The plan for the paper is as follows. We give a brief introduction to higher-
order functions in the next section. We then show how quantifiers can be used to
model behavior directly at the level of these higher-order functions. In Sect. 3,
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we also show how to instantiate preference relations and utility maximization as
special cases. In Sects. 4 and 4.3 we introduce a series of non-optimizing examples
and show how they can be represented by higher-order functions. These include
coordination goals as fixpoint operators. We conclude in Sect. 5.

Elsewhere we show that selection functions are very powerful building blocks
for game theory and implementations thereof [8]. Moreover, in [3–5,7,10] selec-
tion functions are a building block for a compositional approach to game theory.
These papers rely on simple instances of selection functions. All instances of
selection functions and quantifiers introduced in this paper, can be directly inte-
grated into these game theoretic models.

2 Agents as Quantifiers

A higher-order function (or functional) is a function whose domain is itself a set
of functions. Given sets X and Y we denote by X → Y the set of all functions
with domain X and codomain Y . A higher-order function is therefore a function
f : (X → Y ) → Z where X, Y and Z are sets.

Here are some well known examples of higher-order functions. In case of the
maximization of a utility function u : X → R

max
x∈X

u(x)

the max operator takes the utility function u : X → R as its input and returns a
real number maxx∈X u(x) as the output. Therefore, the max operator has type

max: (X → R) → R

In a similar vein, the argmax operator is also a higher-order function of a par-
ticular type:

argmax: (X → R) → P(X)

where P(X) is the set of subsets of X. For a given function u : X → R we have
that argmax(u) is the set of points where u attains its maximum value.

2.1 Agent Context

We want to model an agent A in a choice situation or context and formulate his
motivations and his choices. We shall model such contexts as mappings X → R
that encode for choices in X their effects on the outcomes in R.

Definition 1 (Agent context). We call any function p : X → R a possible
context for the agent A who is choosing a move from a set X, having in sight a
final outcome in a set R,

For instance, X could be the set of available flights between two cities, and
R = R

+ could be the set of positive real numbers that represent prices. An agent
who is interested in choosing a flight having in mind only the cost of the flight
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will consider the price list X → R
+ as a sufficient context for his decision. If,

however, the number of stops (or changes) is an important factor in the decision
of the agent, we could take R = R

+ × N and the agent’s context would then be
X → R

+ × N.

2.2 Quantifiers

Suppose the agent A has to make a decision in the context p : X → R. The agent
will consider some of the possible outcomes to be good (or acceptable), and others
to be bad (or unacceptable). Such choices define a higher-order function of the
following type:

Definition 2. (Quantifier, [3,4]). Mappings

ϕ : (X → R) → P(R)

from contexts p : X → R to sets of outcomes ϕ(p) ⊆ R are called quantifiers.

The terminology comes from the observation that the usual existential ∃ and
universal ∀ quantifiers of logic can be seen as operations of type (X → B) → B,
where B is the type of booleans. Mostowski [14] has called arbitrary functionals
of type (X → B) → B generalized quantifiers. This was generalized further in [3]
to the type given here.

We model agents A as quantifiers ϕA and take ϕA(p) as the set of outcomes
that the agent A considers preferable in each context p : X → R. For instance,
consider again the example where X is the set of flights, and R = R

+ × N

indicates prices together with the number of stops. An agent that wishes to
minimize the cost of the flight, but does not wish to make more than two stops
will be modeled by the quantifier:

ϕ(p) = {p(x) : x ∈ X, p0(x) = min p0, p1(x) ≤ 2}

where p0 : X → R
+ and p1 : X → N are the two projections of p : X → R

+ × N.
Our main objective in this paper is to convince the reader that this is a gen-

eral, modular, and highly flexible way of describing an agent’s goal or objective.
The classical example of a quantifier is utility maximization. Suppose an

agent has a utility function u′ : R → R mapping outcomes into utilities. Com-
posing the context p : X → R and u′ : R → R we get a new context that maps
actions directly into utility u : X → R. Given this new context, the good out-
comes for the player are precisely those for which his utility function is maximal.
This quantifier is given by

max(u) = {r ∈ Im(u) | r ≥ u(x′) for all x′ ∈ X}

where Im(u) denotes the image of the utility function u : X → R.
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2.3 Context-Dependence

