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Preface

The 5th International Conference on Algorithmic Decision Theory (ADT 2017), held in
October 2017 in Luxembourg, brought together researchers and practitioners coming
from areas as diverse as artificial intelligence, operations research, discrete mathe-
matics, theoretical computer science, decision theory, game theory, multiagent systems,
computational social choice, multi-criteria decision aiding, resource allocation,
matching, and argumentation theory. Their joint aim is to improve the theory and
practice of modern decision support. Previous ADT conferences were held in Venice,
Italy (2009); Piscataway, NJ, USA (2011); Brussels, Belgium (2013); and Lexington,
KY, USA (2015).

Among the scientific challenges the ADT community faces are difficult questions
such as how to elicit and aggregate big preference data, how to deal with combinatorial
structures and with partial or uncertain information, and how to manage distributed
decision making. In real-world decision making, such challenges are encountered in
various domains, for example in electronic commerce, recommender systems, argu-
mentation tools, network optimization (communication, transport, energy), risk
assessment and management, and e-government.

The papers in this volume were presented at ADT 2017. Each submission to ADT
2017 was peer-reviewed by at least three Program Committee (PC) members in a
double-blind fashion. Out of 45 submissions the PC decided to accept 25 papers for
oral presentation, giving an acceptance rate of about 55%. This volume contains 22
of these 25 accepted full papers. The other three accepted papers were submitted only
for presentation at the conference and are not contained in the proceedings:

– Khaled Belahcène, Christophe Labreuche, Nicolas Maudet, Vincent Mousseau, and
Wassila Ouerdane: An Efficient SAT Formulation for Learning Multicriteria
Non-compensatory Sorting Models

– Giuseppe De Marco: On Ambiguous Games under Imprecise Probabilities
– Dominik Peters: Single-Peakedness and Total Unimodularity for Multiwinner

Elections

In addition, the PC selected six short papers for poster presentation and the program
also included six peer-reviewed short papers written for the associated doctoral con-
sortium. Last but not least, this volume also contains the abstracts of the three invited
keynote speeches and the abstract of a tutorial presented at the doctoral consortium.

I am very grateful to Raymond Bisdorff for his unwearying efforts as local chair; to
Eleni Pratsini, Carmine Ventre, and Toby Walsh for accepting my invitation and giving
great keynote speeches at the conference; to Serge Gaspers for holding a wonderful
tutorial at the doctoral consortium; to Anja Rey for organizing the doctoral consortium;
to Alexis Tsoukiàs, Gerhard J. Woeginger, and Nick Mattei for their advice; to the
Program Committee and their additional reviewers for their help with selecting and
preparing the conference program; and to the many volunteers who helped in some way



or another. I also thank the authors for submitting and presenting their interesting recent
research results. And I thank our sponsors for their financial support: the Fonds
National de la Recherche, Luxembourg (FNR), the University of Luxembourg
(FSTC/CSC Research Unit), the CSC Interdisciplinary Lab for Intelligent and Adaptive
Systems (ILIAS), the ADT 2015 organizers (in particular, Judy Goldsmith from the
University of Kentucky, Lexington, KY, USA), the Advances in Preference Handling
Multidisciplinary Working Group affiliated to EURO, CNRS (France), and Springer.
I also very much appreciated using EasyChair for organizing the reviewing process and
preparing the proceedings.

Most notably, I thank my wife, Irene, and my daughters, Ella and Paula, for their
loving support during the months I was working as a program chair, having less time to
spend with them, and for still making my life such a joy.

July 2017 Jörg Rothe
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Algorithmic Decision Theory
and Cognitive IoT

Eleni Pratsini

IBM Research - Zurich, 8803 Rüschlikon, Switzerland
pra@zurich.ibm.com

Abstract. The Internet of Things is changing the way we interact with our
surroundings. It is estimated that the number of connected devices will grow to
21 billion by 2020. The IoT is generating an explosion of sensor data, most of it
is unstructured and multi-modal, requiring sophisticated techniques to analyze
and interpret. We can only keep up with the complexity and unpredictability of
this information through the use of cognitive computing systems that self-learn,
reason and automatically adjust to the surroundings. The enterprise that can
analyze the data on the fly and generate transformational decisions to constantly
adapt to the changing environment will be a leader in its field. Decision Theory
plays a key role in determining these transformational decisions, and our
techniques need to address the effects of the solution cycle, separating the
operator actions from the model. Through the use of examples, we will highlight
the differentiation and power of cognitive computing and decision theory in IoT,
and point to new research directions.

Keywords: Decision theory � Cognitive computing � IoT



Novel Mechanism Design Paradigms

Carmine Ventre

University of Essex, Colchester, UK
c.ventre@essex.ac.uk

http://csee.essex.ac.uk/acstaff/carven/

Abstract. The main difficulty of algorithm design is classically linked with
understanding the combinatorial structure of the optimization problem at hand.
However, this picture is by now outdated. The emergence of the Internet as
computing platform has, in fact, highlighted the presence of agents that selfishly
evaluate the outcome of computation and might not “follow the rules” if this
benefits them. Algorithms have now also to work in the presence of these selfish
interests, which are often in contrast with the ultimate objective of the com-
putation (e.g., optimality). The field of Algorithmic Mechanism Design has as
its main scope the realignment of the objective of the designer with those of the
selfish agents. “Good” mechanisms set the rules “properly” and guarantee that
agents have no interest in misguiding the mechanism towards the computation
of “wrong” (e.g., suboptimal) outcomes.

The great theoretical findings in the field have not been accompanied so far
by notable technological advances. The reasons behind this apparent failure can
be found in the assumptions that are often underlying either the modelling of the
problem at hand (e.g., full rationality of agents involved in the computation) or
the hypothesis needed for the theorems (e.g., the possibility to exchange money
at the end of the computation).

In this talk, I focus on some recent work aimed at building the theoretical
foundations for a more applied use of Algorithmic Mechanism Design. I re-
consider the role of money as ‘necessary evil’ and discuss ways to incorporate
real-world hypotheses in the mechanism design setting in order to reconcile
computation and incentives without the use of monetary transfers. I show how
these hypotheses are also sufficient to obtain “good” mechanisms for agents that
are not fully rational. Finally, as a complementary avenue towards pragmatic
mechanism design, I explore the definition of “subject model” needed for the
success of lab experiments devised by neuroscientists to measure awareness.

This work was partially supported by EPSRC under grant EP/M018113/1.



Deceased Organ Matching in Australia

Toby Walsh1,2

1 UNSW Sydney, Data61
tw@cse.unsw.edu.au

2 TU Berlin

Abstract. Despite efforts to increase the supply of organs from living donors,
most kidney transplants performed in Australia still come from deceased donors.
The age of these donated organs has increased substantially in recent decades as
the rate of fatal accidents on roads has fallen. The Organ and Tissue Authority in
Australia is therefore looking to design a new mechanism that better matches the
age of the organ to the age of the patient. I discuss the design, axiomatics and
performance of several candidate mechanisms that respect the special online
nature of this fair division problem.

Introduction

Kidney disease is a major problem in Australia. Thousands of people are on dialysis.
Many spend years waiting for a transplant, each costing the health care budget hun-
dreds of thousands of dollars. In addition, as dialysis takes up several days each week,
many are unable to work and depend on support from the state. The total cost to the
Australian economy runs into billions of dollars annually. In 2016, 85% of transplants
involved a kidney coming from a deceased person, whilst only 15% of transplants
came from a living donor. Whilst there has been considerable focus in the literature of
late on increasing the supply of organs by developing mechanisms for paired exchange,
only 2.5% of these living donations came from paired exchange. Most living donors
were a spouse, family member or friend of the recipient.

Organs coming from deceased people still provide the majority of all transplanted
kidneys. Many come from people killed in road traffic accidents. Matching such organs
to patients on the waiting list is becoming more challenging as roads become safer. The
mean age of donated organs has increased from 32 years in 1989 to 46 years in 2014.
Advances in medicine mean that doctors are also now willing to transplant older
kidneys. In 2014, the oldest organ transplanted came from a person who was 80 years
old. This compares to 1989, the first year for which records are available, when the
oldest organ transplated came from a person aged just 69. The Organ and Tissue
Authority of Australia, the government body charged with the task of allocating organs
to patients fairly and efficiently, is therefore looking to develop a new matching
mechanism. Their goal is to develop a new procedure which matches the age of the
patients and organs.



Organ Matching Mechanisms

The mechanism used at present in Australia does not explicitly take age of the patients or
organs into account. As a result, young organs will be offered to old patients, and old
organs to young patients. Neither are very desirable. Even if an old patient would like a
young organ, from a societal perspective, this is not a very good outcome. The old
patient will die from natural causes with an organ inside them that could have continued
to function in a younger patient. And transplanting an old organ into a young patient is
not a good outcome for both the individual or society. The graft will likely fail after a
few years, meaning the patient will need a new transplant. In addition, the patient’s
immune system will now be highly sensitized, so that a new match will be more difficult.

The Organ and Tissue Authority is looking therefore to develop a new mechanism
in which organs are ranked by the Kidney Donor Patient Index (KDPI). This is an
integer from 0 to 100 that is calculated from the age of the donor, and a number of other
factors like diabetic status. A donated organ with a KDPI of X% has an expected risk of
graft failure greater than X% of all donated organs. Similarly the Organ and Tissue
Authority wish to rank patients waiting transplant with the Expected Post-Transplant
Survival (EPTS) score. This is also an integer from 0 to 100 that is calculated from the
age of the recipient, and a number of other factors like diabetic status, and time on
dialysis. A patient on the waiting list with a lower EPTS is expected to have more years
of graft function from high-longevity kidneys compared to candidates with higher
EPTS scores. Our goal is to provide the Organ and Tissue Authority with a new
mechanism that is fair and efficient, matching organs so that the KDPI of an arriving
organ is as close as possible to the EPTS score of their allocated patient.

Other Applications

This work fits into a broader research programme to design mechanisms for resource
allocation problems that better reflect the complexity and richness of the real world [1,
2]. Unlike traditional resource allocation problems [3], one of the fundamental features
of the deceased organ matching problem is that it is online. We do not know when
organs will arrive to be match. And we must match and transplant them shortly after
they arrive, before we know what organs or patients will arrive in the future. At the end
of the year, we could find an optimal allocation. However, we do not have the luxury of
waiting till the end of the year as organs must be transplanted immediately. There are
many other domains where resources are allocated in a similar online manner. A food
bank might start allocating and distributing food to charities soon after it is donated [4].
An airport must start allocating landing slots before all demands are known. A particle
accelerator might start allocating beam time before all requests have come in. A uni-
versity might allocate rooms to students for the current term, not knowing what rooms
might be wanted in future terms. This work offers a case study in how we can
efficiently and fairly solve such online allocation problems. We study axiomatic
properties of such online fair division problems, as well as run experiments on real
world organ data [5]. Axiomatic analysis covers such properties as fairness and

XIV T. Walsh



efficiency (e.g. [6–11]), as well as strategic behaviour and manipulation (e.g. [12–18]).
Insights from this research may prove valuable in a range of other domains. In future,
we plan to identify and study phase transition behaviour [19–24] which has proved
valuable in a wide range of computational domains [25–33] including social choice
[34–36].
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An Introduction to Parameterized Complexity
with Applications in Algorithmic

Decision Theory

Serge Gaspers

UNSW Sydney, Sydney, Australia
sergeg@cse.unsw.edu.au

Data61, CSIRO, Canberra

Abstract. The main motivation for parameterized complexity is that in many
applied settings, the difficulty of solving a problem does not merely depend on
the size of the instance, but on other parameters of the instance as well. It
enables a much more fine-grained complexity analysis than the classical theory
around NP-hardness. In this talk, we will see some of the basic algorithmic
techniques for taking advantage of small parameters of the input and briefly
discuss fixed-parameter intractability. The concepts will be illustrated with
studies of computational problems in game theory, combinatorial game theory,
voting, resource allocation, and matching markets.

In parameterized complexity [3, 4], also known as multivariate complexity theory [6],
we equip the instances of a computational problem with a parameter k that depends on
the instance. The parameter could be the number of agents or candidates, the treewidth
of the input graph, the largest length of a preference list, etc. We say that a parame-
terized problem is fixed-parameter tractable if there is an algorithm solving it in time
f ðkÞNOð1Þ, where N is the size of the input instance and f is an arbitrary computable
function. Note that the superpolynomial part of the running time depends only on the
parameter and not on N. This is in contrast to undesirable running times of the form
Nf ðkÞ, which are polynomial for every fixed value of the parameter, but where the
degree of this polynomial grows with increasing k.

We will focus on algorithmic techniques that are particularly important in algo-
rithmic decision theory, including branching algorithms, kernelization [10], integer
linear programming [8], and parameterizing by the number of numbers [7]. They will
be illustrated with applications in computational social choice [1, 9], game theory [5],
combinatorial games [2], and stable matchings [11].

References

1. Betzler, N., Bredereck, R., Chen, J., Niedermeier, R.: Studies in computational aspects of
voting. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) The Multivariate
Algorithmic Revolution and Beyond. LNCS, vol. 7370, pp. 318–363. Springer, Heidelberg
(2012)

http://orcid.org/0000-0002-6947-9238


2. Bonnet, É., Gaspers, S., Lambilliotte, A., Rümmele, S., Saffidine, S.: The parameterized
complexity of positional games. In: Proceedings of the 44th International Colloquium on
Automata, Languages and Programming (ICALP 2017), Track A, Schloss Dagstuhl –

Leibniz-Zentrum für Informatik, LIPIcs 80, pp. 90:1–90:14 (2017)
3. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,

Pilipczuk, M., Saurabh. S.: Parameterized Algorithms. Springer (2015)
4. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer (2013)
5. Estivill-Castro, V., Parsa, M.: Computing Nash equilibria gets harder: New results show

hardness even for parameterized complexity. In: Downey, R., Manyem, P. (eds.) Proceed-
ings of the 15th Computing: The Australasian Theory Symposium (CATS 2009). CRPIT,
vol. 94, pp. 81–87. Australian Computer Society (2009)

6. Fellows, M.R., Gaspers, S., Rosamond, F.: Multivariate complexity theory. In: Blum, E.K.,
Aho, A.V. (eds.) Computer Science: The Hardware, Software and Heart of It, Chapter 13,
pp. 269–293. Springer (2011)

7. Fellows, M.R., Gaspers, S., Rosamond, F.A.: Parameterizing by the number of numbers.
Theory Comput. Syst. 50(4), 675–693 (2012)

8. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res.
8(4), 538–548 (1983)

9. Lindner, C., Rothe, J.: Fixed-parameter tractability and parameterized complexity, applied to
problems from computational social choice. In: Holder, A. (ed.) Mathematical Programming
Glossary. INFORMS Computing Society (2008)

10. Lokshtanov, D., Misra, N., Saurabh, S.: Kernelization – preprocessing with a guarantee. In:
Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) The Multivariate Algorithmic
Revolution and Beyond. LNCS, vol. 7370, pp. 129–161. Springer, Heidelberg (2012)

11. Schlotter, I.: Parameterized complexity of graph modification and stable matching problems.
Ph.D. thesis, Budapest University of Technology and Economics (2010)

An Introduction to Parameterized Complexity XIX



Contents

Full Papers (Oral Presentations)

Constructive Preference Elicitation for Multiple Users with Setwise
Max-margin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Stefano Teso, Andrea Passerini, and Paolo Viappiani

Interactive Thompson Sampling for Multi-objective Multi-armed Bandits . . . . 18
Diederik M. Roijers, Luisa M. Zintgraf, and Ann Nowé

Towards a Protocol for Inferring Preferences Using Majority-rule
Sorting Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Alexandru-Liviu Olteanu, Patrick Meyer, Ann Barcomb,
and Nicolas Jullien

Dominance Based Monte Carlo Algorithm for Preference Elicitation
in the Multi-criteria Sorting Problem: Some Performance Tests . . . . . . . . . . . 50

Tom Denat and Meltem Öztürk

A Heuristic Approach to Test the Compatibility of a Preference Information
with a Choquet Integral Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Lucie Galand and Brice Mayag

An Alternative View of Importance Indices for Multichoice Games. . . . . . . . 81
Mustapha Ridaoui, Michel Grabisch, and Christophe Labreuche

Anytime Algorithms for Adaptive Robust Optimization with OWA
and WOWA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Nadjet Bourdache and Patrice Perny

Fair Proportional Representation Problems with Mixture Operators . . . . . . . . 108
Hugo Gilbert

On the Complexity of Chamberlin-Courant on Almost Structured Profiles . . . 124
Neeldhara Misra, Chinmay Sonar, and P.R. Vaidyanathan

Learning Agents for Iterative Voting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Stéphane Airiau, Umberto Grandi, and Filipo Studzinski Perotto

The Complexity of Campaigning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Cory Siler, Luke Harold Miles, and Judy Goldsmith

http://dx.doi.org/10.1007/978-3-319-67504-6_1
http://dx.doi.org/10.1007/978-3-319-67504-6_1
http://dx.doi.org/10.1007/978-3-319-67504-6_2
http://dx.doi.org/10.1007/978-3-319-67504-6_3
http://dx.doi.org/10.1007/978-3-319-67504-6_3
http://dx.doi.org/10.1007/978-3-319-67504-6_4
http://dx.doi.org/10.1007/978-3-319-67504-6_4
http://dx.doi.org/10.1007/978-3-319-67504-6_5
http://dx.doi.org/10.1007/978-3-319-67504-6_5
http://dx.doi.org/10.1007/978-3-319-67504-6_6
http://dx.doi.org/10.1007/978-3-319-67504-6_7
http://dx.doi.org/10.1007/978-3-319-67504-6_7
http://dx.doi.org/10.1007/978-3-319-67504-6_8
http://dx.doi.org/10.1007/978-3-319-67504-6_9
http://dx.doi.org/10.1007/978-3-319-67504-6_10
http://dx.doi.org/10.1007/978-3-319-67504-6_11


Some Axiomatic and Algorithmic Perspectives on the Social
Ranking Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Stefano Moretti and Meltem Öztürk

Complexity of Group Identification with Partial Information. . . . . . . . . . . . . 182
Gábor Erdélyi, Christian Reger, and Yongjie Yang

Multi-criteria Coalition Formation Games. . . . . . . . . . . . . . . . . . . . . . . . . . 197
Ayumi Igarashi and Diederik M. Roijers

Precise Complexity of the Core in Dichotomous and Additive
Hedonic Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Dominik Peters

The Subset Sum Game Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Astrid Pieterse and Gerhard J. Woeginger

Higher-Order Decision Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Jules Hedges, Paulo Oliva, Evguenia Shprits, Viktor Winschel,
and Philipp Zahn

On Simplified Group Activity Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Andreas Darmann, Janosch Döcker, Britta Dorn, Jérôme Lang,
and Sebastian Schneckenburger

Equilibria in Sequential Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Haris Aziz, Paul Goldberg, and Toby Walsh

Obtaining a Proportional Allocation by Deleting Items. . . . . . . . . . . . . . . . . 284
Britta Dorn, Ronald de Haan, and Ildikó Schlotter

Possible and Necessary Allocations Under Serial Dictatorship
with Incomplete Preference Lists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

Katarína Cechlárová, Tamás Fleiner, and Ildikó Schlotter

Stable Roommate with Narcissistic, Single-Peaked,
and Single-Crossing Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Robert Bredereck, Jiehua Chen, Ugo Paavo Finnendahl,
and Rolf Niedermeier

Short Papers (Poster Presentations)

Compact Preference Representation via Fuzzy Constraints
in Stable Matching Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Maria Silvia Pini, Francesca Rossi, and Kristen Brent Venable

XXII Contents

http://dx.doi.org/10.1007/978-3-319-67504-6_12
http://dx.doi.org/10.1007/978-3-319-67504-6_12
http://dx.doi.org/10.1007/978-3-319-67504-6_13
http://dx.doi.org/10.1007/978-3-319-67504-6_14
http://dx.doi.org/10.1007/978-3-319-67504-6_15
http://dx.doi.org/10.1007/978-3-319-67504-6_15
http://dx.doi.org/10.1007/978-3-319-67504-6_16
http://dx.doi.org/10.1007/978-3-319-67504-6_17
http://dx.doi.org/10.1007/978-3-319-67504-6_18
http://dx.doi.org/10.1007/978-3-319-67504-6_19
http://dx.doi.org/10.1007/978-3-319-67504-6_20
http://dx.doi.org/10.1007/978-3-319-67504-6_21
http://dx.doi.org/10.1007/978-3-319-67504-6_21
http://dx.doi.org/10.1007/978-3-319-67504-6_22
http://dx.doi.org/10.1007/978-3-319-67504-6_22
http://dx.doi.org/10.1007/978-3-319-67504-6_23
http://dx.doi.org/10.1007/978-3-319-67504-6_23


Determining Nash Equilibria for Stochastic Positional Games
with Discounted Payoffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Dmitrii Lozovanu and Stefan Pickl

A Qualitative Decision-Making Approach Overlapping Argumentation
and Social Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Pierre Bisquert, Madalina Croitoru, and Nikos Karanikolas

Efficient Satisfiability Verification for Conditional Importance Networks . . . . 350
Zachary J. Oster

Discovery of Energy Network Topology from Uncertain Flow
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Wilfried Joseph Ehounou, Dominique Barth, and Arnaud De Moissac

Measuring Border Security for Resource Allocation. . . . . . . . . . . . . . . . . . . 361
Paul B. Kantor

Doctoral Consortium

Incremental Preference Elicitation for Collective Decision Making . . . . . . . . 369
Margot Calbrix

Logic-Based Merging in Fragments of Classical Logic with Inputs
from Social Choice Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Adrian Haret

Distances in Voting and Committee Election Rules for General
Preference Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Lisa Rey

Profile Distances and Optimal Manipulation of Voting Rules . . . . . . . . . . . . 383
Tobias Alexander Hogrebe

Strategy-Proofness of Scoring Allocation Correspondences
under Social Welfare Maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Anna Maria Kerkmann

Expanding the Fair Division Framework by Agents
with Altruistic Influence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

Dominique Christine Komander

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Contents XXIII

http://dx.doi.org/10.1007/978-3-319-67504-6_24
http://dx.doi.org/10.1007/978-3-319-67504-6_24
http://dx.doi.org/10.1007/978-3-319-67504-6_25
http://dx.doi.org/10.1007/978-3-319-67504-6_25
http://dx.doi.org/10.1007/978-3-319-67504-6_26
http://dx.doi.org/10.1007/978-3-319-67504-6_27
http://dx.doi.org/10.1007/978-3-319-67504-6_27
http://dx.doi.org/10.1007/978-3-319-67504-6_28
http://dx.doi.org/10.1007/978-3-319-67504-6_29
http://dx.doi.org/10.1007/978-3-319-67504-6_30
http://dx.doi.org/10.1007/978-3-319-67504-6_30
http://dx.doi.org/10.1007/978-3-319-67504-6_31
http://dx.doi.org/10.1007/978-3-319-67504-6_31
http://dx.doi.org/10.1007/978-3-319-67504-6
http://dx.doi.org/10.1007/978-3-319-67504-6
http://dx.doi.org/10.1007/978-3-319-67504-6
http://dx.doi.org/10.1007/978-3-319-67504-6
http://dx.doi.org/10.1007/978-3-319-67504-6


Full Papers (Oral Presentations)



Constructive Preference Elicitation for Multiple
Users with Setwise Max-margin

Stefano Teso1, Andrea Passerini2, and Paolo Viappiani3(B)

1 KU Leuven, Leuven, Belgium
stefano.teso@cs.kuleuven.be

2 University of Trento, Trento, Italy
andrea.passerini@unitn.it

3 Sorbonne Universités, UPMC Univ Paris 06 CNRS, LIP6 UMR 7606, Paris, France
paolo.viappiani@lip6.fr

Abstract. In this paper we consider the problem of simultaneously elic-
iting the preferences of a group of users in an interactive way. We focus
on constructive recommendation tasks, where the instance to be recom-
mended should be synthesized by searching in a constrained configuration
space rather than choosing among a set of pre-determined options. We
adopt a setwise max-margin optimization method, that can be viewed as
a generalization of max-margin learning to sets, supporting the identifica-
tion of informative questions and encouraging sparsity in the parameter
space. We extend setwise max-margin to multiple users and we provide
strategies for choosing the user to be queried next and identifying an
informative query to ask. At each stage of the interaction, each user is
associated with a set of parameter weights (a sort of alternative options
for the unknown user utility) that can be used to identify “similar” users
and to propagate preference information between them. We present sim-
ulation results evaluating the effectiveness of our procedure, showing that
our approach compares favorably with respect to straightforward adap-
tations in a multi-user setting of elicitation methods conceived for single
users.

1 Introduction

Preferences are a widely studied concept in artificial intelligence [17]; the design
of effective methods for preference elicitation is a particularly important topic in
order to support the development of personalized systems such as recommender
systems, electronic commerce applications and personal agents.

Recently, a number of techniques have been proposed allowing to incremen-
tally elicit the preferences of a user by asking specifically chosen questions. These
methods include Bayesian elicitation techniques [4,12,23] and regret-based meth-
ods [5,24]. The advantage of the Bayesian approaches is that they can iden-
tify informative queries in a principled manner and as well handle inconsisten-
cies in preference feedback, but they require computationally intensive Bayesian
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ported by CARITRO Foundation grant 2014.0372.
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updates; on the other hand regret-based methods can efficiently deal with larger
configuration spaces but assume that all preference information is “noiseless”.

Recently, setwise max-margin optimization has been proposed [22] as a para-
digm for elicitation that has the following distinctive characteristics: (1) it allows
to determine informative queries, (2) it can efficiently deal with large configura-
tion spaces, (3) it is robust to user inconsistencies in preference feedback, and
(4) it can be coupled with regularization terms if sparsity is required.

The focus of works in preference elicitation has been so far on acquiring
the preferences of a single user. However, we claim that real systems - such as
electronic commerce websites - do not usually interact with a user in isolation,
but may be accessed by several users at the same time. Moreover, typical users
of a web application may only provide very little information to the system. This
means that it is crucial to exploit as much as possible the available preference
information and to leverage the knowledge about the preferences of similar users.

In this paper we consider the problem of preference elicitation in the case
that a number of users are simultaneously present. We focus on constructive rec-
ommendation problems, where the task is that of arranging novel configurations
subject to feasibility constraints and user preferences, rather than selecting an
item among a set of candidates. This setting rules out standard collaborative
filtering techniques [21], where recommendations are propagated between users
based on shared ratings over the same or similar objects. We instead rely on a
notion of similarity in model space, i.e. similar users have similar utility func-
tions, and propagate information while simultaneously learning user utilities. We
extend setwise max-margin preference elicitation to the multi-user setting, by: (i)
defining a user similarity as a kernel over user utility models; (ii) measuring the
reliability of the learned model for each user; (iii) defining for each user an aggre-
gate utility function combining her utility model with those of the other users,
weighted by their respective reliability and similarity to the user being recom-
mended. We show how to incorporate these aspects in the setwise max-margin
optimization problem, while retaining the formulation as mixed integer-linear
problem (MILP) which allows for efficient computation.

Our experimental evaluation on both syntetic and real datasets shows how a
simple procedure iteratively querying the least elicited user succeeds in improving
recommendation quality with respect to independent elicitation of users.

2 Related Work

The basic idea of max-margin is as follows. The utility (often assumed to be
linear) is determined by a set of parameter weights (unknown to the system).
The currently known preferences of the user are encoded by a set of inequalities
(typically stating the preference for an alternative over another one) on the
feasible parameters; a shared non-negative margin is introduced as a decision
variable that is maximized in the objective function. Noisy feedback can be
addressed by relaxing the constraints using slack variables and adding a penalty
term in the objective for violated constraints.
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This intuition has been adopted for preference learning by different authors
in essentially the same way. In particular, Gajos and Weld [10] proposed the
use of maxmargin optimization for learning preferences in the context of person-
alized user interfaces using a volumetric heuristic to choose the next question
to ask. More recently, maxmargin methods have been used to assess preferences
expressed in terms of Choquet capacities [1]. These works are limited by the lack
of a principled way to determine informative queries and offer low scalability.

In our work we follow the ideas of [22] that extends maxmargin to produce
a set of solutions (instead of a single one); in this way we can use such a set to
devise a query to ask to user. Setwise maxmargin can then provide an efficient
method for interactive preference elicitation handling user inconsistencies (the
preference reported by the user may not be always true) and particularly suited
to large configuration spaces. One main advantage is that determination of the
next question (that is conflated into the problem of generating a set of diverse
recommendations as in [23,24] in different paradigms) is the output of an opti-
mization problem and therefore much more scalable that ad-hoc heuristic that
need to iterate over available items.

While preference elicitation is a well studied topic in the community of arti-
ficial intelligence and algorithmic decision theory, the elicitation of preferences
in a multi user setting is still underexplored, with the exception of [13]. However
some recent works in the computational social choice community [3,8,15,25]
have considered the problem of eliciting interactively the preferences of several
users (agents) in order to determine a choice for the group. The difference with
our work is that these approaches aim at establishing a best choice for the whole
community (according to a voting rule that is fixed in advance); instead we
wish to make recommendations that are personalized to each user while exploit-
ing similarity between users’ preferences. Some authors have instead considered
how to combine interactive elicitation with collaborative filtering for predicting
ratings given to items [9]; however this differs form our setting as we consider
multi attribute utilities.

The idea of pooling together information about related learning tasks is not
new. Our work is related to multi-task approaches (see for instance [2]), where
information (data or parameters) is transferred beteween similar tasks to reduce
the labelling effort required to achieve good generalization. Like in our work, task
similarities are often expressed with a kernel function [20]. The multi-task active
learning approach of Saha et al. [19] is perhaps the most closely related: in both
methods the task similarity is estimated during the learning process. However,
Saha et al. assume that labelled examples are received from some external source,
and therefore do not propose any query selection strategy. On the contrary, we
rely on the proven setwise max-margin approach for selecting informative queries
especially designed for interaction with human decision makers.

3 Background

Notation. We indicate scalars x in italics, column vectors x in bold, and sets X
in calligraphic letters. Important scalar constants N,M,K are upper-case. The
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Table 1. Notation used throughout the paper.

N, M ∈ N Number of attributes and users, respectively

K ∈ N Cardinality of the query sets

X ⊆ {0, 1}N Set of feasible configurations

wu
∗ ∈ R

N
+ True preferences of user u ∈ [M ]

xu
∗ ∈ X One of the configurations most preferred by user u

wu
1 , . . . , wu

K ∈ R
N
+ Estimated preferences of user u

xu
1 , . . . , xu

K ∈ X Query set made to user u

xu ∈ X Recommendation made to user u

v(u) ≥ 0 Variability within {wu
i }

k(u, y) ≥ 0 Similarity between {wu
i } and {wy

i }
α := (α, β, γ) ∈ R

3
+ Hyperparameters of the mu-swmm algorithm

inner product between vectors is written as 〈w,x〉 =
∑

i wixi, the Euclidean (�2)
norm as ‖x‖ :=

√∑
i x

2
i , and the �1 norm as ‖x‖1 :=

∑
i |xi|. We abbreviate the

set {wu
i }Ki=1 as {wu

i } whenever the range for index i is clear from the context, and
the set {1, . . . , n} as [n]. Table 1 summarizes the most frequently used symbols.

Constructive setting. We consider a feasible set of products X populated by
multi-attribute configurations x = (x1, . . . , xN ) over N attributes. In this pre-
sentation we will concentrate on 0–1 attributes only, a common choice in the
preference elicitation literature [12,23]. Categorical attributes can be handled
by using a one-hot encoding. Linearly dependent numerical attributes can be
dealt with too; we refer the reader to the detailed discussion in [22] for space
constraints. In contrast to standard recommendation, the set of products X is not
explicitly provided, but rather defined by a set of hard (feasibility) constraints.
These are assumed to be linear in the attributes. This setup is rather general,
and naturally allows to encode both arithmetical and logical constraints. For
instance, under the usual mapping true �→ 1 and false �→ 0, the logical disjunc-
tion between two 0–1 attributes x1 ∨x2 can be written as x1 +x2 ≥ 1. Similarly,
logical implication x1 ⇒ x2 can be translated to (1 − x1) + x2 ≥ 1.

Following previous work on preference elicitation [12,23], user preferences
are modeled as additive utility functions [14]. The true user preferences are
represented by a non-negative weight vector w∗ ∈ R

N
+ , and the utility (i.e.

subjective quality) of a feasible configuration x is given by the inner product
〈w∗,x〉. The true most preferred configurations, i.e. with maximal true utility,
are analogously indicated as x∗. In the remainder all weight vectors (both true
and estimated) will be assumed to be non-negative and bounded, i.e. for every
attribute z ∈ [N ] there exist two finite non-negative constants w�

z and w⊥
z

that bound wz from above and below, respectively. Bipolar preferences, i.e. user
dislikes, can be modeled by negated attributes 1−xz, z∈ [N ], if needed.
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Algorithm 1. The swmm single-user algorithm. T is the maximum number of
iterations, K the query set size, and α the hyperparameters.
1: procedure swmm (M , K, T , α)
2: D ← ∅
3: for t = 1, . . . , T do
4: {wi}, {xi} ← Solve OP1(D, K, α)
5: the user selects x+ from {xi}
6: D ← D ∪ {x+ � x− : x− was not selected}
7: w, x ← Solve OP1(D, 1, α)

The single-user swmm algorithm. The true user preferences w∗ are not directly
observed, and must be estimated. The swmm algorithm tracks an estimate of
the preferences at all times, iteratively improving it through user interaction.

The pseudocode of swmm is reported in Algorithm 1. At every iteration, the
algorithm selects K query configurations x1, . . . ,xK ∈ X based on the previously
collected user feedback D (line 4). The query set {xi} is presented to the user,
who is invited to select a most preferred configuration x+ from the K alternatives
(line 5). The cases where the user selects a sub-par item are accounted for in the
mathematical formulation, as discussed later on. The user choice is interpreted
as a set of pairwise ranking constraints {x+ � x− : x− was not selected}, and
added to D1 (line 6). At this point, a recommendation x is computed by lever-
aging all user feedback and presented to the user (line 7). If the user is satisfied
with the suggested product, the procedure ends. Otherwise it is repeated, up to
a maximum number of rounds T .

The primary goal of any preference elicitation system is to recover a satisfac-
tory recommendation with minimal user effort. The choice of queries is crucial
for reaching this goal [4]: the number of queries that can be afforded is small,
thus every query should be chosen to be as “informative” as possible. Bayesian
approaches to preference elicitation [12,23] model uncertainty about user prefer-
ences as a probability distribution over utility weights w, and select queries that
maximize expected informativeness, as measured by expected value of informa-
tion (EVOI) [7] or its approximations. However, even the approximate strategies
for EVOI maximization [23] are extremely time consuming and cannot scale to
fully constructive scenarios as the ones we are dealing with here [22].

The swmm query selection strategy addresses this problem by taking a space
decomposition perspective inspired by max-margin ideas. The algorithm jointly
learns a set of weight vectors, each representing a candidate utility function, and
a set of candidate configurations, one for each weight vector, maximizing diver-
sity between the vectors, consistency with the available feedback, and quality of
each configuration according to its corresponding weight vector.

1 In [22], the authors convert user choices to pairwise ranking constraints using a cus-
tom procedure. Here we opted for a straightforward winner-vs-others representation,
as described in the main text. This modification did not appear to significantly alter
the performance of the swmm algorithm in our simulations (data not show).
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More formally, user preferences are estimated by a set of K weight vectors
w1, . . . ,wK ∈ R

N
+ . Each weight vector wi is required to agree with all collected

feedback D. More precisely, the weights {wi} are chosen as to provide the largest
possible separation margin, i.e. for all i ∈ [K] and (x+ � x−) ∈ D the utility
difference 〈wi,x

+ − x−〉 should be as large as possible. Mistakes are absorbed
by slack variables ε, as customary. Query configurations x1, . . . ,xK are chosen
according to two criteria: each xi should have maximal utility with respect to the
associated weight vector wi, and the K products should be as diverse as possible.
Diversity is encouraged by requiring that each weight vector wi separates its
associated configuration xi from all the others configurations in the query set
with a high margin, i.e. for all i, j ∈ [K] with i �= j, 〈wi,xi − xj〉 should be
larger than the margin.

The previous discussion leads directly to the quadratic version of the swmm
optimization problem over the variables μ, {wi,xi, εi}:

max μ − α
∑k

i=1 ‖εi‖1 − β
∑k

i=1 ‖wi‖1 + γ
∑k

i=1〈wi,xi〉 (1)

s.t. 〈wi,x
+
s − x−

s 〉 ≥ μ − εis ∀i ∈ [k],x+
s � x−

s ∈ D (2)
〈wi,xi − xj〉 ≥ μ ∀i, j ∈ [k], i �= j (3)

μ ≥ 0, w⊥ ≤ wi ≤ w�, xi ∈ X , εi ≥ 0 ∀i ∈ [k] (4)

The non-negative variable μ ∈ R+ is the separation margin. The objective has
four parts: the first part drives the maximization of the margin μ; the second
minimizes the total sum of the ranking errors {εi}; the third one introduces
an �1 regularizer encouraging sparsity of the learned weights; finally, the last
part requires the configurations {xi} to have high utility with respect to the
associated {wi}. The hyperparameters α, β, γ ≥ 0 modulate the contributions
of the various parts. We refer to this optimization problem as OP1.

Constraint 2 encourages consistency of the learned weights with respect to
the collected user feedback; ranking mistakes are absorbed by the slack variables
{εi}. Constraint 3 enforces the generated configurations to be as diverse as
possible with respect to the corresponding weight vectors. Finally, Constraint 4
ensures that all variables lie in the corresponding feasible sets.

Unfortunately the above optimization problem is quadratic (due to Con-
straint 3) and difficult to optimize directly. Here we use the tight mixed-integer
linear formulation proposed in [22], which can be solved using off-the-shelf MILP
solvers. In that paper, the MILP formulation was shown to perform well empir-
ically, reaching or outperforming two state-of-the-art Bayesian approaches.

4 Multi-user Setwise Max-margin

Now we generalize the swmm algorithm to simultaneously elicit the preferences of
M users. Our goal is to exploit preferences shared by similar users for computing
queries and recommendations. As a consequence, the cognitive effort of query
answering can be distributed (fairly) among users, while maintaining the same
or better recommendation quality.
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Algorithm 2. The mu-swmm algorithm. M is the number of users; T , K and
α are as in Algorithm 1.
1: procedure mu-swmm (M , K, T , α)
2: v(u) ← 1, k(u, y) ← I(u = y)
3: for u = 1, . . . , K do
4: {wu

i } ← Solve OP2(u, 0, k, ∅, K, α)
5: Du ← ∅
6: for t = 1, . . . , T do
7: select u ∈ argminu |Du| uniformly at random
8: {wu

i }, {xi} ← Solve OP2(u, v, k, Du, K, α)
9: user u selects x+ from {xi}

10: Du ← Du ∪ {x+ � x− : x− was not selected}
11: update v(·) and k(·, ·) based on {w1

i }, . . . , {wM
i } using Eq. 5 and 6

12: wu, xu ← Solve OP2(u, v, k, Du, 1, α)

Our strategy, dubbed mu-swmm, is outlined in Algorithm 2. At every itera-
tion, mu-swmm picks a user u to be queried, based on some criterion (discussed
later on). Then it proceeds like swmm, by selecting a query set {xu

i } for user
u, adding the feedback to Du, and suggesting a recommendation xu. Once a
user has received a satisfactory recommendation, it is removed from the pool of
selectable users and skipped at later iterations2. The algorithm iterates until all
users are satisfied, or T iterations are reached.

We remark that only one user is queried at every iteration. The mu-swmm
algorithm relies on OP2, a modification of OP1 where the utility of configu-
rations is determined both by the estimated preferences of the selected user u,
as well as those of similar (non-selected) users y �= u. This “aggregate utility”
takes into consideration both the degree of similarity of u to the other users y
and how good their preference estimates are. This avoids interferences due to
similar users with unreliable preference estimates.

In order to implement this strategy, we must solve several problems: how to
quantify the quality of the estimated preferences of a user; how to measure the
similarity between two users; how to appropriately inject the information about
other users into swmm optimization problem OP1; and finally how to select the
user to be queried. We discuss these points separately.

Measuring how much we know about a user. Ideally, one could quantify how
much is known about a user u by using the regret

(
max
x

〈wu
∗ ,x〉

)
− 〈wu

∗ ,xu〉

i.e. the difference in true utility between a true most preferred recommendation
xu

∗ and the current recommendation xu. Unfortunately, computing the regret
requires to observe wu

∗ , so we must rely on surrogate measures.

2 This detail is omitted from Algorithm 2 for simplicity.
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A simple surrogate is given by the number of times a user was queried, i.e.
the number of collected user responses |Du|. This quantity, however, may give
a simplistic estimate: in general, two users who replied to the same number of
queries may have widely different regrets, depending on how difficult their pref-
erences are to learn. This is especially true when Du is redundant, i.e. contains
repeated or similar constraints.

Taking care of redundancy requires us to look at the geometry of the problem.
In particular, we use the spread of the weight vectors {wu

i } computed during the
query selection. As informative feedback is added to Du, the space of optimal
weight vectors shrinks, and so does the distance between the vectors wu

1 , . . . ,wu
K .

More formally, we define the spread of user u as follows:

v(u) := c
∑

i�=j

‖wu
i − wu

j ‖2 (5)

where the constant c is chosen so that v(u) ∈ [0, 1]. In other words, the spread
is simply the empirical variance of the estimated weights {wu

i }. Note that the
spread is much less affected by redundant constraints than |Du| 3.

Evaluating user similarity. The most general mechanism for defining similarities
between objects are kernels [20]. In particular, two users are similar when their
estimated preferences are. While a variety of kernels could be used, we propose
using a Gaussian kernel, similar to [19,26]:

k(u, y) := exp

⎛

⎝−τ
∑

i,j

‖wu
i − wy

j‖2
⎞

⎠ (6)

Here τ ∈ R+ is an “inverse temperature” parameter controlling the shape of the
kernel. Note that, similarly to [19], the kernel is not fixed: rather, it is adapted
dynamically as soon as new user weight estimates {wu

i } are computed.

Transferring preferences across users. Given a user u, we want to alter its esti-
mated utility 〈wu

i ,x〉, i = 1, . . . , K, based on the preferences of other similar,
well-known users. We propose the following aggregate utility:

(1 − v(u))〈wu
i ,x〉 + v(u)

∑

y �=u

(1 − v(y))k(u, y)〈wy,x〉 (7)

This is the convex combination of the utility of user u (first term) and a weighted
combination of the utilities of the other users. Intuitively, the more u is known
(e.g. at the end of the elicitation procedure) the closer v(u) is to zero, and
the first term dominates, and vice versa. The contributions of the users y �= u
are decided, again, by how much is known about them (1 − v(y)) and by their

3 A constraint repeated l times instantiates l slack variables in OP1, thus becoming
“harder” by a factor of αl. The effect however is much softer than for |Du|.
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similarity to user u, measured by the kernel k(u, y). This formulation implies
that there is little influence from users whose preferences are not well known.
It is straightforward to introduce Eq. 7 into OP1. By rearranging the terms, the
aggregate utility can be written as:

〈awu
i + b,x〉 with

{
a = (1 − v(u))
b = v(u)

∑
y �=u(1 − v(y))k(u, y)wy

Note that this is a linear transformation of the original, single-user utility. As
shown in [22], it is easy to incorporate linear transformations of this kind into
the swmm optimization problem. In our case, we need to rewrite Constraint 4 as:

aw⊥ + b ≤ wi ≤ aw� + b ∀i ∈ [K]

We use OP2 to refer to the modified optimization problem; in Algorithm 2
we use Solve OP2(u, v, k,Du,K,α) to denote a solution of the problem with
respect to user u, spread v, kernel k, input preferences Du, set cardinality K,
and using α = (α, β, γ) as coefficients in the objective function.

The spread v(·), the user similarity k(·, ·), and the transformation parameters
(a, b) are adapted whenever new feedback is received. The update is computa-
tionally inexpensive: whenever user u provides a response, only k(u, ·) (i.e. a
single row of the Gram matrix) needs to be recomputed.

Fairness-based user selection. The missing piece is how to choose a user at
every iteration. Many strategies may be adopted, depending on the objective. In
multi-user preference elicitation we are most concerned about fair distribution
of queries among users, so to minimize the individual cognitive effort. Therefore
we propose to select the user u that received the least queries so far:

u ∈ argmin
u

|Du|

with ties broken at random. Although other strategies can be conceived, this
simple strategy was observed to work well in our simulations, as shown in Sect. 5.
Additionally, we found empirically that it is surprisingly difficult to beat: all of
the more sophisticated strategies we tested failed to improve on it (data not
shown due to space constraints).

5 Empirical Analysis

We studied the behavior of mu-swmm on a synthetic and a realistic preference
elicitation tasks4, both taken from [22]. Our goal is to provide empirical answers
to these research questions: (Q1) Does aggregating the utility of similar users, as
per Eq. 7, reduce the cognitive effort required to produce good recommendations?

4 Our experimental setup is available at: https://github.com/stefanoteso/
musm-adt17.

https://github.com/stefanoteso/musm-adt17
https://github.com/stefanoteso/musm-adt17


12 S. Teso et al.

(Q2) Is the number of queries |Du| a reasonable user selection criterion? (Q3)
How does the algorithm behave when there are no common preferences to be
shared between users?

Our experimental setup follow closely the ones of [11,22]. We randomly gen-
erated 20 groups of M = 20 users each using a hierarchical sampling procedure.
Each group was split into C clusters, with ≈ M/C users each. The users within
a cluster are chosen to have similar preferences, simulating different sub-groups
of users. For instance, in a PC recommendation scenario, there may be a cluster
of users who prefer energy efficient laptops and a cluster of power users who need
more capable machines. This cluster structure enables preference information to
be transferred. Note that the clusters are not known to mu-swmm beforehand :
the algorithm estimates them dynamically from the collected user replies.

For each cluster, we sampled the centroid from a uniform distribution in
[1, 100]. The true preferences of the users in the cluster were obtained by per-
turbing the centroid randomly according to a normal distribution of mean 0 and
standard deviation 25/6. As done in [22], we considered users with both sparse
and dense weight vectors: for sparse users, 80% of the entries of the true weight
vector wu

∗ were set to zero.
The user responses were simulated with a Plackett-Luce model [16,18], where

the probability of a particular answer is dictated by a Boltzmann distribution:

P (user chooses xi from {x1, . . . ,xK}) =
exp(λ〈w∗,xi))

∑K
j=1 exp(λ〈w∗,xj〉)

with λ fixed to 1 as in [11,22]. For K = 2, this model reduces to the classical
Bradley-Terry model for pairwise ranking feedback [6].

Synthetic setting. The first experiment is performed on the synthetic problem
introduced in [22]. In this setting the space of products X is taken to be the
Cartesian product of r categorical attributes, each having r possible values. We
use a one-hot encoding to represent products, for a total of r2 0–1 variables. Here
we focus on the r = 4 case with r2 = 16 variables and rr = 256 total products.
While simple, this problem proved to be non-trivial [22].

We compared the mu-swmm algorithm against a straightforward multi-user
adaptation of swmm where all users are elicited independently. We also included
in the comparison an unrealistic variant of mu-swmm where the user to be
queried is selected according to the maximal true regret (i.e. assuming that an
oracle gives us this information). We assessed the ability of mu-swmm to prop-
agate preference information between users by varying the number of clusters
C in {1, 2, 5}. We also varied the query set size K ∈ {2, 3}. The kernel inverse
temperature parameter τ was fixed to 2 in all experiments.

The results for sparse users can be found in Fig. 1. All algorithms were run
for T = 100 elicitation rounds, i.e. 5 queries per user on average (x-axis). We
report the median performance of the three recommenders across the 20 groups.
The performance on a group is the average regret over all M users (y-axis). As
above, the regret is simply the difference in true utility between a best product
x∗ and the actual recommendation x, i.e. 〈wu

∗ ,x∗ − x〉.
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The plots show clearly that when users are similar enough, transferring pref-
erences across them (mu-swmm, red line) is better than no transfer at all (swmm,
gray line). This result is not obvious, since the kernel k(·, ·) is estimated dynam-
ically from the collected feedback to reflect the hidden cluster structure of the
users. The regret-based user selection strategy (blue line) provides an upper
bound on the performance of mu-swmm.

Understandably, the amount of improvement depends on C. The simplis-
tic C = 1 case showcases the potential of preference transfer: both multi-user
methods converge much faster than swmm. In the more realistic C = 2 case, mu-
swmm takes about half the number of queries than swmm to reach zero median
regret. In particular, the number of per-user queries drops from more than 5
to about 3.3 for K = 2, and from 4 to less than 2 for K = 3. For C = 5, i.e.
4 users per cluster, both mu-swmm and the regret-based strategy are closer to
the baseline. The results for dense users in Fig. 2 follow the same trend, despite
elicitation being more difficult in this case.

In general, mu-swmm fares better than or similarly to the no-transfer base-
line. Notably, enlarging the query set size K from 2 to 3 further improves the
performance of mu-swmm: more ranking constraints are collected at each iter-
ation, thus improving the estimate of the kernel k(·, ·) and preference transfer
among similar users. These results validate Eq. 7 and allow us to answer affir-
matively to question Q1.

They also partially answer Q2. Clearly selecting the user with the minimal
number of queries does improve on the baseline, as shown in Figs. 1 and 2. In
addition, we checked whether it distributes queries fairly among users. Indeed, in
the C = 2, K = 2 case the std. dev. in dataset size |Du| between users is rather
small (1.47) for the mu-swmm user selection strategy, and 2.58 for regret-based
user selection. The other cases behave similarly (data not shown).

PC recommendation. In the second experiment we consider a realistic PC con-
figuration task, as in [22]. The recommender is required to suggest a fully
customized PC. A PC configuration is defined by 7 categorical attributes—
type (laptop, desktop or tower), manufacturer, CPU model, monitor size, RAM
amount, storage amount—and a linearly dependent numerical attribute, the
price. The attributes are mutually constrained via Horn clauses, expressing state-
ments like “manufacturer X does not sell CPUs of brand Y”, for a total of 16
Horn constraints. The product space has about 700,000 distinct configurations.

In this experiment we increased the number of average queries per user to 10,
due to the very large number of products. We also restricted ourselves to sparse
users, as in [22], which are more realistic in this setting: a typical customer will
be indifferent about many aspects of a PC configuration.

The performance of the three methods, with K = 2, can be found in Fig. 3.
Again, mu-swmm behaves better than the baseline for all values of C ∈ {1, 2, 5},
while the degree of improvement depends on C. For instance, for C = 2 the regret
achieved after 10 queries per user is much closer to the performance upper bound
(blue line) than to the baseline (gray). These results highlight that, despite
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Fig. 1. Results for the synthetic setting with 1, 2, 5 clusters of sparse users, for K = 2, 3.
The three lines represent the average regret over users of the swmm baseline (grey line),
mu-swmm with the fair user selection strategy (red), and mu-swmm with the irrealistic
regret-based user selection strategy (blue). The shaded area represents the standard
deviation. Best viewed in color. (Color figure online)

Fig. 2. Results for the synthetic setting with 1, 2, 5 clusters of dense users, for K = 2, 3.
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Fig. 3. Results for PC recommendation with 1, 2, 5 clusters of sparse users, for K = 2.

Fig. 4. Results for the C = M = 20 case for the synthetic setting with sparse users
(left column), synthetic setting with dense users (middle column) and for PC recom-
mendation with sparse users (right column). Here K = 2.

the complexity of this recommendation task, user similarity is still estimated
sufficiently well for preference transfer to work well.

Worst-case behavior. To answer Q3, we studied mu-swmm when there is only
one user in each cluster. This artificial setting is intended to verify the robust-
ness of mu-swmm against missing user similarities. We ran both the synthetic
recommendation (for both sparse and dense users) and the PC recommendation
settings (sparse users only) with C = M = 20 and K = 2; results in Fig. 4.

In the two most difficult settings (i.e. synthetic with dense users and PC), mu-
swmm does not perform worse than the baseline. Unfortunately, in the remaining
case (synthetic with sparse users) mu-swmm performs worse than the baseline,
and so does the regret-based user selection strategy. This is probably due to
the kernel estimation taking too long to converge to a suitable value, therefore
propagating preferences between unrelated users. In order to avoid this kind
of interference, it may make sense to reduce the effect of the kernel, especially
during the first elicitation rounds, for instance by making the inverse temperature
τ increase during the process. We will explore this possibility in a future work.
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6 Conclusion

We consider the problem of simultaneously eliciting the preferences of differ-
ent users. The goal is to provide high utility recommendations to each user by
considering all available preference information. A key idea is that, by asking
informative questions and leveraging using similarities, we can produce good
recommendations while distributing cognitive effort fairly among users.

This work tackles the problem of multi-user preference elicitation by gen-
eralizing setwise max-margin [22], thereby inheriting its core features. Namely,
our method can gracefully deal with inconsistencies in user feedback and it can
work in constructive recommendation scenarios, where the product to be rec-
ommended is synthesized by searching a large constrained configuration space
rather than selected from a set of enumerated options.

A key novelty of this work is that our method can effectively propagate prefer-
ence information from user to user. Our method estimates a kernel (similarity)
function between users utility models, as well as a reliability estimate of the
learned model for each user. Preferences of similar, well-known users are com-
bined into an aggregate utility function, which is incorporated into the setwise
max-margin optimization problem while retaining an efficient MILP formulation.

We tested our approach on a synthetic and a realistic recommendation task.
The experimental results show that our method is able to dynamically recover
the similarity between users from their responses, and to exploit it to propagate
preference information between more and less known users. When applied to suf-
ficiently similar users, our method often performs much better than a straightfor-
ward adaptation of single-user setwise max-margin. On the other hand, it fares
well in cases where users are not similar at all. Finally, our simple user selection
strategy minimizes the cognitive effort of individual users by distributing queries
fairly among them, and was shown to work well in practice.
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Abstract. In multi-objective reinforcement learning (MORL), much
attention is paid to generating optimal solution sets for unknown utility
functions of users, based on the stochastic reward vectors only. In online
MORL on the other hand, the agent will often be able to elicit prefer-
ences from the user, enabling it to learn about the utility function of its
user directly. In this paper, we study online MORL with user interaction
employing the multi-objective multi-armed bandit (MOMAB) setting —
perhaps the most fundamental MORL setting. We use Bayesian learning
algorithms to learn about the environment and the user simultaneously.
Specifically, we propose two algorithms: Utility-MAP UCB (umap-UCB)
and Interactive Thompson Sampling (ITS), and show empirically that
the performance of these algorithms in terms of regret closely approxi-
mates the regret of UCB and regular Thompson sampling provided with
the ground truth utility function of the user from the start, and that ITS
outperforms umap-UCB.

1 Introduction

Many real-world decision problems require learning about the outcomes of differ-
ent alternatives, either by interacting with the real world, or simulations thereof.
When the outcomes can be measured in terms of a single scalar objective, such
problems can be modelled as a multi-armed bandit (MAB) [2]. However, many
real-world decision problems are further complicated by the presence of mul-
tiple (possibly conflicting) objectives [13]. For example, an agent learning the
best strategy to deploy ambulances from a set of alternatives, may want to
minimise average response time, while also minimising fuel cost and the stress
for the drivers. For such problems, MABs can be extended to multi-objective
multi-armed bandits (MOMABs) [3,9].

Research on MOMABs has hitherto focussed on settings in which no pref-
erence information w.r.t. the available trade-offs between the values in different
objectives of the available alternatives is provided by the user during learn-
ing [3,18,22]. However, in many situations, this is a limiting assumption. E.g.,
in the example of ambulance deployment strategies, the ambulances will have
to be deployed (i.e., a strategy will have to be executed) while still learning
about the expected value of the different strategies in the different objectives.
By providing preferences of the responsible human decision makers, i.e., the
c© Springer International Publishing AG 2017
J. Rothe (Ed.): ADT 2017, LNAI 10576, pp. 18–34, 2017.
DOI: 10.1007/978-3-319-67504-6 2
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management of the ambulance service, w.r.t. the attainable trade-offs between
objectives, the agent can focus its learning on those strategies that the user
finds most appealing. Other examples of multi-objective learning problems in
which interaction with the user can be beneficial are: the exploration of preven-
tive strategies for epidemics using computationally expensive simulations under
objectives like minimising morbidity, the number of people infected, and the
costs of the preventive strategy; and future household robots that will need to
learn the preferences of their users with respect to the outcomes (performance,
speed, energy usage) of alternative ways to perform a household task.

In this paper, we focus on such online learning problems, in which the agent
can query the user via pairwise comparisons (following, e.g., [6,15,23]). Specif-
ically, we focus on the prevalent case that a user’s utility function is linear, in
the context of MOMABs.

We propose two new Bayesian learning algorithms for MOMABs that learn
about the environment and the user’s utility function simultaneously. Specifi-
cally, we build upon two popular classes of algorithms for single-objective MABs,
UCB1 [2] and Thompson sampling [16], to propose utility-MAP UCB (umap-
UCB) and Interactive Thompson Sampling (ITS). Both algorithms (umap-UCB
and ITS) pose pairwise comparison queries to the user. As a UCB-algorithm,
umap-UCB uses explicit exploration bonuses. To decide when to query the user,
it computes the MAP of the utility function to determine the arm correspond-
ing to the best mean estimate, and the arm corresponding to the best mean
estimate plus exploration bonus. When these two best arms are different, umap-
UCB queries the user by asking her to make a pairwise comparison between
the estimated mean reward vectors of the two arms. ITS also elicits preferences
via pairwise comparisons; it draws two sets of samples from the posteriors of the
mean reward vectors of the arms, and the posterior of the utility function. When
these two sets of samples have different best arms, ITS queries the user.

We test umap-UCB and ITS empirically, and find that the performance of
these algorithms in terms of regret closely approximates the regret of UCB and
regular Thompson sampling equipped from the beginning with the ground truth
utility function of the user. When comparing umap-UCB and ITS, we find that
ITS outperforms umap-UCB both in terms of minimising user regret, and in
terms of minimising the number of comparisons that the user is asked to make.

2 Background

Before introducing our setting, we first provide the necessary background on
scalar multi-armed bandits and multi-objective decision making in general.

2.1 Multi-armed Bandits

Definition 1. A scalar multi-armed bandit (MAB) [1,2,16] is a tuple 〈A,P〉
where



20 D.M. Roijers et al.

Algorithm 1. UCB

x̄a ← initialise with single pull, ra for each
a
na ← 1 for each a
for t = |A|, ..., T do

a(t) ← arg max
a

(x̄a + c(x̄a, na, t))

r(t) ← play a(t) and observe reward

x̄a(t) ← na(t)x̄a(t)+r(t)

na(t)+1

na(t)++

Algorithm 2. Thompson Sampling

Input: A prior for the reward distribu-
tions

D ← ∅; // observed data

for t = 1, ..., T do
θt ← draw sample from P (θt|D)

a(t) ← arg max
a

EP (r|a,θt)[r]

r(t) ← play a(t) and observe reward
append (r(t), a(t)) to D

– A is a set of actions or arms, and
– P is a set of probability distributions, Pa(r) : R → [0, 1] over scalar rewards,

r, associated with each arm a ∈ A.

We refer to the the mean reward of an arm as μa = EPa
[r] =

∫ ∞
−∞ rPa(r)dr, to

the optimal reward as the mean reward of the best arm μ∗ = maxa μa, and to
the expected regret of pulling an arm, a, once as Δa = μ∗ − μa.

The goal of an agent interacting with a MAB is to maximise the expected cumu-
lative reward, E[

∑T
t=1 μa(t)], where T is the time horizon, and a(t) is the arm

pulled at time t. However, at the start, the agent knows nothing about P, and
can only obtain information about the reward distributions by pulling an arm
a(t) each timestep, obtaining a sample from the corresponding Pa(t). In the MAB
literature, this reward maximisation is typically defined via the minimisation of
the equivalent measure of expected total regret, i.e., the amount of reward lost
due to not playing the optimal arm in each step.

Definition 2. The expected total regret of pulling a sequence of arms for each
timestep between t = 1 and a time horizon T (following the definition of [1]), is

E

[
T∑

t=1

μ∗ − μa(t)

]

=
∑

a

Δa E[na(T )],

where na(T ) is the number of times arm a is pulled until timestep T .

In the literature, a popular choice [1,2] for P is Bernoulli distributions, i.e.,
distributions with only two possible outcomes: 1 (dubbed ‘success’), according
to a probability pa ∈ [0, 1] or 0 (dubbed ‘failure’) with a probability 1 − pa. The
expected reward for a Bernoulli distribution is μa = pa.

The two most popular classes of algorithms for Bernoulli-distributed MABs
are UCB and Thompson Sampling. UCB [2,7], provided in a general form in
Algorithm 1, keeps estimates of the means of arms x̄a, and uses upper confidence
bounds c(x̄a, na, t) for exploration. I.e., at each round the arm is pulled with
the highest value for the mean plus exploration bonus, x̄a + c(x̄a, na, t). This
exploration bonus is defined so that it goes down with the number of pulls of an
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arm, na, and up slowly with the total number of pulls of all arms, t. There are
many variants of UCB that differ in its definition of c(x̄a, na, t), ranging from
the original UCB1 bound [2],

c1(x̄a, na, t) =
√

2 ln t

na
, (1)

to the upper confidence bound derived from Chernoff’s bound [7]:

cch(x̄a, na, t) =

√
2x̄a ln

√
t

na
+

2 ln
√

t

na
. (2)

Thompson sampling (Algorithm 2) on the other hand, maintains posterior
distributions for the parameters of the reward distributions for each arm a ∈ A,
and pulls arms based on samples from this posterior. Bernoulli distributions
have only one parameter, μa. The typical prior for these μa are beta distribu-
tions, with a single count for the number of successes and failures: β(1, 1) for
each arm. The posterior can be calculated by simply counting the number of
successes, i.e., the number of times the reward was 1, sa(t), and the number
of failures fa(t) = na(t) − sa(t), leading to a posterior over the means of each
arm, β(sa(t) + 1, fa(t) + 1). We denote a sample from the joint posterior of all
arms as:

θt = 〈θt
1...θ

t
|A|〉 ∼ P (θt|D) =

∏

a∈A
β(sa(t) + 1, fa(t) + 1).

At each iteration, Thompson sampling draws such a sample and pulls the arm
corresponding to arg maxa EP (r|a,θt)[r]. Because these θt

a are samples from the
posteriors of the mean for each arm, a, the arm corresponding to arg maxa θt

a

represents the maximum expected reward (for that set of samples).

2.2 Multi-objective Decision Making

In single-objective MABs, an agent must find the alternative a that maximises
the expected reward. In multi-objective problems however, there are n objectives,
that are all desirable. Hence, the stochastic rewards, r(t), and the expected
rewards for each alternative μa are vector-valued.

Definition 3. A multi-objective multi-armed bandit (MAB) [3,18,22] is a tuple
〈A,P〉 where

– A is a finite set of actions or arms, and
– P is a set of probability distributions, Pa(r) : Rd → [0, 1] over vector-valued

rewards r of length d, associated with each arm a ∈ A.

As a result, rather than having a single optimal alternative, there can be multiple
arms whose value vectors are optimal for different preferences that users may
have with respect to the objectives. Such preferences can be expressed using



22 D.M. Roijers et al.

a utility function u(μ,w) that is parameterised by a parameter vector w and
returns the scalarized value of μ. Following the single-objective literature, we
make use of Bernoulli distributions (as a worst-case scenario of distributions
with high variance). Specifically, we assume that the reward for an arm, a, is
a vector of d independent Bernoulli distributions. This probability distribution
can thus be compactly described with a vector of means μa; for each objective,
samples can be drawn independently using the mean for that objective.

When the parameter vector w is known beforehand, it is possible to a priori
scalarise the decision problem and apply standard single-objective algorithms
like UCB or Thompson sampling. However, often we do not know w at the start
of learning.

Fig. 1. The offline MORL decision support scenario.

Much multi-objective reinforcement learning (MORL) research assumes that
u(μ,w) is unknown throughout the learning phase, and there will only be access
to the user in a separate selection phase. We refer to this scenario as the offline
MORL decision support scenario, depicted in Fig. 1, in which an agent provides
decision support to the user by presenting her with a set of alternatives at the
beginning of the selection phase. In the learning phase, we thus need an algorithm
that computes a set of policies containing at least one arm with the maximal
scalarised value for each possible w. Which alternatives, i.e., arms, should be
included in this set depends on what we know about the utility function u. A
highly prevalent case is that u is linear.

Definition 4. A linear utility function is a weighted sum of the values in each
objective, μ, of an alternative, i.e.,

u(μ,w) = w · μ, (3)

where w is a vector of non-negative weights that sum to 1, and express the
preferences of the user w.r.t. each objective. Please note that we assume that all
objectives are desirable, and thus contribute positively to the utility.

In the offline MORL decision support scenario (Fig. 1) where the utility is
an unknown linear utility function, a sufficient solution is the convex hull (CH),
the set of all undominated policies under a linear scalarisation:

CH(A) = {a ∈ A | ∃w∀(a′ ∈ A) : w · μa ≥ w · μa′}.
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When computation time is abundant, and there is enough time until the
final decision needs to be made, it can be feasible to do MORL in an offline
manner. This has the advantage that the interaction with the user can be done
separately after learning, and therefore typically more efficiently (i.e., with fewer
interactions with the user). However, as we have indicated in the introduction,
there are also situations in which decisions have to be made on a timescale that
is relatively short compared to the computation time needed to evaluate arms.
Furthermore, it can also be highly important to use the available computation
time as efficiently as possible. This is for example the case when evaluating and
selecting different alternative preventive strategies against an emerging epidemic
using computationally expensive simulations with computational epidemiological
models [11], in the presence of multiple objectives like infection ratio, morbidity
and economic damage. In other words, offline learning is not possible when there
is no time to perform a separate learning phase before acting. In such cases, we
need a different approach.

3 Online Interactive Learning with MOMABs

In this paper we focus on the case that we can have interaction with the user
during learning, and that the policies executed during learning are important,
i.e., accumulate regret. This leads to the online interactive MORL decision sup-
port scenario, which is schematically depicted in Fig. 2. In this scenario, learning
and execution of the policy happens simultaneously in the learning phase. Fur-
thermore, we have to interact with the environment as well as the user during
learning, in order to maximise the rewards (or minimise the regret). Finally, it
can happen that after some amount of time (and/or number of interactions),
the learning will stop, and we will move to an execution only phase. This hap-
pens, e.g., when the computational capacity of simulations is needed for different
learning problems, and/or the user becomes unavailable for further input.

Fig. 2. The online interactive MORL decision support scenario.

In the online interactive MORL decision support scenario, we aim to minimise
user regret, i.e., the amount of utility that is lost due to playing suboptimal arms.
We define the value of the optimal arm as

μ∗ = arg max
a

w∗ · μa,
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where w∗ are the ground truth weights of a linear utility function (Definition 4).
Similar to single-objective MABs, we define the expected (in our case vector-
valued) regret of pulling an arm, a, once as Δa = μ∗ − μa.

Definition 5. The expected total user regret of pulling a sequence of arms for
each timestep between t = 1 and a time horizon T in a MOMAB is

E

[

w∗ · (
T∑

t=1

μ∗ − μa(t))

]

=
∑

a

(w∗ · Δa) E[na(T )],

where na(T ) is the number of times arm a is pulled until timestep T .

4 Algorithms

To minimise user regret (Definition 5) in the online interactive MORL setting
(Fig. 2), we must interact both with the environment and with the user. Similar
to single-objective MABs, we need to learn about the reward, r, but in addition,
we must also learn about u and w, as u(E[

∑
tr(t)],w) is what we ultimately aim

to optimise.
Following Zoghi et al. [23] — who study relative bandits; which is an adjacent

but different model, in which the reward (vectors) cannot be observed — we
assume that we can interact with the user once before (or after) pulling an
arm, in the form of a pairwise comparison [6,15,23]. Contrary to [23] however,
we present the user with (estimations of) expected reward vectors, rather than
(data resulting from) single arm pulls. We thus ask users to compare two vectors,
x and y, and observe whether the user prefers x to y, denoted x � y. At timestep
t, we thus have access to a data set, C, of j of such preference pairs, where j ≤ t
is the number of comparisons performed until t:

C = {(xi � yi)}j
i=1. (4)

There is no predetermined budget on the number of comparisons a user can
make, other than the finite-time horizon, T , which also holds for the number of
arm pulls.

Because we assume that u(μ,w) is a linear utility function (Definition 4),
and data in the form of Eq. 4, we can estimate w∗ using logistic regression [5].
Specifically, as we propose Bayesian methods, we employ Bayesian logistic regres-
sion [5], enabling us to obtain both a maximum a posteriori estimate of the true
weights w∗, w̄, as well as a posterior distribution over the true weights.

Along with minimising user regret, we aim to not query the user excessively,
as querying the user costs time and can be experienced as bothersome. In other
words, we aim to propose algorithms in which both the expected user regret
per timestep, as well as the expected number of queries posed to the user per
timestep, goes down steeply as time progresses. In order to achieve this, we build
on two state-of-the-art classes of algorithms: UCB (Algorithm 1), and Thompson
Sampling (Algorithm 2) for single-objective bandits.
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4.1 Utility MAP–UCB

Our first algorithm, that we call utility-MAP UCB (umap-UCB) (Algorithm 3),
is built upon UCB. In UCB for single-objective MABs (Algorithm 1), actions are
chosen based on the estimates of the means for each arm x̄a plus an exploration
bonus, which together form an upper confidence bound on the true means of
the arms. When applying the same schema to MOMABs we face the following
challenges: (1) that the user has a linear utility function (Eq. 3) with an unknown
weight parameter w∗; (2) that we must decide how to select which action to play,
given the current MAP estimate of the weight vector, w̄; and (3) that we want
to estimate w∗, while the number of queries posed to the user per timestep goes
down steeply as time progresses (without sacrificing too much user regret).

First, let us focus on how to estimate w∗. Because we assume a linear utility
function (Eq. 3) and pairwise comparisons as data (Eq. 4), we use Bayesian logis-
tic regression to estimate the weights.1 We thus define a prior on the weights.

Algorithm 3. Utility–MAP UCB

Input: A parameter prior on the distri-
bution of w.

C ← ∅; // previous comparisons

x̄a ← initialise with single pull, ra, for
each a
na←1 for each a

for t = |A|, ..., T do
w̄ ← Psimplex(MAP (w|C))

ā∗ ← arg max
a

w̄ · x̄a

a(t) ← arg max
a

(w̄·x̄a + c(w̄, x̄a, na, t))

r(t) ← play a(t) and observe reward

x̄a(t) ← na(t)x̄a(t)+r(t)

na(t)+1

na(t)++
if ā∗ �= a(t) then

perform user comparison for x̄ā∗

and x̄a(t) and add result ( (x̄ā∗ �
x̄a(t)) or (x̄a(t)�x̄ā∗)) to C

Algorithm 4. Interactive Thompson
Sampling

Input: Parameter priors on reward distri-
butions, and on w distribution.

C ← ∅; // previous comparisons

D ← ∅; // observed reward data

for t = 1, ..., T do
ηt
1, η

t
2 ← draw 2 samples from

P (ηt|C)

θt
1, θ

t
2 ← draw 2 samples from P (θt|D)

a1(t) ← arg max
a

EP (r,w|a,θt
1,ηt

1)
[w · r]

a2(t) ← arg max
a

EP (r,w|a,θt
2,ηt

2)
[w · r]

r(t) ← play a1(t) and observe reward
append (r(t), a1(t)) to D
if a1(t) �= a2(t) then

μ̃1,a1(t)
← EP (r|a1(t),θ

t
1)

[r]

μ̃2,a2(t)
← EP (r|a2(t),θ

t
2)

[r]
perform user comparison for
μ̃1,a1(t)

and μ̃2,a2(t)
and add result

((μ̃1,a1(t)
�μ̃2,a2(t)

) or
(μ̃2,a2(t)

�μ̃1,a1(t)
)) to C

1 We note that logistic regression based on maximum likelihood can lead to problems
in earlier iterations of umap-UCB when there is little data available. We observed this
empirically. Specifically, in earlier iterations umap-UCB with ML logistic regression
instead of Bayesian logistic regression makes an estimate, w̄, with a sheer-infinite
weight on one objective, such that no comparison will be asked from the user again.
This can be prevented with a reasonable choice of prior in Bayesian logistic regres-
sion.
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Specifically, we use a multi-variate Gaussian prior N (w|μ0,Σ0). We use η0 as a
shorthand for 〈μ0,Σ0〉. Given a prior distribution on w, and user comparisons
C as defined in Eq. 4, we obtain a maximum a posteriori (MAP) estimate at the
beginning of each iteration using Bayesian logistic regression. However, this esti-
mate might not adhere to the simplex constraints. Therefore, we back-project
the MAP estimate of the weights onto the simplex for d objectives, leading to the
estimate w̄ = Psimplex(MAP (w|C)). The fact that w̄ adheres to the simplex
constraints is important for UCB-algorithms, as the exploration bonuses, and
the regret-bounds derived from it, use the assumption that the reward samples
are within the interval [0, 1] (after applying the utility function).

After umap-UCB obtains a w̄ at the beginning of an iteration, it can proceed
to pick actions. To select which arm to play, a(t), umap-UCB follows the standard
UCB schema, using the expected scalarised reward, w̄ · x̄a plus an exploration
bonus c:

a(t) ← arg max
a

(w̄ · x̄a + c(w̄, x̄a, na, t)) .

We note that we can only use w̄ · x̄a as an estimate for the scalarised means
because we assume that the estimates of w∗ are independent of the estimates
of μa.2 In our setting this assumption holds if the user can objectively compare
two vectors, without being influenced by which arms have been pulled in previous
iterations, and which comparisons have taken place in previous iterations. We
believe this to be a realistic assumption for pairwise comparisons.

The exploration bonus, c(w̄, x̄a, na, t), can be implemented in many ways.
We note that when w∗ places all the weight on a single objective, the MOMAB
becomes a scalar MAB, which is Bernoulli-distributed (the only difference being
that the agent does not know w∗). We therefore use exploration bonuses that
reduce to those for single-objective MABs in this case. Specifically, we use either
c(w̄, x̄a, na, t) = c1(w̄ · x̄a, na, t) (i.e., UCB1, Eq. 1) or c(w̄, x̄a, na, t) = cch(w̄ ·
x̄a, na, t) (Eq. 2). We note that for weights that are more evenly distributed,
tighter bounds may hold, e.g., w∗ with equal weights for each objective, and
d → ∞, leads to normally distributed scalarised rewards, due to the central
limit theorem. However, as the estimation of w̄ is not exact, obtaining a tighter
bound is far from trivial, and we leave this open for future work.

Having defined how umap-UCB picks arms to perform, we now define when
and which comparison queries umap-UCB poses to the user. We note that we
want to decrease the number of queries steeply over time, but never to stop
querying (as we may at any point in time, have an estimate w̄ that favours a
suboptimal arm). For this reason, we tie in the querying of the user with the
exploration mechanism of UCB, which has a similar purpose, i.e., it aims to pull
arms so often as to keep on exploring, yet bound the regret of pulling those arms,
by rapidly decreasing the number of suboptimal arm pulls over time. To achieve
this, umap-UCB explicitly calculates the arm, ā∗, with best estimated scalarised
mean without exploration bonus, w̄ · x̄a, at the beginning of each iteration.

2
E[x · y] = E[x] · E[y], iff x and y are independent.
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When ā∗ is different from a(t), we query the user for a comparison between the
estimates of the means (without exploration bonuses), x̄ā∗ , and x̄a(t).

Umap-UCB has two important characteristics. Firstly, the algorithm will
never stop querying the user. Therefore, if the current estimate of the weights w̄
favours the wrong arm, as time — and with time the accuracy of the estimated
means for each a — increases, more and more comparison data will be gener-
ated that will eventually lead the MAP estimate of the weights to favour the arm
which is best for the ground truth weights, w∗.3 Furthermore, the expected num-
ber of queries is equal to the number of suboptimal arm-pulls, which decreases
rapidly over time, and is bounded (in finite time) via the exploration bonuses
inherited from the single-objective UCB algorithms that umap-UCB builds upon.

4.2 Interactive Thompson Sampling

For single-objective MABs, UCB algorithms (Algorithm 1) are in practice often
outperformed [7] by Thomspon sampling [16] (Algorithm 2). Thompson sampling
works according to the following schema: first, it starts with a prior distribution
on the parameters of the reward distribution of each arm. Then, it gathers data
by drawing samples from the posterior distributions of these parameters, and
pulling the arm with the maximal expected rewards according to the sampled
parameters for each arm.

We build upon Thompson sampling for MABs by not only sampling from
the posteriors of the parameters of the reward distributions, but also those of
the user preferences w. We call this algorithm Interactive Thompson Sampling
(ITS) (Algorithm 4).

ITS starts each iteration by drawing two independent samples both from the
posteriors for the parameters of the reward distributions of each arm (θt

1 and
θt
2), and from the posterior for the parameters of the utility function (ηt

1 and ηt
2).

Without loss of generality, we use the first sample to determine the action to
play, a1(t). We note that for our assumptions (independent weights and rewards,
Gaussian weights, Bernoulli reward vectors), we can compute which action to
select as:

arg max
a

EP (r,w|a,θt
1,ηt

1)
[w · r] = arg max

a

(
w̃1 · μ̃1,a

)
,

where w̃1 (corresponding to ηt
1) is the sampled weights vector, and μ̃1,a (corre-

sponding to θt
1) is the sampled means vector for the rewards of arm a. Again, we

assume that w̃1 and μ̃1,a can be sampled from their resp. posterior distributions
independently.

The second sample is used solely to determine whether and how to interact
with the user. ITS determines which actions both samples would select, a1(t) and
a2(t). If a2(t) differs from a1(t), ITS queries the user for a comparison between
the expected reward according to the first sample μ̃1,a1(t) to that of the second
sample μ̃2,a2(t).

3 Please note that for obtaining 0 regret, it is not necessary that the MAP estimate
w̄ is identical to the ground truth w∗, as long as it leads to selecting the same arm.
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As the posteriors of both distributions (rewards and weights) become increas-
ingly certain, the number of suboptimal arm-pulls made by ITS goes down. Fur-
thermore, the number of times that two sets of samples from these distributions
disagree on which action to take — and thus the number of queries to the user
— goes down as well.

5 Experiments

In order to test the performance of umap-UCB and Interactive Thompson Sam-
pling, in terms of user regret (Definition 5) and the number of queries posed to
the user, we compare our algorithms on two types of problems: double circle
MOMABs in Sect. 5.2 and random MOMABs in Sect. 5.3. We use two variants
of umap-UCB: umap-UCB1, using c(w̄, x̄a, na, t) = c1(w̄ · x̄a, na, t) (Eq. 1), and
umap-UCB-ch using c(w̄, x̄a, na, t) = cch(w̄ · x̄a, na, t) (Eq. 2).

Besides our own algorithms, we also compare umap-UCB and ITS to single-
objective UCB and Thompson sampling provided with the ground truth utility
functions of the user. Note that his is an unfair comparison, in the sense that
our setting does not actually allow algorithms to know the ground truth utility
functions from the beginning. However, it does provide insight into how much
utility is lost due to having to estimate the utility function of the user via pairwise
comparisons.

5.1 Problems and Experimental Setup

Fig. 3. Examples of double circle (left) and
random (right) MOMABs.

To test the performance of our
algorithms, we use two types of
MOMABs: the double circle and
random, examples of which are
depicted in Fig. 3. Both prob-
lems have arms, a, associated
with distributions over vector-
valued rewards with mean vectors
μa. We use independent Bernoulli
distributions for each objective i,
with a mean μi

a.
A double circle is a two-

objective MOMAB that is deterministically generated from two parameters: a
number of ticks nα, and a reduction parameter pr ∈ [0, 1). A double circle
places the mean vectors μa of its arms on two quarter circles. The first is the
upper quarter of the unit circle (i.e., the circle with radius 1), and the second
that of a circle with radius pr. On each of the upper quadrants of these circles,
nα arms are evenly distributed. The double circle for nα = 10 and pr = 0.7 is
depicted in Fig. 3 (left).
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A random instance is generated randomly using the number of objectives d,
and the number of arms, |A|, as parameters. First, |A| samples, μ′

a, are drawn
from a d-dimensional Gaussian distribution N (μ′

a|μrnd, Σrnd), where μrnd = 1
(vector of ones), and Σrnd is a diagonal matrix with σ2

rnd = (12 )2 for each element
on the diagonal. This set is normalised such that all means fall into the d-
dimensional unit hypercube, μa ∈ [0, 1]d. Figure 3 (right) is an example random
MOMAB with d = 2 and |A| = 30.

Both umap-UCB and ITS require a prior on the weights, w, of the linear
user utility function. We employ a multi-variate Gaussian prior, parameterised
as η0 = 〈μ0,Σ0〉. We use the same prior for both algorithms for all experiments.
We assume μ is the vector of equal weights, i.e., 1

d for each objective, and for
the covariance matrix Σ0 we use a diagonal matrix with σ2

cov = (13 )2.
In all experiments, we measure the regret according to Definition 5, i.e., for

a single run, when an algorithm pulls an arm a, w∗ · Δa, is added to the total
accumulated regret.

When querying the user for a comparison between two vectors, x and y, we
first calculate the true utility u(x) and u(y), to which we then add random noise
εx and εy, independently drawn from a normal distribution N (0, σ2

noise). We then
compare u(x) + εx to u(y) + εy. Unless otherwise indicated, σnoise = 0.001.

5.2 Double Circles

In order to test the performance of our algorithms, we measure their regret, the
number of questions they pose to the user, and the L2-norm distance between
their estimated weight vectors and the ground truth weights, as a function of
time (i.e., the total number of arm pulls) on a double circle with pr = 0.7
and nα = 10 (Fig. 4). We perform ten runs, with different levels of noise. When
comparing umap-UCB and ITS, both in terms of regret and in the number of
queries, ITS outperforms both UCB algorithms. However, this is not true for the
approximation quality of the weights of the linear utility functions. When the
noise levels are low (σnoise = 0.001), ITS quickly focusses on the arms that are
close to optimal, and reaches the best estimate of the weights. However, when the
noise levels on the comparisons are higher (σnoise ≥ 0.01), the estimates of ITS
first improve and then get worse again. We hypothesise that this is the result of
ITS quickly focussing on the arms that are close to optimal, whose utility values
lay so close that they fall inside the noise interval of the user comparisons, leading
to a low signal-to-noise ratio and thus worse estimates. However, the effect on
the incurred user regret of these worse estimates is minimal. We thus conclude
that ITS outperforms UCB, and that poorer weight estimates are not necessarily
detrimental for the incurred user regret.

We also test how much utility is lost by having to estimate the weights
of the utility function rather than them being given from the start. In Fig. 4
(left) the regret of the corresponding (cheating) single-objective algorithms to
our algorithms are shown as dashed lines. Our best algorithm — ITS — has
only little more regret than single-objective Thompson sampling when provided
with the ground truth weights from the beginning. Interestingly, umap-UCB1
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Fig. 4. The performance of umap-UCB and ITS (and UCB and Thompson sampling
provided with the ground truth utility function at the start) in terms of regret (left),
number of queries asked (middle), and quality of estimation of w, on double circle

instances with pr = 0.7 and nα = 10, averaged over 10 runs. The rows represent the
noise level in the user comparisons: σnoise = 0.001 (top); σnoise = 0.01 (middle); and
σnoise = 0.1 (bottom). In all runs w∗ = (0.2, 0.8).

and umap-UCB-ch perform even better than their single-objective equivalents
(on most individual runs as well as on average). When inspecting the number
of pulls per arm of these algorithms, umap-UCB pulls more suboptimal arms
in total than single-objective UCB, but the suboptimal arms that are pulled are
closer (i.e., have smaller w∗ · Δa) than those of single-objective UCB. We thus
conclude that there is only a small increase in regret when having to estimate w∗.

We further note that, if the utility of the arms, w∗ · μa, lay close together
as in the double circle, umap-UCB and ITS keep on querying the user, as a
result of not being able to distinguish between the optimal arm and the arms
that are just below that in terms of utility (leading to over 40% of the 2000 arm
pulls for our best algorithm — ITS — for the lowest noise levels). We expect
the number of queries to be less in problems where arms lay further apart, as in
random MOMAB instances.

5.3 Random MOMABs

In order to test the performance of umap-UCB on MOMABs with arms with
mean vectors that lay further apart, we test them on random MOMABs with 30
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arms each and varying numbers of objectives (Fig. 5). Again, we observe that the
user regret for our best performing algorithm, ITS, does not attain a significantly
lower regret than single-objective Thompson sampling provided with w∗ from
the start. Furthermore, ITS again outperforms both variants of umap-UCB.

Fig. 5. The performance of umap-UCB and ITS (and UCB and Thompson sampling
provided with the ground truth utility function from the start) in terms of regret (top),
number of queries asked (bottom) for random MOMAB instances with 30 arms and user
comparison noise ε = 0.001, randomly drawn w∗ from a uniform distribution, for 2
(left), 4 (middle), and 6 (right) objectives, averaged over 25 runs.

Because the arms lay further apart than on the double circle, we observe
that ITS — but not umap-UCB — is able to attain significantly lower regret.
Furthermore, we observe that for ITS, the number of queries posed to the user
is much less than for double circle, and often only increases marginally after
about 1000 timesteps.

Finally, we tested the effect of the number of objectives of 30-arm random
MO-MABs on the algorithms’ performances. Higher numbers of objectives seem
to accrue less regret, while needing about equally many queries. This can be
explained by the fact that for higher numbers of objectives, the arms lay further
apart (in terms of Euclidean distance), and are thus easier to distinguish. We
thus observe a blessing (rather than a curse) of dimensionality for user regret
for a fixed number of arms.

In summary, we conclude that ITS outperforms umap-UCB both in terms
of regret and in terms of the number of comparison queries posed to the user.
Furthermore, when the expected reward vectors of the arms are sufficiently far
apart, ITS is able to quickly reduce the number of questions asked per timestep,
while umap-UCB cannot. We therefore conclude that ITS is the better algorithm.
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6 Related Work

Several papers exist that study MOMABs [3,9,18,22, a.o.]. However, to our
knowledge, the previous work on MOMABs all focusses on the offline setting
rather than the online interactive setting, as this paper does.

Related to online learning for MOMABs with pairwise comparisons by the
user, are relative bandits [23]. Similar to our setting, relative bandits assume a
hidden utility function which can be queried to obtain pairwise comparisons.
Contrary to our setting however, the rewards cannot be observed, and the com-
parisons are made regarding single arm pulls, rather than the aggregate infor-
mation, i.e., estimated means or posteriors over means, of all previous pulls of
a given arm. The best arm is the arm with the highest probability of a single
pull being preferred to a single pull of the other arms. The closest algorithms
in this field are RUCB [23] and Double Thompson Sampling [21] which keep a
preference matrix to determine which two arms to pull in each iteration.

In multi-objective sequential planning [4], combinatorial decision-making
[20], and cooperative game theory [10] preference elicitation w.r.t. (linear) utility
functions has been applied as well. These methods however, apply linear pro-
gramming or equation solving to induce constraints for their respective planning
problems, rather than Bayesian learning. It would be interesting to adapt our
methods to these problem classes to create Bayesian methods for learning in
these problems, as well as for MOMDPs [13].

7 Conclusions and Future Work

In this paper we proposed Utility-MAP UCB1 (umap-UCB) and Interactive
Thompson Sampling (ITS), two Bayesian learning methods for online multi-
objective reinforcement learning in which the agent can interact with its user.
Both algorithms build upon state-of-the-art learning algorithms and Bayesian
machine learning to learn about the environment and about the utility function
of the user simultaneously. Both algorithms pose pairwise comparison queries
to the user, and employ Bayesian logistic regression to learn about the linear
preferences, representable with a weight vector w∗, of its user. Umap-UCB uses
explicit exploration bonuses, and elicits preferences when the best mean estimate
for the current MAP estimate of the weight vector, and the best estimated mean
plus exploration bonus for the same estimate, recommend different arms. ITS
elicits preferences by pulling two sets of samples from both the posteriors of the
means of the arms and the posterior for (the estimate of) w, and querying the
user when those two sets of samples have a different best arm.

We tested umap-UCB and ITS empirically, and showed that the performance
of these algorithms in terms of user regret closely approximates the regret of
UCB1 and regular Thompson sampling provided with the ground truth utility
functions of the user. Umap-UCB can even perform better than UCB having
access to the ground truth. Hence, we conclude that with our algorithms we can
come close to the performance of state-of-the-art learning algorithms for single-
objective MABs that are provided with the ground truth weights at the start.
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Furthermore, we conclude that ITS empirically outperforms umap-UCB both in
terms of regret, and in terms of the number of queries posed to the user. We
thus conclude that ITS is key for efficient multi-objective learning.

In this paper, we examined the setting of linear utility functions and multi-
objective multi-armed bandits. As a next step, we aim to extend ITS to more
general utility functions, e.g., additive utility functions [8], or even general-shape
monotonically increasing utility functions [14]. Furthermore, we aim extend our
methods to multi-objective reinforcement learning in MOMDPs and MOSGs
[12,13,17,19].

Acknowledgements. The first author is a postdoctoral fellow of the Research Foun-
dation – Flanders (FWO). This research was in part supported by Innoviris – Brussels
Institute for Research and Innovation.

References

1. Agrawal, S., Goyal, N.: Analysis of Thompson sampling for the multi-armed bandit
problem. In: COLT, p. 39.1–39.26 (2012)

2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

3. Auer, P., Chiang, C.-K., Ortner, R., Drugan, M.M.: Pareto front identification
from stochastic bandit feedback. In: AISTATS, pp. 939–947 (2016)

4. Benabbou, N., Perny, P.: Combining preference elicitation and search in multiob-
jective state-space graphs. In: IJCAI, pp. 297–303 (2015)

5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York
(2006)

6. Brochu, E., de Freitas, N., Ghosh, A.: Active preference learning with discrete
choice data. In: NIPS, pp. 409–416 (2008)

7. Chapelle, O., Li, L.: An empirical evaluation of Thompson sampling. In: NIPS, pp.
2249–2257 (2011)

8. Clemen, R.T., Decisions, M.H.: An Introduction to Decision Analysis. PWS-Kent,
Boston (1997)
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Abstract. In Multi-Criteria Decision Aiding, one of the current chal-
lenges involves the proper integration and tuning of the preference mod-
els in real-life contexts. In this article, we consider the multi-criteria
sorting problem where the decision maker’s preferences fall within the
outranking paradigm. Following recent advances on extensions of classi-
cal majority-rule sorting models, we propose a methodology for adapting
them to the perspective of the decision maker. We illustrate the applica-
tion of the methodology on a real-world problem linked to the evaluation
of contributors within Free/Libre Open Source Software communities.
The experiments that we have carried out show that the various con-
sidered model extensions appear to be useful from the perspective of
decision makers in a real-life preference elicitation process, and that the
proposed methodology gives useful indications that can serve as guide-
lines for analysts involved in other elicitation processes.

1 Introduction

Multi-Criteria Decision Aiding (MCDA) provides operational tools which sim-
plify the decision making task for people facing complex decisions involving mul-
tiple and conflicting perspectives. MCDA therefore proposes a methodology and
algorithms that cover the early stages of situating and understanding the deci-
sion question, all the way to the construction of a mathematical representation
of the problem and the proposal of an operational decision recommendation.

We consider in this article a particular decision problem, called multi-criteria
sorting or classification, in which a finite set of decision alternatives is evaluated
on a finite set of criteria, and where the goal of a decision maker (DM) is to assign
each of these alternatives into predefined preference-ordered categories or classes.
In MCDA, to achieve this assignment task, one uses a preference model, which
aggregates the criteria, and which can be based on either one of the following
paradigms: Multi-attribute Value Theory (MAVT) [7], the outranking approach
[12], or decision rules using “if-then” statements, which can, for example be
inferred using a dominance-based rough set approach [6].
c© Springer International Publishing AG 2017
J. Rothe (Ed.): ADT 2017, LNAI 10576, pp. 35–49, 2017.
DOI: 10.1007/978-3-319-67504-6 3
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We suppose here that, when comparing two alternatives, the decision maker
uses the outranking paradigm. In other words, (s)he considers that an alternative
a outranks an alternative b when a weighted majority of criteria validates the
fact that a is performing at least as good as b and there is no criterion where b
seriously outperforms a. The majority-related condition is usually called concor-
dance, whereas the second condition is called discordance or veto principle. From
a computational point of view, various implementations of these conditions, and
their conjunction, have been proposed in the literature (see, e.g., [13]).

In order to solve the sorting problem according to this outranking paradigm,
each alternative is compared to predefined category profiles according to the out-
ranking relation, and is assigned to one of the categories through an assignment
rule. Again, different implementations of the category profiles (limit, central)
and the assignment rules (pessimistic, optimistic) can be found (see, e.g., [11]).

In the previous quite general description of the outranking relation, very neg-
ative aspects in the comparison of two alternatives can lead to the invalidation
of an outranking statement, even if one alternative stands out as at least as good
as the other one on a significant set of criteria. The influence of very positive
aspects in the comparison of two alternatives, leading to the validation of the
outranking statement, even if a majority of negative aspects are not in accor-
dance with this outperformance, have also been recently studied. The classical
Electre outranking relations are augmented by Roy and S�lowiński [14] in order
to take into account “reinforced preference” and “counter-veto” effects. They
allow to strengthen the coalition of criteria in favor of the outranking state-
ment, which in certain cases may lead to countering a veto situation. Bisdorff [2]
has proposed to increase or decrease the confidence degree of a bipolar-valued
outranking relation when large performance differences are present. Finally, the
concept of dictator, and its interaction with the concept of veto, have been stud-
ied by Meyer and Olteanu [8], and multiple, increasingly complex, preference
models have been proposed.

In this article, we follow this latter work, by focusing more particularly on the
algorithms which learn the parameters of the preference models from assignment
examples provided by the DM. It is clear that these algorithms represent only
a small step in a real-life, complex and iterative preference elicitation process.
The natural questions which arise from the work of Meyer and Olteanu [8] are:

– Is there any added value in using more complex sorting models (containing
veto and dictator effects) in practice?

– How can the analyst be guided to select the right preference model?
– How should the analyst, who leads the decision aiding process, apply the

parameter tuning algorithms when facing a real DM?
– Is it possible to help the analyst to select appropriate assignment examples

for the parameter tuning algorithms?

These questions involve real analysts and DMs, and therefore it is important that
their answers are based on observations made in real decision-making contexts.
We therefore propose in this article a methodology for eliciting majority-rule
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sorting models with large performance differences in practice, deduced from mul-
tiple real-world preference elicitation processes.

The rest of the article is structured as follows. In Sect. 2 we start by providing
a state-of-the-art on majority-rule sorting models, followed by the methodology
for learning their parameters in practice in Sect. 3. In Sect. 4 we illustrate the
application of the methodology on a real-world problem linked to the evaluation
of contributors within Free/Libre Open Source Software communities, before
drawing some conclusions and highlighting the perspectives for the future in
Sect. 5.

2 Majority-Rule Sorting Models: State-of-the-Art

2.1 Majority-Rule Sorting

The model that this work is based on is a simplified version of the Electre Tri [12]
method which is close to the version axiomatized by Bouyssou and Marchant in
[3,4]. We define the elements of the problem and those of the model below:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = {a1, . . . , an} , a set of alternatives
J = {1, . . . , m} , a set of criteria indexes
C = {c1, . . . , ck} , a set of ordered categories (from worst (1) to best (k))
W = {wj : ∀j ∈ J} , a set of criteria weights with

∑

j∈J

wj = 1

λ , a majority threshold with λ ∈ [0.5, 1]
B = {bi : ∀i ∈ 0..k} , a set of category limits
V = {vi : ∀i ∈ 0..k} , a set of category vetoes

We consider that the alternatives, the category limits and the category vetoes
are defined through their evaluations using the function gj ,∀j ∈ J . We assume,
without loss of generality, that the performances are supposed to be such that
a higher value denotes a better performance.

Each category ch ∈ C is defined by the performances of its lower frontier
(the category limit bh−1 and the category veto vh−1) and its upper frontier
(the category limit bh and the category veto vh). Furthermore, the perfor-
mances on the frontiers are non-decreasing, i.e. ∀j ∈ J, h ∈ 1..k : gj(bh−1) �
gj(bh) and gj(vh−1) � gj(vh), while additionally ∀j ∈ J, h ∈ 0..k : gj(bh) >
gj(vh).

Two rules to assign an alternative to a class may be found in the literature,
the pessimistic and the optimistic assignment rules, out of which the first is the
most commonly used. In this case, an alternative a ∈ A is assigned to the highest
possible category ch ∈ C such that a outranks the category’s lower frontier. This
means that a should hold performances at least as good as bh−1 on a sufficient
coalition of criteria (based on W and λ) while at the same time not holding
performances below or equal to vh−1. In order to guarantee that an alternative
will be assigned to at least the bottom category and at most the top one, the
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lower frontier of the bottom category will be set to the worst possible evaluations
on all criteria, while the upper frontier of the top category will be set to the best
possible evaluations on all criteria.

Roy and S�lowiński [14] have augmented the outranking relations used by
Electre methods to take into account “reinforced preference” and “counter-veto”
effects. An additional set of thresholds have been added to reflect the veto thresh-
olds and measure very good performances of an alternative over another. Such
performances are used to strengthen the coalition of criteria in favor of the out-
ranking statement, which in certain cases may lead to countering a veto situation.

A similar set of thresholds has also been explored by Bisdorff [2] in the
context of bipolar valued outranking relations. In addition to the two credibility
levels of classical outranking relations (true and false), these relations contain
an additional intermediate level (indetermination). In this case, the effects of
large performance differences increase or decrease the confidence degree of an
outranking relation when they are in concordance with the coalition of criteria
in its favor, and reduce it to a state of indetermination when they are conflicting.

Meyer and Olteanu [8] introduced the complementary and symmetric notion
to that of a veto in majority-rule sorting models, which they call dictator. While
denoting with MR-Sort the model containing only a simple majority rule, and
with MRV-Sort the model also containing the veto effect, an MR-Sort model
with dictators (denoted with MRD-Sort) involves the construction of a dictator
relation between a and bh−1 (denoted with D), instead of a veto relation. This
relation is built with respect to a dictator profile bvh−1, which represents the
minimum level of performance that an alternative needs to have in order to be
allowed into category ch despite an insufficient weighted coalition of criteria in
favor of this assignment. The authors also propose several models which integrate
both veto and dictator effects:

– MR-Sort with vetoes weakened by dictators (MRv-Sort):
This model is identical to the classical MR-Sort model, except that when both
a veto and a dictator are triggered, the dictator has an effect of invalidating
the veto.

– MR-Sort with dictators weakened by vetoes (MRd-Sort):
This model is identical to an MR-Sort model with dictators, except that when
both a veto and a dictator are triggered, the veto has an effect of invalidating
the dictator.

– MR-Sort with dictators and dominating vetoes (MRdV-Sort):
When only one type of effect is triggered, this model behaves either like a
classical MR-Sort model with vetoes or one with dictators. When both effects
occur at the same time, only the veto is taken into account.

– MR-Sort with vetoes and dominating dictators (MRDv-Sort):
This model is identical to the previous one, except that, when both effects
are triggered, only the dictators are taken into account.