In general, we are going to allow the set of outcomes that the agent considers
good to be arbitrary. It is reasonable, however, to assume that for each context
p : X → R we have ϕ(p) 	= ∅. This is to say that in any given context the agent
must have a preferred outcome (even if this would be the least bad one). We will
call such quantifiers total. Another more interesting class of quantifiers consists
of those we call context-independent :

Definition 3 (Context-independence). A quantifier ϕ : (X → R) → P(R)
is said to be context-independent if the value ϕ(p) only dependents on Im(p),
i.e.

Im(p) = Im(p′) =⇒ ϕ(p) = ϕ(p′).

Dually, a quantifier ϕ will be called context-dependent if for some contexts p
and p′, with Im(p) = Im(p′), the sets of preferred outcomes ϕ(p) and ϕ(p′) are
different.

Intuitively, a context-dependent quantifier will select good outcomes not only
based on which outcomes are possible, but will also take into account how the
outcomes are actually achieved. It is easy to see that the quantifier max is
context-independent, since it can be written as a function of Im(p) only.

Our prototypical example of a context-dependent quantifier is the fixpoint
operator

fix : (X → X) → P(X)

Recall that a fixpoint of a function f : X → X is a point x ∈ X satisfying
f(x) = x. If the set of moves is equal to the set of outcomes then there is a
quantifier whose good outcomes are precisely the fixpoints of the context. If the
context has no fixpoints we shall assume that the agent will be equally satisfied
with any outcome. Such a quantifier is given by

fix(p) =

{
{x ∈ X | p(x) = x} if nonempty
X otherwise.

Clearly fix(·) is context-dependent, since we could have different contexts
p, p′ : X → X having the same image set Im(p) = Im(p′) but with p and p′

having different sets of fixpoints. For example, if we take p, p′ : R → R to be
given by p(x) = x and p′(x) = −x then Im(p) = Im(p′) = R, but fix(p) = R and
fix(p′) = {0}. We will discuss the relevance of this quantifier in Sect. 4.3.

2.4 Attainability

Another important property of quantifiers that we shall consider is that of attain-
ability :

Definition 4 (Attainability). A quantifier ϕ : (X → R) → P(R) is called
attainable if, for every context p : X → R, for some r ∈ ϕ(p) there exists an x
such that p(x) = r. (In particular, attainable quantifiers are total.)
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In other words, an agent modeled by an attainable quantifier will select at
least one preferred outcome r that is actually achievable by some move x. An
equivalent definition is that ϕ : (X → R) → P(R) is attainable if and only if

ϕ(p) ∩ Im(p) 	= ∅.

Remark 1. We could also define a strong attainability notion whereby all r ∈
ϕ(p) need to be achievable by some x ∈ X, i.e.

ϕ(p) ⊆ Im(p).

For our purposes the weaker notion of Definition 4 has been sufficient and rea-
sonably well-behaved.

Attainable quantifiers bring out the relevance of moves in the decision making
process. Sometimes an agent might actually wish to spell out the preferred moves
instead of the preferred outcomes. This leads to the definition of another class
of higher-order functions:

Definition 5 (Selection functions). A selection function is any function of
type

ε : (X → R) → P(X)

Remark 2. In the computer science literature, where quantifiers and selection
functions have been considered previously, the initial focus was on single-valued
ones [3]. Multi-valued quantifiers were first considered in [4]. As the definition
above shows, we also make use of multi-valued selection functions, as these are
extremely important in our examples and also in game theoretic approaches that
take selection functions as a building block [5,7,10].