– MR-Sort with conflicting vetoes and dictators (MRdv-Sort):
This model is also identical to the previous two, except that when both effects
are triggered, they cancel each other out.
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2.2 Parameter Elicitation

Several works have been previously proposed in order to infer the parameters
of outranking-based multicriteria sorting models as an alternative to directly
eliciting them. Most of these results are linked to Electre Tri models, but can be
quite easily reused for MR-Sort models.

Mousseau and S�lowiński [10] proposed to find the model parameters through
the use of assignment examples. More specifically, the decision maker is asked in
a first step to assign a few well known alternatives to the predefined categories.
Then, from these assignment examples, the model parameters are extracted using
linear, mixed integer linear or non-linear programs.

Other more robust approaches compute for each alternative a range of possi-
ble categories to which they may be assigned when the parameters of the model
are not completely determined [5]. Approaches that deal with inconsistent sets
of assignment examples leading to non-existing preference model solutions have
also been explored by Mousseau et al. [9].

When taking into account large performance differences in majority-rule sort-
ing, exact elicitation approaches have been proposed by Meyer and Olteanu [8],
which have additionally been integrated in widely used software packages, such
as R [1].

While such approaches become more and more accessible to the wide public
through initiatives as those previously mentioned, the question of how to apply
them in practice is still left open. The large majority of the literature focuses
on one-time use of these elicitation approaches, whereas the matter of applying
them in reality involves multiple interactions with a decision maker. The question
of which model to choose, be it a simple MR-Sort model without vetoes, one
with vetoes or one handling large performance differences, has also been rarely
handled.

3 Proposed Methodology

For all of the reasons presented before, we propose a methodology for applying
the parameter elicitation approaches of outranking-based multicriteria sorting
models. The construction of this proposal is based on the case study that we
present in Sect. 4 (as well as our expertise from other applications). One should
note that the resolution of this real decision problem and the construction of
the elicitation methodology have been performed in parallel: the application
fed the methodology by generating new research questions, and the updated
methodology allowed us to advance in the resolution of the decision problem
and the preference modeling.

The methodology that we propose may also be easily adapted to other types
of problems and preference models, however, within this paper, we will only
focus on the family of MR-Sort models, i.e. MR-Sort with a simple majority
rule, MR-Sort with vetoes or with dictators and MR-Sort with both vetoes and
dictators, along with the different interactions between them. The steps of the
methodology are illustrated in Fig. 1.



40 A.-L. Olteanu et al.

Fig. 1. Methodology for inferring the parameters of an MR-Sort model

The proposed methodology can be summarized as follows:

1. Generate an initial set of alternatives A;
2. The DM assigns the alternatives to classes K;
3. Generate an MR-Sort model M ;
4. If the model fits then go to step 8;
5. Generate all minimal sets of incompatible assignments;
6. If the DM accepts to change the assignments as per one incompatible assign-

ment then go to step 8;
7. Select a more complex model and go to step 3;
8. If a stopping condition is met then go to 10;
9. Update the set of alternatives A by generating additional ones;

10. Validate the model and finish.

The first step consists in randomly generating an initial set of alternatives,
followed by the DM assigning these alternatives to classes and then fitting an
MR-Sort model with a simple majority rule over them. If a model cannot be
constructed, we extract all minimal sets of incompatible assignments and ask
the DM whether (s)he would agree to change any assignments accordingly. If
the answer is negative, we then proceed to considering more complex models.

We consider the MR-Sort model with a simple majority rule to be the sim-
plest, followed by the models which take into account a single large performance
difference effect (MR-Sort with vetoes or with dictators) and then by models
that take into account both. Among the latter models, we consider that the
models that take into account a single effect but which may be weakened by
another (MR-Sort with vetoes weakened by dictators and MR-Sort with dicta-
tors weakened by vetoes) are the least complex, followed by models that have
one dominating effect (MR-Sort with vetoes dominating dictators and MR-Sort
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with dictators dominating vetoes), and finally the model which equally balances
the two effects together (MR-Sort with conflicting vetoes and dictators). When
multiple models fit the assignments, we choose based on which model is better
able to fit the set of assignment examples, i.e. the one which minimizes the num-
ber of incorrectly assigned alternatives. When this criterion is not sufficient in
order to differentiate between such models, we select one at random.

After we are able to select a model that fits the assignment examples of the
DM, or at least one that minimizes the number of incompatible assignments,
we check whether a stopping condition is met. This condition may be based on
subjective factors linked to the willingness of the DM to proceed further, or on
factors linked to the fit and convergence of the model.

If a stopping condition is not met, we increase the set of alternatives by gen-
erating new ones in order to validate the category boundary profiles of the M
model. Given, for instance, an MR-Sort model with a simple majority rule and
a boundary profile bh−1 between categories ch and ch−1, we generate all alterna-
tives that have either the same evaluations as the profile on some criteria, and
slightly lower ones on the others, such that a minimal coalition of criteria sup-
ports the statement that a outranks bh. These alternatives are barely classified
as belonging to category ch (decreasing their evaluation on even one criterion
belonging this coalition would alter their assignment), hence having the DM val-
idate them means that the boundary bh cannot be raised any higher. Similarly,
we generate another set of alternatives such that a minimal coalition of criteria
supports the statement that a does not outrank bh. These alternatives are barely
classified as belonging to ch−1 (increasing their evaluation on even one criterion
belonging this coalition would alter their assignment), hence having the DM
validate their assignment would fix the bh−1 profile from being lowered. When
considering MR-Sort models with vetoes and dictators, we additionally need to
take into account the corresponding veto and dictator profiles.

4 Experimental Framework

The context of this application is that of online communities of software devel-
opers, which we call contributors. They are usually managed and animated by
so-called community managers (CM), who are facing the problem of evaluat-
ing the contributors to their community. For a community to be effective and
dynamical, the evaluation of these contributors can usually not be summarized to
the amount of code which they produce. Consequently, this evaluation problem
involves multiple perspectives, and also depends on the preferences of the CM.

In our experimental framework, 6 CM have been interviewed and had to
undergo (and at the same time contributed to the development of) the methodol-
ogy that we are proposing in this article. Below, we illustrate one of these experi-
ments, for a CM who identified five criteria as important from his perspective:

– Commitment to the project (c1);
– Ability to work with others (c2);
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– Quality of produced code (c3);
– Understanding of the tools, technologies, domain and process behind the

project (c4);
– Documentation skills (c5).

These criteria, which will be used to generate fictive contributor profiles (the
assignment examples of Sect. 3), are defined on ordinal scales with 5 levels: very
bad (vb), bad (b), neutral (n), good (g) and very good (vg).

The CM was interested in identifying both good and bad contributors, while
additionally allowing for neither good nor bad contributors to be identified.
Hence, the categories to which the contributors of his community should be
assigned were defined as {Good, Neutral, Bad}.

4.1 Generating and Evaluating the Initial Set of Contributors
Profiles

We began by generating an initial set of 25 contributor profiles so that each
of the 5 ordinal levels of the criteria scales was uniformly distributed on each
criterion. The CM was asked to assign these profiles to one of the three selected
categories. We illustrate this dataset and the CM’s assignments in Table 1.

Table 1. The initial set of contributor profiles and their assignment by the CM.

Profile Criteria
number c1 c2 c3 c4 c5 Category

1 vg g vb vg n Bad
2 b vg n vb n Neutral
3 b b b b g Bad
4 b b vb vg n Bad
5 g vb vg b b Neutral
6 vg g vg n vg Good
7 g n b n vg Neutral
8 n n g b g Good
9 n vg n g b Bad
10 vb g vg vb b Bad
11 g g g vb vg Good
12 n g g vb g Neutral
13 g g n n vb Bad

Profile Criteria
number c1 c2 c3 c4 c5 Category

14 vg n vb b g Bad
15 n b b vb n Bad
16 b vg g vg vb Bad
17 n b n g n Bad
18 vg vb vg g b Neutral
19 vg vb n n vb Bad
20 vb vg vg b vg Neutral
21 vb n vb n vb Bad
22 vb b vb vg g Bad
23 vb vb g g vg Neutral
24 g vb b g vb Bad
25 b n b vg b Bad

4.2 Determining the Complexity of the First Model

We continue by testing whether an MR-Sort model with a simple majority rule
was able to represent the provided assignments and we found that only at most
23 out of the 25 were captured. We therefore determine sets of incompatible
assignments (each containing 2 elements), along with the class that they should
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Table 2. Sets of incompatible assignments, with the CM assignment and an MR-Sort-
compatible assignment.

Profile Criteria Category

number c1 c2 c3 c4 c5 CM MR-Sort

First set 2 b vg n vb n Neutral Bad

8 n n g b g Good Neutral

Second set 2 b vg n vb n Neutral Bad

11 g g g vb vg Good Neutral

Third set 2 b vg n vb n Neutral Bad

12 n vg g vb g Neutral Good

have been assigned to by the CM, if he had done the evaluation according to an
MR-Sort model. These sets of profiles are illustrated in Table 2.

Using these sets, we devise a series of questions to ask the CM, in order to
simplify his task of accepting or rejecting the MR-Sort-compatible assignments.
Since the second contributor profile appears in all of the three sets, we decide to
first ask him whether he would agree to change his assignment of this profile from
Neutral to Bad. The CM agrees to change his assignment if needed, confirming
that he had initially hesitated between these two categories. We continue by
asking him whether he would also agree to change the assignments of any of
other profiles from each of the three sets, however, in all cases, he disagrees.

At this point, we had two options: either the CM could accept one assign-
ment error and validate an MR-Sort-compatible model, or we could increase the
complexity of the preference model. As we were still in the beginning of the
elicitation process, the second option was chosen, and we found that a model
with vetoes was able to capture all 25 profile assignments, while a model with
dictators was not.

c1 c2 c3 c4 c5

vb

b

n

g

vg

Bad-Neutral

c1 c2 c3 c4 c5

vb

b

n

g

vg

Neutral-Good

λ 0.6

c1 0.20
c2 0.20
c3 0.25
c4 0.15
c5 0.20

Fig. 2. First preference model (MR-Sort with vetoes), majority threshold (λ) and cri-
teria weights on the right.
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The resulting model is illustrated in Fig. 2, where we have divided in two the
elements delimiting the first two classes (Bad and Neutral), and those delimiting
the last two classes (Neutral and Good). The lines correspond to the delimiting
profiles, while the filled in areas represent the ranges of values which would
trigger a veto.

Looking at the model, we can deduce multiple rules that characterize good,
neutral or bad contributors. For example, focusing on the good contributors (the
graph to the right), simply by looking at the veto thresholds, we can say that a
good contributor cannot be very bad in c1, c3 or c5, regardless of how they are
evaluated on the other criteria. When this is not the case, a good contributor
would need to have evaluations at least as good as the delimiting profile on a
weighted majority of criteria, such as for instance c2, c3 and c4.

As we have only traversed one iteration of the methodology, and as the CM is
willing to continue, we decided to start a new iteration to increase the accuracy
of the preference model.

4.3 Generating and Evaluating an Additional Set of Profiles

An additional set of 10 profiles is generated according to the rule described
in Sect. 3, based on the previously created model. This set is presented to the
community manager who then assigns them as seen in Table 3.

Table 3. The second set of contributor profiles and their assignment.

Profile Criteria
number c1 c2 c3 c4 c5 Category

26 vg g n b b Bad
27 vg b n vg b Bad
28 vg b n b vg Neutral
29 vb vg n vg b Bad
30 vb vg n b vg Bad

Profile Criteria
number c1 c2 c3 c4 c5 Category

31 vb b vg vg b Bad
32 vb b n vg vg Bad
33 vg vg vb vg vg Neutral
34 vg vg vg vg vb Good
35 b vb g vb n Neutral

4.4 Determining the Complexity of the Second Model

We combine the initial set of 25 profiles with the new set of 10 and test whether
an MR-Sort model with vetoes is still able to capture them. The result is that
this model also appears not to fit completely the assignments of the CM. Never-
theless, we check whether the CM had any hesitations in his assignments which
would allow for such a model to be used. Again we search for incompatible
assignment examples and determine five sets of two profiles, along with their
MR-Sort with vetoes-compatible assignments (Table 4).

We observe that the first four sets contain the second contributor profile,
which the CM already agreed to change if needed. Therefore, we continue by
iteratively determining whether he would also agree to accept an alternative
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Table 4. Sets of incompatible assignments.

Profile Criteria Category

number c1 c2 c3 c4 c5 CM MRV-Sort

First set 2 b vg n vb n Neutral Bad

16 b vg g vg vb Bad Neutral

Second set 2 b vg n vb n Neutral Bad

33 vg vg vb vg vg Neutral Bad

Third set 2 b vg n vb n Neutral Bad

34 vg vg vg vg vb Good Bad

Fourth set 2 b vg n vb n Neutral Bad

35 b vb g vb n Neutral Bad

Fifth set 30 vb vg n b vg Bad Neutral

33 vg vg vb vg vg Neutral Bad

assignment for the remaining profiles in these sets. The CM does not accept
changing the assignment of profiles 16, 33 or 34, especially since for the third
one the alternative assignment strongly contradicts the initial assignment. Never-
theless, he does agree to switch the assignment of profile 35 to the Bad category,
hence we continued to use an MR-Sort model with vetoes (Fig. 3).
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c1 0.25
c2 0.13
c3 0.25
c4 0.13
c5 0.13

Fig. 3. Second preference model (MR-Sort with vetoes).

We finish another iteration of the preference modeling process and check
whether we should finish the process or start a new iteration. Looking at the
number of remaining profiles that may be generated around the categories limits,
which are only 8 in total, the community manager agrees to continue.
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4.5 Generating and Evaluating a Second Complementary Set
of Profiles

We generate these 8 new profiles, and ask the community manager to assign
them to one of the three categories. The assignments are shown in Table 5.

Table 5. The third set of contributor profiles and their assignment.

Profile Criteria
number c1 c2 c3 c4 c5 Category

36 b vg n vg g Bad
37 n b g vb vg Neutral
38 n vb vb b vg Bad
39 vb vb g b vg Neutral

Profile Criteria
number c1 c2 c3 c4 c5 Category

40 vg vb vg vg vg Good
41 n vb g vb vb Bad
42 n b g b vb Bad
43 b vg n vb vg Good

4.6 Determining the Complexity of the Third Model

After adding the 8 new profiles and their assignments to the existing ones, we
find that an MR-Sort model with vetoes is again not able to represent all of
these assignments. Still, we find that changing the assignment of only one profile
at a time is enough in order to use such a model (Table 6).

Table 6. Sets of incompatible assignments.

Profile Criteria Category

number c1 c2 c3 c4 c5 CM MRV-Sort

First set 14 vg n vb b g Bad Neutral

Second set 33 vg vg vb vg vg Neutral Bad

Third set 34 vg vg vg vg vb Good Bad

We observe that profiles 33 and 34 appear again, however, as the community
manager has already expressed a preference in keeping the original assignments,
we only inquire on the possibility of changing the assignment of profile 14. The
community manager feels strongly about keeping this profile in the Bad category,
therefore motivating us to test a more complex model. We apply an MR-Sort
model with vetoes weakened by dictators, as it is the model that is closest to
the one previously used. This model, illustrated in Fig. 4 is able to reflect all of
the assignments of the community manager.

We finish yet another iteration of the preference modeling process and check
whether we should finish the process or start a new iteration. There are still
14 profiles that may be generated around the categories limits, however the
community manager wishes to review the model we have generated so far.
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Fig. 4. Third preference model (MR-Sort with vetoes weakened by dictators).
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4.7 Validating the Final Model

In order to validate the generated model (Fig. 4) with the community manager,
we present a series of rules that may be derived from it (Fig. 5).

For a given category, these rules combine the concordance, veto and dictator
conditions in order to output all possible contributors profiles. For example, the
first graph tells us that in order to be a good contributor, one would need to be
at least bad on c1, c2 and c4, and at least good on the remaining two criteria.
In order to be considered good, a contributor would need to fall within either
of the four rules that we have generated. The community manager agrees with
all of these rules, therefore concluding our interaction through the proposed
methodology.

Through this interaction, we have managed to help the CM in better under-
standing the way in which he perceives the contributors to his community.
Through the generated rules, the CM can more consistently evaluate new con-
tributors and additionally give recommendations to a contributor on how to
improve, either directly or by providing personalized training programs. These
rules may also highlight certain types of contributor profiles that are currently
missing from the community, hence aiding the manager in targeting this partic-
ular type of persons within future recruiting campaigns.

5 Discussion and Perspectives

In this article, we provide a first draft of a preference elicitation methodology
which can be used in a sorting context involving majority-rule models.

First of all, our work shows that the various MR-Sort variations presented
from a theoretical point of view in [8], and which allow to include large per-
formance differences in various ways in majority-rule preference models, seem
to be useful in a real-life elicitation process, and are acknowledged by decision
makers. Second, the proposed methodology, which is based on multiple real-life
preference elicitation processes, gives indications for the analyst, on how (s)he
should select the various (sometimes increasingly complex) sorting models. It
is important to stress that we advocate in this methodology for the principle
of parsimony, which argues that the simplest of competing explanations is the
most likely to be correct. This justifies the choice of a methodology where the
increasingly complex (and expressive) models are chosen progressively and not
used right from the start. Third, by providing a method to generate assignment
examples after the first iteration, the proposed methodology allows to progres-
sively tune the preferential parameters (profiles, weights), without requiring a
too important cognitive load from the decision maker.

We however are aware that this is only a first step in providing a scientifically
sound preference elicitation methodology for majority-rule sorting models. Our
current research focuses on validating this proposal through a rigorous experi-
mental setting, where the proposed methodology is confronted with large sets of
artificially generated data and decision maker preferences.
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Abstract. In this article, we study the Dominance Based Monte
Carlo algorithm, a model-free Multi-Criteria Decision Aiding (MCDA)
method for sorting problems, which was first proposed in Denat and
Öztürk (2016). The sorting problem consists in assigning each object to
a category, both the set of objects and the set of categories being prede-
fined. This method is based on a sub-set of objects which are assigned
to categories by a decision maker and aims at being able to assign the
remaining objects to categories according to the decision makers pref-
erences. This method is said model-free, which means that we do not
assume that the decision maker’s reasoning follows some well-known and
explicitly described rules or logic system. It is assumed that monotonic-
ity should be respected as well as the learning set. The specificity of this
approach is to be stochastic. A Monte Carlo principle is used where the
median operator aggregates the results of independent and randomized
experiments. In a previous article some theoretical properties that are
met by this method were studied. Here we want to assess its performance
through a k-fold validation procedure and compare this performance to
those of other preference elicitation algorithms. We also show how the
result of this method converges to a deterministic value when the number
of trials or the size of the learning set increases.

1 Introduction

This article is a study of some practical performances of the Dominance Based
Monte Carlo algorithm. The Dominance Based Monte Carlo algorithm is a pref-
erence elicitation algorithm for the multi-criteria sorting problem. The sort-
ing problem consists in assigning individually several objects to predefined and
ordered categories. Each of these objects is evaluated on several ordered criteria.
In practice, several applications of this problem can be found. An example of
such problem while performing an evaluation of the moral behavior of companies
on a scale of 5 value levels (from C1 to C5) based on three criteria, the treatment
of workers, the impact on the environment and the financial transparency each
of them being expressed on a scale of 5 value levels.

c© Springer International Publishing AG 2017
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In the literature one can find different methods adapted to this problem,
such as ELECTRE TRI (Roy and Bouyssou 1993), rule based methods (Greco
et al. 2011) or utility based methods (Keeney and Raiffa 1994). Each of these
methods contains preference parameters (such as weights, thresholds etc.) that
are supposed to make the results obtained fit as well as possible to the decision
maker’s judgement. Disaggregation approaches for preference elicitation consists
in asking the decision maker to provide her expectations on the results such as
“I think that the object a should be assigned to category 2, the object b should
be assigned to category 1, etc.”. Then theses methods try to find the parameters
that suit to this preference information (see for instance (Jacquet-Lagreze and
Siskos 1982; Greco et al. 2011)). The attractiveness of such approaches comes
from the fact that they only require an instinctive and subjective judgement that
suits quite well to the decision makers expectations. Nevertheless, there can be
a very large number of parameters that suit to the expressed preferences or, at
the opposite; it can be that no parameter would return these preferences. That
could mean that the decision maker’s preferences are not representable through
the chosen model.

The Dominance Based Monte Carlo algorithm combines two properties that
are not frequently met by the other methods for preference elicitation: a model
free approach and a stochastic approach.

By model-free, we mean that we do not assume that the decision maker’s
reasoning follows some well known and explicitly described rules or logic sys-
tem. According to the context this property may be see as desirable or not.
It depends on whether or not one of the existing Multi Criteria Aggregation
Procedure (MCAP) such as the ones cited on the previous paragraph can be
rigorously defended and depending on whether or not there is a high need for
justification for the decision to be taken. In some contexts, for instance when we
classify instinctively companies into categories representing how globally respon-
sible they are, it is possible that our intuitive reasoning is not based on an addi-
tive utility or a majority or logical rule but it is a mix of all of them with some
additional noise.

Our method is based on a stochastic approach using a Monte Carlo proce-
dure. It proposes a complete assignment that may be seen as a “center” of all
the complete assignments that respect some expected properties, which are the
monotonicity (improving an object on one or several criteria cannot lower its
overall evaluation) and the learning set (the objects that were assigned to a cat-
egory by the decision maker in the learning set should be assigned to the same
category by the method). Many authors, mainly from psychology and behaviour
analysis (Regenwetter et al. 2011; Luce 1995; Carbone and Hey 2000), defend
the idea that preferences are subject to randomness. There exist in the literature
some MCDA methods using a probabilistic approach such as SMAA methods
(Stochastic Multicriteria Acceptability Analysis, Lahdelma et al. (1998)). How-
ever, SMAA methods are not model-free, they analyze the stability of the results
of a given MCAP method (SMAA-TRI for ELECTRE TRI for instance, see
Tervonen et al. (2009)).
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As we already mentioned, we want our complete assignment to satisfy the
monotonicity and the learning set. Monotonicity means that improving an object
on one or several criteria cannot lower its overall evaluation. In a multi-criteria
sorting problem, we aim not only at studying the decision makers reasoning
but also at creating a method that recommends an overall judgement. Thus a
method that does not respect monotonicity cannot be accepted. The respect
of the learning set is also generally considered as a good property in MCDA
(contrary to the machine learning). We say that a method respects the learning
set if the resulting complete assignment respects the partial assignment given
by the decision maker. Most of the elicitation methods for multi-criteria sorting
respects the learning set as long as this learning set is compatible with their
associated MCAP. While in other multi-criteria methods these two concepts are
only seen as good properties, in our algorithm, they are imposed and compose
the only real frame of this method.

The article is organized as follows: Sect. 2 introduces some basic concepts
and the functioning of the DBMC algorithm, Sect. 3 is dedicated to several
tests to evaluate the effectiveness of the convergence and the performance of the
k-fold validation on real learning sets. Section 4 concludes the article with some
perspectives.

2 Notations and Presentation of the Algorithm

The Dominance Based Monte Carlo algorithm (DBMC) works as follows. At
first, the decision maker provides a learning set (a subset of objects that are
assigned to categories). These objects are directly affected to their categories.
Then, iteratively an object is chosen randomly among the remaining ones and it
is assigned randomly to a category without violating monotonicity. This step is
repeated until every object is fixed in a category. This random complete assign-
ment will be considered as a trial. Obviously, randomness has an important
impact in this complete assignment. In order to reduce this impact and to con-
verge we make a large number of trials, probabilistically independent to each
other. We collect the information about the consecutive results of the trials and
we aggregate it in order to get a single complete assignment. We are now about
to give a formal definition of the DBMC algorithm.

We define a sorting context as a 5 − tuple S =< N,V,A,C,L >:

– N = {1, ..., n} is a finite set of criteria.
– Each criterion i is expressed on a discrete and finite scale vi. V is the union

of criterion scales.
– A is the set of objects to be sorted. Here it is considered that any combination

of values on the criteria must be sorted i.e. A =
∏

i∈N

vi and |A| = m.

– C = {1, 2, ..., r} ⊂ N is a set of r ordered categories in which the objects
are to be sorted. We will thereafter assume that the higher a category is, the
better it is.
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– L represents the learning set: L= < Θ, fl > where Θ ⊆ A is the subset of
examples and fl : Θ → C is the assignment of these examples.

– The expected output of this problem is a complete assignment. A complete
assignment is a function f : A → C that assigns every possible object a to a
category f(a). Thereafter, we will denote by DBMC(S, T ), the result of the
Dominance Based Monte Carlo algorithm on the sorting context S with T .

Monotonicity
Given two objects a, b, we say that a weakly dominates b, and denote by aDb,
if a is at least as good as b on every criterion. We will thereafter simply use the
term “dominates” to mention weak domination.

For any object a ∈ A we call dominating cone of a, also denoted by D+(a) =
{a′ ∈ A : a′Da}, the set of all objects that dominate a. For any object a ∈ A
we call dominated cone of a, also denoted by D−(a) = {a′ ∈ A : aDa′}, the set
of all objects that are dominated by a. We say that a complete assignment f
respects monotonicity if, for any a, b ∈ A such as aDb, we have f(a) ≥ f(b).

The Learning Set
Given that we impose the respect of monotonicity and the learning set, the
possible remaining complete assignments are then constrained to a smaller space.
For instance, if a′Da and aDa′′ with a′ already assigned to category 4 and a′′

already assigned to category 2, then we can deduce that a can only be assigned
to category 2, 3 or 4 (we can say that a can be assigned to the interval of
categories [2, 4]). In order to introduce this notion of “interval assignment” not
violating the monotonicity and respecting the learning set we define the notion
of a “necessary interval assignment”, also denoted by γ : A → Δ, (Δ being
the set of category intervals). In other words this necessary interval assignment
represents the fact that any object a will be assigned to a category at least as
good as the best sorted object that is dominated by a and at most as good as
the worst sorted object that weakly dominates a. An object a is said fixed with
an interval assignment γ if γmin(a) = γmax(a).

We give an illustration in Fig. 1 of the interval assignment that we may have
in the beginning of DBMC algorithm on a problem with two criteria (10 levels for
each) and three categories. As we see 5 objects belong to the learning sets (one
of them in category 1, two of them in category 2 and two of them in category
3). These five assignments constrain the interval assignments of the remained
objects: red ones in category 3, orange-colored ones in interval [2, 3], yellow ones
in category 2, light green ones in interval [1, 2], ...

The space of the possible complete assignments will obviously be empty if
the learning set does not it self respect monotonicity. This point will be treated
in Subsect. 3.2. Therefore, from now on, we assume that the learning set respects
monotonicity.

Process of a Trial
In the DBMC algorithm each trial will be a random completion of the learning set
that respects monotonicity. To do so, we iteratively choose uniformly a random
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Fig. 1. Illustration of the necessary interval complete assignment with two criteria,
three categories and 5 objects in the learning set (in the blue squares) (Color figure
online)

object and assign it uniformly to a random category among the categories in
which it could be sorted. This step is repeated until every object is assigned to
a category. Algorithm 1 presents this procedure.

Algorithm 1. Random completion - trial
Data: Sorting context S =< N,V,A,C,L >
Result: Assignment f1 : A → C monotonic and compatible with L

1 while ∃a ∈ A such that γmin(a) �= γmax(a) do
2 Choose randomly an object χ with a uniform distribution over A;
3 Choose randomly a category Δ with a uniform discrete distribution

between γmin(χ) and γmax(χ);
4 Add the information < χ,Δ > to the learning set;
5 γmax(χ) ← Δ;
6 γmin(χ) ← Δ;
7 for a− ∈ D−(χ) do
8 γmax(a−) ← min{Δ, γmax(a−)}
9 for a+ ∈ D+(χ) do

10 γmin(a+) ← max{Δ, γmin(a+)}

We say that we add an information < a, c >, a ∈ A, c ∈ C to the learning
set when we impose the fact that the object a should be sorted in category c,
i.e. Θ ← Θ ∪ {a} and fl(a) ← c.

Collecting and Aggregating the Trial’s Information. To apply the DBMC algo-
rithm, we first complete randomly T times the original sorting context. Then, for
every object, we note in a DBMC vector in what category it has been assigned
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at every trial. Finally, we aggregate these vectors to assign each object to the
category in which it has “globally” been assigned during the T trials.

Definition 1 (DBMC vector). We call a DBMC vector of S, ϕ : A×N → CT

the vector in which we store the results of T random completions of S such as
∀T ∈ N, a ∈ A, k ∈ {1, ..., T}, ϕk(a) represents the category in which a has been
assigned at the kth trial among T trials.

Formally we get a DBMC vector of S as it is explained in Algorithm 2.

Algorithm 2. Building a DBMC vector
Data: Sorting context S =< N,V,A,C,L >
Result: DBMC vector, ϕ : A × N → N

T

1 for j from 1 to T do
2 S′ ← S;
3 Complete randomly S′ using Algorithm 1;
4 for a ∈ A do
5 ϕj(a) ← γS′

min(a) or γS′
max(a);

The DBMC vector contains all the information about the results of T trials.
In order to have a single result about the assignment of objects of A, we need
to aggregate this information. The reason why the median operator was chosen
to aggregate the DBMC vector is explained in Denat and Öztürk (2016).

Recall of the Theoretical Properties of this Method
In Denat and Öztürk (2016) several theoretical properties were demonstrated.
At first, the DBMC algorithm will run and find a complete assignment if and
only if the learning set which is given respects monotonicity. This is one of the
reason why the median operator was chosen, the mode operator being possibly
non-monotonic. Then, the authors showed that computational complexity of
the DBMC algorithm is in O(T × m2). It was demonstrated that the result of
the DBMC algorithm is monotonic and that it respects the learning set. Finally,
despite its stochastic nature, the result of the DBMC algorithm converges almost
surely when T → ∞.

3 Practical Tests on the DBMC Algorithm

It is always useful to make practical tests on a preference elicitation algorithm,
to illustrate how it reacts in practice and evaluate its performances in addition
to theoretical proven properties. This is especially true while speaking of an algo-
rithm that may be seen by the user as a black box, which increases the need for a
justification. Here the tests that we present aim at answering two questions. At
first the Dominance Based Monte Carlo algorithm being a stochastic algorithm,
we would like to know to which extent randomness impacts its result. Then, we
made tests to evaluate the ability of this algorithm to restore a part of a learning
set while looking at the rest of it.
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3.1 Stability

It was proved in Denat and Öztürk (2016) that the result of the Dominance Based
converges almost surely when the number of trials grows to infinity. But saying
that does not necessarily mean that this convergence is observed in practice (the
result could converge almost surely but start converging when the number of
trials is higher than 10100). Thus, we here make tests to assess the practical
stability of the algorithm. To test the stability of the DBMC algorithm on a
sorting context S =< N,V,A,C,L > with T trials, Ω stability rounds and a
learning set of size τ , we proceed as follows. We iteratively do Ω times the
following stability round in which two complete assignments provided by the
DBMC algorithm in similar contexts are compared. To do so, a random complete
assignment f is chosen that respects monotonicity. We simply perform a random
completion of the sorting context S (as described in Algorithm 1) with an empty
leaning set. Then, we randomly (uniformly) choose a set of object A′ ⊂ A such
that |A′| = τ which is considered as the learning set. With this learning set,
the Dominance Based Monte Carlo algorithm is ran twice and we obtain two
complete assignments on A, f1 and f2. We count the number of objects in A
that are not assigned to the same category with f1 and f2. Then we perform
the next stability round i.e. the same experience with a new random complete
assignment f . At the end of the algorithm, we look at the average percentage of
objects sorted differently in f1 and f2 across the stability rounds. This number
will be called the stability score (a low stability score means that the algorithm
is stable). The formal description of this test is given in Algorithm 3.

Algorithm 3. Stability test
Data: Sorting context S =< N, V, A, C, L = ∅ >, number of trial T , number of

stability rounds Ω
Result: Average number of difference between two complete assignments

provided by the DBMC algorithm
1 counter ← 0
2 for i from 1 to Ω do
3 Create a random complete assignment f of the sorting context S (algorithm

1).
4 Select randomly A′ ⊂ A (with a uniform distribution) such that |A′| = τ .
5 L ←< A′, f >
6 f1 ← DBMC(S, T )
7 f2 ← DBMC(S, T )
8 for a ∈ A do
9 if f1(a) �= f2(a) then

10 counter ← counter + 1

11 return counter
Ω

In order to illustrate the evolution of the stability with the number of trials,
we applied the stability test on a model of 3 criteria, both of them expressed on
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a scale of 10 value levels with 50 stability rounds, with several fixed values for
the number of categories (2, 5 and 7) and the size of the learning set (0 and 50).
This test was made several times with different numbers of trials so that we can
plot it with the stability and observe the correlation. The results of these tests
are shown in Figs. 2 and 3.

nb Trials 10 100 200 500 1000

2 categories 12.9% 4.5% 3.3% 1.3% 0.5%

5 categories 37.5% 14% 9.2% 5.1% 4.2%

7 categories 49.9% 20.3% 13.5% 7.9% 5.5%

Fig. 2. Result of the stability test with 50 stability rounds in a context with 3 criteria
(10 × 10 × 10) and 0 elements in the learning set. The number of trials varies from 10
to 1000.

nb Trials 10 100 200 500 1000

2 categories 5% 1.6% 1.3% 0.7% 0.5%

5 categories 16% 5.2% 3.7% 2.3% 1.5%

7 categories 21.3% 7.2% 5.1% 3.3% 2.2%

Fig. 3. Result of the stability test with 50 stability rounds in a context with 3 criteria
(10 × 10 × 10) and 50 elements in the learning set. The number of trials varies from 10
to 1000.
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The reader may observe that the convergence is effective in practice when
the number of trials increases. Indeed, the convergence starts being rather good
with 100 trials. Therefore, in the following we will use 100 trials while applying
the DBMC algorithm. Furthermore, we can see that the more categories there
are the less stable the DBMC algorithm is. By the way we can also see that the
bigger the training set is the more stable the DBMC algorithm is. To conclude,
we think that the disturbing property of this algorithm to be non deterministic
has a low impact in practice if we use a large enough number of trials.

3.2 Comparison of the DBMC Algorithm with Other Elicitation
Algorithms Through a K-Fold Validation

The k-fold validation (Ron 1995) is a method that aims at measuring how effi-
cient is a preference elicitation algorithm. Basically, it consists of iteratively
dividing randomly the learning set into k equal parts, then for each part, we
learn with the k − 1 part and we try to predict the assignment of its objects.
The score which is provided often represents the percentage of objects that are
misclassified. Here, we will call each iteration of this process a round.

We decided to evaluate the performance of the DBMC algorithm by applying
a 2-fold validation on several learning sets on which a 2-fold validation was
practised with other preference elicitation algorithms. We practised the 2-fold
validation with 50 rounds and the DBMC algorithm was applied with 100 trials.
Three learning sets were chosen1:

– The “Lecture evaluation” data set (LEV) comes from the Weka data base.
It contains examples of anonymous lecturer evaluations, collected at the end
of MBA courses. The students were asked to score their lecturers based on
four criteria such as oral skills and contribution to their professional/general
knowledge. The output is a global evaluation of each lecturer’s performance,
expressed on an ordinal scale from 0 to 4 (a complete assignment).

– The “Car Evaluation” (CEV) data set comes from the UCI database. It rep-
resents the evaluation of a car based on 6 attributes describing a car, namely,
buying price, price of the maintenance, number of doors, capacity in terms
of persons to carry, the size of luggage boot, estimated safety of the car.
The output is the global assignment of the car in 4 categories unacceptable,
acceptable, good, very good.

– The “Breast cancer” (BCC) data set comes from the UCI database provided
by the Oncology Institute of Ljubljana. The instances are described by 7
attributes and are classified in two categories.

In order to compare the results obtained with the DBMC algorithm to results
obtained with other methods we created similar learning sets with only two cat-
egories as it is made in Sobrie et al. (2015) i.e. for car evaluation binarized this
evaluation into unacceptable versus not unacceptable (acceptable, good or very

1 Available at https://github.com/oso/pymcda/tree/master/datasets.

https://github.com/oso/pymcda/tree/master/datasets
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good) and for lecturers evaluation we binarized the output value by distinguish-
ing between good (score 3 to 4) and bad evaluation (score 0 to 2). The choice
of these learning sets was due to the relatively low number of combination of
criteria (less than 5 000) which make the DBMC algorithm run in an acceptable
time (some few seconds). The reader can observe that the lecture evaluation
database (LEV) contains more objects in the learning sets than the number
of combinations of criteria (number of theoretically possible objects). When an
object is found twice in the learning set with different assignments the relaxed
approximation allow the DBMC algorithm to run as explained in Subsect. 3.2.

Table 1. Several properties of the datasets used for the evaluation and the comparison
of the elicitation algorithms. “Size LS” represents the number of complete assignments
provided in the learning set. “Nb Crit” is the number of criteria, “Nb Cat” is the number
of categories, “Nb comb” is the number of combinations on the criteria (number of
theoretically possible objects). The column “Monot Viol” gives an idea of how violated
is monotonicity in the learning set. It represents the percentage of the pairs of objects
a, b with aDb that violate the monotonicity.

Dataset Size LS Nb Crit Nb Cat Nb Comb Monot Viol

Car evaluation (CEV) 1728 6 4 1728 <0.1%

Breast cancer (BBC) 278 7 2 4536 7.5%

Lectures evaluation (LEV) 1000 4 5 625 5.2%

The Other Preference Elicitation Algorithms
The result of a k-fold validation presented apart may be difficult to interpret.
Indeed, we do not know what is a good performance for this test given that it may
depend on various factors (the number of criteria, the size of the learning set,
the number of categories, etc.). Thus, it is useful to compare the performances
of the DBMC algorithm with those of other preference elicitation algorithms for
multi-criteria sorting problem on the same learning sets. Hence, we practised the
2-fold validation with several other algorithms for ordinal preference elicitation:
UTADIS (an method based on utility) (Devaud et al. 1980), logistic regression
(Fallah Tehrani and Huellermeier 2013), choquistic regression (Fallah Tehrani
and Huellermeier 2013) (methods based on statistical regression), Dominance
Based Rough Set Approach (Greco et al. 2002) (DRSA) (a method based on
rough sets), the heuristic algorithm for Majority Role Sorting (Sobrie et al. 2015)
(also know as MR-Sort, an outranking which can be seen as a simplified version
of ELECTRE TRI) and an heuristic for 2-additive Non compensatory Sorting
(Sobrie et al. 2015) (also know as NCS, an outranking method). The results of
the 2-fold validation of the algorithms logistic regression, choquistic regression
were found in Fallah Tehrani and Huellermeier (2013) while the results provided
for the heuristic algorithm for MR-Sort and an heuristic for 2-additive NCS were
found in Sobrie et al. (2015). The 2-fold validation is provided by jMaf software
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for DRSA. We programmed it for UTADIS based on the code of the UTADIS
program that was provided Patrick Meyer, Sébastien Bigaret, Richard Hodgett
and Alexandru-Liviu Olteanu on their MCDA package for the GNU R statistical
software on github2.

Approximations to Deal with Violations of Monotonicity
The DBMC algorithm requires a monotonic learning set while violations of
monotonicity are quite common in ordinal learning sets and there are viola-
tions of monotonicity in the learning set that we used as shown in Table 1. This
property may be seen as a weak point of the DBMC algorithm compared to other
methods that allow the use of non-monotonic learning sets (such as DRSA or the
MIP for MR-Sort for instance). However, given that the complete assignment
obtained by all these methods is expected to be monotonic, it is impossible for
a preference elicitation algorithm to obtain a complete assignment which is fully
compatible with the learning set, as the DBMC algorithm does, and simultane-
ously to accept non-monotonic learning sets. In order to deal with learning set
involving some violations of monotonicity, we proposed a solution named relaxed
approximation of the sorting context. The relaxed approximation of a sorting
context consists in creating a sorting context in which every pair of objects a
and b such that a dominates b and b is sorted in a better category than a is
relaxed. Here we mean by relaxed that the complete assignment of the objects
a and b are intervals and that γmax(a) ← γmax(b) and γmin(b) ← γmin(a). For
instance if an object a that was assigned to category 2 dominates an object
b that was assigned to category 4 they will both be assigned to the interval
[2, 4] i.e. γmin(a) = γmin(b) = 2 and γmax(a) = γmax(b) = 4. In case where an
object would be found twice (or more times) in the learning set with different
assignments, given that every object weakly dominates itself, then the relaxed
approximation would assign it between the lowest and the highest category in
which it is assigned in the learning set.

During the k-fold validation that we made with the Dominance Based Monte
Carlo algorithm, the training data set was modified so that the algorithm could
be ran on it. However the testing data set remained unchanged and thus may
contain violation of monotonicity. Hence, while comparing the Dominance Based
Monte Carlo algorithm to other preference elicitation algorithms, the learning
set that was used was similar for all the algorithms.

Results of the k-fold Validation Tests
The results of the 2-fold validation, practised with several preference elicitation
algorithms on the previously described data sets, is shown on Table 2. By 2-fold
validation we mean that 50% of the learning set is used as a training dataset
while the other 50% is used as a test dataset. In each cell the number at the
left represent the average percentage of misclassification across the rounds while
the number at the right of the cell represents the standard deviation of the
percentage of misclassification. Here the category set was binarized as explained

2 Find this package at: https://github.com/paterijk/MCDA.

https://github.com/paterijk/MCDA
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above. Looking at the results on Table 2, we can observe that all the preference
elicitation algorithms perform better on the car evaluation dataset (CEV) than
on the lecture evaluation data set (LEV) and have their worst performance on the
breast cancer dataset (BCC). Several explanations can be proposed. At first we
can observe on the Table 1 that this is consistent with the proportion of violations
of monotonicity. Indeed, all these methods providing a monotonic output, they
are unable to restore any non monotonic assignment in the learning set. We can
also observe that the breast cancer has the smallest learning set with the highest
number of combinations of criteria which makes the elicitation algorithms learn
with less examples on a model where more possible complete assignments are
possible.

Table 2. Results of the 2-fold validation tests. Here the categories were binarized as
described in this document. Percentage of misclassification with its standard deviation.

DRSA NCS MR-Sort UTADIS DBMC

CEV 4.91 ± 0.41% 12.6 ± 2.63% 13.9 ± 1.19% 6.9 ± 0.71% 3.72 ± 0.28%

LEV 18.76 ± 0.35% 14.92 ± 1.88% 15.92 ± 1.22% 15.01 ± 1.31% 18.67 ± 1.12%

BCC 25.95 ± 1.33% 26.72 ± 3.45% 27.5 ± 3.79% 28.70 ± 1.11% 25.92 ± 0.63%

We can observe that the performances of the DBMC algorithm is relatively
good on the car evaluation database (CEV). This algorithm being based on
monotonicity it may appear relevant to think that it performs well with model
with little violations of monotonicity. The results on the breast cancer database
(BCC) are really similar with all the algorithms, DRSA and the DBMC being a
bit better than the other three algorithms. The results of the DRSA algorithm
and of the DBMC algorithm on the lecture evaluation database (LEV) are less
good than the results with the three others.

We also wanted to assess the performance of the DBMC algorithm of data
set with more than 2 categories. Thus we ran the k-fold validation test with the
car evaluation dataset (CEV) and the lecture evaluation dataset (LEV) without
binarizing the category set. The result presented in Table 3 does not include the
breast cancer dataset given that it is already binarized in its initial state.

Table 3. Results of the 2-fold validation tests (percentage of misclassification with its
standard deviation). Here the categories were not binarized.

DRSA UTADIS DBMC

CEV (5 cat) 22.11 ± 0.54% 9.88 ± 0.43% 6.61 ± 0.41%

LEV (7 cat) 54.21 ± 0.78% 41.23 ± 1.97% 60.07 ± 2.37%

We can see in Table 3 that the binarization of the categories that was made
in Table 2 had a real impact on the performances of the elicitation algorithms.
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Indeed all the results of k-fold validation are clearly higher than those observed
on Table 2. In particular, the rate of misclassification with DRSA on the car
evaluation increases dramatically. Given that the categories are being binarized
with the category 1 on the one hand and the categories 2, 3 and 4 on the other
hand an explanation may be that many misclassifications happen between these
three last categories and thus were not counted in Table 2.

We were also interested in knowing, when objects are assigned to the wrong
category, at “How far are we from the good category?”. In order to answer this
question we presented on Table 4 the result of the 2-fold validation with the
L1 measure for the Dominance Based Monte Carlo algorithm and compared
with the results of the ordinal logistic regression (OLR) and ordinal choquistic
regression (OCR), UTADIS and DRSA. The L1 measure in the k-fold validation
is a measure of misclassification in which each misclassification is weighted by the
distance between the assignment in the learning set and the assignment found
by the preference elicitation algorithm. The reader may observe that when there
are only two categories, the L1 2-fold validation returns the same result as the
normal 2-fold validation (also called 0–1 measure for the 2-fold validation).

Table 4. Results of the 2-fold validation tests with L1 measure. Here the categories
were not binarized. Average L1-loss measure with its standard deviation.

OLR OCR DRSA UTADIS DBMC

CEV (5 cat) 23.10 ± 0.75 10.97 ± 3.6 26.32 ± 0.92 10.32 7.2 ± 1.19

LEV (7 cat) 42.64 ± 1.48 41.84 ± 1.87 74.69 ± 3.36 45.2 72.27 ± 4.01

While looking at Table 4 we see that, once again, the performance of the
DBMC algorithm and the DRSA algorithm on the lecture evaluation database
(LEV) are very close. By the way we also observe that on the lecture evaluation
database their L1 measure are dramatically higher that the 0–1 measure observed
in Table 3 which means that the objects that are assigned by these elicitation
algorithms in the wrong category are often assigned to a category which is not
adjacent to the category in which they were assigned in the learning set. By
comparison we can see that le L1 measure of the UTADIS method is only 4
point higher than the 0–1 measure (percentage of misclassifications) which means
that the objects that assigned to the wrong category with UTADIS are mainly
assigned in an adjacent category. On this database, the DBMC algorithm and the
DRSA algorithm show bad performances compared to the other three elicitation
algorithm. Concerning the car evaluation database (CEV) we can remark that
the L1 measures of UTADIS and the DBMC algorithm have performance that are
relatively close to the one of choquistic regression, the DBMC algorithm being
a little better. On this database with the DBMC, UTADIS and DRSA the L1
measure is relatively close to the 0–1 measure (percentage of misclassifications)
given in Table 3 which means that the object are mainly assigned to the good
category or to an adjacent one.
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4 Conclusion

We presented a preference elicitation algorithm for the sorting problem based
on a Monte Carlo principle and we showed some practical performance results
in term of effective convergence and ability to restore a learning set by looking
at one part of it.

On the convergence, we saw that the convergence proved theoretically in
Denat and Öztürk (2016) is observed in practice, the result being quite stable
from 100 trials onward. We also saw that the bigger the learning set is the more
stable the DBMC algorithm is.

Looking at the results of the k-fold validation, several conclusion can be
made. At first we can say that the DBMC algorithm is quite efficient on the
car evaluation (CEV) while it is less efficient on the lecture evaluation (LEV)
data set. On the breast cancer (BCC) data sets all the algorithms that are
studied here are rather not efficient and the results of the DBMC algorithm on
this database is relatively similar to those of the other algorithms although it
seems to be a little better. The reader may observe that the lecture evaluation
contains more assignments in the learning set than the number of combinations
on the criteria. While applying a 2-fold validation with the DBMC algorithm,
the learning set is cut in two and the part used as a training data set (with
which the DBMC will learn) contains almost the same number of assignments
than the number of combinations. Therefore, the DBMC algorithm has a very
little limited room to manoeuvre. One possibility to explain the relatively bad
performance of the DBMC algorithm on the Lecture evaluation data set (LEV)
may be that this algorithm does not perform well when the number of assignment
in the learning set is too high compared to the number of combinations possibly
due to its incapacity to reassign object to different categories when the learning
set is violated.

Then we can observe that the performance of the DBMC algorithm are very
close to the performances of DRSA (excepted on the car evaluation dataset
(CEV) with 5 categories). This similarity can be due to the fact that these
methods are both model free and based on monotonicity.

As a perspective we are now developing other tests to evaluate the perfor-
mance of the Dominance Based Monte Carlo algorithm such as a modified version
of the idiosyncrasy test described in Sobrie et al. (2013). Our test, which is quite
similar to the k-fold validation, consists in iteratively assigning every object of
a model with an elicitation method (UTADIS, MR-SORT...) that we call the
“assigning method” and random parameters for this method. Then the DBMC
would learn with a given proportion of the objects (the training data set) and
then would predict the assignments of the other objects. The idea would be to
test the performance of the DBMC on this test and compare these results the
those that would be obtained with the same test using the assigning method.

We also look at different ways to deal with violations of monotonicity such
as canceling all the pairs that are concerned by them.
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2013. LNCS, vol. 8176, pp. 336–350. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41575-3 26

Sobrie, O., Mousseau, V., Pirlot, M.: Learning the parameters of a non compensatory
sorting model. In: Walsh, T. (ed.) ADT 2015. LNCS (LNAI), vol. 9346, pp. 153–170.
Springer, Cham (2015). doi:10.1007/978-3-319-23114-3 10

Tervonen, T., Figueira, J.R., Lahdelma, R., Dias, J.A., Salminen, P.: A stochastic
method for robustness analysis in sorting problems. Eur. J. Oper. Res. 192(1), 236–
242 (2009)

http://dx.doi.org/10.1007/978-3-642-41575-3_26
http://dx.doi.org/10.1007/978-3-642-41575-3_26
http://dx.doi.org/10.1007/978-3-319-23114-3_10


A Heuristic Approach to Test the Compatibility
of a Preference Information with a Choquet

Integral Model

Lucie Galand and Brice Mayag(B)

University Paris-Dauphine, PSL Research University LAMSADE, CNRS, UMR 7243,
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Abstract. This work deals with the problem of the existence of a Mul-
ticriteria Decision Aiding model, based on the Choquet integral, that
represents the preferences of a decision maker. Given some preferences
on a set of actions, our aim is to determine if those preferences are com-
patible with a Choquet integral model, where the utility function asso-
ciated to each criterion and the capacity on the subsets of criteria are
to be defined. Computing simultaneously the utility functions and the
capacity leads to solving a mixed integer program with some quadratic
constraints, which can not be performed efficiently. We propose here to
solve this problem by using a linear approximation of the quadratic terms
given by the Taylor’s formula, and then apply a standard mixed integer
programming solver. We illustrate and analyze our approach with some
numerical experiments.

Keywords: MCDA · Preference modeling · Choquet integral ·
interaction

1 Introduction

MultiCriteria Decision Aiding (MCDA) aims at representing the preferences of
a Decision-Maker (DM) on a set of alternatives (or actions, options) X evalu-
ated over a finite set of criteria N = {1, . . . , n} (n > 1) often conflicting. An
alternative can be identified as an element x = (x1, . . . , xn) of the Cartesian
product X = X1 × · · · × Xn, where X1, . . . , Xn represent a set of points of
view or attributes. The Multi-Attribute Utility Theory (MAUT) [6] is one of the
decision models usually used to represent the preferences of the DM. In practice,
MAUT elaborates a preference relation �X over X by asking to the DM some
pairwise comparisons of alternatives on a finite subset of X, called a reference
set or a set of learning data. The question is then: is this preference information
�X compatible with an appropriate aggregation function modeling the DM’s
preferences?

The arithmetic mean is the most classical and widely used aggregation func-
tion modeling the preferences of a DM. It has the major drawback of assuming
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independence among criteria [10]. Among multiple models proposed in the liter-
ature to overcome this limitation, the Choquet integral is one of the most expres-
sive model. It is able to model the interaction phenomena ranging from veto,
favor to complementarity or redundancy between criteria [10–12]. The represen-
tation of a preference information by a Choquet integral needs the identification
of two types of parameters: the capacity (also called a fuzzy measure) and the
utility functions associated to the set of attributes. Since the number of capac-
ity’s parameters grows fast according to the number of criteria, the 2-additive
Choquet integral model has been introduced in order to take into account only
interaction between two criteria, the interaction between more than two of them
are ignored. This model appears as a good compromise between complexity and
usability [11].

The usual approach to elicit a MCDA model based on the Choquet inte-
gral consists in two separate steps: first, construct the utility function for each
attribute, and then construct the capacity once the utility functions are known
[9,12,13]. Most of the works in the literature have focused on the second phase,
transforming it into an optimization problem, once the DM has provided a pref-
erence information. As proved in [4] it is more convenient to elicit simultaneously
both capacity and utility function. To our knowledge, there exist, in the case of
a 2-additive Choquet integral, two heuristic approaches trying to tackle this
problem. The authors of the first one [1] proposed a method based on stochas-
tic approaches (Monte Carlo or genetic algorithm). In the second approach [7],
the authors propose an approximate algorithm based on a fixed-point approach
consisting in transforming the original optimization problem into two iterative
linear problems.

We propose in this paper a new heuristic approach based on a linear approx-
imation of the quadratic terms (product of the utilities functions with Shapley
values and interaction indexes) by the Taylor’s formula [2]. It consists to test
the compatibility of DM’s preferences with a 2-additive Choquet integral model
by computing an approximate value of its parameters from a neighborhood of a
given reference point. The aim of this algorithm is not to find the most appropri-
ate values of utility functions and capacity. It only tries to check whether there
exist values of the parameters which fulfill the preferences expressed as a partial
weak order on X. A negative result returned by this algorithm does not mean
that the preferences are not representable by a 2-additive Choquet integral. That
is why it is a heuristic. Compared to the other approaches proposed in [1,7], we
test our heuristic on some randomly generated hard instances.

The next section presents basic concepts we need in the representation of a
preference information by a 2-additive Choquet integral, while Sects. 3 and 4 are
respectively dedicated to the presentation of our approach and the experiments
we made. We end the paper by a conclusion.
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2 Settings

2.1 The 2-additive Choquet Integral

The 2-additive Choquet integral is a particular case of the well known Choquet
integral [11,13]. Its main property is to model interactions between two criteria.
These interactions are simple and more meaningful than those produced by using
the Choquet integral. This aggregation function is based on the notion of capacity
μ defined as a set function from the powerset of criteria 2N to [0, 1] such that:

• μ(∅) = 0
• μ(N) = 1
• ∀A,B ∈ 2N , [A ⊆ B ⇒ μ(A) ≤ μ(B)] (monotonicity).

We adopt the notations μi := μ({i}), μij := μ({i, j}) for all i, j ∈ N , i �= j.
Whenever we use i and j together, it always means that they are different.

A capacity μ on N is said to be 2-additive if its Möbius transform m : 2N → R

defined by
mμ(T ) :=

∑

K⊆T

(−1)|T\K|μ(K),∀T ∈ 2N .

satisfies these two conditions:

1. For all subset T of N such that |T | > 2, m(T ) = 0;
2. There exists a subset B of N such that |B| = 2 and mμ(B) �= 0.

A 2-additive capacity is fully characterized with n+
n(n + 1)

2
Möbius transform

coefficients (instead of 2n − 2). Given an alternative x := (x1, ..., xn) ∈ X, the
expression of the 2-additive Choquet integral is the following [11]:

Cμ(u(x)) =
n∑

i=1

φμ
i ui(xi) − 1

2

∑

{i,j}⊆N

Iμ
ij |ui(xi) − uj(xj)| (1)

where

• ui : Xi → R+ is an utility function, nondecreasing in its arguments, associated
to the attribute Xi, for all i ∈ N ;

• u(x) = (u1(x1), . . . , un(xn)) for x = (x1, ..., xn) ∈ X;
• Iμ

ij = μij −μi −μj is the interaction index, w.r.t. capacity μ, between the two
criteria i and j [8,14].

• ∀i ∈ N , the importance of criterion i corresponding to the Shapley value of
μ [15] is given by the formula:

φμ
i =

∑

K⊆N\i

(n − |K| − 1)!|K|!
n!

(μ(K ∪ i) − μ(K))

= μi +
1
2

∑

{i,j}⊆N,i �=j

(μij − μi − μj) = μi +
1
2

∑

j∈N\{i}
Iμ
ij .

In this expression, the 2-additive Choquet integral appears as a good compromise
between the arithmetic mean and the general expression of the Choquet integral.
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2.2 Preference Information

We assume that the DM can express his preferences by giving a partial order
�X on X allowing to compute two preference relations � and ∼ defined by:

�= {(x, y) ∈ X × X : DM strictly prefers x to y} (2)
∼= {(x, y) ∈ X × X : DM is indifferent between x and y} (3)

We denote by XR = {x, y ∈ X : x �X y} the reference subset of X.

Definition 1. A preference information {�,∼} on X is said to be repre-
sentable by a 2-additive Choquet integral (C2-compatible for short) if there
exists a 2-additive capacity μ and utilities functions ui : Xi → R+ such that:
∀x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X,

x � y ⇒ Cμ(u1(x1), . . . , un(xn)) > Cμ(u1(y1), . . . , un(yn)) (4)
x ∼ y ⇒ Cμ(u1(x1), . . . , un(xn)) = Cμ(u1(y1), . . . , un(yn)). (5)

2.3 Problem Formulation

Given a finite set of criteria N , a finite set of m n-dimensional alternatives
X = {x1, x2, . . . , xm}, where xk

i is the value of alternative xk for criterion i,
and a reference subset XR of X, we want to test if a preference information
{�,∼} is representable by a 2-additive Choquet integral model. We denote by
P(XR) this problem. Solving P(XR) amounts to determining if the following
domain of variables (defined by a system of equalities/inequalities) is feasible:

n∑

i=1

φµ
i ui(xi) − 1

2

∑

{i,j}⊂N

Iµij |ui(xi)−uj(xj)|>
n∑

i=1

φµ
i ui(yi) − 1

2

∑

{i,j}⊂N

Iµij |ui(yi)−uj(yj)|

∀x, y ∈ X, s.t. x � y ∈ XR (6)
n∑

i=1

φµ
i ui(xi) − 1

2

∑

{i,j}⊂N

Iµij |ui(xi)−uj(xj)|=
n∑

i=1

φµ
i ui(yi) − 1

2

∑

{i,j}⊂N

Iµij |ui(yi)−uj(yj)|

∀x, y ∈ X, s.t. x ∼ y ∈ XR (7)
ui(xi) ≥ ui(x

′
i) if xi is at least as good as x′

i, ∀i ∈ N, ∀xi, x
′
i ∈ Xi (8)

φµ
i = μi +

1

2

∑
{i,j}⊆N Iij ∀i ∈ N (9)

∑n
i=1 φµ

i = 1 (10)
Iµij = μij − μi − μj ∀i, j ∈ N (11)
∑

i∈A\{k}(μik − μi) ≥ (|A| − 2)μk ∀A ⊆ N, |A| ≥ 2, ∀k ∈ A (12)

1 ≥ μi ≥ 0, φµ
i ≥ 0 ∀i ∈ N (13)

1 ≥ μij ≥ 0, 1 ≥ Iµij ≥ 0 ∀i, j ∈ N (14)

ui(xi) ≥ 0 ∀i ∈ N, ∀x ∈ X (15)
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Monotonicity constraints of the 2-additive capacity are given by Eq. (12).
The aim of this program is not to find the most appropriate values of utility
functions and capacity. We only check here if this system is feasible.

Furthermore this program is nonlinear since utilities and capacities are
unknown. Our objective is to propose in the sequel, see Sect. 3, a heuristic
approach to tackle this kind of problem. We illustrate through the following
classic example the nonlinear program given above.

Example 1 (A classic example [10]). Four students of a faculty are evaluated
on three subjects Mathematics (M), Statistics (S) and Language skills (L). All
marks are taken from the same scale from 0 to 20. The evaluations of these
students are given by the following table:

1 : Mathematics (M) 2 : Statistics (S) 3 : Language (L)
a 16 13 7
b 16 11 9
c 6 13 7
d 6 11 9

To select the best students, the dean of the faculty expresses his preferences. For a
student good in Mathematics, Language is more important than Statistics: a ≺ b.
For a student bad in Mathematics, Statistics is more important than Language:
d ≺ c. These two preferences lead to a contradiction with the arithmetic mean
model. Indeed the following system
{

a ≺ b ⇒ uM (16) wM + uS(13) wS + uL(7) wL < uM (16) wM + uS(11) wS + uL(9) wL

d ≺ c ⇒ uM (6) wM + uS(11) wS + uL(9) wL < uM (6) wM + uS(13) wS + uL(7) wL.

implies this contradiction: uS(13) wS + uL(7) wL < uS(11) wS + uL(9) wL and
uS(11) wS + uL(9) wL < uS(13) wS + uL(7). To test if this preference informa-
tion, a ≺ b and d ≺ c, is C2-compatible, we compute the following constraints:

Cµ(u(a)) < Cµ(u(b)), Cµ(u(d)) < Cµ(u(c))

Cµ(u(a)) = φµ
1u1(16) + φµ

2u2(13) + φµ
3u3(7) − 1

2
Iµ
12|u1(16) − u2(13)|

− 1

2
Iµ
13|u1(16) − u3(7)| − 1

2
Iµ
23|u2(13) − u3(7)|

Cµ(u(b)) = φµ
1u1(16) + φµ

2u2(11) + φµ
3u3(9) − 1

2
Iµ
12|u1(16) − u2(11)|

− 1

2
Iµ
13|u1(16) − u3(9)| − 1

2
Iµ
23|u2(11) − u3(9)|

Cµ(u(c)) = φµ
1u1(6) + φµ

2u2(13) + φµ
3u3(7) − 1

2
Iµ
12|u1(6) − u2(13)|

− 1

2
Iµ
13|u1(6) − u3(7)| − 1

2
Iµ
23|u2(13) − u3(7)|
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Cµ(u(d)) = φµ
1u1(6) + φµ

2u2(11) + φµ
3u3(9) − 1

2
Iµ
12|u1(6) − u2(11)|

− 1

2
Iµ
13|u1(6) − u3(9)| − 1

2
Iµ
23|u2(11) − u3(9)|

0 ≤ u1(6) ≤ u1(16) ≤ 1, 0 ≤ u2(11) ≤ u2(13) ≤ 1, 0 ≤ u3(7) ≤ u3(9) ≤ 1

φµ
1 = μ1 +

1

2
I12 +

1

2
I13, φµ

2 = μ2 +
1

2
I12 +

1

2
I23, φµ

3 = μ3 +
1

2
I13 +

1

2
I23

Iµ
12 = μ12 − μ1 − μ2, Iµ

13 = μ13 − μ1 − μ3, Iµ
23 = μ23 − μ2 − μ3

μ12 + μ13 ≥ μ1 + μ2 + μ3, μ12 + μ23 ≥ μ1 + μ2 + μ3, μ13 + μ23 ≥ μ1 + μ2 + μ3

μ1 ≥ 0, μ2 ≥ 0, μ3 ≥ 0, μ12 ≥ 0, μ13 ≥ 0, μ23 ≥ 0

3 Our Proposition

In the sequel, we assume that ∀i ∈ N , Xi is a numerical attribute such that ∀xi ∈
Xi, 0 ≤ xi ≤ 1 and 0 ≤ ui(xi) ≤ 1. We also suppose Iij ≥ 0 for all i, j ∈ N . This
latter assumption could be justified since it is proved in [13] that, a preferential
information without indifference on binary alternatives1 is always representable
by nonnegative interaction index. In order to efficiently solve problem P(XR),
we linearize its mathematical program, namely the absolute values, and the
quadratic terms.

3.1 Linearization of the Absolute Values

The absolute value terms in Constraints (6) and (7) can be linearized by intro-
ducing integer variables. Let z = |x − y| be the absolute value of the difference
of two nonnegative numbers x, y ∈ [0, 1]. The real z can be computed by the
following mixed integer linear constraints:

z ≥ x − y
z ≥ y − x
z ≤ x − y + 1 − α
z ≤ y − x + 1 − β
α + β = 1
z, x, y ∈ [0, 1]
α, β ∈ {0, 1}

(16)

1 A binary action is a fictitious alternative which takes either the neutral value 0 for all
criteria, or the neutral value 0 for all criteria except for one or two criteria for which
it takes the satisfactory value 1. The binary actions are used in many applications
through the MACBETH methodology [3,5].
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Therefore the computation of the absolute value function u
xixj

ij = |ui(xi) −
uj(xj)| in (1) is linearized like this:

u
xixj

ij ≥ ui(xi) − uj(xj)
u

xixj

ij ≥ uj(xj) − ui(xi)
u

xixj

ij ≤ ui(xi) − uj(xj) + 1 − αij

u
xixj

ij ≤ uj(xj) − ui(xi) + 1 − βij

αij + βij = 1
u

xixj

ij , ui(xi), uj(xj) ∈ [0, 1]
αij , βij ∈ {0, 1}

(17)

3.2 Linearization of the Quadratic Terms

The heuristic we propose in this paper aims at computing an approximate value
of the 2-additive Choquet integral function, given by Eq. (1), when utility func-
tions and capacity are unknown. It only tries to check whether there exist values
of the parameters which fulfill the learning examples. This computation is based
on a linear approximation of the product of two variables, by using the Tay-
lor’s formula [2]. We propose indeed to approximate the terms φμ

i ui(xi) and
Iμ
ij |ui(xi) − uj(xj)| in (1) by the Taylor’s formula of a function of two variables.

The general expression of this formula, for a given function f of two variables
x and y defined in a neighborhood of a vector (a, b), is the following:

L(x, y) = f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b) (18)

where fx and fy represent the partial derivatives of f .
L(x, y) is the linear function called the linearization of f at (a, b) and the

approximation

f(x, y) ≈ f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b) (19)

is called the linear approximation of f at (a, b).
The function f is said to be differentiable if

lim
x→a,y→b

|f(x, y) − L(x, y)|√
(x − a)2 + (y − b)2

= 0 (20)

Theorem 1 (Taylor [2]). If the partial derivatives fx and fy exist in a neigh-
borhood of (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

Example 2. Is it not difficult to see that the function f(x, y) = xy is differen-
tiable at any point (a, b) such that a, b ∈ [0, 1] since fx(x, y) = y and fy(x, y) = x.

For instance, it is differentiable at (
1
3
,
1
5
) and the linearization is

L(x, y) = f(
1
3
,
1
5
) + fx(

1
3
,
1
5
)(x − 1

3
) + fy(

1
3
,
1
5
)(y − 1

5
)
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i.e.
L(x, y) =

1
15

+
1
5
(x − 1

3
) +

1
3
(y − 1

5
) =

1
5
x +

1
3
y − 1

15
.

We can use this function to approximate the points (
1
3

+
1
20

,
1
5

− 1
20

) and

(
1
3

+
1
10

,
1
5

+
1
10

) in the neighborhood of ( 13 , 1
5 ):

• f(
1
3

+
1
20

,
1
5

− 1
20

): It follows that f(
1
3

+
1
20

,
1
5

− 1
20

) ≈ 1
5
(
1
3

+
1
20

) +
1
3
(
1
5

−
1
20

) − 1
15

� 0.06 and its real value is 0.0575.

• f(
1
3

+
1
10

,
1
5

+
1
10

): It follows that f(
1
3

+
1
10

,
1
5

+
1
10

) ≈ 1
5
(
1
3

+
1
10

) +
1
3
(
1
5

+
1
10

) − 1
15

� 0.10667 and its real value is 0.13.

To adapt this result to our context, we consider these linear approximations:

1. The product zxi
i = φμ

i ui(xi) is differentiable at a point (φ̄i, ūi) and approxi-
mated by

zxi
i = (φ̄i×ūi)+ūi(φ

μ
i −φ̄i)+φ̄i(ui(xi)−ūi) = ūi×φμ

i +φ̄i×ui(xi)−φ̄iūi (21)

2. The product z
xixj

ij = Iμ
iju

xixj

ij , where u
xixj

ij is the variable used in (17), is
differentiable at (Īij , |ūi − ūj |) and approximated by

z
xixj

ij = (Īij |ūi − ūj |) + |ūi − ūj |(Iμ
ij − Īij) + Īij(u

xixj

ij − |ūi − ūj |)
= Iμ

ij |ūi − ūj | + Īij × u
xixj

ij − Īij |ūi − ūj | (22)

Example 3. In Example 1, the evaluation of the student a is given by:
Cμ(u(a)) = φμ

1u1(16)+φμ
2u2(13)+φμ

3u3(7)− 1
2Iμ

12|u1(16)−u2(13)|− 1
2Iμ

13|u1(16)−
u3(7)| − 1

2Iμ
23|u2(13) − u3(7)|. Using our linear approximations and the points

(φ̄, ū) = (
1
n

, xi) and (Ī , |ūi − ūj |) = (
1
10

, |xi − xj |), we replace the product

φμ
1u1(16) with

z
16
20
1 =

16
20

× φμ
1 +

1
3

× u1(
16
20

) − 16
60

and replace the product Iμ
12|u1(16) − u2(13)| with

z
16
20

13
20

12 =
∣∣∣
16
20

− 13
20

∣∣∣×Iμ
12+

1
10

×u
16
20

13
20

12 −

∣∣∣
16
20

− 13
20

∣∣∣
10

=
3
20

×I12+
1
10

×u
16
20

13
20

12 − 3
200

.

Hence the linear approximation of Cμ(u(a)) is given by

C̃μ(u(a)) ≈ z
16
20
1 + z

13
20
2 + z

7
20
3 − 1

2
z

16
20

13
20

12 − 1
2
z

16
20

7
20

13 − 1
2
z

13
20

7
20

23
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The points (φ̄i, ūi) in (21) and (Īij , |ūi − ūj |) in (22) are chosen arbitrarily.
The idea of these approximations is to try to find a utility value ui(xi) not far
from the numerical value ūi, the Shapley value φμ

i in the neighborhood of φ̄i and
the interaction index Iμ

ij in the neighborhood of Īij . To translate these notions
of neighborhood, we add the following constraints:

ūi − εxi ≤ ui(xi) ≤ ūi + εxi

φ̄i − εφµ
i ≤ φμ

i ≤ φ̄i + εφµ
i

Īij − εIµ
ij ≤ Iμ

ij ≤ Īij + εIµ
ij

εxi ≥ 0, εφµ
i ≥ 0, εIµ

ij ≥ 0

We denote by T (XR, s̄) the problem of determining a feasible solution to
the mathematical program obtained with the linearization of the quadratic con-
straints of P(XR) in the neighborhood of a given reference point s̄ thanks to the
Taylor’s formula, and with the linearization of the absolute values.

3.3 Global Procedure

Our proposition consists in solving problem P(XR) using problem T (XR, s̄).
A solution to problem P(XR) is an instantiation of the capacity and the util-
ity functions of a Choquet integral. It can be equivalently described by the
instantiation of the Shapley values, the interaction indexes and the utility func-
tion. In the sequel, a solution is therefore a point s = (φ, I, u) where the vec-
tor φ = (φ1, . . . , φn) represents the Shapley values of the criteria, the vector
I = (I11, I12, . . . , I1n, I21, . . . , I2n, . . . , Inn) represents the interaction indexes of
the pairs of criteria, where Iii = 0, and the vector u = (u1(x1), . . . , un(x1),
u1(x2), . . . , un(x2), . . . , u1(xm), . . . , un(xm)) represents the utility values of the
actions xj ∈ X on the n criteria. Like a solution to T (XR, s̄) (or P(XR)), the
reference point s̄ = (φ̄, Ī , ū) is defined by the Shapley values φ̄, the interaction
indexes Ī and the utility function ū.

Remark 1. An optimal solution s to Problem T (XR, s̄) can be infeasible to
Problem P(XR).

Example 4. Consider Example 1 (classic example). Let s̄ be defined by:

– φ̄1 = φ̄2 = 0.2, φ̄3 = 0.6 and Ī12 = 0, Ī13 = 0.2, Ī23 = 0.6
– ū(a) = (0.8, 0.65, 0.35), ū(b) = (0.8, 0.55, 0.45), ū(c) = (0.3, 0.65, 0.35),

ū(d) = (0.3, 0.55, 0.45) (where here ui(xi) = xi/20 for all i)

Let us define the objective function of T (XR, s̄) as the minimization of the dis-
tance to s̄ with respect to the L1-norm. An optimal solution s = (φ, I, u) to
T (XR, s̄) is:

– φ = φ̄ and I12 = 0, I13 = 0.2, I23 = 0.4
– u(a) = (0.8, 0.65, 0.4375), u(b) = ū(b), u(c) = (0.3, 0.65, 0.4375), u(d) = ū(d)
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This solution gives C(a) = 0.473751 and CT (a) = 0.482501, C(b) = 0.485 and
CT (b) = 0.485, C(c) = 0.396251 and CT (c) = 0.405001, C(d) = CT (d) = 0.405,
where CT (x) is the value of the Choquet integral of solution x ∈ X with the
linearization. The CT values are close to the real Choquet values, however the
error of linearization for action c makes this solution s infeasible to P(XR) since
C(c) < C(d), which contradicts the preference of the DM, whereas CT (c) >
CT (d), which makes solution s feasible to T (XR, s̄).

Remark 2. Given a point s̄, a feasible solution s to Problem P(XR) can be
infeasible to Problem T (XR, s̄).

Example 5. Consider here again Example 1. Let s̄ be defined by:

– φ̄1 = 0, φ̄3 = 0.8, φ̄2 = 0.2 and Ī12 = 0, Ī13 = 0, Ī23 = 0.2
– ū(a) = (0.8, 0.65, 0.35), ū(b) = (0.8, 0.55, 0.45), ū(c) = (0.3, 0.65, 0.35),

ū(d) = (0.3, 0.55, 0.45) (where here ui(xi) = xi/20 for all i)

A feasible solution s = (φ, I, u) to P(XR) is defined by:

– φ1 = 0.2, φ2 = 0.2, φ3 = 0.6 and I12 = 0, I13 = 0.00002, I23 = 0.2
– u(a) = (0.8, 0.65, 0.35), u(b) = (0.8, 0.55, 0.3642857), u(c) = (0.3, 0.65, 0.35),

u(d) = (0.3, 0.55, 0.3642857)

It gives C(a) = 0.469995, C(b) = 0.469996, C(c) = 0.37 and C(d) = 0.369999,
which makes s feasible to P(XR). However we get: CT (a) = 0.54, CT (b) = 0.47,
CT (c) = 0.44, CT (d) = 0.49, where CT (a) > CT (b) and CT (d) > CT (c) which
contradicts the two preferences of the DM.

Nevertheless if Problem P(XR) admits a feasible solution s then there exists
a point s̄ such that s is a feasible solution to Problem T (XR, s̄). It obviously
suffices to take s̄ = s. Moreover, in this case, if the objective function of Problem
T (XR, s̄) is defined as minimizing a distance to s̄, s is an optimal solution to
T (XR, s̄). Those observations show the importance of the choice of point s̄ when
solving Problem T (XR, s̄). In order to find a C2-compatible model with the
preference information, we solve Problem T (XR, s̄) for some points s̄ until the
optimal solution to T (XR, s̄) is feasible to P(XR).

4 Illustration and Experiments

In this section, we test if the approximation with the Taylor’s formula enables
us to assess the C2-compatibility of a DM. When a 2-additive Choquet integral
model compatible with the reference set is computed with a given reference point,
one can claim that the preferences of the DM are C2-compatible. To perform
those tests, one generates random instances with m actions and n criteria. The
value of each criterion of each action is randomly generated between 0 and 50.
Then each pair of actions xi, xj is considered: if xi (resp. xj) Pareto-dominates
xj (resp. xi) then xi � xj (resp. xj � xi) is added into the reference set R,
otherwise xi � xj (or xj � xi or xi ∼ xj) is added into R with a probability
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1
4∗m . If this newly generated preference or indifference relation creates a cycle in
the preference relation XR induced by R, it is not added into R. The preference
relation XR obtained from the randomly generated reference set R is therefore
compatible with Pareto-dominance (when an action xi Pareto-dominates another
action xj , xi is preferred to xj) and does not contain any cycle. Note that the
preference relation XR may be compatible with an additive model. In this case,
the instance associated to XR is not considered. Therefore, in this section, all
the tests are performed on non-additive randomly generated instances.

4.1 Definition of the Reference Points

To solve problem P(XR) with the global procedure, we can define iteratively
different points s̄ and solve problem T (XR, s̄) for each s̄. We can set the values of
s̄ as follows: at each iteration s̄j is one value in {0, δj , 2δj , . . . , 1}, with δj ∈]0, 1],
for any dimension j of point s̄. Let d be the dimension of s̄, the number of
distinct reference points s̄ is therefore in O( 1

δd ) where δ = maxj δj . Thus the
number of T (XR, s̄) to be solved in this approach is up to O( 1

δd ).
In this section, we study three approaches for defining some reference points

s̄ in the global procedure. We have tested the approaches on several instances of
different sizes and the conclusions about the definition of the different reference
points were the same for all the tested instances. Therefore, in all this section, we
illustrate our results on the following small non-additive instance with 5 actions
and 3 criteria: the 5 actions are x1 = (25, 24, 26), x2 = (40, 2, 3), x3 = (4, 27, 37),
x4 = (47, 47, 23) and x5 = (35, 6, 43), and the preference information is x1 ∼
x4, x2 � x5 and x4 � x2. The resulting mathematical program involves 128
variables, 15 of which are binary, and 216 constraints.

The first approach tested here, named App1 hereafter, consists in solving
T (XR, s̄) for several reference points s̄, and looking for a feasible solution the
closest to s̄ as possible. The idea behind looking for a feasible point the closest to
s̄ as possible is to ”minimize” the error when computing the approximation of a
product with the Taylor’s formula by staying in the neighborhood of the reference
point s̄. More precisely we define the objective function in problem T (XR, s̄) by:

min Lp(εx1
1 , . . . , εxm

n , εφµ
1 , . . . , εφµ

n , εIµ
11 , . . . , εIµ

nn)

where the ε values represent the gap between the reference point and the solution
(see the end of Sect. 3.2). In this first pool of tests, we compare the results
obtained with App1 for different values of δj that define the different reference
points s̄, and for two distances defined with L1-norm or L∞-norm. We set δj =
δj′ for all j, j′. The results are summarized in Table 1. For any δ value and
Lp-norm it is indicated the execution time in seconds (col. CPU(s)) and the
number of reference points s̄ tested before obtaining an optimal solution to
T (XR, s̄) that is feasible to P(XR) (col. #it.). Note that the maximal number
of problems T (XR, s̄) to be solved is here ( 1δ + 1)3+3+15 (we omit the terms Iii

in the computation of the dimension of the reference point since their values
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Table 1. Results obtained with App1

δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.7

#it CPU (s) #it CPU (s) #it CPU (s) #it CPU (s)

L1-norm 175702 17141.1 1794 143.21 245 14.06 2053 187.728

L∞-norm 80440 2876.98 33568 1342.11 1424 45.22 31481 1820.42

are 0). For instance, when δ = 0.5, the number of T (XR, s̄) to be solved in App1
is up to 321.

These results show that App1 is the most efficient with δ = 0.5. A solution to
P(XR) is indeed determined in 14 s with the L1-norm. Decreasing the value of δ
makes the number of iterations (and consequently the execution time) increase.
This is easily explained by the increasingness of the number of possible reference
points in this case. We can note however that the number of iterations with
δ = 0.7 is also greater than with δ = 0.5. It means that δ should be neither
too large nor too small. Selecting an appropriate value of δ appears therefore
like a challenge. Besides, these results show that using L1-norm in the objective
function seems to be more efficient than using L∞-norm.

As it could be expected, App1 involves a huge number of solutions of problem
T (XR, s̄). At each iteration (i.e. solution of a problem T (XR, s̄)), one looks
for a solution the closest to the point s̄ as possible. Consequently when the
reference point is “far” from being feasible to P(XR), one could expect the
optimal solution to T (XR, s̄) with App1 to be infeasible to P(XR). As we only
need to find an optimal solution to T (XR, s̄) that is feasible to P(XR), being
close to an arbitrary given reference point could be a guide in the search but not
a goal to reach. We propose thus to relax the closeness to the reference point
by minimizing the distance between the solution and the reference point only
on a part of their components. More precisely, in this approach, called hereafter
App2, one requires the distance between the optimal solution and the reference
point to be minimized only on the Shapley values and/or on the interactions
indexes. Table 2 shows the results obtained on the 5 actions-3 criteria instance.
The symbol − means that the execution of the global procedure has been stopped
after 9 hours of running without finding any solution to problem P(XR).

Table 2. Results obtained with App2

Min. dist. to φ̄ + Ī φ̄ Ī

norm/δ #it CPU (s) #it CPU (s) #it CPU (s)

L1/0.3 1185614 43495.7 - - 17434 636.03

L∞/0.3 33568 1347.15 33568 1386.18 33568 1382.11

L1/0.5 414907 10693.1 - - 179 3.76

L∞/0.5 1424 44.95 1424 45.29 1424 46.21
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Those results show that omitting some terms in the objective function makes
the global procedure much less efficient. For example, it takes 17434 iterations
with L1-norm and δ = 0.3 when the objective function is only defined with εIµ

terms, instead of 1794 (see Table 1). With δ = 0.5, no solution was found in
a reasonable time with L1-norm when the objective function only contains εφµ

terms, whereas it only takes 143 s and 14 s when all terms are in the objective
function. These results can be explained by the fact that allowing the values
of some components of the optimal solution to be far from the reference values
can increase the value of the error in the linearization of the quadratic terms.
Besides, we can note that modifying the terms that define the objective function
does not change the number of iterations with L∞-norm.

The main issue of the two previous approach is the huge number of possible
reference points. In order to drastically decrease the number of reference points
to be used in the global procedure, we propose in this approach to fix the values
of some of its components, and to select different values for the other components
only. This approach is named App3 hereafter. Since we assume that the values
of the actions on each criteria xj

i are real numbers, we set ūi(x
j
i ) = xj

i/xmax
i for

all i ∈ N and j ∈ {1, . . . , m}, where xmax
i = maxjx

j
i , when the utility functions

values ū are fixed in App3. When the interaction indexes are fixed in App3, we
set Iij = 0.2 for any i, j ∈ N . When the Shapley values are fixed in App3, we
set φi = 1

n for any i ∈ N . In all the cases, the objective function is to minimize
the distance to the all the components of s̄. Table 3 shows the results obtained
with App3. In this table, NF (x) means that no feasible solution to problem
P(XR) has been found in x iterations.

Table 3. Results obtained with App3

Variations of values φ̄ and Ī φ̄ Ī ū

norm/ε #it CPU(s) #it CPU (s) #it CPU (s) #it CPU (s)

L1/0.1 1 0.04 14 1.74 1 0.02 133 5.64

L∞/0.1 37 1.99 43 3.09 3 0.13 593 17.49

L1/0.3 1 0.12 5 0.55 1 0.02 274 22.25

L∞/0.3 NF (630) 20.68 NF (10) 0.75 1 0.03 1377 41.37

L1/0.5 1 0.06 4 0.53 1 0.03 13 0.59

L∞/0.5 53 1.4 NF (6) 0.41 1 0.03 712 23.93

L1/0.7 1 0.03 NF (3) 0.34 2 0.08 5 0.18

L∞/0.7 NF (21) 0.61 NF (3) 0.15 NF (7) 0.54 1742 99.87

These results show that fixing some components of the reference points
enables the procedure to be much more efficient. The maximal number of iter-
ations is significantly decreased, but it does not prevent to find a solution, in
general. Note however that when varying the values of only φ, a solution cannot
be found with highest values of δ. Moreover, we can observe that using L1-norm
appears, here again, more efficient than using L∞-norm.
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The tests of this section show that the performance of the global proce-
dure depends on the definition of the objective function of the linear program
and on the used reference points. Those tests, illustrated here with a simple
instance, were performed on several instances of different size. We come to the
same conclusions for all tested instances: varying the utility values of the refer-
ence point and using L∞-norm is not efficient. We propose therefore to minimize
the distance between the reference point and the solution with respect to the
L1-norm. However, the components of the reference points that should be taken
into account in the objective function depends on the size of the problem. In
our experiments, it turns out that it is more efficient to minimize the distance
between the reference point and the solution over their Shapley values and inter-
action indexes for bigger size instances. Furthermore, in the different iterations
of the global procedure, we fix the reference values of the utility functions, and
we vary the reference values of the Shapley values and of the interaction indexes.

4.2 Illustration on Random Non-additive Instances

In this section, we illustrate the use of the Taylor’s formula in the linearization of
the Choquet integral. We therefore apply our global procedure to randomly gen-
erated instances (generated as previously explained). The reference points are
generated either by a sampling on a regular multidimensional grid (see Sect. 4.1)
or randomly. Note that the aim of this pool of tests is not to provide the most
efficient procedure for testing the C2-compatibility of a preference information,
but only to illustrate the application of the linearization of a Choquet integral
model with Taylor’s formula. In the following experiments, one minimizes the
distance between the reference point and the solution over their Shapley values
and interaction indexes with respect to the L1-norm. Besides one sets δ = 0.05
for the regular multidimensional grid used in the sampling of the reference points.
Table 4 indicates the results obtained. The results are given as average over 5
randomly generated non-additive instances of each size. In the random gener-
ation of the reference points, one randomly generates each Shapley values and
interaction indexes. We set the maximal number of reference points to be gen-
erated to 1000, that is at most 1000 problems T (XR, s̄) have to be solved in
this approach. In both approaches we stop the running of the procedure at the
first iteration where the feasible solution to T (XR, s̄) is also feasible to P(XR).
The results show that the two selection strategies of the reference point (regular
grid and random generation) in the global procedure enables us to solve prob-
lem P(XR) with a linearization based on the Taylor’s formula on some instances
in a few iterations. There are some other instances for which one cannot solve
the problem without increasing the maximal number of reference points to use
in the global procedure. The definition of the reference point is therefore a cru-
cial issue in this approach. In further works, one could design an efficient global
procedure, where a crucial issue would be to sample the reference points in a
relevant way.
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Table 4. Illustration of the approach

Generation of ref. points Regular grid Random

m × n #iterations CPU(s) #iterations CPU(s)

10 × 3 10.4 23.33 75 4.64

20 × 3 45.4 15.1 24.6 18.4

30 × 3 22 29.9 207 169

5 Conclusion

In this work, we proposed an approach which aims at finding values of the utility
functions and of the capacity that represent a preference information given by
a partial order on a set of alternatives. Our heuristic approximates the Choquet
integral value by using a linear approximation of the product of utilities func-
tions with capacity, based on the Taylor’s formula. We have tested our approach
on some randomly non-additive instances. The tests are encouraging since our
heuristic can solve some hard instances. However, they also highlight a limit of
this method, which is the choice of the reference point in the linear approxima-
tion. This limitation could be overcome by elaborating an appropriate strategy
to choose this point.
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{mustapha.ridaoui,michel.grabisch}@univ-paris1.fr

2 Thales Research & Technology, Palaiseau, France
christophe.labreuche@thalesgroup.com

Abstract. We consider MultiCriteria Decision Analysis (MCDA) mod-
els where the underlying attributes are discrete. Without any additional
feature, such general models are equivalent to multichoice games in
cooperative game theory. Our aim is to define an importance index for
attributes. In specific models based on capacities, fuzzy measures, the
Shapley value is often taken as an importance index. We show that in
our general framework, taking the Shapley value extended to multichoice
games is not meaningful, due to the efficiency axiom which has no nat-
ural interpretation in MCDA. We propose instead an importance index
based on variational calculus and give an axiomatization of it.

Keywords: Multicriteria decision analysis · Multichoice game · Shapley
value

1 Introduction

In MultiCriteria Decision Analysis (MCDA), one of the major issues is to be able to
give an interpretation or explanation of themodelwhichhas been obtained through
learning data and/or elicitation of preference. A basic way of explaining the model
is to be able to quantify the overall importance of the attributes describing the
alternatives under consideration. While this is easy when simple additive models
are used (like the additive utility model, or any model based on the weighted arith-
metic mean), the task is less obvious with more complex models.

A large class of complex models are based on nonadditive measures (capaci-
ties, fuzzy measures, etc.), where nonadditive integrals like the Choquet integral
[1], the Sugeno integral [15], etc., are used in place of the weighted arithmetic
mean (see [4] for a survey of these models). For those models, the question of
defining an importance index has been solved by borrowing concepts from game
theory, namely the Shapley value [14], as suggested probably the first time by
Murofushi [11]. In game theory, for a (cooperative) game v defined on a set of
players N which expresses the benefit achieved by any coalition of players, the
Shapley value is a payoff vector in R

N , representing a sharing among all players
of the total benefit v(N) achieved by cooperation. It obeys some rational prin-
ciples like: a player i whose marginal contribution v(S ∪ i) − v(S) to coalition S
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DOI: 10.1007/978-3-319-67504-6 6
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is null for every coalition S should receive a null payoff (this is called the null
axiom); the sum of payoffs should be equal to v(N) (this is called efficiency).
Translated in the domain of MCDA, N is the set of attributes, and for any
group of attributes S, v(S) expresses the evaluation of an alternative being sat-
isfactory on all attributes in S, and unsatisfactory otherwise. Therefore, v(N)
(taken by convention to be equal to 1) is the evaluation of an alternative being
satisfactory for all attributes (“ideal” alternative). Then the Shapley value gives
for each attribute its percentage of importance in realizing the ideal alternative.
Later, it was proved by Grabisch et al. [7] that the Shapley value is also the
average partial derivative w.r.t. attribute i of the Choquet integral, linking the
Shapley value to variational calculus. Other complex models exist, like the GAI
(Generalized Additive Independence) models proposed by Fishburn [2,3].

In this paper, we depart from these studies and make no assumption on the
type of the model. Simply, we consider that attributes take a finite number of val-
ues (discrete attributes), which can be ordered. In particular, we do not assume
that the evaluation of an alternative is monotonically increasing with the value of
the attributes. This is relevant in many situations, typically when the best value
of an attribute is not located at the boundaries of the range, but somewhere in the
middle. We will show in the paper that such general models on discrete attributes
can be assimilated to what is called multichoice game in game theory [8]. Then,
the definition of an importance index for such general models amounts to defining
a kind of Shapley value for multichoice games. The literature has already brought
many definitions of values for multichoice games, which all of them generalize the
classical Shapley value. However, none of these definitions seem to be adequate for
our purpose. Indeed, in this general situation, as monotonicity is not assumed, the
value of the model v for an alternative which has on each attribute the highest level
has no reason to be the ideal alternative. Therefore, defining an importance index
as a sharing of this value does not make sense, especially when this value is close to
0. Our approach to the problem is then to take the way of variational calculus: we
define the importance index of attribute i as the average of the variation of v along
the i axis. The present paper is a follow-up of Ridaoui et al. [13], addressing the
same problem with a similar philosophy. In the latter, the importance index of an
attribute was defined as its average variation along the axis of this attribute, con-
sidering all possible values of the other attributes. This index, which has a natural
interpretation as a collection of “local” Shapley values defined for each cell of the
grid of attributes values, solves only partially the problem because single-peaked
preferences on attributes may cause the importance index to be very small or even
zero (see Example 2 below). The distinguishing point of the present paper is to
consider a cumulative absolute variation on an attribute, with which the previous
problem does not exist.

The paper is organized as follows. Section 2 gives the necessary background
and establishes the notation. Section 3 explains the motivation, the main idea
and previous approaches. Section 4 gives the axiomatization of the family of
importance indices we propose. Section 5 starts a more general approach where
the importance index is the norm of the derivative of the multichoice game.
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2 Preliminaries

We consider a Multi-Criteria Decision Analysis (MCDA) problem characterized
by a set N = {1, . . . , n} of attributes. We suppose that each attribute i ∈ N
takes values in a finite set Li, as it is often the case in MCDA. For convenience,
the elements of Li are represented by integer values: Li = {0, 1, . . . , ki}. We can
think of the integer values as label indices. The alternatives are represented as
elements of the Cartesian product L = L1 × · · · × Ln. An alternative is thus
written as a vector x = (x1, x2, . . . , xn) where xi ∈ Li for all i ∈ N .

The set L is equipped with the dominance relation ≤: for x, y ∈ L, x ≤ y
means that xi ≤ yi for every i ∈ N . Moreover < is the asymmetric part of ≤
(x < y if x ≤ y and xi < yi for some i ∈ N). For S ⊆ N and x ∈ L, xS is the
restriction of x to S. We denote by L−i the set ×j �=iLj . For each y−i ∈ L−i,
and any � ∈ Li, (y−i, �i) denotes the compound alternative x such that xi = �i

and xj = yj ,∀j �= i. The vector 0N = (0, . . . , 0) is the null alternative of L,
and kN = (k1, . . . , kn) is the top element of L. For each x ∈ L, we denote by
S(x) = {i ∈ N | xi > 0} the support of x, and by K(x) = {i ∈ N | xi = ki}
the kernel of x (locus of maximal values). Their cardinalities are respectively
denoted by s(x) and k(x).

The preferences of a Decision Maker (DM) over the alternatives are supposed
to be represented by a function v : L → R. In practice, some assumptions are
often made on the form of v in order to ease the elicitation phase. Indeed,
eliciting a general function v : L → R containing k1 × · · · × kn parameters
would require far too many preference information from the DM. In order to
reduce the elicitation burden, special forms of v are used in practice: an additive
model

∑
i∈N ui(xi) [9], a combination of a Choquet integral and marginal utility

functions Cμ(u1(x1), . . . , un(xn)) [4] or a Generalized Additive Independence
(GAI) model [2,3], among many other models. We make here no such restriction,
as we are interested in the interpretation of v (and not its elicitation), and the
index that will be defined shall be agnostic to the precise expression of v.

We make a normalization condition:

v(0N ) = 0. (1)

This condition is not a restriction, as most of numerical representations are
unique up to a positive affine transformation.

The concept of criterion is paramount in MCDA and is related to some notion
of monotonicity. It can be described by the relation: the larger the value of an
attribute the better. Formally this gives

v(x) ≥ v(x′) whenever x ≥ x′, x, x′ ∈ L. (2)

We do not assume such conditions in our framework as we are particularly inter-
ested in the cases where preferences are not monotonic. The following example
illustrates a situation where the preferences of the DM are not simply increasing
or decreasing with respect to each attribute.
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Example 1 (From [13]). The sensation of ambient comfort can be described by
three attributes: temperature of the air (X1), humidity of the air (X2) and
velocity of the air (X3). Let v(x1, x2, x3) measure the comfort level. Clearly, the
value of v is not monotonically increasing nor decreasing with the level of the
attributes: for given values of two attributes, say humidity and velocity, there
is an “ideal” value of the remaining attribute (temperature; say, around 23◦C).
When departing from this value, the comfort level decreases as the distance to
this ideal point increases. The same conclusion holds for the two other attributes.

In the previous example, preferences are single-peaked, with an optimal
value over each attribute. The simplest single-peaked function is the δx func-
tion defined by, for any x ∈ L,

δx(y) =
{

1, if y = x
0, otherwise

Evidently, the set of delta functions δx, x ∈ L \ {0N}, forms a basis of the set of
functions v:

v =
∑

x∈L
x�=0N

v(x)δx. (3)

For convenience, we assume from now on that all attributes have the same num-
ber of elements, i.e., ki = k for every i ∈ N (k ∈ N). Note that if this is not the
case, we set k = maxi∈N ki, and we extend v : L → R to v′ : {0, . . . , k}N → R by

v′(x) = v(y) where yi = min(xi, ki) ∀i ∈ N.

This amounts to duplicating the last element ki of Li when ki < k. Under this
assumption, we recover well-known concepts. When k = 1, v is a pseudo-Boolean
function v : {0, 1}N → R vanishing at 0N . It can be put in the form of a function
μ : 2N → R, which is a game in cooperative game theory. When monotonicity is
enforced, we obtain capacities. When k ≥ 1, v : L → R fulfilling (1) corresponds
exactly to the concept of multi-choice game [8]. They are also called k-ary games.
A k-ary capacity is a k-ary game that is monotone (see (2)) [5]. We denote by
G(L) the set of k-ary games defined on L, and by GM (L) the set of monotone
k-ary games. Finally, the derivative of v w.r.t i ∈ N at x ∈ L such that xi < k
is defined by

Δiv(x) = v(x + 1i) − v(x).

We recall from the above that {δx}x∈L\{0N} is a basis of the set of multichoice
games. Another basis of interest is obtained from unanimity games ux, which
are defined for any x ∈ L \ {0N} by

ux(y) =

{
1, if y ≥ x

0, otherwise.
(4)

Then, for any game v ∈ G(L),

v =
∑

x∈L\{0N}
mv(x)ux. (5)
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The coordinates of v in this basis define a function mv : L → R with mv(0N ) :=
0, which is the Möbius transform of v. Let us consider G+(L) the set of games
whose Möbius transform is nonnegative, and note that G+(L) ⊆ GM (L) is a cone.
It is easy to see, as for classical games, that any multichoice game v ∈ G(L) can
be uniquely decomposed into

v = v+ − v− (6)

with v+, v− ∈ G+(L) (v+, v− simply correspond respectively to the nonnegative
coefficients and negative coefficients of the Möbius transform of v).

3 Aim and Related Work

As indicated in Sect. 2, we place ourselves in a context of multicriteria decision
aid, considering that our numerical representation of preferences can be reduced
to a multichoice (k-ary) game on L. Our aim is to define an importance index
for criteria.

When a classical capacity (k = 1) is used for representing the preference, or
with Choquet integral-based models, the Shapley value [14], a concept borrowed
from game theory, is used. Generally speaking, a value is a mapping φ : G(2N ) →
R

N assigning apayoffvector to anygame v.When the game is simple, that is, valued
in {0, 1}, the Shapley value coincides with the Shapley-Shubik index, which is seen
as a power index. This name comes from the fact that in this context N is the set of
voters, and φi(v) is the power of voter i, i.e., to what extent the fact that i votes’yes’
makes the final decision to be’yes’. Obviously, power index in voting theory is close
to importance index in MCDA, which explains the use of the Shapley value in this
context. Its expression is given by, for any v ∈ G(2N ),

φSh
i (v) =

∑

S⊆N\i

(n − s − 1)!s!
n!

(
v(S ∪ i) − v(S)

)
,∀i ∈ N. (7)

The Shapley value has been extended to multichoice games, and several gen-
eralizations exist, e.g., Hsiao and Raghavan [8] (historically the first one), van
den Nouweland et al. [16], Klijn et al. [10], Peters and Zank [12], Grabisch and
Lange [6], etc. Interestingly, the value proposed by Peters and Zank is defined
through the Möbius transform:

φPZ
i (v) =

∑

x∈L
xi>0

mv(x)
s(x)

, (8)

where s(x) is the size of the support of x.
All these values, for classical games or multichoice games, are characterized

by axioms, among which we always find linearity (φ is a linear operator on G(L)),
a null axiom (a player with zero marginal contribution receives zero), a symmetry
axiom (the numbering of the players has no influence on the payoff) and efficiency
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(the sum of the payoffs for all players should be equal to v(kN ), where kN is
the top element of L). While the first three axioms are easily transposable in
the MCDA framework, the efficiency axiom is rooted in game theory and there
is no convincing interpretation in MCDA. Indeed, efficiency means that the
total benefit of the cooperation, represented by v(kN ), should be shared among
the players with no waste. In MCDA, the concept of sharing is not natural,
and there is no reason why the sum of importance indices should be equal to
v(kN ). When v is monotone, then v(kN ) is the evaluation of the best possible
alternative, and in this case it may be meaningful to consider the importance
index of a criterion as a percentage of the best possible evaluation. However,
this interpretation fails when v is not monotone. Especially, in Example 1, the
value of v(kN ) should be close to 0, as the highest values of the attributes are
not considered as comfortable.

This is why in [13] the authors have introduced another index of importance,
which does not satisfy efficiency. It is defined as follows:

φRGL
i (v) =

∑

x−i∈L−i

(n − s(x−i) − 1)!k(x−i)!
(n + k(x−i) − s(x−i))!

(
v(x−i, ki) − v(x−i, 0i)

)
,∀i ∈ N.

(9)
This importance index measures the impact of attribute i on v as the weighted

average of the difference between the highest and lowest value of attribute i, when
x−i is varying over the domain L−i. It can be also seen as the average variation
along the axis of the attribute.

We present the axioms characterizing the importance index φRGL, as some
of them will be used in the next section.

The first one says that φ is a linear operator on the set of games.

Linearity axiom (L): φ is linear on G(L), i.e., ∀v, w ∈ G(L),∀α ∈ R,

φi(v + αw) = φ(v) + αφ(w).

The second one says that an attribute for which an increment of 1 does not
improve the evaluation is not important. Formally, an attribute i ∈ N is said to
be null for v ∈ G(L) if

v(x + 1i) = v(x),∀x ∈ L, xi < k.

Null axiom (N): If an attribute i is null for v ∈ G(L), then φi(v) = 0.
The third axiom says that the numbering of the attributes should have no

influence on their importance. Let σ be a permutation on N . For all x ∈ L, we
denote σ(x)σ(i) = xi. For all v ∈ G(L), the game σ ◦v is defined by σ ◦v(σ(x)) =
v(x).

Symmetry axiom (S): For any permutation σ of N , φσ(i)(σ ◦ v) = φi(v),
∀i ∈ N.

The next axiom is an invariance property. It says that the calculus of the
importance index does not depend on the position on the “grid” L. It is another
kind of symmetry axiom, relative to the levels 0, 1, . . . , k, not to the attributes.
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Invariance axiom (I): Let us consider two games v, w ∈ G(L) such that, for
some i ∈ N ,

v(x + 1i) − v(x) = w(x) − w(x − 1i),∀x ∈ L, xi /∈ {0, k}
v(x−i, 1i) − v(x−i, 0i) = w(x−i, ki) − w(x−i, ki − 1),∀x−i ∈ L−i.

Then φi(v) = φi(w).
The axiom says that two games v, w should have the same importance index

for i if v, w have the same derivative w.r.t. i, up to a shift of one unit.
An important intermediary result, which will be used in the sequel, is the

following:

Proposition 1 Under axioms (L), (N), (I) and (S), ∀v ∈ G(L),∀i ∈ N ,

φi(v) =
∑

x−i∈L−i

pn(x−i)

(
v(x−i, ki) − v(x−i, 0i)

)
,

where n(x−i) = (n0, n1, . . . , nk) with nj the number of components of x−i being
equal to j.

Finally, the “efficiency” axiom used here is the following one:

Efficiency axiom (E): For all v ∈ G(L),
∑

i∈N

φi(v) =
∑

x∈L
xj<k

(
v(x + 1N ) − v(x)

)
.

It can be explained as follows: taking an alternative x ∈ L and increasing the
value of each attribute by one unit, i.e., going to x+1N , the amount of variation
is due to the contribution of all attributes, and the sum of all importance indices
should be equal to the sum of this variation for all alternatives x. The axiom
shows that the approach taken here is more in the spirit of the calculus of
variation than game theory. Interestingly, the axiom is nevertheless not so far
from the original efficiency axiom because when taking k = 1, it reduces to the
classical efficiency axiom

∑
i φi(v) = v(N).

Although all axioms seem to fit well our MCDA context, the obtained impor-
tance index fails to satisfactorily represent importance in every case. Indeed, it
does not solve well Example 1, because in this case, supposing that x has no
coordinate equal to 0 or k, it follows that δx(y−i, ki) = δx(y−i, 0i) = 0, so that
φi(δx) = 0 for all i ∈ N . Evidently, this is counterintuitive because each of the
attributes (temperature, humidity, wind) has a nonnull importance to determine
comfort.

We try to overcome this drawback and propose a new kind of importance
index. The basic idea is also rooted in the calculus of variation: the importance
index of an attribute i is the average variation of v when the value of attribute i
is increased by a unit. However, contrarily to (9), the variation of v is cumulated
by taking the absolute value of the variations. Doing so, there is no cancellation
effect, i.e., a positive variation at x cannot be cancelled by a negative variation
of the same amount at x′. Therefore the counterintuitive result obtained on
Example 1 with (9) cannot happen any more.
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4 Axiomatization

Based on the previous considerations, we propose an axiomatic approach to
define an importance index which has the following general form:

φi(v) =
∑

x∈L
xi<k

pi
x|v(x + 1i) − v(x)|, (10)

where pi
x are real coefficients for every i ∈ N and x ∈ L, xi < k. We follow

the approach of Weber [17] for the axiomatization, that is, we introduce the
axioms one by one and determine the family of importance indices satisfying the
introduced axioms at each step.

The major difficulty in axiomatizing (10) is that φ does not satisfy linearity.
However, linearity is the very first requirement in order to start an axiomatiza-
tion à la Weber. We circumvent the difficulty by remarking that, if v is monotone,
then |v(x + 1i) − v(x)| = v(x + 1i) − v(x) for every x ∈ L, xi < k. However, as
GM (L) is not a linear subspace of G(L) but a convex cone, we cannot directly
apply the linearity axiom on GM (L). The idea is the following: using the expres-
sion of v in the basis of unanimity games (5), this expression turns to be a conic
combination iff v is in G+(L). As any game can be written as the difference of
two games in G+(L) (see (6)), it is then possible to extend this expression to
monotone games. Hence, φ should commute with conic combination and differ-
ences of games in G+(L).

Conic Combination axiom (CC): For every v, w ∈ G+(L), for every α ∈ R+,

φ(v + αw) = φ(v) + αφ(w).

Decomposition axiom (D): If v, v′ ∈ G+(L) and v − v′ is monotone, then
φ(v − v′) = φ(v) − φ(v′).

These two axioms play the role of (L) in the axiomatization of φRGL and
permit to obtain the following result.

Proposition 2 Under axioms (CC) and (D), for all i ∈ N , there exists con-
stants ai

x ∈ R, for all x ∈ L, such that ∀v ∈ GM (L),

φi(v) =
∑

x∈L

ai
xv(x). (11)

We introduce now the nullity axiom (N), the symmetry axiom (S), and
the invariance axiom (I) as given in Sect. 3, up to the notable difference that
now these axioms apply to games in GM (L), not G(L). To make the distinction
apparent, we label the new axioms by (N’), (S’) and (I’). As the proof of
Proposition 1 is not changed if monotone games are used, we can immediately
deduce the following result.
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Proposition 3 Under axioms (CC), (D), (N’), (S’), (I’), ∀v ∈ GM (L),
∀i ∈ N ,

φi(v) =
∑

x−i∈L−i

pn(x−i)

(
v(x−i, ki) − v(x−i, 0i)

)
, (12)

where n(x−i) = (n0, n1, . . . , nk) with nj the number of components of x−i being
equal to j.

Taking two k-ary games v and w for which the marginal contribution of a
player i to a game v is the same or the opposite of that to a game w, the average
importance of attribute i shall be the same for v and w. We propose the following
axiom.

Marginal contribution axiom (MC): Let i ∈ N and v, w ∈ G(L) such that

|Δi(v)(x)| = |Δi(w)(x)|,∀x ∈ L, xi < k.

Then
φi(v) = φi(w).

Remark 1 Axioms (MC) and (CC) (or (MC) and (D)) imply the null axiom
(N’). Indeed, from (CC) or (D) we deduce φ(0) = 0, while Δi(v) = 0 = Δi(0)
if i is null for v. We may then discard (N’) from the list of axioms.

Theorem 1 Under axioms (CC), (D), (S’), (I’) and (MC), for all v ∈ G(L)

φi(v) =
∑

x∈L
xi<k

pn(x−i)|v(x + 1i) − v(x)|,∀i ∈ N,

where n(x−i) = (n0, n1, . . . , nk) with nj the number of components of xi being
equal to j.

The previous axioms (CC), (D), (S’), (I’) and (MC) have determined the
desired form (10): the importance index of attribute i is a weighted sum of the
absolute variations v when the value of attribute i is increased by one unit. The
determination of the weights is a matter of convention or normalization, and
depends on how the numerical value of the importance index is fixed for some
typical games. Here, we propose two different ways of achieving this.

The most elementary one seems to take as remarkable game δx. Observe that
if xi �= 0, k, the sum of absolute variations along the i axis is 2, otherwise it is 1.
Normalizing by the total number of points in the grid L−i, which is (k + 1)n−1

so that the result is not dependent of the size of the grid, we obtain the following
first version of the “calibration” axiom:

Calibration axiom 1st version (C1): For every x ∈ L \ {0N}

φi(δx) =
{

2/(k + 1)n−1 if i ∈ S(x) \ K(x)
1/(k + 1)n−1 otherwise.
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Proposition 4 Under axioms (CC), (D), (S’), (I’), (MC) and (C1), for
all v ∈ G(L)

φi(v) =
1

(k + 1)n−1

∑

x∈L
xi<k

|v(x + 1i) − v(x)|,∀i ∈ N,

Example 2 We illustrate Proposition 4 and we compare our importance index
with that of Ridaoui et al. [13]. Let N = {1, 2, 3}, k = 2, and consider x =
(2, 1, 1).

φ1(δx) =
1
9
, φ2(δx) = φ3(δx) =

2
9

We note that ∀i ∈ N,φi(δx) is different from zero. However,

φRGL
1 (δx) = 1, φRGL

2 (δx) = φRGL
3 (δx) = 0

This result is counterintuitive because each attributes must have a non null
importance.

We may now use the unanimity games instead of the δx games, in a spirit
similar to the value proposed by Peters and Zank (see (8)).

Calibration axiom 2nd version (C2): ∀x ∈ L \ {0N},∀i ∈ S(x),

φi(ux) =
1

s(x)
.

Proposition 5 Under axioms (CC), (D), (S’), (I’), (MC) and (C2), for
all v ∈ G(L)

φi(v) =
∑

x−i∈{0,k}N\{i}
xi∈Li,xi<k

(n − s(x−i) − 1)!s(x−i)!
n!

|v(x + 1i) − v(x)|,∀i ∈ N.

We remark that the coefficients which are obtained are close to the coefficients of
the classical Shapley value. This is no surprise because (8) in the axiomatization
of Peters and Zank implies the classical efficiency axiom.

5 Towards a More General Approach

The fundamental idea behind the general expression of the importance index for
an attribute i given in Theorem 1 is to cumulate the magnitude of the variations
of v when the value of attribute i varies from 0 to k. We have taken the absolute
value of the variation as magnitude, but it is clear that other definitions can be
taken as well. For example the square of the variations can be taken, so that the
importance index could be defined as the square root of the sum of the square
of the variations. Remarking that this is the L2 norm, while the importance
index obtained through (C1) (Proposition 4) is, up to a normalization factor,
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the L1 norm of the vector of variations, a general approach would be to define
the importance index as the norm of the vector of variations, for some given
norm:

φi(v) = ‖Δi(v)‖ (i ∈ N). (13)

Note that the use of a norm different from L1 forbids to take an axiomatic
approach similar to the one we used in Sect. 4, because there would exist no
class of games where a property similar to linearity would hold. Nevertheless,
it is possible to obtain a general form through a number of axioms which are
presented below. In the rest of this section i ∈ N is fixed.

Nonnegativity (NN): The importance index takes nonnegative values, i.e.,
φi : G(L) → R+.

Absolute Homogeneity (AH): For every α ∈ R and every game v ∈ G(L),

φi(αv) = |α|φi(v)

Subadditivity (SA): For any games v, w ∈ G(L),

φ(v + w) ≤ φ(v) + φ(w)

Strong Null axiom (SN): φi(v) = 0 if and only if i is null for v.

The nonnegativity axiom says that importance indices are nonnegative quan-
tities. Absolute homogeneity says that multiplying a game by a constant just
multiplies the importance index by the magnitude of this constant. The subad-
ditivity axiom expresses the fact that summing two games v, w may hinder the
importance of an attribute by some hedging effect: the positive variation of i at
some point x for v can be cancelled by a negative variation at the same point
for w. Lastly, the strong null axiom is a strong version of the usal null axiom, in
the sense that only games whose attribute i is null can lead to a null importance
index for i.

We obtain the following.

Theorem 2 Under axioms (NN), (AH), (SA) and (SN), there exists a norm
‖ · ‖ on R

k(k+1)n−1
and a linear one-to-one mapping h on R

k(k+1)n−1
such that

φi(v) = ‖h ◦ Δi(v)‖.

Additional axioms may be used to determine a particular norm or class of norms.
Note however that the precise determination of h through calibration or efficiency
axioms seems to be difficult as h lies inside the norm.

6 Conclusion and Future Works

We have proposed an importance index for MCDA models with discrete
attributes, without any additional assumption on the model, which works even
in the case of nonmonotonic models. Its original feature is that it cumulates the
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absolute value of variations along the values of the attributes. We have given
an axiomatization of it, proposed several ways of calibration, and proposed the
fundamentals for a more general approach based on the norm of the derivative.
Future work will consist in pursuing this general approach using norms, and
extending our model and importance index to the case of continuous attributes.

References

1. Choquet, G.: Theory of capacities. Annales de l’institut Fourier 5, 131–295 (1953)
2. Fishburn, P.: Interdependence and additivity in multivariate, unidimensional

expected utility theory. Int. Econ. Rev. 8, 335–342 (1967)
3. Fishburn, P.: Utility Theory for Decision Making. Wiley, New York (1970)
4. Grabisch, M., Labreuche, C.: A decade of application of the Choquet and Sugeno

integrals in multi-criteria decision aid. Ann. Oper. Res. 175, 247–286 (2010)
5. Grabisch, M., Labreuche, C.: Capacities on lattices and k-ary capacities. In: 3rd

International Conference of the European Society for Fuzzy Logic and Technology
(EUSFLAT 2003), Zittau, Germany, pp. 304–307, September 2003

6. Grabisch, M., Lange, F.: Games on lattices, multichoice games and the Shapley
value: a new approach. Math. Methods Oper. Res. 65(1), 153–167 (2007)

7. Grabisch, M., Marichal, J.-L., Roubens, M.: Equivalent representations of set func-
tions. Mathe. Oper. Res. 25(2), 157–178 (2000)

8. Hsiao, C.R., Raghavan, T.E.S.: Shapley value for multi-choice cooperative games,
I. Games Econ. Behav. 5, 240256 (1993)

9. Keeney, R.L., Raiffa, H.: Decision with Multiple Objectives. Wiley, New York
(1976)

10. Klijn, F., Slikker, M., Zarzuelo, J.: Characterizations of a multi-choice value. Int.
J. Game Theor. 28(4), 521–532 (1999)

11. Murofushi, T.: A technique for reading fuzzy measures (I): the Shapley value with
respect to a fuzzy measure. In: 2nd Fuzzy Workshop, Nagaoka, Japan, pp. 39–48,
October 1992. In Japanese

12. Peters, H., Zank, H.: The egalitarian solution for multichoice games. Ann. Oper.
Res. 137(1), 399–409 (2005)

13. Ridaoui, M., Grabisch, M., Labreuche, C.: Axiomatization of an importance index
for generalized additive independence models. In: Proceedings of ECSQARU 2017,
Lugano, Switzerland, July 2017

14. Shapley, L.S.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.)
Contributions to the Theory of Games. Annals of Mathematics Studies, vol. 2(28),
pp. 307–317. Princeton University Press (1953)

15. Sugeno, M.: Theory of fuzzy integrals and its applications. Ph.D thesis, Tokyo
Institute of Technology (1974)

16. van den Nouweland, A., Tijs, S., Potters, J., Zarzuelo, J.: Cores and related solution
concepts for multi-choice games. Zeitschrift für Oper. Res. 41(3), 289–311 (1995)

17. Weber, R.J.: Probabilistic values for games. In: Roth, A.E. (ed.) The Shapley
Value: Essays in Honor of Lloyd S. Shapley, pp. 101–120. Cambridge University
Press (1988)



Anytime Algorithms for Adaptive Robust
Optimization with OWA and WOWA

Nadjet Bourdache and Patrice Perny(B)

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6 CNRS, UMR 7606,
LIP6, 4 Place Jussieu, 75005 Paris, France

nadjet.bourdache@gmail.com, patrice.perny@lip6.fr

Abstract. We consider optimization problems in graphs where the util-
ities of solutions depend on different scenarios. In this context, we study
incremental approaches for the determination of robust solutions, i.e.
solutions yielding good outcomes in all scenarios. Our approach consists
in interleaving adaptive preference elicitation methods aiming to assess
the attitude of the Decision Maker towards robustness or risk with com-
binatorial optimization algorithms aiming to determine a robust solu-
tion. Our work focuses on the use of ordered weighted average (OWA)
and weighted ordered weighted average (WOWA) to respectively model
preferences under uncertainty and risk while accounting for the idea of
robustness. These models are parameterized by weighting coefficients or
weighting functions that must be fitted to the value system of the Deci-
sion Maker. We introduce and justify anytime algorithms for the adaptive
elicitation of these parameters until a robust solution can be determined.
We also test these algorithms on the robust assignment problem.

Keywords: Robust optimization · Preference elicitation · OWA ·
WOWA · Ranking algorithms · Assignment problem

1 Introduction

The practice of decision support in complex environments has shown the impor-
tance of developing new models and algorithms for optimization under partial
information. Uncertainty is pervasive in discrete optimization and various con-
tributions concern robust optimization problems [11] in which multiple instances
of the same problem must be considered simultaneously. These instances corre-
spond to possible scenarios and the goal is to determine a feasible solution that
remains as good as possible in all scenarios.

In graph optimization, several problems have been revisited under this per-
spective. For example, assuming that uncertainty only impacts the valuation of
the graph (and not on its structure), several contributions address the discrete
scenario case, and propose various reformulations of shortest-path problems,
assignment problems, minimum spanning tree problems, as a min-max or min-
max regret optimization problems, see [1,5,11,15,28,29]. For the same problems,
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a similar work has been carried out in the case of graphs valued with interval
data, which corresponds to an infinity of possible scenarios [1,2,11,14,24,27]. In
this paper we consider the discrete scenario case and propose new (interactive)
approaches for robust optimization, with an implementation on the assignment
problem. Let us introduce an instance of the robust assignment problem, for
illustrative purpose:

Example 1. We consider a problem with 4 items that must be assigned to 4
agents (one item per agent and one agent per item). The utility of every item
for every agent depends on the context which remains unknown. Three scenarios
{s1, s2, s3} are considered leading to the following three utility matrices:

U1 =

⎛
⎜⎜⎝

10 3 6 4
10 1 0 1
9 9 4 0
4 2 3 4

⎞
⎟⎟⎠ U2 =

⎛
⎜⎜⎝

10 5 0 2
6 7 1 4
7 0 7 3
1 9 10 2

⎞
⎟⎟⎠ U3 =

⎛
⎜⎜⎝

0 2 8 0
2 0 6 5
4 9 4 2
7 8 3 9

⎞
⎟⎟⎠

where Us is the utility matrix giving in row i and column j the utility us
ij of item

j for agent i in scenario s, for i = 1, . . . , 4, j = 1, . . . , 4, s = 1, . . . , 3. We want
to find an assignment that remains as good as possible in all possible scenarios.

Any solution of an n×n assignment problem is characterized by a one-to-one
mapping α defined from the set of agents to the set of items and associating item
α(i) to agent i for i = 1, . . . n. Equivalently assignment α will be represented by
the set of arcs {(i, α(i)), i = 1, . . . , n} in the bi-partite assignment graph. Given
an assignment α, its total utility in scenario s is denoted as us(α) and defined
by us(α) =

∑n
i=1 us

iα(i), s = 1, . . . , n. If q distinct scenarios are considered, then
any assignment α is characterized by the utility vector u(α) = (u1(α), . . . , uq(α))
representing the possible utilities in the q scenarios. For example, in the problem
described in Example 1, the assignment α = {(1, 3), (2, 1), (3, 2), (4, 4)} leads to
the utility vector u(α) = (29, 8, 28) whereas α′ = {(1, 3), (2, 4), (3, 1), (4, 2)}
leads to the utility vector u(α′) = (18, 20, 25). Hence the comparison of α and α′

amounts to comparing utility vectors u(α) and u(α′).
In order to be able to compare the utility vectors attached to feasible

solutions, we need to assess the attitude of the Decision Maker (DM) toward
uncertainty or risk (the latter situation occurring when the probabilities of the
scenarios are known), and to decide how the outcomes attached to the q scenar-
ios must be aggregated to define the overall value of a solution. One standard
criterion for decision making under uncertainty is the Laplace criterion that con-
sists in maximizing the average utility taken over all scenarios. In Example 1,
the optimal assignment w.r.t. the Laplace criterion is α with an average of 65/3.

A more cautious approach consists in choosing a solution maximizing the util-
ity measured in its worst scenario. This corresponds to max-min optimization, a
standard approach in robust optimization (equivalent to min-max optimization
when costs are considered). In Example 1, the max-min optimal assignment is
α′ introduced above. It can be seen as more robust than α since it guarantees a
utility greater or equal to 18 whereas we could obtain 8 with α in scenario s2.
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However the max-min criterion is often considered as overpessimistic and poorly
discriminating. In particular, we may obtain solutions having a much lower aver-
age utility than with the Laplace criterion. On the other hand, by compensating
high and low utilities, the Laplace criterion does not provide any guarantee on
the robustness of solutions. In order to have a better flexibility in modelling the
DM’s attitude toward uncertainty, and to find compromise attitudes between
overpessimism and full compensation, we will use an ordered weighted average
(OWA) to aggregate the utilities obtained in the different scenarios. OWA opera-
tors have been introduced by Yager [26] and axiomatically justified in the context
of robust discrete optimization in [18]. They are also widely used in fair mul-
tiagent optimization for their ability to generate Pareto-optimal solutions with
well-balanced profiles [8,12,17].

As we shall see later more formally, the OWA of a given vector is a kind of
weighted sum where the weights are not attached to positions of components
in the vector but to their ranks. This allows the importance attached to good
or bad outcomes to be controlled and provides a continuum of attitudes in the
aggregation, ranging from the Laplace criterion (modelled by the average) to
pure pessimism (modelled by the min). These various attitudes are defined by
the weighting vector parameterizing the OWA model.

When the probabilities of the scenarios are known, the scenarios do not play
symmetric roles. In this case we will use the WOWA model [22] also known as
Yaari’s model [25] which is a non-symmetric extension of OWA allowing weights
to be attached to components (here scenarios). In the latter model, the DM’s
attitude toward risk is controlled by a probability weighting function.

Whether OWA or WOWA is used, assessing the weighting parameter of the
model is a critical issue. The aim of this paper is to propose an incremental
elicitation method for facilitating the parametrization of these models in order
to determine solutions that are well fitted to the value system of the DM. Our
aim is not to determine precise values of these parameters for the DM, prior to
the optimization stage. Instead, we propose to interleave preference queries with
the exploration of solutions in order to progressively reduce the uncertainty
attached to these weighting parameters until a robust solution can be found.
These preference queries consist in asking the DM to compare between pairs of
solutions, his preferences can then be easily translated into linear constraints
that we can add to our model. By integrating the elicitation to the exploration,
we aim to save a large part of the elicitation burden.

The paper is organized as follows: we introduce in Sect. 2 some background
on OWA and WOWA. Then we present in Sect. 3 a ranking algorithm for the
determination of possibly optimal solutions when the weighting parameters of
OWA or WOWA are imprecise. In Sect. 4 we present an incremental elicitation
algorithm to determine or approximate an OWA-optimal or WOWA-optimal
solution. In Sect. 5 we implement the proposed approach on the robust assign-
ment problem and present numerical tests, as well as some preliminary results
on the robust shortest path problem.
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2 Models for Robust Optimization

In this section, we consider a general robust optimization problem involving q
distinct scenarios and we discuss the evaluation of solutions represented by vec-
tors of type (x1, . . . , xq) where xi represents the utility of solution x in scenario i.
In particular we recall some background on OWA and WOWA operators.

OWA Optimization. In robust optimization problems with discrete scenarios,
one basically looks for Pareto-optimal solutions having a well-balanced utility
profile. This vision of robustness in the context of uncertainty can be related to
the notion of fairness in social choice (the scenarios acting as different agents
providing different views on solutions). In particular, the preference � of the DM
is expected to satisfy monotonicity w.r.t. ε-transfers, a standard axiom used in
inequality measurement that reads as follows: for all j, k j �= k, for all ε such that
0 < xk −xj < ε, (x1, . . . , xj +ε, . . . , xk −ε, . . . , xq) � (x1, . . . , xj , . . . , xk, . . . , xq).

Moving from a solution to another one using such ε-transfers contributes to
reducing the utility gap between pairs of scenarios and thus makes the DM better
off. It is well known that the minimal preference relation satisfying this condition
is the Lorenz dominance relation (L-dominance) [13] defined by x �L y if and
only if L(x) �P L(y) where �P is the Pareto dominance and L(x) is the Lorenz
vector the ith component of which is defined by Li(x) =

∑i
k=1 xσ(k), where σ

is the permutation of (1, . . . , q) that reorders the components of x by increasing
order (xσ(i) ≤ xσ(i+1), i = 1, . . . , q − 1). However, L-dominance is a partial order
and many solutions remain incomparable. A natural way to extend this partial
order, axiomatically justified in the context of robust optimization [18], is to
resort to Ordered Weighted Averages (OWA for short).

OWA is an aggregation function that weights the components of a vector in
function of their rank. Let w ∈ R

q
+ be a weighting vector. The OWA defined

by w reads: f(x,w) =
∑q

i=1 wixσ(i). This function is symmetric because the
weights are not attached to the components of x but to the components of the
reordered vector (xσ(1), . . . , xσ(q)). The OWA family of aggregation functions
f(x,w), w ∈ R

q
+ includes the minimum, the maximum, the median and all order

statistics as particular cases.
OWA is widely used in fair optimization because it enables a linear extension

of the Lorenz Dominance order. Remark indeed that xσ(i) = Li(x) − Li−1(x)
for all i > 1. Hence we have: f(x,w) =

∑q−1
i=1 (wi − wi+1)Li(x) + wqLq(x).

Thus, function f is nothing else but a linear combination of the components
of the Lorenz vector. Then, if the weights are decreasing (i.e. wi > wi+1 for
all i = 1, . . . , q − 1), then the coefficients wi − wi+1 are strictly positive. There-
fore, an f -optimal solution is necessary L-non-dominated. Thus, OWA used with
strictly decreasing weights wi leads to Pareto-optimal solutions that cannot be
improved in terms of ε-transfers reducing inequalities. This favours solutions hav-
ing a well-balanced utility vector. Considering the properties of OWA recalled
above, robust optimization under uncertainty can soundly be reformulated as
the problem of maximizing f(x,w) for some w with decreasing components.
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Example 1 (continued). Let us compare solutions α and α′ such that u(α) =
(29, 8, 28) and u(α′) = (18, 20, 25) using f(., w) with w = (1/2, 1/3, 1/6) we
obtain f(u(α), w) = 8/2 + 28/3 + 29/6 = 18.17 and similarly f(u(α′), w) =
119/6 = 19.83. Here, we observe that α′ is preferred to α because the aver-
age loss in utility incurred when passing form u(α′) to u(α) is compensated by
the improvement of the minimum (18 against 8). Remark that, although α′ is
the max-min optimal solution in Example 1, it is not OWA-optimal. The OWA-
optimal assignment for the chosen weights is α′′ = {(1, 1), (2, 4), (3, 2), (4, 3)}
with u(α′′) = (23, 24, 17) and f(u(α′′), w) = 121/6 = 20.17. This is a com-
promise between α and α′ that improves the average utility of α′ but slightly
downgrades the worst case utility.

WOWA Optimization. As explained before, one typical property of OWA
is to be a symmetric aggregator. This property seems natural when the same
attention or importance is attached to every scenario. This is no longer the case
when the probabilities (p1, . . . , pq) of the scenarios are known. In such cases we
may naturally consider a weighted extension of OWA defined as follows:

g(x, ϕ) =
q∑

i=1

[xσ(i) − xσ(i−1)]ϕ(
q∑

k=i

pσ(k)) (1)

=
q∑

i=1

[ϕ(
q∑

k=i

pσ(k)) − ϕ(
q∑

k=i+1

pσ(k))]xσ(i) (2)

where xσ(0) = 0; function ϕ is strictly increasing on the unit interval. A solution
x is as least as good as a solution y when g(x, ϕ) ≥ g(y, ϕ). This formulation
is known as the Yaari’s model in the literature on decision under risk because
it has been introduced and axiomatically justified by Yaari [25] in this context.
Since ϕ is increasing on the unit interval, the preferences induced by the Yaari’s
model are monotonic with respect to first-order stochastic dominance (FSD).
This means that if two solutions x and y are such that the probability Gx(t) =
P [u(x) > t] is greater or equal than the probability Gy(t) = P [u(y) > t] for all t
then g(x, ϕ) ≥ g(y, ϕ). Moreover, a necessary and sufficient condition for these
preferences to be monotonic with respect to second order stochastic dominance
(SSD) is the convexity of ϕ. This means that x SSD y implies g(x, ϕ) ≥ g(y, ϕ)
whenever ϕ is convex, where x SSD y means that

∫ u

−∞ Gx(t)dt ≥ ∫ u

−∞ Gy(t)dt
for all u. This property established in [9] has a major importance in the context
of robust optimization since monotonicity with respect to SSD is the standard
model of strong risk aversion. This is due to the fact that SSD is strongly related
to the existence of mean-preserving spread of the utility distribution increasing
the risk attached to a solution (just as Lorenz dominance relates to the existence
of ε-transfers reducing inequalities); for more details see [21]. For this reason, we
shall use convex functions ϕ to account for risk aversion in robust optimization
problem with probabilities over scenarios.

Example 2. We come back to Example 1 and assume now that the probabilities
of the 3 scenarios are given by p = (1/2, 1/6, 1/3). Let us compare solutions α
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and α′ such that u(α) = (29, 8, 28) and u(α′) = (18, 20, 25) using Yaari’s model
with ϕ(x) = x2. We have: g(α,ϕ) = 8+(28− 8)ϕ(5/6)+ (29− 28)ϕ(1/2) = 22.1
and g(α′, ϕ) = 18 + (20 − 18)ϕ(1/2) + (25 − 20)ϕ(1/3) = 19.1. Therefore α
is preferred to α′. The fact that scenario s1 has a high probability compared
to the others gives the advantage to α even if it is more risky than α′. Note
that the conclusion would be different if the requirement of risk-aversion were
strengthened, using a function ϕ of higher convexity. For example, if ϕ(x) = x4

we have g(α,ϕ) = 17.7 whereas g(α′, ϕ) = 18.2. In this case α′ is preferred to α.

Note that when scenarios are equiprobable then pi = 1/q and the coefficient
of xσ(i) in Eq. (2) becomes: wi = [ϕ( q−i+1

q ) − ϕ( q−i
q )] which is now constant

(independent of σ). In this case the Yaari’s model reduces to a standard OWA.
Hence Yaari’s model can be seen as a weighted generalization of OWA which
explains the name WOWA due to Torra [22] and used in this paper.

Considering the properties of WOWA recalled above, robust optimization
under multiple scenarios of known probabilities can soundly be reformulated as
the problem of maximizing g(x, ϕ) for some proper convex weighting function ϕ.
The determination of an f -optimal or g-optimal solution in graph optimization
is generally a challenging problem. Standard constructive algorithms based on
dynamic programming or greedy search do not apply directly because neither
f -optimality nor g-optimality satisfy the Bellman principle. An f -optimal solu-
tion for a given vector w can include sub-optimal subsolutions due to the non-
linearity of f with respect to outcomes. For example, when w = {(1, 0, . . . , 0)},
f -optimization is nothing else but

∑
-min maximization (

∑
-max minimization

for costs) which is known to be NP-hard for assignment problems but also for
shortest-path problems [1,11]. The same remarks holds for g-optimality. Yet
some solution methods are available both for OWA and WOWA optimization,
e.g., [12,17].

3 Optimization with Imprecise Parameters

Possibly OWA-optimal Solutions. It is often difficult to precisely deter-
mine the weighting vector w to be used in the OWA model. Indeed, the only
prior information we have is that the weighting vector is positive and strictly
decreasing, providing an exponential number of possible weights, and then an
exponential number of preference queries to be assessed. Yet, in most cases,
some preference information is available, putting some constraints on the set
of admissible weighting vectors. Note that, any judgment of type “i prefer
x to y” (where x and y are two feasible utility vectors) translates into the
following inequality: f(x,w) ≥ f(y, w), which is a linear constraint in w
bounding the set of admissible weighting vectors W . Thus, we define the
uncertainty set W as a convex polyhedron including all weighting vectors com-
patible with the preference information collected so far. Given the uncertainty
set W and a set X of utility vectors attached to feasible solutions, we define
POW (X) as the set of possibly f -optimal solutions in X, i.e., the elements
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of X which are f -optimal for some weighting vector w in W . More formally:
∀X ⊆ R

n, POW (X) =
⋃

w∈W arg maxx∈X f(x,w).
The uncertainty set W allows a W -dominance relation over utility vectors to

be defined as follows: x �W y ⇐⇒ [∀w ∈ W, f(x,w) > f(y, w)]. This relation
can be extended to set-wise dominance: a solution x ∈ X is said to be dominated
by a set Y ⊆ X (denoted Y �W x) if there exists y ∈ Y such that y �W x. If Y
is explicitly defined, we can decide whether a solution x is dominated by Y in
polynomial time by testing whether minw∈W maxy∈Y f(y, w)−f(x,w) > 0 which
is done by solving a linear program. Hence, when X is given explicitly, POW (X)
can be computed in polynomial time. It is sufficient to iteratively remove from
X any solution xi dominated by X, for i = 1, . . . , n. This was shown in [3] for
decision models based on the minimization of a weighted sum. We kept the same
idea while adapting the algorithm for the OWA maximization problem.

In robust optimization problems, the set X is only implicitly defined and
computing POW (X) is more difficult. To overcome the problem we now intro-
duce a ranking approach to compute POW (X). This approach consists of three
steps: (1) linear scalarization: a scalar valued instance of the problem is con-
structed by replacing utility vectors attached to the edges of the graph by their
average over all scenarios. (2) ranking: we perform an enumeration of solutions
by decreasing order of utilities; several algorithms are available in the literature
to rank the solutions of an optimization problem by decreasing order of prefer-
ences, e.g., Murty algorithm [16] for assignment problems or Eppstein algorithm
[6] for shortest path problems. (3) stopping condition: we stop the enumeration
when we can prove that all possibly optimal solutions have been enumerated.
The stopping condition used in step 3 is justified by the following propositions:

Proposition 1. For any weighting vector w ∈ R
q
+ with decreasing weights such

that
∑q

i=1 wi = 1, we have, for all x ∈ R
q, f(x,w) ≤ 1

q

∑q
i=1 xi.

Proposition 1, that directly derives from the result presented in proposition
3 of [7], allows us to establish the following result:

Proposition 2. Let X be the set of all feasible vectors, and let Xk =
{x1, . . . , xk} be the list of the k best elements of X ordered by decreasing aver-
age. We have: maxx∈POW (Xk) minw∈W f(x,w) > 1

q

∑q
i=1 xk

i ⇒ POW (X) ⊆
POW (Xk).

Proof. We show that when the “if” condition holds at step k, then any element
that does not belong to Xk cannot be optimal. Let us consider x ∈ X \ Xk.
Then if maxx∈POW (Xk) minw∈W f(x,w) > 1

q

∑q
i=1 xk

i then there exists y ∈ Xk

such that minw∈W f(y, w) > 1
q

∑q
i=1 xk

i . Moreover since x comes after xk in the
ordered enumeration, we have 1

q

∑q
i=1 xk

i ≥ 1
q

∑q
i=1 xi ≥ f(x,w) for any w ∈ W .

Hence, for any w ∈ W we have f(y, w) > f(x,w) and therefore x /∈ POW (X).
This shows that POW (X) ⊆ Xk. Moreover an element in POW (X) cannot be
�W -dominated in Xk since Xk ⊆ X. Hence POW (X) ⊆ POW (Xk). ��
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Proposition 2 provides a stopping condition for a ranking algorithm based on
the mean of utilities to determine the set POW (X). If at step k of the ranking
algorithm the condition is fulfilled, then all solutions that would be enumerated
after step k are W -dominated by a solution in POW (Xk). The enumeration can
be stopped since the elements we are looking for are all included in POW (Xk)
which can easily be computed (as previously explained) since Xk is explicitly
known at step k. To summarize, when X is implicitly defined, the set POW (X)
can still be determined by ranking its elements by increasing average utilities.
This ranking is stopped as soon as the condition described above is activated.
Remark that, for the robust version of assignment problem [1,11], we cannot
expect the stopping condition to be activated within a polynomial number of
steps since the problem of determining POW (X) is already NP-hard when W is
reduced to the single vector {(1, . . . , 0)}. Nevertheless, we shall see in the section
dedicated to numerical tests that the stopping condition is activated after a
reasonable number of iterations on average. Moreover, the stopping condition
can be relaxed into 1

q

∑q
i=1 xk

i − maxx∈POW (Xk) minw∈W f(z, w) ≤ δ where δ is
a positive threshold representing the maximum admissible error. This possibly
saves multiple iterations while providing good approximations of POW (X).

Possibly WOWA-optimal Solutions. The ranking approach described above
can also be adapted to compute POΦ(X) for g-optimization under strong risk
aversion. In this case ϕ is assumed to be convex. Consistently with the app-
roach proposed for OWA, we consider now an uncertainty set Φ of admissible
convex functions (functions compatible with the preferences observed so far).
We will show later that, under mild hypothesis, Φ can also be represented
by a convex polyhedron. Given the uncertainty set Φ, we define POΦ(X) as
the set of possibly g-optimal solutions in X, i.e., the elements of X which
are g-optimal for at least one function ϕ in Φ. More formally: ∀X ⊆ R

n,
POΦ(X) =

⋃
ϕ∈Φ arg maxx∈X g(x, ϕ). The associated dominance relation is

defined by: x �Φ y ⇔ [∀ϕ ∈ Φ, g(x, ϕ) > g(y, ϕ)]. This relation obviously extends
to set-wise dominance. Deciding whether a solution y is dominated by a set X
amounts to testing whether minϕ∈Φ maxx∈X g(x, ϕ) − g(y, ϕ) > 0 which may be
done by linear programming provided that Φ is represented by a convex poly-
hedron. Moreover, when X is explicitly defined, the set POΦ(X) can easily be
computed by iteratively eliminating dominated elements, as done for POW (X).
Now, in order to install a ranking procedure to determine POΦ(X) when X is
implicitly defined, we need to establish a counterpart of Propositions 1 and 2 for
g-optimization. This is exactly the role of the two following propositions:

Proposition 3. For any convex function ϕ : [0, 1] → [0, 1] such that ϕ(0) = 0
and ϕ(1) = 1 we have, for all x ∈ R

q, g(x, ϕ) ≤ ∑q
i=1 pixi.

Proof. Since ϕ is convex we have ϕ(ta + (1 − t)b) ≤ tϕ(a) + (1 − t)ϕ(b) for
all a, b, t ∈ [0, 1]. Setting a = 1 and b = 0 we obtain: ϕ(t) ≤ t for all t ∈ [0, 1].
Hence ϕ(

∑q
k=i pσ(k)) ≤ ∑q

k=i pσ(k) for i = 1, . . . , q. Therefore we have: g(x, ϕ) ≤
∑q

i=1

[
xσ(i) − xσ(i−1)

] ∑q
k=i pσ(k) by Eq. (1) since xσ(i) − xσ(i−1) ≥ 0 for i =
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1, . . . , q. Hence we obtain: g(x, ϕ) ≤ ∑q
i=1

[∑q
k=i pσ(k) − ∑q

k=i+1 pσ(k)

]
xσ(i) =∑q

i=1 pσ(i)xσ(i) =
∑q

i=1 pixi. ��
Proposition 4. Let X be the set of all feasible vectors and Xk = {x1, . . . , xk}
be the list of the k best elements of X ordered by decreasing expected utility. Let
p1, . . . , pq be the probabilities of the q scenarios. The following property holds:
maxx∈POΦ(Xk) minϕ∈Φ g(z, ϕ) >

∑q
i=1 pix

k
i ⇒ POΦ(X) ⊆ POΦ(Xk).

The proof is very similar to the one of Proposition 2 and is deliberately
omitted. To complete the parallel with the approach proposed for computing
POW (X), when X implicitly defined, the set POΦ(X) can be determined by
ranking the solutions of the instance obtained by replacing the utility vectors
attached to the edges of the graph by their expected utility. This approach applies
to problems for which a ranking algorithm is available, in particular, assignment
problems, shortest path and minimum spanning tree problems.

4 Interleaving Elicitation and Ranking

Incremental Elicitation. As shown in Example 1, preferences induced by
f(·, w) or g(·, ϕ) models may be sensitive to variations of their respective para-
meters, w and ϕ. It is therefore necessary to design elicitation procedures aiming
to reduce the uncertainty set W (resp. Φ) introduced in the previous section.
The elicitation of these parameters may require numerous preference queries if
it is performed independently on the problem instance to be solved. For this
reason, it is preferable to interleave elicitation and search. We suggest inserting
preference queries in the ranking algorithm presented above in order to progres-
sively enrich the set of preference statements and the list of constraints defining
W (resp. Φ). This will iteratively reduce the W (resp. Φ), and therefore the set
POW (X) (resp. POΦ(X)) until the obtention of a necessarily optimal solution,
i.e., a solution that is f -optimal (resp. g-optimal) for all remaining parameter
values in the uncertainty set. This incremental elicitation process should save a
large part of the elicitation burden since an optimal solution can be identified
although the parameters of the models remain largely imprecise.

Regret Minimization. We want to design an anytime algorithm that can
return a valid solution to the problem even if it is interrupted before it ends.
To make such a recommendation upon request at any step of the algorithm
we use a standard regret based elicitation approach [23] based on the following
definitions:

PMR(x, y,W ) = max
w∈W

{f(y, w) − f(x,w)} (3)

MR(x,X,W ) = max
y∈X

PMR(x, y) (4)

MMR(X,W ) = min
x∈X

MR(x,X,W ) (5)

The pairwise regret PMR(x, y,W ) is the maximum regret of choosing x instead
of y, defined as the maximum gap of OWA values. When X is explicitly known,
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this regret can easily be computed by linear programming since f is linear in w.
The maximum regret (MR) attached to a solution x is the maximum regret of
choosing x instead of any other solution. Finally, the minimax regret (MMR)
is the minimal MR regret over X. If the algorithm is stopped at a given step
with a set X of possibly optimal solutions, then we shall recommend an ele-
ment x in X that achieves the MMR. This solution will be named the MMR
solution hereafter. As suggested in [23], these regrets can also be used to select
informative preference queries during an incremental elicitation process to itera-
tively reduce the MMR to zero. An efficient strategy introduced in [4] under the
name the Current Solution Strategy (CSS for short) consists in asking the DM
to compare the current MMR solution x∗ with its strongest challenger defined
by y∗ = arg maxy∈X PMR(x∗, y,W ). Whatever the answer to this query, a new
constraint will be derived, further restricting the set W .

A similar approach could be implemented for WOWA optimization, using
regrets PMR(x, y, Φ), MR(x,X,Φ) and MMR(X,Φ) that simply derive from
(3–5) by substituting f(·, w) by g(·, ϕ). However the optimization of such regrets
might be challenging because we have to optimize over a continuous set of weight-
ing functions. To overcome this problem, we use a spline representation of func-
tion ϕ. Spline functions are piecewise polynomials whose elements connect with
a high degree of smoothness. They are widely used in data interpolation due to
their ability to approximate complex shapes [20]. Interestingly enough, spline
functions can be generated by linear combinations of basis spline functions. This
allows to reduce the elicitation of a spline function to the determination of its
weights in the spline basis. The use of spline representations for function ϕ in
WOWA model has been recently introduced in [19]. It enables an efficient incre-
mental elicitation of the model to describe DM’s preferences over probabilistic
distributions. The proposed construction relies on the definition of ϕ as a convex
combination of m basis spline functions of degree 3, increasing from 0 to 1 on
the unit interval, and known as I-spline functions [20]. More precisely we have:
ϕ(x) =

∑m
j=1 bjIj(x) where Ij(x), j = 1, . . . ,m are the basic spline functions

(see [19,20] for a formal definition of Ij).
Note however that this construction does not completely fit to our context

because we have the additional constraint that ϕ must be convex, in order to
enforce strong risk aversion, as explained in the previous section. To overcome
this problem, we use another spline basis to generate spline functions that are
both increasing and convex on the unit interval. To this end, ϕ(x) is defined
by ϕ(x) =

∑m
j=1 φjCj(x), j = 1, . . . , m where Cj are C-spline functions defined

as the normalized integrals of the I-spline functions. More precisely: Cj(x) =
∫ x

0
Ij(t)dt/

∫ 1

0
Ij(t)dt. As the integrals of positive and increasing functions, Cj

functions are increasing and convex. Moreover we have Cj(0) = 0 and Cj(1) = 1
for all j. Therefore, ϕ(x) will also be increasing and convex since coefficients
φj will be constrained to be non-negative. This is the model we use hereafter
because g defined in this way is a linear function of coefficients φj , j = 1, . . . , m,
a key property for regret optimization. Hence, any preference constraint of type
g(x, ϕ) ≥ g(y, ϕ) translates into a linear equation in coefficients φj ; thus Φ can
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be soundly defined as the convex polyhedron of vectors (φ1, . . . , φm) compatible
with the preference statements collected so far. We give below on Fig. 1 the
I-spline basis and the associated C-spline basis used to generate ϕ.

Fig. 1. I-spline and C-spline cubic functions Ij(x) and Cj(x) for m = 5

Adaptative Elicitation in a Ranking Algorithm. Our adaptive elicita-
tion procedure of OWA’s weights uses progressive reductions of MMR values
to discriminate between the solutions generated by the ranking algorithm. The
baseline of our algorithm is a ranking procedure enumerating the solutions by
decreasing average utilities (or increasing average costs). During the enumera-
tion, if the current solution is not dominated by the previous ones, it is inserted
in a bag of solution named X. When |X| = sb, preferences queries are gener-
ated to discriminate between the element of X and W is reduced accordingly
until MMR(X,W ) = 0. Then all solutions with a strictly positive MR value are
removed from X. The process is iterated until the stopping condition introduced
in Proposition 2 holds. Due to this proposition, we know that, at this point, X
includes all possibly optimal solutions. Moreover, since there exists x∗ ∈ X such
that MR(x∗,X,W ) = 0 (since MMR(X,W ) = 0), x∗ dominates all other solu-
tions in X for all w ∈ W and is therefore necessarily optimal. This is the solution
returned by the algorithm. The pseudo-code is given in Algorithm1.

Function next(G, k) generates the kth best solution xk in the ranking process
and returns its outcome vector (one component per scenario) or the empty vector
if there are no solutions left. Function MMR(X,W ) returns the best MR value
in X for the uncertainty set W . We keep asking queries, applying CSS, until the
MMR becomes zero. The stopping condition of the ranking process holds when
current-distance = 0 where current-distance is defined in line 20. So δ should be
set to 0. However, in practice, the stopping condition can be relaxed by using
a positive tolerance threshold δ in line 4 in order to save many iterations. More
generally the algorithm can be stopped at any step k of the ranking (anytime
property). The current MMR solution x∗ will be returned as the current best
solution. It is necessarily optimal within the set {x1, . . . , xk} of solutions enu-
merated so far. Moreover, all solutions coming after xk in the ranking have an
f -value lower than the average utility of xk. Hence current-distance provides an



104 N. Bourdache and P. Perny

Algorithm 1. MMR based elicitation in ranking for OWA optimization
Input: G = (V, E) undirected graph; ui(e) � 0 edge utility in scenario i;
q: number of scenarios, sb: size of bags; δ: tolerance threshold
Output: x∗: a near-optimal solution

1 X ← {}, W ← {w ∈ R
q
+ :
∑q

i=1 wi = 1}, x1 ← next(G, 0), k ← 2,

2 current-distance ← 1
q

∑q
i=1 xk

i − minw∈W f(x1, w)

3 enumeration-completed ← false
4 while (current-distance > δ and enumeration-completed = false) do

5 xk ← next(G, k − 1)

6 if xk = emptyV ector then enumeration-completed ← true
7 else

8 if not(X �W {xk}) then

9 X ← X ∪ {xk}
10 if |X| = sb and MMR(X, W ) > 0 then
11 repeat
12 ask a preference query to the DM (selected by CSS)
13 restrict W according to the answer
14 update regrets PMR, MR and MMR

15 until MMR(X, W ) = 0
16 X ← {x ∈ X : MR(x, W ) = 0}
17 end

18 end

19 current-distance ← 1
q

∑q
i=1 xk

i − maxx∈X min
w∈W

f(x, w)

20 k ← k + 1

21 end

22 end
23 return x∗ = arg minx∈X MR(x, X, W ), current-distance

upper bound on the gap to optimality in the case of an early interruption of the
ranking process. Consequently, when current-distance is less than δ, the gap to
optimality for x∗ is at most δ.

Example 1 (continued). Let us briefly illustrate the behavior of Algorithm 1
on Example 1. We use bags of size 5 (sb = 5) and simulate the answers of the DM
using an OWA with w = (1/2, 1/3, 1/6). The best solution according to the mean
value is x1 = {(1, 3), (2, 1), (3, 2), (4, 4)} with utility vector u(x1) = (29, 8, 28)
and a mean at 21.67. Then, a lower bound of the OWA value of x1 is obtained by
minimizing f(u(x1), w) = 8w1 +28w2 +29w3 over all possible weighting vectors.
We obtain 8, hence current-distance = 21.67 − 8 > 0 and another iteration is
necessary. The ordered enumeration continues until step 5 where the algorithm
computes the MMR value which is strictly positive. So a preference query is asked
to the DM: the MMR solution x2 = {(1, 1), (2, 4), (3, 2), (4, 3)} such that u(x2) =
(23, 24, 17) must be compared to its best challenger x4 chosen as explained before
and such that u(x4) = (18, 20, 25). The DM prefers x2 therefore x4 is removed
from X and the constraint f(x2, w) ≥ f(y4, w) is added to the definition of
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polyhedron W i.e. 17w1 + 23w2 + 24w3 ≥ 18w1 + 20w2 + 25w3 or equivalently
−w1+3w2−w3 ≥ 0. At this time, the MMR is still positive so the algorithm asks
another query, this time between x2 and x1 (chosen in the same way as x4), the
DM still prefers x2, the algorithm proceeds similarly, removing x1 and adding a
constraint according to this preference. After this second question, the MMR is
equal to 0, therefore all solutions but x2 are removed from X. Then the ranking
algorithm continues until step 15 without inserting new solutions in X because
all of them are dominated by x2. At step 15, the stopping condition is activated
and the algorithm returns the optimal solution x2.

A variant of Algorithm 1 can be used for WOWA optimization. It is sufficient
to replace f by g and to modify the definition of regrets accordingly. The defi-
nition of the current distance must also be adapted not only by substituting f
by g but also by replacing the weighted average by

∑q
i=1 pix

k
i . The correctness

of this variant derives from Proposition 4 instead of Proposition 2.

5 Numerical Tests

We have implemented Algorithm 1 on the robust assignment problem using both
OWA and WOWA models. For these tests, function next(G, k) (line 5) was
implemented with Murty’s algorithm [16]. The complexity of Murthy’s algo-
rithm to rank assignments by increasing utility is O(Kn4) for n agents and K
enumerations. We used the Gurobi library of Python to solve the linear pro-
grams required for dominance tests and regret minimization. During the elicita-
tion steps, the DM’s answers to preference queries are simulated using a hidden
OWA or WOWA model. We evaluate the performance of the algorithm in terms
of computation time, number of preference queries and number of ranking steps,
we performed tests on multiple instances of different size and number of sce-
narios. For every case, performances are averaged over 20 runs. The tests are
performed on a Intel Core i7-4770 CPU with 11 GB of RAM. Table 1 shows
the results obtained for OWA and WOWA elicitation and optimization. The
performance are obtained for an error threshold δ set to 10% of the initial error
(obtained for solution x1), with a bag size of 10 and a timeout of 20 min (1200 s).
Time is given in seconds in the tables and the gap is the maximal error attached
to the returned solution, expressed as a percentage of the range of the valuation
scale.

To test the generality of the approach, we also made some preliminary tests
on the robust shortest path problem. In this problem, the arcs of the graph are
valued by cost vectors with q components corresponding to the cost of the arc in
the different scenarios. The definition of OWA and WOWA aggregators as well as
Algorithm 1 have been modified to fit to minimization problems. For ranking the
paths by increasing average costs, we used a lazy version of Eppstein’s algorithm
introduced in [10] with a complexity of O(m + n log n) in the worst case for a
graph with n nodes and m arcs. To give an idea of the performance of Algorithm 1
on robust shortest path problems, we solve instances including 500 nodes and 5
scenarios in 548 s and 5 preference queries with a gap of 0.1 on average (after
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Table 1. Tests for OWA and WOWA optimization on the robust assignment problem

Number of agents q = 3 q = 5 q = 10

Time Steps Queries Gap Time Steps Queries Gap Time Steps Queries Gap

OWA 20 274 13607 1.3 0 719 34009 2.3 0.5 940 37739 2 1.4

60 1200 7236 4 1.1 1200 6945 6.7 5 1200 6382 11.6 4.7

100 1200 2075 5.1 2 1200 2550 11.3 6 1200 2216 17.5 7.5

WOWA 20 270 5338 10.3 1 475 4657 9.45 1.1 865 6743 9.2 1.7

60 1200 5446 8.95 8.1 1200 3192 5.3 7.6 1200 4381 5.4 6.5

100 1200 2978 6.15 10.3 1200 2302 5 15.9 1200 1901 4.9 11.3

28460 steps on average). In the case of 10 scenarios, the algorithm needs 681 s on
average on similar graphs, 6.3 queries with a gap of 0.1 on average (after 41796
steps on average).

6 Conclusion

We have introduced a new adaptive elicitation approach for OWA and WOWA
optimization and tested its practical efficiency on robust assignment problems
and on robust shortest path problems in the discrete scenarios case. Our app-
roach is quite general and applies to any other optimization problem for which
an efficient ranking algorithm is known. An interesting extension of this work
would be to design a similar approach for the incremental elicitation of Choquet
integrals under the constraint of convex capacity (this is a more general model
to account for robustness in optimization under uncertainty, including OWA and
WOWA as special cases). The implementation of the ranking approach for Cho-
quet integrals and the definition of a valid stopping condition are challenging
questions because the capacity is imprecisely known.
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Abstract. This paper deals with proportional representation problems
in which a set of winning candidates must be selected according to the
ballots of the voters. We investigate the use of a new class of optimiza-
tion criteria to determine the set of winning candidates, namely mixture
operators. In a nutshell, mixture operators are similar to weighted means
where the numerical weights are replaced by weighting functions. In this
paper: (1) we give the mathematical condition for which a mixture oper-
ator is fair and provide several instances of this operator satisfying this
condition; (2) we show that when using a mixture operator as optimiza-
tion criterion, one recovers the same complexity results as in the utilitar-
ian case (i.e., maximizing the sum of agent’s utilities) under a light con-
dition; (3) we present solution methods to find an optimal set of winners
w.r.t. a mixture operator under both Monroe and Chamberlin-Courant
multi-winner voting rules and test their computational efficiency.

Keywords: Computational social choice · Inequality measurement ·
Mixture operators · Proportional representation

1 Introduction

This paper deals with multi-winner voting rules where one aims at electing a
subset of candidates rather than a single one. In multi-winner election rules, a
set of voters express preferences over a set of candidates. The objective is then to
determine k winning candidates such that each voter is satisfied by the winning
candidate that represents her. Multi-winner election rules are important for both
political elections (i.e., electing committees of representatives) and multi-agent
recommendation systems (e.g., choosing a set of dinning menus for a conference)
[10,27]. A key property for multi-winner voting rules is Proportional Represen-
tation (PR), i.e., the proportional support enjoyed by the different candidates
should be accurately reflected by the results of the elections.

Two multi-winner voting rules have been designed to account for PR, namely
Monroe’s Voting Rule [19] (abbreviated by MVR) and Chamberlin-Courant ’s
Voting Rule [5] (abbreviated by CCVR). In these two frameworks, a feasible
solution is characterized by a set of k winning candidates and an assignment
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from winning candidates to voters. Each voter is then represented by the elected
candidate assigned to her. While CCVR does not constraint the possible assign-
ments from winning candidates to voters, MVR imposes that the k sets consisting
of the voters represented by the same candidate should be equally sized. The
choice of the solution is then based on the ballots, where each voter ranks the
candidates from best to worst. Indeed, the solution chosen should maximize the
utilities of the voters, where the utility (i.e., satisfaction level) of a voter depends
on the rank she gave to the candidate assigned to her. In the utilitarian version
of MVR and CCVR, the goal is to find a solution maximizing the sum of voter’s
utilities. However, maximizing the sum of utilities can yield an unfair solution as
it compensates between the utilities of the different voters. Thus, several alterna-
tive optimization criteria have been investigated for multi-winner voting rules to
address this problem. In CCVR, Betzler et al. proposed to maximize the utility
of the least happy voter [4]. This is known as the egalitarian version of CCVR.
However, maximizing the minimum utility value of the voters can be considered
extreme as it does not take into account the satisfaction of all but one voter.
To address this issue, Elkind and Ismaili extended this approach to Ordered
Weighted Averages (OWAs) of utilities, which provides a smooth interpolation
between the egalitarian version and the utilitarian version of CCVR [11].

In this paper, we investigate the use of another aggregation operator, namely
Mixture Operators (MOs), to find an efficient and fair solution with CCVR and
MVR. In a nutshell, MOs are similar to weighted means where the numerical
weights are replaced by weighting functions. The solution sought with the MO
should be efficient in the sense that the vector of voter’s satisfactions should be
Pareto optimal (i.e., the utility of a voter cannot be improved without decreasing
the utility of another voter) and fair in the sense that the vector of voter’s
satisfactions should be well-balanced (which will be formalized later). MOs have
recently been investigated in multi-criteria decision making. Indeed, while those
operators (which are instances of Bajraktarević means) are not new, they have
received a renewed interest due to successful applications in data fusion [1,24].

Regarding the complexity of PR problems, Procaccia et al. proved that win-
ner determination under the utilitarian versions of MVR and CCVR are both
NP-hard problems even if the utility values are based on approval ballots [23].
Similarly, for the egalitarian version of CCVR, Betzler et al. proved that winner
determination is NP-hard [4]. More positive results where obtained by resorting
to approximation algorithms or special structures of preferences. Approximation
algorithms for PR problems were given by Lu and Boutilier [16] and Skowron
et al. [28]. Betzler et al. showed that, for single-peaked preferences, winner deter-
mination under CCVR is a polynomial time problem by designing a dynamic pro-
gramming solution method [4]. Their results where extended by Cornaz et al. to
the case of clustered single-peaked preferences [7]. Lastly, Skowron et al. showed
that, for single-crossing preferences, winner determination under CCVR is also
a polynomial time problem [29]. In this paper, we investigate the complexity of
solving PR problems under CCVR and MVR with an MO as optimization cri-
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terion and show that we obtain the same complexity results as in the utilitarian
case under a light condition.

The paper is organized as follows. Section 2 presents PR problems under
MVR and CCVR, introduces our notations and discusses the use of several
criteria to solve these problems. In Sect. 3, we present MOs and their properties.
In Sect. 4, we design several solution procedures to solve PR problems with an
MO criterion. Lastly, our numerical tests are presented in Sect. 5.

2 Proportional Representation

Let V = {1, . . . , n} be a set of n voters and C = {1, . . . , m} be a set of m
candidates. A solution of the PR problem is a set of k winning candidates
{c1, . . . , ck} ⊆ C, and k sets Sj (j ∈ {c1, . . . , ck}), where Sj is the subset of
voters represented by candidate j. We recall that, while in MVR the sets Sj

should be of the same size, it is not the case in CCVR. Consequently, in CCVR,
a voter is always represented by the candidate she likes most in the set of k win-
ning candidates. We will denote by e = {c1, Sc1 ; . . . ; ck, Sck} any feasible solution
and by E the set of all feasible solutions. Each voter has preferences over can-
didates. These preferences are expressed by a preference profile P of size mn,
where the ith column of P is the preference order of voter i. From profile P , we
derive nm utility values vij that represent the level of satisfaction of voter i if
she is represented by candidate j. Given a feasible solution e, the utility vi(e)
of voter i is then given by vij if i belongs to Sj in e. The PR problem aims at
determining a solution e ∈ E such that the utilities of the voters are maximized.
We assume that all utility values vi belong to some open interval1 D ⊂ R

+ and
we denote by v(e) = (v1(e), . . . , vn(e)) ∈ Dn the vector2 giving the utilities of
each voter for solution e. A solution e1 will then be preferred to another solu-
tion e2 if, globally, e1 satisfies more the voters than e2. This is formalized by an
aggregation criterion to maximize. More formally, given an operator F : Dn → R,
a solution e1 is preferred to a solution e2 if F (v(e1)) ≥ F (v(e2)). The problem
of finding an optimal solution is then written as follows:

max
e∈E

F (v(e)) (1)

The choice of the operator F is a key but difficult point. A “good” operator
should both enable to solve efficiently the maximization problem defined by Eq. 1
and ensure that the optimal solution found satisfies some desirable theoretical
properties, as for instance Pareto optimality.

Definition 1. Vector y ∈ Dn Pareto-dominates vector y′ ∈ Dn if:

(i) ∀i ∈ {1, . . . , n}, yi ≥ y′
i (ii) ∃i ∈ {1, . . . , n}, yi > y′

i

A solution e is said to be Pareto-optimal iff there is no e′ ∈ E such that v(e′)
Pareto-dominates v(e).
1 Considering an open interval simplifies the writing of Proposition 1 in Sect. 3.
2 Note that we follow the convention to use bold letters to represent vectors.
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Pareto optimality ensures that the solution is efficient in the sense that the utility
of a voter cannot be increased without decreasing the utility of another voter.
We will say that an operator F is Pareto-compatible if any optimal solution of
maximization problem 1 w.r.t. operator F is Pareto-optimal. To ensure Pareto-
compatibility, operator F should be strictly increasing in each of its variables. In
this case, we will say that the operator is increasing. A simple class of increasing
operators is the class of Weighted Averages (WA) (with strictly positive weights):

Definition 2. Let w = (w1, . . . , wn) be a vector of weights. The WAw(·) operator
induced by w is defined by:

∀x ∈ Dn, WAw(x) =
∑n

i=1
wixi

Given a WA operator, a solution e is then evaluated by WAw(v(e)).

Optimizing a WA criterion is attractive due to the simplicity of this aggrega-
tion operator. In fact, the average operator used in the utilitarian version of PR
problems is a WA operator, with w1 = . . . = wn in order to treat each voter iden-
tically. However, such criterion may lead to an unfair solution as it compensates
between the utility values of the different voters. For instance, for two voters and
w = (1, 1), the utility vector (3, 10) is preferred to utility vector (6, 6) for the
WAw criterion. This is not satisfying as fairness should be an important property
for multi-winner voting problems. A natural condition that can be satisfied by
an operator to favor fairness is the Pigou-Dalton transfer principle [20]:

Definition 3. Pigou-Dalton Transfer Principle. Let x ∈ Dn such that xi > xj

for some i, j. Then, for all ε such that 0 < ε < xi − xj, x − εbi + εbj should
be strictly preferred to x where bi and bj are the vector whose ith (resp. jth)
component equals 1, all others being null.

The transfer principle states that a transfer from a “more satisfied” voter to a
“less satisfied” voter should improve a solution. Indeed, such a transfer reduces
inequality while keeping the arithmetic mean of the vector constant. We will say
that an operator is fair if it satisfies the Pigou-Dalton transfer principle.

A well known class of fair operators whose optimization yields a Pareto-
optimal solution is the class of Ordered Weighted Average (OWA) operators
with strictly decreasing weights [32].

Definition 4. Let w = (w1, . . . , wn) be a vector of weights. The OWAw(·) oper-
ator induced by w is defined by:

∀x ∈ Dn, OWAw(x) =
∑n

i=1
wixσ(i)

where σ is a permutation of {1, . . . , n} such that xσ(1)≤xσ(2)≤. . .≤xσ(n). Given
an OWA operator, a solution e is then evaluated by OWAw(v(e)).
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Note that both the average operator used in the utilitarian version of PR
problems and the min operator used in the egalitarian version of PR problems
are OWA operators obtained by setting w = (1, . . . , 1) and w = (1, 0, . . . , 0)
respectively. PR problems with OWA operators as optimization criteria have
been investigated by Elkind and Ismaili [11]. The authors investigated several
classes of weights w defining families of OWA operators that allows for a compro-
mise between the utilitarian and the egalitarian versions of PR problems under
CCVR. Interestingly, they showed that if the preferences of the voters present
particular structures (e.g., single-crossing, single-peaked), then it becomes pos-
sible to design polynomial or pseudo-polynomial solution methods for some of
these OWA families. However, the validity conditions of these methods and the
algorithms themselves depend on the family of weights used.

In the next section, we present the class of operators that we will use as
optimization criteria, namely mixture operators. Contrary to OWA operators, the
way mixture operators weight the different components of a vector do not require
any reordering. After recalling the main properties of this class of operators, we
will give the condition under which they are fair. Interestingly, we will see that
mixture operators have some descriptive advantages over OWA operators.

3 Mixture Operators

In this section, we present Mixture Operators (MOs) and their relations to sev-
eral other operators.

Definition 5. Let w : D → (0,∞] be a positive weighting function. The mixture
operator Mw(·) induced by function w is defined as follows:

∀x ∈ Dn,Mw(x) =
∑n

i=1

w(xi)∑n
j=1 w(xj)

xi

Given a mixture operator, a solution e ∈ E is then evaluated by Mw(v(e)).

MOs are special instances of Losonczi means [15], Bajraktarević means and
generalized mixture functions [25]. On the other hand, MOs extend several aver-
aging operators as the Gini mean or the Lehmer mean. MOs resemble OWA and
WA operators but their weights depend on the values that are at stake in the
evaluated vector and not on the ranks of the components. Note that if function w
is constant then the MO boils down to the average operator used in the utilitar-
ian version of PR problems. Furthermore, the special case of the Lehmer mean
is defined by w(x) = xp−1 where p is a parameter. If p tends towards −∞, then
the Lehmer mean tends towards the min operator used in the egalitarian version
of PR problems. The following example illustrates the way an MO distorts the
weights of the voters.
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Example 1. Let D = (0, U) and consider the weight function w defined by
w(x) = 2U − x. Then, given a solution e of the PR problem, the weight wi

associated to voter i is given by:

wi =
w(vi(e))∑n

j=1 w(vj(e))
=

2U − vi(e)∑n
j=1 2U − vj(e)

=
2U − vi(e)
n(2U − E)

where E =
∑n

j=1 vj(e)/n is the arithmetic mean of vector v(e). Thus, wi ≥ (resp
≤) 1/n if vi(e) ≤ (resp. ≥) E. Stated differently, if a voter’s utility is less than
the average utility of the voters, then she is given a greater weight in operator
Mw. More generally, the more w is decreasing, the more operator Mw will focus
on the least satisfied voters. This property enables us to find compromises between
the utilitarian and the egalitarian variants of PR problems.

Moreover, by using a weighting function w depending on voters’ utilities, MOs
are able to account for preferences that cannot be represented by OWA or WA
operators, as illustrated by the following example.

Example 2. Let n = 2 and consider four solutions e1, e2, e′
1 and e′

2 such that:

v(e1) = (4, 8) v(e2) = (2, 12)
v(e′

1) = (8, 8) v(e′
2) = (6, 12).

Note that v(e′
1) and v(e′

2) are obtained from v(e1) and v(e2) by adding 4 to the
utility value of the first voter. In solution e2, voter 1 is strongly unsatisfied, so
one could prefer the more balanced solution e1 even if the average utility value of
the voters is lower with e1 than with e2. Conversely, in both solutions e′

1 and e′
2,

voters 1 and 2 are quite satisfied. Hence, one could prefer e′
2 to e′

1 as it yields
the highest average utility value. Accounting for both of these preferences is not
possible with a WA operator nor an OWA operator. Indeed, whatever the values
of the weights w = (w1, w2):

WAw(v(e′
1)) = WAw(v(e1)) + 4w1 WAw(v(e′

2)) = WAw(v(e2)) + 4w1

OWAw(v(e′
1)) = OWAw(v(e1)) + 4w1 OWAw(v(e′

2)) = OWAw(v(e2)) + 4w1

Hence, if preferences are represented by a WA or an OWA, the preference holding
between e1 and e2 should be the same as the one holding between e′

1 and e′
2.

However, by considering w(x) = 24 − x, one obtains:

Mw(v(e1)) ≈ 5.78 Mw(v(e2)) ≈ 5.53
Mw(v(e′

1)) = 8 Mw(v(e′
2)) ≈ 8.4

which is consistent with the desired preferences.

MOs have recently received some attention in multi-criteria decision mak-
ing where their mathematical properties have been studied (e.g. monotonicity,
orness, . . .) [14,25].
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Increasingness. Many works have been focused on the monotonicity of MOs [2,3].
Indeed, MOs are not increasing (and therefore not Pareto-compatible) in general.
For this reason, sufficient conditions to ensure the monotonicity of this operator
have been found. For instance, if D = (0, U) and if w(x) ≥ dw

dx (x)(U−x) for all x ∈
(0, U) with w increasing and piecewise differentiable, then Mw is increasing [18].
A simpler condition to impose monotonicity, if D ⊂ R

+, is to have function
x → w(x) decreasing and function x → w(x)x increasing.

Interestingly, MOs have also been studied in decision making under risk.
Indeed, they are instances of both the Weighted Expected Utility (WEU)
model [6] and the decomposable Skew-Symmetric Bilinear (SSB) functions inves-
tigated by Nakamura [21]. The properties of WEU functions and SSB functions
w.r.t. risk-sensitivity and stochastic dominance have been thoroughly investi-
gated [6,12,21] and these results can directly be used to entail results on MOs.

Fairness. We now give the condition under which MOs are fair (i.e., they satisfy
the Pigou-Dalton transfer principle). This condition is a consequence of a result
by Chew (Corollary 6 in [6]), who studied the consistency of WEU functions with
stochastic dominance. Indeed, the Pigou-Dalton transfer principle in inequality
measurement coincides with consistency with second order stochastic dominance
in decision making under risk.

Proposition 1. ([6]) Assume that functions x → w(x) and x → w(x)x as well
as their first derivatives are continuous and bounded on D, then operator Mw(·)
is fair iff function x → w(x)(x − y) is strictly concave on D for all y in D.

Proof. For completeness, we give the sketch of the proof.
Sufficiency: Note that given vectors x,y ∈ Dn:

Mw(x) ≥ Mw(y) ⇔
∑n

i=1

w(xi)∑n
j=1 w(xj)

xi ≥
∑n

i=1

w(yi)∑n
j=1 w(yj)

yi

⇔
∑n

i=1

∑n

j=1
w(yj)w(xi)xi ≥

∑n

i=1

∑n

j=1
w(yi)w(xj)yi

⇔
∑n

i=1

∑n

j=1
w(yj)w(xi)(xi − yj) ≥ 0

In particular, for any vector x ∈ Dn,
∑n

i=1

∑n

j=1
w(xj)w(xi)(xi − xj) = 0.

Assume that function x → w(x)(x − y) is strictly concave on D for all y in D,
then function φy : x → ∑n

j=1 w(yj)w(x)(x − yj) is also strictly concave on D for
all y in Dn as w(y) > 0 for all y in D. Hence, by Lemma 2 in [8], if xε is obtained
from x ∈ Dn by an ε-transfer (i.e., xε = x+ ε(bj − bi) with 0 < ε < xi − xj and
where bi is the ith canonical vector) then:

∑n

i=1

∑n

j=1
w(xj)w(xε

i)(x
ε
i − xj) >

∑n

i=1

∑n

j=1
w(xj)w(xi)(xi − xj) = 0

Thus, Mw(xε)>Mw(x) and the MO satisfies the Pigou-Dalton transfer principle.
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Necessity: We recall that D is an open interval. By contradiction, assume there
exists s ∈ D such that x → w(x)(x − s) is not strictly concave. Thus, there
exists x̂ and ε > 0 such that [x̂ − ε, x̂ + ε] ⊂ D and φs : x → w(s)w(x)(x − s)
is convex on [x̂ − ε, x̂ + ε]. Assume w.l.o.g. that s > x̂ and consider t ∈ D such
that t > s. As Q is dense in R and as w is bounded and continuous on D, t
can be chosen such that there exists k, l ∈ N

∗ with φs(x̂) + (k/l)φs(t) = 0. Set
n = 2(l + k) and consider vectors x = (x̂, x̂, . . . , x̂︸ ︷︷ ︸

2l

, t, . . . , t︸ ︷︷ ︸
2k

) and s = (s, . . . , s︸ ︷︷ ︸
2(l+k)

).

Then, by construction, Mw(x) = Mw(s). Consider xε obtained by transferring ε
from one of the x̂ terms to another (increasing inequality). As in the sufficiency
part, as φs is convex on [x̂− ε, x̂+ ε], we have Mw(xε) ≥ Mw(s) = Mw(x) which
violates the Pigou-Dalton transfer principle and concludes the proof. �
The conditions of Proposition 1 can easily be met. For instance, a sufficient
condition, if D ⊂ R

+, is to have function x → w(x)x concave and function
x → w(x) convex (with at least one property being strict). Under this sufficient
condition, it is easy to see that the MO will be fair, as a Pigou-Dalton transfer
will increase (resp. decrease)

∑n
i=1 w(xi)xi (resp.

∑n
i=1 w(xi)).

If D = (0, U), examples of MOs that are increasing and fair on D can be
defined by using w(x) = 1/(1 + x) or w(x) = (α + 1)Uα − xα with 0 < α ≤ 1.
Indeed, in these cases, function x → w(x) is convex and decreasing on D and
function x → w(x)x is strictly concave and increasing on D.

In the next section, we investigate the complexity of winner determination
in multi-winner voting rules with mixture operators.

4 Complexity and Solution Methods

Let u denote the function defined on D by u(x) = w(x)x. By abuse of notation,
given a vector x ∈ Dn, we denote by u(x) the sum

∑n
i=1 u(xi) and by w(x) the

sum
∑n

i=1 w(xi). By using these notations, the definition of an MO Mw(·) can
be rewritten as follows:

∀x ∈ Dn,Mw(x) =
∑n

i=1 u(xi)∑n
j=1 w(xj)

=
u(x)
w(x)

(2)

Thus optimizing an MO entails the maximization of a ratio. Fractional program-
ming is a subfield of operational research dedicated to this type of objective func-
tions [9,26,30]. Several solution methods and techniques have been developed in
this domain to optimize objective functions taking the form of a ratio of two
linear objective functions. In this section, we will adapt and present two of these
methods. Note that the two algorithms we present could also be used with the
more general class of Losonczi means. The first one relies on a linearization trick
that we will use to design a mixed integer linear program to solve PR problems
w.r.t. an MO. The second one is a parametric approach that we will use to design
polynomial time algorithms to solve PR problems with an MO criterion when a
special structure of preferences makes it possible to solve the utilitarian version
of the PR problem in polynomial time.
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4.1 A Mixed Integer Linear Program

Note that if function w is constant, then one recovers the utilitarian version of PR
problems which are NP-hard. Thus, it follows that PR problems under CCVR or
MVR with an MO are also NP-hard. Yet, the NP-hardness of winner determination
under CCVR and MVR has not prevented researchers from designing solution
procedures for these problems. Indeed, Brams and Potthoff investigated the use
of integer linear programs to solve PR problems [22]. We denote by IP the
integer program they proposed. Program IP is given below on the left side of
the page. It includes nm binary variables xij where xij takes value 1 if voter
i is represented by candidate j and m binary variables zj where zj takes value
1 if candidate j represents at least one voter. Constraint (4) ensures that the
election has k winning candidates. The n constraints in (5) make sure that each
voter is only represented by one candidate. Lastly, constraints (6) and (7) specify
a lower bound L and an upper bound U on the number of voters that can be
represented by the same candidate. The pair (L,U) in MVR (resp. CCVR) is
equal to (�n/k�, �n/k�) (resp. (0, n)).

Program IP can be adapted to obtain a Mixed Integer Linear Program
(MILP) MIPMO (given below on the right side of the page) to solve a PR
problem w.r.t. an MO. We now describe how it has been obtained. With the
MO Mw, the objective function becomes:

∑
i,j∈V ·C u(vij)xij∑
i,j∈V ·C w(vij)xij

(3)

IP

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
∑

i,j∈V ·C
vijxij

∑

j∈C

zj = k (4)

∑

j∈C

xij = 1, ∀i ∈ V (5)

∑

i∈V

xij≥Lzj , ∀j ∈ C (6)

∑

i∈V

xij≤Uzj , ∀j ∈ C (7)

zj∈{0, 1}, ∀j ∈ C

xij∈{0, 1}, ∀i, j∈V ·C

MIPMO

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max λ
∑

j∈C

zj = k

∑

j∈C

xij = 1, ∀i ∈ V

∑

i∈V

xij ≥ Lzj , ∀j ∈ C

∑

i∈V

xij ≤ Uzj , ∀j ∈ C

∑

i,j∈V ·C
(w(vij)yij−u(vij)xij)=0

∑

j∈C

yij = λ, ∀i ∈ V

yij≤ xijλ
u, ∀i, j ∈ V ·C

zj∈{0, 1}, ∀j ∈ C

xij∈{0, 1}, ∀i, j ∈ V ·C
yij∈R+, ∀i, j ∈ V ·C
λ∈R
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To linearize this objective function, we use the following general method pro-
posed by Williams [31]. Introduce a continuous variable λ into the problem to
represent the expression given in Eq. 3. The objective is then to maximize this
variable. By definition of λ, the following condition should hold:

∑
i,j∈V ·C w(vij)λxij −

∑
i,j∈V ·C u(vij)xij = 0

However, this equation is not linear in the variables of the problem because of the
quadratic terms λxij . Thus, to enforce this equation in program MIPMO, we
introduce nm continuous variables yij taking values in R

+ to replace expressions
λxij . We then impose that yij = λxij with the following constraints:

yij ≤ xijλ
u, ∀i, j ∈ V · C (8)

∑

j∈C

yij = λ, ∀i ∈ V (9)

where λu denotes an upper bound on λ. Such an upper bound can easily be
obtained by computing (maxu(vij))/(min w(vij)). While Eq. 8 ensures that yij =
0 if xij = 0, Eq. 9 ensures that yij = λ if xij = 1. Indeed, in Eq. 9, only one of
the yij is non null due to constraints 5 in program IP and Eq. 9 imposes that
this variable equals λ. The final program MIPMO involves nm + 1 additional
continuous variables and nm + n + 1 additional constraints.

4.2 A Parametric Approach

We now assume that the preferences of the voters have a particular structure
which makes it possible to solve the utilitarian version of the PR problem with
a polynomial time algorithm denoted by A. This is for instance the case for
single-peaked or single-crossing preferences with CCVR. Using algorithm A, we
provide two polynomial time methods to solve the PR problem w.r.t. an MO.
The first one follows from a method proposed by Megiddo [17] and the second
one is a cutting plane method. The only light condition required by these two
methods on the MO is that Mw should be an increasing MO with a decreas-
ing function w and an increasing function u. Indeed, both of these methods
require to solve utilitarian versions of the PR problem with utilities defined by
ṽλ

ij = u(vij) − λw(vij) (λ ∈ R
+). The previous condition on the monotony of w

and u ensures that utilities ṽλ
ij are consistent with the preferences of the voters

(i.e., if voter i prefers candidate j1 to candidate j2 then ṽλ
ij1

≥ ṽλ
ij2

).

Megiddo’s method. The first method we present follows from a general method
designed by Megiddo [17]. This method is based on the following observation
(recasted in our PR setting):

Observation 1. Let λ ∈ R and consider utility values ṽλ
ij = u(vij) − λw(vij).

Let eλ and vλ = u(v(eλ)) − λw(v(eλ)) be the optimal solution and the optimal
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value for the utilitarian version of the PR problem with utility values ṽλ
ij. Then,

the sign of vλ is determined by the position of λ w.r.t. λ∗, where λ∗ is defined
as the optimal value w.r.t. Mw (i.e. λ∗ = maxe∈E Mw(v(e))).

1. If λ=λ∗, then vλ=0 and eλ is an optimal solution according to MO Mw.
2. If λ>λ∗, then vλ will be strictly negative. Indeed, there exists no feasible

solution e ∈ E such that u(v(e))/w(v(e)) > λ.
3. On the contrary, if λ<λ∗, then vλ will be strictly positive.

Thus, the problem of solving a PR problem w.r.t. an MO reduces to the
one of solving the utilitarian version of the PR problem with utility values
ṽλ∗

ij = u(vij) − λ∗w(vij) (case 1 of Observation 1). However, while values
u(vij) and w(vij) are known, the value of λ∗ is not. Thus, the values ṽλ∗

ij are
incompletely specified. Nevertheless, if the utilitarian version of the PR prob-
lem can be solved by an algorithm A relying on a polynomial number of addi-
tions/subtractions and comparisons (which is the case for PR problems under
CCVR with single-peaked or single-crossing preferences), then this problem can
be solved via Megiddo’s method. In short, Megiddo’s method applied to the PR
problem mimics algorithm A to solve the utilitarian version of the PR prob-
lem with utility values ṽλ∗

ij . However, the method redefines the addition and the
comparison operations to handle the fact that λ∗ is unknown.

Management of the imprecisely known value of λ∗. Instead of having precise
values for ṽλ∗

ij , the algorithm works with pairs of values (u(vij), w(vij)) for all
i in V and j in C and maintains a lower bound λl and an upper bound λu

over λ∗ (originally 0 and ∞). Thus ṽλ∗
ij is only known to be in the interval

[u(vij) − λuw(vij), u(vij) − λlw(vij)].

Redefinition of the addition operation. The additions and subtractions required
by algorithm A are simply replaced by componentwise additions and subtrac-
tions of pairs. Stated differently, the sum of (u(vij), w(vij)) and (u(vkl), w(vkl))
is (u(vij) + u(vkl), w(vij) + w(vkl)). Indeed, whatever the value of λ∗:

u(vij) − λ∗w(vij) + u(vkl) − λ∗w(vkl) = u(vij) + u(vkl) − λ∗(w(vij) + w(vkl)).

Redefinition of the comparison operation. To compare two pairs (u(vij), w(vij))
and (u(vkl), w(vkl)), Megiddo’s method uses the following routine.

A fist step consists in checking if u(vij) − λw(vij) is less (resp. greater) than
u(vkl) − λw(vkl), regardless of the value of λ ∈ [λl, λu]. Indeed, in that case
(illustrated on the left side of Fig. 1 below), the algorithm can conclude that
u(vij) − λ∗w(vij) ≤ (resp. ≥) u(vkl) − λ∗w(vkl). Note that u(vij) − λw(vij) and
u(vkl) − λw(vkl) are linear functions of λ. Therefore, the method needs only to
check the inequality for values λl and λu.

If this first step does not conclude which pair is the minimum (case illustrated
on the right side of Fig. 1), then the algorithm considers the value λ̂ such that
u(vij) − λ̂w(vij) = u(vkl) − λ̂w(vkl). Then, if we assume w.l.o.g.3 that u(vij) −
3 if, u(vij) − λlw(vij) > u(vkl) − λlw(vkl), just reverse inequalities 10 and 11.
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λlw(vij) < u(vkl) − λlw(vkl), we have:

∀λ ∈ [λl, λ̂], u(vij) − λw(vij) ≤ u(vkl) − λw(vkl) (10)

∀λ ∈ [λ̂, λu], u(vij) − λw(vij) ≥ u(vkl) − λw(vkl). (11)

Now, for the algorithm to conclude, it needs only to check if λ∗ ∈ [λl, λ̂] (in
which case, λu is set to λ̂) or λ∗ ∈ [λ̂, λu] (in which case, λl is set to λ̂). This is
done by testing the sign of the optimal value of the utilitarian version of the PR
problem with utility values ṽλ̂

ij (see Observation 1), which is computed by using
algorithm A. Note that this operation updates either λl or λu, which refines
the value of λ∗ and enables us to perform more comparisons without rerunning
algorithm A.

λ

f(λ)

λl λu

f(λ) = u(vij) − λw(vij)

f(λ) = u(vkl) − λw(vkl)

λ

f(λ)

λl λu
λ̂

f(λ) = u(vij) − λw(vij)

f(λ) = u(vkl) − λw(vkl)

Fig. 1. Illustration of the two possible cases that can occur in the comparison routine.

Polynomial time complexity of the method. As Megiddo’s method mimics algo-
rithm A, it relies on a polynomial number of (redefined) additions and compar-
isons. As algorithm A (which is used in the comparison operator) is of poly-
nomial complexity, these two operations can be performed in polynomial time.
This proves the polynomial complexity of the method.

Cutting plane method. As shown by Eq. 2, for a solution e∗ maximizing
Mw(v(e)), we have u(v(e∗))

w(v(e∗))≥ u(v(e))
w(v(e)) for all e in E . Replacing u(v(e∗))/w(v(e∗))

by λ∗, these inequalities rewrite as follows:

u(v(e)) − λ∗w(v(e)) ≤ 0, ∀e ∈ E (12)

and the constraint is tight for e = e∗. Therefore, λ∗ is the minimal value such
that all inequalities in 12 are satisfied. This analysis yields the following Linear
Program (LP) LPMO:

LPMO

⎧
⎪⎨

⎪⎩

min
λ

λ

u(v(e)) − λw(v(e)) ≤ 0 ∀e ∈ E (13)
λ ∈ R
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Even if the number of constraints in 13 may be exponential in m (as there
is one constraint per feasible solution), these constraints can be handled effi-
ciently by resorting to a cutting plane algorithm. A cutting plane algorithm
makes it possible to solve an LP involving a set S of constraints, the size of
which is exponential, provided there exists a separation oracle. A separation
oracle dynamically generates a violated constraint in S given the current opti-
mal solution according to the previously generated constraints, or states that
there is no violated constraint (in which case the current solution is optimal).
In program LPMO, a separation oracle to determine a most violated constraint
amounts to solve the utilitarian version of the PR problem with utilities defined
by ṽλ

ij = u(vij) − λw(vij). This problem can be solved by algorithm A. As the
complexity of A is polynomial, the complexity of solving LPMO is polynomial
by the polynomial time equivalence of optimization and separation by resorting
to the ellipsoid method [13].

In practice, one can resort to Dinkelbach’s method [9] for solving program
LPMO. Indeed, while Dinkelbach’s method has not a polynomial time guarantee,
it reveals more efficient in practice. In the setting of PR problems, this method
can be described as follows. Let eλ denote an optimal solution in E for the
utilitarian variant of the PR problem with utilities ṽλ

ij (which can be obtained
via algorithm A). Program LPMO can be solved by computing a sequence of
solutions in E through the following recursive equation:

et+1 = eλt

where λt = u(v(et))/w(v(et)) = Mw(v(et)). The key point of this approach
is that the solutions generated in this way are of increasing values w.r.t the
MO operator. Indeed, a direct corollary from Observation 1 is that while
Mw(v(et)) < λ∗, Mw(v(et+1)) > Mw(v(et)). Note that, by definition of λ∗,
we cannot have Mw(v(et)) > λ∗. Therefore, the sequence (Mw(v(et)))t∈N is
strictly increasing until reaching λ∗. Value λ∗ is always reached after a finite
number of iterations as there is a finite number of values in {Mw(v(e)) : e ∈ E}.
After a finite number of iterations, we will thus have Mw(v(et)) = Mw(v(et+1))
which means that an optimal solution w.r.t. the MO has been found.

We now turn to our numerical tests in which the efficiency of the different
solution methods are compared.

5 Numerical Tests

In this section, we compare the execution times of the proposed solution methods
in two different experiments4. In both experiments, values vij are set to m −
rki(j) (where rki(j) denotes the rank of candidate j in the preference order of
voter i) and the weighting function w of the MO is defined by w(x) = 2m − x,

4 All methods were implemented in C++ using Gurobi version 5.6.3 to solve the LPs.
Times are wall-clock times on a 2.4 GHz Intel Core i5 machine with 8GB of RAM.
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so that the transfer principle holds. Lastly, for an election with n voters, values
m and k were set to n/5 and n/20.

In the first experiment, we restrict ourselves to randomly generated single-
peaked preferences in the CCVR framework, and we compare the execution times
of the two methods presented in Sect. 4.2, denoted by CP (for Cutting Plane)
and MEG (for Megiddo). The method CP is solved by using the Dinkelbach
method. In methods CP and MEG, the algorithm A used (see Sect. 4.2) is the
dynamic programming algorithm proposed by Betzler et al. [4]. The average
computation times (in seconds) over 50 instances, as well as the average number
of calls to algorithm A, are given in Table 1 for instances with a number of voters
ranging from 100 to 1000.

We observe that both methods CP and MEG are very fast and require very
few calls to algorithm A. On these instances, method CP seems to perform best
and requires less calls to algorithm A.

Table 1. Evolution of the average computation time in seconds and the average number
of calls to algorithm A (nbc in the table) for methods CP and MEG as n increases.

n 100 200 300 400 500 600 700 800 900 1000

CP time <0.001 0.005 0.017 0.037 0.074 0.132 0.276 0.416 0.618 1.064

nbc 2.62 2.86 2.94 3.00 2.98 2.98 3.00 3.00 3.00 3.00

MEG time 0.001 0.017 0.064 0.171 0.370 0.676 1.461 2.360 3.872 6.981

nbc 3.42 7.18 8.90 11.32 11.94 12.40 13.34 14.32 16.20 15.04

In a second experiment, we compare the execution times of the two instan-
tiations of MIPMO in the CCVR and MVR frameworks. We denote these pro-
grams by MMO

CCV R and MMO
MV R. For each instance, the preferences of the vot-

ers were generated uniformly at random. The average computation times (in
seconds) over 50 instances are given in Table 2 for instances with a number of
voters ranging from 50 to 100.

Obviously, we observe that solving those two programs are computationally
demanding. For instance, solving programs MMO

CCV R and MMO
MV R takes more

than 25 s for elections with 100 voters.

Table 2. Evolution of the average computation time in seconds to solve programs
MMO

CCV R and MMO
MV R as n increases.

n 50 60 70 80 90 100

MMO
CCV R 0.79 1.19 2.22 3.35 13.45 28.52

MMO
MV R 1.01 1.60 3.30 5.34 14.78 25.66
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6 Conclusion

We studied PR problems with MOs. We presented these operators and the condi-
tions under which they make it possible to find a fair solution for a PR problem.
We designed a MILP to solve PR problems w.r.t. an MO and presented two
other solution methods that are of polynomial complexity if the preferences of
the voters abid to a particular structure enabling to solve the utilitarian version
of the PR problem in polynomial time.

As future work, it would be worth investigating the extent to which the
methods presented here can be adapted to other domains requiring fairness. For
instance, it seems that they could also be used for the assignment problem. How-
ever, using MO for solving allocation problems where agents can receive several
goods seems more challenging as the weighting function would be applied to a
sum of utilities, which triggers new technical difficulties. Moreover, the results
presented here can be extended to Losonczi means and we plan to investigate if
those more general operators can yield new desirable properties for PR problems.

Acknowledgements. This work is supported by the ANR project CoCoRICo-CoDec
ANR-14-CE24-0007-01.
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Abstract. The Chamberlin-Courant voting rule is an important multi-
winner voting rule. Although NP-hard to compute on general profiles, it is
known to be polynomially solvable on single-crossing and single-peaked
electorates by exploiting the structures of these domains. We consider
the problem of generalizing the domain on which the voting rule admits
efficient algorithms.

On the one hand, we show efficient algorithms on profiles that are k

candidates or k voters away from the single-peaked and single-crossing
domains. In particular, for profiles that are k candidates away from being
single-peaked or single-crossing, we show algorithms whose running time
is FPT in k. For profiles that are k voters away from being single-peaked
or single-crossing, our algorithms are XP in k. These algorithms are
obtained by a careful extension of known algorithms on structured pro-
files [2,12]. This provides a natural application for the work by Elkind
and Lackner in [9], who study the problem of finding deletion sets to
single-peaked and single-crossing profiles.

In contrast to these results, for a different, but equally natural way
of generalizing these domain, we show severe intractability results. In
particular, we show that the problem is NP-hard on profiles that can be
“decomposed” into a constant number of single-peaked profiles. Also, if
the number of crossings per pair of candidates in a profile is permitted
to be at most three (instead of one), the problem continues be NP-hard.
This stands in contrast with other attempts at generalizing these domains
(such as single-peaked or single-crossing width), as it rules out the possi-
bility of fixed-parameter (or even XP) algorithms when parameterized by
the number of peaks, or the maximum number of crossings per candidate
pair.

Keywords: NP-hardness · Chamberlin Courant · Single-crossing pro-
files · Single-peaked profiles · Fixed-parameter algorithms · Voting rules

1 Introduction

A traditional election setting consists of voters expressing their preferences over
alternatives, where preferences can be modelled in several ways (approval bal-
lots, ternary ballots, top-truncated lists, total orders, and so forth). Usually,
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given such a scenario, we would like to identify a winning alternative. In many
applications, however, we need to identify not one, but a fixed set of alterna-
tives that best represent the interests of the voters. Such a problem arises in
a variety of scenarios like committee selection, parliamentary elections, movie
recommendation systems, and so forth.

There are several ways of measuring how well a committee fares against a
set of votes. When votes are approval ballots, for instance, the maximum or the
sum of Hamming distances is often used as a measure of quality. We consider
the setting of votes given as complete rankings, and focus on the well-studied
Chamberlin-Courant rule [6], which achieves proportional representation. The
way this voting rule works is the following. We begin by fixing a notion of
a “dissatisfaction function” α : N → N, which simply specifies, by α(i), how
unhappy a voter is when she is represented by a candidate who is ranked at the
ith position on her list. Given a committee with k candidates, a voter is repre-
sented by the candidate that she ranks the highest among candidates from X. If
φ(v) denotes the candidate that is representing voter v, the optimal committee
under the Chamberlin-Courant voting rule seeks to minimize either the sum or
the maximum value of α(posv(φ(v))), taken over all voters v (where posv(c)
denotes the ranking of the candidate c in the vote v).

The Chamberlin-Courant rule (and the closely related Monroe voting rule
which we do not consider in the present work) has several desirable properties.
It has been argued [12] that rules that achieve proportional representation are
particularly well-suited for electing committees that need to make unanimous
decisions, and in particular, that takes minority candidates into account. How-
ever, it turns out that finding an optimal committee under this rule is NP-hard,
and it is therefore unlikely to admit an efficient algorithm.

On the other hand, there have been promising developments showing that
the optimal Chamberlin-Courant committees can be computed efficiently on
structured profiles which are commonly encountered in practical scenarios. Two
such restrictions that have been particularly successful are the single-peaked and
single-crossing domains. In a parallel development, [9] showed various efficient
algorithms for detecting profiles that are close to being structured (in this case,
the notion of closeness is that these profiles exhibit the structure of the domain
on all but a small number of candidates or voters). More generally, the notion of
closeness to a domain is well-studied and has been defined in various ways [11].

We combine these scenarios to address the following question: how well do
the efficient algorithms on the restricted domains extend to profiles that are of
the latter type, that is, they exhibit the properties of the domain on all but a
small number of candidates or voters? We now turn to our findings in the context
of this question and closely related issues.

Our Contributions and Methodology. A natural framework for addressing the
problem of how well algorithms on structured domains scale up to nearly-
structured ones is parameterized complexity [8]. To begin with, we show efficient
algorithms on profiles that k candidates or k voters away from the single-peaked
and single-crossing domains. In particular, for profiles that are k candidates away
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from being single-peaked or single-crossing, we show algorithms whose running
time is FPT in k. For profiles that are k voters away from being single-peaked
or single-crossing, our algorithms are XP in k. These algorithms are obtained
by a careful extension of the the known algorithms [2,12] on the structured
profiles. This provides a natural application for the work by Elkind and Lack-
ner in [9], who study the problem of finding deletion sets to single-peaked and
single-crossing profiles.

In contrast to these results, for a different, but equally natural way of gen-
eralizing these domain, we show severe intractability results. In particular, we
show that the problem is NP-hard on profiles that can be “decomposed” into
a constant number of single-peaked profiles. Also, if the number of crossings
per pair of candidates in a profile is permitted to be at most three (instead
of one), the problem continues be NP-hard. This stands in contrast with other
attempts at generalizing these domains (such as single-peaked or single-crossing
width [7,12]), as it rules out the possibility of fixed-parameter (or even XP) algo-
rithms when parameterized by the number of peaks, or the maximum number
of crossings per candidate pair.

Related Work. Our work builds primarily on two lines of work from before. We
appeal to the known algorithms that determine the optimal Chamberlin-Courant
committees on single-peaked profiles [2] and single-crossing profiles [12]. These
results have been be extended to other multiwinner voting rules, which we do
not consider in the present work. Also, efficient algorithms have been shown
on more general preference restrictions such as single-peakedness on trees, or
single-crossing width.

2 Technical Preliminaries

In this section, we introduce some of the notation and definitions that we will
use. For a more detailed introduction to notions relating to restricted domains
and voting rules, we refer the reader to the appropriate chapters in [4], and for
a comprehensive introduction to parameterized algorithms, we refer the reader
to [8].

For a positive integer �, we denote the set {1, . . . , �} by [�]. We first define some
general notions relating to voting rules. Let V = {vi : i ∈ [n]} be a set of n voters
and C = {cj : j ∈ [m]} be a set of m candidates. If not mentioned otherwise, we
denote the set of candidates, the set of voters, the number of candidates, and
the number of voters by C, V, m, and n respectively.

Every voter vi has a preference �i which is a complete order over the set C
of candidates. We say voter vi prefers a candidate x ∈ C over another candidate
y ∈ C if x �i y. We denote the set of all preferences over C by L(C). The n-tuple
(�i)i∈[n] ∈ L(C)n of the preferences of all the voters is called a profile. Note
that a profile, in general, is a multiset of linear orders. For a subset M ⊆ [n],
we call (�i)i∈M a sub-profile of (�i)i∈[n]. For a subset of candidates D ⊆ C, we
use P|D to denote the projection of the profile on the candidates in D alone. A
domain is a set of profiles.
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The rest of this section is organized as follows. We first define the Chamberlin-
Courant voting rule. We then introduce the domain restrictions that are of inter-
est to us, and the notion of closeness to a restricted domain. We finally define
the problems that we will study subsequently.

Chamberlin-Courant. The Chamberlin–Courant voting rule is based on the
notion of a dissatisfaction function or a misrepresentation function. This func-
tion specifies, for each i ∈ [m], a voter’s dissatisfaction from being represented
by candidate she ranks in position i.

Definition 1. For an m-candidate election, a dissatisfaction function is given
by a non-decreasing function α : [m] → N with α(1) = 0.

A popular dissatisfaction function is Borda, given by αm
B (i) = αB(i) = i− 1.

We now turn to the notion of an assignment function. Let k be a positive integer.
A k-CC-assignment function for an election E = (C,V) is a mapping Φ : V → C

such that ‖Φ(V)‖ � k. For a given assignment function Φ, we say that voter
v ∈ V is represented by candidate Φ(v) in the chosen committee. There are
several ways to measure the quality of an assignment function Φ with respect
to a dissatisfaction function α; we use the following two:

1. �1(Φ) =
∑

i=1,...,n α(posvi
(Φ(vi))), and

2. �∞(Φ) = maxi=1,...,n α(posvi
(Φ(vi))).