Similarly to quantifiers, the canonical example of a selection function is max-
imizing R, defined by

argmax(p) = {x ∈ X | p(x) ≥ p(x′) for all x′ ∈ X}
The argmax selection function is naturally multi-valued: a function may attain
its maximum value at several different points.

Proposition 1. A quantifier ϕ : (X → R) → P(R) is attainable if and only if
there exists a total selection function ε : (X → R) → P(X) such that, for all
p : X → R,

x ∈ ε(p) =⇒ p(x) ∈ ϕ(p)

If such a relationship between a quantifier ϕ : (X → R) → P(R) and a selec-
tion function ε : (X → R) → P(X) holds then we shall say that ε attains ϕ. The
attainability relation holds between the quantifier max and the selection func-
tion argmax. The fixpoint quantifier is also a selection function, and it attains
itself since

x ∈ fix(p) =⇒ p(x) ∈ fix(p).
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3 Preference Relations and Utility Maximization

In this section we relate the concepts of quantifiers and selection functions to
standard concepts of classical (economic) decision theory: utility functions and
preference relations. In particular, we show that both correspond to context-
independent quantifiers that have the same structure. We now want to char-
acterize the relationship between preference relations and context-independent
quantifiers.

Suppose R is the set of possible outcomes, and an agent has a partial order
relation  on R as preferences, so that x  y means that the agent prefers the
outcome x to y. These partial orders lead to choice functions f : P(R) → P(R)
where f(S) are the maximal elements in the set of possible outcomes S with
respect to the order . Note that these f satisfy f(S) ⊆ S, and f(S) 	= ∅ for
non-empty S.

Every such f can be turned into a quantifier ϕ in a generic way, using the
fact that the image operator is a higher-order function Im : (X → R) → P(R):

(X → R) Im−−→ P(R)
f−→ P(R)

so that f ◦ Im: (X → R) → P(R) are quantifiers.

Proposition 2. Assume |X| ≥ |R|, i.e. the number of choices is bigger than the
number of possible outcomes. Then a quantifier ϕ : (X → R) → P(R) is context-
independent if and only if ϕ = f◦Im, for some choice function f : P(R) → P(R).

Proof. If ϕ = f ◦ Im then ϕ is context-independent. For the other direction, note
that since |X| ≥ |R| we have for any subset S ⊆ R a map uS : X → R such that
Im(uS) = S. Assume ϕ is context-independent and let us define f(S) = ϕ(uS).
Clearly,

ϕ(p) = ϕ(uIm(p)) = f(Im(p))

where the first step uses that ϕ is context-independent and that Im(p) =
Im(uIm(p)) by the assumption on the family of maps uS , while the second steps
simply uses the definition of f .

Agents who are defined by context-independent quantifiers are choosing the
set of good outcomes simply by ranking the set of outcomes that can be achieved
in a given context but are ignoring all the information about how each of the
outcomes arise from particular choices of moves.

For instance, we might have a set of actions that will lead us to earn some
large sums of money. Some of these, however, might be illicit. A classical agent
who cares only about the direct consequences of his decision and is defined in
a context-independent way would choose the outcome that gives himself the
maximum sum of money, regardless of the nature of action. If however the agent
also cares about the actions themselves and their indirect consequences, he might
not consider the largest amount of money as preferable.

The following proposition guarantees the attainability of context independent
quantifiers arising from preference relations:
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Proposition 3. Whenever f� is a choice function arising from a partial order
, then the context-independent quantifier ϕ = f� ◦ Im is attainable.

Proof. By the definition of ϕ we have that if r ∈ ϕ(p) then r is a maximal
element in Im(p). Hence we must have an x ∈ X be such that p(x) = r.

Another example of a context-independent quantifier is the maximization of a
utility function. A utility function can be characterized as the context p : X → R

that attaches a real number to each element of the set of choices X with the
quantifier defined as

ϕ(p) = max
x∈X

p(x).

Moreover, this quantifier is attained by the selection function

ε(p) = arg max p

Note the types ϕ : (X → R) → P(R) and ε : (X → R) → P(X) respectively.
And indeed we have that

x ∈ ε(p) =⇒ p(x) ∈ ϕ(p).