We are now ready to define the Chamberlin-Courant voting rule, which is the
primary focus of this paper.

Definition 2. For every family of dissatisfaction functions α = (αm)∞m=1, and
every � ∈ {�1, �∞}, the α-�- CC voting rule is a mapping that takes an election
E = (C,V) and a positive integer k with k � ‖C‖ as its input, and returns
a k-CC-assignment function Φ for E that minimizes �(Φ) (if there are several
optimal assignments, the rule is free to return any of them).

Chamberlin and Courant [6] originally proposed the utilitarian variants of
their rules with a focus on the Borda dissatisfaction function. The egalitarian
variant was considered by, for instance, Betzler et al. [2].

Single-peaked Profiles. A preference profile is said be single-peaked if there exists
an ordering σ over the candidates C such that the preference of every voter v

has the following structure: v has a favorite candidate c (sometimes called the
“peak” for v), and the further away a candidate d �= c is from c in σ, the less it is
preferred by the voter v. The notion of single-peaked preferences was introduced
by Black [3] and a formal definition is as follows.

Definition 3 (Single-peaked Domain). A preference � ∈ L(C) over a set
of candidates C is called single-peaked with respect to an order �′∈ L(C) if,
for every pair of candidates x,y ∈ C, we have x � y whenever we have either
c �′ x �′ y or y �′ x �′ c, where c ∈ C is the candidate at the first position
of �. A profile P = (�i)i∈[n] is called single-peaked with respect to an order
�′∈ L(C) if �i is single-peaked with respect to �′ for every i ∈ [n].
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We now turn to the definition of a k-composite single-peaked profile, which is
a natural generalization of the single-peaked notion above. We say that a profile
is k-composite single-peaked if there is an ordering of the candidates σ and a
partition of the candidate set into at most k parts such that each part induces
a single-peaked profile on σ restricted to that part. We note, importantly, that
this is different from the more well-studied notion of multipeaked profiles, where
we have the additional constraint that the k parts have to additionally form
intervals on a fixed global ordering. A similar notion called k-additional axis
where the votes(rather than the candidates) are divided into k buckets and each
bucket is single-peaked, has been studied in [10].

Single-crossing Profiles. A preference profile is said to belong to the single-
crossing domain if it admits a permutation of the voters such that for any pair
of candidates a and b, there is an index j〈a,b〉 such that either all voters vj with
j < j〈a,b〉 prefer a over b and all voters vj with j > j〈a,b〉 prefer b over a, or
vice versa. The formal definition is as follows.

Definition 4 (Single-crossing Domain). A profile P = (�i)i∈[n] of n pref-
erences over a set C of candidates is called a single-crossing profile if there
exists a permutation σ of [n] such that, for every pair of distinct candidates
x,y ∈ C, whenever we have x �σ(i) y and x �σ(j) y for two integers i and j with
1 � σ(i) < σ(j) � n, we have x �σ(k) y for every σ(i) � k � σ(j).

As we did with single-peaked profiles, we generalize the notion of single-
crossing domains to r-single-crossing domains in the following natural way: for
every pair of candidates (a,b), instead of demanding one index where the pref-
erences “switch” from one way to the other, we allow for r such switches. More
formally, a profile is r-single-crossing if for every pair of candidates a and b,
there exist r indices j0〈a,b〉, j1〈a,b〉, . . . , jr〈a,b〉, jr+1〈a,b〉 with j0〈a,b〉 = 1
and jr+1〈a,b〉 = n + 1, such that for all 1 � i � r + 1, all voters vj with
ji〈a,b〉 � j < ji+1〈a,b〉 are unanimous in their preferences over a and b.

Nearly Structured Domains. Let D = {SP, SC} be a fixed domain, where SP
refers to single-peaked domains, and SP denotes single-crossing domains. We
say that a profile P over candidates C has a candidate (voter) modulator of size
k to D if there exists a subset of at most k candidates (voters) such that the
restriction of the profile to all but the chosen candidates (voters) belongs to the
domain D. Whenever a profile admits a k-sized candidate modulator to D, we
say that it is k-close to D via candidates. The notion of being k-close to D via
voters is analogously defined.

The work of [5,10] shows that it is polynomial-time to find the smallest
candidate (voter) modulator to the domain of single-peaked (single-crossing)
profiles respectively. The work of [9] addressed the NP-hard variants and showed
2-approximation and 6-approximation algorithms for finding the smallest voter
and candidate modulator to the domains of single-peaked and single-crossing
profiles, respectively. Therefore, in all our problem formulations, we assume that
we are given an instance of an election with a modulator to either domain as a
part of the input — since it is tractable to find such modulators in all cases.
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Parameterized Complexity. A parameterized problem is denoted by a pair
(Q,k) ⊆ Σ∗ × N. The first component Q is a classical language, and the num-
ber k is called the parameter. Such a problem is fixed–parameter tractable (FPT)
if there exists an algorithm that decides it in time O(f(k)nO(1)) on instances
of size n. On the other hand, a problem is said to belong to the class XP if
there exists an algorithm that decides it in time nO(f(k)) on instances of size n.
We refer the reader to [8] for a more detailed introduction to the parameterized
paradigm.

Problem Definition. We now define the main problem that we address in this
work, which we denote by �,D-CC Via χ, where � is an aggregation function,
D is a domain and χ is either candidates or voters, referring to the type of the
modulator we are given as a part of the input.

�,D-CC Via χ Parameter: k

Input: An election E = (C,V), a committee size b, a target misrepresen-
tation score R, a misrepresentation function α, and a k-sized χ modulator
X to the domain D.
Question: Is there a committee of size b whose �-misrepresentation
score under the function α is at most R?

3 Tractability on Nearly Structured Preference Profiles

The goal of this section is to establish the following theorem.

Theorem 1. For all � ∈ {�1, �∞} and for all D ∈ {SP,SC}, the (�,D)-CC Via
Candidates problem is in FPT and the (�,D)-CC Via Voters problem is in XP.

We describe now informally our overall approach for solving the (�,D)-CC
Via χ problem. First, we brute force through all possible “behaviors” of the
solution on the modulator. Next, instead of solving the “vanilla” Chamberlin-
Courant optimization problem on the part of the profile that is structured
(according to the domain D), we adapt our solution to account for the guessed
behavior on the modulator. For ease of presentation, we define an intermedi-
ate auxiliary problem, which is an extension version of the original problem,
described below.

In the extension problem corresponding to (�,D), we are given, as usual,
an election E = (C,V), a committee size k, a target misrepresentation score R

and a misrepresentation function α. In addition, we are also given a subset of
candidates X and a partition of X into G and B. The promise is that the election
induced by the votes V when restricted to the candidates C \ X is structured
according to the domain D. The goal is to find an optimal Chamberlin-Courant
committee among the ones that contain all candidates in G and contain none of
the candidates in B. The formal definition is as follows. In the following, we say
that a committee respects a partition (D 
 G 
 B) of the candidate set C if it
contains all of G and none of B.
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(�,D)−CC Extension

Input: An election E = (C,V), a partition of the candidates into
(D 
 G 
 B), a committee size b, a target misrepresentation score R,
a misrepresentation function α; such that the election induced by (D,V)
belongs to the domain D.
Question: Is there a committee of size b that respects (D 
 G 
 B) and
whose �-misrepresentation score under the function α is at most R?

Before describing how to solve the (�,D)−CC Extension problem, we first
establish that it is indeed useful for solving the (�,D)−CC Via χ problem. Let
D be a fixed domain from {Single-Peaked, Single-Crossing}. First, consider the
(�,D)−CC Via χ problem where we are given a k-sized candidate modulator as
input, or that χ is fixed to be candidates. Let (E = (C,V),b,R,α,X), denoted by
I, be an instance of (�,D)−CC Via χ. Recall that X is a candidate modulator
to the domain D, in other words, the election induced by (C \ X,V) has the
structure of D. Our algorithm proceeds as follows. For a subset of candidates
Y ⊆ X, let:

JY := (E = (C,V); (C \ X,Y,X \ Y),b,R,α).

If JY is a Yes-instance of (�,D)−CC Extension for some Y ⊆ X, then our
algorithm returns Yes and aborts. If, on the other hand, for every subset Y ⊆ X

of candidates it turns out that JY is a No-instance of (�,D)−CC Extension,
then we return No. It is easy to see that whenever the algorithm returns Yes,
assuming the correctness of the (�,D)−CC Extension procedure used, there
exists a committee that has the desired misrepresentation score.

To argue the correctness of the algorithm, we show that if I is a Yes-
instance then the algorithm does indeed produce a committee that can achieve
the desired misrepresentation score. To this end, let C� be a committee whose �-
misrepresentation score under the function α is at most R. Let Y� denote C� ∩X.
Then note that C� is a committee that respects the partition D := C\X, G := Y�,
and B := X \ Y�. Further, note that since X is a candidate modulator to D, the
election induced by (D,V) belongs to the domain D. Clearly, the instance (E =
(C,V); (D,G,B),b,R,α) is a well-formed input to the (�,D)−CC Extension

problem, and C� is a valid solution to it. Assuming again the correctness of
the (�,D)−CC Extension procedure used, we are done. Observe that the run-
ning time of our algorithm here is 2kq(n,m), where q(n,m) is the time required
by the (�,D)−CC Extension procedure on an instance of size n + m.

We now turn to the (�,D)−CC Via χ problem where we are given a k-sized
voter modulator as input, or that χ is fixed to be voters. Here a direct brute-
force approach as in the previous case does not suggest itself, because of which
we suffer a greater overhead in our running time. For simplicity, we first describe
our algorithm for the egalitarian variant, that is, we fix � = �∞. We later describe
the changes we need to make when we deal with the utilitarian variant.

Let (E = (C,V),b,R,α,X), denoted by I, be an instance of (�,D)−CC Via χ.
Recall that X is a voter modulator to the domain D, in other words, the elec-
tion induced by (C,V \ X) has the structure of D. For every voter, we guess



On the Complexity of Chamberlin-Courant on Almost Structured Profiles 131

the candidate who represents that voter in an arbitrary but fixed, and valid,
Chamberlin-Courant committee. For such a guess μ, let Yμ denote the set of at
most k candidates who have been chosen to represent the voters in the modu-
lator. More specifically, a voter v ∈ X, let μ(v) denote the candidate that we
have guessed as the representative for the voter v, and let d(v) denote the set
of candidates ranked higher than μ(v) by the voter v. Note that Yμ is simply
∪v∈Xμ(v).

We first run the following easy sanity check: if, for u, v ∈ X, u �= v, we have
that μ(v) ∈ d(u), then we reject the guess Y. Otherwise, define Bμ := ∪v∈Xd(v)
and Gμ := Yμ, and let Dμ := C \ (G ∪ B). Observe that Bμ and Gμ are disjoint
because of the sanity check. Further, let:

Jμ := (E = (C,V \ X); (Dμ,Gμ,Bμ),b,R,α).

It
is easily checked that Jμ is a well-formed instance for (�,D)−CC Extension.
As before, we return Yes if and only if there exists a guess μ for which Jμ is a
Yes instance of (�,D)−CC Extension. To see the correctness of this approach,
let C� be a committee whose �-misrepresentation score under the function α is
at most R. For each voter v ∈ X, let μ�(v) denote the top-ranking candidate
from C� in the vote of v. Let Y� be given by ∪v∈Xμ�(v), and let B� be the set of
all candidates ranked higher than μ�(v) in the votes v from X. Observe that C�

does not contain any candidates from B� by the definition of μ�.
Now, as before, define: G := Y�, B := B�, and D := C \ (G ∪ B). Clearly,

the instance (E = (C,V \ X); (D,G,B),k,R,α) is a well-formed input to the
(�,D)−CC Extension problem, and C� is a valid solution to it. Assuming
again the correctness of the (�,D)−CC Extension procedure used, we are done.
Observe that the running time of our algorithm here is nkq(n,m), where q(n,m)
is the time required by the (�,D)−CC Extension procedure on an instance of
size n+m. For the utilitarian version of the problem (where � = �1), the proce-
dure is identical, except that we use R′ instead of R in the definition Jμ, where R′

is R− RX,μ, and RX,μ is the sum of the misrepresentation score of the candidate
μ(v) with respect to the voter v, and the sum is over v ∈ X. It is easily verified
that the other details work out in the same fashion.

The rest of this section is section is devoted to showing that the
(�,D)−CC Extension problem can be solved in polynomial time by adapting
suitably the known algorithms for the Chamberlin-Courant problem on the rele-
vant domain D. These adaptations are sometimes subtle and in particular for the
single-peaked case, we have to treat the utilitarian and the egalitarian variants
separately (corresponding to � = �1 and � = �∞ respectively).

3.1 (�,D)-CC Extension for the Single-Crossing Domain

In this section we demonstrate a polynomial time algorithm for the
(�,D)−CC Extension problem for the case when D = SC. This builds closely on
the algorithm shown by [12]. First, we show a structural property which is an easy
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adaptation of Lemma 5 in [12]. The statement corresponding to single-crossing
profiles states that there is an optimal committee for which an optimal assign-
ment assigns candidates in contiguous blocks over the single-crossing order. For
the (�,D)−CC Extension problem, this continues to be the case for candidates
c from D except that some candidates in the contiguous block may be assigned
to candidates in G instead of being assigned to c. We now state this formally.
In the statement below, an optimal b-CC assignment is considered only among
committees that respect the semantics of (D,G,B) in the given instance I of
(�,D)−CC Extension.

Lemma 1 (�). Let I = (E = (C,V); (D,G,B),b,R,α) be an instance of (�,SC)-
CC Extension. Suppose V = (v1, . . . , vn) is the single-crossing order of the
votes and C = (c1, . . . , cm) is an ordering of the candidates according to vi.
Then for every b ∈ [m], every dissatisfaction function α for m candidates, and
for every � ∈ {�1, �∞}, there is an optimal b-CC assignment Φ for E under
α − � − CC such that for each candidate ci ∈ D, if φ−1(ci) �= ∅, then there are
two integers ei and fi, with ei < fi, such that for every vote v in the set of
voters V ′ = {vei

, vei+1, . . . , vfi
}, φ(v) ∈ {ci} ∪ G. Moreover, for each i < j such

that Φ−1(ci) �= ∅ and Φ−1(cj) �= ∅, it holds that ei < fi.

Due to space considerations we omit the proof of the technical claim above,
however, we note that it is along the lines of the proof in [12]. In particular,
observe that if there are voters u, v,w appearing in that order in the single-
crossing ordering, and for two candidates c1, c2 ∈ D, if u and w were to be
assigned to c1 and v were to be assigned to c2, then this would imply that
c1 �u c2 and c1 �w c2, while c2 �v c1, violating the single-crossing struc-
ture of the election restricted to D. Since the only other assignments allowed
are to candidates in D, the claim follows. We now have the following natural
consequence.

Lemma 2. (�,SC)-CC Extension admits a polynomial time algorithm, both
for when � = �1 and when � = �∞.

Proof. (Sketch) For Single-Crossing profiles we propose a modified version of
the dynamic programming routine which was originally developed in [12]. Here,
for i ∈ {0} ∪ [n], j ∈ [m − |G| − |B|] and t ∈ b − |G|, we define A[i, j, t] as the
best possible misrepresentation score that can be achieved by a committee of
size t + |G| that respects the semantics of (G,B,D) formed using a subset of
first j candidates considering first i votes, where the candidates of D are ordered
according to the ranking of the first voter in the single-crossing ordering and
the voters are ordered according to the single-crossing ordering. The recurrence
for single-crossing orders works by “guessing” the first voter v to be represented
by the candidate cj, and the optimal representation of the preceding voters is
found recursively. In our setting, this approach continues to work, except that
instead of simply adding up the misrepresentation score of cj for all voters in
the interval starting from v and ending at vi, we check (for every vote in this
interval) if there is a candidate from G who is ranked above cj, and appropriately
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adjust the calculation of the misrepresentation score for such voters. The time
complexity of above algorithm turns out to be O(mn2k) (as calculating the
misrepresentation score for each voter can take O(n) time). ��

3.2 (�,D)−CC Extension for the Single-Peaked Domain

For the single-peaked domain, as alluded to earlier, we need to consider the
utilitarian and egalitarian variants separately. We first consider � = �1. In the
following discussion the terms first and last are with respect to the societal
order, which we denote by �. A candidate ci is said to be smaller than another
candidate cj if the candidate ci appears before cj in the societal order �, and
a candidate is said to be larger if it appears after the other candidate. Bet-
zler et al. [2] proposed separate algorithms for the utilitarian and egalitarian
variants. To solve (�,D)−CC Extension in this setting, we extend the dynamic
programming algorithm proposed by Betzler et al. for the utilitarian setting.

Lemma 3. (�1,SP)-CC Extension admits a polynomial time algorithm.

Proof. Recall that we are given an instance (E = (C,V);G,B,D,b, r,R, �) of
(�1,SP)-CC Extension. If b = |G|, then there is nothing to do. If b > |G|,
we assume without loss of generality that there is at least one voter whose top
candidate does not belong to G, otherwise we may simply return Yes since
the committee G is already good enough for any reasonable R1. The main
semantics of the DP table employed previously is the following. For i ∈ [m]
and j ∈ 1, . . . , min(i,k), we define z(i, j) to be the total misrepresentation for
a set of j winners from {c1, . . . , ci} including ci. The final answer is given by
mini∈{k,...,m} z(i,k).

We let d denote |D| and let c1 � c2 � · · · cd be the single-peaked order. As
before, for i ∈ [m] and j ∈ 1, . . . , min(i,k), we define a modified DP table as
follows: let z(i, j) be the total misrepresentation for a set of j winners from
{c1, . . . , ci} including {ci} ∪ G. Now, note that the final answer is given by
mini∈{b′,...,m} z(i,b′), where b′ = |G| − b. Observe that our solution respects
the partition (G,B,D), since the semantics of z are such that the candidates
G are always incorporated and no candidate from B is ever chosen. Towards
describing the recurrence, we establish some notation. First, let g∗(v) denote
the highest-ranked candidate from G in the ordering of the voter v. Also, define:

g(p, i) :=
∑

v∈V

max{0,min{r(v, cp) − r(v, ci), r(v,g∗(v)) − r(v, ci)}}

Intuitively, g(p, i) gives the potential gain of assigning candidate i to the voter
v, assuming that the voter v was previously assigned to either the candidate cp or
g∗(v). Both d(p, i) and g(i) can be precomputed in time O(nm2) by performing

1 If R < α(1)∗n, for instance, then it is already impossible to achieve for any committee.
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one pass over the votes and two passes over the candidates. We are now ready
to describe the main recurrence:

z[i, j] = min
j−1�p�i−1

(
z [p, j − 1] − g(p, i)

)
,

with the base case:

z[i, 1] = min(r(v, ci), r(v,g∗(v)).

Due to space constraints, our argument for correctness only focuses on the
part that needs to be adapted appropriately from the proof of [2]. Let C∗ be a
committee that witnesses the value of z[i, j]. Let p be the largest index smaller
than i (in the societal ordering) which is such that cp ∈ C∗ and let g∗(v) be cq.
If for a voter v it holds that r(v, ci) < r(v, cp) and r(v, ci) < r(v, cq), then note
that r(v, ci) < r(v, ct) for all t < p. Then the contribution of such a voter v to
the misrepresentation of z[p, i−1] is min(r(v, cp), r(v, cq)). This implies that the
improvement in the misrepresntation score of this voter obtained by reassigning
the voter to the candidate ci is precisely given by g(p, i). For all other voters,
an assignment to ci does not improve their misrepresentation, so the algorithm
does nothing in these situations. The correctness follows from the fact that the
algorithm tries all possible values of p, and the inductively assumed correctness
of z[p, j− 1]. The time complexity of the core algorithm is O(m2), as both i and
j can take at most m values, coupled with the time to precompute d(p, i) and
g(i), the total time complexity is O(nm2). ��

We now turn to the egalitarian version of the rule, that is, � = �∞. Here
again, the solution involves a straightforward adaptation of the approach of [2]
to account for the constraints imposed by the semantics of (G,B,D) in the
extension problem.

Lemma 4. (�∞,SP)-CC Extension admits a polynomial time algorithm.

Proof (Sketch). Let q be the largest integer for which α(q) � R. We first remove
voters who have a candidate from G in their top q positions. Let V ′ denote the
remaining set of voters. For a voter v ∈ V ′, let Tq(v) denote the top q candidates
in v’s ranking. Consider the set M(v) := Tq(v)\B. Note that any valid committee
must contain a candidate from M(v) for all v ∈ V ′. However, observe that the
set M(v) ⊆ D, and therefore forms a continuous interval on the societal ordering
of candidates in D. Therefore our problem reduces to finding a clique cover of
size at most b − |G| on the interval graph that is naturally defined by the votes
in V ′, which can be found in time O(nm). ��

4 Hardness for Generalized Restrictions on the Domain

4.1 3-composite Single-Peaked Domains.

To show the hardness of computing an optimal �∞-CC committee on double-
peaked domains, we reduce from the following variant of SAT, which is called
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LSAT. In an LSAT instance, each clause has at most three literals, and further
the literals of the formula can be sorted such that every clause corresponds to
at most three consecutive literals in the sorted list, and each clause shares at
most one of its literals with another clause, in which case this literal is extreme
in both clauses. The hardness of LSAT was shown in [1]. For ease of description,
we will assume in the following reduction that every clause has exactly three
literals, although it is easy to see that the reduction can be extended to account
for smaller clauses as well.

Theorem 2. Computing an optimal �∞-CC committee with respect to the Borda
misrepresentation score is NP-hard even when the domain is a three-composite
single-peaked domain.

Proof (Sketch). Let φ be an instance of LSAT with variables x1, . . . , xn and
clauses C1, . . . Cm. Towards constructing the election instance, we introduce one
candidate for every literal in φ. Let p1 and qi denote the candidates correspond-
ing to the variable xi. We also introduce (n + 1) dummy candidates for each
variable (which is a total of n(n + 1) dummy candidates). Let d[i, j] denote the
jth dummy candidate corresponding to the variable xi. We use C to denote the
2n candidates corresponding to the literals, and D to denote the set of dummy
candidates. P and Q denote the candidates corresponding to the positive and
the negated literals respectively.

Let us fix the ordering σ on the candidates as follows. The first 2n candidates
are from C arranged according to the LSAT ordering. The last n(n + 1) candi-
dates are from D and are arranged in an arbitrary but fixed order. Let σ ′ be the
reverse of σ. For a subset of candidates X, the notation X refers to an ordering
of X according to σ. For a subset of candidates X ⊂ C, who occupy adjacent
positions in the LSAT ordering projected over C, the notation

−−−→
C \ X refers to

an ordering according to σ of the candidates from C \ X who appear after X

in the LSAT ordering and similarly
←−−−
C \ X refers to an ordering according to σ ′

of the candidates from C \ X who appear before X in the LSAT ordering. This
notation easily yields an ordering which is single-peaked — X � −−−→

C \ X � ←−−−
C \ X.

For a subset of candidates X ⊂ C, who occupy adjacent positions in the LSAT
ordering projected over C, the notation

←−→
C \ X refers to an ordering according to

σ of the candidates from C\X who appear after X in the LSAT ordering followed
by an ordering according to σ ′ of the candidates from C \ X who appear before
X in the LSAT ordering. This notation allows us to easily express an ordering
which is single-peaked — X � ←−→

C \ X.
We would now like to setup the votes in such a way that a winning committee

corresponds to a valid satisfying assignment. We introduce one vote for every
clause as follows. Suppose the clause c consists of the literals (�1, �2, �3), and
let the candidates corresponding to these literals be t1, t2, t3 respectively. If
�1 < �2 < �3 in the LSAT ordering, then we introduce the following vote:

v(c) := t2 � t1 � t3 � ←−−−−−−−−−→
(C \ {t1, t2, t3}) � D
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For every variable xi, we also introduce the following (n + 1) votes, with
1 � j � (n + 1):

v(xi, j) := d[i, j] � pi � qi � ←−−−−→
(P \ {pi}) � ←−−−−−→

(Q \ {qi}) � ←−−−−−−→
D \ {d[i, j]}

This completes a description of the profile. We fix the Borda misrepresenta-
tion target score at two and the committee size is set to n. It is easily checked
that this profile is three-composite single-peaked with respect to the partition
(P,Q,D). First we look at v(c) – the votes based on a clause. v(c) when pro-
jected on D is trivially single-peaked. v(c) when projected on C is single-peaked,
and hence when projected on P,Q ⊂ C will remain single-peaked. Now we look
at v(xi, j) – the votes based on variables, which are clearly single-peaked when
projected over P, Q and D individually. We now prove the equivalence of these
two instances.

In the forward direction, we simply pick the literals corresponding to a sat-
isfying assignment. If a satisfying assignment does not set a variable, then we
pick either pi or qi. This clearly satisfies every vote based on a clause v(c), if
a vote is not satisfied, then the corresponding clause will also not be satisfied.
This trivially satisfies the votes based on variables v(xi, j), as we pick at least
one from pi and qi satisfying v(xi, j) for all 1 � j � n + 1.

In the reverse direction, let W be a committee whose score is at most two.
Observe that W must choose at least one of pi or qi, for all 1 � i � n. Indeed, if
not, then such a committee is forced to pick every d[i, j], 1 � j � n+1, which is a
violation of the committee size. Since the committee has at most n candidates,
it follows by a standard pigeon-hole argument that |W ∩ {pi,qi}| � 1 for all
1 � i � n, which implies that we pick exactly one of pi or qi. Therefore, the
committee corresponds naturally to an unambiguous assignment of the variables.
It is easily checked that this satisfies every clause, because an unsatisfied clause
c would correspond to a voter v(c) whose Borda misrepresentation score would
exceed two. This completes the proof. ��

4.2 3-Crossing Profiles

In this section, we show the hardness of computing an optimal �∞-CC committee
with respect to the Borda misrepresentation score with respect to three-crossing
domains. The reduction is again from LSAT, and the construction is similar to
the one used in the proof of Theorem 2 in that we again have candidates cor-
responding to literals and votes representing clauses. A committee corresponds
to a satisfying assignment precisely when its misrepresentation score is at most
two. The main difference from before is in how the candidates are ordered in the
preferences of the voters.

Theorem 3. Computing an optimal �∞-CC committee with respect to the Borda
misrepresentation score is NP-hard even when the domain is three-crossing
domain.



On the Complexity of Chamberlin-Courant on Almost Structured Profiles 137

Proof (Sketch). Let φ be an instance of LSAT with variables x1, . . . , xn and
clauses C1, . . . Cm. Without loss of generality, let us assume that the ordering
of the clauses in the LSAT instance is also given by C1, . . . ,Cm. Towards con-
structing the election instance, we introduce one candidate for every literal in φ.
Let pi and qi denote the candidates corresponding to the variable xi. We also
introduce (n+1) dummy candidates for each variable (which is a total of n(n+1)
dummy candidates). Let d[i, j] denote the jth dummy candidate corresponding
to the variable xi. We use C to denote the 2n candidates corresponding to the
literals, and D to denote the set of dummy candidates.

Towards describing the votes, let us fix an ordering σ on the candidates as
follows. The first 2n candidates are from C arranged according to the LSAT
ordering. The last n(n+ 1) candidates are from D and are arranged in an arbi-
trary but fixed order. For a subset of candidates X, the notation X refers to an
ordering of X according to σ. We would now like to setup the votes in such a
way that a winning committee corresponds to a valid satisfying assignment. For
1 � i � m−1, let Gi denote literals in the set Ci \Ci+1, while we let Gm denote
the literals in Cm. We are now ready to describe the votes. For every 1 � i � m,
we introduce the vote vi, which has the literals of the clause Ci in the top three
positions, and the remaining candidates are ranked as follows:

vi := Gi � Gi+1 � · · · � Gm � Gi−1 � · · · � G1 � D

It is useful to note that the vote vi+1 can be thought of as a ranking obtained
from the vote vi by “pushing back” the tuple Gi to just behind Gm. Therefore,
the ordering among the Gi’s in vm is reverse of their ordering in v1. Observe that
if a literal occurs in Ci ∩ Ci+1, then it appears among the top three positions of
both vi and vi+1.

We now turn to the second part of our profile, which consists of votes cor-
responding to the variables. Here, for a subset of candidates X, we will use X

to refer to an ordering of X according to vm. Now, for every variable xi, we
introduce the following (n + 1) votes, with 1 � j � (n + 1).

vi,j := d[i, j] � pi � qi � (C \ {pi,qi}) � D \ {d[i, j]}

This completes a description of the profile. We fix the Borda misrepresentation
target score at two and the committee size is set to n. It can be shown, by
a careful case analysis, that this profile is three-crossing with respect to the
following ordering of the votes:

v1, v2, . . . , vm, v1,1, . . . , v1,n+1, . . . , vi,1, . . . , vi,n+1, . . . , vn,1, . . . vn,n+1

This completes the description of the construction. Due to lack of space, we
defer the case analysis alluded to above and the proof of equivalence. ��

5 Concluding Remarks

We have made some progress in demonstrating that the Chamberlin-Courant
voting rule can be computed efficiently on nearly-structured domains, and there
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are some notions of being “almost structured” for which the rule remains hard.
Several specific problems remain open. The most pertinent issue is whether the
problem admits a FPT algorithm when parameterized by the size of a voter
modulator to either single-peaked or single-crossing profiles. The complexity
of the utilitarian version of the voting rule on composite profiles or k-crossing
profiles is also open.
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1 Université Paris-Dauphine, PSL Research University, LAMSADE, Paris, France
stephane.airiau@dauphine.fr

2 IRIT, University of Toulouse, Toulouse, France
umberto.grandi@irit.fr, filipo.perotto@gmail.com

Abstract. This paper assesses the learning capabilities of agents in a
situation of collective choice. Each agent is endowed with a private pref-
erence concerning a number of alternative candidates, and participates
in an iterated plurality election. Agents get rewards depending on the
winner of each election, and adjust their voting strategy using reinforce-
ment learning. By conducting extensive simulations, we show that our
agents are capable of learning how to take decisions at the level of well-
known voting procedures, and that these decisions maintain good choice-
theoretic properties when increasing the number of agents or candidates.

Keywords: Computational social choice · Iterative voting · Bandit
algorithms

1 Introduction

In a situation of collective choice, we say that an agent is voting strategically,
or that she is manipulating, when the agent does not submit her sincere view to
the voting system in order to obtain a collective result that she prefers to the
one that would be obtained had she voted sincerely. A classical result in social
choice theory showed that all sensible voting rules are susceptible to strategic
voting [6,16]. In fact, strategic voting may be exploited to make better decisions
in several situations where, for instance, agents are confronted with a sequence
of repeated elections, from where an interesting compromising candidate can be
elected.

The plurality rule, aka. first-past-the-post, selects the alternatives that
have been voted for by the highest number of agents. Its computation is quick
and its communication costs very low, but in view of its simplicity it suffers
from numerous problems. For example, it is possible that the plurality winner
would lose in pairwise comparison against all other alternatives1. If however
the plurality rule is used in an iterative fashion, staging sequential elections in
which at each point in time one of the voters is allowed to manipulate, then it
constitutes an effective tool for selecting an outcome at equilibrium with good
properties [11]. This setting is known as iterative voting, and several recent

1 See, e.g., [13] for a proof.
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papers explored its convergence using different voting rules, and assessed the
quality of the winner [7,9,10,12,14,15].

Most works in this field suffer from two main drawbacks. First, agents are
highly myopic in not taking into account the history of their interactions, and
in having an horizon for strategic thinking of one single iteration. It creates an
artificial asymmetry between the available knowledge and the strategic behavior.
Second, to ensure convergence it is required that agents manipulate one at a
time, a property that is difficult to enforce.

In this paper, we tackle both aspects by studying a concurrent manipu-
lation process in which agents have the capability of learning from their
past interaction. In our setting, iterative voting is seen as a repeated game
in which voters use reinforcement learning to cast their ballots. We limit the
information available to the learning agents to only the winner of each iteration
step (when classic iterative voting methods require more information). Our goal
is to show that multiagent learning can be a solution in the context of iterative
voting, even when the information available to agents is severely limited: a learn-
ing agent bases her decisions on the history of past interactions, and because of
the learning rate, the choice of the vote is not purely myopic. In addition, in
our model all the learning agents are allowed to change their ballot at the same
time. Such possibility cannot be given to classic iterative voting methods because
there may not be convergence to a single winner [11]. The question we ask in
this paper is whether learning can help making a good collective decision [17]:
do we observe convergence, and is the winner good according to choice-theoretic
criteria?

We show experimentally that our learning agents are able to learn how to
make collective decisions under standard measures of decision quality, such as
the Condorcet efficiency and the Borda score. The contribution of this paper
is twofold: we show that iterative learning (1) outdo all iterative voting methods
using less information, and (2) is comparable to a well-known procedure called
single transferable vote.

The paper is organized as follows. Section 2 provides the basic definitions and
reviews the literature on iterative voting and multiagent reinforcement learning.
Section 3 presents the specifics of our simulation setting, and Sect. 4 discusses
the obtained results. Section 5 concludes the paper.

2 Basic Definitions and Related Works

We now provide all definitions that are needed for the construction of our set-
ting. We introduce the basics of iterative voting and of multiagent reinforcement
learning.

2.1 Voting Rules

Let C be a finite set of m candidates or alternatives and N be a finite set of
n agents. Based on their preferences, individuals in N need to make a decision
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on which alternative in C to choose. Agents are typically assumed to have pref-
erences over candidates in C in the form of a linear order, i.e., a transitive,
anti-symmetric and complete binary relation over C. We denote with >i the
preference of agent i and with P = (>1, . . . , >n) the profile listing all individual
preferences. Hence, we write b >i a to denote that agent i prefers candidate b
to candidate a. A (non-resolute) voting rule is a function w that associates with
every profile P a non-empty subset of winning candidates w(P ) ∈ 2C \ ∅. The
simplest voting rule, and the one involving as little communication as possible
among the agents, is the plurality rule: each agent votes for a single candidate,
and the candidates with the highest number of votes win. The Borda rule is a
scoring rule in which a candidate c is given m − j points for each voter that is
ranking c in j-th position. The score of a candidate is the sum of her points over
all voters. For the Copeland rule, the score of a candidate c is the number of
pairwise comparisons she wins (i.e., contests between c and another candidate
a such that there is a majority of voters preferring c to a) minus the num-
ber of pairwise comparisons she loses. For Borda and Copeland, the candidates
with the highest score win. Finally, Single Transferable Vote (STV) can be
viewed as an iterative process: at the first round the candidate that is ranked
first by the fewest number of voters gets eliminated (ties are broken following
a predetermined order). Votes initially given to the eliminated candidate are
then transferred to the candidate that comes immediately after in the individual
preferences. This process is iterated until one alternative is ranked first by a
majority of voters.

2.2 Iterative Voting

Agents face the choice of submitting their truthful ballot, i.e., a ballot corre-
sponding to their individual preferences, or to vote strategically. In iterative
voting, agents start from a voting situation: they fill their ballots and a win-
ner is announced. Then, one at a time, an agent changes her ballot, and a
new winner is announced, creating a sequence of ballot profiles and consequent
winners.

Iterative voting is guaranteed to converge for the plurality rule with lin-
ear tie-breaking [11] when agents know the score of each candidate at each
round, though for most other voting rules convergence cannot be guaranteed [9].
Restricted dynamics, defined by limiting the possible actions available to players,
have therefore been studied to guarantee convergence [7,12,15]. In this paper we
focus on iterative voting with the plurality rule and on the following two strate-
gies for individual manipulation:

Best response: at time t, given the plurality score for each candidate c at time
t − 1, the voter computes her best response(s) and votes for one;

3-Pragmatists [15]: at time t, given the top three plurality candidates at time
t − 1, the voter manipulates in favour of her preferred candidate amongst
them.
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Convergence with 3-pragmatists manipulation is guaranteed by the fact that
the set of 3 most-voted candidates is not changed by every manipulation step,
hence each agent will manipulate the election only once.

Two main critiques have been raised to the setting defined above. First, one
agent at a time can change her ballot and the new winner is announced before
another agent can change her ballot: this sequential aspect is unrealistic but is
key to guarantee the convergence of iterative voting. As was already observed
by [11], there is no convergence if individuals are allowed to move at the same
time. Second, individuals are highly myopic, since their strategic horizon only
considers one-step forward in the iterative process and they do not make use of
the history of previous manipulations by other agents when making their next
choice.

2.3 Multiagent Learning

Multiagent reinforcement learning has been used both in cooperative domains
(where the set of agents share the same goal) and in non-cooperative ones
(where each agent is trying to optimize its own personal utility). For cooper-
ative domains, the key issue is that learners obtain a local/personal reward but
need to learn a decision that is good for the society of agents. For example, agents
that try to optimise air-traffic [1] care about individual preferences as well as
the global traffic. In this paper, agents are not concerned about the quality of
the outcome for the entire population: each voter would like one of her favourite
candidates to win. We are in a non-cooperative setting similar to the one of
learning in games: the actions are the different ballots and agents have prefer-
ences over the joint actions (i.e. voters have preferences over the candidates).
One key difference is that preferences are typically ordinal in voting whereas
they are cardinal for games (see Sect. 3.1 describing how we generate cardinal
utilities from ordinal ones).

In this paper, we use a basic multiarmed bandit style reinforcement learning
algorithm [18] for testing whether agents can learn to make a collective decision,
experimenting with different exploration strategies (see Sect. 3 for a detailed
description). Many reinforcement learning algorithms have been used for playing
normal form games, e.g. joint-action learning [5], gradient-based algorithms such
as IGA-WoLF or WoLF-PHC [4], to name a few. Since no algorithm can be
claimed to be best, we focus on showing that the most basic learning algorithm
is able to perform well. For a similar reason we also choose that agents will only
get to observe the current winner, and no other information is available to them,
such as the score of all candidates (as done in standard iterative voting).

2.4 Evaluation Criteria

Because there is no consensus on the quality of a collective outcome, we will
study the results on multiple criteria. Given a profile of preferences (>1, . . . , >n),
a Condorcet winner (CW) is a candidate that beats every other candidate in
pairwise comparisons. A CW is not guaranteed to exists, but a first parameter
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in assessing a voting rule is the percentage of profiles in which it elects a CW
when there exists one:

Condorcet efficiency: the ratio of profiles where a CW is elected out of all
profiles where a CW exists.

Many voting rules are designed to elect a CW whenever it exists, such as the
Copeland rule, which hence have a Condorcet efficiency of 1. Other voting rules,
such as plurality, Borda and STV may elect a candidate that is not a Condorcet
winner. Related work estimates the Condorcet efficiency of plurality and Borda
for large electorates using Monte Carlo simulations [8].

A second parameter that can be used to measure the quality of the winner
is the Borda score itself:

Borda Score: a candidate c is given m − j points for each agent ranking c in
j-th position in her truthful preference

The Borda score provides a good measure of how the rule compromises between
top-ranked candidates and candidates ranked lower in the individual preferences.
One interpretation of the Borda score is that it estimates the average rank of
candidates, and the Borda winner is the candidate with the highest average rank
over all candidates. Obviously, the Borda rule is the best rule according to this
criterion. When varying the number of voters or candidates, we measure the
ratio between the Borda score of the elected winner and the maximal Borda
score that can be obtained, i.e., if B(c) is the Borda score of a candidate c then
BR(c) = B(c)/maxa∈C(B(a)).

3 Learning and Simulation Setting

We now describe the settings of our simulations. Each simulation is defined
by the parameters m = |C| (the number of candidates), n = |N | (the num-
ber of voters), T as the number of iterations, or repeated elections, the agents
dispose to learn. We use iterative voting with plurality rule and lexicographic
tie-breaking. Note that the choice of the tie-breaking method has been shown
to be an important factor in guaranteeing the convergence of iterative voting
rules [9]. We also performed experiments with a randomised tie-breaking rule,
obtaining comparable results.

3.1 Preferences and Utilities

While voting is based on ordinal information, reinforcement learning needs car-
dinal utility. Hence the need to translate a preference order >i of agent i into
a utility function ui : C → R. Given an ordering >, let pos(c) be candidate c’s
position, where position 0 is taken by the most preferred candidate, and |C| − 1
by the least preferred. We considered three possibilities:
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Linear utilities: ulin
i (c) = 1 − pos(c)

|C|−1 ;
Exponential utilities: uexp

i (c) = 1
2pos(c) ;

Logistic utilities: usig
i (c) = 1 − 1

1+e−k(pos(c)− |C|−1
2 )

,

The parameter k controls the steepness of the curve in the last definition. These
three different methods represent distinct satisfaction contexts. Linear utilities
correspond to the Borda values, meaning that the satisfaction with a given can-
didate decreases linearly following the preference order. Exponential utilities are
a more realistic representation, especially in large domains where alternatives
at the top bear more importance than those at the bottom. They can also be
used to simulate partial orders, since the alternatives below a certain threshold
of utility count as non-ranked. In this case, the voters have precise choices, and
the satisfaction decreases quickly as soon as the winner is not the preferred can-
didate. In contrast, logistic utilities decrease slowly in a neighbourhood of the
top preferred candidates.

3.2 Profiles Generation

Our experiments are averaged over 10.000 preference profiles generated using
the following two distributions:

Impartial culture assumption (IC): linear orders are drawn uniformly at
random.

Urn model with correlation α ∈ [0, 1): The preference order of the first
voter is drawn with uniform probability among all possible linear orders that
are present in an urn. A number of copies of the first drawn preference is
then put into the urn depending on the parameter α (more precisely, m!

( 1
α −1)

),
and the preference of the second voter is then drawn. The process is repeated
until all n preference orders have been selected.

The urn model is also known as the Polya-Eggenberger model [3]. The interest
of such scheme is to have some correlation between voters, where some observed
preference is more likely to be observed again. The higher the correlation para-
meter α the more likely it is that a Condorcet winner exists, and the less likely
it is that a single voter can change the winner of the plurality rule with a single
manipulation. Note that IC is equivalent to the Urn model with α = 0.

We developed a generator for the urn model that avoids the manipulation of
all permutations over the set of candidates, based on the following intuition. At
first the probability of creating a random preference order is equal to 1, and the
list of defined voters is empty. At each iteration a new preference is generated,
either as a copy of a previous preference, or by generating a random preference.
The probability of using a random preference decreases with the number of pref-
erence orders generated. The method is described in Algorithm 1, the function
CreateRandomPreference() returns a sample from the uniform distribution over
all possible linear orders, and CopyPreferenceFrom(N) picks a voter uniformly
at random from N , returning a copy of her preferences.
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Algorithm 1. Efficient Urn Model Generator (α, C, n)
/* α is correlation, C is the set of candidates, n is the size of the profile */
N ← ∅ // preference profile
β ← 1

α
− 1

for i from 0 to n − 1 do

v ←
{
CreateRandomPreference(), with prob. β

β+|N|
CopyPreferenceFrom(N), otherwise

N ← N ∪ {v}
end for

3.3 Learning Algorithm

Since the voting rule is plurality and only the winner is announced at each
iteration, the learner has to decide, at each iteration, the candidate she will
vote for. From the point of view of each voter, the proposed setting correspond
to the well-known multiarmed bandit problem (MAB), a wide studied case of
computational reinforcement learning (RL). A MAB is equivalent to a Markovian
Decision Process (MDP) with a single state [2,18].

The learning mechanism must evaluate the utility of each possible action
during the sequence of interactions, only based on the feedback suggested by the
reward. In our case, the reward is the preference value of the elected candidate
(the winner) for the agent. The agent then learns a function Q : C → R

+ that
estimates the expected utility of voting for each candidate. Once a voter i has
voted for candidate c and knows the winner w, it can compute its reward r (the
elected winner is w and we have r = ui(w)), and from there, i updates its Q
value using the following update rule:

Q(c) ← βr + (1 − β) · Q(c).

where α is the learning rate used to control the impact of new information: when
β = 0, the new information is not used, when β = 1, only the new information
matters. Initially, we fix β = 0.1.

For controlling the exploration, we have several choices (e.g. using ε-greedy,
softmax exploration schemes or UCB [2]). We experimented several mechanisms,
and the one described below obtained the best results. We use a simple imple-
mentation of the “optimism in face of uncertainty” principle for exploration: the
voter always picks the candidate with the highest Q-value. To ensure exploration,
the Q-values are initialized with a copy of the preference values of the agent,
and in case of ties the agent prefers to chose the action that has been tested
the least. Thus, a voter is most likely to vote for candidates she prefers at the
beginning. If a different candidate wins the iteration, the bad reward decreases
the Q-value, and the agent has incentives to try other candidates in the coming
iterations.

Both ε-greedy and softmax algorithms make the agents very explorative at
the beginning, and when an agent explores, sub-optimal actions are chosen (even
the least preferred ones), disturbing the learning progress of all the agents.
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The same happens with classic version of the optimistic-greedy method, where
all the utilities are equally initialized to the maximal reward possible. The UCB
method is also very conservative, the exploration is made sufficient to guarantee
near optimal performance in stationary MAB problems. As the environment is
not stationary (agents are concurrently learning), exploration is no longer ade-
quate and UCB performs poorly.

4 Simulation Results

We now present the main results, showing that a society of agents provided
with very simple learning capabilities can make a “good” collective decision,
comparable to that taken by well-known voting rules and often better than
what standard iterative voting would recommend. In all results we present next,
we use the urn model with α = 0.1 for generating the preferences. With the
exception of Sect. 4.3, all experiments in this section use exponential utilities,
but the results for linear and logistic utilities are similar and not presented here.

4.1 Learning Dynamics

By considering the result of iterated plurality with learning agents as a voting
rule per se (recall that in our setting iterated plurality is guaranteed to con-
verge), we are able to evaluate its performance in social-choice-theoretic terms,
measuring both its Condorcet efficiency and the Borda score of the winner at the
end of the iteration. In Figs. 1 and 2 we plot the progress of the first parameter
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Fig. 1. Performance of learning agents in terms of Borda score of the winner (9 voters,
7 candidates). The number of profiles which actually have a Condorcet winner is 9359
profiles.
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Fig. 2. Performance of learning agents in terms of Condorcet efficiency (9 voters, 7
candidates). The number of profiles which actually have a Condorcet winner is 7331
profiles.

depending on the number of learning iterations that is allowed (a similar figure
can be obtained for the second parameter). In order to interpret our findings, we
also plot the Condorcet efficiency (CE) and Borda score of one-round plurality,
best-response iterative voting, 3-pragmatists iterative voting, STV, Copeland
and Borda. We present the results in one scenario with a population of 9 voters
and 7 candidates. Utilities of voters are generated using exponential utilities and
the results averaged over 10,000 elections.

First, let us consider the Borda score as evaluation criteria in Fig. 1. By
design, the Borda voting rule is best. The averaged rank of the winner over all
the elections is about 1.7. The next best mechanisms are Copeland and STV. All
these voting rules require the knowledge of the complete ordinal preference of
the agents. We observe that iterative voting comes next, either in the standard
mechanism or our new mechanism with learning agent. Note that our learning
agents are using less information as they only know the current winner whereas
standard iterative voting uses the plurality score of all candidates. The level of
performance is still quite acceptable (the winners’ averaged rank is about 1.94).
Finally, we observe that our mechanism outperforms one round plurality and
3-pragmatists.

Now, let us turn to Fig. 2 in which we evaluate the performances using Con-
dorcet efficiency. Among the voting rules we consider, only Copeland always
elects a Condorcet winner when it exists. For the other rules, STV performs well,
followed by iterative voting with learning agents. The best results are obtained
for a high number of candidates and low number of voters. Previous work showed
that a 10% increase could be obtained with restricted iterative voting in a similar
setting (25 candidates and 10 voters, with preferences generated using the urn
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model) [7], and comparable figures with 50 voters and 5 alternatives using the
impartial culture generation of preferences [15].

With standard iterative voting, only one voter at a time can manipulate, and
it will do so only if it changes the outcome. If the winner c is winning by two votes
or more, standard iterative voting will not be able to elect the Condorcet winner.
In our framework, all voters can manipulate. However, some learners may not
notice they have a chance to improve their utilities (because they voted for cw
in the past but cw never won, so the Q-value for cw is low), others may decide
to explore. In addition, voters do not know whether a Condorcet winner exists.
But the improvement we observe shows that learners manage to coordinate their
vote which results in electing a Condorcet winner.

Observe that, while Borda and Copeland are obviously scoring the maximum,
respectively, in Borda score and CE, the Borda rule can score worse than iter-
ative learning in terms of Condorcet efficiency, and a complex voting rule such
as STV can score worse under both parameters (this occurs in simulations per-
formed with 3 voters and 15 candidates). Note that we also conducted the same
experiments under the impartial culture assumption, obtaining similar results.
As a last remark, observe that in view of our initialization the first election is
always truthful, i.e. its result coincide with one-round plurality. This is not the
case anymore when using other exploration strategies, for which we obtained
slower but similar learning dynamics.

4.2 Scalability

One drawback of using learning agents is the number of iterations for conver-
gence. Obviously, it is not reasonable for a human agent to participate in such
an iterated process. In the results presented in this section simulations are run
with 500 iterations, and we show that learners can still perform well. In addi-
tion, the number of voters and the number of candidates are two parameters
that, when increased, could significantly deteriorate the performance of learning
agents in iterative voting. Figures 3 and 4 shows instead that the deterioration
is comparable to those voting rules we considered.

When we keep the number of voters fixed and we add more candidates, the
Condorcet efficiency decreases at a similar rate as the other voting rules (results
are equivalent to the ones of STV, and learning agents perform better than
iterative best response and 3-pragmatist with a similar margin). Typically, in
learning in games adding additional actions requires more iterations for learning
well (and we usually observe a slight drop in performance). When the number
of candidates is high, candidates low in the ranking will have utilities that are
negligible compared to the top candidates. Therefore, under those circumstances,
the loss in Condorcet efficiency is acceptable.

What is perhaps the most interesting result is that the number of voters does
not affect significantly the performance of the learning agents. This is surprising
since the environment is less stationary and the noise level is higher with more
agents trying to learn concurrently. Typically, it is much more difficult to reach
convergence with a high number of voters. On the other hand, with the increasing
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Fig. 3. Scalability of the performance of iterative voting with learning agents at 500
iterations, increasing candidates (Condorcet efficiency, 9 voters).
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Fig. 4. Scalability of the performance of iterative voting with learning agents at 500
iterations, increasing voters (Condorcet efficiency, 7 candidates)
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number of agents, the likelihood of being pivotal decreases, which may help
convergence.

4.3 Social Welfare

The last criteria we want to consider are the measures of the social welfare that
aggregate the individual utility. We considered the following two definitions:

Utilitarian social welfare: USW (c) =
∑

i∈N ui(c)
Egalitarian social welfare: ESW (c) = mini∈N ui(c)

Observe that if individual utilities are defined as the Borda score, i.e., giving
m − j points to the individual in j-th position, then the USW of a candidate
corresponds to its Borda score. The Borda score, Borda ratio and Condorcet
Efficiency measure the performance of the voting rules. On the other hand, USW
is a measure of efficiency, often used to study the performance of a (cooperative)
multiagent system.

Each learning agent is trying to maximise its private utility function. Using
plurality at each round, a majority of agents will be satisfied, so we do not neces-
sarily expect to maximise USW, but we should observe that a majority of agents
improves their utilities. Indeed, this is what we observed in our simulations, in
which initially the performance of the learning agents is comparable with those
of other voting rules but the USW quickly deteriorates. Remember that the util-
ities of each candidate (from the most preferred to the least preferred) are 1, 1

2 ,
1
4 , etc. If we look at the distribution of utilities, we have more very high values
initially (but less than a majority) and at convergence, we have a majority of
middle or high utility values. The overall sum decreases over time, but more
agents are happier. As a proof of this observation we measured the egalitarian
social welfare - the utility of the poorest voter - observing that initially ESW
starts pretty low and raises with the number of iterations. Using that criterion,
iterative voting with learning agents scores third behind the Borda rule and
Copeland.

Our method seems to perform poorly in terms of USW, although this should
not be interpreted as a negative result. Note that the second worse voting rule
is the Borda rule for the same reason. We also ran experiments with linear and
logistic utilities, observing an increasing social welfare as measured by the Borda
score (recall that USW with linear utilities is the same as the Borda score).

5 Conclusions and Future Work

Motivated by the emergent works on iterative voting, this paper assesses the
learning capabilities of autonomous agents in making good collective decisions.
Voting theory tells us that agents always have incentives to manipulate. The
idea of iterative voting is then to use a simple voting rule such as plurality, and
ask each voter one at a time whether she wants to change her ballot to obtain a
preferred winner in the next round.
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In this paper we address two weaknesses of existing models of iterative voting:
it is not realistic that voters change their ballot one at a time, nor is the myopic-
agent assumption that does not allow voters to profit from past interactions. In
our model we allow all agents to change their ballots at the same time if they wish
to do so. In order to avoid a completely chaotic process, we use learning agents
as a mean to learn a good compromise. We show that by using a simple learning
algorithm with scarce information (only the winner of the current election is
shown to learning agents), the performance of winning candidates are quite good.
We evaluate the winner of the iterative process using extensive simulations both
in terms of Borda score and of Condorcet efficiency against various voting rules,
and we show that we obtain reasonable performances from around 300 iterations.
While this number is of course too large for any human to use this method, it is
manageable for artificial agents.

We leave it for future work to use more sophisticated learning mechanisms
for decreasing the number of iterations to obtain a reasonable performance, and
to explore settings in which more information is available to the agents. For
instance, using the score of each candidate appears quite reasonable, but has
consequences on the learning space.
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Abstract. In “The Logic of Campaigning”, Dean and Parikh consider
a candidate making campaign statements to appeal to the voters. They
model these statements as Boolean formulas over variables that repre-
sent stances on the issues, and study optimal candidate strategies under
three proposed models of voter preferences based on the assignments that
satisfy these formulas. We prove that voter utility evaluation is compu-
tationally hard under these preference models (in one case, #P -hard),
along with certain problems related to candidate strategic reasoning. Our
results raise questions about the desirable characteristics of a voter pref-
erence model and to what extent a polynomial-time-evaluable function
can capture them.

1 Introduction

In light of some fairly surprising election outcomes around the world, we are
very interested in understanding how politicians construct their platforms. For
instance, what motivates many candidates to speak in platitudes that reveal little
information about their views? On the other hand, what motivates candidates
to commit to specific and sometimes audacious policies? The focus of this paper
is a logical formalism introduced by Dean and Parikh [6] (and extended by
Parikh and Taşdemir [13]) that aims to explain candidates’ choices of campaign
statements to make; these statements are modeled as propositional formulas over
variables representing stances on issues, and Dean and Parikh consider different
definitions of voters’ utility for a candidate as functions of the possible sets of
policies that the candidate might implement based on these statements.

Political scientists have also taken interest in candidates’ decisions about
what to say when campaigning; petrocik [15] found empirical evidence that a
candidate will try to focus on issues where the candidate has a good record
and their opponents have bad records. Game theorists have a shared interest
with Dean and Parikh in what might motivate a candidate to be ambiguous
[1,2,11]. The game-theoretic models take into account the interaction between
multiple candidates (and in the case of Manzoni’s model [11], voters’ uncertainty
about their most-preferred policies), but often with simplified representations of
a platform (e.g., points on a one-dimensional spectrum or probability distribu-
tions over a small set of alternatives). In contrast, Dean and Parikh’s framework
abstracts away details of the electoral system like multi-agent interactions and
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voter strategy to focus on the implications for an individual candidate of com-
municating using more expressive logic-based statements.

This expressivity, however, brings computational costs. In this paper, we
consider the computational complexity of problems related to voter and candi-
date reasoning. Although Dean and Parikh’s formulations capture many desir-
able characteristics of possible voters, and go a long way toward explaining the
assumptions about voters that both vague and overspecific candidates might
be making, our results raise some questions about whether these are the right
models of how voters evaluate candidates’ platforms.

In Sect. 2 we introduce Dean and Parikh’s model and some computational
complexity classes we will use later. We then find computational complexity
results for problems related to the model — in Sect. 3, evaluating voters’ utility
for a candidate; in Sect. 4, choosing campaign statements that optimize total
voter utility for the candidate; and in Sect. 5, choosing campaign statements
that motivate enough individual voters to vote for the candidate. In Sect. 6,
we conclude with directions for future work in modeling campaigns, including
questions about desirable characteristics of voter evaluation.

2 Preliminaries

2.1 Candidates, Voters, and Statements

In Dean and Parikh’s model, political views are expressed in terms of Boolean
variables (atomic propositions) X = {x1, . . . , xn} (e.g., x1 = “Every citizen is
entitled to a free pony.”, x2 = “Tooth-brushing should be mandatory.”, x3 = “We
must invest in zombie-based renewable energy sources.”). A candidate makes
statements about their platform in the form of propositional formulas over these
variables (e.g., ¬x1, or x1 → x2). The candidate’s current theory1 T consists of
the statements the candidate has issued so far and their logical closure. In our
discussion of complexity, we will assume that T is given as a set of statements
and that anything in the logical closure besides the statements themselves must
be computed. In general we assume that T is self-consistent.

A voter v has a preference function pv : X → [−1, 1] indicating which direc-
tion and how strongly v stands on each issue xi:2 A negative pv(xi) indicates
that v prefers xi to be false and a positive pv(xi) indicates that v prefers xi to
be true, with the magnitude reflecting the strength of preference (and 0 being
indifference). If, for example, v was against mandatory tooth-brushing and cared
greatly about this issue, then we might have pv(x2) = −0.9. We assume that
candidates have complete knowledge of the voters’ preference functions.

We let W be the set of all possible assignments (worlds) to the variables X .
Hence, |W| = 2|X | = 2n. We denote a specific world as ω ∈ W. We say that ω

1 Some sources, particularly in the belief revision literature, use the term belief base.
2 Note that we modify our notation from Dean and Parikh’s. In particular, they rep-

resent this preference function using two quantities — a weight in [0, 1] and a truth-
value preference in {−1, 0, 1} — which we combine into the single function pv.
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models a theory T , ω |= T , if ω is consistent with the logical closure of T . For
the purpose of defining voter utilities, we treat ω as a function ω : X → {−1, 1}
where ω(xi) = 1 if xi is true in that world and ω(xi) = −1 if xi is false in that
world. The voter’s utility for some ω ∈ W is

uv(ω) =
∑

xi∈X
pv(xi) · ω(xi).

The voter’s utility for a candidate is a function of the possible worlds modeled
by the current theory T of what the candidate has said so far. Dean and Parikh
consider three classes of voters:

– Optimistic voters evaluate the candidate on the best world modeled by the
theory, utv(T ) = max{uv(ω) : ω |= T}.

– Pessimistic voters evaluate the candidate on the worst world modeled by the
theory, utv(T ) = min{uv(ω) : ω |= T}.

– Expected-value voters take the average 3 utility over modeled worlds,4

utv(T ) =

∑
ω|=T uv(ω)

|{ω : ω |= T}| .

Dean and Parikh consider the case of a single candidate who wants to choose
statements that maximize the total utility of a population of voters. They prove
that with expected-value voters, an optimal strategy involves announcing a
stance on every issue, creating a theory that models only one world. (We will
refer to such a theory as a complete theory; when a theory T ′ is complete and
T ⊆ T ′, we call T ′ a completion of T .) Furthermore, they observe that with pes-
simistic voters, it is also advantageous for the candidate to announce a stance on
every issue, since eliminating possible worlds can never result in a loss of utility.
Only with optimistic voters is it advantageous to remain silent, since eliminating
possible worlds can never result in a gain of utility.

2.2 Computational Complexity Classes

We assume familiarity with P and NP. In addition, we will invoke some well-
studied but less common complexity notions, which we describe here.

Let C and D be computational complexity classes defined via resource bounds
on Turing machines. We denote by CD those languages or functions computable
by a C Turing machine with an oracle for D. In other words, we modify a C
Turing machine to have an additional tape and state q. If d is a language or
function computable by a D Turing machine, then we allow computations of the
modified Turing machine to write a string x on the new tape, enter state q, and

3 Dean and Parikh assume that for the purpose of determining “expected value” of
the worlds, all worlds are considered equally likely.

4 One consequence of this definition is that the utility of an empty or otherwise tau-
tological theory is 0 for any expected-value voter.
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in the next step, the new tape contains d(x). We write A ≤P
T B if A ∈ PB ,

meaning “A is polynomial-time Turing reducible to B”.
The class NPO is an analogue to NP for optimization problems, i.e., problems

that are specified in terms of a definition of valid instances, a definition of valid
solutions with respect to an instance, and a value function over the solutions,
and ask for a solution with maximum or minimum value. Such a problem is in
NPO if and only if it meets the following criteria defined by Ausiello et al. [4]:
Instances can be verified as valid in polynomial time, solutions can be verified
as valid in time polynomial in the instance size, and the value of a solution can
be computed in polynomial time. Note that NPO ⊆ PNP.

The function class #P , introduced by Valiant [17], contains those problems
that are equivalent to determining the number of accepting paths in an NP
Turing machine. If a problem is in NP, then the problem of counting how many
witness strings satisfy the NP machine for a given instance is in #P . Since a
nonzero answer for a #P problem instance entails a positive answer for the
corresponding NP problem instance and a zero answer for the #P problem
entails a negative answer for the NP problem, NP ≤P

T #P .
We have P ⊆ NP ⊆ PNP ⊆ P#P ⊆ PSPACE ⊆ EXPTIME.

3 Complexity of Finding Voter Utility

One important factor in the epistemology of campaigns that Dean and Parikh’s
framework (with its implicit assumption of “logical omniscience”) does not
explicitly model is cognitive complexity (for which we use computational com-
plexity as a proxy) as it pertains to the voters. We argue that even a superficially
simple series of campaign statements may induce a complex underlying theory:
Though we, and Dean and Parikh, have introduced the set of variables X in
terms of high-level issues (x1 =“Every citizen is entitled to a free pony”) for
explanatory purposes, in reality such issues might more accurately be viewed
as complex interplays of finer-granularity subissues (“Every citizen is entitled
to a free pony” = (x′

1 ∨ x′
2 ∨ x′

3) ∧ (x′
1 → x′

4 ∨ ¬x′
5) ∧ . . ., where x′

1, x
′
2, x

′
3 are

potential taxes to fund the pony giveaway, x′
4, x

′
5 are about the logistics of pony

distribution, and so on).
Furthermore, as Dean and Parikh note, additional information can arise from

a statement through implicature — that which is suggested by a speaker without
directly being part of or entailed by “what is said”. For instance, when Vermin
Supreme says, “When I’m president everyone gets a free pony”, we discount the
possibility that he plans to give everyone two free ponies; if he did, that would not
contradict his promise, but his omission of information would be infelicitous.5

5 In Grice’s account of implicature [7], participants in a conversation assume each
other to be obeying certain maxims of cooperativity (for instance, illustrated here is
the maxim of Quantity — roughly, give as much information as necessary, and do
not give more information than necessary); they interpret each other’s statements
in light of this mutual assumption.
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A potential source of discrepancies between the framework’s predictions and
the reality of campaigns is that, given an elaborate body of information about
a candidate’s policies, voters have trouble evaluating the candidate due to the
intractability of their utility functions. We will consider the computational com-
plexity of the function problems of determining exact voter utility, but also of
decision problems of determining whether the utility meets a given threshold,
which are particularly relevant for the “stay-at-home voter” scenario we will
discuss in Sect. 5.

3.1 Optimistic Voter Evaluation

Theorem 1. Given a theory T , an optimistic voter v, and a value k, the problem
of deciding whether utv(T ) ≥ k is NP-complete.

Proof. For NP membership, observe that given a world modeled by T for which
v’s utility is at least k, we can verify the consistency and utility in polynomial
time.

We will show NP -hardness with a polynomial-time reduction from Boolean
satisfiability (SAT). Let φ be a propositional formula over a set of variables
X . We construct the theory as T = {x∗ → φ}, where x∗ is a new variable. We
construct an optimistic voter v with preferences set as pv(x∗) = 1 and pv(xi) = 0
for all xi ∈ X . And we let k = 1. Let A = {ω : ω |= T}. If φ is unsatisfiable,
then A = {ω : ω(x∗) = −1}, hence utv(T ) = −1. However, if φ is satisfiable then
there are some ω ∈ A where w(x∗) = 1 and hence utv(T ) = 1. Finally, we have
utv(T ) ≥ 1 = k if and only if φ is satisfiable.

Theorem 2. Given a theory T and an optimistic voter v, the problem of com-
puting utv(T ) and a corresponding best world modeled by T is NPO-complete.

Proof. The problem satisfies the criteria for NPO-membership [4]: Instances
(i.e., the theory and voter specification) and solutions (i.e., worlds modeled by
the theory) are recognizable as such in time polynomial in the instance size, and
the value function (i.e., voter utility) is computable in polynomial time.

We will show NPO-hardness with a polynomial-time reduction from the max-
imum weighted satisfiability problem (MAX-WSAT),6 for which Ausiello et al.
[4] prove NPO-completeness. A MAX-WSAT instance consists of a propositional
formula φ and a positive weight ri for each variable xi; the problem is to find a
satisfying assignment that maximizes the total weight of the variables assigned

6 The name “weighted satisfiability” (WSAT) has been used by different sources to
refer to two different groups of problems — one where an instance consists only of a
propositional formula and the value of a solution is the number of true variables (the
Hamming weight), and the generalization we use here where the instance includes
weights for the variables. The maximization/minimization versions of the former are
sometimes called “maximum number of ones” (MAX-ONES) / “minimum number
of ones” (MIN-ONES), and are complete for NPO-PB [12], a subclass of NPO where
the magnitude of a solution’s value is polynomially bounded by the size of the input.
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to be true. Let R = max{ri : 1 ≤ i ≤ n}. We construct the theory as T = {φ}
and the voter preferences as pv(xi) = ri/R for each xi.7 Then the voter’s best
world ω is the optimal assignment for the MAX-WSAT instance, and given
uv(ω) ∈ [−∑

i ri/R,
∑

i ri/R] we can retrieve the corresponding total weight for
the MAX-WSAT assignment by mapping this range onto [0,

∑
i ri].

3.2 Pessimistic Voter Evaluation

Theorem 3. Given a theory T , a pessimistic voter v, and a value k, the problem
of deciding whether utv(T ) ≥ k is coNP-complete.

Proof. For coNP membership, observe that given a world modeled by T for which
v’s utility is less than k, we can verify the consistency and utility in polynomial
time.

We can show coNP -hardness by polynomial-time reduction to this prob-
lem from Boolean unsatisfiability (UNSAT). Given a formula φ, we construct
the theory T and the voter v’s preferences in the same way as in the proof of
Theorem 1, except that v prefers the new variable x∗ to be false, pv(x∗) = −1.
Then utv(T ) ≥ 1 = k if and only if φ is unsatisfiable.

Theorem 4. Given a theory T and a pessimistic voter v, the problem of com-
puting utv(T ) and a corresponding worst world modeled by T is NPO-complete.

Proof. NPO membership applies by the same argument as in the proof of
Theorem 2. We can show NPO-hardness by polynomial-time reduction from the
minimum weighted satisfiability problem (MIN-WSAT), the minimization coun-
terpart to MAX-WSAT; the mapping is constructed in the same manner as in
the proof of Theorem 2.

3.3 Expected-Value Voter Evaluation

Lemma 1. Given a theory T and an expected-value voter v, the problem of
computing utv(T ) is ≤P

T -hard for #P .

Proof. Let φ be a Boolean formula over {x1, . . . , xn} and let S = #SAT (φ)
be the number of satisfying assignments of φ. We define a formula ψ′ over
{x1, . . . , xn} ∪ {y, z} as follows. First we define ψ = (φ ∧ y ∧ z), and set

ψ′ = ψ ∨ (y ∧ ¬z ∧
n∧

i=1

xi).

Define a voter D with preferences pD(y) = pD(z) = 1 and pD(xi) = 0 for each
xi ∈ {x1, . . . , xn}. (So this voter is defined over n + 2 variables.)

Let A = {−1, 1}n and B = {−1, 1}n+2 be the possible worlds for φ and ψ,
respectively. Then we have

S = |{a ∈ A : a |= φ}| = |{b ∈ B : b |= ψ}| = |{b ∈ B : b |= ψ′}| − 1.

7 We divide through by the maximum weight so that the pv(xi)’s are in [0, 1].
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That is, φ has as many satisfying assignments over n variables as ψ has over
n + 2 variables, and ψ′ has one more satisfying assignment than ψ. Then we get
the critical equalities:

utD({ψ})
utD({ψ′})

=
(
∑

b|=ψ uD(b))/|{b ∈ B : b |= ψ}|
(
∑

b|=ψ′ uD(b))/|{b ∈ B : b |= ψ′}|

=
(
∑

b|=ψ uD(b))/S

(
∑

b|=ψ′ uD(b))/(S + 1)

=
(
∑

b|=ψ uD(b))/S

(0 +
∑

b|=ψ uD(b))/(S + 1)
=

S + 1
S

.

(The third equality is valid because the only world in {b ∈ B : b |= ψ′} \ {b ∈
B : b |= ψ} has utility 0 for voter D.) This allows us to derive an equation to
get #SAT from utD:

1
utD(ψ)/utD(ψ′) − 1

=
1

(S + 1)/S − S/S
=

1
1/S

= S = #SAT (φ).

Thus, we can use two calls to an oracle for expected-value utility to compute
#SAT (φ) in polynomial time.

Lemma 2. Given a theory T and an expected-value voter v, the problem of
computing utv(T ) is in P#P .

Proof. Let T be some theory and let v be some expected-value voter. We assume
pv is represented as a vector of rational binary numbers and we set b as the
number of bits in the ‘longest’ number. We describe an NP Turing machine M
whose number of witness strings is proportional to uv(T ).

The machine M takes in a Boolean formula φ and a voter’s preference
function pv. Then M guesses an assignment ω and a binary integer k where
1 ≤ k ≤ 2b. If both ω |= φ and k ≤ uv(ω) · 2b, then the machine accepts.
Otherwise, the machine rejects. Note that both checks take polynomial time.

Given φ and b and pv, how many ways can M accept? If ω does not satisfy,
then M cannot accept. If ω does satisfy, then M accepts in exactly uv(ω) · 2b

different ways. Hence, #M(φ, pv, b) = 2b
∑

w|=φ uv(ω). Finally, we can compute
the utility:

utv(T ) =
#M(

∧
T, pv, b)

#SAT (
∧

T ) · 2b
.

Theorem 5. Given a theory T and an expected-value voter v, the problem of
computing utv(T ) is ≤P

T -complete for #P .

Proof. This follows from Lemmas 1 and 2.
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4 Complexity of Making an Optimal Theory

Dean and Parikh observe that when all voters are optimistic, a candidate look-
ing to increase total voter utility is best off simply saying nothing; as such,
this situation does not raise any nontrivial computational issues from the candi-
date’s perspective. On the other hand, when appealing to an expected-value or
pessimistic voter population, the candidate is best off taking an explicit stance
on every issue. The candidate’s ability to do so, of course, depends on their
knowing which stance to take. This has two aspects: Firstly, the candidate must
know the voters’ stances on each issue; given the increasing availability of tools
like mass surveys and data analytics that let politicians gauge the attitudes of
their constituents, this is a reasonable assumption (though models of candidate
uncertainty about voter stances are of interest for future study). Secondly, the
candidate must be able to compute the best announcements for appealing to
the overall voter population, given the individual voter preferences; this is the
family of problems we examine here. When we say “optimal theory” in the fol-
lowing results, we mean a theory T that maximizes

∑
v∈V utv(T ) for the voter

population V .
In general, we assume that the candidate starts with an empty theory, and

that the candidate is willing to craft whatever platform is most advantageous
(being what Dean and Parikh call a “Machiavellian” candidate) rather than
being committed to personal beliefs. However, in Sect. 4.3, we show that hav-
ing to remain consistent with an existing theory raises the complexity of some
relevant problems.

4.1 Appealing to Expected-Value Voters

Theorem 6. Given n variables and a set V = {v1, · · · , vm} of expected-value
voters, a candidate can construct an optimal theory in time O(n · m).

Proof. In particular, we will describe a procedure for finding a complete optimal
theory (since Dean and Parikh have established that with expected-value voters
there always exists a complete theory that is optimal).

We can reformulate the set V of m voters with possibly many different
preference functions into a new set V ′ of m voters with all the same pref-
erence function such that the candidate receives the same total utility, i.e.,∑

v∈V utv(T ) =
∑

v′∈V ′ utv′(T ) for any theory T . We define

pv′(xi) =
∑

v∈V

pv(xi)
|V |

for each variable xi, for each v′ ∈ V ′. This reformulation takes time O(m)
to compute for each of the n variables. The candidate can then construct a
theory that models only the world with the preferred assignment to each variable
according to the new preference function.
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4.2 Appealing to Pessimistic Voters

Theorem 7. Given n variables and a set V = {v1, · · · , vm} of pessimistic vot-
ers, a candidate can construct an optimal theory in time O(n · m).

Proof. The procedure from the proof of Theorem6 can also be used to construct
a complete optimal theory for pessimistic voters; while the equality between the
total utilities of the original and reformulated sets of voters no longer holds in
general, it still holds for theories like the constructed one that model only a
single world (since the utility for this world is both the pessimistic and expected
value for the theory).

4.3 Extending an Existing Theory

Until now, we have assumed that a candidate starts with a “blank slate”, able and
willing to shape the voters’ beliefs with no restrictions. However, there are many
reasons why the candidate may instead need to stay consistent with particular
set of formulas — the candidate may be an experienced politician who has
revealed platform information in prior elections and incumbencies, may be a
member of a political party with established doctrine, or may be “tactically
honest” [13] — willing to make strategic statements only insofar as they do
not contradict certain deeply-held opinions. The strategy of choosing the most
informative theory possible to appeal to expected-value or pessimistic voters
becomes harder when the candidate must also remain consistent with an existing
theory:

Theorem 8. Given an expected-value or pessimistic voter v and current theory
T , the problem of computing an optimal completion of T is NPO-complete.

Proof. Observe that this problem is equivalent to the optimistic voter utility
problem from Theorem2 (except that instead of yielding a best world ω mod-
eled by a theory, we are yielding a theory that models only ω, which can be
accomplished by inserting into T a conjunction of literals with their assignments
in ω); thus, the proof of Theorem 2 applies here as well.

5 Complexity of Motivating Enough Voters to Vote

While having an enthusiastic constituency is no doubt correlated with a candi-
date’s success, the more direct measure is whether enough supporters actually
turn up to vote. A 2006 Pew Research Center study addressed the question of
when people vote — since so many people do not, at least in the US. Their find-
ings included the following, which addresses the questions of showing up, rather
than the decision about how to vote:

The Pew analysis identifies basic attitudes and lifestyles that keep these
intermittent voters less engaged in politics and the political process. Polit-
ical knowledge is key: Six-in-ten intermittent voters say they sometimes
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don’t know enough about candidates to vote compared with 44% of regular
voters–the single most important attitudinal difference between intermit-
tent and regular voters identified in the survey. [...] One other key differ-
ence: Regular voters are more likely than intermittent voters to say they
have been contacted by a candidate or political group encouraging them to
vote, underscoring the value of get-out-to-vote campaigns and other forms
of party outreach for encouraging political participation.

Pew Research Center [16]

Refusal to vote does not necessarily indicate irrationality on the voter’s part;
under decision-theoretic models of expressive voting [3,8], where a voter’s fore-
most goal is expressing their views rather than bringing about an outcome,
abstinence from voting is a rational choice under certain circumstances. Parikh
and Taşdemir [13] suggest the presence of “stay-at-home voters”, whose utility
for a candidate must meet a certain threshold before they will vote, to explain
why a candidate might remain silent in situations where Dean and Parikh’s
model would otherwise suggest a strategy of explicitness.

5.1 Appealing to Optimistic Voters

Theorem 9. Given an integer h and a set of optimistic voters V = {v1, · · · , vm}
with thresholds {k1, · · · , km}, the problem of deciding the existence of a theory
T such that utvi

(T ) ≥ ki for at least h voters is in P .

Proof. Since the empty theory T = ∅ has the maximum utility for any opti-
mistic voter, it suffices to compute the utility of each voter vi’s best world,∑

xj∈X |pvi
(xj)|, and check whether at least h of these utilities meet their respec-

tive voters’ thresholds.

5.2 Appealing to Pessimistic Voters

Theorem 10. Given an integer h and a set of pessimistic voters V =
{v1, · · · , vm} with thresholds {k1, · · · , km}, the problem deciding the existence
of a theory T such that utvi

(T ) ≥ ki for at least h voters is NP-complete.

Proof. For NP membership: If there exists a theory for which at least h pes-
simistic voters meet their thresholds, then these voters also meet their thresh-
olds in any completion of this theory (since eliminating worlds never decreases
pessimistic voter utility); given the world modeled by one of these completions,
we can verify in polynomial time that the thresholds are met.

We will show NP -hardness with a reduction from conjunctive normal form
Boolean satisfiability (CNF-SAT). Let φ be a Boolean formula in conjunctive
normal form. For each clause containing r literals, we construct a pessimistic
voter vi with preferences as follows: For each variable xj , pvi

(xj) = 1
r if xj

appears in the clause with positive polarity, pvi
(xj) = − 1

r if xj appears in the
clause with negative polarity (¬xj), and pvi

(xj) = 0 if xj does not appear in the
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clause. We set vi’s threshold as ki = − r−1
r so that utvi

(T ) ≥ ki if and only if all
worlds modeled by T have at least one variable assigned to match its polarity in
the clause. Finally, we set h equal to the number of clauses to require that all
worlds modeled by T have at least one variable assigned to match its polarity
for every clause; such a T exists if and only if φ is satisfiable.

5.3 Appealing to Mixed Voters

Theorem 11. Given an integer h, a set of voters V = {v1, · · · , vm} = V o ∪ V p

where V o consists of optimistic voters and V p consists of pessimistic voters, and
thresholds {k1, · · · , km}, the problem of deciding the existence of a theory T such
that utvi

(T ) ≥ ki for at least h voters is NP-complete.

Proof. NP -hardness follows from the fact that this is a generalization of the
problem with only pessimistic voters from Theorem 10.

For NP -membership: Let V ′ ⊆ V be a set of h or more voters. We could guess
an acceptable world (not necessarily distinct) ωi for each optimistic voter vi ∈
V ′ ∩ V o (i.e., uvi

(ωi) > ki), such that ωi is also acceptable for each pessimistic
voter vj ∈ V ′ ∩ V p (i.e., uvj

(ωi) > kj). Then the disjunction T = {∨iwi} would
satisfy all the voters in V ′, and each voter can verify this in polynomial time,
since there will only be as many modeled worlds as there are optimistic voters.
Furthermore, if there exist theories that satisfy h or more voters, then there
exists at least one in the aforementioned form.

6 Conclusions

There are many bodies of research that are, or might be, relevant to whether
voters show up to vote, and once there, how they vote. We have explored the
computational side of one such theory, and showed that it proposes computa-
tionally intensive methods for voter evaluation of platforms and for multi-voter
satisficing. Given the basic premise that voter satisfaction or satisficing is a
combinatorial problem, the intractability is not surprising.

There are many ways this investigation of the computational complexity of
modeling voters’ behavior can be extended. They include:

– adding value to informativeness of the candidate(s)’ platform when predicting
whether a voter will show up to vote, as per the Pew study [16];

– decreasing the complexity of candidates’ platforms (conjunctions or disjunc-
tions of atomic propositions; Horn formulas; . . . );

– modeling change over time in voter priorities [9] or opinions;
– adding affective variables to the voter models [14];
– investigating social-network models of voter interaction and influence [5];
– using game-theoretic models of candidate-candidate interactions and voter

choices [10];
– including group-based identity in the decision to show up as well as the choice

of candidate.
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In addition, we could start from axiomatic characterizations of models of
candidate platforms and voter choice. What are good properties to model? (For
instance, if a candidate adds to the specificity of their platform in ways that
agree with a voter’s preferences, should that increase the likelihood that a voter
chooses that candidate, or the likelihood that the voter shows up to vote?) Will
we run into Arrow-style impossibility results for achieving all the desiderata we
propose?

I will promise your electorate heart anything you desire, because you are
my constituents, you are the informed voting public, and I have no inten-
tion of keeping any promise that I make.

Vermin Supreme8.
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Abstract. Several real-life complex systems, like human societies or eco-
nomic networks, are formed by interacting units characterized by pat-
terns of relationships that may generate a group-based social hierarchy.
In this paper, we address the problem of how to rank the individuals with
respect to their ability to “influence” the relative strength of groups in a
society. We also analyse the effect of basic properties in the computation
of a social ranking within specific classes of (ordinal) coalitional situa-
tions. We show that the pairwise combination of these natural properties
yields either to impossibility (i.e., no social ranking exists), or to flatten-
ing (i.e., all the individuals are equally ranked), or to dictatorship (i.e.,
the social ranking is imposed by the relative comparison of coalitions of
a given size). Then, we turn our attention to an algorithmic approach
aimed at evaluating the frequency of “essential” individuals, which is a
notion related to the (ordinal) marginal contribution of individuals over
all possible groups.

Keywords: Social ranking · Coalitional power · Ordinal power · Axioms

1 Introduction

Ranking is a fundamental ingredient of many real-life situations, like the ranking
of candidates applying to a job, the rating of universities around the world, the
distribution of power in political institutions, the centrality of different actors
in social networks, the accessibility of information on the web, etc. Often, the
criterion used to rank the items (e.g., agents, institutions, products, services,
etc.) of a set N also depends on the interaction among the items within the
subsets of N (for instance, with respect to the users’ preferences over bundles
of products or services). In this paper we address the following question: given
a finite set N of items and a ranking over its subsets, can we derive a “social”
ranking over N according to the “overall importance” of its single elements?
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For instance, consider a company with three employees 1, 2 and 3 working in
the same department. According to the opinion of the manager of the company,
the job performance of the different teams S ⊆ N = {1, 2, 3} is as follows:
{1, 2, 3} � {3} � {1, 3} � {2, 3} � {2} � {1, 2} � {1} � ∅ (S � T , for
each S, T ⊆ N , means that the performance of S is at least as good as the
performance of T ). Based on this information, the manager asks us to make a
ranking over his three employees showing their attitude to work with others as
a team or autonomously. Intuitively, 3 seems to be more influential than 1 and
2, as employee 3 belongs to the most successful teams in the above ranking. Can
we state more precisely the reasons driving us to this conclusion? And what
can we say if we have to decide who between 1 and 2 is more productive and
deserves a promotion? In this paper we analyse different properties of ordinal
social rankings in order to get some answers to such questions.

The problem studied in this paper can be seen as an ordinal counterpart
of the one about how to measure the power of players in simple games, which
are coalitional games where coalitions may be winning or not [2,5]. However, our
framework is different for at least two reasons: first, we face coalitional situations
where only a qualitative (ordinal) comparison of the strength of coalitions is
given; second, we look for a ranking over the single objects in N , and we do not
require a quantitative assessment of the “power” of the players. As far as we
know, the only attempt in the literature to generalize the notions of coalitional
game and power index within an ordinal framework has been provided in Moretti
[11], where, given a total preorder representing the relative strength of coalitions,
a social ranking over the player set is provided according to a notion of ordinal
influence and using the Banzhaf index [2] of a “canonical” coalitional game.

In the literature of simple games, related questions deal with the ordinal
equivalence of power indices (see, for instance, [4,7,10]) and the analysis of the
differences between rankings generated by alternative power indices on special
classes of simple games (e.g., the papers [9,14]). Similarly to our work, in Taylor
and Zwicker [15] the authors investigated alternative notions of ordinal power
on different classes of simple games. All the aforementioned papers focus on the
notion of simple game, that is a numerical representation of a dichotomous power
relation (i.e., winning or losing coalitions), a much more restricted domain than
the one considered in this work, where a power relation can be any total preorder
over the coalitions. In a still different context, a model of coalition formation has
been introduced in Piccione and Razin [12], where the relative strength of disjoint
coalitions is represented by an exogenous binary relation and the players try to
maximize their position in a social ranking. We also notice a connection with
some kind of “inverse problems”, precisely, how to derive a ranking over the set
of all subsets of N in a way that is “compatible” with a primitive ranking over
the single elements of N (see, for instance, [3]; see [10] for an approach using
coalitional games).

In this paper, a social ranking is defined as a map associating to each power
relation (i.e., a total preorder over the set of all subsets of N) a total preorder
over the elements of N . The properties for social rankings that we analyse in
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this paper have classical interpretations, such as symmetry, basically saying that
the relative social ranking of “symmetric”1 pairs of elements i, j and p, q should
coincide (i.e., i is in the social ranking relation with j if and only if p is in
the social ranking relation with q); or the dominance, saying that an element
i ∈ N should be ranked higher than an element j ∈ N whenever i dominates
j, i.e. a coalition S ∪ {i} is stronger than S ∪ {j} for each S ⊂ N containing
neither i nor j. Another property we study in this paper is the independence of
irrelevant coalitions, saying that the social ranking between two elements i and
j should only depend on their respective contributions when added to coalitions
containing neither i nor j (in other words, the information needed to rank i
and j is provided by the relative comparison of coalitions U,W ⊂ N such that
U \ {i} = W \ {j}).

We use these properties to axiomatically analyse social rankings on particular
classes of power relations. We first notice that two natural properties, precisely,
dominance and symmetry, are not compatible over the class of all power relations
(see Theorem 1 in Sect. 4), despite the fact that, in some related axiomatic
frameworks (see, for instance, [3]), similar axioms have been successfully used
in combination. On the other hand, the properties of independence of irrelevant
coalitions and symmetry, when applied in combination to a a large class of power
relations, determine a flattening of the social ranking, where all the items are
equivalent (see Proposition 2 in Sect. 4). Moreover, we prove that the property of
independence of irrelevant coalitions and dominance property determine a kind
of ‘dictatorship of the cardinality’ when a relation of strong dominance among
coalitions of the same size holds: in this case, the only social ranking satisfying
those two properties is the one imposed by the relation of dominance of a given
cardinality s ∈ {1, . . . , |N |} (see Theorem 2 in Sect. 5). Finally, we focus on an
alternative algorithmic approach aimed at representing the influence of an item
i as the number of coalitions S for which item i results to be essential [13], i.e.,
S ∪ {i} is strictly stronger than S.

The structure of the paper is the following. In the next section, we present
some related approaches from the literature and our main contributions. Basic
notions and definitions are presented in Sect. 2. In Sect. 3 we introduce and
discuss some properties for social rankings. In Sect. 4 we study the compatibility
of certain axioms and their effect on some elementary notions of social ranking. In
Sect. 5 we focus on the analysis of social rankings that satisfy both the dominance
property and the property of independence of irrelevant coalitions, and that, on
particular power relations, are specified by the ordering of coalitions of the same
size. In Sect. 6 we introduce a procedure to define a social ranking based on the
cardinality of particular essential set and we finally provide some future research
directions.

1 Roughly speaking, two pairs of single elements i, j and p, q are said to be symmetric
if, for coalitions S with the same cardinality, the number of times that S ∪ {i} is
stronger than S∪{j} equals the number of times that S∪{p} is stronger than S∪{q},
and the number of times that S ∪ {j} is stronger than S ∪ {i} equals the number of
times that S ∪ {q} is stronger than S ∪ {p} (for more details, see Definition 3).
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2 Preliminaries and Notations

A binary relation R on a finite set N = {1, . . . , n} is a collection of ordered pairs
of elements of N , i.e. R ⊆ N × N . for all x, y ∈ N , the more familiar notation
xRy will be often used instead of the more formal one (x, y) ∈ R. We provide
some standard properties for R. Reflexivity : for each x ∈ N , xRx; transitivity :
for each x, y, z ∈ N , xRy and yRz ⇒ xRz; totality : for each x, y ∈ N , x �= y
⇒ xRy or yRx; antisymmetry : for each x, y ∈ N , xRy and yRx ⇒ x = y. A
reflexive and transitive binary relation is called preorder. A preorder that is also
total is called total preorder. A total preorder that also satisfies antisymmetry
is called linear order. The notation ¬(xRy) means that xRy is not true. We
denote by 2N the power set of N and we use the notations T N and T 2N to
denote the set of all total preorders on N and on 2N , respectively. Moreover,
the cardinality of a set S ∈ 2N is denoted by |S|. In the remaining of the paper,
we will also refer to an element S ∈ 2N as a coalition S. Consider a total
preorder �⊆ 2N × 2N over the subsets of N . Often we will use the notation
S 	 T to denote the fact that S � T and ¬(T � S) (in this case, we also
say that the relation between S and T is ‘strict’), and the notation S ∼ T to
denote the fact that S � T and T � S (in this case, we say that S and T
are indifferent in �). For each i, j ∈ N , i �= j, and all k = 1, . . . , n − 2, we
denote by Σk

ij = {S ∈ 2N\{i,j} : |S| = k} the set of all subsets of N containing
neither i nor j with k elements. Moreover, for each i, j ∈ N , we define the set
Dk

ij(�) = {S ∈ Σk
ij : S ∪ {i} � S ∪ {j}} as the set of coalitions S ∈ 2N\{i,j}

of cardinality k such that S ∪ {i} is in relation with S ∪ {j} (and, changing the
ordering of i and j, the set Dk

ji(�) = {S ∈ Σk
ij : S ∪ {j} � S ∪ {i}}).

3 Axioms for Social Rankings

In the remaining of this paper, we interpret a total preorder � on 2N as a power
relation, that is, for each S, T ∈ 2N , S � T stands for ‘S is considered at least
as strong as T according to the power relation �’.

Given a class C2N ⊆ T 2N of power relations, we call a map ρ : C2N −→ T N ,
assigning to each power relation in C2N a total preorder on N , a social ranking
solution or, simply, a social ranking. Then, given a power relation �, we will
interpret the total binary relation ρ(�) associated to � by the social ranking ρ, as
the relative power of items (e.g., agents) in a society under relation �. Precisely,
for each i, j ∈ N , iρ(�)j stands for ‘i is considered at least as influential as j
according to the social ranking ρ(�)’, where the influence of an item is intended
as its ability to join coalitions in the strongest positions of a power relation. Note
that we require that ρ(�) is a total preorder over the elements of N , that is we
always want to express the relative comparison of two items, and such a relation
must be transitive. Two elements i, j ∈ N such that iρ(�)j and jρ(�)i are said
to be indifferent in ρ(�).

Let �∈ C2N ⊆ T 2N . A social ranking ρ : C2N −→ T N such that iρ(�)j ⇔
{i} � {j} for each i, j ∈ N is said to be primitive on � (i.e., it neglects any
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information contained in � about the comparison of coalitions of cardinality
different from 1). A social ranking ρ : C2N −→ T N such that iρ(�)j and jρ(�)i
for all i, j ∈ N is said to be unanimous on � (N is an indifference class with
respect to ρ(�)).

Now we introduce some properties for social rankings. The first axiom is the
dominance one: if each coalition S containing item i but not j is stronger than
coalition S with j in the place of i, then item i should be ranked higher than
item j in the society, for any i, j ∈ N . Precisely, given a power relation �∈ T 2N

and i, j ∈ N we say that i dominates j in � if S ∪ {i} � S ∪ {j} for each
S ∈ 2N\{i,j} (we also say that i strictly dominates j in � if i dominates j and
in addition there exists S ∈ 2N\{i,j} such that S ∪ {i} 	 S ∪ {j}).

Definition 1 (DOM). A social ranking ρ : C2N −→ T N satisfies the domi-
nance (DOM) property on C2N ⊆ T 2N if and only if for all �∈ C2N and i, j ∈ N ,
if i dominates j in � then iρ(�)j (and ¬(jρ(�)i) if i strictly dominates j in �).

The following axiom states that the relative strength of two items i, j ∈ N
in the social ranking should only depend on their effect when they are added to
each possible coalition S containing neither i nor j, and the relative ranking of
the other coalitions is irrelevant. Formally:

Definition 2 (IIC). A social ranking ρ : C2N −→ T N satisfies the Indepen-
dence of Irrelevant Coalitions (IIC) property on C2N ⊆ T 2N iff

iρ(�)j ⇔ iρ()j

for all i, j ∈ N and all power relations �,∈ C2N such that for each S ∈ 2N\{i,j}

S ∪ {i} � S ∪ {j} ⇔ S ∪ {i}  S ∪ {j}.

Let �∈ T 2N , and let i, j, p, q ∈ N be such that |Dk
ij(�)| = |Dk

pq(�)| and
|Dk

ji(�)| = |Dk
qp(�)| for each k = 0, . . . , n − 2. Differently stated, for coalitions

S of fixed cardinality, we have that the number of times that S ∪ {i} is stronger
than S ∪ {j} equals the number of times that S ∪ {p} is stronger than S ∪ {q}
(and the number of times that S∪{j} is stronger than S∪{i} equals the number
of times that S ∪ {q} is stronger than S ∪ {p}). In this symmetric situation, the
following axiom states a principle of equivalence between the pairs {i, j} and
{p, q}.

Definition 3 (SYM). A social ranking ρ : C2N −→ T N satisfies the symmetry
(SYM) property on C2N ⊆ T 2N iff

iρ(�)j ⇔ pρ(�)q

for all i, j, p, q ∈ N and �∈ C2N such that |Dk
ij(�)| = |Dk

pq(�)| and |Dk
ji(�)| =

|Dk
qp(�)| for each k = 0, . . . , n − 2.
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Remark 1. Note that if a social ranking ρ satisfies the SYM axiom on C2N ⊆
T 2N , then for every �∈ C2N and i, j ∈ N , if |Dk

ij(�)| = |Dk
ji(�)| for each

k = 0, . . . , n − 2, then iρ(�)j and jρ(�)i, that is i and j are indifferent in ρ(�)
(to see this, simply take p = i and q = j in Definition 3).

Remark 2. If we want to check if a given social ranking solution satisfies DOM,
IIC, or SYM only partial information on � is needed. In fact, conditions on the
ranking ρ(�) between two elements i and j only depend on the comparisons of
subsets S ∪ {i} and S ∪ {j}, for all S ∈ 2N\{i,j}.

We conclude this section with an example showing that an apparently natural
procedure (namely, the majority rule) to rank the items of N may fail to provide
a transitive social ranking. We first formally introduce such a procedure.

Definition 4 (Majority rule). The majority rule (denoted by M) is the map
assigning to each power relation �∈ T 2N the total binary relation M(�) on N
such that

iM(�)j ⇔ dij(�) ≥ dji(�).

where dij(�) =
∑n−2

k=0 |Dk
ij(�)| for each i, j ∈ N .

Example 1. One can easily check that the majority rule M satisfies the property
of DOM, IIC and SYM on the class T 2N . On the other hand, it is also easy to
find an example of power relation � such that M(�) is not transitive. Consider
for instance the power relation �∈ T 2N with N = {1, 2, 3, 4} such that: 2 	 1 	
3 	 23 	 13 	 12 	 14 	 34 	 24 	 134 ∼ 124 ∼ 234.

We rewrite the relevant information about � by means of Table 1 (From now,
we will sometimes omit braces and commas to separate elements, for instance,
ij denotes the set {i, j}). Note that d12(�) = 2, d21(�) = 3, d23(�) = 2,
d32(�) = 3, d13(�) = 3 and d31(�) = 2. So, we have that 2M(�)1, 3M(�)2 and
1M(�)3, but ¬(3M(�)1)): M(�) is not a transitive relation. The fact that the
majority rule violates transitivity suggests a close affinity of the social ranking
set-up with the classical social choice framework: some further similarities with
the famous Arrow’s impossibility theorem [1] will be further clarified in Sect. 5.

Table 1. The relevant information about � of Example 1.

1 vs. 2 2 vs. 3 1 vs. 3

1 ≺ 2 2 � 3 1 � 3

13 ≺ 23 12 ≺ 13 12 ≺ 23

14 � 24 24 ≺ 34 14 � 34

134 ∼ 234 124 ∼ 134 124 ∼ 234
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4 Primitive and Unanimous Social Rankings

In this section we study the relations between the axioms introduced in the
previous section and the social ranking solutions. In the following, we show that
DOM and SYM are not compatible in a general case, for N > 3 (see Theorem
1), whereas SYM and IIC determine a unanimous social ranking on particular
power relations.

We start with showing some consequences of using the axioms introduced in
the previous section when the cardinality of the set N is 3 or 4. The analysis
for cardinality |N | = 3 is easy since we can enumerate all the cases. As we will
present in the following, the notion of complementarity plays an important role
in this case. We denote by S∗ the complement of the subset S (S∗ = N \S), and
we say that a social ranking ρ such that iρ(�)j ⇔ {j}∗ � {i}∗ for each i, j ∈ N
is complement primitive on � (i.e., it neglects any information contained in �
about the comparison of coalitions of cardinality different from n − 1).

Proposition 1. If |N | = 3, the only social ranking solution satisfying the DOM
and SYM axioms can be either primitive or complement primitive on �∈ T 2N .

Proof. Let N = {1, 2, 3} with 1 � 2 � 3. Then six cases may occur in �: case
(1) 13 � 23 � 12, case (2) 13 � 12 � 23, case (3) 23 � 13 � 12, case (4)
12 � 13 � 23, case (5) 23 � 12 � 13 and case (6) 12 � 23 � 13.

DOM and SYM impose that:

case (1) by DOM: 1ρ(�)2, by SYM (1ρ(�)3 and 2ρ(�)3) or (3ρ(�)1 and
3ρ(�)2). Hence we have 1ρ(�)2ρ(�)3 (primitive) or 3ρ(�)1ρ(�)2
(complement primitive)

case (2) by DOM: 1ρ(�)2 and 1ρ(�)3. We can have 2ρ(�)3 or 3ρ(�)2. Hence we
have 1ρ(�)2ρ(�)3 (primitive) or 1ρ(�)3ρ(�)2 (complement primitive)

case (3) by SYM: (1ρ(�)2, 1ρ(�)3 and 2ρ(�)3) or (2ρ(�)1, 3ρ(�)1 and
3ρ(�)2).

case (4) by DOM 1ρ(�)2ρ(�)3
case (5) by DOM: 2ρ(�)3, by SYM (1ρ(�)2 and 1ρ(�)3) or (2ρ(�)1 and

3ρ(�)1). Hence we have 1ρ(�)2ρ(�)3 (primitive) or 2ρ(�)3ρ(�)1
(complement primitive)

case (6) by DOM :1ρ(�)3 and 2ρ(�)3. We can have 1ρ(�)2 or 2ρ(�)1. Hence we
have 1ρ(�)2ρ(�)3 (primitive) or 2ρ(�)1ρ(�)3 (complement primitive)

Corollary 1. If |N | = 3 and �∈ T 2N such that for all S,Q ⊆ N , S � Q implies
Q∗ � S∗ (i.e., according to [6], � is said to be “self-reflecting”), then a social
ranking satisfying the DOM property is primitive on �.

Proof. Let N = {i, j, k}. Self-reflecting implies that for all i, j ∈ N i � j ⇔ j∗ �
i∗ ⇔ ik � jk. By DOM we get for all i, j, k ∈ N iρ(�)j ⇔ i � j ⇔ j∗ � i∗ ⇔
ik � jk.

Next theorem shows that on the class T 2N (all possible total preorders) the
properties of DOM and SYM are not compatible.
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Table 2. The relevant information about � and the elements 1, 2 and 3.

1 vs. 2 2 vs. 3 1 vs. 3

1 ∼ 2 2 ∼ 3 1 ∼ 3

13 � 23 12 ≺ 13 12 ≺ 23

14 ∼ 24 24 � 34 14 � 34

134 ∼ 234 124 ∼ 134 124 ∼ 234

Theorem 1. Let |N | > 3. There is no social ranking solution ρ : T 2N −→ T N

which satisfies DOM and SYM on T 2N .

Proof. We first show a particular situation where DOM and SYM are not com-
patible. Consider a power relation �∈ T 2N with N = {1, 2, 3, 4} and such that

1 ∼ 2 ∼ 3 	 13 	 23 	 12 	 24 ∼ 14 	 34 	 1234 ∼ 123 ∼ 124 ∼ 134 ∼ 234

We rewrite the relevant information about � and the elements 1, 2 and 3
by means of the following Table 2. By Remark 1, a social ranking solution
ρ : T 2N −→ T N which satisfies SYM should be such that 2ρ(�)3, 3ρ(�)2,
1ρ(�)3, 3ρ(�)1. By the DOM property, we should have 1ρ(�)2, and ¬(2ρ(�)1),
which yields a contradiction with the transitivity of the ranking ρ(�).

The incompatibility between DOM and SYM also holds for power relations
on 2N with |N | > 4. This conclusion directly follows from the fact that one can
generate power relations in T 2N , with N ⊇ {1, 2, 3, 4}, that are obtained from
the power relation � defined above and assigning all the additional subsets of
N not contained in {1, 2, 3, 4} in the same indifference class. More precisely, the
arguments used to show the incompatibility of DOM and SYM on � also hold
for a power relation �′∈ T 2N with N ⊃ {1, 2, 3, 4} and such that

U �′ W :⇔ U � W

for all the subsets U,W ⊆ {1, 2, 3, 4} (i.e., the subsets of {1, 2, 3, 4} are ranked
in �′ precisely as in �) and

U �′ W and W �′ U

for all the other subsets of N not included in {1, 2, 3, 4} (i.e., all the sets not
contained in {1, 2, 3, 4} are indifferent with respect to the power relation �′).

The following proposition shows that the adoption of properties IIC and SYM
yields a unanimous social ranking over all those power relations �∈ T N such
that, for some i, j ∈ N and k ∈ {0, . . . , |N | − 2}, the relation between S ∪ {j}
and S ∪ {i} holds strict in the two directions for some S ∈ 2N\{i,j} with |S| = k
(precisely, Dk

ij(�) \ Dk
ji(�) �= ∅ and Dk

ji(�) \ Dk
ij(�) �= ∅), whereas for all the

cardinalities t �= k, we have that S ∪ {j} and S ∪ {i} are indifferent for each
S ∈ 2N\{i,j} with |S| = t (precisely, Dt

ji(�) = Dt
ij(�)).
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Proposition 2. Let ρ : T 2N −→ T N be a social ranking satisfying IIC and
SYM. Let �∈ T 2N , i, j ∈ N and k ∈ {0, . . . , |N |−2} be s.t. Dk

ij(�)\Dk
ji(�) �= ∅

and Dk
ji(�) \Dk

ij(�) �= ∅, and s.t. Dt
ji(�) = Dt

ij(�), for all t �= k. Then iρ(�)j
and jρ(�)i.

Proof. Take i, j ∈ N such that |Dk
ij(�)| ≥ |Dk

ji(�)|. Define another power rela-
tion ∈ T 2N such that

S ∪ {i} � S ∪ {j} ⇔ S ∪ {i}  S ∪ {j}

for each S ∈ 2N\{i,j} with |S| = k, and S  T and T  S for all the other
coalitions S, T ∈ 2N with |S| = |T | �= k + 1. We still need to define relation 
on the remaining coalitions of size k.

Take l ∈ N \ {i, j}. Let D ⊆ Dk
ij(�) be such that |D| = |Dk

ji(�)|. Define the
remaining comparisons in  as follows (an illustrative example of these cases are
given in Table 3):

case (1) for each S ∈ Dk
ji(�) with l ∈ S, let S ∪ {i, j} \ {l} � S ∪ {j} and S ∪

{i, j} \ {l}  S ∪ {i};
case (2) for each S ∈ Dk

ji(�) with l /∈ S, let S ∪ {i} � S ∪ {l} and S ∪ {j} 
S ∪ {l};
case (3) For each S ∈ D with l ∈ S, let S ∪{i, j} \ {l} � S ∪{j} and S ∪{i, j} \
{l} � S ∪ {i};
case (4) for each S ∈ D with l /∈ S, let S ∪ {i} � S ∪ {l} and S ∪ {j} � S ∪ {l};
case (5) for each S ∈ Dk

ij \ D with l ∈ S, let S ∪ {i, j} \ {l}  S ∪ {j} and S ∪
{i, j} \ {l}  S ∪ {i};
case (6) for each S ∈ Dk

ij\D with l /∈ S, let S∪{i}  S∪{l} and S∪{j}  S∪{l}.

Notice that |Dk
ji(�)| = |Dk

li()| = |Dk
jl()| and |Dk

ij(�)| = |Dk
il()| =

|Dk
lj()|. Suppose now that iρ(�)j. By IIC, we have iρ()j. By SYM, jρ()l

and lρ()i. By transitivity of ρ(), jρ()i. By IIC we conclude that jρ(�)i too.
In a similar way, if we suppose jρ(�)i, then we end up with the conclusion that
iρ(�)j too, and the proof follows.

Table 3. An illustrative example of the six possible cases for a power relation � as the
one considered in Proposition 2 with N = {1, 2, 3, i, j, l}, k = 2 and D = {{1, 2}, {2, l}}.

i vs j i vs. l j vs. l

case (1): S = {3, l} {3, i, l} � {3, j, l} {3, i, j} � {3, j, l} {3, i, j} � {3, i, l}
case (2): S = {2, 3} {2, 3, i} � {2, 3, j} {2, 3, i} � {2, 3, l} {2, 3, j} � {2, 3, l}
case (3): S = {2, l} {2, i, l} � {2, j, l} {2, i, j} � {2, j, l} {2, i, j} � {2, i, l}
case (4): S = {1, 2} {1, 2, i} � {1, 2, j} {1, 2, i} � {1, 2, l} {1, 2, j} � {1, 2, l}
case (5): S = {1, l} {1, i, l} � {1, j, l} {1, i, j} � {1, j, l} {1, i, j} � {1, i, l}
case (6): S = {1, 3} {1, 3, i} � {1, 3, j} {1, 3, i} � {1, 3, l} {1, 3, j} � {1, 3, l}

|Dij(�)| = 4 |Dil(�)| = 2 |Djl(�)| = 4

|Dji(�)| = 2 Dli(�)| = 4 |Dlj(�)| = 2
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5 Dictatorship of the Coalition Size

In this section, we define a class of power relations (namely, the per size-strong
dominant relations) characterized by the fact that a relation of dominance always
exists with respect to coalitions of the same size, but the dominance may change
with the cardinality (for instance, an element i could dominate another element
j when coalitions of size s are considered, but j could dominate i over coalitions
of size t �= s). We first need to introduce the notion of s-strong dominance.

Definition 5. Let �∈ T 2N , i, j ∈ N and s ∈ {0, . . . , n − 2}. We say that i
s-strong dominates j in �, iff

S ∪ {i} 	 S ∪ {j} for each S ∈ 2N\{i,j} with |S| = s. (1)

Definition 6. We say that �∈ T 2N is per size-strong dominant (shortly, ps-
sdom) iff for each s ∈ {0, . . . , n − 2} and all i, j ∈ N , we have either

[i s-strong dominates j in �] or [j s-strong dominates i in �].

The set of all ps-sdom power relations is denoted by S2N ⊆ T 2N .

Now, we study the effect of the combination of the properties of DOM and
IIC on a specific instance of ps-sdom power relations where there exist elements
that are always placed at the top or at the bottom in the rankings of coalitions
of equal cardinality.

Example 2. Consider a power relation �∈ S2N with N = {1, 2, 3, 4} and such
that

1 	 2 	 3 	 4 	 34 	 24 	 14 	 23 	 13 	 12 	 123 	 134 	 124 	 234.

We rewrite the relevant information about � by means of Table 4.
Note that for all S ⊆ N \ {1} and each l ∈ N \ (S ∪ {1}), it holds that

S ∪ {1} � S ∪ {l} if |S| ∈ {0, 2} (i.e., coalition S ∪ {1} is ranked above coalition
S ∪{l}, for all S containing 0 or 2 elements), whereas S ∪{1} � S ∪{l} if |S| = 1
(i.e., coalition S ∪ {1} is ranked below coalition S ∪ {l}, for all S containing
precisely one element). So, elements 1 (or, similar, element 4) is an “extreme”
element of N in �, where for extreme element we mean an element i ∈ N such

Table 4. The relevant information about � of Example 2.

1 vs. 2 2 vs. 3 1 vs. 3 1 vs. 4 2 vs. 4 3 vs. 4

1 � 2 2 � 3 1 � 3 1 � 4 2 � 4 3 � 4

13 ≺ 23 12 ≺ 13 12 ≺ 23 12 ≺ 24 12 ≺ 14 13 ≺ 14

14 ≺ 24 24 ≺ 34 14 ≺ 34 13 ≺ 34 23 ≺ 34 23 ≺ 24

134 � 234 124 ≺ 134 124 � 234 123 � 234 123 � 134 123 � 124
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that, for all coalitions S of the same size and not containing i, we have either
S∪{i} � S∪{l} for all l ∈ N\(S∪{i}), or, S∪{l} � S∪{i} for all l ∈ N\(S∪{i}).
In Proposition 3 we argue that on this kind of power relations, a social ranking
satisfying both DOM and IIC cannot rank “extreme” elements in between two
others.

Proposition 3. Let ρ : S2N −→ T N be a social ranking satisfying IIC and
DOM on S2N . Let �∈ S2N and i ∈ N be such that for each s ∈ {0, . . . , n − 2}
either

[S ∪ {i} 	 S ∪ {j} for all j ∈ N \ {i} and S ∈ 2N\{i,j} with |S| = s] (2)

or

[S ∪ {j} 	 S ∪ {i} for all j ∈ N \ {i} and S ∈ 2N\{i,j} with |S| = s]. (3)

Then, [iρ(�)j for all j ∈ N ] or [jρ(�)i for all j ∈ N ].

Proof. Suppose on the contrary that there exist j, k ∈ N \ {i}, such that

jρ(�)i and iρ(�)k. (4)

Define ∈ S2N such that

S ∪ {i} � S ∪ {j} ⇔ S ∪ {i} 	 S ∪ {j} for all S ⊆ N \ {i, j}, (5)

S ∪ {i} � S ∪ {k} ⇔ S ∪ {i} 	 S ∪ {k} for all S ⊆ N \ {i, k}, (6)

and
S ∪ {k} � S ∪ {j} for all S ⊆ N \ {j, k}. (7)

(note that each coalition S ∪ {i}, with S ⊆ N \ {i}, by condition (2) and (3),
is ranked strictly higher or lower than each other coalition S ∪ {j}, j �= i, so
condition (7) does not violate the transitivity of .)

By IIC, we have that iρ(�)j ⇔ iρ()j and iρ(�)k ⇔ iρ()k. So, by relation
(4), jρ()i and iρ()k. On the other hand, by DOM we have kρ()j and ¬(jρ(
)k), which yields a contradiction with the transitivity of ρ().

Proposition 3 shows that if there is an element i ∈ N having “contradictory” and
“radical” behavior depending on the size of coalitions, then the social ranking
satisfying IIC and DOM can not give him an intermediate position. In the fol-
lowing, we argue that if a power relation is in S2N and a social ranking satisfies
both DOM and IIC on the set of ps-sdom power relations S2N , then it must
exist a cardinality t∗ ∈ {0, . . . , n − 2} whose relation of t∗-strong dominance
(dictatorially) determines the social ranking. We first introduce the next lemma.

Lemma 1. Let i ∈ N and ρ : S2N −→ T N be a social ranking satisfying IIC
and DOM on S2N . There exists t∗ ∈ {0, . . . , n − 2} such that

jρ(�)k ⇔ j t∗-strong dominates k in �,

for all j, k ∈ N \ {i} and �∈ S2N .
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Proof. Given a power relation �∈ S2N , define another power relation �0∈ S2N

such that for each S ⊆ N \ {i} we have

S ∪ {l} 	0 S ∪ {i} for all l ∈ N \ (S ∪ {i}), (8)

and U �0 W :⇔ U � W for all the other possible pairs of coalitions U,W
whose comparison is not already considered in (8). Roughly speaking, the only
difference between �0 and � is that coalitions of size s containing i are placed
at the bottom of the ranking induced by � over the coalitions of the same size.
By DOM, it follows that lρ(�0)i for every l ∈ N .

Now, for each t ∈ {0, . . . , n − 2}, define a power relation �t∈ T 2N such that

S ∪ {i} 	t S ∪ {l} for each l ∈ N and S ∈ 2N\{i,l} with |S| = s, (9)

where s ∈ {0, . . . , t}, and U �t W :⇔ U �t−1 W for all the other possible
pairs of coalitions U,W whose comparison is not already considered in (9). So,
the only difference between �t and �t−1, for each t ∈ {1, . . . , n − 2}, is that in
�t coalitions of size t containing i are placed at the top of the ranking induced
by �t−1 over coalitions of the same size t, and all the remaining comparisons
remain the same as in �t−1.

Note that by Proposition 3, we have that either lρ(�t)i for every l ∈ N , or
iρ(�t)l for every l ∈ N . Moreover, By DOM, it follows that iρ(�n−2)l for every
j ∈ N . Let t∗ be the smallest number in {0, . . . , n − 2} such that lρ(�t∗−1)i for
every l ∈ N and iρ(�t∗)l for every l ∈ N (for the considerations above such
a t∗ must exist, being, at most, t∗ = n − 2). Next, we argue that for every
j, k ∈ N \{i}, the social ranking between j and k in � is imposed by the relation
of t∗-strong dominance in �. W.l.o.g., suppose that S ∪{j} � S ∪{k} (and, as a
consequence, S ∪ {j} �t∗ S ∪ {k}) for each S ∈ 2N\{j,k}, and |S| = t∗. Consider
another power relation ∈ T 2N obtained by �t∗ and such that:

S ∪ {j} � S ∪ {i} for each S ∈ 2N\{i,j} with |S| = t∗, (10)

S ∪ {i} � S ∪ {k} for each S ∈ 2N\{i,k} with |S| = t∗, (11)

S∪{j} � S∪{k} for each S ∈ 2N\{j,k}\
(
2N\{i,j}∪2N\{i,k}), and |S| = t∗, (12)

and, finally,
U  V :⇔ U �t∗ V (13)

for all the other relevant pairs of coalitions U,W of size s �= t∗ +1. By IIC jρ()i
(since in  the comparisons between coalitions containing i and j are precisely
as in �t∗−1 and, as previously stated, jρ(�t∗−1)i) and iρ()k (since in  the
comparisons between coalitions containing i and k are precisely as in �t∗ and,
as previously stated, iρ(�t∗)k). Then, by transitivity of ρ() we have jρ()k.
Note that by IIC, jρ()k ⇔ jρ(�t∗)k ⇔ jρ(�)k. We have then proved that
whenever j t∗-dominates k, then jρ(�)k.

The following theorem states the “dictatorship of the coalition’s size”.
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Theorem 2. Let ρ : S2N −→ T N be a social ranking satisfying IIC and DOM
on S2N . There exists t∗ ∈ {0, . . . , n − 2} such that

iρ(�)j ⇔ i t∗-strong dominates j in �,

for all i, j ∈ N and �∈ S2N .

Proof. Given a power relation �∈ S2N , let i ∈ N and define �t∗ starting from
� and i precisely as in the proof of Lemma 1.

Now take k ∈ N\{i} and apply Lemma 1 with k in the role of i. Consequently,
we have that there exists t̂ ∈ {0, . . . , n − 2} such that

hρ(�)l ⇔ h t̂-strong dominates l in �,

for each h, l ∈ N \ {k}, and in particular

iρ(�)l ⇔ i t̂-strong dominates l in �,

for any complete power relation �∈ S2N . But in the proof of Lemma 1 we have
shown that

iρ(�)l ⇔ i t∗-strong dominates l in �t∗

(remember that t∗ in the proof of Lemma 1 is the smallest number in {0, . . . , n−
2} such that lρ(�t∗−1)i for every l ∈ N and iρ(�t∗)l for every l ∈ N). Then it
must be t̂ = t∗, and the proof follows.

6 An Algorithmic Approach

In view of the results provided in the previous axiomatic analysis, each combi-
nation of two axioms yields either no social ranking or an unsatisfactory one.
It is worth noting that all the axioms that we studied in this paper are based
on the comparison of subsets having the same number of elements. Therefore, it
would be interesting to study properties based on the comparison among sub-
sets with different cardinalities. Following this idea, an interesting property is
the notion of essential alternative that has been introduced in Puppe [13] as a
necessary condition for a power relation representing the preferences of a decision
maker over menus (in this context, the preference over menus of a decision maker
should reflect her or his freedom to chose a most preferred alternative from any
selected menu). Given a power relation �∈ T 2N and a coalition S ∈ 2N , an
element i ∈ N \ S is said to be essential for S if S ∪ {i} 	 S. In our frame-
work, where a power relation represents the relative strength of coalitions, an
item i is essential for a coalition S not containing i if coalition S ∪ {i} is strictly
stronger than S. Differently stated, an item i is essential for S (not contain-
ing i), if the marginal contribution v(S ∪ {i}) − v(S) of i to S ∪ {i} is strictly
positive, for every utility function v : 2N → R associated to the power rela-
tion � and such that v(T ) ≥ v(U) :⇔ T � U , for each T,U ∈ 2N [11]. Our
goal in this section is to assess the influence of items in terms of the number of
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coalitions in which each item i is essential under a given power relation. More
precisely, for each item i ∈ N we first need to introduce the notion of essential
set Ei(�) := {S ∈ 2N\{i} : S ∪ {i} 	 S}. Then we define the social ranking
solution ρe : T 2N −→ T N such that

iρe(�)j :⇔ |Ei(�)| ≥ |Ej(�)| (14)

for each i, j ∈ N and �∈ T 2N . It is easy to check that ρe does not satisfy any
of the axioms studied in the previous sections.

Example 3. Consider the power relation �∈ T 2N with N = {1, 2, 3, 4} such that
2 	 4 	 23 	 123 	 13 ∼ 134 ∼ 124 ∼ 234 ∼ N ∼ 12 	 14 	 1 	 3 	 34 	 24 	
∅. Notice that the relevant information presented in Table 1 of Example 1 is still
compatible with this power relation. Moreover, the essential sets for players in N
are: E1(�) = {∅, {3}, {2, 4}, {3, 4}}, E2(�) = {∅, {3}, {1}, {1, 3}, {1, 4}, {3, 4}},
E3(�) = {∅, {1, 2}, {1, 4}, {2, 4}} and E4(�) = {∅, {1}}. Consequently, accord-
ingly to the social ranking ρe, 2 is the most influential item (|E2(�)| = 6),
followed by 1 and 3 with the same score (|E1(�)| = E3(�)| = 4), and finally by
item 4 (|E4(�)| = 2).

Notice that the definition of an essential set Ei(�), for all i ∈ N , involves
the comparison of 2n−1 pairs of coalitions S and S ∪ {i}, with S ⊆ N \ {i}.
On the other hand, several coalitions are compared multiple times over different
essential sets. So, it is computationally useful to design a procedure aimed at
computing the social ranking ρe(�) avoiding those multiple comparisons (see
Algorithm 1). To this aim, we first group coalitions over classes of indifferences
with respect to �: suppose we have S1 � S2 � S3 � · · · � S2n then we shall
write Σ1 	 Σ2 	 Σ3 	 · · · 	 Σl, to denote the power relation �, but having

Algorithm 1. A procedure to find a social ranking based on the essential sets.

Input : A power � on 2N in the form of indifference classes
Σ1 � Σ2 � · · · � Σl.

Output: A vector d ∈ R
N such that di = |Ei(�)| for each i ∈ N .

1 initialisation: di := 0 for each i ∈ N ; X := ∅ ;
2 for k = 1 to l do
3 X := X ∪ Σk;
4 for every S ∈ Σk do
5 for every i ∈ S do
6 if {S \ {i}} /∈ X then
7 di := di + 1;
8 end

9 end

10 end

11 end
12 return d.
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grouped in Σ1 all the coalitions indifferent to S1 (i.e., all T ∈ 2N s.t. T � S1

and S1 � T ), in Σ2 all the coalitions indifferent to the first coalition strictly
less strong than S1 in the ranking �, and so on. Then, a coalition S in Σk is
strictly stronger than any coalition in Σk+1. Notice that at each iteration k,
k ∈ {1, . . . , l}, the test to establish whether i is essential for S ∈ Σk is done by
means of the if condition in line 6 (if S \ {i} belongs to some Σt, t ≤ k, then i
is not essential for S).

A possible direction for future research is the open question about which
axioms could be used to characterize a social ranking based on the essential sets
introduced in this section. It would also be interesting to consider social ranking
based on alternative definitions of essential item. For instance, consider a set of
items N = {1, 2, 3} and a power relation such that {2, 3} 	 {1, 3} 	 {1} ∼ {2}.
Clearly items 1 and 2 are essential for {1, 3} and {2, 3}, respectively, but 2 seems
“more” essential than 1, in the sense that the contribution of 2 to the power of
coalition {2, 3} is larger than the contribution of 1 to {1, 3} ({1} and {2} are
indifferent, but {2, 3} is strictly stronger than {1, 3}). This kind of considerations
about the “intensity” of items’ contribution requires a more complex algorithmic
analysis of the structure of a power relation aimed at comparing the role of single
elements over sets of different cardinality.
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Abstract. In this paper, we study the computational complexity of several prob-
lems pertaining to the model of group identification. In group identification, a
set of agents try to determine who among themselves are socially qualified for
a given task. In particular, we introduce the concepts of possible and necessary
winners in the context of group identification and study them for the consent,
liberal-start-respecting, and consensus-start-respecting rules.

1 Introduction

Decision making plays an important role in multi-agent systems. For instance, a set of
agents (or robots) need to complete a task cooperatively. Due to some reasons (e.g.,
in order to minimize the cost of the resources), only a few agents can take the job.
In this case, all agents need to make a joint decision of which agents are going to
take the job. In this paper, we study such a decision making model, in which a set
N of individuals desire to select a subset of N. In particular, each individual qualifies
or disqualifies every individual in N, and then a social rule is applied to select the
socially qualified individuals. This model has been widely studied under the name of
group identification in economics [5,6,15,19]. In particular, the consent rules and the
two procedural rules consensus-start-respecting rule (CSR) and liberal-start-respecting
rule (LSR) have been extensively studied in the literature [5,14,19]. Consent rules are a
class of social rules, where each of them is characterized by two positive integers s and t.
Moreover, if an individual qualifies herself, then this individual is socially qualified if
and only if there are at least s− 1 other individuals who also qualify her. On the other
hand, if the individual disqualifies herself, then this individual is not socially qualified
if and only if there are at least t−1 other individuals who also disqualify her. The CSR
and the LSR social rules recursively determine the socially qualified individuals. In the
beginning, the set KLSR of individuals each of whom qualifies herself are considered
LSR socially qualified, while the set KCSR of individuals each of whom is qualified by
all individuals are considered CSR socially qualified. Then, in each iteration for the
social rule LSR (resp. CSR), an individual a is added to KLSR (resp. KCSR) if there is
an individual in KLSR (resp. KCSR) qualifying a. The iteration terminates until no new
individual can be added to KLSR (resp. KCSR), and the socially qualified individuals are
the ones in KLSR (resp. KCSR).
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Given the full information of qualifications or disqualifications of these individuals,
the socially qualified individuals with respect to all social rules mentioned above can
be calculated in polynomial time. However, in some real-world applications, we are
not able to obtain or access full information. For instance, if the number of individu-
als is extremely large (this happens often on online platforms), then it is not expected
that every individual shows her opinion over every individual. Instead, every individual
only qualifies or disqualifies a small number of individuals whom she knows well or
whom she is particularly interested in. In addition, in some cases, even though the full
qualifications and disqualifications exist, they cannot be fully accessed by some specific
people, say someone (or a company) who would like to predict the result. In this case,
the one who wants to predict the result can only do so based on a part of the informa-
tion. With the missing of some information, two significant questions arise: who have
positive possibility to be socially qualified if the missing information is filled and who
are definitely socially qualified regardless of the missing information. Moreover, how
much complexity resources we need to achieve an answer to the above questions is of
particular importance.

In this paper, we study the complexity of two problems that capture the above two
questions. In particular, we study the POSSIBLY QUALIFIED INDIVIDUALS problem
(PQI) and the NECESSARILY QUALIFIED INDIVIDUALS problem (NQI). In both prob-
lems we are given a set of individuals N each of whom qualifies or disqualifies a subset
of N, together with a subset S ⊆ N. The former problem asks whether there is an exten-
sion of these qualifications and disqualifications with respect to which all individuals in
S are socially qualified, and the latter one asks whether all individuals in S are socially
qualified with respect to every extension of these qualifications and disqualifications.
Here, an extension means that every individual fills out potential gaps regarding indi-
viduals’ qualifications, i.e., she determines a given qualification for individuals with
previously undefined qualifications.

Investigating scenarios with incomplete information are relevant, especially from
a practical perspective. The PQI/NQI problems considered here are a natural first step
towards more complicated scenarios with incomplete information. The main reason
why we study consent rules, the liberal-start-respecting rule, and the consensus-start-
respecting rule is that they are the most significant social rules that have been investi-
gated in the literature so far. Importantly, it is shown that they satisfy several fairness
properties, respectively, see, e.g., [6,10,19].

1.1 Related Work

The model of group identification is related to voting systems. In a voting system, we
are given a set of candidates and a set of voters each of whom casts a vote. Then, a vot-
ing correspondence is used to select a subset of candidates. From this standpoint, group
identification can be considered as a voting system where the individuals are both vot-
ers and candidates. Nevertheless, group identification differs from voting systems in
many significant aspects. First, the goal of a voting system is to select a subset of candi-
dates, which are often called winners since they are considered as more competitive or
outstanding compared with the remaining candidates for some specific purpose. How-
ever, in group identification the socially qualified individuals do not imply that they are
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more competitive or outstanding than the remaining individuals. For instance, in situa-
tions where we want to identify left-wing party members among a group of people, the
model of group identification is more suitable. In other words, group identification is
more close to a classification model. Second, as voting systems aim to select a subset
of competitive candidates for some special purpose, more often than not, the number
of winners are pre-decided (e.g., in a single-winner voting, exactly one candidate is
selected as the winner). As a consequence, many voting systems need to adopt a cer-
tain tie-breaking method to break the tie when many candidates are considered equally
competitive. However, group identification does not need a tie breaking method, since
there is no size bound of the number of socially qualified individuals.

Among many voting systems, group identification is most related to the classic
Approval voting system. In an Approval voting, each voter approves or disapproves
each candidate. Thus, each voter’s vote is represented by a 1–0 vector, where the entries
with 1s (resp. 0s) mean that the voter approves (resp. disapproves) the corresponding
candidate. The winners are among the candidates which get the most approvals. If the
voters and candidates are the same group of individuals, then it seems that Approval vot-
ing is a social rule. Nevertheless, as discussed above, Approval voting is more often con-
sidered as a single-winner voting system and thus need to utilize a tie breaking method.
Recently, several variants of Approval voting have been studied as multi-winner vot-
ing systems [12,13,16,18]. However, the number of winners is bounded by (or exactly
equals to) an integer k [1]. As such, tie-breaking schemes have to be factored in deter-
mining the winning set.

As far as we know, the problem of determining the socially qualified individuals in
group identification with partial information has not been investigated so far. Neverthe-
less, determining winners in voting systems with partial information has been studied in
the literature, see, e.g., [1,11,20,22]. In addition, many other voting problems involving
partial information have also been studied in the literature [3,4].

Our work is also related to the paper by Yang and Dimitrov [21], where they studied
the complexity of constructive group control problems for the social rules studied in this
paper. Recently, Erdélyi, Reger and Yang complemented the work of Yang and Dimitrov
by investigating the complexity of destructive group control problems and group bribery
problems [7]. We refer to [7,21] for further details of the group control problems.

The liberal-start-respecting and the consensus-start-respecting rules were intro-
duced by Dimitrov, Sung and Xu [6].

2 Preliminaries

In this paper, we will need the following notations and definitions. Unless stated other-
wise, all numerical data are integers.

Social rule. Let N be a set of individuals and n = |N| throughout this paper. A profile
ϕ over N is a mapping from N ×N to {0,1}. In particular, ϕ(a,a′) = 1 means that
the individual a ∈ N qualifies the individual a′ ∈ N, and ϕ(a,a′) = 0 means that a
disqualifies a′. A social rule is a function f which associates each profile ϕ over N with
a subset f (ϕ) ⊆ N. We call the individuals in f (ϕ) the socially qualified individuals
with respect to f and ϕ . In this paper, we mainly study the following social rules.
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Consent rules f (s,t). Each consent rule f (s,t) is specified by two positive integers s and
t such that for every individual a ∈ N,

1. if ϕ(a,a) = 1, then a ∈ f (s,t)(ϕ) if and only if |{a′ ∈ N | ϕ(a′,a) = 1}| ≥ s, and
2. if ϕ(a,a) = 0, then a �∈ f (s,t)(ϕ) if and only if |{a′ ∈ N | ϕ(a′,a) = 0}| ≥ t.

The two positive integers s and t are referred to as the consent quotas of the rule
f (s,t). It is worth mentioning that in the original definition of consent rules by Samet [19]
there is an additional condition s+t ≤ n+2 for consent quotas s and t to satisfy. Indeed,
the condition s+ t ≤ n+ 2 is crucial for the consent rules to satisfy the monotonicity
property1. Recall that a social rule is monotonic if a socially qualified individual a is still
socially qualified when someone who disqualifies a changes her preference to qualify
a. Since we mainly study PQI and NQI from the complexity theoretic point of view, we
drop this condition from the definition of the consent rules (we indeed achieve results
for a more general class of social rules that encapsules the original consent rules defined
in [19]).

Consensus-start-respecting rule fCSR. This rule determines the socially qualified indi-
viduals iteratively. First, all individuals who are qualified by everyone in the society are
considered socially qualified. Then, in each iteration, all individuals who are qualified
by at least one of the currently socially qualified individuals are added to the set of
socially qualified individuals. The iteration terminates until no new individual is added.
Formally, let

KCSR
0 (ϕ) = {a ∈ N | ∀a′ ∈ N, ϕ(a′,a) = 1}.

For each positive integer � = 1,2, . . . , let KCSR
� (ϕ) be defined as

KCSR
�−1 (ϕ)∪{a ∈ N | ∃a′ ∈ KCSR

�−1 (ϕ), ϕ(a′,a) = 1}.

Then fCSR(ϕ) = KCSR
� (ϕ) for some � such that KCSR

� (ϕ) = KCSR
�−1 (ϕ).

Liberal-start-respecting rule f LSR. This rule is similar to fCSR with the only differ-
ence that the initial socially qualified individuals are those who qualify themselves. In
particular, let

KLSR
0 (ϕ) = {a ∈ N | ϕ(a,a) = 1}.

For each positive integer � = 1,2, . . . , let KLSR
� (ϕ) be defined as

KLSR
�−1 (ϕ)∪{a ∈ N | ∃a′ ∈ KLSR

�−1 (ϕ), ϕ(a′,a) = 1}.

Then f LSR(ϕ) = KLSR
� (ϕ) for some � such that KLSR

� (ϕ) = KLSR
�−1 (ϕ).

Note that fCSR(ϕ) (resp. f LSR(ϕ)) is empty if there are no individuals qualified by
everyone (themselves) in the society.

Example. Let N = {a1,a2,a3,a4}. Consider the profile ϕ over N as follows (the entry
row indexed by ai and column indexed by a j is ϕ(ai,a j)).

1 In fact, the problem occurs only when individual a changes her own assessment from not
qualified to qualified. In other words, without the restriction that s+ t ≤ n+2, if a is socially
qualified, then she is still socially qualified if an individual other than a disqualifying a in
advance changes her assessment to qualify a.
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a1 a2 a3 a4

a1 1 1 1 1
a2 0 1 1 0
a3 0 1 0 0
a4 0 1 1 0

The socially qualified individuals with respect to some of the above social rules f
are as follows.

f (1,1) f (1,2) f (2,1) fCSR f LSR

a1,a2 a1,a2,a3 a2 a2,a3 a1,a2,a3,a4

Partial profile. Intuitively, a partial profile is a profile with several 1 s and 0 s to be
replaced with the symbol ∗, where ϕ(a,b) = ∗ means that whether a qualifies b or
not is unknown, or a does not hold an opinion on the qualification of b. The formal
definition is as follows.

A partial profile ϕ is a mapping ϕ : N ×N �→ {0,1,∗}. For each a ∈ N and x ∈
{0,1,∗}, x(a,ϕ) is the set of individuals b ∈ N such that ϕ(a,b) = x, i.e., x(a,ϕ) =
{b ∈ N | ϕ(a,b) = x}. A profile φ is an extension of a partial profile ϕ if and only if

1. for every a,b ∈ N such that ϕ(a,b) ∈ {0,1}, it holds that φ(a,b) = ϕ(a,b); and
2. for every a,b ∈ N such that ϕ(a,b) = ∗, it holds that φ(a,b) ∈ {0,1}.

For a nonnegative integer r ≤ n, an r-profile ϕ over N is a profile such that for every
a ∈ N, it holds that |1(a,ϕ)| = r, i.e., each individual qualifies exactly r individuals in
N. A partial profile ϕ ′ is called an r-partial profile if |1(a,ϕ ′)| ≤ r for every a ∈ N. An
r-profile φ is an r-extension of an r-partial profile ϕ if φ is an extension of ϕ .

Clearly, an r-partial profile ϕ has an r-extension if and only if | ∗ (a,ϕ)| ≥ r −
|1(a,ϕ)| for every a∈N. Throughout this paper, we consider only r-partial profiles that
have r-extensions.

Problem statement. We mainly study the complexity of the following problems.

f -POSSIBLY/ f -NECESSARILY QUALIFIED INDIVIDUALS ( f -PQI/ f -NQI)

Given: A 3-tuple (N,ϕ ,S) of a set N of individuals, a partial profile ϕ over N, and a
nonempty subset S ⊆ N.

f -PQI: Is there an extension φ of ϕ such that S ⊆ f (φ)?
f -NQI: Does S ⊆ f (φ) hold for every extension φ of ϕ?

In addition to the above problems, we also study f -r-PQI (resp. f -r-NQI), where
the input and question are similar to that of f -PQI (resp. f -NQI) with only the following
differences. First, in the input we require ϕ to be an r-partial profile rather than a partial
profile. Second, in the question we replace “extension” with “r-extension”. Notice that
f -r-PQI ( f -r-NQI) is not a special case of f -PQI ( f -NQI) as one of the restrictions is
on the solution space.
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Throughout this paper, we will use I = (N,ϕ,S ⊆ N) to denote the given instance
in the problems we study for a social rule f , where f ∈ { f (s,t), f LSR, fCSR}, and will not
state this explicitly in the proofs of the theorems. Furthermore, for better readability we
will use the diction “PQI/NQI for social rule f ” instead of “ f -PQI/ f -NQI”.

Graph. We will also need some basic knowledge on graph theory.
A digraph (or directed graph) G is a tuple (V,A) where V is the vertex set and A

is the arc set. An arc from a vertex a to a vertex b is denoted by (a,b). We also use
V (G) and A(G) for the vertex set and arc set of G, respectively. A directed path is
a vertex sequence (v1,v2, . . . ,vt) such that (vi,vi+1) ∈ A for every i = 1,2, . . . , t−1. A
Hamiltonian path is a directed path such that every vertex in the digraph appears exactly
once in the path. We refer to [2] for further details on digraphs.

3 Complexity with Unbounded Qualifications

In this section, we study PQI and NQI where each individual can qualify as many as
up to n individuals. Our main results are polynomial-time algorithms for PQI and NQI
for consent rules, liberal-start-respecting rule and consensus-start-respecting rule.

Consider first consent rules. Our polynomial-time algorithms are based on the obser-
vation that if an individual a is socially qualified and someone else disqualifying a
changes her opinion to qualifying a, then a is still qualified. In particular, this observa-
tion enables us to safely reset the values of many ϕ(a,b) with ϕ(a,b) = ∗ in advance
to 1. We omit the proof due to space restrictions.

Theorem 1. PQI and NQI for consent rules f (s,t) can be solved in O(n2) time, for all
integers s and t.

Now we turn our attention to the procedural rules fCSR and f LSR. Based on a similar
observation as the one for consent rules, we develop polynomial-time algorithms for
PQI and NQI for these two rules. We omit the proof due to space restrictions.

Theorem 2. PQI and NQI for f LSR and fCSR can be solved in O(n2) time.

4 Complexity with r-Partial Profiles

In this section, we study two variants of PQI and NQI, namely r-PQI and r-NQI. In par-
ticular, in these two variants every individual is allowed to qualify exactly r individuals
in the extensions of the given partial profile. We have seen in the previous section that
PQI and NQI are polynomial-time solvable for all social rules considered in this paper.
The intuition is that in all cases, maximizing the number of individuals who qualify
an individual a increases the possibility of a to be socially qualified in the extensions,
and maximizing the individuals who disqualify a decreases the possibility of a to be
socially qualified. As such, in PQI/NQI we generally replace ∗ with 1/0. However, if
every individual is allowed to qualify exactly r individuals, we have to carefully replace
∗ with 1 or 0.
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We prove that r-PQI and r-NQI for consent rules are polynomial-time solvable too.
However, the polynomial-time algorithms studied in this section are not trivial gener-
alizations of the ones studied in the previous section. In fact, we derive different algo-
rithms for consent rules with different consent quotes s and t. Moreover, some of the
polynomial-time algorithms are derived only when r and t are both constants. However,
the polynomial-time algorithms studied in the previous section hold for all integers s and
t. For the two procedural social rules fCSR and f LSR, we prove that 1-PQI and 1-NQI
are polynomial-time solvable. However, if r increases just by one, we show that r-PQI
for both procedural rules becomes NP-hard. Hence, we obtain a complexity dichotomy
result for r-PQI for fCSR and f LSR with respect to the values of r.

An observation that is useful in deriving the polynomial-time algorithms is as fol-
lows: if there is an a ∈ N such that |1(a,ϕ)| = r, then in each r-extension φ of ϕ it
must be that φ(a,b) = 0 for every b ∈ ∗(a,ϕ). In addition, if |∗(a,ϕ)| = r− |1(a,ϕ)|
for an individual a∈N, in every r-extension φ of ϕ it must be that φ(a,b) = 1 for every
b ∈ ∗(a,ϕ).

4.1 Consent Rules

We consider first r-PQI and r-NQI for consent rules. Our first result is a polynomial-
time algorithm for r-NQI for consent rules f (s,t). Moreover, the polynomial-time solv-
ability holds regardless of the values of s and t.

Theorem 3. r-NQI for all consent rules f (s,t) can be solved in O(n2) time.

Proof. We develop a polynomial-time algorithm as follows. First, the algorithm cal-
culates |1(a,ϕ)| and | ∗ (a,ϕ)| for all a ∈ N. This can be done in O(n2) time. Then,
the algorithm breaks down I into |S| subinstances, each of which takes as input I and
an individual a ∈ S, and asks if there is an r-extension φ of ϕ such that a �∈ f (s,t)(φ).
Clearly, I is a NO-instance if and only if at least one of the subinstances is a YES-
instance. Let I′ = (I,a ∈ S) be a subinstance. We show how to solve I′ in polynomial
time, by distinguishing between the following cases.

Case 1. ϕ(a,a) ∈ {0,1}.
In this case, we do the following. For every b ∈ N such that a ∈ ∗(b,ϕ), if

|∗(b,ϕ)| > r− |1(b,ϕ)|, reset ϕ(b,a) = 0; otherwise, reset ϕ(b,a) = 1. This can be
done in O(n) time. If ϕ(a,a) = 1 and |{b ∈ N | ϕ(b,a) = 1}| < s, or ϕ(a,a) = 0 and
|{b ∈ N | ϕ(b,a) = 0}| ≥ t after doing so, I′ is a YES-instance. Otherwise, I′ is a NO-
instance. We can check this in O(n) time.

Case 2. ϕ(a,a) = ∗.
Assume that | ∗ (a,ϕ)| > r− |1(a,ϕ)| (and also |1(a,ϕ)| < r), since otherwise, a

qualifies (disqualifies) herself in all r-extensions of ϕ . Hence, we can reset ϕ(a,a) = 1
(ϕ(a,a) = 0) and solve I′ by calling the procedure in Case 1. We deal with Case 2
with this assumption as follows. First, for every b ∈ N \ {a} such that a ∈ ∗(b,ϕ), if
|∗(b,ϕ)| > r−|1(b,ϕ)|, reset ϕ(b,a) = 0; otherwise, reset ϕ(b,a) = 1. After doing so,
we compare s− 2 with the number of individuals qualifying a. In particular, if |{b ∈
N | ϕ(b,a) = 1}| ≤ s− 2, a is not socially qualified in every r-extension of ϕ after
resetting ϕ(a,a) = 1. Hence, we can conclude that I′ is a YES-instance. If, however,
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|{b∈N | ϕ(b,a) = 1}| ≥ s−1, we reset ϕ(a,a) = 0. Then, if |{b∈N | ϕ(b,a) = 0}| ≥ t,
a is not socially qualified in every r-extension of ϕ , implying that I′ is a YES-instance
as well. In all other cases, I′ is a NO-instance. The above procedure can be done in O(n)
time.

As we have at most |S| ≤ n subinstances, the whole running time of the algorithm is
bounded by O(n2)+n ·O(n) = O(n2), where the first O(n2) is the time for calculating
|1(a,ϕ)| and | ∗ (a,ϕ)| for all a ∈ N. ��

Now we consider r-PQI for consent rules. We start with a special case of r-PQI
where in the input profile ϕ it holds that ϕ(a,a) ∈ {0,1} for every a ∈ S. We denote
this special case by r-PQI-S and show that this problem for all consent rules f (s,t) is
polynomial-time solvable even for r,s, t being non-constants. This algorithm will be
used to develop polynomial-time algorithms for r-PQI for some consent rules later.

For an individual a ∈ N, let 1−1(a,ϕ) be the set of individuals qualifying a in ϕ ,
i.e., 1−1(a,ϕ) = {b ∈ N | ϕ(b,a) = 1}.

Lemma 1. r-PQI-S for consent rules can be solved in O(n3) time.

Proof. Let I = (N,ϕ,S ⊆ N) be a given instance of r-PQI-S for f (s,t), where ϕ is an r-
partial profile and ϕ(a,a)∈ {0,1} for every a∈ S. We solve the problem in polynomial-
time by reducing it to the MAXIMUM FLOW problem. We create the following network.

For every a ∈ N, we create one vertex v(a). Moreover, for every a ∈ S, we further
create one vertex u(a). Finally, we create a source vertex x and a sink vertex y. The
arcs and capacities of the arcs are as follows. First, there is an arc from the source
x to every v(a) with capacity c(x,v(a)) = r− |1(a,ϕ)|, indicating that a can further
qualify at most r − |1(a,ϕ)| individuals in S. Second, there is an arc from a vertex
v(a),a ∈ N to a vertex u(b),b ∈ S with capacity 1 if and only if ϕ(a,b) = ∗, indicating
that it is possible to let a qualify b in an r-extension of ϕ . Finally, there is an arc from
every vertex u(a),a∈ S to the sink y with capacity c(u(a),y) =max{0,s′−|1−1(a,ϕ)|},
where s′ = s if ϕ(a,a) = 1 and s′ = |N|− t+ 1 if ϕ(a,a) = 0. The capacity of the arc
from u(a) to y indicates how many qualifications are still needed to make a socially
qualified. See Fig. 1 for an illustration of the network.

We argue that G has a flow of size ∑a∈S c(u(a),y) if and only if I is a YES-instance.
Assume that there is an r-extension φ of ϕ under which all individuals in S are socially
qualified with respect to f (s,t). Consider the following flow. First, the flow on each arc
from u(a),a ∈ S to y is c(u(a),y). Consider now the flows on the arcs in the middle.
As each individual a ∈ S is socially qualified in φ , the number of individuals b such
that ϕ(b,a) = ∗ and φ(b,a) = 1 is at least max{0,s′ − |1−1(a,ϕ)|} = c(u(a),y), where
s′ is defined as above. Then, from these individuals, we select any arbitrary c(u(a),y)
individuals. Moreover, for each selected individual b ∈ N, the flow on the arc from v(b)
to u(a) is 1. Finally, the flow on each arc from x to every v(a),a ∈ N is the sum of flows
leaving v(a). Note that there can be at most r− |1(a,ϕ)| individuals b ∈ S such that
ϕ(a,b) = ∗ and φ(a,b) = 1. Hence, the flow on each arc from x to v(a),a ∈ N does not
exceed the capacity of the arc. The flows on all remaining arcs are 0. Clearly, the size
of the flow is ∑a∈S c(u(a),y). It remains to prove the other direction. Assume that G
has a flow of size ∑a∈S c(u(a),y). Due to the integrality theorem [9], there is an integer
flow F of the same size. We can find an r-extension of ϕ under which all individuals
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Fig. 1. An illustration of the construction of the network in the proof of Lemma 1. Each red arc
from x to a vertex v(a) corresponding to an individual a ∈ N has capacity r− |1(a,ϕ)|. Each
blue arc from a vertex u(a) corresponding to an individual a ∈ S to y has capacity max{0,s′ −
|1−1(a,ϕ)|}. A black arc from v(a),a ∈ N to u(a′),a′ ∈ S means that ϕ(a,a′) = ∗. Moreover,
each black arc in the middle has capacity 1. (Color figure online)

in S are socially qualified as follows. Consider the r-partial profile φ obtained from ϕ
by resetting ϕ(b,a) = 1 for every arc from a vertex v(b),b ∈ N to a vertex u(a),a ∈ S
with flow 1. Hence, for each a ∈ S with ϕ(a,a) = 1, there are at least |1−1(a,ϕ)|+
c(u(a),y) ≥ s individuals qualifying a with respect to φ . In addition, for each a ∈ S
with ϕ(a,a) = 0, there are at least |1−1(a,ϕ)|+ c(u(a),y) ≥ |N| − t + 1 individuals
qualifying a. This means that there are at most t − 1 individuals disqualifying a with
respect to φ . Then, due to the definition of f (s,t), any r-extension of φ is a solution of I.

It remains to analyze the running time of the algorithm. It was recently shown by
Orlin [17] that the MAXIMUM FLOW problem is solvable in O(p · q) time, where p
is the number of arcs and q is the number of vertices in the network. As the network
constructed above has O(n2) arcs and O(n) vertices, the running time of our algorithm
is bounded by O(n3). ��

Armed with Lemma 1, we are ready to show our polynomial-time algorithms for r-
PQI for consent rules. We start with some results for r-PQI for consent rules with small
constant consent quotes s and t but unbounded values of r.

Theorem 4. r-PQI for f (1,1) and for f (1,2) can be solved in O(n2) time, and for f (2,1)

can be solved in O(n3) time.

Proof. We develop polynomial-time algorithms with the corresponding running times
as stated in the theorem as follows.

f (1,1): If there is an individual a ∈ S such that ϕ(a,a) = 0, I is a NO-instance.
This can be checked in O(|S|) = O(n) time. In addition, if there is an a ∈ S such that
ϕ(a,a)= ∗ and |1(a,ϕ)|= r, the instance is a NO-instance as well, as in all r-extensions
of ϕ the individual a disqualifies herself. If no such an individual a as described above
exists, the instance must be a YES-instance. As it takes O(n) time to calculate |1(a,ϕ)|
for each a ∈ S, the algorithm terminates in O(n)+ |S| ·O(n) = O(n2) time.
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f (1,2): If there exist a ∈ S and b ∈ N \ {a} such that ϕ(a,a) = ϕ(b,a) = 0, we
conclude that I is a NO-instance. In addition, if there exist a ∈ S and b ∈ N \{a} such
that ϕ(a,a) = ∗ and ϕ(b,a) = 0, we reset ϕ(a,a) = 1. If after the reset |1(a,ϕ)| > r, we
conclude that I is a NO-instance. We deal with the remaining cases as follows. It is clear
that if ϕ(a,a) = 1 for some a ∈ S, or ϕ(a,a) = 0 and ϕ(b,a) = 1 for all b ∈ N \ {a},
then a is socially qualified in every r-extension of ϕ . We need only to focus on other
individuals in S. Let S∗

0 be the set of individuals a ∈ S such that ϕ(a,a) = 0 and there
exists b∈N\{a} such that a∈ ∗(b,ϕ). We maintain the set S∗

0 throughout the algorithm.
Clearly, for every a∈ S∗

0, we have to reset ϕ(b,a) = 1 for all b∈N such that ϕ(b,a) = ∗,
since otherwise a would not be socially qualified. Due to this, we derive a procedure
to deal with the remaining cases as follows. While S∗

0 �= /0, for every a ∈ S∗
0 and b ∈ N

such that ϕ(b,a) = ∗, reset ϕ(b,a) = 1. If r < |1(b,ϕ)| after resetting ϕ(b,a) = 1, the
procedure immediately returns “NO”.

After the while loop, for all b ∈ N such that r = |1(b,ϕ)|, we do the following: (1)
reset ϕ(b,a) = 0 for all a ∈ ∗(b,ϕ); (2) update S∗

0; and (3) go back to the while loop
if S∗

0 �= /0. If no conclusion is drawn after the while loops terminate, we can conclude
that I is a YES-instance. The reason is as follows. For every a ∈ S with ϕ(a,a) = ∗, if
|1(a,ϕ)| < r, we can reset ϕ(a,a) = 1 to make a socially qualified. If |1(a,ϕ)|= r, then
due to the above algorithm, it must be that all the other individuals qualify a. Hence, we
can safely reset ϕ(a,a) = 0 (in this case, a is socially qualified in every r-extension).
The above algorithm can be implemented in O(n2) time.

f (2,1): If there is an a ∈ S such that ϕ(a,a) = 0, or ϕ(a,a) = ∗ and r = |1(a,ϕ)|,
then I is a NO-instance, since a is not socially qualified in every r-extension of ϕ . As
|1(a,ϕ)| can be calculated in O(n) time, this can be done in O(n2) time. Assume that no
such individuals a discussed above exist. Then, if there is an a∈ S such that ϕ(a,a) = ∗,
we can safely reset ϕ(a,a) = 1, since if there is an r-extension of ϕ under which all
individuals in S are socially qualified, then a must qualify herself in the r-extension.
This can be clearly done in O(|S|) = O(n) time. Hence, we have now that ϕ(a,a) = 1
for every a ∈ S. Then, due to Lemma 1, we can solve the instance in O(n3) time. The
whole running time of the algorithm is clearly bounded by O(n)+O(n3) = O(n3). ��

We have shown that if (s, t) ∈ {(1,1),(1,2),(2,1)}, r-PQI for f (s,t) is polynomial-
time solvable even when r is not a constant. In the following, we continue to show
some polynomial-time algorithms based on Lemma 1. However, these algorithms take
the assumption that r and t are constants. Before showing the result, let’s first study
a property, as summarized in the following lemma. In general, it states that in any
r-profile the number of socially qualified individuals disqualifying themselves is
bounded by r+ t − 1. Hence, due to this property, we can enumerate all individuals
a ∈ S with ϕ(a,a) = ∗ who disqualify themselves in a solution in O(nr+t−1) time. If
both r and t are constants, this can be done in polynomial time. Moreover, we can solve
r-PQI in polynomial-time based on Lemma 1.

Lemma 2. Let ϕ be an r-profile over N. Let A be the set of socially qualified individuals
with respect to the consent rule f (s,t) who disqualify themselves, i.e., A= {a∈ f (s,t)(ϕ) |
ϕ(a,a) = 0}. Then, |A| ≤ r+ t−1.
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Proof. Consider the profile ϕ restricted to A. Let x be the number of qualifications in
the subprofile, i.e., x= |{ϕ(a,b) | a,b ∈ A,ϕ(a,b) = 1}|. As each individual qualifies r
individuals, we have that x≤ r · |A|. On the other hand, as each individual in A is socially
qualified, for each a ∈ A there are at least |A| − t+ 1 individuals in A qualifying a. It
follows that x ≥ |A| · (|A|− t+1). In summary, we have that |A| · (|A|− t+1) ≤ r · |A|.
It directly follows that |A| ≤ r+ t−1. ��

Now we are ready to show an algorithm to solve r-PQI for all consent rules.

Theorem 5. r-PQI for f (s,t) can be solved in O(n(t+r+2)) time.

Proof. Let S∗ = {a ∈ S | ϕ(a,a) = ∗}. According to Lemma 2, if I is a YES-instance,
then for any solution φ of I, it must be that |{a∈ S | φ(a,a) = 0}| ≤ r+t−1. Due to this,
we can enumerate all subsets A of S∗ such that all individuals in A disqualify themselves
and all individuals in S∗ \A qualify themselves in a solution φ of I, i.e., A = {a ∈ S∗ |
φ(a,a) = 0}. Then, for each enumerated A, we extend ϕ by resetting ϕ(a,a) = 0 for all
individuals a ∈ A and resetting ϕ(a,a) = 1 for all individuals a ∈ S∗ \A (if ϕ is not an
r-partial profile after the resetting, we discard this enumeration). So, each enumeration
corresponds to an instance of r-PQI-S. Clearly, I is a YES-instance if and only if at least
one of the enumerations corresponds to a YES-instance. Due to Lemma 1, r-PQI-S can
be solved in O(n3) time. As we have in total at most

( |S|
r+t−1

) ≤ ( n
r+t−1

)
= O(n(r+t−1))

enumerations, we can solve I in O(n3) ·O(n(r+t−1)) = O(n(r+t+2)) time. ��
According to the above theorem, if both r and t are constants, we can solve r-PQI

for f (s,t) in polynomial-time. One may wonder if we could get a similar result but with
the assumption that s is a constant. As a matter of fact, if we assume that n− r is a
constant, i.e., each individual is allowed to disqualify a constant number of individuals,
we could obtain a similar lemma as Lemma 2. Based on the lemma, we could obtain
an algorithm with running time O(n(n−r+s+2)). In addition, by utilizing Lemma 1 we
could derive an algorithm with running time O(2|S| ·n3): enumerate all possible values
of ϕ(a,a) for all a∈ S with ϕ(a,a) = ∗. Clearly, there are at most 2|S| enumerations and
we can solve each enumerated case in O(n3) time according to Lemma 1.

4.2 Procedural Rules

Now we study r-PQI and r-NQI for the two procedural rules fCSR and f LSR. We prove
that the values of r have significant impact on the complexity of these two problems.
First, we show that 1-PQI and 1-NQI for f LSR and fCSR are polynomial-time solvable,
based on the following lemma.

Lemma 3. Let X ∈ {CSR,LSR} and φ a 1-extension of ϕ . Then, an individual a ∈ N is
socially qualified in φ with respect to f X if and only if a is in the initial set of socially
qualified individuals in φ , i.e., a ∈ KX

0 (φ).

Proof. As φ is a 1-extension of ϕ , every individual in N qualifies exactly one individual.
Then, due to the definition of f X , an individual in the initial set of φ with respect to f X

does not qualify anyone not in the initial set. It directly follows that f X (φ)=KX
0 (φ), i.e.,

the socially qualified individuals with respect to f X and φ are exactly the individuals in
the initial set of socially qualified individuals. The lemma follows. ��
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Based on the above lemma, we are able to show our results.

Theorem 6. 1-PQI and 1-NQI for fCSR and f LSR can be solved in O(n2) time.

Proof. Due to Lemma 3, 1-PQI for fCSR ( f LSR) consists in determining whether there
is a 1-extension of ϕ where every a ∈ S is in the initial set KCSR

0 (KLSR
0 ) of socially

qualified individuals. We develop a polynomial-time algorithm for 1-PQI as follows.

f LSR: Return “NO” if and only if there is an a ∈ S such that ϕ(a,a) = 0, or ϕ(a,a) = ∗
and r = |1(a,ϕ)|. This clearly can be done in O(n2) time. Notice that if ϕ(a,a) = ∗
for some a ∈ S and r > |1(a,ϕ)|, we can simply reset ϕ(a,a) = 1 without changing
the answer to the instance.

fCSR: As in every 1-extension, there can be at most 1 individual in the initial set of
socially qualified individual with respect to fCSR, due to Lemma 3, if |S| ≥ 2, we can
immediately conclude that I is a NO-instance. Assume now that S= {a}. Again, due
to Lemma 3, if there is an individual b ∈ N such that ϕ(b,a) = 0, or ϕ(b,a) = ∗ and
r = |1(b,ϕ)|, I is a NO-instance; otherwise, I is a YES-instance, as we can find a
solution obtained from ϕ by resetting ϕ(b,a) = 1 for every ϕ(b,a) = ∗ in advance.
In the worst case, we need to calculate 1(b,ϕ) for all b ∈ N. As 1(b,ϕ) can be
calculated in O(n) time, the algorithm terminates in n ·O(n) = O(n2) time.

Now we turn our attention to 1-NQI for fCSR (resp. f LSR). To solve the problem,
it suffices to determine if there is an a ∈ S and a 1-extension φ of ϕ such that a �∈
fCSR(φ) (resp. f LSR(φ)). Due to Lemma 3, this is equivalent to determining if there is a
1-extension of ϕ such that a is in the initial set of socially qualified individuals. Hence,
we can use similar algorithms to the ones for 1-PQI to solve the instance here. ��

In contrast to the polynomial-time solvability of 1-PQI and 1-NQI, we show that
if the individuals are allowed to qualify one more individual, r-PQI for fCSR and f LSR

becomes NP-hard, i.e., r-PQI for f LSR and fCSR is NP-hard for every constant r ≥ 2.
Our proof is based on a reduction from the HAMILTONIAN PATH problem, which is
known to be NP-hard [8].

HAMILTONIAN PATH

Given: A digraph G= (V,A).
Question: Is there a Hamiltonian path in G?

We assume that in the given digraph of a HAMILTONIAN PATH instance, each vertex
has at least one outneighbor. This assumption does not change the complexity of the
problem. We first show the NP-hardness of r-PQI for f LSR.

Theorem 7. r-PQI for f LSR is NP-hard for every constant r ≥ 2.

Proof. Let G = (V,A) be a given instance of the HAMILTONIAN PATH problem. We
create an instance I = (N,ϕ,S ⊆ N) of r-PQI for f LSR as follows.

For each vertex v ∈V (G), we create an individual a(v). In addition, we have r indi-
viduals b0, . . . ,br−1. We define S = {a(v) | v ∈ V (G)}. Hence, N = S∪{b0, . . . ,br−1}.
The r-partial profile ϕ is defined as follows.
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– ϕ(a,a) = 0 for every a ∈ S.
– ϕ(a,bi) = 1 for every a ∈ N and 0 ≤ i ≤ r−2.
– ϕ(bi,br−1) = 1 for every 1 ≤ i ≤ r−1 and ϕ(a,br−1) = 0 for every a ∈ S∪{b0}.
– ϕ(b0,a(v)) = ∗ for every a(v) ∈ S.
– ϕ(bi,a(v)) = 0 for every 1 ≤ i ≤ r−1 and a(v) ∈ S.
– For a(v),a(u) ∈ S, if (v,u) ∈ A(G), then ϕ(a(v),a(u)) = ∗; otherwise,

ϕ(a(v),a(u)) = 0.

It remains to prove the correctness of the reduction. We claim that there exists a Hamil-
tonian path in G if and only if there is an r-extension of ϕ with respect to which all
individuals in S are socially qualified.

(⇒) Assume that there is a Hamiltonian path (v1, . . . ,vq) in G, where q = |V (G)|.
Consider the r-extension φ of ϕ obtained from ϕ by resetting the values of ∗ entries as
follows.

– reset ϕ(b0,a(v1)) = 1.
– For every 1 ≤ i ≤ q−1, reset ϕ(a(vi),a(vi+1)) = 1.
– Reset ϕ(a(vq),a(vi)) = 1, where vi is any arbitrary outneighbor of vq in G.
– Reset ϕ(a(vi),a(v j)) = 0 for all entries not defined above.

In this extension, b0 is socially qualified. According to the definition of f LSR, a(v1) is
also socially qualified as b0 qualifies a(v1) in φ . Moreover, if a(vi) is socially qualified,
so is a(vi+1) for every i ∈ {1,2, . . . ,q−1}. This means all individuals in S are socially
qualified in φ . Hence, I is a YES-instance.

(⇐) Let φ be an r-extension of ϕ with respect to which all individuals in S are
socially qualified. As each individual a(v) ∈ S has already qualified the r− 1 individ-
uals b0,b1, . . . ,br−2, a(v) qualifies exactly one more individual a(u) ∈ S. Moreover, b0

qualifies exactly one individual in S. Hence, from b0, we can find a sequence of indi-
viduals a(v1),a(v2), . . . ,a(vq) such that b0 qualifies a(v1) and a(vi) qualifies a(vi+1)
for every 1 ≤ i ≤ q− 1. Due to the construction, (v1,v2, . . . ,vq) is a Hamiltonian path
in G. ��

We can prove the NP-hardness of r-PQI for fCSR by a similar reduction as in the
above proof. Due to space limitation, we omit the proof.

Theorem 8. r-PQI for fCSR is NP-hard for every constant r ≥ 2.

In the r-partial profiles constructed in the proofs of Theorems 7 and 8, all individuals
in S disqualify themselves. Hence, we in fact proved that r-PQI-S for both f LSR and
fCSR with r ≥ 2 is NP-hard.

Table 1. A summary of our results for r-PQI and r-NQI. Here, n is the number of individuals.

Consent rule f (s,t) fCSR f LSR

s+ t = 2 s+ t = 3 s+ t ≥ 4

r-PQI O(n2) s= 1 : O(n2) O(n(r+t+2)) r ≥ 2 : NP-hard r ≥ 2 : NP-hard

t = 1 : O(n3) r = 1 : O(n2) r = 1 : O(n2)

r-NQI O(n2) r = 1 : O(n2) r = 1 : O(n2)
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5 Conclusion

We have studied PQI and NQI under the framework of group identification. In these
problems, we are given a partial profile and a subset S of individuals. The question is
whether the individuals in S are socially qualified in an extension of the given partial
profile (PQI), or in every extension of the given partial profile (NQI). In addition, we
considered r-PQI and r-NQI which differ from PQI and NQI in that in the searched
extensions we restrict each individual to qualify exactly r individuals.

We studied the complexity of these problems for the prevalent consent rules and
two procedural rules f LSR and fCSR. We derived both polynomial-time algorithms as
well as NP-hardness results. In general, our results reveal that most of these prob-
lems are polynomial-time solvable. Moreover, for consent rules, the complexity of our
polynomial-time algorithms increases slightly as the consent quotes increase. Further-
more, the consent quotes s and t play different roles in the complexity of these prob-
lems. For instance, for consent rules f (s,t), r-PQI can be solved in O(n2) time if s = 1
and t ≤ 2. For t = 1 and s = 2, the running time of the algorithm for r-PQI increases
to O(n3). When one of s and t further increases, the running time of our algorithm for
r-PQI increases to O(n(r+t+2)), leaving the algorithm to be polynomial-time only when
r+ t is a constant. However, for r-NQI, the running time of our algorithms is O(n2) for
all consent quotes. We obtained a complexity dichotomy result for r-PQI for f LSR and
fCSR with respect to the values of r. In particular, if r = 1, r-PQI for fCSR and f LSR can
be solved in O(n2) time; otherwise, it becomes NP-hard. For r-NQI for fCSR and f LSR,
we have an O(n2)-time algorithm for r = 1, and leave the complexity of the remaining
cases open. The intuition that r-PQI and r-NQI for consent rules are generally easy to
solve is that whether an individual a is socially qualified can be independently deter-
mined by the number of individuals qualifying or disqualifying a. However, in fCSR

and f LSR, if an individual a is socially qualified depends not only on who qualify a but
also on the connectivity between the individuals qualifying a and the initially socially
qualified individuals. Between r-PQI and r-NQI, our results reveal that r-NQI is easier
to solve. The reason is that in r-NQI, we need only to determine if there is just one indi-
vidual a ∈ S and one r-extension of ϕ with respect to which a is not socially qualified.
We refer to Table 1 for a summary of our results.

There remain several open questions. For instance, we do not know the complex-
ity of r-NQI for both f LSR and fCSR for r > 1. In addition, investigating the NP-hard
problems studied in this paper from the parameterized complexity point of view would
be an interesting research topic. A natural parameter would be |S|. As we pointed out
in Subsect. 4.1, r-PQI for consent rules f (s,t) is fixed-parameter tractable (FPT) with
respect to |S|. In fact, we had a single-exponential time algorithm for the problem with
respect to |S| (see the discussion after Theorem 5). However, whether r-PQI/r-NQI for
the two procedural rules fCSR and f LSR is FPT with respect to |S| remains open.
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Abstract. When forming coalitions, agents have different utilities per
coalition. Game-theoretic approaches typically assume that the scalar
utility for each agent for each coalition is public information. However,
we argue that this is not a realistic assumption, as agents may not want
to divulge this information or are even incapable of expressing it. To miti-
gate this, we propose the multi-criteria coalition formation game model,
in which there are different publicly available quality metrics (corre-
sponding to different criteria) for which a value is publicly available for
each coalition. The agents have private utility functions that determine
their preferences with respect to these criteria, and thus also with respect
to the different coalitions. Assuming that we can ask agents to compare
two coalitions, we propose a heuristic (best response) algorithm for find-
ing stable partitions in MC2FGs: local stability search (LSS). We show
that while theoretically individually stable partitions need not exist in
MC2FGs in general, empirically stable partitions can be found. Fur-
thermore, we show that we can find individually stable partitions after
asking only a small number of comparisons, which is highly important
for applying this model in practice.

Keywords: Multi-criteria · Hedonic games · Coalition formation
games · Preference elicitation · Local search

1 Introduction

Coalitions are an essential part of life; typically we are not able to achieve our
goals, or that of an organisation we are part of, by ourselves. Therefore, we
need to cooperate in order to achieve these goals. For example, this paper has
been written by a coalition of authors, who could not have written this paper
individually, without the help of the other authors. Hedonic games, initiated
by Banerjee et al. [4] and Bogomolnaia and Jackson [5], offer a versatile frame-
work to model how coalitions are formed by multiple autonomous agents. An
important consideration in this respect is coalitional/individual stability, i.e., no
individuals wish to deviate from their current situation.

In order to determine which coalition structures are stable, we need to know
the preferences over different possible coalitions for each agent. The standard
c© Springer International Publishing AG 2017
J. Rothe (Ed.): ADT 2017, LNAI 10576, pp. 197–213, 2017.
DOI: 10.1007/978-3-319-67504-6 14
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setting of hedonic games [6] assumes that we know, or can compute, the exact
preferences of each agent over possible coalitions. However, this is not a realistic
assumption; not only may agents not want to divulge this information for social
or privacy reasons, but the agents might not even be able to specify their utilities
a priori to begin with. For example, when working for a company, it may not be
socially acceptable to order different possible teams you may be on.

1.1 Our Contributions

In this paper, we aim to mitigate this lack of information in two important ways.
First, we take the information we do have into account, in the form of different
quality metrics for coalitions. E.g., a manager who wants to assign teams, may
rely on statistics from previous teams, such as a previous productivity metric,
a number of occurred conflicts, and reports by previous team leaders on how
creative teams have been. Combining this with a predictor for new possible
coalitions, we may assign an expectation of how well such a team will do with
respect to these criteria. This leads us to the formulation of a multi-criteria
coalition formation game (MC2FG), i.e., we have access to the quality of a
coalition with respect to multiple quality criteria.

Contrary to previous work on related (vector-valued) cooperative games [20],
we take a utility-based approach [16]: we assume that each agent, i, has a private
utility function, f (i), that takes the multi-criteria value of a coalition, and pro-
duces a scalar utility. Because these functions are private, we cannot use these to
check whether a proposed coalition is stable. We are however able to make some
assumptions about f (i), e.g., that it is a monotonically increasing function w.r.t.
all criteria. Furthermore, we assume that we can increase our knowledge about
f (i), i.e., impose extra constraints, by asking agent i to compare two coalitions.

We make the following contributions. First, in Sect. 2, we propose our model:
the multi-criteria coalition formation game (MC2FG). We prove that while for
single-criterion coalition formations individually stable partitions exist, this is
not always the case for MC2FGs (Sect. 3). Therefore, we define a new heuristic
search algorithm called local stability search (LSS) to investigate whether we
can find stable partitions in practice (Sect. 4). We test this on random MC2FGs,
as well as a class of MC2FGs we call Author × Author, inspired on forming
teams of scientists to work together. We show empirically that it is possible to
find individually stable, and sometimes even Nash-stable, partitions. Further,
we show that it is possible to limit the number of questions we need to ask to
an agent to a number that is likely to be feasible to ask from human decision
makers. We therefore conclude that this type of model, with individual utility
functions but public quality metrics, is a promising area that warrants further
research.

1.2 Related Work

In the existing literature of cooperative games, Fernández et al. [8] were the
first to incorporate multi-criteria characteristic functions. In [8], the classical
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solution concepts, such as the core, have been adapted to the multi-criteria
setting (see also the survey by Tanino [20]). Faliszewski et al. [7] also extended
weighted voting games to the multi-criteria cases in which coalitions are defined
to be winning if they are winning in several levels of games specified by the
propositional formula. We note that in these settings, the players’ utilities are
transferable; hence, the goal of these models is to divide the resulting values
among players in a reasonable way. In contrast, our work assumes that the
utilities are non-transferable, and focuses on coalition formation among players.

There is a rich body of the literature on preference elicitation in computa-
tional social choice. In particular, Balcan et al. [2] studyied the PAC (probably
approximately correct) learnability of cooperative transferable utility games.
Specifically, they investigate whether given random samples of coalitions, one
can efficiently predict the unknown values of coalitions as well as an allocation
that is likely to be stable. Although there are some classes of games that are
computationally intractable to learn, it has been shown that one can always sta-
bilize a game by finding an allocation that is likely to be in the core. The most
closely related to our approach is perhaps the paper by Benabbou and Perny [3],
who designed an incremental preference elicitation procedure for the knapsack
problem with multiple decision-makers; in their work, players have individual
utilities for each item, and each item corresponds to its own criterion (in our
framework).

2 The General Framework

For k ∈ N, let [k] = {1, 2, . . . , k}. We define multi-criteria coalition formation
games.

Definition 1. A multi-criteria coalition formation game (MC2FG) is a triple
(N, q, (f (i))i∈N ) where N = [n] is a finite set of players, q : 2N → R

m is
a multi-valued set function that represents the quality qk(S) of a subset S for
each criterion k ∈ [m], and each f (i) : R

m → R is a private utility function
for each player i ∈ N . We assume that each f (i) is strictly monotone, namely,
f (i)(x) > f (i)(y) whenever x > y.

Throughout the paper, we assume that q(∅) = 0. We refer the subsets of N
as coalitions. We let Ni denote the collection of all possible coalitions containing
i. Preference relations derived from scalarisations can be naturally defined as
follows. Let i ∈ N and coalitions S, T ∈ Ni. We say that player i weakly prefers
S to T (denoted by S �f(i) T ) if f (i)(q(S)) ≥ f (i)(q(T )); player i strictly prefers
S to T (denoted by S �f(i) T ) if f (i)(q(S)) > f (i)(q(T )); player i is indifferent
between S and T (denoted by S ∼f(i) T ) if f (i)(q(S)) = f (i)(q(T )).

An MC2FG (N, q, (f (i))i∈N ) is said to be a single-criterion coalition forma-
tion game if forming a coalition derives a single non-transferable value (e.g.,
the expected number of citations for authors working together on a paper), and
all players rank coalitions simply according to these values, irrespective of their
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scalarisation functions. We use the notation (N, q) to denote a single-criterion
coalition formation game.

We say that f : R
m → R is a linear scalarisation function if there exists a non-

negative vector w ∈ R
m
+ such that

∑m
k=1 wk = 1 and f(x) = w ·x =

∑m
k=1 wkxk

for any x ∈ R
m. We use the notation (N, q, (w(i))i∈N ) to denote an MC2FG with

scalarisation vectors (w(i))i∈N . In this paper, we focus on linear scalarisations
as a model for user utility.

Solution Concepts. An outcome of an MC2FG is a partition π of players into
disjoint coalitions. Given a partition π of N and a player i ∈ N , let π(i) denote
the coalition in π containing i. We adapt stability concepts in hedonic games
[4,5] as follows. A partition π of N is said to be individually rational if no player
strictly prefers staying alone to their own coalitions, i.e., each player i ∈ N
weakly prefers π(i) to {i}. A coalition S ⊆ N blocks a partition π of N if every
player in i ∈ S strictly prefers S to π(i).

Definition 2. A partition π of N is said to be core stable (CR) if no coalition
S ⊆ N where S 
= ∅ blocks π.

We now introduce stability concepts that are immune to deviations by indi-
vidual players. Consider a player i ∈ N and a pair of coalitions S ∈ 2N \ Ni

(possibly the empty set) and T ∈ Ni. A player i wants to deviate from T to S if
i prefers S ∪ {i} to T . A player j ∈ S accepts a deviation of i to S if j weakly
prefers S ∪ {i} to S.

Definition 3. A deviation of i from T to S is

– an NS-deviation if i wants to deviate from T to S.
– an IS-deviation if it is an NS-deviation and all players in S accept it.

Definition 4. A partition π of N is called Nash stable (NS) (respectively, indi-
vidually stable (IS)) if no player i ∈ N has an NS-deviation (respectively, an
IS-deviation) from π(i) to another coalition S ∈ π or to ∅.

Intuitively, the easier players can deviate, the more stringent the correspond-
ing solution concept is. It is thus easy to see that any Nash stable partition is
individually stable. Similarly to the standard hedonic games [4,5], stable parti-
tions may not necessarily exist as can be seen in the following example.

Example 1. Consider three researchers who can potentially form a research team
and write a paper together. They have access to the quality of each group with
respect to the three criteria: productivity, creativity, and timeliness. Any pair of
researchers can produce some positive correlations, whereas the other coalitions
produce nothing or some negative correlations. One can formulate this scenario
as an MC2FG (N, q, (w(i))i∈N ) as follows. The player set is N = {1, 2, 3}, and
q : 2N → R

3 is given by

q({1}) = q({2}) = q({3}) = (0, 0, 0)�,

q({1, 2})=(2, 1, 1)�, q({2, 3})=(1, 2, 1)�, q({1, 3})=(1, 1, 2)�,

q({1, 2, 3}) = (−1,−1,−1)�.
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Player 1 (respectively, 2 and 3) finds the first (respectively, the second and the
third) quality measure very important, so the scalarisation functions are given
by w(1) = (1, 0, 0)� w(2) = (0, 1, 0)�, and w(3) = (0, 0, 1)�. The resulting
preference profile is as follows:

1 : {1, 2} �w(1) {1, 3} �w(1) {1} �w(1) {1, 2, 3},

2 : {2, 3} �w(2) {1, 2} �w(2) {2} �w(2) {1, 2, 3},

3 : {1, 3} �w(3) {2, 3} �w(3) {3} �w(3) {1, 2, 3}.

This game admits four individually rational partitions: three partitions that con-
sists of a singleton and a pair of the others, π1 = {{1}, {2, 3}}, π2 = {{2}, {1, 3}},
π3 = {{1}, {2, 3}}, and the partition of singletons π4 = {{1}, {2}, {3}}. It is not
difficult to see that none of them is a core stable partition or an individually
stable partition.

3 Existence of Stable Outcomes

As we have seen in the previous section, the set of stable outcomes can be empty
in general. Nonetheless, it turns out that for single-criterion coalition formation
games core stability and individual stability can be simultaneously achieved: one
can find such an outcome by detecting a sequence of undominated coalitions. A
similar construction can be found in [15] for dichotomous hedonic games.

Theorem 1. Every single-criterion coalition formation game admits a partition
that is both core and individually stable.

Proof. We iteratively find a maximal coalition S ⊆ N of the highest quality q(S),
and add S to π. Then, the resulting partition π is both core and individually
stable. Observe first that π is core stable, since if there exists a blocking coalition
T ⊆ N , T would be added to π before any S ∈ π such that S ∩ T 
= ∅. Second,
π is individually stable. Notice that no player wants to deviate to a later formed
coalition. Moreover, if there exists a player who can IS-deviate to a former formed
coalition, this would contradict the maximality of the S.

Moreover, in single-criterion cases, any dynamics under individual stability
always converges. Specifically, we define IS dynamics to be a procedure by which
while the current partition π is not individually stable, we choose an arbitrary
player i and a coalition S ∈ π ∪ {∅} such that i has an IS-deviation to S, and
move to the partition π′ = (π \ {π(i), S}) ∪ {S ∪ {i}, π(i) \ {i}}.

Theorem 2. In a single-criterion coalition formation game, from an arbitrary
initial partition, IS dynamics converges to an individually stable partition.

Proof. We prove this by an induction on the number of players |N |. When
|N | = 1, our claim clearly holds. Assume that for any |N | ≤ k − 1, IS dynamics
converges, and consider the case when |N | = k. We will construct a digraph
D = (V,A) where V is given by the set of partitions of N , and (π, π′) ∈ A if and
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only if π′ is reachable from π, i.e., there is a player i and a coalition S ∈ π such
that i has an IS-deviation to S and π′ = π \{S, π(i)}∪{S ∪{i}, π(i)\{i}}. Sup-
pose towards a contradiction that there is a directed cycle C = {π1, π2, . . . , πs}
in D where (πt, πt+1) ∈ A for all t ∈ [s]; here, we let πs+1 = π1. Now let
St ∈ argmaxS∈πt

q(S), qt = q(St) for t ∈ [s], and qs+1 = q1. We start by proving
the following lemma.

Lemma 1. qt ≤ qt+1 for all t ∈ [s].

Proof. Take any t ∈ [s]. Consider the transition from πt to πt+1. First, if no
player moves from or to the coalition St, then it is clear that qt ≤ qt+1. Second,
if there is a player i ∈ St who deviates from St to T ∈ π ∪ {∅}, then qt <
q(T ∪ {i}) ≤ qt+1. Third, if there is a player i ∈ N \ St who deviates from πt(i)
to St, then it must be the case that q(St) ≤ q(St ∪ {i}) in order for i to be
accepted by the players in St, and hence qt ≤ qt+1. In all cases, we have that
qt ≤ qt+1.

By Lemma 1, we have that q1 ≤ . . . ≤ qs ≤ q1, implying that the quality of the
best coalition does not change along the cycle, i.e., qt = qt+1 for all t ∈ [s]. Now
let us focus on the coalition S1. If there is a player who deviates from S1 at some
point, then the coalition to which the player deviates would produce a higher
value than S1 and hence q1 < qt for some t ∈ [s], a contradiction. Thus, no player
moves from S1 along the cycle C. If there is a player who deviates to S1 at some
point in the cycle, then the size of the coalition S1 strictly increases, and hence
the dynamics cannot come back to π1, a contradiction. Therefore, the coalition
S1 remains the same in all the partitions in C, namely, S1 ∈ πt for all t ∈ [s].
Now, we again construct a directed graph D′ = (V ′, A′) where V ′ is the set of
partitions of N \S1 and (π, π′) ∈ A′ if and only if π′ is reachable from π. By the
induction hypothesis, D′ must be acyclic. However, C′ = {πt \ {S1} | t ∈ [s] }
forms a directed cycle in D′ by the facts that C forms a directed cycle and that
S1 does not change along C. Hence, we obtain a contradiction, and conclude that
from any initial partition the IS dynamics converges.

Due to Theorems 1 and 2, if all players have the same scalarisation function,
there always exists a partition that is core and individually stable; moreover, IS
dynamics always converges to individual stability.

Corollary 1. Every multi-criteria coalition formation game admits a core and
individually stable partition if all the scalarisation functions are the same. More-
over, IS dynamics always converges to an individually stable partition.

Proof. Given the scalarisation function f : R
m → R, define a single-criterion

coalition formation game (N, q′) where q′(S) = f(q(S)) for each S ⊆ 2N . It
is not difficult to see that core or individually stable partitions of the resulting
game are also stable partitions of the original game.

We note that Nash stable outcomes may not exist even in single-criterion
cases. Consider for instance the two-player game (N, q) where q({1}) >
q({1, 2}) > q({2}); if player 1 is alone, then player 2 would deviate to his coali-
tion, which would again cause the deviation by player 1. Now, it is natural to
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wonder what can be said if we have “similar” scalarisation functions. Even in
such cases, however, there always exists an MC2FG whose stable partitions are
empty.

Theorem 3. For any positive integer n and for any 0 < ε < 1
2 , there exists an

MC2FG (N, q, {w(i)}i∈N ) which admits neither a core nor individually stable
partition, where the number of players |N | = n, the number of criteria m = 2,
and |w(i)

k − w
(j)
k | ≤ ε for any i, j ∈ N and any k ∈ [m].

Proof. Take any 0 < ε < 1
2 . We choose ε′ such that 0 < ε′ < ε. Let c = 1+ε−ε′

2+ε−ε′ .
Observe that min{c, 1− ε} > 1

2 and hence there exists α ∈ R such that 1
2 < α <

min{c, 1 − ε}.
Now we construct a two-criteria coalition formation game where N = [n],

w
(1)
1 = α + ε, w

(1)
2 = 1 − α − ε,

w
(i)
1 = w

(j)
1 = α, and w

(i)
2 = w

(i)
2 = 1 − α, for all i ∈ N \ {i},

and q : 2N → R
2 is given as follows:

q({i}) = (0, 0) for all i ∈ N,

q({1, 2}) = (1, 0), q({2, 3}) = (1, ε′), q({3, 1}) = (0, 1 + ε),
q({1, 2, 3}) = (−1,−1)
q(S) = (−1,−1) for all S 
⊆ {1, 2, 3} : |S| 
= 1.

Clearly, all players except for 1, 2, 3 strictly prefer being alone to being together
with somebody; hence, these players stay alone at any individually rational par-
tition. The players 1, 2, 3 strictly prefer pairs to their singletons, and strictly
prefer the singletons to the coalition {1, 2, 3} and any coalition S 
⊆ {1, 2, 3}.
Thus, for any individually rational partition π and for all i = 1, 2, 3, we have
π(i) � {1, 2, 3}. Also, it is not difficult to see that {2, 3} �w(2) {1, 2} as the
vector q({2, 3}) = (1, ε′) Pareto-dominates q({1, 2}) = (1, 0). Further, we have
that {3, 1} �w(3) {2, 3} and {1, 2} �w(1) {3, 1}, since

w
(3)
1 q1({1,3}) +w

(3)
2 q2({1,3}) −w

(3)
1 q1({2,3}) −w

(3)
2 q2({2,3})

= (1+ε−ε′) − α · (2+ε−ε′) > (1+ε−ε′)−c · (2+ε−ε′) = 0,

and

w
(1)
1 q1({1,2}) +w

(1)
2 q2({1,2}) −w

(1)
1 q1({3,1}) −w

(1)
2 q2({3,1})

= α · (2 + ε) + (ε2 + ε − 1) >
1
2

· (2 + ε) + (ε2 + ε − 1) > 0.

The resulting preferences restricted to {1, 2, 3} are the same as in Example 1,
meaning that the instance has neither a core nor an individually stable partition.

Another implication of Theorem3 is that even if the number of criteria is
much smaller than the number of players there exists a two-criteria MC2FG
which does not admit a stable partition.
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4 Algorithms

Because none of stable partitions necessarily exists in an MC2FG, there is no
algorithm that can guarantee a stable partition as an outcome. However, because
we know (Theorem 1 and Corollary 1) that if there is only one criterion or if all
the agents have the same scalarisation function, individually stable partitions do
exist, we expect the chances of stable partitions existing in a random MC2FG to
increase as the number of criteria decreases. In order to test this hypothesis, we
devise heuristic algorithms for constructing stable partitions. Here, we do not
focus on the core since checking core stability is computationally intractable (see
e.g. [19]): we need to iterate through all subsets of players to see whether it is a
blocking coalition.

We aim for our algorithms to minimise the number of questions that need to
be asked to each agent. This is essential, as asking such questions to people can
be time-consuming — both in terms of time required by the humans, and the
time the system needs to wait until an answer is received — and experienced as
hindrance by these humans.

We define a so-called local search (LS), or best-response, algorithm for
MC2FGs called local stability search (LSS). LSS starts from a partition, π. At
each time-step, the algorithm selects an agent, i, computes whether there exists
a deviation (Definition 3) from π(i) to any other coalition T ∈ π \ π(i), and if it
does performs the deviation. When there are no more deviations for any agent,
the partition is stable.

A key aspect of LSS is that at any given iteration, LSS may not be able
to decide whether an agent prefers an alternative coalition over another before
explicitly asking that agent. For example, imagine that LSS is currently con-
sidering a partition π, and knows nothing about the w(i) of an agent, i. When
considering whether i wants to deviate from π(i) to say, a coalition T ∈ π, we
must know whether, w(i) ·q(π(i)) < w(i) ·q(T ∪{i}), where “·” denotes the inner
product. When for example, q(π(i)) = (0, 3) and q(T ∪{i}) = (1, 4), i will always
prefer to deviate, as there is no w(i) for which w(i) · q(π(i)) ≥ w(i) · q(T ∪ {i}).
However, if q(π(i)) = (2, 3) and q(T ∪ {i}) = (1, 4), there are possible values for
w(i) that would make i prefer π(i). In such cases we have to elicit the preferences
of agent i with respect to these two vectors.

LSS is provided in Algorithm1 and is parameterised by the agents and quality
function of an MC2FG, i.e., N and q. However, we assume that we have no direct
access to f (i) (i.e., w(i)). In fact, LSS only knows that each w(i) adheres to the
simplex constraints, i.e.,

∑
x w

(i)
x = 1 and ∀x : 0 ≤ w

(i)
x ≤ 1. Therefore, it creates

a set of sets of constraints on line 1 containing the simplex constraints for each
w(i).

LSS is also parameterised by a starting coalition π, which can e.g., be ini-
tialised randomly. Finally LSS is parameterised by a function checkDeviation.
This function checks whether a deviation exists, and thus requires different imple-
mentations for NS-deviations (Algorithm2), and IS-deviations (Algorithm3). It
is also this function that will elicit preferences from the agents.
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Algorithm 1. LSS(N, q, π, checkDeviation)
Input: An MC2FG1 C ← a set of simplex constraints on w(i), C(i), for each i ∈ N

2 stable ← false

3 while ¬stable ∨ ¬timeout() do
4 stable ← true

5 foreach i ∈ N do
6 foreach T ∈ (π \ π(i)) that i could join do
7 if (T ∪ {i} �P T ) ∧ (T ∪ {i} �P π(i)) then
8 π ← (π \ {π(i), T}) ∪ {π(i) \ {i}, T ∪ {i}}
9 stable ← false

10 continue from top while-loop (line 3)

11 end

12 end

13 end
14 foreach i ∈ N do
15 // for all agents (in random order), check for and perform deviations:
16 foreach T ∈ (π \ π(i)) that i could join do
17 possibleDeviation ← checkDeviation(i, π(i), T, C)
18 if possibleDeviation then
19 π ← (π \ {π(i), T}) ∪ {π(i) \ {i}, T ∪ {i}}
20 stable ← false

21 continue from top while-loop (line 3)

22 end

23 end

24 end

25 end
26 if stable then return π ;
27 else return No stable partitioning was found ;

Algorithm 2. checkNSDeviation(i, π(i), T, C(i))
Input: A possible NS-deviation1 maxDiffNew ← maxw(i) w(i) · (q(T ∪ {i}) − q(π(i))) s.t. C(i)

2 maxDiffOld ← maxw(i) w(i) · (q(π(i)) − q(T ∪ {i})) s.t. C(i)

3 if maxDiffOld ≥ 0 ∧ maxDiffNew > 0 then
4 // not enough information, ask agent i:

prefNew ← askAgent(T ∪ {i} �f(i) π(i))

5 if prefNew then

6 C(i) ← C(i) ∪ {w(i) · (q(T ∪ {i}) − q(π(i))) > 0}
7 return true

8 else

9 C(i) ← C(i) ∪ {w(i) · (q(T ∪ {i}) − q(π(i))) ≤ 0}
10 return false

11 end

12 else return maxDiffNew > maxDiffOld ;
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Algorithm 3. checkISDeviation(i, π(i), T, C)
Input: A possible IS-deviation1 nsDeviation ← checkNSDeviation(i, π(i), T, C(i))

2 if nsDeviation then
3 foreach j ∈ T do

4 maxDiffNew ← maxw(j) w(j) ·(q(T ∪{i})−q(T )) s.t. C(j)

5 maxDiffOld ← maxw(j) w(j) ·(q(T )−q(T ∪{i})) s.t. C(j)

6 if maxDiffOld > 0 ∧ maxDiffNew ≥ 0 then
7 //not enough information, ask agent j:
8 prefOld ← askAgent(T �f(j) T ∪ {i})

9 if prefOld then

10 C(j) ← C(j) ∪ {w(j) · (q(T ) − q(T ∪ {i}) > 0}
11 return false

12 else

13 C(j) ← C(j) ∪ {w(j) · (q(T ) − q(T ∪ {i}) ≤ 0}
14 end

15 else if maxDiffOld > 0 then
16 return false

17 end

18 end
19 return true

20 else return false ;

In the main loop (lines 3–25), LSS iterates over all agents two times, and
checks whether it has a deviation it wants to perform (lines 7 and 17). The first
time LSS loops over all agents, it checks whether i can deviate to a coalition
T for which q(T ∪ {i}) Pareto-dominates, i.e., is better or equal in all criteria
and better in at least one criterion than, both q(T ) and q(π(i)); if that is the
case, both i and the agents in T will prefer that definition, will thus allow both
an NS- and IS-deviation. If such a deviation exists, it is performed (line 8). The
second time LSS loops over the agents, it checks for each agent i whether there
is an NS-deviation or an IS-deviation using an NS- or IS-specific subroutine.
If such a deviation exists, the deviation is performed (line 19). When none of
the agents have a deviation LSS terminates. In order to check whether an agent
has a deviation, we need a specific algorithm for each type of deviation. For
NS-deviations, the algorithm is given in Algorithm2. The algorithm is called
with an agent i that may want to deviate from π(i) to T , given the known
constraints on w(i), C(i). On the first two lines, linear programs (LPs) are run
to calculate the maximal possible difference in utility w(i) · q(S) if the new
coalition, i.e., S = T ∪ {i}, is preferred over the old coalition, i.e., π(i), resp. if
the old coalition is preferred over the new one, given the known constraints C(i).
When both these values are positive, it is both possible that the old coalition
has a higher utility for i and that the new coalition has a higher utility for i.
In other words, LSS cannot determine which coalition is preferred by i and it
must thus ask the agent directly (line 3). We denote this asking the agent as
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askAgent(T ∪{i} �f(i) π(i)). We assume the agent will always answer truthfully
with either true or false. When an agent answers a comparison question, for
example, it states that askAgent((2, 3) �f(i) (1, 4)) → true, this imposes a
constraint on w(i). In this case, it imposes the constraint w(i) · (2−1, 3−4) > 0.
In general, the imposed constraints are:

q(S) �f(i) q(T ) =⇒ w(i) · (q(S) − q(T )) > 0, and

¬(q(S) �f(i) q(T )) =⇒ w(i) · (q(S) − q(T )) ≤ 0.

Therefore, by eliciting such constraints through asking agents for comparisons
between quality vectors, LSS can learn the relevant preference information of
the agents. LSS adds the constraints to C(i) (lines 6 and 9).

When LSS is run with checkNSDeviation (Algorithm 2) as checkDeviation,
it will try to find a Nash-stable partitioning. However, we may want to
consider weaker stability concepts; for individual stability, we need to use
checkISDeviation (Algorithm 3) instead. Because individual stability imposes
extra constraints on deviations over Nash-stability, checkISDeviation first calls
checkNSDeviation (line 1), to check whether i wants to deviate. Then, if that is
indeed the case, it loops over all the agents of the coalition i wants to deviate to,
T , to check whether none of these agents lose utility by i joining T (lines 3–18).
This is done using similar LPs as for the agent that wants to deviate (lines 4 and
5). Again, the algorithm might not be able to determine this from the current
constraints, and thus elicits comparisons from the appropriate agent. Note that
when one agent in T loses utility, the checkISDeviation terminates immedi-
ately (line 11). This is because we want to minimise the number of questions
asked.

We note that on lines 6 and 16 of Algorithm1 (LSS), we may not allow i to
deviate to arbitrary T ∈ π \ π(i). For example, we may impose social network
constraints [11], i.e., that the agents are embedded in a graph representing which
agents know each other, and only allow coalitions that are connected subgraphs.

5 Experiments

In this section we empirically test the LSS algorithm for both Nash stability
and individual stability. We initialise the partition at the start of each run as
the partition of singletons, i.e., initially each agent is in a separate coalition. As
a baseline, we compare to an algorithm that does not employ linear programs,
but only tests for Pareto-dominance instead, i.e., Algorithm1 is the same, but in
the checkDeviation subroutines (Algorithms 2 and 3) the linear programming
steps (e.g., lines 1–2 in Algorithm 2) are skipped, and instead the agent is always
asked for a comparison. We refer to this baseline algorithm as always ask stability
search (AASS).

We implemented all algorithms in Python 3, making use of (the default solver
of) the PuLP library (version 1.6.1) for linear programs. We ran the experiments
on a MacBook Pro, with a 2.9 GHz Intel Core i5 processor and 16GB memory,
running macOS Sierra (version 10.12.1).
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5.1 Test Problems

In order to test the performance of LSS and AASS we make use of two test
classes of MC2FGs. A Random instance, is one in which every possible coalition
S ⊆ N has a randomly drawn quality vector q(S), from a uniform distribution
on the unit hypercube of m dimensions (i.e., between the origin, 0, and the
vector containing only ones, 1). The scalarisation function for each agent, i, is
linear, with a weight vector w(i) that is drawn independently from a uniform
distribution on the weight simplex.

The second problem, Author×Author, is inspired on the example of scientists
writing papers together. Imagine we have n authors (with scalarisation functions
generated in the same way as for the Random instances) whom will be advised to
work together in coalitions by a recommender system. This system interacts with
the agents by asking them whether they would prefer to be in one of two proposed
coalitions. For each coalition, the recommender system presents the expected
quality q in m dimensions (e.g., expected impact and expected novelty when
writing a paper together), of the coalitions to the agents. It is therefore essential
that the number of questions posed to the agents is minimised, as interaction
with human decision makers is the slowest part of the process. The quality
vectors are formed by summing over randomly drawn agent quality vectors vi

for each agent (containing values between 1 and 4 drawn independently from a
uniform distribution), and subtracting a group size penalty:

q(S) = (−2|S|−1)1 +
∑

i∈S

vi.

Because of the group size penalty, stable partitions will typically consist of coali-
tions of 3 or 4 agents. Furthermore, because of this structure, we have empirically
found that Nash stable partitions typically do exist in Author×Author instances.

5.2 Random

To test whether we can find stable partitions with LSS, we first run LSS on
Random MC2FG instances, as defined above. Note that we do not test AASS sep-
arately, as they have the same number of iterations; the only difference between
the two is when they ask the agents to compare quality vectors.

In Fig. 1, proportion of instances (of 50 in total) for which LSS found a Nash
or individually stable partition within 1000 iterations for varying numbers of
agents (top left) and criteria (top right).

We observe that for the individual stability criterion, stable partitions were
nearly always found (in only 2 out of the 800 Random instances an individually
stable coalition was not found by LSS), while for Nash stability this is not the
case. This is according to expectation, as it is more difficult to reach a Nash
stable partition (as Nash stability is a stronger stability concept than individ-
ual stability). Furthermore, we observe that the proportion of stable partitions
found goes down as a function of the number of agents (as expected), but does
not change significantly as a function of the number of criteria. This is surprising
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Fig. 1. The proportion of instances for which a
stable partition was found by LSS using the Nash
stability criterion and Individual stability crite-
rion within 1000 iterations (top) and average num-
ber of questions asked per agent until an IS-stable
partitioning was found (bottom), as a function of
(left) the number of agents in 50 2-criteria Random

instances, and (right) the number of criteria in 50
20-agent Random instances.

as more criteria make the likeli-
hood of agents disagreeing more
likely. We thus conclude that
MC2FGs become significantly
harder as the number of agents
in the problem increases.

Secondly, we measure how
many questions we need to ask
per agent in order to find sta-
ble partitions. This is impor-
tant, as this may correspond to
asking humans for their pref-
erences, which can be time-
consuming and experienced as
hindrance by these humans.
Because we have not always
found Nash stable partitions,
we focus on individual stabil-
ity only for the Random MC2FG
instances. From Fig. 1 (bottom
left) we observe that for LSS
leads to significantly less ques-
tions asked per agents than
AASS across all numbers of
agents. The highest number of
questions per agents (at 40 agents) was 3.26 for LSS and 18.65 for AASS. LSS
scales better in the number of agents than AASS; when we fit a line for the
number of questions per agent as a function of the number of agents, we obtain
a slope of 0.017 questions per agent per additional agent for LSS, and a slope of
0.22 for AASS.

LSS needs less questions per agent than AASS across different numbers of
criteria (Fig. 1; bottom right). However, the difference in slope, i.e., the number
of questions per agent per additional criterion is not significant (2.96 for LSS,
versus 3.36 for AASS).

We conclude that LSS can be used to find stable partitions in Random MC2FG
instances, but that Nash stable partitions are harder to find than individually
stable partitions. Furthermore, LSS can significantly decrease the number of
comparisons that need to be made by the agents when looking for individually
stable partitions, and LSS scales better in the number of agents than a naive
question asking scheme like AASS.

5.3 Author × Author

In order to test the performance of LSS with respect to AASS, we test the
algorithms on our real-world inspired Author × Author problem. Important
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Fig. 2. The average number of questions asked
per agent until an individual or Nash stable
partitioning was found as a function of (left)
the number of agents in 2-criteria Author ×
Author instances, and (right) the number of
criteria in 20-agent Author×Author instances.

features of this problem is that sta-
ble coalitions typically consist of
3- or 4-agent coalitions, and that
stable partitions typically exist.
Indeed, we did not come across
any instance in our experiments for
which a stable partition was not
found. This latter feature provides
us with the opportunity to study
the number of questions asked until
a stable partition is reached, with-
out having to worry about whether
a stable partition exists.

We compare LSS to AASS, and
finding individually stable parti-
tions to finding Nash stable partitions on Author × Author instances. For all
Author × Author instances Nash and individually stable partitions were found
within 1000 iterations of the main loop of LSS/AASS (Algorithm1, lines 3–25).
While only singleton initialisation is displayed in Fig. 2, we also compared to
undominated initialisation, but like for Random instances found no significant
difference.

When comparing finding Nash stable partitions to individually stable parti-
tions for varying numbers of agents (Fig. 2 (left)), we observe that AASS per-
forms significantly worse for individual stability than for Nash stability in terms
of the number of questions, there is no significant difference between the number
of questions until a Nash stable partition and an individually stable partition is
found by LSS. This is a surprising result, as it is typically much harder to find
Nash stable partitions (as can be seen from the AASS curve for the number of
questions asked), and it does take more iterations to find a Nash stable parti-
tion than an individually stable partition (on average 253 versus 144 iterations
for 90 agent instances). Furthermore, both for individual stability and for Nash
stability, LSS scales better than AASS in terms of the number of questions per
agent.

For 80-agent 2-criteria Author×Author instances, LSS required 3.7 questions
on average per agent. When we consider the example use case of matching small
groups of authors for an event, asking authors to compare 3 or 4 groups is
probably feasible. On the other hand, if we employ a more naive question-asking
scheme, i.e., AASS, the numbers are 40 for individual stability, and 154, which
probably would not be feasible. We thus conclude that LSS can keep the number
of questions that need to be asked to agents can be kept at feasible numbers even
for higher number of agents.