Thus, max and arg max operators, are the prototypical examples of a context-
independent quantifier and a selection function attaining it.

4 Alternatives to Optimization

We have seen how the higher-order notion of a context-independent quantifiers
is able to model choices based on rational preferences (or equivalently on utility
maximization). For simplicity, we consider decisions under certainty but it is
straightforward to consider uncertainty and consider expected utility theory.
Other decision criteria such as regret minimization [13,15] or maximin choices
[16] are also captured by our framework.

Instead of going in this direction, in the following we consider another direc-
tion: Utility functions as well as preference relations are intimately linked to the
assumption that the agent fully optimizes. The behavioral economic literature as
well as the psychological literature have documented deviations from optimizing
behavior [2,11]. Quantifiers provide a direct way to model such deviations. Here
we give a few examples by allowing for a different structure on the set of out-
comes R or by allowing for a different mapping f : P(R) → P(R), or by relaxing
both.

4.1 Context-Independent Agents

Example 1 (Averaging Agent). Consider an agent who prefers the outcome to be
as close as possible to the average of all achievable outcomes. Given a decision
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context p : X → R, the average amongst the possible outcomes can be calcu-
lated as

Ap =
Σr∈Im(p)r

| Im(p)|
Therefore, such agent can be directly modeled via the averaging quantifier
ϕA : (X → R) → P(R) as

ϕA(p) = {r ∈ Im(p) | |r − Ap| is minimal}
The next example represents the second best decision problemdiscussed in [12].

Example 2 (Second-best Agent). Consider a simple heuristic of a person ordering
wine in a restaurant whereby he always chooses the second most-expensive wine.
In terms of quantifiers, let X be the set of wines available in a restaurant, and
p : X → R the price attached to each wine xi (i = 1, ..., N) on the menu,
so that ri = p(xi) denotes the price of wine xi. Given a maximal strict chain
rn > rn−1 > . . . > r1 in R, let us call rn−1 a sub-maximal element. The goal of
the agent can be described by the quantifier

ϕ>(pX→R) = {sub-maximal elements with respect to > within Im(p)}.

A crucial point of the above examples is the additional degree of freedom
of modeling as it is possible to vary the choice operator itself and not being
automatically restricted to the max operator.

4.2 Context-Dependent Agents

So far, we have focused only on context-independent quantifiers. Yet, we can do
more. As we have discussed in Sect. 2, we can allow for quantifiers that do not
only take the image of p as input but the complete function. Again, we consider
several examples.

Example 3 (Ideal-move Agent [6]). Let r > 0 be a fixed real number. For a point
v ∈ R

n we define the closed ball with centre v and radius r by

B(v; r) = {w ∈ R
n | d(v, w) ≤ r}

where d is the Euclidean distance. Let the set of choices X have a distinguished
element x0 ∈ X. Define the quantifier ϕ : (X → R

n) → P(Rn) by

ϕ(p) = B(p(x0); r)

This quantifier is attained by the constant selection function ε(p) = {x0}.

The last example illustrates Simon’s satisficing behavior. The value r > 0 can
be considered as a satisficing threshold around outcomes that are close to the
outcome of an ideal point. Such an agent is equally satisfied with all outcomes
which are close enough to the outcome of the ideal choice.
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Example 4 (Averaging – revised). Consider again an agent who prefers the out-
come to be as close as possible to the average outcome. But this time we assume
that he takes into account the number of possible ways an outcome may be
attained. Given a decision context p : X → R, the weighted average in this case
can be calculated as

Ap =
Σx∈Xp(x)

|X|
Such an agent can be modeled via the weighted averaging quantifier ϕ : (X →
R) → P(R) as

ϕ(p) = {r ∈ Im(p) | |r − Ap| is minimal}
It easy to check that this is a context-dependent quantifier.