When we compare Author× Author instances of 20 agents for varying num-
bers of criteria (Fig. 2 (right)), LSS also outperforms AASS by a large margin
for both Nash stability and individual stability. For higher criteria, LSS using
individual stability is slightly more efficient than LSS using Nash stability. For
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9 criteria, 20 instances required 10.6 questions per agents for finding an individ-
ually stable partition with LSS, and 14.4 for finding Nash stable partitions. We
conclude that for this real-world inspired problem, LSS can reduce the number
of questions that need to be asked to agents can be kept at reasonable numbers,
even for higher numbers of criteria.

6 Discussion

In this paper, we proposed the multi-criteria coalition formation game (MC2FG)
for forming stable partitions while having limited access to the preferences over
different possible coalitions for each agent. This is important as agents may
either not want to divulge their complete preference profiles for social or privacy
reasons, but more importantly might not even be able to specify their utilities a
priori to begin with. Instead, MC2FGs model the quality of coalitions as vectors
containing different agent-independent metrics corresponding to different criteria
that agents may have. However, the agents may have different preferences with
respect to these criteria. To model this, in MC2FGs each agent, i, has a private
utility function, f (i), that takes the multi-criteria quality vector of a coalition,
and produces a scalar utility. Because these functions are private, we cannot use
these to check whether a proposed coalition is stable. However, some a priori
assumptions about f (i) can be made, and we can increase our knowledge about
f (i), by asking agent i to compare two coalitions. In this paper we made the a
priori assumption that each f (i) is a linear function.

Because (Nash and individually) stable partitions need not exist in MC2FGs,
we proposed a local search algorithm that we call local stability search (LSS) to
find stable partitions where possible. We showed empirically that LSS is able
to discover stable partitions. By exploiting the additional knowledge gained by
asking agents for comparisons between quality vectors for different coalitions
(via LPs), we show empirically that the number of comparisons that need to be
asked from agents can be kept to a minimum.

Because stable partitions need not exist in general, in future research we
aim to find subclasses of MC2FGs in stable partitions are guaranteed to
exist. Specifically, we aim to find realistic subclasses corresponding to use
cases like the Author × Author problem. Furthermore, we aim to improve the
Author × Author problem, using studies on scientific cooperation [1,12] to rede-
fine the utility functions.

More generally, we have applied a utility-based approach to multi-criteria
multi-agent decision making. In our model, all agents in a coalition share a value
vector, but may have different private utilities w.r.t. this value vector, as their
preferences with respect to the criteria may vary. We believe that this kind of
model is realistic for many real-world decision-making problems in which there
are heterogeneous agents, e.g., colleagues in different phases of their careers coop-
erating in a project. We aim to investigate how this perspective can be applied to
other multi-agent decision-making models, such as (multi-objective) coordination
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graphs [9,17], (cooperative) Bayesian games [14] and (partially observable) sto-
chastic games [10,13]. Finally, we want to investigate possibility of noisy pairwise
comparisons [18].
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Abstract. Hedonic games provide a general model of coalition forma-
tion, in which a set of agents is partitioned into coalitions, with each
agent having preferences over which other players are in her coalition.
We prove that with additively separable preferences, it is Σp

2 -complete to
decide whether a core- or strict-core-stable partition exists, extending a
result of Woeginger (2013). Our result holds even if valuations are sym-
metric and non-zero only for a constant number of other agents. We also
establish Σp

2 -completeness of deciding non-emptiness of the strict core for
hedonic games with dichotomous preferences. Such results establish that
the core is much less tractable than solution concepts such as individual
stability.

1 Introduction

Suppose agents wish to form coalitions, perhaps to jointly achieve some task
or common goal, with the payoff to an agent depending on the make-up of the
coalition the agent is joining. In many situations, it makes sense to model agents’
preferences to only depend on the identity of the players in a group. Such games
are called hedonic games, because agents in a hedonic game can be seen as
deriving pleasure from each other’s presence.

An agent in a hedonic game specifies a preference ordering over all sets (coali-
tions) of agents. An outcome of the game is a partition of the agent set into
disjoint coalitions. A player prefers those partitions in which she is part of a pre-
ferred coalition. The main focus of the literature on hedonic games is studying
outcomes that are stable [7,9].

Of the many notions of stability discussed in the literature, the most promi-
nent is the concept of the core. A partition π of the agent set is core-stable if
there is no non-empty set S of agents all of which strictly prefer S to where
they are in π. Intuitively, if the state of affairs were π, then the members of S
would find each other and decide to defect together because π does not offer
them enough utility. In this case, we say that S blocks π. A related concept is
the strict core. The partition π is strict-core-stable if there is no set S of agents
all of which weakly prefer S to π, but with at least one agent i in S having a
strict preference in favour of S. Intuitively, i can offer some of his profit of the
deviation to the other players, inducing S to deviate from π; and even if utility

c© Springer International Publishing AG 2017
J. Rothe (Ed.): ADT 2017, LNAI 10576, pp. 214–227, 2017.
DOI: 10.1007/978-3-319-67504-6 15
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is entirely non-transferable, the players who are indifferent between π and S will
be easily convinced to join the deviation.

Computationally speaking, hedonic games are large objects: every player is
described by a preference ordering over exponentially many sets. However, there
are attractive concise representations of such preferences, many of which have
been studied in the computer science literature [3,6,10,12,22]. Given a concise
representation (which usually is not universally expressive), it makes sense to
pose the computational problem of finding a stable outcome given a hedonic
game. Since many games do not admit stable outcomes, we can conveniently
consider the decision problem whether one exists. This problem turns out to be
NP-hard for most cases (see Peters and Elkind [18] for a systematic study of
representations inducing NP-hard core-existence problems, and Woeginger
[23] for a survey). In particular, the case of additively separable hedonic games
is an example of a class of succinctly represented hedonic games where it is hard
to distinguish games admitting stable outcomes from those which do not [2,22].
In this model, agents assign numeric values vi(j) to other players, and the utility
of a coalition is the sum

∑
j∈S vi(j) of the values of the players in it.

In general, core-existence, the problem of deciding whether a given hedo-
nic game admits a core-stable partition, is contained in the complexity class Σp

2 .
This is because the question under consideration is characterised by a single
alternation of quantifiers: “does there exist a partition π such that for all coali-
tions S, S does not block π?”. Here, we have assumed to be able to efficiently
decide whether a given coalition S blocks, which is trivially the case for all
commonly considered representations. Alternatively, since Σp

2 = NPNP, we can
see containment of core-existence through the following non-deterministic
algorithm: guess a partition π, and use the NP-oracle to check whether π is
core-stable.

In the case of additively separable games, it is coNP-complete to verify that a
given partition π is core-stable [11]. Thus, it is unlikely that the core-existence
problem is contained in NP. Indeed, Woeginger [24] proved that the problem is
Σp

2 -complete. The problem thus encapsulates the full hardness of the second
level of the polynomial hierarchy, making it much harder to decide than NP-
complete problems. (Woeginger likens NP-complete problems to “rotten eggs”
while Σp

2 -complete problems are at the level of “radioactive thallium”.)
Recent decades have shown impressive advances in general-purpose tools to

handle NP-complete problems, such as through SAT and ILP solvers. Thus,
for solution concepts such as Nash stability, whose existence problem is NP-
complete, we should expect tractability in many practically relevant cases. On
the other hand, because of Σp

2 -hardness, finding a core-stable partition will likely
require exponentially many calls to solvers. This suggests that the core will
remain computationally elusive for some time to come.

In this paper, we extend Woeginger’s result to the strict core. In addition, our
reduction—which works for both the core and the strict core—produces additive
hedonic games that are symmetric and sparse, showing that imposing these addi-
tional restrictions do not lead to a drop in complexity. Before we turn to additive
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games, however, we first consider hedonic games with dichotomous preferences,
or Boolean hedonic games [4]. In these games, players only distinguish between
approved and non-approved coalitions. Preferences in these games can be spec-
ified by giving each agent a goal formula of propositional logic; the approved
coalitions are those which satisfy the goal. We show that deciding the existence
of a strict-core-stable outcome in a Boolean hedonic game is Σp

2 -complete. For
the framework of Aziz et al. [4], this is interesting because it suggests that no
polynomial-sized formula in their logic will be able to characterize strict-core-
stable outcomes. Our hardness result for additive games is then obtained by
implementing the reduction for the dichotomous case using additive valuations.

2 Preliminaries

Given a finite set of agents N , a hedonic game is a pair G = 〈N, (�i)i∈N 〉, where
each agent i ∈ N possesses a complete and transitive preference relation �i over
Ni = {S ⊆ N : i ∈ S}, the set of coalitions containing i. If S �i T , we say
that i weakly prefers S to T . If S �i T but T ��i S, we say that the preference
is strict and write S �i T . An agent is indifferent between S and T whenever
both S �i T and T �i S.

An outcome of a hedonic game is a partition π of N into disjoint coalitions.
We write π(i) for the coalition of π that contains i. If π(i) �i {i} for each i ∈ N ,
then π is individually rational. We say that a non-empty coalition S ⊆ N blocks π
if S �i π(i) for all i ∈ S. Thus, all members of a blocking coalition strictly prefer
that coalition to where they are in π. The partition π is core-stable if there is
no blocking coalition. A non-empty coalition S ⊆ N weakly blocks π if S �i π(i)
for all i ∈ S, and S �i π(i) for some i ∈ S. The partition π is strict-core-stable
if there is no weakly blocking coalition. Clearly, if π is strict-core-stable, then it
is also core-stable. There are many other stability concepts for hedonic games
that we do not consider here, see Aziz and Savani [5] for a survey.

A hedonic game has dichotomous preferences, and is called a Boolean hedonic
game, if for each agent i ∈ N the coalitions Ni = {S ⊆ N : i ∈ S} can
be partitioned into approved coalitions N+

i and non-approved coalitions N −
i

such that i strictly prefers approved coalitions to non-approved coalitions, but
is indifferent within the two groups: so S �i T iff S ∈ N+

i and T ∈ N −
i . We can

specify a Boolean hedonic game by assigning to each agent i ∈ N a formula φi

(i’s goal) of propositional logic with the propositional atoms given by the agent
set N . A coalition S � i is then approved by i if and only if S |= φi, that is
the formula φi is satisfied by the truth assignment that sets variable j ∈ N true
iff j ∈ S. For example, if i’s goal formula φi is (j ∨ k) ∧ ¬�, then i approves
coalitions containing agent j or k as long as they do not contain agent �.

A hedonic game is additively separable, and is called an additive hedonic
game, if there are valuation functions vi : N → Z for each agent i ∈ N such
that S �i T if and only if

∑
j∈S vi(j) �

∑
j∈T vi(j). An additive hedonic game

is symmetric if vi(j) = vj(i) for all i, j ∈ N .
The complexity class Σp

2 , the second level of the polynomial hierarchy, is
NPNP, the class of problems solvable by a polynomial-time non-deterministic
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Turing machine when given an NP-oracle. It can also be seen as the class of
problems polynomial-time reducible to the language TRUE ∃∀-QBF, which con-
sists of true quantified Boolean formulas with only 1 alternation of quantifiers.

3 Related Work

Boolean hedonic games were introduced by Aziz et al. [4] who study them from
a mainly logical point of view. (Notice that they use a different choice of propo-
sitional atoms—pairs of agents—to allow future generalisations to games played
on general coalition structures. Our choice is more natural for the hedonic set-
ting.) In particular, Aziz et al. [4] show that every Boolean hedonic game admits
a core-stable partition. Thus, only the complexity of the existence of the strict
core needs to be settled. Peters [16] shows that finding a core-stable partition,
while it is guaranteed to exist, is FNP-hard.

Elkind and Wooldridge [12] introduce a representation formalism for hedonic
games called hedonic coalition nets (HC-nets), which can be seen as a powerful
mixture of the additive and Boolean representations introduced above. Here,
agents provide several goals φi weighted by real numbers, and an agent obtains
as utility the sum of the weights of the formulas that are satisfied by the coalition.
Thus, additively separable games are given by HC-nets in which every formula
is just a single positive literal, and Boolean hedonic games are given by HC-nets
in which every agent has only a single formula. It follows from a general result of
Malizia et al. [14] that core-existence is Σp

2 -complete to decide for games given
by HC-nets (see also Elkind and Wooldridge [12]). We strengthen this to also
apply to the strict core, and to hold even if either every agent only has a single
formula, or if every formula is given by a single literal.

This paper follows the work of Woeginger [24] who proves that deciding
core-existence is Σp

2 -complete for additive hedonic games. His reduction (from
the same problem that we reduce from) does not work for the strict core, and in
his survey [23] he poses the problem to establish Σp

2 -hardness for this solution
concept. Doing this is the main contribution of this paper. We also strengthen
Woeginger’s [24] result for the core to hold even for symmetric valuations, and
even if vi(j) is non-zero for at most 10 agents j, so that the game is “sparse”.
This closes off two avenues for potential avoidance of Σp

2 -hardness.
Since a preprint of this paper appeared on arXiv, some additional Σp

2 -
hardness results for hedonic games have been obtained. Ohta et al. [15] show
that in hedonic games based on aversion to enemies (introduced by Dimitrov
et al. [11]), if one allows ‘neutral’ players, then deciding the existence of the
(strict) core is Σp

2 -hard. The games studied by Ohta et al. [15] are in fact addi-
tively separable; thus, they imply Σp

2 -hardness of the (strict) core in additive
hedonic games. Hardness holds even if we restrict players’ valuations to take at
most three values, so that vi(j) ∈ {−n, 0, 1} for all i, j ∈ N . However, in contrast
to our reduction, the games produced in their reduction are not symmetric and
not sparse. Ohta et al. [15] also show Σp

2 -hardness for the strict core for games
based on friend appreciation in the presence of neutral players. Aziz et al. [1]
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consider fractional hedonic games, where players care about the average value
of their coalition partners, rather than the sum. They show that deciding the
existence of the core is Σp

2 -hard, even if valuations are symmetric and simple, so
that vi(j) ∈ {0, 1} for all i, j ∈ N . The reductions in both of these recent papers
is from the complement of the minmax clique problem [13], which seems to be
well-suited as a starting point for reductions for hedonic games. In this paper,
like in Woeginger [24], we instead use a problem based on quantified Boolean
formulas.

Peters [17] introduces graphical hedonic games, which are hedonic games
equipped with an underlying graph on the agent set. This is a direct analogue
of non-cooperative graphical games. In this language, our result for additive
hedonic games implies that deciding the existence of the (strict) core is Σp

2 -
hard even for graphical hedonic games of bounded degree—that is, games whose
underlying graph has a max-degree of at most 10.

4 A Useful Restricted Hard Problem

Stockmeyer [21] proved that the following basic problem is Σp
2 -complete:

TRUE ∃∀-3DNF

Instance: A quantified Boolean formula of form
∃x1, . . . , xm ∀y1, . . . , yn φ(x1, . . . , xm, y1, . . . , yn),

where φ is in disjunctive normal form with each disjunct containing 2 or 3 literals.
Question: Is the formula true?

Here we show that the problem remains Σp
2 -complete even if we place restrictions

on the number of occurrences of the variables, like is standard practice when
proving NP-completeness.

RESTRICTED TRUE ∃∀-3DNF

Instance: A quantified Boolean formula of form
∃x1, . . . , xm∀y1, . . . , yn φ(x1, . . . , xm, y1, . . . , yn),

where φ is in disjunctive normal form with

– each disjunct containing 2 or 3 literals,
– each x-variable occurring exactly once positive and once negative
– each y-variable occurring exactly three times, and at least once positively and

at least once negatively.

Question: Is the formula true?

We may further insist that every disjunct contain at most 2 x-literals, because
a disjunct containing only x-literals makes the formula trivially true.
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Proposition 1. The problem RESTRICTED TRUE ∃∀-3DNF is Σp
2 -complete.

Proof. Membership in Σp
2 is clear.

Let us note that a true ∃∀-3dnf-formula is the same thing as a false ∀∃−3cnf-
formula; we will use this latter view since CNF formulas are more familiar.
Thus, we may reduce from the unrestricted problem false-∀∃-3cnf. We will in
polynomial time transform a given such formula

∀x1, . . . , xm∃y1, . . . , yn φ(x1, . . . , xm, y1, . . . , yn)

into a formula of equal truth value which is restricted as above, establishing
hardness of the restricted variant.

First, by unit propagation, we may assume that no clause contains only a
single literal. Next, for each x-variable xi, relabel all its occurrences as y1

i , . . . , y
ni
i

where ni is the number of occurrences of xi, and the yr
i are new variables.

Existentially quantify over these new variables, keeping xi universally quantified.
Add clauses (xi → y1

i )∧(y1
i → y2

i )∧· · ·∧(yni
i → xi) to force all copies to have the

same truth value. Similarly, for each old y-variable, we relabel all its occurrences
(existentially quantifying) and add a ‘wheel of implications’ for them as well
(here we may discard the old y-variable in the process). The resulting formula
satisfies the restrictions and has the same truth value as the original formula. ��

By using the techniques of Berman et al. [8], we can similarly prove that
the problem remains Σp

2 -complete if disjuncts are required to contain exactly
3 distinct literals, each x-literal occurs exactly once, and each y-literal occurs
exactly twice. One can also show that the problem remains Σp

2 -complete if every
clause contains at most one x-literal [13, Theorem 10]. For the reductions in this
paper, we do not need these other restrictions.

5 Strict Core for Boolean Hedonic Games

Our first hardness result concerns Boolean hedonic games, as introduced by Aziz
et al. [4]. While for this type of hedonic game, the core is always guaranteed to
exist, the strict core is more difficult to handle.

Theorem 1. The problem “does a given Boolean hedonic game admit a strict-
core-stable partition?” is Σp

2 -complete.

Proof. Membership in Σp
2 is clear, since we are asking: does there exist a partition

such that for all coalitions S, S does not block?
For hardness, we reduce from RESTRICTED TRUE ∃∀-3DNF. Let ϕ =

∃x∀yφ be an instance of this problem, where x = (xi) and y = (yj) denote
vectors of variables. We rewrite ϕ as ∃x(¬∃y¬φ). Note that ¬φ is a 3CNF for-
mula, and when below we talk about clauses, we are always referring to clauses
of ¬φ. In the hedonic game which we construct below, a strict-core-stable parti-
tion corresponds to an assignment to the x-variables. If there is a y-assignment
satisfying ¬φ (so that ϕ is false), this will form a weakly blocking coalition, and
conversely, such a coalition induces a satisfying assignment. If the formula is
true, such a blocking coalition cannot exist.



220 D. Peters

For our construction, we take the following agents:

– For each xi, four agents xi, xi, ti, fi.
– For each yj , two agents yj , yj .
– For each clause ck in ¬φ, one agent ck.
– A single player ϕ representing the formula.

We now specify agents’ goals. For a clause ck of ¬φ, we let �k1 , �
k
2 , �

k
3 denote the

agents corresponding to the literals occurring in it. For example, if clause ck is
(x1 ∨ ¬y2 ∨ y3), then �k1 refers to agent x1, �k2 refers to y2, and �k3 refers to y3. If
a clause only contains 2 literals, just let �k2 = �k3 .

– xi : fi ∧ ¬ti ∧ xi

– xi : ti ∧ ¬fi ∧ xi

– ti : ¬ϕ
– fi : ¬ϕ
– yj : ¬yj

– yj : ¬yj
– ck : ¬ϕ ∨ ((�k1 ∨ �k2 ∨ �k3) ∧ ck+1), or

ck : ¬ϕ ∨ (�k1 ∨ �k2 ∨ �k3) if ck+1 does not exist
– ϕ : c1 ∧ (x1 ∨ x1)

This hedonic game has a strict-core-stable outcome if and only if ϕ is true.
⇐= : Suppose ϕ is true. Take an assignment A to the x-variables certifying

truth of ϕ. Then take the partition π with coalitions {ti, xi, xi} for true xi, with
coalitions {fi, xi, xi} for false xi, and singleton coalitions for all other players.
We show that π is strict-core-stable.

Most agents’ goals are satisfied in π, except for true x-literals and the player
ϕ. If π is not stable, then there is a weakly blocking coalition S including a
player whose goal is satisfied in S but not in π; also, no other player in S can be
worse off in S than in π. Now the profiting player cannot be a true x-literal, for
if this player were to gain then its complementary literal must be part of S and
this literal would lose, because complementary literals have incompatible goals.
Hence any weakly blocking coalition S must include the ϕ-player and must satisfy
it. Looking at ϕ’s goal, this means that c1 ∈ S. Indeed, by induction, ck ∈ S for
all ck, since ck ∈ S cannot be worse off in S, and thus ck’s goal must be satisfied,
which requires ck+1 ∈ S.

Since every ck is satisfied in π, the goal of every ck is also satisfied in S. This
means that the literals present in S must satisfy each clause of ¬φ. Thus, the
literals present in S satisfy ¬φ. This contradicts truth of ϕ under the assignment
A once we can show that S does not contain complementary y-literals, and only
contains x-literals that are true in A. But both of these requirements are easy
to see: since all y-literals have their goal satisfied in π, they must have their goal
satisfied in S, which means their complementary literal is not part of S. Also, a
false x-literal is happy in π but would be unhappy in S since ti, fi �∈ S (because
they hate ϕ), and thus false x-literals are not part of the weakly blocking S.
Hence π is strict-core-stable.
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=⇒ : Suppose the game has a strict-core-stable outcome π. We show that ϕ
is true. First we will find an appropriate assignment to the x-variables. Fix some
variable xi. Since the goals of xi and xi are incompatible, at most one of them is
happy in π. If both are unhappy, then {ti, xi, xi} weakly blocks. Hence for each
xi, exactly one of xi and xi has their goal satisfied. Define the assignment that
sets that literal true which is not satisfied.

Soon we will need to know that the ϕ player does not have its goal satisfied
in π. For a contradiction suppose it does. Then x1 ∈ π(ϕ) or x1 ∈ π(ϕ). Since x1

or x1 has their goal satisfied in π, both of them are together with either t1 or f1.
So either t1 ∈ π(ϕ) or f1 ∈ π(ϕ); but then {t1} or {f1} blocks π, a contradiction.

Now take an arbitrary assignment to the y-variables, and suppose for a con-
tradiction that under these assignments to the x- and y-variables the formula
φ becomes false, so that ¬φ becomes true so every clause is true. Let S be the
coalition consisting of player ϕ, all clauses ck, all true x-literals, and all true y-
literals. In S, every player except for the true x-literals is satisfied, so no player
is worse off. However ϕ did not have its goal satisfied in π, so is strictly better
off in S, and hence S weakly blocks π, a contradiction. Thus, ϕ must be true. ��
Hardness holds even if every agent mentions at most 5 other agents in their goal.
By rewriting the formulas, we can see that hardness also holds even if goals are
given in 3-DNF or 4-CNF.

6 Core and Strict Core for Additive Hedonic Games

The structure of our reduction for Boolean hedonic games can be adapted to work
in the additive case. The resulting reduction is necessarily less straightforward,
because we have to simulate the clausal structure using additive valuations. On
the other hand, the resulting reduction works for both the core and the strict
core. Further, this is the first hardness reduction for additive hedonic games that
applies even to “sparse” games, where players assign non-zero valuations to only
at most a fixed number of other players.

Theorem 2. The problem “does a given additive hedonic game admit a strict-
core-stable partition?” is Σp

2 -complete. The same question for the core is also
Σp

2 -complete, and both problems remain hard even for symmetric utilities that
only assign non-zero values to at most 10 other players.

Proof. Membership in Σp
2 is clear, since we are asking: does there exist a partition

such that for all coalitions S, S does not block?

For hardness, we reduce from RESTRICTED TRUE ∃∀-3DNF. Let ϕ =
∃x∀yφ be an instance of this problem, where x = (xi) and y = (yj) denote vec-
tors of variables. We rewrite ϕ as ∃x(¬∃y¬φ). Note that ¬φ is a 3CNF formula,
and when below we talk about clauses, we are always referring to clauses of ¬φ.
In the hedonic game which we construct below, a (strict-)core-stable partition
corresponds to an assignment to the x-variables. If there is a y-assignment sat-
isfying ¬φ, this will form a blocking coalition, and conversely, such a coalition



222 D. Peters

Table 1. The agent valuations va(b). All values not specified are 0. The value “−∞”
denotes any sufficiently large negative number; −100 will do. Notice that the valuations
are symmetric (va(b) = vb(a)) and every agent specifies at most 10 non-zero values,
noting that we can ensure that no clause contains more than 2 x-literals.

a b va(b)

xi xi −10
fi 20
ti 14
c(xi) 5
f ′
i −∞

t′
i −∞

c′(xi) −∞
ti xi 14

xi 20
t′
i 30

fi −∞
c(xi) −∞

a b va(b)

xi xi −10
fi 14
ti 20
c(xi) 5
f ′
i −∞

t′
i −∞

c′(xi) −∞
fi xi 20

xi 14
f ′
i 30

ti −∞
c(xi) −∞

a b va(b)

yj yj −∞
c(yj) 5
c′(yj) −∞

ck ck−1 13
ck+1 13
�(c) 5
c′
k 30

ti/fi −∞
c′
k−1 −∞

c′
k+1 −∞

a b va(b)

yj yj −∞
c(yj) 5
c′(yj) −∞

c′
k ck 30

�(ck) −∞
ck−1 −∞
ck+1 −∞

t′
i ti 30

xi, xi −∞
f ′
i fi 30

xi, xi −∞

induces a satisfying assignment. If the formula ϕ is true under the assignment
to the x-variables, such a blocking coalition cannot exist.

Before we start, let us add a new x-variable (call it x∗) to the formula and
add the clause c1 := (x∗ ∨ x∗) to ¬φ. This preserves the truth value of the
formula, and preserves the restrictions of the input problem. This will help in
the proof of implication (iii) ⇒ (i) later.

We take the following agents:

– For each xi, four agents xi, xi, ti, fi.
– For each yj , two agents yj , yj .
– For each clause ck in ¬φ, one agent ck.
– A helper player c′

k for each ck, and helper players t′i and f ′
i for each ti and fi.

We say that a player p who has a helper player p′ is supported. The purpose of
the helper players will be to guarantee that supported players obtain utility at
least 30 in stable outcomes.

In Table 1, we specify agents’ symmetric utilities, see also Figs. 1 and 2. All
utilities not specified in the table are 0; the figures also omit −∞ valuations for
clarity. As notation, for a literal �, we let c(�) denote the clauses that contain �; for
x-literals there is just one such clause, but there are up to two for y-literals. We
also let �(c) denote the literals occurring in c. We take arithmetic in subscripts of
clause names (as in ‘ck+1’) to be modulo the number of clauses in ¬φ.
We show that the following are equivalent:

(i) The input formula is true.
(ii) The game admits a strict-core-stable partition.
(iii) The game admits a core-stable partition.
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Fig. 1. The clause gadgets. Clauses are arranged in a cycle. We will consider a partition
π where each clause agent ck is in a pair with its helper c′

k. If the formula is false,
though, all the clauses join forces and can deviate together with a falsifying selection
of y-literals (and of true x-literals).

Fig. 2. The x-variable gadget. If the variable is set true, the upper triangle forms a
coalition. If it is false, the lower triangle forms a coalition. Note that in this configura-
tion, the true (but not the false) literal is willing to deviate with the connected clause
agent.

Call a coalition S feasible if it is individually rational (and in particular does
not contain players who evaluate each other as −∞), and if each ‘supported’
player (those that have a helper player: ck/ti/fi) obtains utility ≥ 30 in S. Call
a coalition infeasible otherwise. Observe that all coalitions in a core-stable par-
tition must be feasible (as otherwise it is not individually rational or a coalition
like {ck, c

′
k} blocks). Observe further that if a partition π is weakly blocked by

some coalition S, then it is weakly blocked by a feasible coalition. This is because
if S is not individually rational for player i, then π is also weakly blocked by the
feasible coalition {i} or {i, i′}, and if S gives less than utility 30 to a supported
player i, then the feasible coalition {i, i′} also weakly blocks π. These properties
of feasible coalitions formalise the intuitive purpose of the helper players: they
guarantee a minimum payoff to the supported player in any stable outcome.
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Lemma. In a feasible coalition S � ck, either
(a) c′

k ∈ S but ck−1, ck+1, �(ck) �∈ S, or
(b) S contains all clause players simultaneously, and for each clause, some literal
occurring in it is part of S.

Proof. Note that c′
k hates all other players to which ck assigns positive utility

(namely ck−1, ck+1, �(ck)), so that if c′
k ∈ S then those players cannot be in

S. So suppose c′
k �∈ S. We will prove by induction that we are in case (b).

By feasibility of S, ck obtains utility at least 30. This is only possible if both
ck−1 ∈ S and ck+1 ∈ S (subscripts mod the number of clauses), since the literals
connected to ck only give total utility 3 · 5 = 15. Thus, ck+1 ∈ S. Assume now
that ck, ck+1, . . . , cs−1, cs ∈ S for some s. As cs−1 and c′

s hate each other, we
have c′

s �∈ S. But feasibility for cs then implies that cs+1 ∈ S. By induction,
all clause players are in S. Finally, if some clause player did not have any of its
literals in S, then it would only obtain utility 26 in S contradicting feasibility. ��
Let us note that in case (b), some x-literal must be part of S; namely at least
one x∗-literal by feasibility for c1.

(i) ⇒ (ii): Suppose the input formula is true. Take an assignment A of the x-
variables certifying truth of the formula. Then take the partition π with coalitions
{ti, xi, xi}, {t′i}, {fi, f

′
i} for true xi, with coalitions {fi, xi, xi}, {f ′

i}, {ti, t
′
i} for

false xi, with coalitions {ck, c
′
k} for each ck, and singleton coalitions {yj}, {yj}

for y-literals. We show that π is strict-core-stable.
Suppose not, and there is a weakly blocking coalition S which we may assume

to be feasible. In π, the following players are already in a best coalition among
feasible ones: false x-literals (with utility 10), ti and fi players together with
literals (with utility 34), c′

k (with utility 30), and paired t′i, f
′
i (with utility 30).

Since S is weakly blocking, it contains a player p who strictly prefers S to π.
This p cannot be on the preceding list.

Now p also cannot be a ti or fi player together with its helper for it cannot
offer its associated literals a feasible coalition as good as they have in π (namely,
the false literal involved would move from utility 10 to 4). Also, p cannot be
a singleton t′i or f ′

i as ti or fi (currently with utility 34) will be less happy in
feasible coalitions together with t′i or f ′

i (which only offers 30). Hence, p is either
a true x-literal, a y-literal, or a ck player. In the former two cases, in order that
p strictly gains utility, S must also include a clause player associated with the
literal p. So in either case S includes a clause player, and by the lemma, since
we cannot be in case (a), S must contain all clause players, and enough literals
to satisfy every clause. This means that the literals present in S satisfy ¬φ. This
contradicts truth of ϕ under assignment A once we can show that the literals
in S form a valid assignment, i.e., S does not contain complementary y-literals,
and only contains true x-literals. But both of these requirements are easy to see:
by feasibility of S no y-literal has their complementary literal in S (since they
hate each other). Also, a false x-literal (currently with utility 10) would be worse
off in S since ti, fi �∈ S (by feasibility since ti, fi hate a clause) and so the false
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x-literal would obtain at most 5 in S. Thus, false x-literals are not part of the
weakly blocking S. Hence π is strict-core-stable.
(ii) ⇒ (iii): Strict-core-stability implies core-stability.
(iii) ⇒ (i): Suppose the game has a core-stable outcome π. We show that the
formula is true. Recall that every coalition in π must be feasible. Write i ∼ j
for agents i, j that appear in the same coalition in π (so ∼ is the equivalence
relation associated with π).

First we will find an appropriate assignment for the x-variables. Consider
variable xi. It cannot be that both xi ∼ c(xi) and xi ∼ c(xi) for then by the
lemma all clause players are together in π, which implies xi �∼ ti, fi (since they
hate a clause) and so xi obtains utility at most 5 − 10 = −5, contradicting
feasibility. If exactly one of xi and xi is together with clause players, say xi ∼
c(xi), then xi must obtain utility 0, because feasibility for fi and ti implies
that they obtain utility at least 30, which they can only obtain if they are either
together with both xi and xi (but this is impossible because xi �∼ xi by the lemma
and our assumption that xi �∼ c(xi)) or if they are together with their helper
player but not with either xi or xi. Thus {xi, xi, fi} blocks, a contradiction. The
only remaining possibility is that both xi �∼ c(xi) and xi �∼ c(xi). In this case,
we can see that core-stability implies either xi ∼ xi ∼ ti or xi ∼ xi ∼ fi but
not both: having both is infeasible because ti and fi hate each other; having
neither is unstable because {xi, xi, fi} would block. Define the assignment that
sets those variables xi true for which xi ∼ ti, and sets those variables xi false
for which xi ∼ fi.

Soon we will need to know that π makes most players not very happy. Indeed,
we claim that in π, clause players ck obtain utility 30, and y-literals obtain
utility 0. This is because if any two of these players would obtain strictly more
in π, then case (b) of the lemma applies, so that all clause players are together in
π, and they are together with literals which include an x∗-literal. But we already
know that x-literals are not together with their clause player, a contradiction.

Now take an arbitrary assignment to the y-variables, and suppose for a con-
tradiction that under these assignments to the x- and y-variables the formula ϕ
becomes false, so that ¬φ becomes true meaning each clause of ¬φ is true. Let
S be the coalition consisting of all clauses ck, all true x-literals, and all true y-
literals. In S, true x-literals obtain utility 5 > 4, y-literals obtain positive utility,
and clauses obtain utility ≥ 31 = 13 + 13 + 5. Hence everyone in S is strictly
better off in S than in π. Thus π is not core-stable, contradiction. Thus, ϕ must
be true. ��

7 Conclusions and Open Problems

We have shown that deciding the existence of a core- or strict-core-stable parti-
tion in a given additive hedonic game is Σp

2 -complete, and similarly that deciding
the existence of a strict-core-stable partition in a Boolean hedonic game is Σp

2 -
complete. This answers the complexity status of these questions conclusively,
and implies that solving them is even harder than solving NP-complete prob-
lems (unless the polynomial hierarchy collapses).
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The root cause for Σp
2 -hardness is that blocking coalitions may be very large.

If we consider a solution concept according to which only coalitions of bounded
size may block, the existence problem is contained in NP. If the size bound is 2,
the problem is identical to the stable roommates setting, and in some cases there
are known tractability results. For larger size bounds, it is likely that hardness
holds. It would be interesting to further explore this variation of the concept of
the core.

Our reduction for additive games produced a hardness result that holds even
for sparse game that have maximum degree bounded by 10. It would be inter-
esting to decide the complexity of cases where other parameters are small. For
example, Ohta et al. [15] show that the core remains Σp

2 -hard even if agents only
assign three different valuation numbers to the other players. Another parameter
that may be interesting is the number of agent types, that is, the number of dif-
ferent valuation functions appearing in the game (see, e.g., Shrot et al. [20]). In
the framework of graphical hedonic games [17], it would be interesting to decide
the complexity of cases where the underlying graph is planar, or bipartite, or
satisfying some other topological constraint. Looking in another direction, our
hardness result appears to be the first that applies to sparse games, i.e., games
in which agents only assign non-zero valuations to at most a constant number
of other agents. It would be interesting to see whether deciding the existence of
other solution concepts, such as Nash or individually stable partitions, remains
hard for sparse games. More technically, it is likely possible to improve our bound
of 10 to a smaller maximum degree.

We also reiterate here a problem posed by Woeginger [23]: is strict-core-
existence Σp

2 -hard even for games based on aversion to enemies? These are addi-
tive hedonic games in which vi(j) ∈ {−∞, 1} for all agents i, j ∈ N . It appears
that an entirely different approach is necessary for this setting. Partial progress
on this problem is presented by Rey et al. [19] and by Ohta et al. [15].
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Abstract. We discuss a game theoretic variant of the subset sum prob-
lem, in which two players compete for a common resource represented by
a knapsack. Each player owns a private set of items, players pack items
alternately, and each player either wants to maximize the total weight of
his own items packed into the knapsack or to minimize the total weight
of the items of the other player.

We show that finding the best packing strategy against a hostile or a
selfish adversary is PSPACE-complete, and that against these adversaries
the optimal reachable item weight for a player cannot be approximated
within any constant factor (unless P=NP). The game becomes easier when
the adversary is short-sighted and plays greedily: finding the best pack-
ing strategy against a greedy adversary is NP-complete in the weak sense.
This variant forms one of the rare examples of pseudo-polynomially solv-
able problems that have a PTAS, but do not allow an FPTAS.

1 Introduction

The subset sum game is a combinatorial game for two players A and B with
perfect information. An instance of the game consists of m + n items and a
knapsack of capacity c. The A-items have weights a1, a2, . . . , am and belong to
player A, while the B-items have weights b1, b2, . . . , bn and belong to player B.
Throughout we assume that every item weight is bounded by the knapsack
capacity c. The players move alternately, and the instance specifies whether
player A or player B makes the first move. In every move, the active player
picks one of his items (which has not been picked in any earlier move) and puts
it into the knapsack. As usual, an item can only be added to the knapsack, if
the overall weight of all packed items does not exceed the knapsack capacity c.
A player may pass on a move, but only in case none of his items fits. The game
ends as soon as none of the remaining unpacked items fits into the knapsack.

We will always look at this game through the eyes of player A, whose goal is
simply to maximize the total weight of A-items in the knapsack. Player B will be
considered our adversary and enemy, who behaves in one of the following ways.

– Hostile: The objective of adversary B is to hurt player A as much as possible,
and to minimize the total weight of A-items in the knapsack.

c© Springer International Publishing AG 2017
J. Rothe (Ed.): ADT 2017, LNAI 10576, pp. 228–240, 2017.
DOI: 10.1007/978-3-319-67504-6 16
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– Selfish: The objective of adversary B is to get as much profit for himself as
possible, and hence to maximize the total weight of B-items in the knapsack.

– Greedy: The (short-sighted) objective of adversary B is to pack in every
single move a B-item of largest possible weight.

While the behavior of the greedy adversary is easy to understand (and easy
to predict), the behavior of the two other adversaries needs a more precise math-
ematical definition that considers the game in extensive form. The hostile adver-
sary and the selfish adversary are defined via the underlying game tree; this
tree is an acyclic directed graph whose vertices correspond to the possible game
situations. A situation is fully specified by the current contents of the knapsack.
For every possible move in the game, the game tree contains a corresponding
arc between the two corresponding situations. The initial situation (with empty
knapsack) is denoted p0. Final situations (where none of the remaining unpacked
items fits into the knapsack) have no out-going arcs.

Let us first specify the hostile adversary against some fixed (deterministic)
strategy σ of player A. For evaluating a final situation p, we look at the contents
of the knapsack and use a(p) to denote the total weight of packed A-items. For
evaluating a situation q somewhere in the middle of the game, we enumerate all
situations q1, . . . , qk that can be reached from q in a single move. If it is player
A’s turn then his strategy σ will lead him to a well-defined situation qj , and we
define a(q) = a(qj). If it is player B’s turn then a(q) = mini a(qi). When the
game terminates, player A will end up with a total weight of a(p0).

Next let us specify the selfish adversary against a fixed (deterministic) strat-
egy σ of player A. For evaluating a final situation p, we denote by a(p) the
total weight of packed A-items and by b(p) the total weight of packed B-items.
For evaluating a situation q in the middle of the game, let q1, . . . , qk denote the
situations that can be reached from q in a single move.

– If it is player A’s turn, then strategy σ leads him from situation q to a well-
defined situation qj . We set a(q) = a(qj) and b(q) = b(qj).

– If it is player B’s turn, then b(q) = maxi b(qi). To make the game determinate,
we furthermore set a(q) = maxk a(qk) with k ∈ arg maxi b(qi).

This means that whenever the adversary may choose between several moves that
yield the same profit for himself, he will always pick the move that is best for
player A. We stress that all our results can be carried over to the variant where
the selfish adversary picks the move that is worst for player A. When the game
terminates, player A will reach a weight of a(p0) and player B will reach a weight
of b(p0).

In this paper, we study certain algorithmic questions centered around subset
sum games. The central algorithmic decision problem is defined as follows:

Instance: A knapsack of capacity c; positive integer weights a1, a2, . . . , am

and b1, b2, . . . , bn; a starting player (A or B); a positive integer bound α;
an adversary type (hostile, selfish, greedy).

Question: Does player A have a deterministic strategy that allows him to
pack A-items of total weight at least α into the knapsack, if he plays the
game against a player B of the given adversary type?
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The resulting three variants of the subset sum game will be denoted SSG-hostile,
SSG-selfish, and SSG-greedy. The respective optimization versions of the game
ask to find the largest possible weight α∗ that player A can pack, and the respec-
tive approximation versions ask to find an approximation of α∗.

Known and related results. Motivated by certain applications in the area of
operations research, Darmann, Nicosia, Pferschy and Schauer [2] introduced the
subset sum game variant against the selfish adversary. They analyze a number
of intuitive strategies for the game, that are either pure greedy approaches or
greedy-based strategies that use some kind of bounded look-ahead. Among other
results, they show that a certain greedy strategy reaches a worst case ratio of 2
when it is applied against a selfish adversary. We stress that this result assumes
an oracle-access to the selfish adversary; it works move by move through the
entire game, and guarantees that at the very end the weight of the packed item
set is at least 50% of the weight reached by an optimal strategy. As the selfish
adversary has high computational complexity, this approach does not yield a
polynomial time algorithm in the classical sense, but just a policy that can be
applied while playing the game. In strong contrast to this, in the current paper
we will analyze these packing games by purely looking at the given instance, and
we do not assume cheap oracle-access to the expensive adversary.

The combinatorics of the subset sum game is far from trivial and sometimes
shows a quite counter-intuitive behavior. For instance, our intuition tells us that
it should always be better to pack large items before small items. However, in [2]
it is demonstrated that for certain instances of SSG-selfish it might be optimal
for player A to first pack some smaller items and only later on pack large items.

Caprara et al. [1] study three packing games that are centered around bilevel
variants of the knapsack problem. These games consist of only two rounds; the
first player (called leader) packs some items in the first round, and then the
second player (called follower) reacts by packing some items in the second round.
The objective value of the leader depends on the profits of all items in the final
packing. All bilevel packing games considered in [1] are Σp

2-complete, most of
them are in-approximable, and only one has a PTAS.

Our results. We provide a complete picture of the computational complexity
and the approximability landscape of the subset sum game against the three
adversaries types.

– The games against the hostile and selfish adversaries are PSPACE-complete.
Unless P = NP , these games do not allow any polynomial time approxima-
tion algorithm with constant worst case guarantee.

– The game against the greedy adversary is weakly NP-hard and pseudo-
polynomially solvable. This game yields one of the rare pseudo-polynomially
solvable problems that have a PTAS, but do not allow an FPTAS.

The rest of the paper is organized as follows. Section 2 states several tech-
nical observations. Section 3 proves the in-approximability results for SSG-
hostile and SSG-selfish (no constant factor approximation) and SSG-greedy (no
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FPTAS). Section 4 pinpoints the computational complexity of SSG-greedy, and
Sect. 5 derives a PTAS for SSG-greedy. Finally Sect. 6 derives the PSPACE-
completeness of SSG-hostile and SSG-selfish.

2 Technical Preliminaries

When we introduced the subset sum game in the first paragraph of this paper,
we stated that every instance of the game explicitly specifies whether player A
or player B makes the first move. The following lemma shows that from the
computational complexity point of view, there is no difference whether player A
or player B starts the game. In other words, this lemma allows us to shift the
first move from player A to player B and vice versa.

Lemma 1. For the games SSG-hostile, SSG-selfish, SSG-greedy, the computa-
tional complexity of the variant where player A has the first move coincides with
the complexity of the variant where the adversary B has the first move.

The definitions of the two games SSG-hostile and SSG-selfish look very similar
to each other, and it might not be clear at first sight that these two definitions
actually yield two different games. The following instance illustrates that these
two games indeed are different.
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12/11
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Fig. 1. The game tree for the instance in Example 1.
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Example 1. Consider the subset sum game with B-items 4, 4, 4, 7, 7, with A-
items 6, 6, 11, and with a knapsack of capacity c = 24. The first move belongs to
the adversary B.

Figure 1 lists the full game tree for the game in Example 1. Every directed
arc describes a possible move. The label of the arc states the active player (A or
B), followed by the weight of the packed item; a dash indicates that the player
passes (as none of his remaining items can be packed). The number pairs in the
rectangular boxes indicate the values of the current situation for the two players.
The first number gives the highest reachable packed weight for player A. The
second number gives the packed weight for player B; it turns out (and the reader
may want to verify this) that with the sole exception of the root situation, the
hostile adversary and the selfish adversary assign equal values to every situation.

In the root situation, the adversary B has to choose between packing an item
of weight 4 (which eventually leads to profits of 12 for both players) and packing
an item of weight 7 (which eventually leads to profits of 11 for both players).
Hence player A will make profit 11 against the hostile adversary and profit 12
against the selfish adversary.

3 Inapproximability Results

In this section, we derive two inapproximability results for the subset sum game.
Both results are derived by means of reductions from the NP-complete Parti-
tion problem; see Garey and Johnson [3].

Problem: Partition

Instance: Positive integers U ≥ 3 and u1, . . . , ut with
∑t

i=1 ui = 2U .

Question: Does there exist J ⊆ {1, . . . , t} such that
∑

i∈J ui = U?

3.1 The Hostile and the Selfish Adversary

Our first reduction from Partition simultaneously settles the inapproximability
for the hostile and for the selfish adversary. Suppose for the sake of contradiction
that the optimal value α∗ in SSG-hostile or in SSG-selfish can be approximated
in polynomial time within a factor of r for some fixed real r with 0 < r < 1. Fix
an integer R with R > 1/r. We take an arbitrary instance of Partition, and
construct the following instance of SSG-hostile and SSG-selfish from it.

– For i = 1, . . . , tR there is an A-item of weight 1.
– For i = 1, . . . , t, there is a B-item of weight tR ui.
– The capacity of the knapsack is c = tRU + t.
– Player A has the first move.

The proofs of the following two lemmas can be found in the full version.

Lemma 2. If the Partition instance has answer YES, then player A packs a
total weight of at most t against a hostile or selfish adversary. ��
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Lemma 3. If the Partition instance has answer NO, then player A can pack
a total weight of tR. ��

According to Lemmas 2 and 3, the approximation algorithm with worst case
guarantee r > 1/R can distinguish in polynomial time between YES-instances
and NO-instances of the Partition problem.

Theorem 1. Unless P = NP , the problems SSG-hostile and SSG-selfish do
not allow any polynomial time approximation algorithm with finite worst case
guarantee. ��

3.2 The Greedy Adversary

We turn to our second reduction, to prove that the game against the greedy
adversary has no FPTAS assuming P �= NP . We take an arbitrary instance of
Partition, and construct the following instance of SSG-greedy from it.

– For i = 1, . . . , t, there is one corresponding dummy A-item of weight 4U and
one corresponding standard A-item of weight 4U + ui. Furthermore, there is
one special A-item of weight 3U − 1.

– For i = 1, . . . , t there is a B-item of weight 3U .
– The capacity of the knapsack is c = (7t + 1)U − 1.
– Player A has the first move.

The proofs of the following two lemmas can be found in the full version.

Lemma 4. If the Partition instance has answer YES, then player A can pack
a total weight of (4t + 4)U − 1. ��
Lemma 5. If the Partition instance has answer NO, then player A can never
pack a total weight above (4t + 2)U . ��

Now suppose for the sake of contradiction that SSG-greedy allows an FPTAS.
For any instance of SSG-greedy and for any ε > 0, the FPTAS takes a running
time that is polynomially bounded in the instance size and in 1/ε, and then
outputs an approximation value α that is at least 1−ε times the optimal value α∗.
We execute this FPTAS with precision ε = 1/(4t+4) on the instance constructed
above. The resulting running time is polynomially bounded in the instance size.
If the Partition instance has answer YES, then by Lemma4 we have

α ≥ (1 − ε)α∗ ≥ 4t + 3
4t + 4

((4t + 4)U − 1) > (4t + 3)U − 1.

If the Partition instance has answer NO, then by Lemma 5 we have α ≤ α∗ ≤
(4t + 2)U . Hence, by analyzing the value α generated by the FPTAS, we would
be able to separate in polynomial time the YES-instances from the NO-instances
of the Partition problem.

Theorem 2. Unless P = NP , problem SSG-greedy does not possess an FPTAS.
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4 Complexity of the Game Against the greedy adversary

As problem Partition is weakly NP-hard, the reduction in Sect. 3.2 implies
that also problem SSG-greedy is weakly NP-hard. Our main goal in this section
is to show that SSG-greedy is pseudo-polynomially solvable. Note that for SSG-
greedy, a strategy of player A is fully specified by the ordered list of packed
A-items. The following lemma will be useful.

Lemma 6 (Darmann et al. [2]). Against the greedy adversary, there exists an
optimal strategy for player A that packs the items in non-increasing order of
weight.

Proof. Consider an optimal strategy of player A that (without loss of generality)
packs the items in order a1, a2, . . . , as. If the item weights in this list are not
non-increasing, consider the smallest index k with ak < ak+1. If we swap items
k and k +1 in the list, the reactions of the greedy adversary will not change. We
may repeat this swapping step until the weights are non-increasing. ��

Let us assume that the A-items are ordered as a1 ≥ a2 ≥ · · · ≥ am and
that the B-items are ordered as b1 ≥ b2 ≥ · · · ≥ bn. By Lemma 6 there exists
an optimal strategy for player A that packs items in order of non-increasing
weight. For i = 0, . . . ,m + 1, for j = 0, . . . , n + 1, and for WA = 0, . . . , c and
WB = 0, . . . , c, we introduce a corresponding state [i, j,WA,WB ] that encodes
the following situation that might potentially arise in some run of the game:

In situation [i, j,WA,WB ] player A is to move next. In his last move,
player A has packed the i’th A-item (where i = 0 means that no A-item
has been packed yet, and where i = m + 1 means that no further A-item
fits). Similarly, the greedy adversary B has packed the j’th B-item in his
last move. The total weight of the packed A-items equals WA and the total
weight of the packed B-items equals WB .

For two situations S′ = [i′, j′,W ′
A,W ′

B ] and S = [i, j,WA,WB ], it is easy to
check whether S can be reached from S′ by means of a move of player A and
a following counter-move by player B. In this case we must have i > i′, j > j′,
WA = W ′

A + ai and WB = W ′
B + bj . Furthermore WA + WB ≤ c, and bj must

be the largest available B-item of size ≤ c − (W ′
A + W ′

B + ai).
This suggests the following approach.We generate all possible states

[i, j,WA,WB ] where the variables i, j,WA,WB may take all possible values from
their ranges as listed above. Altogether this yields O(mnc2) states. Then we
compute for every pair S and S′ of states, whether S can be reached from S′.
Next, we determine (by a standard depth-first-search traversal) all states that
are reachable from the starting situation of the game. The maximum value WA

among all reachable states yields the largest possible weight α∗ that player A
can pack. We summarize the findings of this section.

Theorem 3. Problem SSG-greedy is weakly NP-complete and solvable in pseu-
do-polynomial time O(m2n2c4). ��
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The literature contains certain routine approaches that automatically trans-
late certain types of pseudo-polynomial algorithms into an FPTAS; see for
instance Woeginger [5]. Unfortunately, the above pseudo-polynomial algorithm
for SSG-greedy does not fall into that category and does not allow such an
automatic translation. Theorem2 explicitly excludes the existence of an FPTAS
(unless P = NP ). The following section derives the strongest approximation
result possible under these circumstances.

5 The Approximation Scheme

In this section, we derive a polynomial time approximation scheme (PTAS) for
problem SSG-greedy. The PTAS uses an enumeration approach (for the large
A-items) together with a greedy strategy (for the smaller A-items) against the
greedy adversary. Throughout this section we will assume without loss of gen-
erality that player A has the first move. The following lemma (whose proof can
be found in the full version of the paper) will be crucial.

Lemma 7. Consider an instance of SSG-greedy, and let amax denote the weight
of the largest A-item. Let α∗ denote the total weight player A packs under an
optimal strategy, and let αG denote the total weight player A packs when he
applies the greedy strategy. Then

α∗ − amax < αG.

We turn to the description of the PTAS. We assume that the A-items are
ordered as a1 ≥ a2 ≥ · · · ≥ am and the B-items are ordered as b1 ≥ b2 ≥ · · · ≥
bn. We will furthermore assume by Lemma 6 that both players pack their items
in order of non-decreasing weight. Let ε with 0 < ε < 1 be a small positive real
number; for the sake of simplicity we will assume that the reciprocal value 1/ε
is integer.

Let S be a subset of A-items with |S| ≤ 1/ε, and let ak denote the lowest
weight A-item in S (that is, the item with largest index in S). We run the
following two-phase procedure on S by simulating a game of player A against
the greedy adversary.

– The first phase consists of the first |S| moves. Player A packs the items in S
in non-increasing order of weight.

– The second phase consists of the remaining moves. Player A ignores all A-
items with indices up to k, and plays greedily with the A-items with indices
at least k + 1.

In case we cannot pack all the items of S in the first phase, we call set S
infeasible and ignore it. Otherwise, set S is feasible and the procedure yields a
certain total packed weight for player A that we denote α(S). The PTAS outputs
the maximum value α(S) over all feasible sets S.

Now consider an optimal strategy for player A that packs a sequence of items
with weights a∗

1 ≥ a∗
2 ≥ · · · ≥ a∗

t . If t ≤ 1/ε, then the items in the sequence form
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a feasible set S∗. In this case our PTAS analyzes S∗ in the first phase, and
eventually outputs the optimal objective value α∗ = α(S∗). If t > 1/ε, then
define S∗ as the set of the 1/ε largest items in the sequence; note that S∗ is a
feasible set. What does our two-phase procedure do with S∗?

– The first phase simply follows the first 1/ε moves of the optimal strategy:
player A packs the first 1/ε items from the optimal sequence, and the greedy
adversary picks the largest B-items that fit. As player A altogether packs 1/ε
items during the first phase, the smallest item weight in S∗ is at most εα∗.

– The second phase is only played with the A-items that are smaller than
the smallest item in S∗, and hence have weight at most εα∗. The knapsack
capacity is the remaining capacity that has not been used in the first phase.

Let α+
1 denote the total A-weight packed during the first phase, and let α+

2

denote the total A-weight packed during the second phase. Let α∗
1 denote the

weight of the items in S∗, and let α∗
2 = α∗−α∗

1 denote the weight of the remaining
items in the optimal packing for A. Clearly α∗

1 = α+
1 , and Lemma 7 yields that

α∗
2 − εα∗ ≤ α+

2 . These two inequalities imply

α(S∗) = α+
1 + α+

2 ≥ α∗
1 + (α∗

2 − εα∗) = (1 − ε)α∗.

As the PTAS yields a strategy with profit at least α(S∗), this yields the desired
approximation guarantee. Up to polynomial factors, the time complexity of the
PTAS is proportional to the number of analyzed sets S, which is bounded by
m1/ε. This completes our analysis and yields the following theorem.

Theorem 4. Problem SSG-greedy has a polynomial time approximation scheme.

6 The PSPACE Completeness Result

In this section we determine the computational complexity of the problem vari-
ants with a hostile or selfish adversary. Both problems are PSPACE-complete,
and the proof is done by means of a polynomial time reduction from the following
variant of the quantified satisfiability problem.

Problem: Quantified 1-in-3-Sat

Instance: Two sets X = {x1, . . . , xs} and Y = {y1, . . . , ys} of Boolean
variables. A Boolean formula φ over X ∪ Y in conjunctive normal form
with clauses C1, . . . , Ct; every (disjunctive) clause Cj consists of exactly
three literals.

Question: Assuming that a clause in φ is satisfied if and only if it contains
exactly one true literal, is ∀x1∃y1∀x2∃y2 . . . ∀xs∃ys φ true?

As usual, we interpret a quantified formula as a game between a universal player
(controlling the universal quantifiers) and an existential player (controlling the
existential quantifiers). The goal of the existential player is that in the end
formula φ evaluates to true, whereas the universal player wants to prevent this.
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Lemma 8. Quantified 1-in-3-Sat is PSPACE-complete.

Proof. There is a reduction from the classic Quantified 3-Satisfiability problem,
whose PSPACE-completeness was established by Schaefer [4] reduction is rou-
tine and omitted in this extended abstract. ��

Now we turn to the PSPACE-hardness proofs for SSG-hostile and SSG-
selfish. We present a single reduction that simultaneously settles both cases.
We start from an arbitrary instance of Quantified 1-in-3-Sat with 2s vari-
ables x1, . . . , xs and y1, . . . , ys and with t clauses, and we construct the following
subset sum game from it.

All item weights will be specified in decimal representation, and will all have
at most 2s + t + 3 digits. The first 2s digits (in the high positions) form the
so-called variable piece; the (2i − 1)th such digit from the left corresponds to
the Boolean variable xi, and the (2i)th digit from the left corresponds to the
Boolean variable yi. The three digits after the variable piece form the so-called
middle piece. The last t digits (in the low positions) form the so-called clause
piece; the jth such digit from the left in the clause piece corresponds to clause
Cj . The item weights are defined as follows.

– For every literal � ∈ {xi, xi} with 1 ≤ i ≤ s there is a corresponding item
B(�). The decimal representation of its weight has a 1-digit in the position
corresponding to xi in the variable piece. The middle piece digits and all other
digits in the variable piece are 0. Furthermore, the clause piece has a digit 1
in the position corresponding to clause Cj if � occurs in Cj ; otherwise, the
digit is 0.

– Symmetrically, for every literal � ∈ {yi, yi} with 1 ≤ i ≤ s there is a corre-
sponding item A(�). The decimal representation of its weight has a 1-digit
in the position corresponding to yi in the variable piece. The middle piece
digits and all other digits in the variable piece are 0. Furthermore, the clause
piece has a digit 1 in the position corresponding to clause Cj if � occurs in
Cj ; otherwise, the digit is 0.

– For every variable xi and every variable yi, there is a corresponding threat
item T (xi) respectively T (yi). The decimal representation of the weight has
a 1-digit in the position corresponding to that variable in the variable piece.
All other digits are 0.

– Furthermore, there are four verification items V1, V2, V3, U with weights
w(V1), w(V2), w(V3), w(U). All digits in the variable pieces of these item
weights are 0. The middle pieces of w(V1), w(V2), w(V3), w(U) respectively
are 111, 100, 010, 011. All other digits in the four decimal representations are
0, with the sole exception of the lowest digit in the weight of V1, which is set
to 1.

We stress the following property of our construction: if we add up the weights of
any subset of items in decimal, then there will be no carry overs from one position
to the next one. The knapsack capacity c has digits 1 in all 2s + t + 3 positions.
The goal weight α of player A is defined as follows: The decimal representation of
α has a digit 1 in the even positions in the variable piece (that is, in the positions
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Owner Variable piece Middle Clause piece
x1 y1 . . . xi yi . . . xsys piece C1 . . . Cj . . . Ct

B(xi) B 0 0 . . . 1 0 . . . 0 0 0 0 0 0 . . . 0 1 0 . . . 00

B(xi) B 0 0 . . . 1 0 . . . 0 0 0 0 0 0 . . . 0 1 0 . . . 00

A(yi) A 0 0 . . . 0 1 . . . 0 0 0 0 0 0 . . . 0 1 0 . . . 00

A(yi) A 0 0 . . . 0 1 . . . 0 0 0 0 0 0 . . . 0 1 0 . . . 00

T (xi) A 0 0 . . . 1 0 . . . 0 0 0 0 0 0 . . . 0 0 0 . . . 00

T (yi) B 0 0 . . . 0 1 . . . 0 0 0 0 0 0 . . . 0 0 0 . . . 00

V1 B 0 0 . . . 0 0 . . . 0 0 1 1 1 0 . . . 0 0 0 . . . 01

V2 B 0 0 . . . 0 0 . . . 0 0 1 0 0 0 . . . 0 0 0 . . . 00

V3 B 0 0 . . . 0 0 . . . 0 0 0 1 0 0 . . . 0 0 0 . . . 00

U A 0 0 . . . 0 0 . . . 0 0 0 1 1 0 . . . 0 0 0 . . . 00

c − 1 1 . . . 1 1 . . . 1 1 1 1 1 1 . . . 1 1 1 . . . 11

α − 0 1 0 1 . . . 0 1 0 1 0 1 1 0 . . . 0 0 0 . . . 00

β − 0 0 . . . 0 0 . . . 0 0 1 1 1 1 . . . 1 1 1 . . . 11

Fig. 2. Summary of the decimal representation of the item weights.

corresponding to variables yi), a middle piece 011, and digits 0 in the remaining
positions. Finally, we define an auxiliary number β (with digits 1 in middle piece
and clause piece, and 0s in the variable piece). The decimal representations of
all the introduced numbers are summarized in Fig. 2.

All items A(yi) and A(yi), all threat items T (xi), and the verification item
U belong to player A. All items B(xi) and B(xi), all threat items T (yi), and
the verification items V1, V2, V3 belong to player B. Player B has the first move.
The question is to decide whether player A can pack a total weight of at least α
(in which case we say that player A wins the game).

Lemma 9. Assume that player A and the (hostile or selfish) adversary B both
apply optimal strategies. Then in round 2i− 1 (with 1 ≤ i ≤ s), the adversary B
either packs item B(xi) or item B(xi). In round 2i (with 1 ≤ i ≤ s), player A
either packs item A(yi) or item A(yi).

Proof. We assume inductively that up to round 2k (with 0 ≤ k ≤ s − 1), the
statement holds and both players have followed the described moves. Let d denote
the current contents of the knapsack at th beginning of round 2k. Then the
decimal representation of d has digits 1 in the first 2k positions of the variable
piece. This implies that none of the remaining items A(yi), A(yi), T (yi), B(xi),
B(xi), T (xi) with 1 ≤ i ≤ k can be picked anymore: their weight is so large
that they do not fit into the remaining empty part of the knapsack. All other
items (the four verification items and the items corresponding to variables xi or
yi with i ≥ k + 1) are small enough to fit.
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First we consider a hostile adversary B. If B neither packs item B(xk) nor
B(xk) in round 2k + 1, then player A can react in the next round by packing
the threat item T (xk). This immediately brings A’s weight above the threshold
α, so that A wins the game. Hence the hostile B must pack B(xk) or B(xk) in
round 2k + 1. If A then does neither pack A(y1) nor A(y1) in round 2k + 2, the
adversary will pack the threat item T (yk) in his next move. In this case A will
never be able to pack A(yk) or A(yk) or T (xk) in the future, and his weight will
permanently stay below α. Hence the claimed statement also holds up to round
2k + 2. ��

Next we consider a selfish adversary B. If B neither packs item B(xk) nor
B(xk) in round 2k+1, then player A can react in the next round by packing the
threat item T (xk). Exactly as in the hostile case, the weight of player A then
exceeds the threshold α, and A wins the game. On the other hand, the selfish
player B will never be able to compensate for the loss of B(xk) and B(xk). All
in all, this means that the selfish B must pack item B(xk) or B(xk) in round
2k + 1. Finally, we may argue exactly as in the hostile case that player A then
must pack item A(y1) or A(y1) in round 2k + 2, Hence, also in the selfish case
the claimed statement holds up to round 2k + 2.

Lemma 10. Let c′ denote the remaining knapsack capacity at the end of round
2s. Let w(A) and w(B) denote the weight packed by player A and the (hostile or
selfish) adversary B in rounds 2s + 1, 2s + 2, 2s + 3.

(S1) If c′ ≥ w(V1) then w(A) = 0 and w(B) = w(V1).
(S2) If c′ = w(V1)−1 then w(A) = w(U) and w(B) = w(V2) or w(B) = w(V3).
(S3) If c′ ≤ w(V1) − 2 then w(A) = 0 and w(B) = w(V2) + w(V3).

The proof of this lemma can be found in the full version of the paper.
By Lemmas 9 and 10, player A will win the game if situation (S2) occurs after

round 2s, and he will lose the game under situations (S1) and (S3). If player B
is hostile, then his goal will be to avoid situation (S2). If player B is selfish, then
he will also avoid situation (S2), as both (S1) and (S3) yield a better profit for
him. Hence in either case, the objective of player A is to reach situation (S2)
and the objective of the adversary is exactly to avoid this situation (S2).

Now let us finally connect our analysis to the considered instance of Quan-
tified 1-in-3-Sat. By Lemma 9, after the first 2s rounds the knapsack contains
exactly one of items B(xi) and B(xi) and exactly one of items A(yi) and A(yi)
for 1 ≤ i ≤ s. We construct the following truth setting T ∗ from this packing: If
the knapsack contains B(xi) (respectively B(xi)) then variable xi is set to true
(respectively false), and if the knapsack contains A(yi) (respectively A(yi)) then
variable yi is set to true (respectively false). The remaining knapsack capacity
c′ at the end of round 2s equals w(V1) − 1, if and only if under truth setting T ∗

every clause in formula φ contains exactly one true literal. In other words, for
player A reaching situation (S2) in the subset sum game is equivalent to reaching
a satisfying truth setting T ∗ for the Quantified 1-in-3-Sat instance.

This yields a natural bijection between the moves of the players in the Quan-
tified 1-in-3-Sat instance and the moves of the players in the constructed
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instance of SSG-hostile and SSG-selfish. This implies PSPACE-hardness of these
games. Furthermore, these games can be fully analyzed with polynomial space
by a depth-first-search traversal of the underlying game tree; this yields contain-
ment in PSPACE. We summarize our findings in the following theorem.

Theorem 5. The games SSG-hostile and SSG-selfish are PSPACE-complete.

7 Final Remarks

We have analyzed the three variants SSG-hostile, SSG-selfish, and SSG-greedy
of the subset sum game. Our analysis fully describes the complexity and the
approximability landscape of these three games.

The two games SSG-hostile and SSG-selfish look and behave very similarly.
In fact, a single proof (for Theorem5) suffices to settle the complexity status of
both problems, and a single proof (for Theorem1) settles their approximability
status. We do not have a good understanding of the actual difference between
these two games. In particular, the following question (motivated by the game
instance in Example 1) remains open: What is the computational complexity of
deciding for a given instance of the subset sum game, whether player A can
enforce a strictly larger profit against a selfish adversary than against a hostile
adversary? We suspect this problem to be computationally intractable.
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Abstract. This paper investigates a surprising relationship between
decision theory and proof theory. Using constructions originating in proof
theory based on higher-order functions, so called quantifiers and selection
functions, we show that these functionals model choice behavior of indi-
vidual agents. Our framework is expressive, it captures classical theories
such as utility functions and preference relations but it can also be used
to faithfully model abstract goals such as coordination. It is directly
implementable in functional programming languages. Lastly, modeling
an agent with selection functions and quantifiers is modular and thereby
allows to seamlessly combine agents bridging decision theory and game
theory.

Keywords: Decision theory · Utility functions · Preferences · Higher-
order functions · Quantifiers

1 Introduction

A higher-order function (or functional) is a function whose domain is itself a
set of functions. In this paper we investigate a surprising and deep connec-
tion between decision theory on one side and a higher-order construction that
originated in proof theory [3,4] on the other side: We use a particular class of
higher-order functions as a way of describing the choice behavior of individual
agents.

Assume X is the overall set of alternatives, and R a set of observable outcomes
or measures. For instance, X could be the set of all books, and R = R

+ the non-
negative reals representing prices. We then see functions of type X → R as
describing the agent’s decision context, e.g. X → R

+ as the mapping from books
to prices.
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The core idea we explore here is to model agents’ decision goals as higher-
order functions of type (X → R) → R. Functionals of this type have been called
quantifiers [14], since the standard ∃ and ∀ logical quantifiers are particular
cases of these when R = B is the type of booleans. Going back to the example
of books and prices, an agent who prefers the cheapest book will be modeled by
the quantifier

min: (X → R
+) → R

+

saying that given any catalogue of prices p : X → R
+ the agent will choose to

pay the cheapest price on the catalogue min(p).
Therefore, quantifiers describe the outcome (e.g. price paid for the choice

of book) an agent considers to be good in any given decision context. A cor-
responding notion is that of a selection function, i.e. a higher-order function of
type (X → R) → X which calculates a concrete choice that meets the desired
goal. In the example above, the corresponding selection function would pick one
of the cheapest books according to the prices given in p : X → R

+.
Since the max: (X → R) → R operator is also a quantifier and the corre-

sponding argmax: (X → R) → X operator is a selection function, we have that
the standard approach of modeling preferences via utility functions or preference
relations are instances of our modeling framework. But, quantifiers and selection
functions can capture alternative decision criteria as well as decision heuristics.
We demonstrate this through several simple examples.

As we see it, there are three crucial advantages of adopting a higher-order
modeling of choice behavior: expressivity, modularity, and computability :

– Expressivity : We show that describing agent’s choices through higher-order
functionals captures existing standard approaches such as utility maximiza-
tion. Moreover, we can directly model at the level of higher-order functionals
and thereby faithfully describe the agent’s behavior. As an example, we intro-
duce a fixed-point operator which captures an agent’s goal to coordinate with
other agents.

– Modularity : By taking into account the decision context p : X → R when
describing an agent’s goal, we can fully describe the agent “locally”, without
having to refer to “global” utility functions or similar constructs. This allows
us to seamlessly combine individual agents into strategic games, bridging the
gap between decision theory and game theory.

– Computability : Finally, such higher-order function, as abstract as they might
appear, can be directly expressed and coded into functional programming
languages such as Haskell and Ocaml. In fact, most of the theory we have
developed here and in [8] has been implemented and tested in Haskell. This
Haskell code has also served to guide us in discovering new forms of game
equilibria which are available in this setting of higher-order decisions and
games.

The plan for the paper is as follows. We give a brief introduction to higher-
order functions in the next section. We then show how quantifiers can be used to
model behavior directly at the level of these higher-order functions. In Sect. 3,
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we also show how to instantiate preference relations and utility maximization as
special cases. In Sects. 4 and 4.3 we introduce a series of non-optimizing examples
and show how they can be represented by higher-order functions. These include
coordination goals as fixpoint operators. We conclude in Sect. 5.

Elsewhere we show that selection functions are very powerful building blocks
for game theory and implementations thereof [8]. Moreover, in [3–5,7,10] selec-
tion functions are a building block for a compositional approach to game theory.
These papers rely on simple instances of selection functions. All instances of
selection functions and quantifiers introduced in this paper, can be directly inte-
grated into these game theoretic models.

2 Agents as Quantifiers

A higher-order function (or functional) is a function whose domain is itself a set
of functions. Given sets X and Y we denote by X → Y the set of all functions
with domain X and codomain Y . A higher-order function is therefore a function
f : (X → Y ) → Z where X, Y and Z are sets.

Here are some well known examples of higher-order functions. In case of the
maximization of a utility function u : X → R

max
x∈X

u(x)

the max operator takes the utility function u : X → R as its input and returns a
real number maxx∈X u(x) as the output. Therefore, the max operator has type

max: (X → R) → R

In a similar vein, the argmax operator is also a higher-order function of a par-
ticular type:

argmax: (X → R) → P(X)

where P(X) is the set of subsets of X. For a given function u : X → R we have
that argmax(u) is the set of points where u attains its maximum value.

2.1 Agent Context

We want to model an agent A in a choice situation or context and formulate his
motivations and his choices. We shall model such contexts as mappings X → R
that encode for choices in X their effects on the outcomes in R.

Definition 1 (Agent context). We call any function p : X → R a possible
context for the agent A who is choosing a move from a set X, having in sight a
final outcome in a set R,

For instance, X could be the set of available flights between two cities, and
R = R

+ could be the set of positive real numbers that represent prices. An agent
who is interested in choosing a flight having in mind only the cost of the flight



244 J. Hedges et al.

will consider the price list X → R
+ as a sufficient context for his decision. If,

however, the number of stops (or changes) is an important factor in the decision
of the agent, we could take R = R

+ × N and the agent’s context would then be
X → R

+ × N.

2.2 Quantifiers

Suppose the agent A has to make a decision in the context p : X → R. The agent
will consider some of the possible outcomes to be good (or acceptable), and others
to be bad (or unacceptable). Such choices define a higher-order function of the
following type:

Definition 2. (Quantifier, [3,4]). Mappings

ϕ : (X → R) → P(R)

from contexts p : X → R to sets of outcomes ϕ(p) ⊆ R are called quantifiers.

The terminology comes from the observation that the usual existential ∃ and
universal ∀ quantifiers of logic can be seen as operations of type (X → B) → B,
where B is the type of booleans. Mostowski [14] has called arbitrary functionals
of type (X → B) → B generalized quantifiers. This was generalized further in [3]
to the type given here.

We model agents A as quantifiers ϕA and take ϕA(p) as the set of outcomes
that the agent A considers preferable in each context p : X → R. For instance,
consider again the example where X is the set of flights, and R = R

+ × N

indicates prices together with the number of stops. An agent that wishes to
minimize the cost of the flight, but does not wish to make more than two stops
will be modeled by the quantifier:

ϕ(p) = {p(x) : x ∈ X, p0(x) = min p0, p1(x) ≤ 2}

where p0 : X → R
+ and p1 : X → N are the two projections of p : X → R

+ × N.
Our main objective in this paper is to convince the reader that this is a gen-

eral, modular, and highly flexible way of describing an agent’s goal or objective.
The classical example of a quantifier is utility maximization. Suppose an

agent has a utility function u′ : R → R mapping outcomes into utilities. Com-
posing the context p : X → R and u′ : R → R we get a new context that maps
actions directly into utility u : X → R. Given this new context, the good out-
comes for the player are precisely those for which his utility function is maximal.
This quantifier is given by

max(u) = {r ∈ Im(u) | r ≥ u(x′) for all x′ ∈ X}

where Im(u) denotes the image of the utility function u : X → R.
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2.3 Context-Dependence

In general, we are going to allow the set of outcomes that the agent considers
good to be arbitrary. It is reasonable, however, to assume that for each context
p : X → R we have ϕ(p) 	= ∅. This is to say that in any given context the agent
must have a preferred outcome (even if this would be the least bad one). We will
call such quantifiers total. Another more interesting class of quantifiers consists
of those we call context-independent :

Definition 3 (Context-independence). A quantifier ϕ : (X → R) → P(R)
is said to be context-independent if the value ϕ(p) only dependents on Im(p),
i.e.

Im(p) = Im(p′) =⇒ ϕ(p) = ϕ(p′).

Dually, a quantifier ϕ will be called context-dependent if for some contexts p
and p′, with Im(p) = Im(p′), the sets of preferred outcomes ϕ(p) and ϕ(p′) are
different.

Intuitively, a context-dependent quantifier will select good outcomes not only
based on which outcomes are possible, but will also take into account how the
outcomes are actually achieved. It is easy to see that the quantifier max is
context-independent, since it can be written as a function of Im(p) only.

Our prototypical example of a context-dependent quantifier is the fixpoint
operator

fix : (X → X) → P(X)

Recall that a fixpoint of a function f : X → X is a point x ∈ X satisfying
f(x) = x. If the set of moves is equal to the set of outcomes then there is a
quantifier whose good outcomes are precisely the fixpoints of the context. If the
context has no fixpoints we shall assume that the agent will be equally satisfied
with any outcome. Such a quantifier is given by

fix(p) =

{
{x ∈ X | p(x) = x} if nonempty
X otherwise.

Clearly fix(·) is context-dependent, since we could have different contexts
p, p′ : X → X having the same image set Im(p) = Im(p′) but with p and p′

having different sets of fixpoints. For example, if we take p, p′ : R → R to be
given by p(x) = x and p′(x) = −x then Im(p) = Im(p′) = R, but fix(p) = R and
fix(p′) = {0}. We will discuss the relevance of this quantifier in Sect. 4.3.

2.4 Attainability

Another important property of quantifiers that we shall consider is that of attain-
ability :

Definition 4 (Attainability). A quantifier ϕ : (X → R) → P(R) is called
attainable if, for every context p : X → R, for some r ∈ ϕ(p) there exists an x
such that p(x) = r. (In particular, attainable quantifiers are total.)



246 J. Hedges et al.

In other words, an agent modeled by an attainable quantifier will select at
least one preferred outcome r that is actually achievable by some move x. An
equivalent definition is that ϕ : (X → R) → P(R) is attainable if and only if

ϕ(p) ∩ Im(p) 	= ∅.

Remark 1. We could also define a strong attainability notion whereby all r ∈
ϕ(p) need to be achievable by some x ∈ X, i.e.

ϕ(p) ⊆ Im(p).

For our purposes the weaker notion of Definition 4 has been sufficient and rea-
sonably well-behaved.

Attainable quantifiers bring out the relevance of moves in the decision making
process. Sometimes an agent might actually wish to spell out the preferred moves
instead of the preferred outcomes. This leads to the definition of another class
of higher-order functions:

Definition 5 (Selection functions). A selection function is any function of
type

ε : (X → R) → P(X)

Remark 2. In the computer science literature, where quantifiers and selection
functions have been considered previously, the initial focus was on single-valued
ones [3]. Multi-valued quantifiers were first considered in [4]. As the definition
above shows, we also make use of multi-valued selection functions, as these are
extremely important in our examples and also in game theoretic approaches that
take selection functions as a building block [5,7,10].

Similarly to quantifiers, the canonical example of a selection function is max-
imizing R, defined by

argmax(p) = {x ∈ X | p(x) ≥ p(x′) for all x′ ∈ X}
The argmax selection function is naturally multi-valued: a function may attain
its maximum value at several different points.

Proposition 1. A quantifier ϕ : (X → R) → P(R) is attainable if and only if
there exists a total selection function ε : (X → R) → P(X) such that, for all
p : X → R,

x ∈ ε(p) =⇒ p(x) ∈ ϕ(p)

If such a relationship between a quantifier ϕ : (X → R) → P(R) and a selec-
tion function ε : (X → R) → P(X) holds then we shall say that ε attains ϕ. The
attainability relation holds between the quantifier max and the selection func-
tion argmax. The fixpoint quantifier is also a selection function, and it attains
itself since

x ∈ fix(p) =⇒ p(x) ∈ fix(p).
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3 Preference Relations and Utility Maximization

In this section we relate the concepts of quantifiers and selection functions to
standard concepts of classical (economic) decision theory: utility functions and
preference relations. In particular, we show that both correspond to context-
independent quantifiers that have the same structure. We now want to char-
acterize the relationship between preference relations and context-independent
quantifiers.

Suppose R is the set of possible outcomes, and an agent has a partial order
relation  on R as preferences, so that x  y means that the agent prefers the
outcome x to y. These partial orders lead to choice functions f : P(R) → P(R)
where f(S) are the maximal elements in the set of possible outcomes S with
respect to the order . Note that these f satisfy f(S) ⊆ S, and f(S) 	= ∅ for
non-empty S.

Every such f can be turned into a quantifier ϕ in a generic way, using the
fact that the image operator is a higher-order function Im : (X → R) → P(R):

(X → R) Im−−→ P(R)
f−→ P(R)

so that f ◦ Im: (X → R) → P(R) are quantifiers.

Proposition 2. Assume |X| ≥ |R|, i.e. the number of choices is bigger than the
number of possible outcomes. Then a quantifier ϕ : (X → R) → P(R) is context-
independent if and only if ϕ = f◦Im, for some choice function f : P(R) → P(R).

Proof. If ϕ = f ◦ Im then ϕ is context-independent. For the other direction, note
that since |X| ≥ |R| we have for any subset S ⊆ R a map uS : X → R such that
Im(uS) = S. Assume ϕ is context-independent and let us define f(S) = ϕ(uS).
Clearly,

ϕ(p) = ϕ(uIm(p)) = f(Im(p))

where the first step uses that ϕ is context-independent and that Im(p) =
Im(uIm(p)) by the assumption on the family of maps uS , while the second steps
simply uses the definition of f .

Agents who are defined by context-independent quantifiers are choosing the
set of good outcomes simply by ranking the set of outcomes that can be achieved
in a given context but are ignoring all the information about how each of the
outcomes arise from particular choices of moves.

For instance, we might have a set of actions that will lead us to earn some
large sums of money. Some of these, however, might be illicit. A classical agent
who cares only about the direct consequences of his decision and is defined in
a context-independent way would choose the outcome that gives himself the
maximum sum of money, regardless of the nature of action. If however the agent
also cares about the actions themselves and their indirect consequences, he might
not consider the largest amount of money as preferable.

The following proposition guarantees the attainability of context independent
quantifiers arising from preference relations:
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Proposition 3. Whenever f� is a choice function arising from a partial order
, then the context-independent quantifier ϕ = f� ◦ Im is attainable.

Proof. By the definition of ϕ we have that if r ∈ ϕ(p) then r is a maximal
element in Im(p). Hence we must have an x ∈ X be such that p(x) = r.

Another example of a context-independent quantifier is the maximization of a
utility function. A utility function can be characterized as the context p : X → R

that attaches a real number to each element of the set of choices X with the
quantifier defined as

ϕ(p) = max
x∈X

p(x).

Moreover, this quantifier is attained by the selection function

ε(p) = arg max p

Note the types ϕ : (X → R) → P(R) and ε : (X → R) → P(X) respectively.
And indeed we have that

x ∈ ε(p) =⇒ p(x) ∈ ϕ(p).

Thus, max and arg max operators, are the prototypical examples of a context-
independent quantifier and a selection function attaining it.

4 Alternatives to Optimization

We have seen how the higher-order notion of a context-independent quantifiers
is able to model choices based on rational preferences (or equivalently on utility
maximization). For simplicity, we consider decisions under certainty but it is
straightforward to consider uncertainty and consider expected utility theory.
Other decision criteria such as regret minimization [13,15] or maximin choices
[16] are also captured by our framework.

Instead of going in this direction, in the following we consider another direc-
tion: Utility functions as well as preference relations are intimately linked to the
assumption that the agent fully optimizes. The behavioral economic literature as
well as the psychological literature have documented deviations from optimizing
behavior [2,11]. Quantifiers provide a direct way to model such deviations. Here
we give a few examples by allowing for a different structure on the set of out-
comes R or by allowing for a different mapping f : P(R) → P(R), or by relaxing
both.

4.1 Context-Independent Agents

Example 1 (Averaging Agent). Consider an agent who prefers the outcome to be
as close as possible to the average of all achievable outcomes. Given a decision
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context p : X → R, the average amongst the possible outcomes can be calcu-
lated as

Ap =
Σr∈Im(p)r

| Im(p)|
Therefore, such agent can be directly modeled via the averaging quantifier
ϕA : (X → R) → P(R) as

ϕA(p) = {r ∈ Im(p) | |r − Ap| is minimal}
The next example represents the second best decision problemdiscussed in [12].

Example 2 (Second-best Agent). Consider a simple heuristic of a person ordering
wine in a restaurant whereby he always chooses the second most-expensive wine.
In terms of quantifiers, let X be the set of wines available in a restaurant, and
p : X → R the price attached to each wine xi (i = 1, ..., N) on the menu,
so that ri = p(xi) denotes the price of wine xi. Given a maximal strict chain
rn > rn−1 > . . . > r1 in R, let us call rn−1 a sub-maximal element. The goal of
the agent can be described by the quantifier

ϕ>(pX→R) = {sub-maximal elements with respect to > within Im(p)}.

A crucial point of the above examples is the additional degree of freedom
of modeling as it is possible to vary the choice operator itself and not being
automatically restricted to the max operator.

4.2 Context-Dependent Agents

So far, we have focused only on context-independent quantifiers. Yet, we can do
more. As we have discussed in Sect. 2, we can allow for quantifiers that do not
only take the image of p as input but the complete function. Again, we consider
several examples.

Example 3 (Ideal-move Agent [6]). Let r > 0 be a fixed real number. For a point
v ∈ R

n we define the closed ball with centre v and radius r by

B(v; r) = {w ∈ R
n | d(v, w) ≤ r}

where d is the Euclidean distance. Let the set of choices X have a distinguished
element x0 ∈ X. Define the quantifier ϕ : (X → R

n) → P(Rn) by

ϕ(p) = B(p(x0); r)

This quantifier is attained by the constant selection function ε(p) = {x0}.

The last example illustrates Simon’s satisficing behavior. The value r > 0 can
be considered as a satisficing threshold around outcomes that are close to the
outcome of an ideal point. Such an agent is equally satisfied with all outcomes
which are close enough to the outcome of the ideal choice.
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Example 4 (Averaging – revised). Consider again an agent who prefers the out-
come to be as close as possible to the average outcome. But this time we assume
that he takes into account the number of possible ways an outcome may be
attained. Given a decision context p : X → R, the weighted average in this case
can be calculated as

Ap =
Σx∈Xp(x)

|X|
Such an agent can be modeled via the weighted averaging quantifier ϕ : (X →
R) → P(R) as

ϕ(p) = {r ∈ Im(p) | |r − Ap| is minimal}
It easy to check that this is a context-dependent quantifier.

Now, consider the example where the set of actions allows an agent to earn
some money but some actions are illicit and hence not considered to be a permis-
sible behavior. If we care about the actions themselves, we might not necessarily
consider the largest sum of money as preferable.

Example 5 (Honest Agents). Consider an agent with a set of possible actions X
leading to monetary outcomes M ⊆ R. Assume some of these actions I ⊂ X
are illegal or dishonest. Hence, the set L = X\I consists of the legal, or honest,
actions. In the first instance consider an honest agent who maximizes over the
outcomes which follows from honest actions. Such a honest agent can be modeled
by the quantifier:

ϕh(p) = {r | r a maximal element in the set p(L)}
where p(L) is the image of L under p. Consider, however, a more complicated
case where the agent is prepared to consider dishonest or illegal actions when
the reward associated with some of these actions is above a threshold T . This
subtler preference can be directly modeled as

ϕd(p) =

{
{r | r is maximal in Im(p)} if maxx∈Ip(x) > T

ϕh(p) otherwise

so that the dishonest agent will behave as the honest one if the maximal reward
for a dishonest action is low, but he will consider any action to be acceptable if
the gain from a dishonest or illegal action is high enough.

In the next example we introduce an extreme case of an agent who decides on
preferred outcomes solely based on the set of moves that lead to that outcome.

Example 6 (Safe Agents). Given a decision context p : X → R and an outcome
r ∈ Im(p), we can calculate the number of different ways r can be attained by

np
r = |{x ∈ X | p(x) = r}| .
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We say that an outcome r is most unavoidable if np
r is maximal over the set

of possible outcomes Im(p). We say that an agent is safe if he prefers most
unavoidable outcomes. Such agents are modeled by the quantifier

φ(p) = {r ∈ Im(p) | np
r maximal}

In order to illustrate this quantifier, suppose there are three beaches, and
the agent is indifferent between them. The first can be reached by one highway,
the second by two highways and the third by three highways. The agent has to
choose which highway to take, and the outcome is the beach that the agent goes
to. The safe agent decides to visit the beach which can be reached by the most
different routes, which is the third, in order to avoid the risk of being stuck in a
traffic jam.

4.3 Fixed Points as Coordination

We now discuss the specific situations where the set of actions X and outcomes
R are the same X = R. In this case elements of the type

(X → X) → P(X)

can be either viewed as quantifiers or selection functions. Agents of this type are
common in voting contests:

Example 7 (Voting Agent). Consider three judges J = {J1, J2, J3} voting for
two contestants X = {A,B}. The winner is determined by the simple majority
rule of type maj : X × X × X → X. The set X denotes both the set of choices
and the set of possible outcomes of the contest. We first assume that the judges
rank the contestants according to a preference ordering. For example, suppose
judges 1 and 2 prefer A and judge 3 prefers B. Consider the decision problem of
the first judge. He has an ordering on the set X, namely A 1 B, and his goal
is to maximize the outcome with respect to this ordering. Hence, he is modeled
via the quantifier:

ϕJ
1 (p) = max

x∈(X,�1)
p(x)

The set X is equipped with a partial order and the max operator (X →
X) → P(X) describes the agent.

Another very interesting example of an agent with an important economic
interpretation, is the fixpoint operator, that we have already mentioned in
Sect. 2.3.

Example 8 (Keynesian Agent). Consider the last example but now assume that
judge 1 has different preferences: he prefers to support the winner of the contest.
He is only interested in voting for the winner of the contest and he has no
preferences for the contestants per se. The selection function of such a Keynesian
agent can be described by a fixpoint operator as

εK1 (p) = fix(p) = {x ∈ X | p(x) = x}.
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Interestingly, such an agent is best described by a selection function, rather than
via the corresponding quantifier

ϕK
1 (p) = {p(x) | p(x) = x}.

We note, it is perfectly possible to model such a Keynesian agent via standard
utility functions, attaching say utility 1 to good outcomes and 0 to the bad ones,
so that the judges maximize over the set of monetary payoffs. In this process
of attaching utilities to the decision, however, one has to compute the outcome
of the votes, then to check for the second and the third judges whether their
vote is in line with the outcome, and finally to attach the utilities. If, instead,
we use the fixpoint operator to represent the agent’s goals, no such calculation
is necessary.

As briefly discussed above, most functions p : X → X do not have a fixpoint
and the fixpoint operator will often give the empty set. For the purposes of
modeling a particular situation we might want to totalize the fixpoint operator
in different ways and describe what an agent might do in case that no fixpoint
exists. The fixpoint goals are far more interesting when we consider a game with
several agents with different concerns, for instance some with usual preferences
and some with fixpoint goals. We analyze such a game in [8].1

Let us conclude with another example of a reflexive agent.

Example 9 (Coordinating Agent). Consider two players, {0, 1}, who want to
coordinate, for instance, about the restaurant where to meet for lunch. The set
of actions X0 = X1 = {A,B} denotes the different restaurants at choice. The set
of outcomes R = X0 × X1 denotes the two restaurants where the agents might
end up. The fact that these two agents want to meet in the same restaurant can
be directly described by another sort of fixpoint operator:

εi(p) = {x ∈ Xi | x = (π1−i ◦ p)(x)}
where πi : X0 × X1 → Xi are the projection functions. The preferred move of
agent i is the one which leads him to the same place as the other agent 1 − i.

These two examples above show that the overall goal of the Keynesian and
the coordinating agent are similar, and can be captured by some variants of the
same fixpoint operators. Even though it is possible to use utility functions in
order to model these concerns in the particular examples, it is not obvious that
this commonality can be made explicit when modeling with utility functions.
In our more abstract formalization via higher-order functions, it is possible to
detect patterns across problems that are hard to find when one only looks at the
compiled level of utility maximization.

5 Conclusions

We introduced quantifiers and selection functions to model agents’ choices. We
illustrated that classical and standard approaches such as utility functions can
1 See also the working paper version [9] for more details.
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be instantiated in our framework as examples. Alternatives to optimization can
be similarly captured. Lastly, one can directly model at the level of these higher-
order functions. Overall, higher-order functions provide a possibility to abstrac-
tion of lower-level instantiations and by that realize commonality between seem-
ingly different approaches.

In this paper, we limit ourselves to show that quantifiers and selection func-
tions do capture different deterministic approaches. We already noted above that
decision-making under uncertainty such as expected utility theory can also be
represented in our framework. In fact, analogous to the deterministic case, dif-
ferent theories can be dealt with. What is more, there exist non-deterministic
and probabilistic extensions of the quantifiers and selection functions based on
monads. In future research we will explore how these constructs can be used to
model decisions under uncertainty and under risk more generally.

Also not explored in this paper but on our agenda for the future is the com-
position of selection functions which can be naturally defined. By that one can
consider the aggregation of different individuals, as for instance in the litera-
ture of social choice, or model individuals as “multiple selves”, as for instance in
[1,12], where different dimensions of an agent are aggregated and the different
dimensions taken together determine his final choices.

Lastly, and probably most importantly, selection functions are a building
block for game theoretic approaches built on high-order functions. Thus, the
ability to express various goals as discussed here scales to strategic interactions.
In [8] we show that goal functions such as the fixed point player introduced above
can be fruitfully applied to model voting contests. More generally, we show that
the Nash equilibrium extends to games based on quantifiers and selection func-
tions; we show that selection functions and quantifiers yield the same set of
equilibria in the case of max and argmax operators; but we also show that for
other classes of goal functions, such as the fixed point agent, quantifiers and
selection functions yield different equilibria. In fact, we show that the equilibria
induced by selection functions are a refinement of the equilbria induced by quan-
tifiers. As a last point, we also explore selection functions as a building block to
open games in [5,7,10]. Open games are a further abstraction based on category
theory. Selection functions are an essential component because as in this paper
they represent the individual agent’s goal function.
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Abstract. Several real-world situations can be represented in terms of
agents that have preferences over activities in which they may partici-
pate. Often, the agents can take part in at most one activity (for instance,
since these take place simultaneously), and there are additional con-
straints on the number of agents that can participate in an activity. In
such a setting we consider the task of assigning agents to activities in
a reasonable way. We introduce the simplified group activity selection
problem providing a general yet simple model for a broad variety of set-
tings, and start investigating the case where upper and lower bounds of
the groups have to be taken into account. We apply different solution
concepts such as envy-freeness and core stability to our setting and pro-
vide a computational complexity study for the problem of finding such
solutions.

1 Introduction

Several real-world situations can be represented in terms of agents that have
preferences over activities in which they may participate, subject to some feasi-
bility constraints on the way they are assigned to the different activities. Here
‘activity’ should be taken in a wide sense; here are a few examples, each with its
specificities which we will discuss further:

1. a group of co-workers may have to decide in which project to work, given
that each project needs a fixed number of participants;

2. the participants to a big workshop, who are too numerous to fit all in a single
restaurant, want to select a small number of restaurants (say, between two
and four) out of a wider selection, with different capacities, and that serve
different types of food, and to assign each participant to one of them;

3. a group of pensioners have to select two movies out of a wide selection, to be
played simultaneously in two different rooms, and each of them will be able
to see at most one of them;

4. a group of students have to choose one course each to follow out of a selection,
given that each course opens only if it has a minimum number of registrants
and has also an upper bound;

c© Springer International Publishing AG 2017
J. Rothe (Ed.): ADT 2017, LNAI 10576, pp. 255–269, 2017.
DOI: 10.1007/978-3-319-67504-6 18
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5. a set of voters want to select a committee of k representatives, given that
each voter will be represented by one of the committee members.

While these examples seem to vary in several aspects, they share the same
general structure: there is a set of agents, a set of available activities; each agent
has preferences over the possible activities; there are constraints bearing on the
selection of activities and the way agents are assigned to them; the goal is to
assign each agent to one activity, respecting the constraints, and respecting as
much as possible the agents’ preferences.

Sometimes the set of selected activities is fixed (as Example 1), sometimes it
will be determined by the agents’ preferences. The nature of the constraints can
vary: sometimes there are constraints that are local to each activity (typically,
bounds on the number of participants, although we might imagine more complex
constraints), as Examples 1, 2, 4, 5, and also 3 if the rooms have a capacity
smaller than the number of pensioners; sometimes there are global constraints,
that bear on the whole assignment (typically, bounds on the number of activities
that can be selected; once again, we may consider more complex constraints), as
in Examples 2, 3. Sometimes each agent must be assigned to an activity (as in
Examples 1 and 5), sometimes she has the option of not being assigned to any
activity.

This class of problems can be seen as a simplified version of the group activ-
ity selection problem (GASP), which asks how to assign agents to activities in a
“good” way. In the original form introduced by Darmann et al. [5], agents express
their preferences both on the activities and on the number of participants for
the latter; in general, these preferences are expressed by means of weak orders
over pairs “(activity, group size)”. Darmann [4] considers the variant of GASP in
which the agents’ preferences are strict orders over such pairs and analyzes the
computational complexity of finding assignments that are stable or maximize
the number of agents assigned to activities.
Our model considers a simplified version of the group activity selection prob-
lem, called s-GASP. Here, agents only express their preferences over the set of
activities. However, the activities come with certain constraints, such as restric-
tions on the number of participants, concepts like balancedness, or more global
restrictions. The goal is again to find a “good” assignment of agents to activities,
respecting both the agents’ preferences as well as the constraints.

But what is a good assignment? Clearly, this essentially depends on the
application on hand, but there are several concepts in the social choice and
game theory literature that propose for an evaluative solution. We consider two
classes of criteria for assessing the quality of an assignment:

– solution concepts that mainly come from game theory and that aim at telling
whether an assignment is stable enough (that is, immune to some types of
deviations) to be implemented. First, individual rationality requires that each
agent is assigned to an activity she likes better than not being assigned to any
activity at all. Then, a solution concept considered both in hedonic games,
where coalition building is studied, and in matching theory, is the notion
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of stability. It asks whether the assignment is stable in the sense that no
agent would want to or be able to deviate from her coalition, her match, or
in our case, her assigned activity. Besides considering different variants of
core stability, it also makes sense in our setting to investigate variations of
virtual stability, meaning that it is not possible that an agent deviates from
her assigned activity due to the given constraints.

– criteria that mainly come from social choice and that measure, qualitatively
or quantitatively, the welfare of agents. A common quality measure in terms
of efficiency of an assignment is the notion of Pareto optimality: there should
be no feasible assignment in which there is an agent that is strictly better off,
while the remaining agents do not change for the worse. More generally, one
may wish to optimize social welfare, for some notion of utility derived from
the agents’ preferences: for instance, one may simply be willing to maximize
the number of agents assigned to an activity. If fairness is important in the
design, the notion of envy-freeness makes sense: an assignment respecting the
constraints is envy-free if no agent strictly prefers the group another agent is
assigned to.

Related Work. Apart from GASP, our model is related to various streams of
work:

Course allocation, e.g. [2,6,10,14]. Students bear preferences over courses
they would like to be enrolled in (these preferences are typically strict orders),
and there are typically constraints given on the size of the courses. Courses
will only be offered if a minimum number of participants is found, and there are
upper bounds due to space or capacity limitations. In particular, Cechlárová and
Fleiner [2] consider a course-allocation framework, so for them it makes sense
that one agent can be matched to more than one activity (course), while [10,14]
consider the case in which an agent can be assigned to at most one activity
(project). The latter works are very close to our setting with constraints over
group sizes. In contrast to above works however, our setting contains a dedicated
outside option (the void activity), and agents’ preferences are represented by
weak orders over activities instead of strict rankings.

Hedonic games (see the recent survey by Aziz and Savani [1]) are coalition
formation games where each agent has preferences over coalitions containing her.
The stability notions we will focus on are derived from those for hedonic games.
However, in our model, agents do not care about who else is assigned to the
same activity as them, but only on the activity to which they are assigned to.1

1 Still, it is possible to express simplified group activity selection within the setting
of hedonic games, by adding special agents corresponding to activities, who are
indifferent between all locally feasible coalitions. See the work by Darmann et al. [5]
for such a translation for the more general group activity selection problem. But it is
a rather artificial, and overly complex, representation of our model, which moreover
does not help characterizing and computing solution concepts.
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In multiwinner elections, there is a set of candidates, voters have preferences
over single candidates, and a subset of k candidates has to be elected. In some
approaches to multiwinner elections, each voter is assigned to one of the members
of the elected committee, who is supposed to represent her. Sometimes there are
no constraints on the number of voters assigned to a given committee member
(as is the case for the Chamberlin-Courant rule [3]), in which case each voter is
assigned to her most preferred committee member; on the other hand, for the
Monroe rule [13], the assignment has to be balanced. A more general setting, with
more general constraints, has been defined by Skowron et al. [16]. Note also that
multiwinner elections can also be interpreted as resource allocation with items
that come in several units (see again [16]) and as group recommendation [12].
While assignment-based multiwinner elections problems are similar to simplified
group activity, an important difference is that for the former, stability notions
play no role, as the voters are not assumed to be able to deviate from their
assigned representatives.