Now, consider the example where the set of actions allows an agent to earn
some money but some actions are illicit and hence not considered to be a permis-
sible behavior. If we care about the actions themselves, we might not necessarily
consider the largest sum of money as preferable.

Example 5 (Honest Agents). Consider an agent with a set of possible actions X
leading to monetary outcomes M ⊆ R. Assume some of these actions I ⊂ X
are illegal or dishonest. Hence, the set L = X\I consists of the legal, or honest,
actions. In the first instance consider an honest agent who maximizes over the
outcomes which follows from honest actions. Such a honest agent can be modeled
by the quantifier:

ϕh(p) = {r | r a maximal element in the set p(L)}
where p(L) is the image of L under p. Consider, however, a more complicated
case where the agent is prepared to consider dishonest or illegal actions when
the reward associated with some of these actions is above a threshold T . This
subtler preference can be directly modeled as

ϕd(p) =

{
{r | r is maximal in Im(p)} if maxx∈Ip(x) > T

ϕh(p) otherwise

so that the dishonest agent will behave as the honest one if the maximal reward
for a dishonest action is low, but he will consider any action to be acceptable if
the gain from a dishonest or illegal action is high enough.

In the next example we introduce an extreme case of an agent who decides on
preferred outcomes solely based on the set of moves that lead to that outcome.

Example 6 (Safe Agents). Given a decision context p : X → R and an outcome
r ∈ Im(p), we can calculate the number of different ways r can be attained by

np
r = |{x ∈ X | p(x) = r}| .
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We say that an outcome r is most unavoidable if np
r is maximal over the set

of possible outcomes Im(p). We say that an agent is safe if he prefers most
unavoidable outcomes. Such agents are modeled by the quantifier

φ(p) = {r ∈ Im(p) | np
r maximal}

In order to illustrate this quantifier, suppose there are three beaches, and
the agent is indifferent between them. The first can be reached by one highway,
the second by two highways and the third by three highways. The agent has to
choose which highway to take, and the outcome is the beach that the agent goes
to. The safe agent decides to visit the beach which can be reached by the most
different routes, which is the third, in order to avoid the risk of being stuck in a
traffic jam.

4.3 Fixed Points as Coordination

We now discuss the specific situations where the set of actions X and outcomes
R are the same X = R. In this case elements of the type

(X → X) → P(X)

can be either viewed as quantifiers or selection functions. Agents of this type are
common in voting contests:

Example 7 (Voting Agent). Consider three judges J = {J1, J2, J3} voting for
two contestants X = {A,B}. The winner is determined by the simple majority
rule of type maj : X × X × X → X. The set X denotes both the set of choices
and the set of possible outcomes of the contest. We first assume that the judges
rank the contestants according to a preference ordering. For example, suppose
judges 1 and 2 prefer A and judge 3 prefers B. Consider the decision problem of
the first judge. He has an ordering on the set X, namely A 1 B, and his goal
is to maximize the outcome with respect to this ordering. Hence, he is modeled
via the quantifier:

ϕJ
1 (p) = max

x∈(X,�1)
p(x)

The set X is equipped with a partial order and the max operator (X →
X) → P(X) describes the agent.

Another very interesting example of an agent with an important economic
interpretation, is the fixpoint operator, that we have already mentioned in
Sect. 2.3.

Example 8 (Keynesian Agent). Consider the last example but now assume that
judge 1 has different preferences: he prefers to support the winner of the contest.
He is only interested in voting for the winner of the contest and he has no
preferences for the contestants per se. The selection function of such a Keynesian
agent can be described by a fixpoint operator as

εK1 (p) = fix(p) = {x ∈ X | p(x) = x}.
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Interestingly, such an agent is best described by a selection function, rather than
via the corresponding quantifier

ϕK
1 (p) = {p(x) | p(x) = x}.