Contents and Outline. In this work, we will take into account various solution
concepts and ask two questions: First, do “good” assignments exist? Can we
decide this efficiently? And if they exist, can we find them efficiently? Our second
concern is optimization: we are looking for desirable assignments that maximize
the number of agents which can be assigned to an activity. Again, we may ask
whether an assignment that is optimal in this sense exists, and we can try to
find it.

We will focus on one family of constraints concerning the size of the groups—
we assume that each activity comes with a lower and an upper bound on the
number of participants—and give a detailed analysis of the described problems
for this class.

Our results for this class are twofold. First, we show that it is often possible
to find assignments with desirable properties in an efficient way: we propose
several polynomial time algorithms to find good assignments or to optimize
them. We complement these findings with NP- and coNP-completeness results
for certain solution concepts. Whenever we encounter computational hardness,
we identify tractable special cases: we will see that all our problems can be
solved in polynomial time if there is no restriction on the minimum number of
participants for the activities to take place. An overview of our computational
complexity results is given in Table 1 in Sect. 3; due to space constraints, we
do not elaborate all proofs. Second, we show that also in this class of problems
considered, there is a certain tension between the concepts of envy-freeness and
Pareto-optimality, even for small instances.

The remainder of this work is organized as follows. In Sect. 2, we formally
introduce the simplified model as well as possible constraints and several solution
concepts. Section 3 is the main part of the paper and provides an analysis of the
computational complexity of the questions described above. Section 4 deals with
the tension between envy-freeness and Pareto optimality. In Sect. 5, we conclude
and discuss future directions of research connected to s-GASP.
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2 Model, Constraints, and Solution Concepts

We start with defining our model and with introducing the solution concepts we
want to consider.

Simplified Group Activity Selection, Constraints. An instance
(N,A, P,R) of the simplified group activity selection problem (s-GASP) is given
as follows. The set N = {1, . . . , n} denotes a set of agents and A = A∗ ∪ {a∅} a
set of activities with A∗ = {a1, . . . , am}, where a∅ stands for the void activity.
An agent who is assigned to a∅ can be thought of as not participating in any
activity. The preference profile P = 〈�1, . . . ,�n〉 consists of n votes (one for
each agent), where �i is a weak order over A for each i ∈ N . The set R is a set
of side constraints that restricts the set of assignments.

A mapping π : N → A is called an assignment. Given assignment π, #(π) =
|{i ∈ N : π(i) �= a∅}| denotes the number of agents π assigns to a non-void
activity; for activity a ∈ A, πa := {i ∈ N : π(i) = a} is the set of agents π
assigns to a.

The goal will be to find “good” assignments that satisfy the constraints in R.
The structure of the set R depends on the application. Some typical kinds of
constraints are (combinations of) the following cases:

1. each activity comes with a lower and/or upper bound on the number of par-
ticipants;

2. no more than k activities can have some agent assigned to them;
3. the number of voters per activity should be balanced in some way;

Intuitively, if there are no constraints or the constraints are flexible enough,
then agents go where they want and the problem becomes trivial. If the con-
straints are tight enough (e.g., perfect balancedness, provided |A| and |V | allow
it), then some agents are generally not happy, but they are unable to deviate
because most deviations violate the constraints. The interesting cases can there-
fore be in between these two extreme cases.

In this work, we will start investigations for s-GASP for the first class of
constraints: We assume that each activity a ∈ A∗ comes with a lower bound �(a)
and an upper bound u(a), and all constraints in R are of the following type: for
each a ∈ A∗, |πa| ∈ {0} ∪ [�(a), u(a)].

Feasible Assignments, Solution Concepts. Let an instance (N,A, P,R) of
s-GASP be given. A feasible assignment is an assignment meeting the constraints
in R. We will consider the following properties. A feasible assignment π is

– envy-free if there is no pair of agents (i, j) ∈ N ×N with π(j) ∈ A∗ such that
π(j) �i π(i) holds;

– individually rational if for each i ∈ N we have π(i) �i a∅;
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– individually stable if there is no agent i and no activity a ∈ A such that (i)
a �i π(i) and (ii) the mapping π′ defined by π′(i) = a and π′(k) = π(k) for
k ∈ N \ {i} is a feasible assignment;

– core stable if there is no set E ⊆ N and no activity a ∈ A such that (i)
a �i π(i) for all i ∈ E, (ii) πa ⊂ E holds if a ∈ A∗, and (iii) the mapping π′

defined by π′(i) = a for i ∈ E and π′(k) = π(k) for k ∈ N \ E is a feasible
assignment; (Note that the respective activity a to which the set E of agents
wishes to deviate must be either a∅ or currently unused.)

– strictly core stable if there is no set E ⊆ N and no activity a ∈ A such that
(i) a �i π(i) for all i ∈ E where a �i π(i) for at least one i ∈ E, (ii) πa ⊂ E
holds if a ∈ A∗, and (iii) the mapping π′ defined by π′(i) = a for all i ∈ E
and π′(k) = π(k) for k ∈ N \ E is a feasible assignment;

– Pareto optimal if there is no feasible assignment π′ �= π such that π′(i) �i π(i)
for all i ∈ N and π′(i) �i π(i) for at least one i ∈ N ;

Finally, an individually rational assignment π is maximum individually ratio-
nal if for all individually rational assignments π′ we have #(π) ≥ #(π′).
Analogously, maximum feasible/envy-free/. . . /Pareto optimal assignments are
defined.

For the class of constraints we consider, the notion of virtual stability is
interesting. It requires that any deviation from the assigned towards a more
preferred activity a ∈ A∗ violates the capacity constraints of a. Formally, we
define the following stability concepts.

A feasible assignment π is

– virtually individually stable if there is no agent i and no activity a ∈ A with
�(a) ≤ |πa| + 1 ≤ u(a) such that a �i π(i) holds;

– virtually core stable if there is no set E ⊆ N and no activity a ∈ A with
�(a) ≤ |E| ≤ u(a) such that a �i π(i) for all i ∈ E, and (ii) πa ⊂ E holds if
a ∈ A∗;

– virtually strictly core stable if there is no set E ⊆ N and no activity a ∈ A
with �(a) ≤ |E| ≤ u(a) such that (i) a �i π(i) for all i ∈ E where a �i π(i)
for at least one i ∈ E, and (ii) πa ⊂ E holds if a ∈ A∗.

Note that as in the definition of core stability, also in virtual core stability
the respective activity a to which the set E of agents wishes to deviate must be
either a∅ or currently unused.

The relationships between the solution concepts is shown in Fig. 1 (for an
overview of the relationships between solution concepts in hedonic games we
refer to [1]).

strictly core stable core stable individually stable individually rational

Pareto optimal
virtually strictly

core stable
virtually
core stable

virtually
individually stable

Fig. 1. Relations between the solution concepts we consider.
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3 Computational Complexity for s-GASP with Group
Size Constraints

We will now consider the computational complexity of s-GASP for various solu-
tion concepts. An overview of our results is given in Table 1.

Table 1. Overview of results for constraints |πa| ∈ {0} ∪ [�(a), u(a)], a ∈ A∗.

Find assignment that is general u(a) = n �(a) = 1

Feasible in P (Proposition 1) in P (Proposition 1) in P (Proposition 1)

Individually rational in P (Theorem2) in P (Theorem2) in P (Corollary 2)

Envy-free in P (trivial) in P (trivial) in P (trivial)

Individually stable in P (Theorem1) in P (Theorem1) in P (Corollary 2)

Core stable in P (Theorem1) in P (Theorem1) in P (Corollary 2)

Strictly core stable in P (Theorem1) in P (Theorem1) in P (Corollary 2)

Virtually individually
stable

in P (Theorem2) in P (Theorem2) in P (Corollary 2)

Virtually core stable NP-c (Corollary 1) NP-c (Corollary 1) in P (Corollary 2)

Virtually strictly core
stable

NP-c (Theorem3) NP-c (Theorem3) in P (Corollary 2)

Pareto optimal ? ? in P (Theorem7)

Is there an assignment π
with #(π) ≥ k (k ∈ N)
that is

general u(a) = n �(a) = 1

Feasible in P (Proposition 1) in P (Proposition 1) in P (Proposition 1)

Individually rational NP-c (Theorem4) NP-c (Theorem4) in P (Theorem5)

Envy-free NP-c (Theorem6) in P (trivial) ?

Virtually individually
stable

NP-complete NP-complete in P (Corollary 2)

Virtually core stable NP-c (Corollary 1) NP-c (Corollary 1) in P (Corollary 2)

Virtually strictly core
stable

NP-c (Theorem3) NP-c (Theorem3) in P (Corollary 2)

Pareto optimal ? ? in P (Theorem7)

Given assignment π, is π
PO?

coNP-c (Theorem8) coNP-c (Theorem8) in P (Theorem9)

3.1 Finding “Good” Assignments

The first interesting question is whether “good” assignments exist and how to
find them. Obviously, assigning the void activity to every agent results is a
feasible, individually rational and envy-free assignment. However, this is not
a satisfying solution in terms of stability because agents will want to deviate.
The good news is that for several stability concepts, a corresponding assignment
always exists and can efficiently be found, as shown in the following theorem.
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Theorem 1. A strictly core stable assignment always exists and can be found
in polynomial time.

Proof. We sketch the basic algorithmic idea. Starting with a feasible assignment
π, for each agent i and each activity b which i prefers to π(i) we check whether
there is a subset of agents including agent i that wants to deviate to b such
that the resulting assignment is feasible. That is, we check whether there is
a subset E ⊃ πb such that (i) for all j ∈ E we have that b �j π(j) holds
(recall that for agent i b �i π(i) holds) and (ii) π′ with π′(i) = b for i ∈ E
and π′(j) = π(j) for j ∈ N \ E is a feasible assignment. In order to do so, for
each activity c ∈ A \ {b}, we compute the possible numbers of agents in the set
πc that agree with joining b and can be removed from πc while still enabling a
feasible assignment. Finally, given these numbers, we need to verify if—including
i and the agents in πb—these add up to an integer contained in [�(b), u(b)] by
taking exactly one number from each activity. The latter problem reduces to
the Multiple-Choice Subset-Sum problem (see Pisinger [15]), which, in our
case, allows for an overall polynomial time algorithm for finding a strictly core
stable assignment. �

Recall that a strictly core stable assignment is also core stable and individ-
ually stable. Hence, as a consequence of the above theorem, also a core stable
and an individually stable assignment always exist.

Theorem 2. A virtually individually stable assignment always exists and can
be found in polynomial time.

Proof. In an instance (N,A, P,R) of s-GASP, we initially assign each agent to
a∅, i.e., set π(i) := a∅ for i ∈ N . For a ∈ A∗ with �(a) ≥ 2, if no agent is
assigned to such a, then �(a) ≤ |πa| + 1 cannot hold. Hence, in what follows, we
only consider activities a ∈ A∗ with �(a) = 1. For 1 ≤ i ≤ n, assign agent i to
the best ranked such activity a �i a∅ with |πa| < u(a) and update π (i.e., set
π(i) := a while π(j) remains unchanged for j ∈ N \ {i}). It is easy to see that
the resulting assignment π is virtually individually stable. �

In contrast, a virtually core stable (and thus a virtually strictly core stable)
assignment does not always exist, as the following example shows.

Example 1. Let N = {1, 2, 3} and A∗ = {a, b, c}, with a �1 b �1 c � a∅,
b �2 c �2 a � a∅, and c �3 a �3 b � a∅. The restrictions on the activities are
given by |πx| ∈ {0} ∪ [2, 3], for each x ∈ A∗. By the restrictions given, there
is at most one non-void activity to which agents can be assigned. Clearly, for
any activity z ∈ A there is a y ∈ A∗ such that two agents prefer y to z. As a
consequence, there can be no virtually core stable assignment.

In addition, the problem to decide whether or not a virtually strictly core
stable assignment exists turns out to be computationally difficult.

Theorem 3. It is NP-complete to decide if there is a virtually strictly core stable
assignment, even when for each activity a ∈ A∗ we have u(a) = n.



On Simplified Group Activity Selection 263

Proof. Membership in NP is not difficult to verify. The proof proceeds by a
reduction from Exact Cover by 3-Sets (X3C). The input of an instance of
X3C consists of a pair 〈X,Z〉, where X = {1, . . . , 3q} and Z = {Z1, . . . , Zp}
is a collection of 3-element subsets of X; the question is whether we can cover
X with exactly q sets of Z. X3C is known to be NP-complete even when each
element of X is contained in exactly three sets of Z (see [7,8]); note that in such
a case p = 3q holds. For each i ∈ X, let the sets containing i be denoted by
Zi1 , Zi2 , Zi3 with i1 < i2 < i3.

Define instance I = (N,A, P,R) of s-GASP as follows. Let N =
{Vi,1, Vi,2, Vi,3 | 1 ≤ i ≤ p} and A∗ = {yi, ai, bi, ci | 1 ≤ i ≤ p}. For 1 ≤ i ≤ p,
let �(ai) = �(bi) = �(ci) = 2, and �(yi) = 9. For each a ∈ A∗, let u(a) = |N |.
Since any virtually strictly core stable assignment is individually rational, in the
profile P we omit the activities ranked below a∅; for each i ∈ {1, . . . , p}, let the
ranking of the agents Vi,1, Vi,2, Vi,3 (each of which represents element i ∈ X) be
given as follows:

Vi,1 : yi1 �i,1 yi2 �i,1 yi3 �i,1 ai �i,1 bi �i,1 ci �i,1 a∅
Vi,2 : yi2 �i,2 yi3 �i,2 yi1 �i,2 bi �i,2 ci �i,2 ai �i,2 a∅
Vi,3 : yi3 �i,3 yi1 �i,3 yi2 �i,3 ci �i,3 ai �i,3 bi �i,3 a∅

Note that each set Z contains three elements, and hence each yi, 1 ≤ 1 ≤ p,
is preferred to a∅ by exactly 9 agents. We show that there is an exact cover in
instance 〈X,Z〉 if and only if there is a virtually strictly core stable assignment
in instance I.

Assume there is an exact cover C. Consider the assignment π defined by
π(Vi,h) = yj if i ∈ Zj and Zj ∈ C, for i ∈ {1, . . . , p} and h ∈ {1, 2, 3}. Since
C is an exact cover, assignment π is well-defined and feasible; note that each
agent is assigned to an activity she ranks first, second or third. In addition, note
that for Zj ∈ C, each agent that prefers yj to a∅ is assigned to yj . Assume a
set of agents E wishes to deviate to another activity d, such that at least one
member i ∈ E prefers d over π(i) while there is no j ∈ E with π(j) �j d. By the
definition of π, d ∈ {yi | 1 ≤ i ≤ p} holds. Observe that πd = ∅ holds because C
is an exact cover. Due to �(d) = 9, it hence follows that each agent of those who
prefer d to a∅ must prefer d to the assigned activity, which is impossible since,
by construction of the instance, for at least one of these agents j the assigned
activity is top-ranked, i.e., π(j) �j d holds. Therewith, π is virtually strictly
core stable.

Conversely, assume there is a virtually strictly core stable assignment π.
Assume that there is an agent Vi,h who is not assigned to one of the activities
yi1 , yi2 , yi3 . Then, by �(yi) = 9 and the fact that exactly 9 agents prefer yi to a∅
for each i ∈ {1, . . . , p}, it follows that no agent is assigned to one of yi1 , yi2 , yi3 ;
in particular none of Vi,1, Vi,2, Vi,3 is assigned to one of these activities. Analo-
gously to Example 1 it then follows that there is no virtually strictly core stable
assignment, in contradiction with our assumption.

Thus, π assigns each agent Vi,h to one of the activities yi1 , yi2 , yi3 . For each
i ∈ {1, . . . , p}, by �(yi) = 9 and the fact that exactly 9 agents prefer yi to a∅
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it follows that to exactly one of yi1 , yi2 , yi3 exactly 9 agents are assigned, while
no agent is assigned to the remaining two activities. As a consequence, the set
C = {Zi | |πyi | = 9, 1 ≤ i ≤ p} is an exact cover in instance 〈X,Z〉. �

In the instance considered in the above proof, an assignment is virtually
strictly core stable if and only if it is virtually core stable. As a consequence, we
get the following corollary.

Corollary 1. It is NP-complete to decide if there is a virtually core stable
assignment, even if for each activity a ∈ A∗ we have u(a) = n.

However, for the case of �(a) = 1 for each a ∈ A∗, we get a positive complexity
result (see Sect. 3.2). In particular, we can show that in this case a virtually
strictly core stable assignment that maximizes the number of agents assigned to
a non-void activity can be found in polynomial time.

Turning to Pareto optimality, in the special case of �(a) = 1 for each a ∈ A∗,
there is a simple algorithm to compute a Pareto optimal assignment. In that case,
it is easy to see that a Pareto optimal assignment is always individually rational.
Thus, neglecting activities ranked below a∅, we start with the assignment π(i) =
a∅ for each i ∈ N and iteratively assign an agent to the best-ranked among the
activities a with |πa| < u(a). However, in the case of �(a) = 1 for each a ∈ A∗

we can even find a Pareto optimal assignment that maximizes the number of
agents assigned to a non-void activity in polynomial time (see Sect. 3.2).

3.2 Maximizing the Number of Agents Assigned to a Non-void
Activity

We now turn to an optimization problem: Among all feasible assignments that
feature a certain property, one is usually interested in finding one that maximizes
the number of agents that are assigned to a non-void activity, thus keeping the
number of agents who cannot be enrolled in any activity low.

Proposition 1. In polynomial time we can find a feasible assignment that max-
imizes the number of agents assigned to a non-void activity.

But already for individual rational assignments, it is hard to decide whether
all agents can be assigned to a non-void activity, as the following theorem shows.
We omit its proof which is again a reduction from the Exact Cover by 3-Sets
problem.

Theorem 4. It is NP-complete to decide if there is an individually rational
assignment that assigns each agent to some a ∈ A∗, even if for each activity
a ∈ A∗ we have u(a) = n.

However, if we assume that each activity admits a group size of 1, then we
can find an optimal individually rational assignment efficiently.

Theorem 5. If for each activity a ∈ A∗ we have �(a) = 1, then in polynomial
time we can find a maximum individually rational assignment.
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Proof. Reduction to max integer flow with upper bounds. Given an instance
I = (N,A, P,R) of s-GASP with �(a) = 1 for all a ∈ A∗, we construct an instance
M of max integer flow with directed graph G = (V,E). Set V := {s, t} ∪ N ∪ A∗,
and let the edges and their capacities be given as follows: for each i ∈ N , intro-
duce edge (s, i) with capacity 1; for each a ∈ A∗ and i ∈ N introduce an edge
(i, a) of capacity 1 if a �i a∅ holds; for each a ∈ A∗, introduce edge (a, t) of
capacity u(a). It is easy to see that a max integer flow from s to t induces a
maximum individually rational assignment in I and vice versa. �

For envy-freeness, optimizing the number of “active” agents turns again out
to be a hard problem which can be shown by a reduction from Exact Cover
by 3-Sets as well.

Theorem 6. It is NP-complete to decide if there is an envy-free assignment that
assigns each agent to some a ∈ A∗.

We obtain tractability for envy-freeness if we loosen the constraints on the
upper bounds of the group sizes: Clearly, if there is an activity with “unlimited”
capacity (i.e., its upper bound equals n), we can assign all agents to it and obtain
envy-freeness.

3.3 Pareto Optimality

In this subsection, we consider the computational complexity involved in Pareto
optimal assignments.

In the framework of course allocation, if all agents have strict preferences it
is known that a Pareto optimal matching—that assigns an agent to an activ-
ity (course) only if the activity is acceptable for the agent—can be found in
polynomial time (see [2,10]). Since in our setting (i) the agents’ preferences are
represented by weak orders and (ii) Pareto optimality does not require individual
rationality, these results do not immediately translate. For the latter reason, the
computational intractability result of [2] for finding a Pareto optimal matching
maximizing the number of agents assigned to a non-void activity if each agent
can be assigned to at most one activity does not immediately translate to our
setting either. In particular, in general we do not know the computational com-
plexity status of finding a Pareto optimal assignment (or of finding one that
maximizes the number of agents assigned to non-void activities) in s-GASP. As
the following theorem shows, the latter issue is computationally tractable if we
relax the constraint on the lower bound of the group sizes.

Theorem 7. If for each activity a ∈ A∗ we have �(a) = 1, then in polynomial
time we can find a Pareto optimal assignment that maximizes the number of
agents assigned to a non-void activity.

Proof. In that case, any Pareto optimal assignment is individually rational. Let
k be the maximum number of agents assigned to non-void activities by an indi-
vidually rational assignment. Hence, it is sufficient to find a Pareto optimal
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assignment π with #(π) = k. Given an instance I = (N,A, P,R) of s-GASP
with �(a) = 1 for all a ∈ A∗, we construct an instance F of the minimum cost
flow problem. Instance F corresponds to instance M of the proof of Theorem 5
except that we add the following edge costs: for each a ∈ A∗ and i ∈ N edge
(i, a) has cost −(1 + |{b ∈ A∗|a �i b, b �i a∅}|), all remaining edges have zero
cost. Let f be a minimum integer cost flow of size k in instance F . Then f
induces the assignment π by setting π(i) = a iff f sends a unit of flow through
edge (i, a). Clearly, π is Pareto optimal since otherwise a flow f ′ of lower total
cost than the total cost of f could be induced. �

Note that in the case �(a) = 1 for each a ∈ A∗, also any strictly core stable,
core stable, or individually stable assignment is individually rational. In addition,
in this case virtually (strict) core stability coincides with (strict) core stability,
and virtually individually stability coincides with individual stability. Hence we
can state the following corollary.

Corollary 2. If for each activity a ∈ A∗ we have �(a) = 1, then in polynomial
time we can find a maximum individually rational assignment that is Pareto opti-
mal, (virtually) individually stable, (virtually) core stable and (virtually) strictly
core stable.

However, checking whether a given assignment is Pareto optimal turns out
to be coNP-complete, as Theorem 8 shows. We omit the proof which makes use
of the NP-completeness of X3C.

Theorem 8. It is coNP-complete to decide if a given assignment is Pareto opti-
mal, even if for each activity a ∈ A∗ we have u(a) = n.

Again, if there are no restrictions on the minimum number of participants of
each activity, the latter problem becomes tractable.

Theorem 9. If for each activity a ∈ A∗ we have �(a) = 1, then in polynomial
time we can decide if a given assignment is Pareto optimal.

Proof. Given instance I = (N,A, P,R) of s-GASP with �(a) = 1 for all a ∈ A∗

and assignment π, we construct instance C of the minimum cost flow problem as
follows with lower and upper edge capacities. Note that π must be individually
rational. In instance C, the directed graph G = (V,E), edge costs and capacities
are given as follows. G = (V,E) has vertex set V := {s, t} ∪ N ∪ A∗, the edge
set E consists of the following edges:

– for i ∈ N , edge (s, i) of zero cost, and, for a ∈ A∗ with a �i π(i), edge (i, a)
of cost −1 if a �i π(i) and of cost 0 if a ∼i π(i);

– for a ∈ A∗ edge (a, t) of upper capacity bound u(a).

The lower and upper capacity bound of edge (s, i) is 1 iff π(i) � a∅ holds.
Unless otherwise specified, the lower capacity bound of edge e ∈ E is 0 and the
upper capacity bound is 1, and its cost is 0.
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Assume there is an integer flow f of negative total cost. Consider the assign-
ment π′ defined by π′(i) = a iff f sends flow through edge (i, a). Then, by
construction we must have π′(i) ∼i π(i) or π′(i) �i π(i) for each i ∈ N , where
the latter holds for at least one agent i ∈ N by the negative total cost of f .
Thus, π is not Pareto optimal.

If, on the other hand, π is not Pareto optimal, then there is an assignment
π′ with π′(i) ∼i π(i) or π′(i) �i π(i) for each i ∈ N , where the latter holds
for at least one i ∈ N . The integer flow f ′ that sends flow along the edges
(s, i), (i, a), (a, t) iff π′(i) = a holds, has negative total cost.

Therewith, for verifying if π is Pareto optimal it is sufficient to find an integer
minimum cost flow in instance C. �

4 Envy-Freeness vs. Pareto Optimality

In many social choice settings, there is a tension between envy-freeness and
Pareto optimality. This is also the case for our simplified group activity selection
problem, as the following proposition and the subsequent corollary show.

Proposition 2. For any k ≥ 2, there is an instance (N,A, P,R) of s-GASP
with |N | = k and �(a) = 1 for each a ∈ A∗, for which there does not exist an
assignment π which is both Pareto optimal and envy-free.

Proof. We provide a proof for k = 2, which easily extends to n = k for any k > 2.
Consider the instance with N = {1, 2}, A∗ = {a}, with the rankings a �1 a∅
and a �2 a∅, and the restrictions given by �(a) = u(a) = 1. Any Pareto optimal
assignment assigns exactly one agent to a, which is clearly not envy-free. �

Corollary 3. There is no mechanism that determines an assignment that is both
Pareto optimal and envy-free for each given instance (N,A, P,R) of s-GASP,
even if �(a) = 1 holds for each a ∈ A∗.

Interestingly, this tension also holds if the only relevant constraint is the
lower bound of the activities (i.e., u(a) = n for all a).

Proposition 3. For any k ≥ 6, there is an instance (N,A, P,R) of s-GASP
with |N | = k and u(a) = k for each a ∈ A∗, for which there does not exist an
assignment π which is both Pareto optimal and envy-free.

Proof. We provide a proof for k = 6, which easily extends to k = n for any
n > 6. Consider the instance of s-GASP with N = {1, 2, 3, 4, 5, 6}, A∗ = {a, b, c}
and for any x ∈ A∗ we have �(x) = 3, u(x) = 6. The rankings are

�1: a �1 b �1 c �1 a∅ �4: a �4 b �4 c �4 a∅
�2: b �2 c �2 a �2 a∅ �5: b �5 c �5 a �5 a∅
�3: c �3 a �3 b �3 a∅ �6: c �6 a �6 b �6 a∅
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Due to the feasibility constraints, there are only 4 types of feasible assignments:

(i) 3–5 agents are assigned to the same activity x �= a∅, and the rest to a∅.
(ii) All agents are assigned to the void activity.
(iii) All agents are assigned to the same activity x �= a∅.
(iv) 3 agents are assigned to the same activity x �= a∅ and the other 3 agents

are assigned to another activity y /∈ {x, a∅}.

The assignments of type (i) and (ii) are Pareto dominated by some assign-
ment of type (iii). An assignment π1 of type (iii) is envy-free but not Pareto
optimal. Due to the symmetrical construction of the preferences profiles, we can
assume without loss of generality πa

1 = N . But then the assignment is Pareto
dominated by the assignment π2 with πa

2 = {1, 3, 4} and πc
2 = {2, 5, 6}. An

assignment of type (iv) cannot be envy-free. Without loss of generality we can
assume x = a and y = b. Assume, for the sake of contradiction, that there is an
envy-free assignment. Agents 1 and 4 must be assigned to activity a and agents 2
and 5 to activity b. As the preference profiles of the remaining agents both rank
a strictly better than b, the assignment cannot be an envy-free assignment. �
Corollary 4. There is no mechanism that determines an assignment that is both
Pareto optimal and envy-free for each given instance (N,A, P,R) of s-GASP,
even if u(a) = n holds for each a ∈ A∗.

5 Conclusion

We have formulated a simplified version of GASP where the assignment of agents
to activities depends on the agents’ preferences as well as on exogenous con-
straints. This model is powerful enough to capture many real world applica-
tions. We have made a first step by analyzing one family of constraints and have
studied several solution concepts for this family.

An obvious next step is to drive a similar analysis for other interesting classes
of constraints as described in Sect. 2. In particular, it would be interesting to
characterize families of constraints guaranteeing or not guaranteeing existence
of a stable solution for the different solution concepts we considered, or exploring
forbidden structures that prevent stability. Also, it would be nice to provide a
detailed analysis of the parameterized complexity of the hard cases, as done by
Lee and Williams [11] for the stable invitation problem and by Igarashi et al. [9]
for GASP on social networks. Another variant would be to consider typed agents
as in the paper by Spradling and Goldsmith [17].
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Abstract. Sequential allocation is a simple mechanism for sharing mul-
tiple indivisible items. We study strategic behavior in sequential alloca-
tion. In particular, we consider Nash dynamics, as well as the compu-
tation and Pareto optimality of pure equilibria, and Stackelberg strate-
gies. We first demonstrate that, even for two agents, better responses
can cycle. We then present a linear-time algorithm that returns a pro-
file (which we call the “bluff profile”) that is in pure Nash equilibrium.
Interestingly, the outcome of the bluff profile is the same as that of the
truthful profile and the profile is in pure Nash equilibrium for all car-
dinal utilities consistent with the ordinal preferences. We show that the
outcome of the bluff profile is Pareto optimal with respect to pairwise
comparisons. In contrast, we show that an assignment may not be Pareto
optimal with respect to pairwise comparisons even if it is a result of a
preference profile that is in pure Nash equilibrium for all utilities con-
sistent with ordinal preferences. Finally, we present a dynamic program
to compute an optimal Stackelberg strategy for two agents, where the
second agent has a constant number of distinct values for the items.

1 Introduction

A simple but popular mechanism to allocate indivisible items is sequential allo-
cation [3,5,8,9,12,14,15]. Sequential allocation is used, for example, by the
Harvard Business School to allocate courses to students [10] as well as multi-
million dollar sports drafts [8]. In a sequential allocation mechanism, a picking
sequence specifies the turns of the agents. For example, for sequence 1212, agents
1 and 2 alternate with agent 1 taking the first turn. Agents report their prefer-
ences over the items. Then the items are allocated to the agents in the following
manner. In each turn, the agent in that turn is given the most preferred item
that has not yet been allocated. In this paper we focus on the “direct revelation”
version where agents submit their complete rankings at the same time (and are
committed to them), as opposed to the “extensive form” version where agents
take turns choosing and are only committed to items chosen previously. Sequen-
tial allocation is an ordinal mechanism since the outcome only depends on the
ordinal preferences of agents over items. Although the agents are asked to report
c© Springer International Publishing AG 2017
J. Rothe (Ed.): ADT 2017, LNAI 10576, pp. 270–283, 2017.
DOI: 10.1007/978-3-319-67504-6 19
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ordinal preferences, we will assume a standard assumption in the literature that
agents have underlying additive utilities for the items.

It has long been known that sequential allocation is not strategy-proof when
agents do not have consecutive turns. An agent may not pick their most preferred
item remaining if they expect this item to remain till a later turn. Instead, the
agent may pick a slightly less preferred item that they would not otherwise get.
Of course, this requires reasoning about how the agents may behave strategically
at the same time. Since the sequential allocation mechanism is not strategy-
proof, how precisely should agents behave? There has already been some work
on strategic behavior in the setting where sequential allocation is viewed as a
repeated game. Kohler and Chandrasekaran [14] presented a linear-time algo-
rithm to compute a subgame perfect Nash equilibrium (SPNE) when there are
two agents and the picking sequence is alternating (121212 . . .). The result was
generalized to the case of any sequence [13]. Brams and Straffin [8] stated that
“no algorithm is known which will produce optimal play more efficiently than
by checking many branches of the game tree.” Recently, it was proved that there
can be an exponential number of subgame perfect Nash equilibria and finding
even one of them is PSPACE-hard for an unbounded number of agents [13].

However, it is also natural to view sequential allocation as a one shot game
rather than a repeated game. At the Harvard Business School, students submit
a single ranked list of courses to a central organization that runs the sequential
allocation mechanism on these fixed preferences. This is essentially then a one
shot game. This suggests considering the more general solution concept of pure
Nash equilibrium rather than that of subgame perfect Nash equilibrium. In this
paper, we will view sequential allocation as a one shot strategic game in which
the possible actions of the agents are possible ordinal preferences over the items,
and the agents know each others’ true ordinal preferences, as well as the picking
sequence. Surprisingly no algorithm to date has yet been proposed in the lit-
erature for efficiently computing a pure Nash equilibrium (PNE). We therefore
propose a simple linear time method to compute a PNE even for an unbounded
number of agents. We also consider Pareto optimality of pure Nash equilibria.
This issue is similar to previous work on price of anarchy/stability of equilibria in
other strategic domains. Finally, we consider Stackelberg strategies in sequential
allocation where an agent announces the preference he or she intends to report.

Results. We study the computational problems of finding the equilibria of
sequential allocation when viewed as a one shot game. No algorithm to date
has been proposed in the literature for efficiently computing a pure Nash equi-
librium (PNE) of sequential allocation.

One general method to compute a PNE is to compute a sequence of better
responses. Indeed, for any finite potential game, this is guaranteed to find a PNE.
We first show better responses need not converge to a pure Nash equilibrium.
Even for two agents, better responses can cycle. Instead, we propose a simple
linear time method to compute the preference profile of a PNE even for an
unbounded number of agents. We refer to the output of this algorithm as the
bluff profile. Interestingly, the allocation generated by the bluff profile is the same



272 H. Aziz et al.

as that of the truthful profile, and this profile is in equilibrium for all cardinal
utilities consistent with the ordinal preferences. The fact that this equilibrium
can be computed in linear time is perhaps a little surprising because computing
just a single best response with the sequential allocation mechanism has been
recently shown to be NP-hard [4]. In addition, computing a subgame perfect
Nash equilibrium of the repeated game is PSPACE-hard [13], and this is a PNE
of the one shot game. Our result that there exists a linear-time algorithm to
compute a PNE profile in the one shot game also contrasts with the fact that
computing a PNE profile is NP-hard under the related probabilistic serial (PS)
random assignment mechanism for fair division of indivisible goods [1].

We also consider Pareto optimality and other fairness properties of the
pure Nash equilibria (Sect. 6). This is in line with work on the price of anar-
chy/stability of equilibria in other strategic domains. We show that the out-
come of the bluff profile is Pareto optimal with respect to pairwise comparisons
(defined in Sect. 6). Hence, in sequential allocation, pure Nash equilibrium is not
incompatible with ordinal Pareto optimality. On the other hand, we also prove
that an assignment may not be Pareto optimal with respect to pairwise com-
parisons even if it is a result of a preference profile that is PNE for all utilities
consistent with ordinal preferences.

Finally, in Sect. 7 we show that an agent may have an advantage from com-
mitting and declaring his preference and that committing to the truthful report
may not be optimal. For 2 players we present a polynomial-time algorithm to
compute an optimal strategy to commit to in the case that the other agent has
a small number of utility values.

2 Preliminaries

We consider the setting in which we have N = {1, . . . , n} a set of agents, O =
{o1, . . . , om} a set of items, and the preference profile �= (�1, . . . ,�n) specifies
for each agent i his complete, strict, and transitive preference �i over O.

Each agent may additionally express a cardinal utility function ui consistent
with �i: ui(o) > ui(o′) iff o �i o′. We will assume that each item is positively
valued, i.e., ui(o) > 0 for all i ∈ N and o ∈ O. The set of all utility functions
consistent with �i is denoted by U (�i). We will denote by U (�) the set of all
utility profiles u = (u1, . . . , un) such that ui ∈ U (�i) for each i ∈ N . When we
consider agents’ valuations according to their cardinal utilities, we will assume
additivity, that is ui(O′) =

∑
o∈O′ ui(o) for each i ∈ N and O′ ⊆ O.

An assignment is an allocation of items to agents, represented as an n × m
matrix [p(i)(oj)]1≤i≤n,1≤j≤m such that for all i ∈ N , and oj ∈ O, p(i)(oj) ∈
{0, 1}; and for all j ∈ {1, . . . , m},

∑
i∈N p(i)(oj) = 1. An agent i gets item oj if

and only if p(i)(oj) = 1. Each row p(i) = (p(i)(o1), . . . , p(i)(om)) represents the
allocation of agent i.

We will also present the cardinal utilities in matrix form. A utility matrix U
is an n × m matrix [U(i)(j)]1≤i≤n,1≤j≤m such that for all i ∈ N , and j ∈ O, the
entry U(i)(j) in the i-th row and j-th column is ui(oj). We say that utilities are



Equilibria in Sequential Allocation 273

lexicographic if for each agent i ∈ N , o ∈ O, ui(o) >
∑

o′≺io
ui(o′). By S �i T ,

we will mean ui(S) > ui(T ).

Example 1. Consider the setting in which N = {1, 2}, O = {o1, o2, o3, o4}, the
preferences of agents are

1 : o1, o2, o3, o4 2 : o1, o3, o2, o4

Then for the picking sequence 1221, agent 1 gets {o1, o4} while 2 gets {o2, o3}.
The assignment resulting from sequential allocation (SA) can be represented as
follows.

SA(�1,�2) =
(

1 0 0 1
0 1 1 0

)

.

The allocation of agent 1 is denoted by SA(�1,�2)(1).

For a reported preference profile (�′
1, . . . ,�′

n), an agent i’s best response is a
preference report �′′

i that maximizes utility ui(SA(�′′
i ,�′

−i)(i)). We say that a
reported preference profile (�′

1, . . . ,�′
n) is in pure Nash equilibrium (PNE) if no

agent i can report a preference �′′
i such that ui(SA(�′′

i ,�′
−i)(i)) > ui(SA(�′)(i)).

3 Nash Dynamics

Since we are interested in computing a PNE, a natural approach is to simulate
better responses and hope they converge. For finite potential games, such an
approach is guaranteed to find a PNE. However, we show that even for two
agents, computing better responses will not always terminate and is thus not a
method that is guaranteed to find a pure Nash equilibrium.

Theorem 1. For two agents, better responses can cycle.

Proof. Let the sequence be the alternating one: 121212 . . .. The following 5 step
sequence of better responses leads to a cycle.

The ordinal preferences corresponding to the utility functions are as follows.

�1: o3, o4, o5, o6, o9, o10, o7, o8, o1, o2

�2: o9, o10, o5, o6, o7, o8, o1, o2, o3, o4

It is sufficient to consider the agents having lexicographic utilities although
the argument works for any utilities consistent with the ordinal preferences.

This yields the following assignment and utilities at the start:

SA(�1,�2) =
(

1 0 1 1 1 0 1 0 0 0
0 1 0 0 0 1 0 1 1 1

)

In Step 1, Agent 1 misreports to increase his utility.

�1
1: o5, o6, o7, o8, o3, o4, o1, o2, o9, o10

�1
2: o9, o10, o5, o6, o7, o8, o1, o2, o3, o4
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SA(�1) =
(

0 0 1 1 1 1 1 0 0 0
1 1 0 0 0 0 0 1 1 1

)

In Step 2, Agent 2 changes his report in response.

�2
1: o5, o6, o7, o8, o3, o4, o1, o2, o9, o10

�2
2: o5, o6, o7, o8, o9, o10, o1, o2, o3, o4

SA(�2) =
(

1 0 1 1 1 0 1 0 0 0
0 1 0 0 0 1 0 1 1 1

)

In Step 3, Agent 1 changes his report in response.

�3
1: o5, o6, o9, o10, o3, o4, o1, o2, o7, o8

�3
2: o5, o6, o7, o8, o9, o10, o1, o2, o3, o4

SA(�3) =
(

0 0 1 1 1 0 0 0 1 1
1 1 0 0 0 1 1 1 0 0

)

In Step 4, Agent 2 changes his report in response.

�4
1: o5, o6, o9, o10, o3, o4, o1, o2, o7, o8

�4
2: o9, o10, o5, o6, o7, o8, o1, o2, o3, o4

SA(�4) =
(

1 0 1 1 1 1 0 0 0 0
0 1 0 0 0 0 1 1 1 1

)

In Step 5, Agent 1 changes his report in response.

�5
1: o5, o6, o7, o8, o3, o4, o1, o2, o9, o10

�5
2: o9, o10, o5, o6, o7, o8, o1, o2, o3, o4

SA(�5) =
(

0 0 1 1 1 1 1 0 0 0
1 1 0 0 0 0 0 1 1 1

)

Since �1 =�5, we have cycled. ��

4 The Bluff Profile

In this section, we outline a linear-time algorithm to compute a pure Nash equi-
librium preference profile. Surprisingly, we will show that the preference profile
constructed is in pure Nash equilibrium for all utilities consistent with the ordi-
nal preferences.

Simulate sequential allocation with the truthful preferences. Set the pref-
erences of each agent to the order in which the items are picked when
simulating sequential allocation under truthful preferences.
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We refer to the profile constructed as the bluff profile since the idea behind
the profile is that an agent wants to get the most preferred item immediately
because if he does not, some other agent will take it. We observe the following
characteristics of the bluff profile.

Lemma 1. In the bluff profile, (i) all agents have the same preferences; (ii) the
order in which items are picked is the same as the order in which items are
picked under the truthful profile; and (iii) the allocations of agents are the same
as in the truthful profile.

We show that the bluff profile is in pure Nash equilibrium if the utilities are
lexicographic.

Lemma 2. The bluff profile is in pure Nash equilibrium if the utilities are lexi-
cographic.

Proof. We prove by induction on the number of picks that no agent has an
incentive to pick some other item when his turn comes which means that he
picks the same item that he picks in the bluff profile which is also the most
preferred item among the available items. This is equivalent to proving that no
agent has an incentive to change his report from that in the bluff profile.

For the base case, let us consider the first agent who takes the first turn. If he
does not take his most-preferred item, the next agent will take it. Since utilities
are lexicographic, the first agent gains most by getting his most-preferred item.
Regarding the other agents, they are not disadvantaged by placing that item
first in their preferences lists, since it is taken by the first agent. It does not
affect their ability to express their preferences amongst the remaining items.

Similarly, let us assume that agents in the first k turns did not have an
incentive to misreport and pick some item other than the most preferred available
item. Then we show that agent j in the k + 1-st turn does not have an incentive
to change his report. Note that the item that j picks according to the bluff profile
is his most preferred item o amongst those still available. This is because the
order in which items are picked and allocations that are made exactly coincide
with the truthful profile. Now if j does not make the consistent pick, he will not
be able to recover the loss of not getting o because the utilities are lexicographic.
Again, for the other agents (who do not get o) it does not disadvantage them to
put o in the k + 1-st place in their preference list. ��

We now prove the following lemma.

Lemma 3. Consider a profile in which all agents in N \ {i} report the same
preferences. Then agent i’s best response results in the same allocation for him
for all utilities consistent with the ordinal preferences.

Proof. When all agents in N \ {i} report the same preferences, then for agent i,
from the perspective of agent i, all the turns of agents in N \{i} can be replaced
by a single agent, representative of N \ {i} who has the same preferences as
agents in N \{i}. Thus, computing a best response for agent i when all agents in
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N \ {i} report the same preferences is equivalent to computing a best response
for agent i when there is only one other agent (with the same preference as
the agents in N \ {i}) and each turn of agents in N \ {i} is replaced by the
representative agent. When there is one other agent, [6] proved that the best
response results in the same allocation for the agent for all utilities consistent
with the ordinal preferences.1 ��

Combining Lemmas 2 and 3, we are in a position to prove the following:

Theorem 2. The bluff profile is in pure Nash equilibrium under all utilities
consistent with the ordinal preferences.

Proof. From Lemma 2, we know that the bluff profile is in pure Nash equilibrium
if the utilities are lexicographic. From Lemma 1, we know that all agents have
the same preferences in the bluff profile. This immediately implies that for any
agent i, all agents in N \ {i} report the same preferences. From Lemma 3, each
agent i’s best response to the bluff profile results in the same unique allocation
for all utilities consistent with the ordinal preferences. This allocation should
be the same as allocation achieved by i when he reports the bluff preferences
because they yield the best allocation under lexicographic utilities. Hence the
bluff profile is in pure Nash equilibrium under all utilities consistent with the
ordinal preferences. ��

5 The Crossout Profile

Since sequential allocation can also be viewed as a perfect information extensive
form game, it admits a SPNE (Subgame-Perfect Nash Equilibrium) and hence a
pure Nash equilibrium for the game tree.2 Computing a SPNE of the game tree
is PSPACE-complete [13]. On the other hand, the optimal play for the extensive
form game can be computed in polynomial time for the case of two agents. The
strategy corresponding to the SPNE is to play so that the last agent gets their
least preferred item, the second from last, their next least preferred item, and so
on. We first show that for the case of two agents, similar ideas can also be used
to construct a PNE preference profile for the one-shot game.

We use the expression crossout profile to refer to the preference profile in
which both agents have the preferences which are the same as the item picking
ordering in the optimal play of perfect information extensive form game. The
crossout preference profile can be computed as follows:

Reverse and then invert (exchange 1s with 2s and vice versa) the pick-
ing sequence. Reverse the preferences of the two agents. Find the order

1 This argument does not work when the number of other agents is more than one
and they have different preferences. It can be shown that for three or more agents,
best responses need not result in the same allocation.

2 For readers not familiar with extensive form games and Subgame-Perfect Nash Equi-
librium), we refer them to [16].
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L in which items are allocated to the agents according to the new picking
sequence and preferences. Return reverse of L as the preference of each
agent.

We now show that the crossout profile is in PNE for certain utilities consistent
with the ordinal preferences. We say that utilities are upward lexicographic if for
each agent i ∈ N and two allocations with equal number of items, if the agent
prefers the allocation with the better least-preferred item and in case of equality,
the one with a better second-least-preferred item and so on. Such a preference
relation can be captured by cardinal utilities as follows. If agent i has ordinal
preferences o1, o2, . . . , om, then utilities are as follows: ui(oj) = 1 − (1/2m+1−j)
for all j ∈ {1, . . . , m}.

Lemma 4. For two agents and for upward lexicographic utilities, the crossout
profile is in PNE.

Proof (Proof Sketch). Consider agent i ∈ {1, 2} and denote by −i the other
agent. Let π be the sequence of turns of the agents so that π(j) is the agent
with the j-th turn. Now if agent −i = π(m) has the last turn, then in the first
m − 1 turns, whenever agent i’s turn comes, he has an option to get an item
better than i’s least preferred item om. Hence i can guarantee to not get his
least preferred item om and hence guarantee −i to get om. This will always be
the best response for agent i if he has upward lexicographic utilities. Since −i
gets om in any case, −i may as well rank om last, and use his higher slots to
prioritise amongst the other items. We can now consider a situation in which
om does not exist in O and it is fixed as the least preferred item in both agents’
preferences. Then the same argument can be applied recursively. ��

Lemma 4 can be used to prove the following theorem.

Theorem 3. For two agents and for all utilities consistent with the ordinal
preferences, the crossout profile is in PNE.

Proof. From Lemma 4, we know that for two agents and for upward lexicographic
utilities, the crossout profile is in PNE. When there is one other agent, Bouveret
and Lang [6] proved that the best response results in the same allocation for the
agent under all utilities consistent with the ordinal preferences. ��

Next we show that even for two agents, the outcome of a crossout profile may
not be the same as the truthful assignment.

Example 2. Even for two agents, the outcome of the crossout profile (and hence
the SPNE assignment) may not be the same as the truthful assignment. Consider
the sequence 1212 and profile:

�1: a, b, c, d �2: b, c, a, d
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The picking sequence obtained after reversing and inverting the picking
sequence is again 1212. The modified preferences are as follows.

�′′
1 : d, c, b, a �′′

2 : d, a, c, b

Under picking sequence 1212 and profile �′′, the items are picked as follows:
d, a, c, b. We reverse this ordering to obtain the following crossout profile:

�′′
1 : b, c, a, d �′′

2 : b, c, a, d.

Under this profile and original picking sequence 1212, 1 gets {b, a} and 2 gets
{c, d}. Also note that the SPNE path is as follows: 1 gets b, 2 gets c, 1 gets a
and then 2 gets d. In contrast, in the truthful assignment, 1 gets a and c.

6 Pareto Optimality of Pure Nash Equilibria

We next consider the Pareto optimality of equilibria. An allocation S is at least
as preferred with respect to pairwise comparisons by a given agent i as allocation
T , if there exists an injection f from T to S such that for each item o ∈ T ,
i prefers f(o) at least as much as o. We note that an agent strictly prefers S
over T with respect to pairwise comparisons if S results from T by a sequence
of replacements of an item in T with a strictly more preferred item. Note that
the pairwise comparison relation is transitive but not necessarily complete. We
will focus on Pareto optimality with respect to pairwise comparisons.

We first show there exists a PNE whose outcome is Pareto optimal with
respect to pairwise comparisons. Hence, unlike some other games, Pareto opti-
mality is not incompatible with Nash equilibria in sequential allocation.

Theorem 4. The outcome of the bluff profile is Pareto optimal with respect to
pairwise comparisons.

The argument is as follows. Since the outcome of the bluff profile is the same
as the outcome of the truthful profile and since the outcome of each truthful
profile is Pareto optimal with respect to pairwise comparisons [7], the outcome
of the bluff profile is Pareto optimal with respect to pairwise comparisons as
well. Although the argument for the theorem is simple, it shows the following: if
the truthful outcome satisfies some normative properties such as envy-freeness
or other fairness properties [2], we know that there exists at least one PNE which
results in an assignment with the same normative properties. The theorem above
is in sharp contrast with the result in [8] that there exist utilities under which
no SPNE assignment is Pareto optimal with respect to pairwise comparisons.
Other relevant papers that deal with implementing Pareto optimal outcomes in
other settings include [11,17].

Next, we show that there may exist a PNE whose outcome is not Pareto
optimal with respect to pairwise comparisons. The statement holds even if the
PNE in question is in PNE with respect to all utilities consistent with the ordinal
preferences!
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Theorem 5. An assignment may not be Pareto optimal with respect to pairwise
comparisons even if it is a result of a preference profile that is in PNE for all
utilities consistent with ordinal preferences.

Proof. Consider the preference profile:

�1: a, b, c, d, e, f �2: e, f, b, a, d, c

�3: c, f, e, d, a, b

Let the sequence be 123123. Then the outcome of the truthful preference
profile can be summarized as

1 : {a, b} 2 : {e, f} 3 : {c, d}

Consider the following profile �′:

�′
1: c, f, a, b, d, e �′

2: b, a, e, c, d, f

�′
3: f, e, d, a, b, c

Then the outcome of the profile �′ can be summarized as

1 : {c, a} 2 : {b, e} 3 : {f, d}

We argue that the profile �′ is in PNE. In his reported preference �′
1, agent

1 gets {a, c}. The only better outcome agent 1 can get is {a, b}. If he goes for a
first, he does not get c or b. If he goes for b first, he does not get a. So agent 1
plays his best response for all utilities consistent with his ordinal preferences.

In his reported preference �′
2, agent 2 gets {e, b}. The only better outcome

agent 2 can get is {e, f}. Now agent 2 in his best response will try to get {e, f}.
If agent 2 tries to pick f first, he will not get e. Hence agent 2 plays his best
response for all utilities consistent with his ordinal preferences.

Finally, for agent 3, he cannot get c. The best he can get is {e, f}. If 3 goes
for e first, then he does not get f . If 3 goes for f first, he can only get d. The
best he can get is {f, d} so his reported preference is his best response for all
utilities consistent with the ordinal preferences. ��

7 Advantage of Commitment

In prior work on strategic aspects of sequential allocation, the focus has been
on computing manipulations or equilibria. We now consider another strategic
aspect: Stackelberg strategies to commit to in order to obtain outcomes that are
better for the individual agent. In this setting, agent 1 (the leader) announces
a preference R of all the items, and commits to selecting, whenever it is his
turn, the highest-ranked item in R that is not yet taken. The following example
illustrates a leadership advantage.
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Example 3. There are 2 agents and 4 items denoted a,b,c,d. Suppose the agents
choose items in order 1212. The ordinal preferences are

�1: a, d, c, b �2: a, b, d, c

Then in an SPNE, agent 1 takes item a, then agent 2 takes item d (since
agent 1 will not take item b, it is okay for agent 2 to take d, ending up with b
and d). Then agent 1 takes c. Also if agent 1 reports the truth a, d, c, b, then
agent 2 is guaranteed to get b so he can report d, b, a, c and get {b, d} which
means that 1 gets {a, c}.

However, consider the case where agent 1 is leader, and announces the pref-
erence list �′

1: a, b, d, c. Then agent 2 must use a preference list that results in
agent 2 taking item b first. Agent 1 has a credible threat to take item b, if agent
2 does not take it next (despite the fact that agent 1 doesn’t value item b). So,
agent 1 gets items a and d.

This raises the following question. For two agents, what is the complexity of
finding the best preference report for the leader, assuming that the follower will
best-respond. Next, we consider an interesting special case in which the problem
can be solved in polynomial time.

Theorem 6. For n = 2 and any fixed picking sequence, there is an algorithm
whose runtime is polynomial in the number of items m, to compute an optimal
Stackelberg strategy for agent 1 when agent 2 has a constant number of distinct
values for items.

We make the assumption, standard in the study of optimal Stackelberg strate-
gies, that if agent 2 has more than one best response, then agent 1 breaks the
tie in his (agent 1’s) favour. Let k (constant) be the number of distinct values
that agent 2 has for items. Agent 1 has to identify a ranking of the items such
that if agent 2 best-responds, agent 1’s total value is maximised.

It is convenient to proceed by solving the following slight generalisation of
the problem. Given a picking sequence P (a sequence of 1’s and 2’s of length
m), we add a parameter �, where � is at most the number of 2’s in P , and agent
2 may receive only � items. We make the following observation:

Observation 1. Suppose (for picking sequence P ) agent 2 is allowed to receive
� items. We can regard agent 2’s selection of items as working as follows. Given
agent 1’s preference ranking �1, agent 2 places a token on the � items in �1

whose positions correspond to the positions of 2 in P. Agent 2 is allowed to
move any token from any item x to an item x′, provided that x �1 x′, subject
to the constraint that tokens lie at distinct items. Finally, items marked with
tokens are the ones that agent 2 receives. Agent 2 chooses the most valuable set
that can be obtained in this way.

Proposition 1. We may assume that in an optimal (for agent 1) ranking of
the items, if items x and x′ have the same value for agent 2, and agent 1 values
x higher than x′, then agent 1 ranks x higher than x′.
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Proof. We claim first that since x and x′ have the same value to agent 2, then
given any ranking by agent 1, any best response by agent 2 can be modified to
avoid an outcome where agent 2 takes the higher-ranked of {x, x′}, but not the
lower-ranked of {x, x′}.

Noting Observation 1, if the higher-ranked of {x, x′} has a token, but not
the lower-ranked of them, the token can be moved to the lower-ranked of {x, x′}
without loss of utility to agent 2. If agent 1 ranks the lower-valued of {x, x′}
higher in �1, they can be exchanged, and the new ranking (with the right best
response by agent 2) is at least as good for agent 1. ��

Notation: Recall that m denotes the number of items. Let S1, . . . , Sk be the
partition of the items into subsets that agent 2 values equally. For 1 ≤ i ≤ k let
mi = |Si|. Let oi,j ∈ Si be the member of Si that has the j-th highest value to
agent 1. Let Si(j) ⊆ Si be the set {o1, . . . , oj}, that is, the j highest value (to
agent 1) members of Si. Let U(j1, . . . , jk; �) be the highest utility that agent 1
can get, assuming that items S1(j1) ∪ · · · ∪ Sk(jk) are being shared, and agent
2 is allowed to take � of them, where � ≤ m. In words, we consider subsets of
the Si obtained by taking the best items in Si, and consider various numbers of
items that we limit agent 2 may to receive.

Proof. (of Theorem 6) If picking sequence P contains m′ occurrences of “2”, we
are interested in computing U(m1, . . . ,mk;m′) and its associated ranking. We
express the solution recursively be expressing U(j1, . . . , jk; �) in terms of various
values of U(j′

1, . . . , j
′
k; �

′), where j′
i ≤ ji and �′ ≤ �, and at least one inequality is

strict. Furthermore, for any values j1, . . . , jk, � we also evaluate and remember
agent 2’s best response. This can be seen to be achievable in polynomial time
via dynamic programming, since there are O(mk+1) sets of values that can be
taken by these parameters.

We compute U(j1, . . . , jk; �) as follows. Let j = j1 + . . . + jk and assume
that there are at least � occurrences of “2” in the first j entries of the picking
sequence.

By Proposition 1, in an (agent 1)-optimal ranking of items in S1(j1) ∪ · · · ∪
Sk(jk), the lowest ranked item must be one of o1,j1 , · · · , ok,jk . We consider two
cases, according to whether or not agent 2 takes that lowest-ranked item.

Suppose agent 2 takes that item. Then U(j1, . . . , jk; �) is given by:

max
i∈[k]

(
U(j1, . . . , ji−1, ji − 1, ji+1, . . . , jk; � − 1)

)
(1)

Alternatively agent 2 may fail to take that item, in which case U(j1, . . . , jk; �)
is given by:

max
i∈[k]

(
u1(oi,ji) + U(j1, . . . , ji−1, ji − 1, ji+1, . . . , jk; �)

)
(2)

where u1(oi,ji) is agent 1’s value for item oi,ji lowest-ranked.
By way of explanation of (1) and (2), in the case of (1) where agent 2 takes

oi,ji , agent 1’s utility will be that of the optimal ranking of the other j −1 items
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under the constraint that agent 2 only gets to take �−1 of them. If agent 2 does
not take this lowest-ranked item oi,ji , then (2) gives agent 1’s utility as his value
u1(oi,ji) for that item, plus the best outcome for agent 1 assuming agent 2 may
take � items from amongst the other j − 1 items.

In checking which case applies for a given choice of i and corresponding item
oi,ji , we check whether the optimal ranking of the other items for agent 2 taking
� − 1 of them, when extended to agent 2’s selection of that additional item, is
indeed a best-response for agent 2 given that he gets � of all the items. This can
be done efficiently, since best responses can be efficiently computed [6]. ��

8 Conclusion

Sequential allocation is a simple and frequently used mechanism for resource
allocation. Its strategic aspects have been formally studied for the last forty
years. To our surprise, some fundamental questions have been unaddressed in
the literature about sequential allocation when viewed as an one shot game. This
is despite the fact that in many settings, it is essentially played as an one shot
game. We have therefore studied in detail the pure Nash equilibrium of sequen-
tial allocation mechanisms. We presented a number of results on Nash dynamics,
as well as on the computation of pure Nash equilibrium, and the Pareto optimal-
ity of equilibria. In particular, we presented the first polynomial-time algorithm
to compute a PNE that applies to all utilities consistent with the ordinal pref-
erences. We have also explored some other new directions such as Stackelberg
strategies that have so far not been examined in sequential allocation.
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Abstract. We consider the following control problem on fair allocation
of indivisible goods. Given a set I of items and a set of agents, each having
strict linear preference over the items, we ask for a minimum subset of the
items whose deletion guarantees the existence of a proportional allocation
in the remaining instance; we call this problem Proportionality by
Item Deletion (PID). Our main result is a polynomial-time algorithm
that solves PID for three agents. By contrast, we prove that PID is
computationally intractable when the number of agents is unbounded,
even if the number k of item deletions allowed is small, since the problem
turns out to be W[3]-hard with respect to the parameter k. Additionally,
we provide some tight lower and upper bounds on the complexity of PID
when regarded as a function of |I| and k.

1 Introduction

We consider a situation where a set I of indivisible items needs to be allocated
to a set N of agents in a way that is perceived as fair. Unfortunately, it may
happen that a fair allocation does not exist in a setting. In such situations,
we might be interested in the question how our instance can be modified in
order to achieve a fair outcome. Naturally, we seek for a modification that is as
small as possible. This can be thought of as a control action carried out by a
central agency whose task is to find a fair allocation. The computational study
of such control problems was first proposed by Bartholdi, III et al. [3] for voting
systems; our paper follows the work of Aziz et al. [2] who have recently initiated
the systematic study of control problems in the area of fair division.

The idea of fairness can be formalized in various different ways such as pro-
portionality, envy-freeness, or max-min fair share. Here we focus on proportion-
ality, a notion originally defined in a model where agents use utility functions
to represent their preferences over items. In that context, an allocation is called
proportional if each agent obtains a set of items whose utility is at least 1/|N |
of their total utility of all items. One way to adapt this notion to a model with
linear preferences (not using explicit utilities) is to look for an allocation that is
proportional with respect to any choice of utility functions for the agents that
c© Springer International Publishing AG 2017
J. Rothe (Ed.): ADT 2017, LNAI 10576, pp. 284–299, 2017.
DOI: 10.1007/978-3-319-67504-6 20
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is compatible with the given linear preferences (see Aziz et al. [1] for a survey of
other possible notions of proportionality and fairness under linear preferences).
Aziz et al. [1] referred to this property as “necessary proportionality”; for sim-
plicity, we use the shorter term “proportionality.”

We have two reasons for considering linear preferences. First, an important
advantage of this setting is the easier elicitation of agents’ preferences, which
enables for more practical applications. Second, this simpler model is more
tractable in a computational sense: under linear preferences, the existence of a
proportional allocation can be decided in polynomial time [1], whereas the same
question for cardinal utilities is NP-hard already for two agents [9]. Clearly, if
already the existence of a proportional allocation is computationally hard to
decide, then we have no hope to solve the corresponding control problem effi-
ciently.

Control actions can take various forms. Aziz et al. [2] mention several possibil-
ities: control by adding/deleting/replacing agents or items in the given instance,
or by partitioning the set of agents or items. In this paper we concentrate only
on control by item deletion, where the task is to find a subset of the items, as
small as possible, whose removal from the instance guarantees the existence of
a proportional allocation. In other words, we ask for the maximum number of
items that can be allocated to the agents in a proportional way.

1.1 Related Work

We follow the research direction proposed by Aziz et al. [2] who initiated the
study of control problems in the area of fair division. As an example, Aziz et al. [2]
consider the complexity of obtaining envy-freeness by adding or deleting items or
agents, assuming linear preferences. They show that adding/deleting a minimum
number of items to ensure envy-freeness can be done in polynomial time for
two agents, while for three agents it is NP-hard even to decide if an envy-free
allocation exists. As a consequence, they obtain NP-hardness also for the control
problems where we want to ensure envy-freeness by adding/deleting items in
case there are more than two agents, or by adding/deleting agents.

The problem of deleting a minimum number of items to obtain envy-freeness
was first studied by Brams et al. [4] who gave a polynomial-time algorithm for
the case of two agents.1 In the context of cake cutting, Segal-Halevi et al. [13]
proposed the idea of distributing only a portion of the entire cake in order
to obtain an envy-free allocation efficiently. For the Hospitals/Residents with
Couples problem, Nguyen and Vohra [11] considered another type of control
action: they obtained stability by slightly perturbing the capacities of hospitals.

1.2 Our Contribution

We first consider the case where the number of agents is unbounded (see Sect. 3).
We show that the problem of deciding whether there exist at most k items whose

1 For a complete proof of the correctness of their algorithm, see also [2].
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deletion allows for a proportional allocation is NP-complete, and also W[3]-hard
with parameter k (see Theorem 2). This latter result shows that even if we allow
only a few items to be deleted, we cannot expect an efficient algorithm, since
the problem is not fixed-parameter tractable with respect to the parameter k
(unless FPT = W[3]).

Additionally, we provide tight upper and lower bounds on the complexity of
the problem. In Theorem 3 we prove that the trivial |I|O(k) time algorithm—that,
in a brute force manner, checks for each subset of I of size at most k whether
it is a solution—is essentially optimal (under the assumption FPT �= W[1]). We
provide another simple algorithm in Theorem 4 that has optimal running time,
assuming the Exponential Time Hypothesis.

In Sect. 4, we turn our attention to the case with only three agents.
In Theorem 5 we propose a polynomial-time algorithm for this case, which can
be viewed as our main result. This algorithm is based on dynamic programming,
but relies heavily on a non-trivial insight into the structure of solutions.

For lack of space, proofs marked by an asterix are deferred to a detailed
technical report [12].

2 Preliminaries

We assume the reader to be familiar with basic complexity theory, in particular
with parameterized complexity [6].

Preferences. Let N be a set of agents and I a set of indivisible items that we
wish to allocate to the agents in some way. We assume that each agent a ∈ N
has strict preferences over the items, expressed by a preference list La that is
a linear ordering of I, and set L = {Lx | x ∈ N}. We call the triple (N, I, L)
a (preference) profile. We denote by La[i : j] the subsequence of La containing
the items ranked by agent a between the positions i and j, inclusively, for any
1 ≤ i ≤ j ≤ |I|. Also, for a subset X ⊆ I of items we denote by La

X the restriction
of La to the items in X.

Proportionality. Interestingly, the concept of proportionality (as described in
Sect. 1) has an equivalent definition that is more direct and practical: we say
that an allocation π : I → N mapping items to agents is proportional if for any
integer i ∈ {1, . . . , |I|} and any agent a ∈ N , the number of items from La[1 : i]
allocated to a by π is at least i/|N |. Note that, in particular, this means that in
a proportional allocation, each agent needs to get his or her first choice. Another
important observation is that a proportional allocation can only exist if the
number of items is a multiple of |N |, since each agent needs to obtain at least
|I|/|N | items.

Control by deleting items. Given a profile P = (N, I, L) and a subset U of
items, we can define the preference profile P −U obtained by removing all items
in U from I and from all preference lists in L. Let us define the Proportion-
ality by Item Deletion (PID) problem as follows. Its input is a pair (P, k)
where P = (N, I, L) is a preference profile and k is an integer. We call a set
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U ⊆ I of items a solution for P if its removal from I allows for proportionality,
that is, if there exists a proportional allocation π : I \ U → N for P − U . The
task in PID is to decide if there exists a solution of size at most k.

3 Unbounded Number of Agents

Since the existence of a proportional allocation can be decided in polynomial
time by standard techniques in matching theory [1], the Proportional Item
Deletion problem is solvable in |I|O(k) time by the brute force algorithm that
checks for each subset of I of size at most k whether it is a solution. In terms
of parameterized complexity, this means that PID is in XP when parameterized
by the solution size.

Clearly, such a brute force approach may only be feasible if the number k of
items we are allowed to delete is very small. Searching for a more efficient algo-
rithm, one might ask whether the problem becomes fixed-parameter tractable
with k as the parameter, i.e., whether there exists an algorithm for PID that,
for an instance (P, k) runs in time f(k)|P|O(1) for some computable function f .
Such an algorithm could be much faster in practice compared to the brute force
approach described above.

Unfortunately, the next theorem shows that finding such a fixed-parameter
tractable algorithm seems unlikely, as PID is W[2]-hard with parameter k. Hence,
deciding whether the deletion of k items can result in a profile admitting a
proportional allocation is computationally intractable even for small values of k.

Theorem 1. Proportionality by Item Deletion is NP-complete and
W[2]-hard when parameterized by the size k of the desired solution.

Proof. We are going to present an FPT-reduction from the W[2]-hard problem
k-Dominating Set, where we are given a graph G = (V,E) and an integer k
and the task is to decide if G contains a dominating set of size at most k; a
vertex set D ⊆ V is dominating in G if each vertex in V is either in D or has a
neighbor in D. We denote by N(v) the set of neighbors of some vertex v ∈ V ,
and we let N [v] = N(v)∪{v}. Thus, a vertex set D is dominating if N [v]∩D �= ∅
holds for each v ∈ V .

Let us construct an instance IPID = (P, k) of PID with P = (N, I, L) as
follows. We let N contain 3n + 2m + 1 agents where n = |V | and m = |E|: we
create n+1 so-called selection agents s1, . . . , sn+1, and for each v ∈ V we create
a set Av = {aj

v | 1 ≤ j ≤ |N [v]| + 1} of vertex agents. Next we let I contain
2|N | + k items: we create distinct first-choice items f(a) for each agent a ∈ N ,
a vertex item iv for each v ∈ V , a dummy item dj

v for each vertex agent aj
v ∈ N ,

and k + 1 additional dummy items c1, . . . , ck+1.
Let F denote the set of all first-choice items, i.e., F = {f(a) | a ∈ N}. For

any set U ⊆ V of vertices in G, let IU = {iv | v ∈ U}; in particular, IV denotes
the set of all vertex items.

Before defining the preferences of agents, we need some additional notation.
We fix an arbitrary ordering ≺ over the items, and for any set X of items we
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let [X] denote the ordering of X according to ≺. Also, for any a ∈ N , we define
the set F a

i as the first i elements of F \ {f(a)}, for any i ∈ {1, . . . , |N | − 1}. We
end preference lists below with the symbol ‘. . . ’ meaning all remaining items not
listed explicitly, ordered according to ≺.

Now we are ready to define the preference list La for each agent a.

– If a is a selection agent a = si with 1 ≤ i ≤ n − k, then let

La : f(a), [F a
|N |−n], [IV ]

︸ ︷︷ ︸

|N | items

, [F a
|N |−n+k \ F a

|N |−n]
︸ ︷︷ ︸

k items

, . . .

– If a is a selection agent a = si with n − k < i ≤ n + 1, then let

La : f(a), [F a
|N |−n], [IV ]

︸ ︷︷ ︸

|N |items

, [F a
|N |−n+k−1 \ F a

|N |−n]
︸ ︷︷ ︸

k−1 items

, ci−(n−k), . . .

– If a is a vertex agent a = aj
v with 1 ≤ j ≤ |N [v]| + 1, then let

La : f(a), [F a
|N |−|N [v]|], [IN [v]]

︸ ︷︷ ︸

|N | items

, dj
v, . . .

This finishes the definition of our PID instance IPID.
Suppose that there exists a solution S of size at most k to IPID and a pro-

portional allocation π mapping the items of I \ S to the agents in N . Observe
that by |I| = 2|N | + k, we know that S must contain exactly k items.

First, we show that S cannot contain any item from F . For contradiction,
assume that f(a) ∈ S for some agent a. Since the preference list of a starts with
more than k items from F (by N −n > k), the first item in La

I\S must be an item
f(b) for some b ∈ N , b �= a. The first item in Lb

I\S is exactly f(b), and thus any
proportional allocation should allocate f(b) to both a and b, a contradiction.

Next, we prove that S ⊆ IV . For contradiction, assume that S contains less
than k items from IV . Then, after the removal of S, the top |N | + 1 items in
the preference list Lsi

I\S of any selection agent si are all contained in IV ∪ F .
Hence, π must allocate at least two items from IV ∪ F to si, by the definition
of proportionality. Recall that for any agent a, π allocates f(a) to a, meaning
that π would need to distribute the n items in IV among the n + 1 selection
agents, a contradiction. Hence, we have S ⊆ IV .

We claim that the k vertices D = {v | iv ∈ S} form a dominating set in S.
Let us fix a vertex v ∈ V . For sake of contradiction, assume that N [v] ∩ D = ∅,
and consider any vertex agent a in Av. Then the top |N | + 1 items in La

I\S are
the same as the top |N | + 1 items in La = La

I (using that S ∩ F = ∅), and these
items form a subset of IN [v] ∪ F for every a ∈ Av. But then arguing as above,
we get that π would need to allocate an item of IN [v] to each of the |N [v]| + 1
vertex agents in Av; again a contradiction. Hence, we get that N [v] ∩ D �= ∅ for
each v ∈ V , showing that D is indeed a dominating set of size k.
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For the other direction, let D be a dominating set of size k in G, and let
S denote the set of k vertex items {iv | v ∈ D}. To prove that S is a solution
for IPID, we define a proportional allocation π in the instance obtained by remov-
ing S. First, for each selection agent si with 1 ≤ i ≤ n−k, we let π allocate f(si)
and the ith item from IV \D to si . Second, for each selection agent sn−k+i with
1 ≤ i ≤ k + 1, we let π allocate f(sn−k+i) and the dummy item ci to sn−k+i.
Third, π allocates the items f(aj

v) and dj
v to each vertex agent aj

v ∈ N .
It is straightforward to check that π is indeed proportional.
For proving NP-completeness, observe that the presented FPT-reduction is a

polynomial reduction as well, so the NP-hardness of Dominating Set implies
that PID is NP-hard as well; since for any subset of the items we can verify in
polynomial time whether it yields a solution, containment in NP follows. ��

In fact, we can strengthen the W[2]-hardness result of Theorem 1 and show
that PID is even W[3]-hard with respect to parameter k.2

Theorem 2 (�). Proportionality by Item Deletion is W[3]-hard when
parameterized by the size k of the desired solution.

Theorem 2 implies that we cannot expect an FPT-algorithm for PID with
respect to the parameter k, the number of item deletions allowed, unless FPT �=
W[3]. Next we show that the brute force algorithm that runs in |I|O(k) time is
optimal, assuming the slightly stronger assumption FPT �= W[1].

Theorem 3. There is no algorithm for PID that on an instance (P, k) with item
set I runs in f(k)|I|o(k)|P|O(1) time for some function f , unless FPT �= W[1].3

Proof. Chen et al. [5] introduced the class of Wl[2]-hard problems based on
the notion of linear FPT-reductions. They proved that Dominating Set is
Wl[2]-hard, and that this implies a strong lower bound on its complexity: unless
FPT �= W[1], Dominating Set cannot be solved in f(k)|V |o(k)(|V | + |E|)O(1)

time for any function f .
Observe that in the FPT-reduction presented in the proof of Theorem 1

the new parameter has linear dependence on the original parameter (in fact
they coincide). Therefore, this reduction is a linear FPT-reduction, and conse-
quentially, PID is Wl[2]-hard. Hence, as proved by Chen et al. [5], PID on an
instance (P, k) with item set I cannot be solved in time f(k)|I|o(k)|P|O(1) time
for any function f , unless FPT �= W[1]. ��

If we want to optimize the running time not with respect to the number k
of allowed deletions but rather in terms of the total number of items, then
we can also give the following tight complexity result, under the Exponential
Time Hypothesis (ETH). This hypothesis, formulated in the seminal paper by
Impagliazzo, Paturi, and Zane [8] says that 3-Sat cannot be solved in 2o(n) time,
where n is the number of variables in the 3-CNF fomular given as input.

2 We present Theorem 1 so that we can re-use its proof for Theorems 3 and 4.
3 Here, we use an effective variant of “little o” (see, e.g. [7, Definition 3.22]).
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Theorem 4. PID can be solved in O�(2|I|) time, but unless the ETH fails, it
cannot be solved in 2o(|I|) time, where I is the set of items in the input.

Proof. The so-called Sparsification Lemma proved by Impagliazzo et al. [8]
implies that assuming the ETH, 3-Sat cannot be solved in 2o(m) time, where m
is the number of clauses in the 3-CNF formula given as input. Since the standard
reduction from 3-Sat to Dominating Set transforms a 3-CNF formula with n
variables and m clauses into an instance (G,n) of Dominating Set such that
the graph G has O(m) vertices and maximum degree 3 (see, e.g., [14]), it follows
that Dominating Set on a graph (V,E) cannot be solved in 2o(|V |) time even
on graphs having maximum degree 3, unless the ETH fails.

Recall that the reduction presented in the proof of Theorem 1 computes from
each instance (G, k) of Dominating Set with G = (V,E) an instance (P, k)
of PID where the number of items is 3|V | + 2|E| + 1. Hence, assumming that
our input graph G has maximum degree 3, we obtain |I| = O(|V |) for the set I
of items in P. Therefore, an algorithm for PID running in 2o(|I|) time would
yield an algorithm for Dominating Set running in 2o(|V |) time on graphs of
maximum degree 3, contradicting the ETH. ��

4 Three Agents

It is known that PID for two agents is solvable in polynomial-time: the problem
of obtaining an envy-free allocation by item deletion is polynomial-time solvable
if there are only two agents [2,4]; since for two agents an allocation is propor-
tional if and only it is envy-free [1], this proves tractability of PID for |N | = 2
immediately. In this section, we generalize this result by proving that PID is
polynomial-time solvable for three agents.

Let us define the underlying graph G of our profile P of PID as the following
bipartite graph. The vertex set of G consists of the set I of items on the one side,
and a set S on the other side, containing all pairs of the form (x, i) where x ∈ N
is an agent and i ∈ {1, . . . , |I|/|N |�}. Such pairs are called slots. We can think
of the slot (x, i) as the place for the ith item that agent x receives in some
allocation. We say that an item is eligible for a slot (x, i), if it is contained in
Lx[1 : |N |(i−1)+1]. In the graph G, we connect each slot with the items that are
eligible for it. Observe that any proportional allocation corresponds to a perfect
matching in G; see Lemma 1 for a proof.

In what follows, we suppose that our profile P contains three agents, so
let N = {a, b, c}.

4.1 Basic Concepts: Prefixes and Minimum Obstructions

Since our approach to solve PID with three agents is to apply dynamic program-
ming, we need to handle partial instances of PID. Let us define now the basic
necessary concepts.

Prefixes. For any triple (ia, ib, ic) with 1 ≤ ia, ib, ic ≤ |I| we define a prefix
Q = P[ia, ib, ic] of P as the triple (La[1 : ia], Lb[1 : ib], Lc[1 : ic]), listing only
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the first ia, ib, ic items in the preference list of agents a, b, and c, respectively.
We call (ia, ib, ic) the size of Q and denote it by size(Q). We also define the
suffix P − Q as the triple (La[ia + 1 : |I|], Lb[ib + 1 : |I|], Lc[ic + 1 : |I|]), which
can be thought of as the remainder of P after deleting Q from it.

We say that a prefix Pi = P[ia, ib, ic] is contained in another prefix Pj =
P[ja, jb, jc] if jx ≤ ix for each x ∈ N ; the containment is strict if jx < ix for
some x ∈ N . We say that Pi and Pj are intersecting if none of them contains
the other; we call the unique largest prefix contained both in Pi and in Pj , i.e.,
the prefix P[min(ia, ja),min(ib, jb),min(ic, jc)], their intersection, and denote it
by Pi ∩ Pj .

For some prefix Q = P[ia, ib, ic], let I(Q) denote the set of all items appearing
in Q, and let S(Q) denote the set of all slots appearing in Q, i.e., S(Q) = {(x, i) |
1 ≤ i ≤ (ix + 2)/3�, x ∈ N}. We also define the graph G(Q) underlying Q
as the subgraph of G induced by all slots and items appearing in Q, that is,
G(Q) = G[S(Q) ∪ I(Q)]. We say that a slot is complete in Q, if it is connected
to the same items in G(Q) as in G; clearly the only slots which may be incomplete
are the last slots in Q, that is, the slots (x, (ix + 2)/3�), x ∈ N .

Solvability. We say that a prefix Q is solvable, if the underlying graph G(Q) has
a matching that covers all its complete slots. Hence, a prefix is solvable exactly
if there exists an allocation π from I(Q) to N that satisfies the condition of
proportionality restricted to all complete slots in Q: for any agent x ∈ N and
any index i ∈ {1, . . . , i′x}, the number of items from Lx[1 : ix] allocated by π
to x is at least ix/3; here i′x = 3(�(ix + 2)/3�) − 2 is the last position in Q that
is contained in a complete slot for agent x.

Minimal obstructions. We say that a prefix Q is a minimal obstruction, if it
is not solvable, but all prefixes strictly contained in Q are solvable. See Fig. 1 for
an illustration. The next lemmas claim some useful observations about minimal
obstructions.

Profile P:

a: 1, 3, 2, 4, 6, 5, 7.
b: 3, 1, 5, 2, 7, 4, 6.
c: 2, 4, 5, 3, 6, 7, 1.

Min. obstruction Q:

a: 1, 3, 2, 4.
b: 3, 1, 5, 2.
c: 2, 4, 5, 3.

Graph G(Q):

(a, 1) (b, 1) (c, 1) (a, 2) (b, 2) (c, 2)

1 2 3 4 5Q− {2}:
a: 1, 3, 4.
b: 3, 1, 5.
c: 4, 5, 3.

P − {2}:
a: 1, 3, 4, 6, 5, 7.
b: 3, 1, 5, 7, 4, 6.
c: 4, 5, 3, 6, 7, 1.

Fig. 1. An example profile P with item set I = {1, 2, . . . , 7}, a minimal obstruction Q
of size (4, 4, 4) in P and its associated graph G(Q). Note that the partial solution {2}
for Q is a solution for P as well. We depicted a proportional allocation for Q−{2} and
P − {2} by underlining in each agent’s preference list the items allocated to her.
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Lemma 1 (�). Profile P admits a proportional allocation if and only if the
underlying graph G contains a perfect matching. Also, in O(|I|3) time we can
find either a proportional allocation for P, or a minimal obstruction Q in P.

Lemma 2 (�). Let Q = P[ia, ib, ic] be a prefix of P that is a minimal obstruc-
tion. Then ia ≡ ib ≡ ic ≡ 1 mod 3, and either

(i) ia = ib = ic, or
(ii) ix = iy = iz + 3 for some choice of agents x, y, and z with {x, y, z} =

{a, b, c}.

Moreover, if (ii) holds, then Lx[1 : ix] and Ly[1 : iy] contain exactly the same
item set, namely I(Q).

Based on Lemma 2, we define the shape of a minimal obstruction Q as
either straight or slant, depending on whether Q fulfills the conditions (i) or
(ii), respectively. More generally, we also say that a prefix has straight or slant
shape if it fulfills the respective condition. Furthermore, we define the boundary
items of Q, denoted by δ(Q), as the set of all items that appear once or twice
(but not three times) in Q.

Lemma 3 (�). Let Q be a prefix of P that is a minimal obstruction. Then the
boundary of Q contains at most three items: |δ(Q)| ≤ 3.

4.2 Partial Solutions and Branching Sets

Partial solutions. For a prefix Q and a set U of items, we define Q − U in the
natural way: by deleting all items of U from the (partial) preference lists of the
profile (note that the total length of the preference lists constituting the profile
may decrease). We say that an item set Y ⊆ I(Q) is a partial solution for Q if
Q − Y is solvable. See again Fig. 1 for an example.

Observe that for any item set Y we can check whether it is a partial solution
for Q by finding a maximum matching in the corresponding graph (containing all
items and complete slots that appear in Q−Y ), which has at most 2|I| vertices.
Hence, using the algorithm by Mucha and Sankowski [10], we can check for any
Y ⊆ I(Q) whether it is a partial solution for Q in O(|I|ω) time where ω < 2.38
is the exponent of the best matrix multiplication algorithm.

Branching set. To solve PID we will repeatedly apply a branching step: when-
ever we encounter a minimal obstruction Q, we shall consider several possible
partial solutions for Q, and for each partial solution Y we try to find a solution
U that contains Y . To formalize this idea, we say that a family Y containing
partial solutions for a minimal obstruction Q is a branching set for Q, if there
exists a solution U of minimum size for the profile P such that U ∩ I(Q) ∈ Y.
Such a set is exactly what we need to build a search tree algorithm for PID.

Lemma 4 shows that we never need to delete more than two items from any
minimal obstruction. This will be highly useful for constructing a branching set.
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Lemma 4 (�). Let Q be a minimal obstruction in a profile P, and let U denote
an inclusion-wise minimal solution for P. Then |U ∩ I(Q)| ≤ 2.

Lemma 4 implies that simply taking all partial solutions of I(Q) of size 1
or 2 yields a branching set for Q.

Corollary 1. For any minimal obstruction Q in a profile, a branching set Y for
Q of cardinality at most |I(Q)| +

(|I(Q)|
2

)

= O(|I|2) and with maxY ∈Y |Y | ≤ 2
can be constructed in polynomial time.

4.3 Domination: Obtaining a Smaller Branching Set

To exploit Lemma 4 in a more efficient manner, we will rely on an observation
about the equivalence of certain item deletions, which can be used to reduce the
number of possibilities that we have to explore when encountering a minimal
obstruction, i.e., the size of our branching set. To this end, we need some addi-
tional notation. Given a prefix Q = P[ia, ib, ic], we define its tail as the set T (Q)
of items as follows, depending on the shape of Q.

– If Q has straight shape, then T (Q) contains the last three items contained
in Q for each agent, that is, all items in La[ia − 2 : ia], Lb[ib − 2 : ib], and
Lc[ic − 2 : ic].

– If Q has slant shape with iz = ix − 3 = iy − 3 for some choice of agents x, y,
and z with {x, y, z} = {a, b, c}, then T (Q) contains the last six items in Q
listed by agents x and y, that is, all items in Lx[ix −5 : ix] and Ly[iy −5 : iy].

Let us state the main property of the tail which motivates its definition.

Lemma 5 (�). Suppose Q is a minimum obstruction in P, and R is a prefix
of P intersecting Q such that R − X is a minimum obstruction for some item
set X with |X ∩ I(Q)| ≤ 2. Then any item that occurs more times in Q than in
R must be contained in the tail of Q.

Next, we give a condition that guarantees that some partial solution for a
minimum obstruction Q is “not worse” than some other. Given two sets of items
Y, Y ′ ⊆ I(Q), we say that Y ′ dominates Y with respect to the prefix Q, if

(1) |Y | = |Y ′|,
(2) Y ′ only contains an item from the boundary or the tail of Q if Y also

contains that item, i.e., Y ′ ∩ (δ(Q) ∪ T (Q)) ⊆ Y ∩ (δ(Q) ∪ T (Q)).

Lemma 6 (�). If U is an inclusion-wise minimal solution for the profile P, Q
is a minimal obstruction in P, Y = U ∩I(Q) and Y ′ ⊆ I(Q) is a partial solution
for Q that dominates Y , then U \ Y ∪ Y ′ is a solution for P.

Lemma 6 means that if a branching set Y contains two different partial
solutions Y and Y ′ for a minimum obstruction such that Y ′ dominates Y , then
removing Y from Y still results in a branching set. Using this idea, we can
construct a branching set of constant size.
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Lemma 7. There is a polynomial-time algorithm that, given a minimal obstruc-
tion Q in the profile P, produces a branching set Y with maxY ∈Y |Y | ≤ 2 and
|Y| = O(1).

Proof. First observe that for any two item sets Y and Y ′ in Q, we can decide
whether Y dominates Y ′ in O(min(|Y |, |Y ′|)) time. Hence, we can simply start
from the branching set Y guaranteed by Corollary 1, and check for each Y ∈ Y
whether there exists some Y ′ ∈ Y that dominates Y ; if so, then we remove Y .
By Lemma 6, at the end of this process the set family Y obtained is a branching
set.

We claim that Y has constant size. To see this, observe that if Y1 and Y2

are both in Y and have the same size, then both Y1 \ Y2 and Y2 \ Y1 contain
an element from T (Q) ∪ δ(Q). Thus, we can bound |Y| using the pigeon-hole
principle: first, Y may contain at most |T (Q) ∪ δ(Q)| partial solutions of size
1, and second, it may contain at most

(|T (Q)∪δ(Q)|
2

)

partial solutions of size 2.
Recall that |T (Q)| ≤ 9 by definition, and we also have |δ(Q)| ≤ 3 by Lemma 3,
proving our claim. ��

4.4 Polynomial-Time Algorithm for PID for Three Agents

Let us now present our algorithm for solving PID on our profile P = (N, I, L).
We are going to build the desired solution step-by-step, iteratively extend-

ing an already found partial solution. Namely, we propose an algorithm
MinDel(T , U) that, given a prefix T of P and a partial solution U for T , returns
a solution S for P for which S ∩ I(T ) = U , and has minimum size among all
such solutions. We refer to the set S \ U as an extension for (T , U); note that
an extension for (T , U) only contains items from I \ I(T ). We will refer to the
set of items in I(T ) \ U as forbidden w.r.t. (T , U).

Branching set with forbidden items. To address the problem of finding an
extension for (T , U), we modify the notion of a branching set accordingly. Given
a minimal obstruction Q and a set F ⊆ I(Q) of items, we say that a family Y
of partial solutions for Q is a branching set for Q forbidding F , if the following
holds: either there exists a solution U for the profile P that is disjoint from F and
has minimum size among all such solutions, and moreover, fulfills U ∩ I(Q) ∈ Y,
or P does not admit any solution disjoint from F .

Lemma 8. There is a polynomial-time algorithm that, given a minimal obstru-
cion Q in a profile and a set F ⊆ I(Q) of forbidden items, produces a branching
set Y forbidding F with maxY ∈Y |Y | ≤ 2 and |Y| = O(1).

Proof. The algorithm given in Lemma 7 can be adapted in a straightforward
fashion to take forbidden items into account: it suffices to simply discard in the
first place any subset Y ⊆ I(Q) that is not disjoint from F . It is easy to verify
that this modification indeed yields an algorithm as desired. ��
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Equivalent partial solutions. We will describe MinDel as a recursive algo-
rithm, but in order to ensure that it runs in polynomial time, we need to apply
dynamic programming. For this, we need a notion of equivalence: we say that
two partial solutions U1 and U2 for T are equivalent if (1) |U1| = |U2|, and
(2) (T , U1) and (T , U2) admit the same extensions.

Ideally, whenever we perform a call to MinDel with a given input (T , U), we
would like to first check whether an equivalent call has already been performed,
i.e., whether MinDel has been called with an input (T , U ′) for which U and U ′

are equivalent. However, the above definition of equivalence is computationally
hard to handle: there is no easy way to check whether two partial solutions admit
the same extensions or not. To overcome this difficulty, we will use a stronger
condition that implies equivalence.

Deficiency and strong equivalence. Consider a solvable prefix Q of P. We
let the deficiency of Q, denoted by def(Q), be the value |S(Q)| − |I(Q)|. Note
that due to possibly incomplete slots in Q, the deficiency of Q may be positive
even though Q is solvable. However, if Q contains only complete slots, then its
solvability implies def(Q) ≤ 0. We define the deficiency pattern of Q as the set
of all triples

(size(Q ∩ R),def(Q ∩ R), I(Q ∩ R) ∩ δ(Q))

where R can be any prefix with a straight or a slant shape that intersects Q.
Roughly speaking, the deficiency pattern captures all the information about Q
that is relevant for determining whether a given prefix intersecting Q is a minimal
obstruction or not.

Now, we call the partial solutions U1 and U2 for T strongly equivalent, if

1. |U1| = |U2|,
2. U1 ∩ δ(T ) = U2 ∩ δ(T ), and
3. T − U1 and T − U2 have the same deficiency pattern.

As the name suggests, strong equivalence is a sufficient condition for equivalence.

Lemma 9 (�). If U1 and U2 are strongly equivalent partial solutions for T ,
then they are equivalent as well.

Now, we are ready to describe the MinDel algorithm in detail. Let (T , U)
be the input for MinDel. Throughout the run of the algorithm, we will store all
inputs with which MinDel has been computed in a table SolTable, keeping track
of the corresponding solutions for P as well. Initially, SolTable is empty.

Step 0: Check for strongly equivalent inputs. For each (T , U ′) in
SolTable, check whether U ′ and U are strongly equivalent, and if so, return
MinDel(T , U ′).

Step 1: Check for trivial solution. Check if P −U is solvable. If so, then
store the entry (T , U) together with the solution U in SolTable, and return U .

Step 2: Find a minimal obstruction. Find a minimal obstruction Q in
P − U ; recall that P − U is not solvable in this step. Let T ′ be the prefix of P
for which T ′ − U = Q.
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Step 3: Compute a branching set. Using Lemma 8, determine a branch-
ing set Y for Q forbidding I(T ) \ U . If Y = ∅, then stop and reject.

Step 4: Branch. For each Y ⊆ Y, compute SY := MinDel(T ′, U ∪ Y ).
Step 5: Find a smallest solution. Compute a set SY � for which |SY � | =

minY ∈Y |SY |. Store the entry (T , U) together with the solution SY � in SolTable,
and return SY � .

Lemma 10 (�). Algorithm MinDel is correct, i.e., for any prefix T of P and
any partial solution U for T , MinDel(T , U) returns a solution S for P with
S ∩ I(T ) = U , having minimum size among all such solutions (if existent).

Lemma 10 immediately gives us an algorithm to solve PID. Let T∅ denote the
empty prefix of our input profile P, i.e. P[0, 0, 0]; then MinDel(T∅, ∅) returns a
solution S for P of minimum size; we only have to compare |S| with the desired
solution size k.

The next lemma states that MinDel gets called polynomially many times.

Lemma 11. Throughout the run of algorithm MinDel initially called with input
(T∅, ∅), the table SolTable contains O(|I|7) entries.

Proof. Let us consider table SolTable at a given moment during the course of
algorithm MinDel, initially called with the input (T∅, ∅) (and having possibly
performed several recursive calls since then). Let us fix a prefix T . We are going to
give an upper bound on the maximum size of the family UT of partial solutions U
for T for which SolTable contains the entry (T , U).

By Step 0 of algorithm MinDel, no two sets in UT are strongly equivalent.
Recall that if U1 and U2, both in UT , are not strongly equivalent, then either
|U1| �= |U2|, or δ(T ) ∩ U1 �= δ(T ) ∩ U2, or T − U1 and T − U2 have different
deficiency patterns. Let us partition the sets in UT into groups: we put U1 and
U2 in the same group, if |U1| = |U2| and δ(T ) ∩ U1 = δ(T ) ∩ U2.

Examining Steps 2–4 of algorithm MinDel, we can observe that if U �= ∅,
then for some YU ⊆ U of size 1 or 2, the prefix T − (U \ YU ) is a minimal
obstruction QU . Since removing items from a prefix cannot increase the size of
its boundary, Lemma 3 implies that the boundary of T − U contains at most 3
items. We get |δ(T ) \ U | ≤ |δ(T − U)| ≤ 3, from which it follows that δ(T ) ∩ U
is a subset of δ(T ) of size at least |δ(T )| − 3. Therefore, the number of different
values that δ(T ) ∩ U can take is O(|I|3). Since any U ∈ UT has size at most
|I|, we get that there are O(|I|4) groups in UT . Let us fix some group Ug of UT .
We are going to show that the number of different deficiency patterns for T −U
where U ∈ Ug is constant.

Recall that the deficiency pattern of T − U contains triples of the form
(size(R∩),def(R∩), I(R∩) ∩ δ(T − U)), where R∩ is the intersection of T − U
and some prefix R of P − U with a slant or a straight shape.

First observe that by the definition of a group, size(T − U1) = size(T − U2)
holds for any U1, U2 ∈ Ug. Let us fix an arbitrary U ∈ Ug. Since T − U can be
obtained by deleting 1 or 2 items from a minimal obstruction, Lemma 2 implies
that there can only be a constant number of prefixes R of P −U which intersect
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T − U and have a slant or a straight shape; in fact, it is not hard to check that
the number of such prefixes R is at most 5 for any given T − U . Therefore,
the number of values taken by the first coordinate size(R∩) of any triple in the
deficiency pattern of T − U is constant. Since T − U has the same size for any
U ∈ Ug, we also get that these values coincide for any U ∈ Ug. Hence, we obtain
that (A) the total number of values the first coordinate of any triple in the
deficiency pattern of T − U for any U ∈ Ug can take is constant.

Let R∩ be the intersection of T −U and some prefix of straight or slant shape.
By definition, R∩ is contained in QU . By |YU | ≤ 2, there are only a constant
number of positions which are contained in QU but not in R∩. From this both
||I(R∩)| − |I(QU )|| = O(1) and ||S(R∩)| − |S(QU )|| = O(1) follow. As QU is
a minimal obstruction, we also have |I(QU )| = |S(QU )| − 1, implying that (B)
the deficiency def(R∩) = |S(R∩)| − |I(R∩)| can only take a constant number of
values too; note that we have an upper bound on |def(R∩)| that holds for any
U ∈ Ug. Considering that I(R∩) ∩ δ(T − U) is the subset of δ(T − U), and we
also know |δ(T −U)| ≤ 3, we obtain that (C) the set I(R∩)∩ δ(T −U) can take
at most 23 values (again, for all U ∈ Ug).

Putting together the observations (A), (B), and (C), it follows that the num-
ber of different deficiency patterns of T − U taken over all U ∈ Ug is constant.
This implies |UT | = O(|I|4). Since there are O(|I|3) prefixes T of P, we arrive
at the conclusion that the maximum number of entries in SolTable is O(|I|7). ��

Theorem 5. Proportional Item Deletions for three agents can be solved
in time O(|I|9+ω) where ω < 2.38 is the exponent of the best matrix multiplication
algorithm.

Proof. By Lemma 10, we know that algorithm MinDel(T∅, ∅) returns a solution
for P of minimum size, solving PID. We can use Lemma 11 to bound the running
time of MinDel(T∅, ∅): since SolTable contains O(|I|7) entries, we know that the
number of recursive calls to MinDel is also O(|I|7). It remains to give a bound
on the time necessary for the computations performed by MinDel, when not
counting the computations performed in recursive calls. Clearly, Step 0 takes
O(1) time. Steps 1 and 2 can be accomplished in O(|I|3) time, as described in
Lemma 1. Using Lemma 8, Step 3 can be performed in O(|I|2+ω) time. Since
the cardinality of the branching set found in Step 3 is constant, Steps 4 and 5
can be performed in linear time. This gives us an upper bound of O(|I|9+ω) on
the total running time. ��

We remark that in order to obtain Theorem 5, it is not crucial to compute a
branching set of constant size in Step 3: a polynomial running time would still
follow even if we used a branching set of quadratic size. Thus, for our purposes, it
would be sufficient to use an extension of Corollary 1 that takes forbidden items
into account (an analog of Lemma 8) in Step 3. Therefore, the ideas of Sect. 4.3
– the notion of domination between partial solutions, leading to Lemma 7 – can
be thought of as a speed-up that offers a more practical algorithm.
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5 Conclusion

In Sect. 4 we have shown that Proportionality by Item Deletion is
polynomial-time solvable if there are only three agents. On the other hand, if
the number of agents is unbounded, then PID becomes NP-hard, and practically
intractable already when we want to delete only a small number of items, as
shown by the W[3]-hardness result of Theorem 2.

The complexity of PID remains open for the case when the number of agents
is a constant greater than 3. Is it true that for any constant n, there exists a
polynomial-time algorithm that solves PID in polynomial time for n agents? If
the answer is yes, then can we even find an FPT-algorithm with respect to the
parameter n? If the answer is no (that is, if PID turns out to be NP-hard for
some constant number of agents), then can we at least give an FPT-algorithm
with parameter k for a constant number of agents (or maybe with combined
parameter (k, n))?

Finally, there is ample space for future research if we consider different con-
trol actions (such as adding or replacing items), different notions of fairness, or
different models for agents’ preferences.
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Abstract. We study assignment problems in a model where agents have
strict preferences over objects, allowing preference lists to be incomplete.
We investigate the questions whether an agent can obtain or necessarily
obtains a given object under serial dictatorship. We prove that both
problems are computationally hard even if agents have preference lists of
length at most 3; by contrast, we give linear-time algorithms for the case
where preference lists are of length at most 2. We also study a capacitated
version of these problems where objects come in several copies.

1 Introduction

We study assignment problems that involve a set of agents and a set of objects.
Agents have strict ordinal preferences over objects, but not vice versa. We assume
that the preference lists can be incomplete: an agent might find a given object
unacceptable. In such situations, there is a very natural and intuitive mechanism
called serial dictatorship (SD): agents are ordered into a picking sequence (which
is in our model simply a permutation of the agents) and everybody who has her
turn picks her most preferred object out of those that are still available.

Variants of this mechanism are often used in practice. As described by Sönmez
and Switzer [26], the United States Military Academy used the following proce-
dure to assign its cadets to branches: after determining a strict priority ranking
of the cadets, based on a weighted average of their academic performance, phys-
ical fitness test scores, and military performance, the Military Academy applied
serial dictatorship with this ranking as the picking sequence to assign the cadets
to slots at different specialties. Another example of serial dictatorship is the
drafting system used in football, basketball and other professional sports in the
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United States, where teams pick new players in the draft without the active
participation of the players. The first team to pick a new player is the one with
the worst win-loss record of the previous season, the one with the second worse
record continues, and so on [12]. Serial dictatorship is widely applied in school
admission systems as well: the most prominent example may be the centralized
university admission system in China [28], where all students take a centralized
test and are ordered according to the score they achieve on the test; then the
authorities use serial dictatorship with this ordering to determine an allocation.
Other examples are the admission system for public schools in Chicago [24] and
for specialized high schools in New York City [1]. Further applications include
the assignment of students to courses, or allocating rooms at colleges.