We note, it is perfectly possible to model such a Keynesian agent via standard
utility functions, attaching say utility 1 to good outcomes and 0 to the bad ones,
so that the judges maximize over the set of monetary payoffs. In this process
of attaching utilities to the decision, however, one has to compute the outcome
of the votes, then to check for the second and the third judges whether their
vote is in line with the outcome, and finally to attach the utilities. If, instead,
we use the fixpoint operator to represent the agent’s goals, no such calculation
is necessary.

As briefly discussed above, most functions p : X → X do not have a fixpoint
and the fixpoint operator will often give the empty set. For the purposes of
modeling a particular situation we might want to totalize the fixpoint operator
in different ways and describe what an agent might do in case that no fixpoint
exists. The fixpoint goals are far more interesting when we consider a game with
several agents with different concerns, for instance some with usual preferences
and some with fixpoint goals. We analyze such a game in [8].1

Let us conclude with another example of a reflexive agent.

Example 9 (Coordinating Agent). Consider two players, {0, 1}, who want to
coordinate, for instance, about the restaurant where to meet for lunch. The set
of actions X0 = X1 = {A,B} denotes the different restaurants at choice. The set
of outcomes R = X0 × X1 denotes the two restaurants where the agents might
end up. The fact that these two agents want to meet in the same restaurant can
be directly described by another sort of fixpoint operator:

εi(p) = {x ∈ Xi | x = (π1−i ◦ p)(x)}
where πi : X0 × X1 → Xi are the projection functions. The preferred move of
agent i is the one which leads him to the same place as the other agent 1 − i.

These two examples above show that the overall goal of the Keynesian and
the coordinating agent are similar, and can be captured by some variants of the
same fixpoint operators. Even though it is possible to use utility functions in
order to model these concerns in the particular examples, it is not obvious that
this commonality can be made explicit when modeling with utility functions.
In our more abstract formalization via higher-order functions, it is possible to
detect patterns across problems that are hard to find when one only looks at the
compiled level of utility maximization.

5 Conclusions

We introduced quantifiers and selection functions to model agents’ choices. We
illustrated that classical and standard approaches such as utility functions can
1 See also the working paper version [9] for more details.
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be instantiated in our framework as examples. Alternatives to optimization can
be similarly captured. Lastly, one can directly model at the level of these higher-
order functions. Overall, higher-order functions provide a possibility to abstrac-
tion of lower-level instantiations and by that realize commonality between seem-
ingly different approaches.

In this paper, we limit ourselves to show that quantifiers and selection func-
tions do capture different deterministic approaches. We already noted above that
decision-making under uncertainty such as expected utility theory can also be
represented in our framework. In fact, analogous to the deterministic case, dif-
ferent theories can be dealt with. What is more, there exist non-deterministic
and probabilistic extensions of the quantifiers and selection functions based on
monads. In future research we will explore how these constructs can be used to
model decisions under uncertainty and under risk more generally.

Also not explored in this paper but on our agenda for the future is the com-
position of selection functions which can be naturally defined. By that one can
consider the aggregation of different individuals, as for instance in the litera-
ture of social choice, or model individuals as “multiple selves”, as for instance in
[1,12], where different dimensions of an agent are aggregated and the different
dimensions taken together determine his final choices.

Lastly, and probably most importantly, selection functions are a building
block for game theoretic approaches built on high-order functions. Thus, the
ability to express various goals as discussed here scales to strategic interactions.
In [8] we show that goal functions such as the fixed point player introduced above
can be fruitfully applied to model voting contests. More generally, we show that
the Nash equilibrium extends to games based on quantifiers and selection func-
tions; we show that selection functions and quantifiers yield the same set of
equilibria in the case of max and argmax operators; but we also show that for
other classes of goal functions, such as the fixed point agent, quantifiers and
selection functions yield different equilibria. In fact, we show that the equilibria
induced by selection functions are a refinement of the equilbria induced by quan-
tifiers. As a last point, we also explore selection functions as a building block to
open games in [5,7,10]. Open games are a further abstraction based on category
theory. Selection functions are an essential component because as in this paper
they represent the individual agent’s goal function.
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