We study the following questions for a given agent a and a given object o:

(i) Can agent a receive object o under SD with some picking sequence?
(ii) Is it true that agent a receives object o under SD with any picking sequence?

Saban and Sethuraman [25] proved that problem (i) is NP-complete and gave a
polynomial-time algorithm for (ii). In their model, the number of agents equals the
number of objects, and agents find all objects acceptable. The authors expressed
their belief that these results hold even if these assumptions are omitted.

Our contributions. We examine a model where agents may consider some
objects unacceptable; hence, some agents and also some objects can stay unas-
signed. This situation arises in many applications: e.g., students may find certain
schools unacceptable (in fact, many centralized admission systems set a limit on
the number of schools a student can apply to), or certain courses may not be
suitable for a student (as a result of missing prerequisites or time-table clashes).

In this setting, NP-completeness of (i) follows from the results of Saban and
Sethuraman [25]; we complement this by proving that (ii) is coNP-complete.
Then we deal with instances where the length of preference lists is restricted.
If each agent finds at most two objects acceptable, we provide polynomial-time
algorithms for both problems, based on searching appropriate digraphs. By con-
trast, we show intractability for the case where preference lists can have length 3.

We also study an extension of our model where objects come in several iden-
tical copies. We prove that these capacitated versions of (i) and (ii) are compu-
tationally hard already if each object has capacity at most 2 and all preference
lists are of length at most 2.

2 Related Work

The serial dictatorship mechanism appears under various names in the literature:
besides “serial dictatorship” [2,23] it is also dubbed as “queue allocation” [27],
“Greedy-POM” [3], “sequential mechanism” [8,9], etc. Its importance is stressed
by the fact that the assignment it produces is Pareto-optimal (or, in the eco-
nomic terminology, efficient); moreover, if each agent may receive at most one
object and there is only one copy of each object (called the one-to-one case),
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each Pareto-optimal assignment can be produced by SD with a suitable picking
sequence [2,3,11,27].

Recently, two lines of research have emerged. One deals primarily with many-
to-many extensions of the basic assignment problem, additionally accompanied
by constraints imposed either on the structure of the sets of objects that an
individual agent can receive [14,17] or on the whole set of allocated objects [20],
or by lower quotas on the number of agents assigned to individual objects
[15,19,21] and with possible extensions of serial dictatorship to such settings.

Another line of research explores in detail the properties of serial dictatorship
and different types of sequential allocation mechanisms, often with a focus on
manipulability [5,9,10]. Asinowski et al. [4] study the sets of objects that can or
have to be allocated in some or all Pareto-optimal matchings (without specifying
to which agents those objects are allocated).

Saban and Sethuraman [25] consider a randomized setting and prove that
computing the proportion of the picking sequences under which agent a receives
object o is #P-complete; this was independently obtained also by Aziz, Brandt
and Brill [6]. Questions (i) and (ii) are equivalent to asking if the probability of
an agent obtaining a given object in the randomized model is greater than 0 or
equal to 1, resp. Saban and Sethuraman [25] determine the complexity of these
problems assuming that the number of agents equals the number of objects,
and agents find all objects acceptable; they find (i) to be NP-complete and (ii)
polynomial-time solvable.

Motivated by the intractability results in [25], Aziz and Mestre [7] compute
the probability of an agent getting an object in time that is FPT if the parameter
is the number of objects, and polynomial if the number of agent types is fixed.
Notably, they allow incomplete preferences; up to our knowledge, the only other
work considering such a setting is by Asinowski et al. [4].

Aziz, Walsh and Xia [8] examine the complexity of deciding whether an agent
can get or necessarily gets some object or set of objects under serial dictatorship
with different classes of picking sequences. Their algorithmic results assume that
agents have complete preferences and may obtain more than one objects.

3 Definitions and Notation

There is a set A of n agents and a set O of m objects. Each agent can consume
at most one object and each object is available in only one copy. Agents have
strict preferences over objects and they are allowed to declare some objects
unacceptable. The n-tuple of agents’ preferences is called a preference profile and
it is denoted by P. The triple I = (A,O,P) is a matching profile.

We consider serial dictatorship, where agents are ordered into a picking
sequence σ, which is a permutation of A. Agents have their turn successively
according to σ, and everybody on her turn picks her most preferred object among
those that are still available. Obviously, different sequences can lead to different
assignments. In this context, we study the following problems associated with a
matching profile I, agent a and object o:
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Problem possible object pos(I, a, o).
Question: Is it true in I that a receives o under SD with some picking
sequence?

Problem necessary object nec(I, a, o).
Question: Is it true in I that a receives o under SD with any picking
sequence?

Let us remark that in the one-to-one case, Pareto-optimal matchings (POMs)
are exactly those that can be obtained by serial dictatorship, so our questions
are equivalent to asking whether a given agent can be allocated a given object in
some POM and whether a given agent is allocated a given object in every POM.

4 Incomplete Preference Lists of Unbounded Length

Here we show that if the preference lists are not complete, then both problems
are hard. We remark that the NP-completeness of pos(I, a, o) follows from the
NP-hardness result of Saban and Sethuraman [25] obtained for the case of com-
plete preference lists. However, the coNP-completeness of nec(I, a, o) may seem
somewhat surprising, sharply contrasting the polynomial-time algorithm given
by Saban and Sethuraman [25] for complete preference lists.

Theorem 1. pos(I, a, o) is NP-complete and nec(I, a, o) is coNP-complete.

Proof. pos(I, a, o) belongs to NP and nec(I, a, o) belongs to coNP, since in both
cases it suffices to give a picking sequence σ and check whether a gets (does not
get) o under SD with σ.

To prove NP-hardness, we give a polynomial reduction from vertex cover.
Let our input be a graph G = (V,E) with |V | = p and |E| = q and some k ∈ N.
We construct a matching profile I(G) involving two agents a, b and object o in
a way that G has a vertex cover of size k if and only if agent b gets o in SD
under some picking sequence (i.e., pos(I(G), b, o) is true), which in turn happens
exactly if it is not true that a gets o in all picking sequences (i.e., nec(I(G), a, o)
is false).

We define the set A of agents and O of objects in I(G) as
A = {a(v) | v ∈ V } ∪ {a(e, u), a(e, v) | e = {u, v} ∈ E} ∪ {a, b} and
O = {s1, . . . , sp+q−k} ∪ {o(v) | v ∈ V } ∪ {o(e) | e ∈ E} ∪ {o}.
Thus |A| = p + 2q + 2, and there are p + q − k special s-objects, one vertex-

object for each vertex, one edge-object for each edge, and a distinguished object o.
Preferences are as follows:

P (a(v)) : s1, s2, . . . , sp+q−k, o(v) for each v ∈ V,
P (a(e, v)) : s1, s2, . . . , sp+q−k, o(v), o(e) for each e ∈ E and v ∈ e,

P (b) : o(e1), . . . , o(eq), o,
P (a) : o.

It is easy to see that for any picking sequence, b gets o in SD if and only if a
does not get o.
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Now suppose that G admits a vertex cover U ⊆ V of size k. Let us orient the
edges of G in a way that each edge points toward a vertex of U , and for each
edge e ∈ E(G) let a1(e) and a2(e) denote the tail and the head vertex, resp., of
e in this orientation. Then order the agents according to sequence σ given in (1)
(agents within square brackets are ordered arbitrarily).

[a(v) | v /∈ U ]︸ ︷︷ ︸
A1

, [a1(e) | e ∈ E]︸ ︷︷ ︸
A2

, [a(v) | v ∈ U ]︸ ︷︷ ︸
A3

, [a2(e) | e ∈ E]︸ ︷︷ ︸
A4

, b, a (1)

How are the objects picked under σ? First, the agents in A1 ∪A2 take all the
special s-objects. Then the agents in A3 pick vertex-objects corresponding to
the vertex cover U . Notice that some vertex-objects stay unassigned, but when
the agents in A4 have their turn, all the vertex-objects they are interested in are
exhausted. This means that these agents use up all the edge-objects. So when
agent b comes to choose, all the edge-objects are gone and b has to pick o. This
leaves a with no object assigned. So pos(I, b, o) is true and nec(I, a, o) is false.

Conversely, suppose that there exists a picking sequence σ where b gets o,
i.e., pos(I, b, o) is true and nec(I, a, o) is false. This means that when it was b’s
turn, all the edge-objects were gone. In other words, for each edge e = {u, v},
one of the pair of agents a(e, u), a(e, v) picked the edge-object o(e). Hence, the
remaining q agents in these pairs and all agents in {a(v) | v ∈ V } (a total of p+q
agents) must have picked all special s-objects and some vertex-objects. As they
all prefer the p + q − k special s-objects, exactly k of these agents could have
picked vertex-objects. Thus, the k picked vertex-objects define a vertex cover for
G of size k. ��

5 Preference Lists of Bounded Length

Given the intractability result of Sect. 4, here we shall concentrate on the prob-
lems with preference lists of restricted length, and refine the boundary between
polynomial-time solvable and intractable cases. Let us call a matching profile a
length-k matching profile, if each agent finds at most k objects acceptable, and
let k-pos(I, a, o) and k-nec(I, a, o) be the restrictions of the studied problems
to instances with length-k matching profiles.

5.1 Preference Lists of Length 3

Here we strengthen Theorem 1 for the case where all preference lists have length
at most 3.

Given a matching profile with arbitrary preference lists, we eliminate all
agents having preference lists longer than 3, while preserving certain crucial
properties of I. Our strategy is to eliminate such agents one-by-one. To this
end, for any matching profile I = (A,O,P) we define a matching profile J(I) =
(A′,O′,P ′), called a substitute for I, as follows.

Take any agent x ∈ A whose preference list in I has length � > 3; let this
list be o1, o2, ..., o�. We introduce � − 3 chain objects y1, y2, . . . , y�−3, and we
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replace agent x with new agents x1, . . . , x�−2, called the brothers of x. Hence
A′ = A\{x}∪{x1, . . . , x�−2} and O′ = O ∪{y1, . . . , y�−3}. We set P ′(a) = P (a)
for each a ∈ A \ {x}; the preferences of the brothers of x in J(I) are as follows:

P ′(x1) : o1, o2, y1,
P ′(xi) : yi−1, oi+1, yi for i = 2, . . . , � − 3,

P ′(x�−2) : y�−3, o�−1, o�.
To state the crucial property of a substitute for each agent-object pair (a, o)

in I we define a corresponding agent-object pair J(a, o) in J(I) as follows. If
a = x and o = oi for some i, then we let J(a, o) = J(x, oi) = (xi−1, oi); here
x0 := x1 and x�−1 := x�−2. Otherwise, we let J(a, o) = (a, o).

Lemma 1. Let J(a, o) = (a′, o) for any a ∈ A and o ∈ O. Then agent a can
obtain o under some picking sequence in I if and only if a′ can obtain o under
some picking sequence in J ′.

Proof. For lack of space, we only give a sketch of the proof; for a full version
see [16]. For any picking sequence ϕ for I we can define a picking sequence ϕ′

for J(I) by replacing x in ϕ with her brothers x1, . . . , x�−2 in that order. It is
not hard to show that agent a receives object o under ϕ if and only if a′ receives
o under ϕ′.

For the converse direction, let σ′ be a picking sequence in J(I) under which
a′ receives o.

Case I. If xi is the brother of x that first picks an object from {o1, . . . , o�}
under σ′, then we replace xi by x and delete all other brothers of x; let σ be the
resulting picking sequence in I.

It is easy to see that xi can receive some object oi+1 only if at her turn, all
the objects o1, . . . , oi had already been taken, and the brothers x1, . . . , xi−1 have
all picked chain objects before xi’s turn. Hence, agents of A picking before xi

receive the same object under σ in I as under σ′ in J(I), and x picks under σ the
object picked by xi under σ′. Further, let us observe that each of the brothers
picking after xi in σ′ (that is, brothers xi+1, . . . , x�−2) can pick their first choice
chain objects under σ′. Hence, all agents of A picking after x in σ receive the
same object as they do under σ′.

Case II. If every brother of x receives either a chain object or nothing under σ′,
then we delete all of them from σ′ and append x as the last agent to obtain σ.
Observe that the deletion of the brothers of x does not affect what the remaining
agents in A \ {x} obtain. Note also that a′ is not a brother of x (as we assume
a′ to get o), and hence, a �= x. Thus, a gets the same object in I under σ as a′

in J(I) under σ′. ��

We next apply the above construction iteratively. As the number of agents
with preference list longer than 3 is one less in J(I) than in I, repeatedly con-
structing a substitute for the current matching profile (i.e., taking J(I), then
J(J(I)), and so on), we finally end up with a length-3 matching profile J�(I).
We also define, for any given agent-object pair (a, o) in I, the corresponding
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agent-object pair J�(a, o) obtained in this process (first taking J(a, o), then
J(J(a, o)), and so on). Applying Lemma 1 repeatedly, we get Corollary 1.

Corollary 1. Let J�(a, o) = (a�, o) for any a ∈ A and o ∈ O. Then agent a can
obtain o under some picking sequence in I if and only if a� can obtain o under
some picking sequence in J�(I).

Theorem 2. 3-pos(I, a, o) is NP-complete and 3-nec(I, a, o) is coNP-complete.

Proof. We prove our theorem by modifying the reductions and the matching
profile I described in the proof of Theorem 1; recall that pos(I, b, o) is true if
and only if nec(I, a, o) is false.

By the definition of a substitute, we can observe that J�(b, o) = (b�, o) where
b� is either the last brother of b introduced when eliminating agent b or (if b does
not get eliminated) b� = b. By Corollary 1, it is immediate that 3-pos(J�(I), b, o)
is equivalent to pos(I, b�, o). Furthermore, our construction for J�(I) ensures
that object o is only contained in the preference list of agents b� and a; the pref-
erence list of a remains the same in J�(I) as in I, containing only o. Therefore,
it should be clear that agent a receives o under all picking sequences in J�(I) if
and only if there is no picking sequence in J�(I) under which agent b receives o.
In other words, 3-pos(J�(I), b, o) is true if and only if 3-nec(J�(I), a, o) is false.

Observe that J�(I) can be computed in time polynomial in |I|. Thus,
replacing the instance pos(I, b, o) and nec(I, a, o) constructed in the proof of
Theorem 1 with 3-pos(J�(I), b, o) and 3-nec(J�(I), a, o), resp., yields
polynomial-time reductions that prove our theorem. ��

5.2 Preference Lists of Length 2

Given a length-2 matching profile I and an agent a in I, there are in fact six
different questions that can be asked: possible object and necessary object
for the first and second object in the preference list of a (denoted by f(a) and
s(a), resp.), and for the special object ∅ representing the situation when agent
a gets nothing. Some of these questions are trivial, see the following assertion.

Lemma 2. For any k ∈ N and a ∈ A, k-nec(I, a, s(a)) and k-nec(I, a, ∅) are
false, and k-pos(I, a, f(a)) is true. Also, 2-nec(I, a, f(a)) is true exactly if both
2-pos(I, a, s(a)) and 2-pos(I, a, ∅) are false.

Hence, for length-2 matching profiles, it suffices to solve the two problems of
the form 2-pos(I, a, s(a)) and 2-pos(I, a, ∅).

How can it happen that agent a does not pick o = f(a)? Clearly, if o is the
first object in the preference list of some other agent a′, then it suffices to place
a′ before a in the picking sequence. If o is the second object in the preference
list of a′, then a′ may still pick o, if her first choice object was picked before
it was her turn, say by an agent a′′, etc. To be able to discover such chains of
agents, we construct for any length-2 matching profile I the following directed
multigraph G(I). Its vertex set is O and its arc set is A, where each x ∈ A leads
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a2
o1

a4
o2

a1 a3 o3

P (a1) : o1, o2
P (a2) : o1, o3
P (a3) : o2, o1
P (a4) : o3, o2

Fig. 1. Example for a length-2 matching profile and its digraph.

from f(x) to s(x) or, if x finds only one object acceptable, to f(x); see Fig. 1 for
an illustration. We denote by δ+H(p) the out-degree of any object p in a subgraph
H of G(I); for H = G(I) we might omit the subscript.

Theorem 3. Let a ∈ A with |P (a)| = 2. Then 2-pos(I, a, s(a)) is true if and
only if G(I) contains a directed path starting from a vertex p ∈ O with δ+(p) > 1
and ending with the arc a.

Proof. Suppose that a = a0 picks her second object s(a) under some picking
sequence σ. This means that f(a) was picked before a by some agent a1. If
f(a) = f(a1), then δ+(f(a)) > 1 as it is the tail of both a and a1, so the
arc a in itself is a path as required. If f(a) = s(a1), then the first object of
a1 must have been picked earlier in σ by some other agent a2. Continuing the
same argument, we arrive at a sequence of agents a0, a1, . . . , ak, ak+1 appearing
in the order ak+1, ak, . . . , a1, a0 in σ, and picking the objects f(ak+1) = f(ak),
s(ak) = f(ak−1), . . . , s(a1) = f(a0), s(a0) = s(a) in this order. Thus, the arcs
ak, ak−1, . . . , a0 induce a directed path P in G(I); by f(ak+1) = f(ak) we get
δ+(f(ak+1)) > 1, so P is as required.

Conversely, suppose that G(I) contains a directed path P consisting of arcs
ak, ak−1, . . . , a1 and vertices ok, ok−1, . . . , o1, o0, appearing on P in this order,
with a1 = a and δ+(ok) > 1. By this latter fact, there exists an agent x, x /∈
{a1, . . . , ak}, whose first choice is ok. Under SD with a picking sequence σ starting
with x, ak, ak−1, . . . , a1 = a, agent x picks her first object, while each agent ai

with k ≥ i ≥ 1 picks her second object. Hence 2-pos(I, a, s(a)) is true. ��
To see how to use Theorem 3, let us consider the example shown in Fig. 1.

2-pos(I, a4, s(a4))=2-pos(I, a4, o2) is true, since G(I) contains the path P =
(a2, a4); note also δ+(f(a2)) = 2. This path shows that for a picking sequence
starting with a1, a2, a4, agent a1 picks object o1, agent a2 gets object o3, and
agent a4 picks her second object a2.

Similarly, in order to decide whether 2-pos(I, a3, s(a3))=2-pos(I, a3, o1) is
true, we need to check the existence of a path ending with a3 and starting from
a vertex with out-degree at least 2. However, the only such vertex is o1, but no
path of G(I) can start from o1 and end with a3, so 2-pos(I, a3, o1) is false.

To decide whether an agent whose preference list contains only one object
can end up with nothing, we can use similar arguments as in the proof of
Theorem 3. In fact, the following statement can be viewed as a simplified version
of Theorem 3.
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Theorem 4. Let a ∈ A with |P (a)| = 1. Then 2-pos(I, a, ∅) is true if and only
if G(I) contains a directed path (possibly of length 0) leading from a vertex p ∈ O
with δ+(p) > 1 to f(a).

By a similar method, we obtain a condition that can be used to decide
whether 2-pos(I, a, ∅) is true for an agent a who finds two objects acceptable.

Theorem 5. Let a ∈ A with |P (a)| = 2. Then 2-pos(I, a, ∅) is true if and only
if G(I) contains directed paths P1 and P2 such that

(1) P1 leads from some p1 ∈ O to f(a), and P2 leads from some p2 ∈ O to s(a),
allowing p1 = p2;

(2) neither P1 nor P2 contains the arc a;
(3) δ+H(pi) > 0 for i = 1, 2 where H is obtained from G(I) by deleting all arcs

of P1, P2, and a.

Proof. Suppose a gets nothing under a picking sequence σ. As in the proof of
Theorem 3, either f(a) was picked by some agent whose first choice is f(a),
or we can find a sequence ak+1, ak, . . . , a1 of agents in σ such that ak+1 picks
f(ak+1) = f(ak), agent ai picks s(ai) = f(ai−1) for each i = k, . . . , 2, and agent
a1 picks s(a1) = f(a) under SD with σ. Let P1 be the path (ak, . . . , a1); we allow
P1 to contain only the vertex f(a). Similarly, let b�+1, b�, . . . , b1 be the sequence
of agents in σ that explains how s(a) was picked before a got her turn under SD
with σ, and let P2 be the path (b�, . . . , b1); again, P2 might only consist of the
vertex s(a). Naturally, P1 and P2 satisfy (1).

Clearly, neither P1 nor P2 contains a, implying (2). Note that P1 and P2

may not be arc-disjoint, and ak+1 = b�+1 is possible. However, a /∈ {ak+1, b�+1},
and both P1 and P2 must be disjoint from {ak+1, b�+1}, because ak+1 and b�+1

obtain their first choice under SD with σ, while all agents on P1 and P2 obtain
their second choice. Thus ak+1 and b�+1 witness that P1 and P2 satisfy (3) too.

Conversely, let P1 and P2 be paths in G(I) satisfying conditions (1)–(3), and
let ak, . . . , a1 and b�, . . . , b1 be the agents corresponding to the sequence of arcs
in P1 and P2, resp. By (3), there is a set Q of one or two agents, disjoint from
P1, P2 and not containing a, for which {f(q) | q ∈ Q} = {f(ak), f(b�)}. Let us
construct a picking sequence σ starting first with the agents in Q, followed by
ak, . . . , a1 and b�, . . . , b1; repetitions are ignored (so each agent picks when it first
appears in this sequence). Clearly, the agents in Q pick f(ak) and f(b�) (which
may coincide), and then every agent x in {a1, . . . , ak} ∪ {b1, . . . , b�} picks either
her second choice or, if that is already gone by the time x gets her turn, gets
nothing under SD with σ; during this process, both f(a) and s(a) gets picked,
at latest by a1 and b1, resp., leaving nothing for a to pick. ��

Let us again illustrate Theorem 5 on the instance of Fig. 1. To see that 2-
pos(I, a4, ∅) is true, consider the path P1 = (a2) leading to o3 = f(a4), and
the length-0 path P2 containing only o2 = s(a4); note that condition (3) is
witnessed by a1 leaving o1 and a3 leaving o2. A corresponding picking sequence
is thus a1, a3 followed by a2, and ending with a4. The first three agents pick the
objects o1, o2, o3, leaving nothing for a4 at her turn.
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Let us now discuss the complexity of the algorithms implied by Theorems 3, 4
and 5. We can construct G(I) in time O(|A| + |O|) = O(n). Searching for
the relevant paths in G(I) can also be performed by, e.g., DFS in O(n) time.
This implies that 2-pos(I, a, s(a)) and 2-pos(I, a, ∅) can be decided in O(n) time
for any agent a in I. By Lemma 2, we get Corollary 2.

Corollary 2. Problems 2-pos(I, a, o) and 2-nec(I, a, o) are solvable in O(n)
time (even for the case o = ∅), where n is the number of agents in I.

6 Multiple Copies of Objects

In this section we allow multiple identical copies for each object. The number of
copies available for an object o is its capacity, determined by a capacity function
c : O → N. Given a capacitated matching profile I = (A,O,P, c), we refer to the
capacitated versions of the studied problems as cpos(I, a, o) and cnec(I, a, o).

Since cpos(I, a, o) and cnec(I, a, o) are generalizations of pos(I, a, o) and
nec(I, a, o), resp., by Theorem 2 it is immediate that they are NP-complete and
coNP-complete, resp., already if the maximum length of preference lists is 3.
Hence, we focus on length-2 matching profiles. We write k-cpos(I, a, o) and k-
cnec(I, a, o) to refer to the corresponding problems restricted to capacitated
length-k matching profiles. The following statement is trivial.

Lemma 3. For any k ∈ N, k-cpos(I, a, f(a)) is true, while k-cnec(I, a, s(a))
and k-cnec(I, a, ∅) are false for any a ∈ A.

Next, we show that both 2-cpos(I, a, o) and 2-cnec(I, a, o) are computa-
tionally intractable in every case not covered by Lemma 3.

Theorem 6. Problems 2-cpos(I, a, s(a)) and 2-cpos(I, a, ∅) are NP-complete,
while 2-cnec(I, a, f(a)) is coNP-complete.

Proof. Containment in NP or in coNP for the respective problems is trivial. We
first provide a reduction from the exact 3-cover problem to 2-cpos(I, a, s(a)).
An instance of exact 3-cover consists of a set X = {x1, x2, . . . , x3n} for some
n ∈ N and a family T of 3-element subsets of X. The question is whether there
exists a subfamily T ′ ⊆ T containing exactly n sets whose union covers X.
exact 3-cover is NP-complete also in the case when each element x ∈ X is
contained in at most three sets from T [18]. We shall denote by �(x) the number
of sets in T that contain x.

Given an instance H of exact 3-cover, we define a capacitated length-2
matching profile I as follows. The set A of agents in I contains a special agent a,
one agent for each set, and one agent for each element-set pair: A = {a}∪{a(T ) |
T ∈ T }∪{a(x, T ) | T ∈ T , x ∈ T}. There are four types of objects in I: an object
o(x) for each element x ∈ X with capacity �(x) − 1, an object o(T ) for each set
T ∈ T with capacity 3, and two special objects: o1 with capacity n and o2 with
capacity 1. The preferences are as follows:
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P (a(T )) : o(T ), o1 for each T ∈ T ,
P (a(x, T )) : o(x), o(T ) for each x ∈ X and T ∈ T such that x ∈ T ,

P (a) : o1, o2.
Clearly, the construction is polynomial in the size of H. We claim that agent

a can obtain object o2 in I (that is, 2-cpos(I, a, s(a)) is true) if and only if there
is an exact cover in H.

Assume first that there exists an exact cover T ′ in H consisting of sets
T1, T2, . . . , Tn. Let those agents a(x, T ) pick first for which T /∈ T ′. These agents
exhaust all the element-objects, i.e., all objects o(x), x ∈ X. Now agents of type
a(x, Ti) for i = 1, 2, . . . , n follow. They all get their second choices and thus
completely exhaust all set-objects belonging to T ′, i.e. all objects o(T ), T ∈ T ′.
Next come agents a(Ti) for i = 1, 2, . . . , n. They again get their second choices
and exhaust all copies of object o1. Hence, if agent a gets her turn after this
point, she gets her second choice, o2.

Conversely, assume now that agent a gets o2 under some picking sequence.
This means that o1 was already exhausted when a got her turn, implying that
n set-agents received their second choice. Let these agents be a(T1), . . . , a(Tn).
To finish the proof, we have to show that sets T1, . . . , Tn form an exact cover,
or equivalently, that these sets are pairwise disjoint. Assume for the contrary
that an element x belongs both to Tr and Ts. As both object o(Tr) and object
o(Ts) were exhausted before a(Tr) and a(Ts) pick, this means that both agents
a(x, Tr) and a(x, Ts) must have received their second object, o(Tr) and o(Ts),
resp. So their first choice, object o(x) was already exhausted by the time they
picked. But this could not happen as o(x) has capacity �(x)− 1 and the number
of agents interested in o(x) is only �(x), proving our claim.

The above reduction can be modified to show that the problem 2-cpos(I, a, ∅)
is NP-complete and 2-cnec(I, a, f(a)) is coNP-complete: we simply need to add
a new agent b whose preference list contains only o2. In this modified instance the
following statements are equivalent: (i) a can obtain o2, (ii) b does not necessarily
obtain o2, and (iii) b might end up with no object assigned to her. Furthermore,
from the correctness of the above reduction, these hold exactly if H admits an
exact cover, proving our theorem. ��

Observe that in the proof of Theorem6 each object with capacity c ≥ 3 has
the following property: it is the first choice of a unique agent p, and it is the
second choice of several agents q1, . . . , qk for some k ≥ c; let us call such objects
with capacity at least 3 counter objects.

Lemma 4. Given an instance (I, a, s(a)) of 2-cpos where only counter objects
have capacity greater than 2 and s(a) is not a counter object, we can in quadratic
time construct an equivalent instance (I ′, a, s(a)) of 2-cpos where all capacities
are at most 2.

Proof. Let o be a counter object with capacity c ≥ 3 in I, let p be the unique
agent whose first choice is o, and let q1, . . . , qk (k ≥ c) be those agents whose
second choice is o. We describe how to replace o with a gadget containing only
objects with capacities at most 2 without changing the answer to our instance.
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In what follows, we will denote the modified capacitated matching profile
by I ′, and we will make sure that the agent set A′ of I ′ is a superset of the agent
set A of I. We say that a picking sequence ϕ of I and a picking sequence ϕ′ of
I ′ are A-equivalent, if the set of those agents in A that are assigned their second
choice is the same under ϕ and under ϕ′.

Case I. First assume k = c. We start by replacing o in qi’s preference list with a
newly introduced object oi that has capacity 1, for each i ∈ {1, . . . , c}. Next, we
fix any rooted binary tree T with c leaves. We identify the leaves of T with the
objects o1, . . . , oc, and we identify its root with object o. We add a new object
o(t) with capacity 2 for each vertex t of T that is neither a leaf nor root, and
we also change the capacity of object o to 2. Furthermore, for any edge t1t2 of
T where t1 is the child of t2, we add a new agent a(t1, t2) whose first choice and
second choice is o(t1) and o(t2), resp. This finishes the construction.

Now we show that cpos(I ′, a, s(a)) is true if and only if cpos(I, a, s(a)) is
true. To this end, we prove that for any picking sequence ϕ in I there is a
picking sequence in I ′ that is A-equivalent to ϕ, and conversely. By o �= s(a),
this guarantees the equivalence of our two instances.

“⇐”: Suppose that ϕ is a picking sequence in I. Note that if p is assigned
its first choice o under ϕ, then the newly added agents of I ′ do not “interfere”
with the agents of A; simply letting all agents in A′ \ A pick after agents of A
yields a picking sequence A-equivalent to ϕ. On the other hand, if p is assigned
its second choice in I, then by the definition of a counter object and by k = c, we
know that all agents qi, i ∈ {1, . . . , c}, must also be assigned their second choice
(that is, o) under ϕ. Let us create a picking sequence ϕ′ from ϕ by inserting
the agents A′ \ A immediately before p in a consecutive, bottom-up way: an
agent a(t1, t2) corresponding to an edge of T is allowed to pick only after her
first choice t1 is already exhausted. Thus, when p picks in ϕ′, its first choice o is
already exhausted (by the two agents corresponding to the two edges connecting
o to its children in T ). Hence, in the remainder of ϕ′, all agents are assigned the
same objects as in ϕ, showing that ϕ and ϕ′ are A-equivalent.

“⇒”: For the other direction, let ϕ′ be a picking sequence in I ′. We prove
that the restriction of ϕ′ to A (let us call this picking sequence ϕ) is A-equivalent
to ϕ′. If p gets o under ϕ′, then this is trivial. If, by contrast, p gets his second
choice under ϕ′, then the capacities of the newly introduced objects imply that
each agent a(t1, t2) ∈ A′ must be assigned its second choice by ϕ′, from which
follows also that each agent qi is assigned her second choice under ϕ′. This,
however, ensures that p gets her second choice in I under ϕ, proving our claim.

Case II. Assume now k > c. First, we create k − c + 1 layers of new objects:
for each j ∈ {0, . . . , k − c}, layer j contains the objects oj,1, . . . , oj,k−j ; notice
that each layer contains one object less than the previous layer. Next, for each
i ∈ {1, . . . , k}, we replace o in the preference list of agent qi with o0,i. We let all
objects in layer k − c have capacity 1. Within some layer j with 0 ≤ j < k − c,
we let the two “outermost” objects, that is, oj,1 and oj,k−j , have capacity 1,
and all the remaining objects have capacity 2. Next, we create k − c layers of
new agents: for each j ∈ {1, . . . , k − c}, layer j contains 2(k − j) agents, namely
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Fig. 2. Illustration for the construction in Lemma 4 for k = 6 and c = 3, depicting the
underlying digraph. Objects with capacity 2 and 1 are black and white circles, resp.

agents a(j, i, ↑) and a(j, i,↖) for each i ∈ {1, . . . , k−j}. We define the preference
list of these agents as follows: both a(j, i, ↑) and a(j, i,↖) have o(j, i) as their
second choice, but the first choice of a(j, i, ↑) is o(j − 1, i), while the first choice
of a(j, i,↖) is o(j − 1, i + 1). We finish the construction by adding the gadget
described in Case I, with the only difference that we choose the c objects of
layer k − c as the leaves of the binary tree T (and, as in Case I, we again set the
capacity of o to 2). See Fig. 2 for an illustration.

Let I ′ be the obtained instance of 2-pos. We call an agent active in a picking
sequence, if it is assigned its second choice. Let us now prove the equivalence of
cpos(I, a, s(a)) and cpos(I ′, a, s(a)).

“⇒”: Let ϕ′ be a picking sequence in I ′. By the capacities of the newly added
objects, for any j ∈ {1, . . . , k − c} it holds that layer j contains at most as many
active agents as layer j−1 (we let layer 0 contain the agents q1, . . . , qk). Recalling
the properties of the gadget constructed in Case I, it is not hard to verify that p
can become active only if layer k − c, and hence each of the previous layers too,
contains at least c active agents. Hence, at least c agents among q1, . . . , qk are
active under ϕ′, implying that the restriction of ϕ′ to A is A-equivalent to ϕ′.

“⇐”: Suppose that ϕ is a picking sequence in I where p is active, that is,
where at least c agents among q1, . . . , qk are active. We can easily construct a
picking sequence ϕ′ in I ′ that is A-equivalent to ϕ such that under ϕ′ exactly c
agents become active in each layer and all the objects in layer k−c get exhausted
by agents of layer k−c, thus implying that each agent corresponding to an edge of
our binary tree T , and therefore also agent p, becomes active in ϕ′. To determine
such a picking sequence, we need to find c object-disjoint paths from the active
agents in layer 0 to agents of layer k − c (note that such paths always exist).

The replacement described above takes O(k2) time; replacing all counter
objects therefore takes O(|I|2) time, proving our lemma. ��
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Applying Lemma 4 to the instance constructed in Theorem 6, we get
Corollary 3.1

Corollary 3. Problems 2-cpos(I, a, s(a)) and 2-cpos(I, a, ∅) are NP-complete
and 2-cnec(I, a, f(a)) is coNP-complete, even if all capacities are at most 2.

7 Conclusion

We showed that if we enable agents to declare certain objects unacceptable, both
the problems to decide whether a given agent can get a given object or whether
a given agent always gets a given object in serial dictatorship are intractable,
unless in the very special case when the lengths of preference lists are bounded by
2, and each object comes in a single copy. These results have direct consequences
for manipulation possibilities of serial dictatorship: if it is difficult to compute
which objects can an agent achieve then it is even the more difficult to compute
a successful manipulation.

A possible direction of further research is to investigate a model where prefer-
ence lists may contain ties. It is known that simply applying serial dictatorship is
not enough to find a Pareto-optimal matching (POM) if ties can occur; recently
Krysta et al. [22] and Cechlárová et al. [13] provided polynomial-time algorithms
combining the greedy approach of serial dictatorship with network flow to find
POMs in such situations. Up to our knowledge, the question of possible and
necessary allocations has not yet been investigated in the presence of ties.
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Oceláková, E., Rastegari, B.: Pareto optimal matchings in many-to-many markets
with ties. Theor. Comput. Syst. 59(4), 700–721 (2016)
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Pareto optimality in many-to-many matching problems. Discrete Optim. 14, 160–
169 (2014)
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Abstract. The classical Stable Roommate problem asks whether it
is possible to pair up an even number of agents such that no two non-
paired agents prefer to be with each other rather than with their assigned
partners. We investigate Stable Roommate with complete (i.e. every
agent can be matched with every other agent) or incomplete preferences,
with ties (i.e. two agents are considered of equal value to some agent) or
without ties. It is known that in general allowing ties makes the problem
NP-complete. We provide algorithms for Stable Roommate that are,
compared to those in the literature, more efficient when the input pref-
erences are complete and have some structural property, such as being
narcissistic, single-peaked, and single-crossing. However, when the prefer-
ences are incomplete and have ties, we show that being single-peaked and
single-crossing does not reduce the computational complexity—Stable
Roommate remains NP-complete.

1 Introduction

Given 2·n agents, each having a preference with regard to how suitable the other
agents are as potential partners, the Stable Roommate problem asks whether
it is possible to pair up the agents such that no two non-paired agents prefer to
be with each other rather than with their assigned partners.

We call such a pairing a stable matching. Stable Roommate was introduced
by Gale and Shapley [17] in the 1960’s and has been studied extensively since
then [21–23,31,32]. While it is quite straightforward to see that stable matchings
may not always exist, it is not trivial to see whether an existent stable matching
can be found in polynomial time, even when the input preference orders are
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complete orders without ties (i.e. each agent can be a potential partner to each
other agent, and no two agents are considered to be equally suitable as a partner).
For the case without ties, Irving [21] and Gusfield and Irving [19] provided O(n2)-
time algorithms to decide the existence of stable matchings and to find one if it
exists for complete preferences and for incomplete preferences, respectively. For
the case where the given preferences may have ties, deciding whether a given
instance admits a stable matching is NP-complete [31].

Solving Stable Roommate has many applications, such as pairing up stu-
dents to accomplish a homework project or users in a P2P file sharing network,
assigning co-workers to two-person offices, partitioning players in two-player
games, or finding receiver-donor pairs for organ transplants [16,24,26,28,33,34].
In such situations, the students, the people, or the players, which we jointly
refer to as agents, typically have certain structurally restricted preferences on
which other agents might be their best partners. For instance, when assigning
roommates, each agent may have an ideal room temperature and may prefer
to be with another agent with the same penchant. Such preferences are called
narcissistic. Moreover, if we order the agents according to their ideal room tem-
peratures, then it is natural to assume that each agent z prefers to be with
an agent x rather than with another agent y if z’s ideal temperature is closer
to x’s than to y’s. This kind of preferences is called single-peaked [4,7,20]. Single-
peakedness is used to model agents’ preferences where there is a criterion, e.g.
room temperature, that can be used to obtain a linear order of the agents such
that each agent’s preferences over all agents along this order are strictly increas-
ing until they reach the peak—their ideal partner—and then strictly decreasing.
Single-peakedness is a popular concept with prominent applications in voting
contexts. It can be tested for in linear time [1,3,8,13] if the input preferences
are complete and have no ties. Another possible restriction on the preferences is
the single-crossing property, which was originally proposed to model individuals’
preferences on income taxation [29,30]. It requires a linear order (the so-called
single-crossing order) of the agents so that for each two distinct agents x and
y, there exists at most one pair of consecutive agents (the crossing point) along
the single-crossing order that disagrees on the relative order of x and y. Single-
crossingness can be detected in polynomial time [5,8,9] if the input preferences
are complete and have no ties. We refer to Bredereck et al. [6] and Elkind et al.
[12] for numerous references on single-peakedness and single-crossingness.

Bartholdi III and Trick [3] studied Stable Roommate with narcissistic and
single-peaked preferences. They showed that for the case with linear orders (i.e.
complete and without ties), Stable Roommate always admits a unique stable
matching and provided an O(n) time algorithm to find this matching. This is
remarkable since restricting the preference domain does not only guarantee the
existence of stable matchings, but also speeds up finding it to sublinear time.
In this specific case, this speed up implies that a stable matching can be found
without “reading” the whole input preferences as long as the input is assumed
to be narcissistic and single-peaked.
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Table 1. Complexity of Stable Roommate for restricted domains: narcissistic, single-
peaked, and single-crossing preferences. Entries marked with ♦ are from Irving [21].
Entries marked with ♠ are from Gusfield and Irving [19]. Entries marked with � are
from Ronn [31]. Entries marked with ♥ are from Bartholdi III and Trick [3]. Entries
marked with � and boldfaced are new results shown in this paper. Note that our
polynomial-time results also include the existence of a stable matching and that our
hardness result even holds for the more restricted tie-sensitive single-crossing property.

Complete preferences Incomplete preferences

w/o ties w/ ties w/o ties w/ ties

No restriction O(n2)♦ NP-c� O(n2)♠ NP-c�

Single-peaked & single-crossing O(n2)♦ ? O(n2)♠ NP-c�

Narcissistic & single-peaked O(n)♥ O(n2)
�

O(n2)♠ ?

Narcissistic & single-crossing O(n)� O(n2)
�

O(n2)♠ ?

In this paper, we first discuss natural generalizations of the well-known single-
peaked and single-crossing preferences (that were originally introduced for lin-
ear orders) for incomplete preferences with ties. Then, we investigate how some
structural preference restrictions can help in guaranteeing the existence of stable
matchings and in designing more efficient algorithms for finding one, including
the case when the input preferences are not linear orders. We found that for
complete preference orders, structurally restricted preferences such as being nar-
cissistic and single-crossing or being narcissistic and single-peaked guarantee the
existence of stable matchings. Moreover, we showed that when the preferences
are complete, even with ties, narcissistic and single-crossing or narcissistic and
single-peaked, then the algorithm of Bartholdi III and Trick [3] always finds a
stable matching. The running time for 2· agents increases to O(n2). However,
when the preferences are incomplete and ties are allowed, Stable Roommate
becomes NP-complete, even if the given preferences are single-peaked as well as
single-crossing. Our results on Stable Roommate, together with those from
related work, are summarized in Table 1. Due to space constraints, some proofs
are omitted.

2 Fundamental Concepts and Basic Observations

Let V = {1, 2, . . . , 2 ·n} be a set of 2 ·n agents. Each agent i ∈ V has a preference
order �i over a subset Vi ⊆ V of agents that i finds acceptable as a partner1.
We note that although in our stable roommate problem, an agent cannot be
matched to itself, it may still make sense to include an agent x in its preference
orders, for instance when x represents someone which is very close to its ideal.
The set Vi is called the acceptable set of i and a preference order �i overVi

is a weak order on Vi, i.e. a transitive and complete binary relation on Vi. For
instance, x �i y means that i weakly prefers x over y (i.e. x is better than or

1 For technical reasons, an agent may find itself acceptable, which means that {i} ⊆ Vi.



318 R. Bredereck et al.

Fig. 1. Acceptability graphs of two special cases of Stable Roommate.

as good as y). We will use �i to denote the asymmetric part of �i (i.e. x �i y
and ¬(y �i x), meaning that i strictly prefers x to y) and ∼i to denote the
symmetric part of �i (i.e. x �i y and y �i x, meaning that i values x and y
equally). We call an agent x a most acceptable agent of another agent y if for all
z ∈ Vy \ {x, y} it holds that x �y z. Note that an agent can have more than one
most acceptable agent.

Let X ⊆ V and Y ⊆ V be two disjoint sets of agents and � be a binary
relation over V . To simplify notation, we write X � Y to denote that for each
two agents x and y with x ∈ X and y ∈ Y it holds that x � y. (We use X � y
as shortcut for X � {y} and X � Y as well as X ∼ Y in an analogous way.)

To model which agent is considered as acceptable in a preference order we
introduce the notion of an acceptability graph G for V . It is an undirected graph
without loops. An edge signifies whether two distinct agents find each other
acceptable. We use V to also denote the vertex set of G. There is an edge {i, j}
in G if i ∈ Vj \ {j} and j ∈ Vi \ {i}. We assume without loss of generality
that G does not contain isolated vertices, meaning that each agent could be
matched to at least one other agent. We illustrate two prominent special cases
of acceptability graphs in Fig. 1.

Blocking pairs and stable matchings. Given a preference profile P for a
set V of agents, a matching M ⊆ E(G) is a subset of disjoint pairs of agents {x, y}
with x �= y (or edges in E(G)), where E(G) is the set of edges in the correspond-
ing acceptability graph G). For a pair {x, y} of agents, if {x, y} ∈ M , then
we denote M(x) as the corresponding partner y; otherwise we call this pair
unmatched. We write M(x) = ⊥ if agent x has no partner, that is, if agent x is
not involved in any pair in M . An unmatched pair {x, y} ∈ E(G)\M is blocking
M if the pair “prefers” to be matched to each other, i.e. it holds that

(M(x) = ⊥ ∨ y �x M(x)) ∧ (M(y) = ⊥ ∨ x �y M(y)).

A matching M is stable if no unmatched pair is blocking M . Note that this
stability concept is called weak stability when we allow ties in the preferences.
We refer to the textbook by Gusfield and Irving [19], Manlove [27] for two other
popular stability concepts for preferences with ties.
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We focus on the following stable matching problem.

Stable Roommate

Input: A preference profile P for a set V = {1, 2, . . . , 2·n} of 2·n agents.
Question: Does P admit a stable matching?

The profile given in Fig. 3 admits a (unique) stable matching: {{1, 4}, {2, 3}}. In
fact, as we will see in Sect. 3, a narcissistic and single-peaked preference profile
always admits a stable matching. However, if agent 3 changes its preference order
to 3 � 1 � 2 � 4, then the resulting profile is not single-peaked anymore, nor
does it admit any stable matching: One can check that any agent i, 1 ≤ i ≤ 3
that is matched to agent 4 will form a blocking pair together with the agent that
is at the third position of the preference order of i.

Preference profiles and their properties. A preference profile P for V is a
collection (�i)i∈V of preference orders for each agent i ∈ V . A profile P may
have the following three simple properties:

1. Profile P is complete if for each agent i ∈ V it holds that Vi ∪ {i} = V ;
otherwise it is incomplete.

2. Profile P has a tie if there is an agent i ∈ V and there are two distinct
agents x, y ∈ Vi with x ∼i y. Note that linear orders are exactly those orders
that are complete and have no ties.

3. Profile P is narcissistic if each agent i strictly prefers itself to every other
acceptable agent, i.e. for each j ∈ Vi it holds that i �i j.

We note that the completeness concept basically means that each two distinct
agents can be matched together. Thus, it does not matter whether Vi = V
or Vi ∪ {i} = V because i cannot be matched to itself anyway. By the same
reasoning, the narcissistic property alone, which reflects the fact that each agent
prefers to be with someone like itself among all alternatives, does not really
restrict the input of our stable roommate problem. However, one can further
restrict single-peaked preferences or single-crossing preferences by additionally
requiring them to be narcissistic and we show that this affects the existence of
stable matchings.

As already discussed in Sect. 1, the single-peaked and the single-crossing
properties were originally introduced and studied mainly for linear preference
orders (i.e. orders without ties). For preferences with ties, a natural generaliza-
tion is to think of a possible linear extension of the preferences for which the
single-peaked or single-crossing property holds. We consider this variant in our
paper. Profile P is single-peaked if there is a linear order � over V such that the
preference order of each agent i is single-peaked with respect to �:

∀x, y, z ∈ Vi with x � y � z it holds that (x �i y implies y �i z).

Just as for the single-peaked property, the single-crossing property also
requires a natural linear order of the agents, the so-called single-crossing order.
However, unlike the single-peaked property which assumes that the preferences
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of an agent i over two agents are measured by their “distance” to the peak
along the single-peaked order, the single-crossing property assumes that the
agents’ preferences over each two distinct agents change (cross) at most once.
In fact, for preferences with ties, two natural single-crossing notions are of
interest. To define them, we first introduce a notion which denotes a subset
of voters that have the same preferences over two distinct agents x and y: Let
V [x � y] := {i ∈ V | x �i y} be the subset of voters i that strictly prefer x
to y, and let V [x ∼ y] := {i ∈ V | x ∼i y} be the subset of voters i that find x
and y to be of equal value. We say that profile P is single-crossing if there is a
linear extension of P to a profile P ′ = (�′

1,�′
2, . . . ,�′

2·n) without ties and there
is a linear order � over V such that for each two distinct agents x and y, P ′ is
single-crossing with respect to �, i.e.

V [x ∼′ y] = ∅ and either V [x �′ y] � V [y �′ x] or V [y �′ x] � V [x �′ y].

We also consider a more restricted single-crossing concept which compared
the single-crossing property introduced above requires that the agents that have
ties are ordered in the middle. A profile P is called tie-sensitive single-crossing
if there is a linear order � over V such that each pair {x, y} of two distinct
agents is tie-sensitive single-crossing with respect to �, i.e.

either V [x � y] � V [x ∼ y] � V [y � x] or V [y � x] � V [x ∼ y] � V [x � y].

See Fig. 2 for an illustration of the different types of restricted preferences
for the case where the preferences are linear orders.

For partial orders, our two single-crossing concepts are incomparable. In par-
ticular, there are incomplete preferences with ties which are single-crossing but
not tie-sensitive single-crossing, and the converse also holds. For weak orders
and for preferences without ties, however, the following holds. (Notably, a large
part of the observation can be found in a long version of Elkind et al. [11].)

Observation 1. Let P be an arbitrary preference profile: (i) If P is complete,
then P is single-crossing if it is tie-sensitive single-crossing. (ii) If P is without
ties, then P is single-crossing if and only if it is tie-sensitive single-crossing.

Figure 2(b) demonstrates that the converse of the first statement in Obser-
vation 1 does not hold.

There are many slightly different concepts of single-peakedness and single-
crossingness for partial orders (a generalization of incomplete preferences with
ties) [11,15,25]. It is known that detecting single-peakedness or single-crossing-
ness is NP-hard for partial orders under most of the concepts studied in the
literature. For linear orders, all these concepts (including ours) are equivalent to
those introduced by Black [4] and Mirrlees [29] and can be detected in polynomial
time [1,3,5,8,9,13]. For incomplete preferences with ties, Lackner [25] showed
that detecting single-peakedness is NP-complete. For complete preferences with
ties, while Elkind et al. [11] showed that detecting single-crossingness is NP-
complete, Fitzsimmons [14] and Elkind et al. [11] provided polynomial-time
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Fig. 2. Visualization of different restricted profiles.

algorithms for detecting single-peakedness and ties-sensitive single-crossingness.
All these known hardness results seem to hold only when the preferences have
ties. However, we observe that the hardness proof for Corollary 6 by Elkind et
al. [11] indeed can be adapted to show NP-completeness for deciding whether
an incomplete preference profile without ties is single-peaked or single-crossing.

Observation 2. Deciding whether an incomplete preference profile without ties
is single-crossing (or equivalently tie-sensitive single-crossing) or single-peaked
is NP-complete.

Barberà and Moreno [2] as well as Elkind et al. [10] noted that for com-
plete preferences without ties, narcissistic and single-crossing preferences are also
single-peaked. We show that the relation also holds when ties are allowed. We
note that Barberà and Moreno [2] also considered complete preferences with
ties. However, their single-crossingness for the case with ties only resembles
our tie-sensitive single-crossing definition, which is a strict subset of our single-
crossingness (Observation 1).

Proposition 1. If a complete, even with ties, and narcissistic preference profile
P has a single-crossing order �, then this order � is also a single-peaked order.
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(a) A single-peaked visualization
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2: 2 � 3 � 1 � 4

3: 3 � 2 � 1 � 4

4: 4 � 3 � 2 � 1

(b) A single-crossing visualization.

Fig. 3. A narcissistic, single-peaked, and single-crossing profile.

Proof. Suppose for the sake of contradiction that � with a1�a2�· · ·�a2·n is not
single-peaked. This means that there exists an agent ai that is not single-peaked
wrt. �, and there are three agents aj , ak, a� with j < k < � such that aj �ai

ak

and a� �ai
ak. Together with the narcissistic property, the following holds:

agent ai : ai �ai
aj �ai

ak and ai �ai
a� �ai

ak, agent aj : aj �aj
ak,

agent ak : ak �ak
aj and ak �ak

a�, agent a� : a� �a�
ak.

On the one hand, the agents’ preferences over the pair {aj , ak} implies that
i < k. On the other hand, the pair {ak, a�} implies that i > k—a contradiction. ��

The profile shown in Fig. 3 is narcissistic and single-crossing wrt. the order
1 � 2 � 3 � 4 and it is also single-peaked with respect to the same order �.

3 Complete Preferences

In this section, we consider profiles with complete preferences. It is known that
if ties do not exist, then Stable Roommate can be solved in O(n2) time [21],
while the existence of ties makes the problem NP-hard [31]. For the case of
complete, narcissistic, and single-peaked preferences without ties, Bartholdi III
and Trick [3] showed that Stable Roommate is even solvable in O(n) time.
Their algorithm is based on the following two facts (referred to as Propositions 2
and 3) that are related to the concept of most acceptable agents. We show that
the facts transfer to the case with ties.

Proposition 2. If the given preference profile P is complete (even with ties),
narcissistic, and single-peaked, then there are two distinct agents i, j that are
each other’s most acceptable agents.

Proof. The statement for complete, narcissistic, and single-peaked preferences
without ties was shown by Bartholdi III and Trick [3]. It turns out that this also
holds for the case when ties are allowed. Let V be the set of all 2 · n agents and
consider a single-peaked order � of the agents V with x1�x2� · · ·�xn. For each
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Algorithm 1. The algorithm of Bartholdi III and Trick for computing
a stable matching with input P being complete, narcissistic, and single-
peaked.
M ← ∅;
while P �= ∅ do

Find two agents x, y in P that consider each other as most acceptable;
Delete x and y from profile P;
M ← M ∪ {x, y};

return M ;

agent x ∈ V , let Mx be the set of all most acceptable agents of x. Towards a
contradiction, suppose that each two distinct agents x and y have x /∈ My or
y /∈ Mx. By the narcissistic property and single-peakedness, each Mx∪{x} forms
an interval in �. This implies that the first agent x1 and the last agent xn in
the order � have x2 ∈ Mx1 and xn−1 ∈ Mxn

. By our assumption, however
x2 ∈ Mx1 implies that for each i ∈ {2, . . . , n} the following holds: xi−1 /∈ Mx—a
contradiction to xn−1 ∈ Mxn

. ��
By the stability definition, we have the following for complete preferences.

Proposition 3. Let P be a preference profile and let M be a stable matching
for P. Let P ′ be a preference profile resulting from P by adding two agents x, y
who are each other’s most acceptable agents (and the preferences of other agents
over x, y are arbitrary but fixed). Then, matching M ∪ {{x, y}} is stable for P ′.

Proof. Suppose for the sake of contradiction that M ∪ {{x, y}} is not stable
for P ′. This means that P ′ has an unmatched blocking pair {u,w} /∈ M . It is
obvious that |{u,w}∩{x, y}| = 1 as otherwise {u,w} would also be an unmatched
blocking pair for P. Assume without loss of generality that u = x. Then, by the
definition of blocking pairs, it must hold that w �x y—a contradiction to y being
one of the most acceptable agents of x. ��

Utilizing Propositions 2 and 3 (in more restricted variants), Bartholdi III and
Trick [3] derived an algorithm to construct a unique stable matching when the
preferences are linear orders (i.e. complete and without ties) and are narcissistic
and single-peaked (see Algorithm 1). For 2 · n agents their algorithm runs in
O(n) time. We will show that Algorithm 1 also works when ties are allowed. The
stable matching, however, may not be unique anymore and the running time is
O(n2) since we need to update the preferences of each agent after we match one
pair of two agents.

Theorem 1. Algorithm1 finds a stable matching for profiles with 2 · n agents
that are complete, with ties, narcissistic and single-peaked in O(n2) time.

Proof. The correctness follows directly from Propositions 2 and 3 and the nar-
cissistic and single-peaked property is preserved when deleting any agent. As
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for the running time, there are n rounds to build up M , and in each round we
find two distinct agents x and y whose most acceptable agent sets Mx and My

include each other: x ∈ My and y ∈ Mx. Note that Proposition 2 implies that
such two agents exist. After each round we need to update the most acceptable
agents of at most 2 · n agents. Thus, in total the running time is O(n2). ��

Now, we move on to (tie-sensitive) single-crossingness.

Corollary 1. Algorithm1 finds a stable matching for preference profiles with
2 · n agents that are complete, with ties, narcissistic and single-crossing (or tie-
sensitive single-crossing) in O(n2) time. The running time for the case without
ties is O(n).

Proof. By Proposition 1 and Observation 1 (i), the stated profiles are single-
peaked. The result of Bartholdi III and Trick [3] and Theorem 1 imply the desired
statement. ��

4 Incomplete Preferences

Incomplete preferences mean that some agents do not appear in the preferences
of an agent, for instance, because two agents are unacceptable to each other or
they are not “allowed” to be matched to each other. If in this case no two agents
are considered of equal value by any agent (i.e. the preferences are without ties),
then Stable Roommate still remains polynomial-time solvable [19]. However,
once ties are involved, Stable Roommate becomes NP-complete [31] even for
complete preferences. In this section, we consider the case where the input pref-
erences may be narcissistic, single-peaked, or single-crossing. First of all, we note
that these preference restrictions can no longer guarantee the existence of two
consecutive agents that are each other’s most acceptable agent. However, this
guarantee is crucial for the existence of a stable matching and for why the algo-
rithm by Bartholdi III and Trick [3] can work in time linear in the number of
agents. Moreover, for incomplete preferences, even without ties, narcissistic and
single-crossing preferences do not imply single-peakedness anymore.

Proposition 4. For incomplete preferences without ties, the following holds:
Narcissistic and single-crossing preferences are not necessarily single-peaked.
Narcissistic and single-peaked (resp. single-crossing) preferences guarantee nei-
ther the uniqueness nor the existence of stable matchings.

Proof. Consider the following profile with six agents 1, 2, . . . , 6:

agent 1: 1 �1 5 �1 6, agent 3: 3 �3 5 �3 6, agent 5: 5 �5 1 �5 2 �5 3 �5 4,
agent 2: 2 �2 5 �2 6, agent 4: 4 �4 5 �4 6, agent 6: 6 �6 4 �6 2 �6 3 �6 1.

It is single-crossing wrt. the order 1 � 2 � · · · � 6, but it is not single-peaked
because of the last two agents’ preference orders over 1, 2, 3, 4. It does not admit
a stable matching of size three. But it admits a stable matching of size two:
{{1, 5}, {4, 6}}. The following profile with four agents 1, 2, 3, 4 is narcissistic and
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single-peaked wrt. the order 1 � 2 � 3 � 4, and single-crossing wrt. the order
1 �′ 3 �′ 2 �′ 4. It admits two different stable matchings {{1, 2}, {3, 4}} and
{{1, 3}, {2, 4}}.

agent 1: 1 �1 2 �1 3 �1 4, agent 2: 2 �2 4 �2 1,
agent 3: 3 �3 1 �3 4, agent 4: 4 �4 3 �4 2 �4 1.

The following profile with ten agents 1, 2, . . . , 10 is narcissistic and single-
peaked wrt. the order 4�2�1�3�5�9�7�6�8�10. But, no matching M is
stable for this profile: First, the agents can be partitioned into two subsets V1 =
{1, 2, . . . , 5} and V2 = {6, 7, . . . , 10} such that only agents within the same subset
can be matched together. Since |V1| is odd, at least one agent i ∈ V1 is not
matched by M . But, agent i and the agent at the third position of the preference
order of i would form a blocking pair.

agent 1: 1 �1 4 �1 3, agent 2: 2 �2 5 �2 4, agent 3: 3 �3 1 �3 5,
agent 4: 4 �4 2 �4 1, agent 5: 5 �5 3 �5 2, agent 6: 6 �6 9 �6 8,
agent 7: 7 �7 10 �7 9, agent 8: 8 �8 6 �8 10, agent 9: 9 �9 7 �9 6,
agent 10: 10 �10 8 �10 7. ��

For the case with ties allowed, Ronn [31] showed that Stable Roommate
becomes NP-hard even if the preferences are complete. The constructed instances
in his hardness proof, however, are not always single-peaked or single-crossing. It
is even not clear whether the problem remains NP-hard for this restricted case.
If we abandon the completeness of the preferences, then we obtain NP-hardness,
by another and simpler reduction. Before we state the corresponding theorem,
we prove the following lemma which is heavily used in our preference profile
construction to force two agents to be matched together.

Lemma 1. Let P be a Stable Roommate instance for a given voter set V ,
and let a, b, and c be three distinct agents with the following preferences:

agent a : X � b � c � Va \ (X ∪ {b, c}),
agent b : c � a � Vb \ {a, c}, agent c : a � b � Vc \ {a, b},

where X ⊆ (Va ∩ Vb ∩ Vc) \ {a, b, c} is a non-empty subset. Then, every stable
matching M for P must fulfill that (i) M(a) ∈ X and (ii) {b, c} ∈ M .

Proof. Assume towards a contradiction to (i) that P admits a stable matching M
with M(a) /∈ X. There are three cases: (1) M(a) = b, implying the blocking
pair {b, c}, (2) M(a) = c, implying the blocking pair {a, b}, and (3) M(a) /∈
{b, c}, implying the blocking pair {a, c}. Thus, a must be matched with some
agent from X. For (ii), statement (i) implies that c cannot be matched with a.
Now, if {b, c} /∈ M , then {b, c} is a blocking pair. ��
Theorem 2. Stable Roommate for incomplete preferences with ties remains
NP-complete, even if the preferences are single-peaked and single-crossing or
single-peaked and tie-sensitive single-crossing.
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Fig. 4. An illustration of the hardness reduction for Theorem 2. (Color figure online)

Proof. First, the problem is in NP since one can non-deterministically guess a
matching and check the stability in polynomial time. To show NP-hardness, we
reduce from the NP-complete Vertex Cover problem [18], which given an
undirected graph G = (U,E) and a non-negative integer k, asks whether there
is a size-at-most k vertex cover, i.e. a subset U ′ ⊆ U of size at most k such
that for each edge e ∈ E, it holds that e ∩ U ′ �= ∅. Let (G = (U,E), k) be a
Vertex Cover instance with p := |U |. We assume w.l.o.g. that k < p. We will
construct a Stable Roommate instance P with agent set V and show that G
has a vertex cover of size at most k if and only if P admits a stable matching.

Main idea and the constructed agents. To explain the main idea of the
reduction, we first describe the agent set V and the corresponding acceptability
graph of P as illustrated through an example in Fig. 4. For each vertex ui ∈ U ,
we introduce a vertex agent ui (for the sake of simplicity, we use the same
symbol for the vertex and the corresponding agent). Additionally, there is a
set of selector agents S := {s1, . . . , sk} as well as three sets of collector agents
A := {a1, a2, . . . , ap−k}, B := {b1, b2, . . . , bp−k}, and C := {c1, c2, . . . , cp−k}.
The agent set V is defined as U ∪ S ∪ A ∪ B ∪ C. For the acceptability graph,
we have that every vertex agent ui accepts every selector agent from S, every
collector agent from A, and every vertex agent uj that corresponds to a neighbor
of uj in the input graph G. For each i ∈ {1, 2, . . . , p − k}, the collector agents
al, bi, and ci pairwisely accept each other. We aim at constructing the agents’
preferences such that in every stable matching only the selector agents from S
and the collector agents from A can be matched to the vertex agents and the
vertex agents matched to the selector agents correspond to a vertex cover (of
size |S| = k). This property is given by the subsequent Claim 1.

Agent preferences. Now, we describe the preferences that realize the idea and
the acceptability graph as described above:
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agent ui : [S] � [N(ui)] � a1 � a2 � . . . � ap−k ∀1 ≤ i ≤ p,
agent si : u1 ∼ u2 ∼ . . . ∼ up ∀1 ≤ i ≤ k,

agent ai : [U ] � bi � ci,
agent bi : ci � ai, agent ci : ai � bi ∀1 ≤ i ≤ p − k.

Herein, for each subset X ⊂ S∪U , we denote by [X] some arbitrary but fixed
order (e.g. ordered wrt. the names or the indices), called the canonical order. This
completes the construction and can clearly be performed in polynomial time.

Correctness of the construction. First of all, we claim the following:

Claim 1. Every stable matching M for P satisfies the following two properties:

1. every vertex agent ui is matched to either a selector agent from S or a collector
agent from A: M(ui) ∈ S ∪ A, and

2. no two vertex agents that are both matched to a collector agent are adjacent.

Proof. (of Claim 1) Let M be a stable matching for P. For the first statement,
Lemma 1 immediately implies that for every collector agent ai ∈ A, it holds that
M(ai) ∈ U . Thus, there are exactly k vertex agents left that are not matched to
agents from A. Suppose towards a contradiction that some selector agent sj is
not matched to any vertex agent, implying that at least one vertex agent ui is
left with M(ui) /∈ A∪S. This, however, implies that {sj , ui} is a blocking pair for
M—a contradiction. For the second statement, suppose towards a contradiction
that there are two vertex agents ui, uj with {M(ui),M(uj)} ⊆ A as well as
{ui, uj} ∈ E. The preference orders of ui and uj immediately imply that agents
ui and uj form a blocking pair—a contradiction. (of Claim 1) �

Now, we show that G has a vertex cover of size at most k if and only if P
admits a stable matching. The “if” part follows immediately from Claim1. For
the “only if” part, suppose that U ′ ⊆ U is a vertex cover of size k. Without
loss of generality, assume that U ′ = {u1, u2, . . . , uk} and further assume that
the canonical order is u1 � u2 � · · · � un. It is easy to verify that the following
matching M is stable:

– for each i ∈ {1, 2, . . . , k} set M(ui) := si;
– for each i ∈ {1, 2, . . . , p − k} set M(ui+k) = ai;
– for each i ∈ {1, 2, . . . , p} set M(bi) = ci.

Single-peakedness and (tie-sensitive) single-crossingness. The construc-
ted profile is single-peaked with respect to the following linear order �:

[S] � [U ] � a1 � a2 � · · · � ap−k � b1 � b2 � · · · � bp−k � c1 � c2 � · · · � cp−k.

It is also single-crossing, since each preference order (after resolving all ties in
favor of the canonical order as discussed when constructing the agent preferences)
is a sub-order of one of two different preference orders, and two preference orders
are always single-crossing. More specifically, the profile is single-crossing with
respect to the order �:



328 R. Bredereck et al.

After resolving all ties in the preferences of the selector agents in favor of the
canonical order, the preference orders of the agents from S∪U ∪A are sub-orders
of the linear order [S] � [U ] � a1 � b1 � c1 � a2 � b2 � c2 � · · · � ap−k �
bp−k � cp−k, and the preference orders of the agents from B ∪ C are sub-orders
of the linear order

[S] � [U ] � c1 � a1 � b1 � c2 � a2 � b2 � · · · � cp−k � ap−k � bp−k.

The tie-sensitive single-crossing property also holds because ties only occur
between pairs of agents from U and � contains first all agents with ties and then
the agents with the same canonical order among agents from U . ��

The constructed profile in the proof of Theorem2 cannot be extended to also
satisfy the narcissistic property. However, we conjecture that Stable Room-
mate remains NP-complete even if the input preferences are also narcissistic.

5 Conclusion

We investigated Stable Roommate for preferences with popular structural
properties, such as being narcissistic, single-peaked, and single-crossing. We
showed the existence of stable matchings and managed to speed up the detection
of such matchings when the preferences are complete, narcissistic, and single-
peaked (or single-crossing). Some of the speed-up (Corollary 1) is even associated
with a sublinear time algorithm. For incomplete preferences with ties, however,
single-peakedness combined with single-crossingness does not help to lower the
computational complexity—Stable Roommate remains NP-complete.

We conclude with some challenges for future research. First, considering the
NP-completeness result, it would be interesting to study the parameterized com-
plexity with respect to the “degree” of incompleteness of the input preferences,
such as the number of ties or the number of agents that are in the same equiv-
alence class of the tie-relation. Second, we were not able to settle the computa-
tional complexity for complete preferences that are also single-peaked and single-
crossing and for incomplete preferences with ties that are also narcissistic and
single-peaked. We conjecture, however, that the NP-hardness reduction by Ronn
[31] can be (non-trivially) adjusted to also work for these restricted domains.
Third, for incomplete preferences, we extended the concepts of single-peaked
and single-crossing preferences. However, there are further relevant extensions
in the literature [11,15,25], which deserve study within our framework. Finally,
the algorithm of Bartholdi III and Trick [3] strongly relies on the fact that
there are always two agents that consider each other most acceptable. It would
be interesting to know which generalized structured preferences could guaran-
tee this fact. For instance, the so-called worst-restricted property (i.e. no three
agents exist such that each of them is least preferred by any agent) is a gener-
alization of the single-peaked property. We could show that the narcissistic and
worst-restricted properties are enough to guarantee this useful property.
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Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 825–834. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-74466-5 88

17. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 120(5), 386–391 (2013)

18. Garey, M.R., Johnson, D.S.: Computers and Intractability–A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York (1979)

19. Gusfield, D., Irving, R.W.: The Stable Marriage Problem-Structure and Algo-
rithms. Foundations of Computing Series. MIT Press, Cambridge (1989)

20. Hotelling, H.: Stability in competition. Econ. J. 39(153), 41–57 (1929)
21. Irving, R.W.: An efficient algorithm for the “stable roommates” problem. J. Algo-

rithms 6(4), 577–595 (1985)
22. Irving, R.W., Manlove, D.: The stable roommates problem with ties. J. Algorithms

43(1), 85–105 (2002)

http://arxiv.org/abs/1406.4829v3
http://dx.doi.org/10.1007/978-3-540-74466-5_88


330 R. Bredereck et al.

23. Knuth, D.E.: Stable marriage and its relation to other combinatorial problems.
CRM Proceedings & Lecture Notes, vol. 10. AMS (1997)
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Abstract. We define a framework for stable matching problems where
agents are allowed to express their preferences in a compact way, via
fuzzy constraints over the features describing the agents of the other
group. We provide a solving engine for this new kind of stable matching
problems that does not increase the time complexity of the classical GS
algorithm, while maintaining stability of the matching returned. We then
evaluate the approach experimentally.

1 Introduction

The stable matching (SM) problem has two sets of agents (men and women) that
need to be matched in a stable way, that is, no man and woman, who are not
matched to each other, both prefer each other to their current partner [6]. SM
problems arise, for example, in assigning junior doctors to hospitals, children to
schools, students to campus housing, and kidney transplant patients to donors.

The most well-known and used algorithm to find a stable matching is the GS
algorithm [5], that runs in polynomial time. It assumes that both men and women
express a preference ordering over all members of the other gender. However,
this can be unfeasible, since the number of men and women can be very large.
However, if men and women possess some features, this allows for expressing
preferences in a compact way by referring to features rather than men or women.
In this paper we study how to adapt the GS algorithm to work with preferences
expressed by fuzzy constraints over features.

Fuzzy constraints are a special case of soft constraints [7], where quantitative
preferences over features are between 0 and 1, and the objective is to maximize
the minimal preference. To use such formalism within the GS stable matching
procedure, we describe a fuzzy constraint solver to perform the operations needed
in the GS algorithm.

The use of fuzzy constraints reduces the time and space needed by each
agent to specify its preference ordering. Moreover, the stable matching procedure
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receives an input which is much smaller. If men’s preferences can be modelled
by a constraint graph with a bounded tree-width [4], the time complexity of the
stable matching procedure does not increase, as shown by our theoretical and
experimental evaluation.

A study similar to the one in this paper was done using CP-nets instead of
fuzzy constraints [8]. As different techniques are needed to reason with CP-nets
[1] and soft constraints in SMs, the linearization studied for CP-net in [8] is very
different than those we define in this paper for fuzzy constraints.

2 Background

Stable matching problems. A stable matching problem (SM) [6] of size n
includes n men and n women that each have a strict preference ordering over the
members of the other gender. A matching is a one-to-one correspondence between
men and women. Given a matching M , a man m, and a woman w, the pair (m,w)
is a blocking pair for M if m prefers w to his partner in M and w prefers m to her
partner in M . A matching is said to be stable if it does not contain blocking pairs.
Given a SM P , there is at least one stable matching for P .

The Gale-Shapley algorithm (GS) [5] is widely used to solve SMs. The algo-
rithm takes O(n2) steps and constructs a stable matching. It consists of a number
of rounds in which each un-engaged man proposes to his most preferred woman
to whom he has not yet proposed. Each woman receiving a proposal becomes
“engaged”, provisionally accepting the proposal from her most preferred man.
In subsequent rounds, an already engaged woman can “trade up”, becoming
engaged to a more preferred man and rejecting a previous proposal, or if she
prefers him, she can stick with her current partner.

Given a matching M , is M(w) (resp., M(m)) the man (resp., woman) asso-
ciated to the woman w (resp., man m) in M . Also, pref(x) is the preference list
of a man or a woman x. The GS algorithm includes the following operations:
Opt(pref(m)): computes the optimal woman for m (i.e., m’s first proposal);
Next(pref(m), w): computes the next best woman after w for man m (i.e., a
new proposal for m); Compare(pref(w),m,m′): returns true if woman w prefers
man m to m′. This is needed when woman w, currently matched with m′, must
decide whether to accept or decline a proposal from m.

Soft and fuzzy constraints. A soft constraint [7] associates a preference value
from a (totally or partially ordered) set to each instantiation of its variables.
A Soft Constraint Satisfaction Problem (SCSP) is a set of variables and a set
of soft constraints (each one involving a subset of variables. An instance of the
SCSP framework is obtained by choosing a specific preference structure. For
instance, in fuzzy CSPs (FCSPs) [7] preference values are in [0, 1] and we want
to maximize the minimum preference. This is the instance that we consider in
the paper.

A solution of an SCSP P is an assignment s to all its variables and its
preference value, written pref(P, s), is obtained by combining the preference
values associated by each constraint to the part of s related to the variables of
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the constraint. In fuzzy CSPs the preference value of a complete assignment is
the minimum preference value given by the constraints. An optimal solution is a
solution s such that there is no other solution s′ with pref(P, s) < pref(P, s′),
where < is the preference ordering of the considered preference structure. We
denote with opt the preference value of an optimal solution.

Finding an optimal solution for a soft CSP is computationally hard in general,
but it is polynomial, for example, for tree-shaped fuzzy CSPs, where a technique
called directional arc-consistency, applied bottom-up on the tree shape of the
problem, is enough to make the search for an optimal solution backtrack-free
and thus polynomial. A tree-shaped fuzzy CSP is a fuzzy CSP whose constraint
graph (where nodes represent variables and arcs connect variables involved in
the same constraint) is a tree.

3 Stable Matching Problems with Fuzzy Constraints

We consider stable marriage problems with n men and n women, where each
man and each woman specify their preferences over the members of the other
gender via a set of fuzzy constraints. We call this a fuzzy CSP based SM (FSM).

Each man and woman is described by a set of features, that are represented
by the variables of the fuzzy constraint problems. If each variable has d possi-
ble values, the number of variables, say f , of each fuzzy constraint problem is
O(logdn). We have 2f features, of which f describe men and f describe women.

GS operations. Opt(pref(m)) must return the optimal solution of a fuzzy CSP
defining the preferences of man m over the women. We recall that, in general,
finding the optimal solution of a soft CSP is a computationally difficult problem.
However, if the SCSP has a tree-like shape, or bounded tree-width, it can be
done in polynomial time [3]. Thus this operation takes polynomial time if the
constraint graph is a tree (or has a bounded tree-width).

Compare(pref(w),m1, m2) compares two complete assignments m1 and m2

and checks if m1 is strictly more preferred to m2 for w. In fuzzy constraint
problems, this is computationally easy to do, if there is a polynomial number
of constraints. In fact, m1 is strictly preferred to m2 when the preference of m1

for w is strictly greater than that of m2 for w. Notice that women need only to
perform Compare operations. Thus we do not need any restriction on the shape
of the constraint graph for women’s preferences to make Compare polynomial.

For the Next(pref(m), w) operation, we need to linearize the solution order-
ing of a fuzzy CSP. In fact, this operation is used to find the next most preferred
woman in a man’s preference ordering, so when two or more women are tied, we
need to put an order over them to understand who to propose first.

Linearizations. In fuzzy constraints, the solution ordering is in general a total
order with ties. In this context, linearizing the solution ordering means giving
an order over the elements in each tie.

We aim to define linearizations where finding the next best solution (that
is, applying operation Next) is tractable and where solutions which are less
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distant from optimal ones appear earlier in the linearization. We define three
linearizations L1, L2, and L3 which break ties by taking into account the distance
of a solution preference from the optimal preference (L1), or also the minimum
number of preference values for parts of the solutions to be changed to make
the solution optimal (L2), or also the amount of change required (L3). Among
the solutions which are still in a tie, we put first those that are lexicographically
earlier, according to an ordering over variables and domain values.

We will now see how to perform operation Next on such three linearizations.
We will call these operations Nexti, for Li = 1, 2, 3.

From results in [2], we know that performing Next1 can be accomplished in
polynomial time when we have a tree-shaped fuzzy CSPs. To perform Next2 and
Next3 for tree-shaped fuzzy CSPs, when we already have the top k−1 solutions,
we find the top k solution according L2 and L3 by computing the top k solutions
of a set of weighted CSPs with a bounded tree-width. This is polynomial [4].

Our algorithm, KCheapest, takes in input a tree-shaped fuzzy CSP P , an
integer k, and a linearization L (either L2 or L3), and returns the top k solutions
of P according to L2 and L3 in polynomial time, when k is polynomial in f and
d. We know from [8] that on average only 2% of all proposals are made, so the
idea is to call KCheapest with k = 2% of the maximum number of proposals
and cache the returned set of solutions. Only when all cached solutions have
already been returned, we need to call KCheapest again.

If we run the GS algorithm on any of the linearizations we defined, by defin-
ition we obtain a matching which is stable w.r.t. this linearization. With n men
and nwomen, and preference lists given explicitly, finding a SM needsO(n2) space
and O(n2) time [6]. When we use fuzzy constraints, each man and woman needs
O(dkm) space and time to state their preferences, where d is the size of domains, k
is the number of features involved in the largest soft constraint, and m is the num-
ber of soft constraints. When we assume a bounded tree-width constraint graph
for men, each proposal in the GS algorithm takes O(poly(f)) time, where f is the
number of features and each Compare operation takes O(poly(m)). So, overall,
the GS algorithm may need up to O(n2 × poly(f) × poly(m)) time, although the
number of proposals have been shown to be much lower in practice [8].

Experimental setting and results. The described linearizations can be used
in two different ways within the GS algorithm. One way is to compute the
whole preference lists for each man and then run GS. The other is to use the
linearization only when GS requires a new proposal. We ran experiments to
compare the running time of these two scenarios on a 2.4 Ghz Intel Core i5
machine with 8 GB of RAM, and averaged values over 100 executions, setting a
time limit of 10 min. For each man, a tree-shaped fuzzy CSP over f features of
domain size d is generated by randomizing the preference values. Each woman
is represented by a randomly generated fuzzy CSP with a generic topology over
the same number of f features and a constraint density of 50%. Thus, the whole
generated FSM problem consists of n = df individuals on each side.

In the first test we fixed d and measured the execution time needed to find
a stable matching while increasing the number of features f . Results for Next1
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are shown in Fig. 1(a), where GS-next1-lists is GS run on precomputed lists
obtained running Next1 exactly n2 times, whereas SoftGS1 is GS which calls
Next1 on demand. For f = 15 GS-next1-lists didn’t complete within the time
limit. SoftGS1 substantially outperforms GS-next1-lists both in space and time.
As expected from [8], GS makes on average only 2% of all possible proposals.
This justifies the advantage of an on demand implementation.

We ran the same tests on Next2−3, that is, the algorithm that calls
KCheapest, only when needed, for either L2 or L3. The results are plotted
in Fig. 1(c) where GS-next23-lists is again the implementation that runs over
full precomputed lists while SoftGS23 only precomputes the first 2% of every
preference list and then eventually asks for more. SoftGS23 is considerably bet-
ter than its equivalent that runs on precomputed lists, with an average running
time of 4.875s versus 107.202s. In Fig. 1(d) we compared the performance of the
different linearizations L1 and L2−3. As expected, solving the Weighted CSP
cost minimization problem brings additional overhead to the Next operation,
resulting in a worse performance compared to Next1.

In the second test setting, we fixed f to 5, and measured execution time as
a function of the domains cardinality d. As shown in Fig. 1(b), SoftGS1 behaves
better than GS with precomputed lists, despite the fact that n = df . The perfor-
mance of SoftGS1 is very promising as for a setting of d = 2 and f = 12 (which
means 8192 individuals to be matched), the average computation time is 1.83 s
versus 137.43 s of the version with precomputed lists. In a real world scenario of
this size, ranking 8192 individuals of the opposite sex may be impractical, while
the compact preference representation makes it feasible, as each individual only
needs to express his/her preferences over 12 features.
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Fig. 1. Computation time varying the number of variables with d = 2, and varying d
with 5 variables (f = 5).

References

1. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: a tool for
representing and reasoning with conditional ceteris paribus preference statements.
JAIR 21, 135–191 (2004)

2. Brafman, R.I., Rossi, F., Salvagnin, D., Venable, K.B., Walsh, T.: Finding the next
solution in constraint-and preference-based knowledge representation formalisms.
In: Proceedings KR 2010 (2010)



338 M.S. Pini et al.

3. Dechter, R.: Tractable structures for CSPs. In: Rossi, F., Van Beek, P., Walsh, T.
(eds.) Handbook of Constraint Programming. Elsevier (2005)

4. Dechter, R., Flerova, N., Marinescu, R.: Search algorithms for m best solutions for
graphical models. In: Proceedings AAAI 2012. AAAI Press (2012)

5. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Amer.
Math. Monthly 69, 9–14 (1962)

6. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms.
MIT Press, Boston (1989)

7. Meseguer, P., Rossi, F., Schiex, T.: Soft constraints. In: Rossi, F., Van Beek, P.,
Walsh, T. (eds.) Handbook of Constraint Programming. Elsevier (2005)

8. Pilotto, E., Rossi, F., Venable, K.B., Walsh, T.: Compact preference representation
in stable marriage problems. In: Rossi, F., Tsoukias, A. (eds.) ADT 2009. LNCS, vol.
5783, pp. 390–401. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04428-1 34

http://dx.doi.org/10.1007/978-3-642-04428-1_34


Determining Nash Equilibria for Stochastic
Positional Games with Discounted Payoffs

Dmitrii Lozovanu1(B) and Stefan Pickl2

1 Institute of Mathematics and Computer Science, Academy of Sciences, Moldova,
Academy str., 5, 2028 Chisinau, Moldova

lozovanu@math.md
2 Institute for Theoretical Computer Science, Mathematics and Operations Research,

Universität der Bundeswehr München, 85577 Neubiberg-münchen, Germany
stefan.pickl@unibw.de

Abstract. A class of discounted stochastic games is formulated and
studied by applying the concept of positional games to Markov deci-
sion processes with expected total discounted reward criteria. Existence
results of pure and mixed stationary Nash equilibria for the considered
class of discounted stochastic positional games are presented and an app-
roach for determining the optimal strategies of the players is proposed.

Keywords: Stochastic positional game · Discounted payoffs · Station-
ary strategy · Nash equilibrium

1 Introduction

In this paper we formulate and study a class of stochastic games by applying the
concept of positional games to discounted Markov decision processes with finite
state and action spaces. We consider Markov decision processes that may be
controlled by several actors (players) as follows. The set of states of the system
in a Markov process is divided into several disjoint subsets that represent the
position sets for the corresponding players. Each player controls the process only
in his position set via the feasible actions in the corresponding states. The aim
of each player is to determine which action should be taken in each state of his
position set in order to maximize his own discounted sum of step rewards. The
step rewards in the states with respect to each player are known for an arbitrary
feasible action in the corresponding states of the position sets. We consider
the infinite horizon stochastic games and assume that players use stationary
strategies of a selection of the action in the states, i.e. each player in his arbitrary
position uses the same action for an arbitrary discrete moment of time. For
the considered class of games we are seeking for a Nash equilibrium. We show
that for stochastic positional games with discounted payoffs stationary Nash
equilibria exist. Moreover, we show that for the considered class of games there
exist stationary Nash equilibria in pure strategies. Based on these results we
propose an approach for determining the optimal strategies of the players.
c© Springer International Publishing AG 2017
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2 Formulation of a Discounted Stochastic Positional
Game

An n-player stochastic positional game with discounted payoffs is determined by
the following elements:

– a finite set of states X;
– a partition X = X1 ∪ X2 ∪ · · · ∪ Xn of X, where Xi represents the position

set of player i ∈ {1, 2, . . . , n}, Xi ∩ Xj = ∅ for i �= j;
– a finite set of actions A(x) for an arbitrary state x ∈ X;
– a step reward ri(x, a) with respect to each player i ∈ {1, 2, . . . , n} for an

arbitrary state x ∈ X and an arbitrary action a ∈ A(x);
– a transition probability function p : X × ∏

x∈X

A(x)×X → [0, 1] that gives the

transition probabilities pa
x,y from an arbitrary x ∈ X to an arbitrary y ∈ X

for a fixed action a ∈ A(x), where
∑

y∈X

pa
x,y = 1, ∀x ∈ X, a ∈ A(x);

– a discount factor λ, 0 < λ < 1;
– a starting state x0.

The game starts in the state (position) x0 at the moment of time t = 0. If this
position belongs to the set of positions of player k ∈ {1, 2, . . . , n}, i.e. x0 ∈ Xk,
then player k selects an action a0 ∈ A(x0). After that players 1, 2, . . . , n receive
the corresponding rewards r1(x0, a0), r2(x0, a0), . . . , rn(x0, a0) and the dynam-
ical system passes randomly to a state y = x1 ∈ X according to probability
distributions pa0

x0,y where x1 is reached at the moment of time t = 1. In gen-
eral, if at the moment of time t the state of the dynamical system is xt ∈ X
and this state belongs to the set of positions of player i ∈ {1, 2, . . . , n}, i.e.
xt ∈ Xi, then player i selects an action at ∈ Xi and players 1, 2, . . . , n receive
the corresponding rewards r1(xt, at), r2(xt, at), . . . , rn(xt, at). After that the
system passes randomly to the a state y = xt+1 according to probability distri-
butions pxt,y and so on. Such a play induces a sequence of states and actions
x0, a0, x1, a1, . . . , xt, at, . . . that defines a stream of rewards ri

0, r
i
1, r

i
2, . . . , where

ri
t = ri(xt, at), i = 1, n, t = 0, 1, 2, . . . . The infinite stochastic positional game

with discounted payoffs is the game with the following payoffs of the players

σi
x0

= lim
t→∞ inf E

(
t∑

τ=0

λτri(xτ , aτ )

)

, i = 1, n.

Each player in this game selects actions from the feasible set of actions in the
state of his position set in order to maximize his own discounted sum of rewards.

Note that in a standard formulation of a stochastic game it is assumed that
to each player i ∈ {1, 2, . . . , n} in each state x ∈ X it is associated a feasible
action set Ai(x) and for a fixed set of actions a1, a2, . . . , an of the players from
the corresponding feasible action sets A1(x), A2(x), . . . , An(x) the corresponding
rewards ri = ri(x, a1, a2, . . . , an), i = 1, n are determined uniquely.
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So, the rewards in a state depend on actions of all players. Additionally the
transition probability distribution in a state x ∈ X also depends on the profile
a = (a1, a2, . . . , an) of actions chosen by all players, i.e. pa

x,y = p
(a1,a2,...,an)
x,y .

We can see that a stochastic game becomes a stochastic positional game if for a
given partition X = ∪n

k=1Xk the rewards ri(x, a1, a2, . . . , an) and the probability

distributions p
(a1,a2,...,an)
x,y are defined as follows:

ri(x, a1, a2, . . . , ak, . . . , an) = ri(x, ak),∀ak ∈ Ak(x), i = 1, n if x ∈ Xk.

p(a
1,a2,...,ak,...,an)

x,y = pak

x,y, ∀ak ∈ Ak(x), if x ∈ Xk.

3 Stochastic Positional Games in Stationary Strategies

A strategy of player i ∈ {1, 2, . . . , n} in a stochastic positional game game is
a mapping si that provides for every state xt ∈ Xi a probability distribution
over the set of actions Ai(xt). If these probabilities take only values 0 and 1,
then si is called a pure strategy, otherwise si is called a mixed strategy. If these
probabilities depend only on the state xt = x ∈ X (i.e. si does not depend on
t), then si is called a stationary strategy, otherwise si is called a non-stationary
strategy. So, we can identify the set of stationary strategies Si of player i ∈
{1, 2, . . . , n} with the set of solutions of the system

{ ∑

ai∈Ai(x)

si
x,a = 1, ∀x ∈ Xi;

si
x,a ≥ 0, ∀x ∈ Xi, ∀a ∈ Ai(x).

(1)

A basic solution of this system corresponds to a pure strategy for player i. If sk

is a stationary strategy of player k then the probability transitions from a state
x ∈ Xk to the states y ∈ X can be calculated as follows psk

x,y =
∑

a∈A(x) sk
x,apa

x,y

and the corresponding step rewards ri(x, sk), i = 1, n in a state x ∈ Xk for
a given strategy sk of player k are calculated as ri(x, sk) =

∑
a∈A(x) sk

x,ari
x,a,

i = 1, n. If s = (s1, s2, . . . , sn) is a profile of strategies of the players then we
can determine the matrix of transition probabilities P s = (ps) and the matrix
Qs(λ) = (I − λP s)−1 induced by the profile s. Therefore, for the given start-
ing state x0 and a given profile s = (s1, s2, . . . , sm) of stationary strategies
we can determine the corresponding discounted sum of rewards for the play-
ers σi

x0
(s) =

∑m
k=1

∑
y∈Xi

qx0,y(λ)ri(y, sk), i = 1, n, where qx,y(λ) represent
the elements of the matrix Qs(λ). The functions σ1

x0
(s), σ2

x0
(s), . . . , σn

x0
(s)

on S = S1 × S2 × · · · × Sn define a game in normal form that we denote
by 〈{Si}i=1,n, {σi

x0
(s)}i=1,n 〉. This game corresponds to a discounted stochastic

game in stationary strategies with a fixed starting state. In the case when the
starting state is chosen randomly according to a given distribution {θx} on
X we obtain a discounted stochastic positional game with random starting state.
For such a game we assume that the play starts in the states x ∈ X with prob-
abilities θx > 0 where

∑
x∈X θx = 1.



342 D. Lozovanu and S. Pickl

If the players use mixed stationary strategies of a selection of the
actions in the states then the payoff functions ψi

θ(s
1, s2, . . . , sn) =∑

x∈X θxσi
x(s1, s2, . . . , sn), i = 1, n on S define a game in normal form. In the

case θx = 0, ∀x ∈ X \ {x0}, θx0 = 1 the considered game becomes a stochastic
game with fixed starting state x0.

In a more detailed form the considered class of games in stationary strate-
gies can be formulated as follows: Let S1, S2, . . . , Sn be the corresponding sets of
stationary strategies for players 1, 2, . . . , where each Si, i ∈ {1, 2, . . . , n} corre-
sponds to the set of solutions of system (1). On S we consider n payoff functions
ϕi

x0
(s1, s2, . . . , sn) = σi

x0
, i = 1, n, where σi

x for x ∈ X satisfy the conditions

σi
x − λ

∑

y∈X

∑

a∈A(x)

sk
x,a pa

x,yσi
y =

∑

a∈A(x)

sk
x,a ri(x, a)i, ∀x ∈ Xk; i, k = 1, n.

These functions on S define a game in normal form that corresponds to the
discounted stochastic positional game with starting state x0. In the case when the
starting state of the game is chosen randomly according to a given distribution
{θy} on X we have the payoffs ϕi(s1, s2, . . . , sm) =

∑
y∈X θyσi

y, i = 1, n.

4 Pure and Mixed Stationary Nash Equilibria

In Sect. 2 we have shown that the discounted stochastic positional game repre-
sents a special case of the general discounted stochastic game. Therefore based
on results from [1,2,5] we obtain the following theorem.

Theorem 1. An arbitrary discounted stochastic positional game possesses of a
stationary Nash equilibrium.

In the following we show that for an arbitrary discounted stochastic game there
exist a pure stationary Nash equilibrium. Such a result we obtain on the bases
of the following theorem.

Theorem 2. Let a discounted stochastic positional game with a discount factor
0 < λ < 1 be given. Then there exist the values σi

x, i = 1, n for x ∈ X that
satisfy the following conditions:

(1) ri(x, a) + λ
∑

y∈X

pa
x,yσi

y − σi
x ≤ 0, ∀x ∈ Xi, ∀a ∈ A(x), i = 1, n;

(2) max
a∈A(x)

{

ri(x, a) + λ
∑

y∈X

pa
x,yσi

y − σi
x

}

= 0, ∀x ∈ Xi, i = 1, n;

(3) on each position set Xi, i ∈ {1, 2, . . . , n} there exists a map si∗ : Xi → A

such that si∗(x) = a∗ ∈ arg max
a∈A(x)

{

ri(x, a) + λ
∑

y∈X

pa
x,yσi

y − σi
x

}

, ∀x ∈ Xi

and rj(x, a∗) + λ
∑

y∈X

pa∗
x,yσj

y − σj
x = 0, ∀x ∈ Xi, j = 1, 2, . . . , n.

The set of maps s1
∗
, s2

∗
, . . . , sn∗ determines a Nash equilibrium for the dis-

counted stochastic positional game and ϕi
x(s1∗

, s2
∗
, . . . , sn∗) = σi

x, ∀x ∈ X,
i = 1, n. Moreover s∗ = (s1∗

, s2
∗
, . . . , sn∗) is a Nash equilibrium for an arbi-

trary starting position x ∈ X. Taking into account that such a property holds for
each player we obtain the proof of the theorem.
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Proof. According to Theorem 1 for a discounted stochastic positional game
there exists a Nash equilibrium s∗ = (s1∗

, s2
∗
, . . . , sn∗). Let us fix the strate-

gies s1
∗
, s2

∗
, . . . , si−1∗

, si+1∗
, . . . , sn∗ of the players 1, 2, . . . , i − 1, i + 1, . . . , n

and consider the problem of determining the expected total discounted cost with
respect to player i. Then the optimal stationary strategy for this Markov deci-
sion problem is si∗ and based on results from [3,4] there exist the values σi

x

for x ∈ X that satisfy the conditions ri(x, a) + λ
∑

y∈X

pa
x,yσi

y − σi
x ≤ 0, for

x ∈ Xi, ∀a ∈ A(x), where max
a∈A(x)

{

ri(x, a)+λ
∑

y∈X

pa
x,yσi

y −σi
x

}

= 0, ∀x ∈ Xi

and si∗(x) = a∗ ∈ arg max
a∈A(x)

{

ri(x, a) + λ
∑

y∈X

pa
x,yσi

y − σi
x

}

, ∀x ∈ Xi.

So, the theorem holds. �
Remark 1. In the considered stochastic positional game it is assumed that the
discount factor λ is the same for all players. In general, such a game can be
formulated for the case when for different players the discount factors may be
different. So, we may assume that each player i ∈ {1, 2, . . . ,m} has his own
discount factor λi and the payoffs ϕi

x0
(s1, s2, . . . , sn), i = 1, n for a fixed starting

state x0 are determined taking into account the corresponding discount factors
λi, i = 1, n. In this case Theorem 2 holds if in conditions (1)–(3) we replace λ
by λi. So, for the considered game there exists a pure Nash equilibrium.

5 Conclusion

The discounted stochastic positional games represents a special class of dis-
counted stochastic games for which pure stationary Nash equilibria exist. The
optimal pure stationary strategies of the players can be found on the basis of
Theorem 2.
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Abstract. Collective decision making is classically done via social
choice theory with each individual expressing preferences as a (total)
order over a given set of alternatives, and the group’s aggregated prefer-
ence is computed using a voting rule. However, such methods do not take
into account the rationale behind preferences. Our research hypothesis is
that a decision made by participants understanding the qualitative ratio-
nale (i.e., arguments) behind each other’s preferences has better chances
to be accepted and used in practice. To this end, we propose a novel
qualitative decision process which combines argumentation with com-
putational social choice. We show that a qualitative approach based on
argumentation can overcome some of the social choice deficiencies.

1 Introduction

Taking decisions is a part of our everyday life. From the simplest ones, e.g.,
choosing which movie we are going to watch in the theater, to the most complex
ones, e.g., selecting a government, a decision has to be made. The way to achieve
a decision though can be a very complex task. Usually decision makers make
their decisions based on different criteria and aspects that they consider to be
important. One should wonder then what happens when we want to take a
justified and fair collective decision, which leads us to the following questions.
How do agents form their thoughts and reason their preferences? How should we
aggregate them in order to have a democratic collective decision? That is the
problem we are dealing with in this paper.

The commonly used way of making such a collective decision is using social
choice theory. Each agent of the group expresses her preference as a total order
over a set of alternatives, and then the group’s preference is computed from the
individual preferences using a voting rule. In the classical voting, the collective
decision is computed from quantitative methods by taking into account only
the agents’ preferences without knowing why the agents have these preferences
and what is the rationality behind it. Thus, classical social choice presents a
framework where the justifications for the agents’ preferences are not considered.

We believe that qualitative methods where humans can understand the rea-
soning behind the preferences have more chances to be accepted. This gives us

c© Springer International Publishing AG 2017
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the motivation to combine Argumentation with Computational Social Choice:
we believe that enriching the collective decision making procedure with an argu-
mentation framework will provide the explanation behind the decision. To this
end, we are placing the decision problem within the boundaries of an abstract
argumentation framework. Abstract argumentation provides a flexible and robust
tool for non-monotonic reasoning. It was introduced by Dung [4] and is based
on the evaluation of interacting entities called arguments. The argumentation
systems are represented by graphs, where the nodes represent the arguments and
the edges represent the attacks, or conflicts, between them. Various semantics
defined by Dung and other researchers have been proposed to identify coherent
sets of arguments, which are based on the attack relations between them.

In our problem, the decision to be recommended lies on a set of alternatives.
The decision will be derived from the justified preferences of the set of agents
over the alternatives. The justified preferences are the outcome of a deliberation
phase where each agent reveals her preferences and their justifications. The col-
lection of agents’ rankings is known as preference profile. The preference profile
of the agents and the justifications are used to build an argumentation frame-
work that will help us build the justified preference profile, which includes the
preferences produced after the deliberation and corresponds to the different col-
lective viewpoints of the agents. The objective is to fairly aggregate the justified
viewpoints by using a voting rule.

The classical problem in social choice theory is which voting rule is the most
appropriate for aggregating the preference profile. Unfortunately, due to the
impossibility results by Arrow [1] and Gibbard-Satterthwaite [5,6] there is no
hope of finding a voting rule that can be “perfect”. Despite that, social choice
theory has enhanced our perception among proposed voting rules, where each
of them has different characteristics, qualities and weaknesses. One of the most
prominent rules in the history of social choice, and which is generally acclaimed
as a founding method of the field, is the one proposed by the Marquis de Con-
dorcet. The Condorcet method [3] relies on comparisons between each pair of
alternatives. An alternative x is said to beat alternative y in a pairwise election
(comparison) if a majority of agents prefer x to y, i.e. rank x above y. The alter-
native who beats every other alternative in a pairwise comparison is the winner.
Unfortunately, there are preference profiles where the collective preferences are
cyclic, i.e., not transitive. For example if we have 3 alternatives x, y, z and the
results of the pairwise comparisons are: x beats y, y beats z and z beats x then
we say that a voting cycle occurs. This contradictory phenomenon is known
as the Condorcet paradox [2]. Despite this paradox, the Condorcet criterion is
widely acclaimed as the most intuitive way of voting and it is the aim of this
paper to provide an approach that always avoids the Condorcet paradox thanks
to the construction of justified preference profiles.

2 Preliminaries

Social Choice Theory. We consider a set of N = {1, . . . , n} agents and a
set of alternatives A, |A| = m. Each agent i ∈ N has preference relations (�)
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over the alternatives denoted with x �i y which means that agent i prefers
alternative x to y. We define that each preference relation satisfies transitivity
and hence, the set of all the preference relations for agent i produces a linear
(total) order �i on A, i.e., the ranking of agent i over the alternatives. Let LA be
the set of linear orders over A. A preference profile �PP = 〈�1, . . . ,�n〉 ∈ Ln

A

is a collection of the linear orders for all the agents. A voting rule is a mapping
f : Ln

A → 2A \ {∅} from preference profiles to nonempty subsets of alternatives,
which designates the winner(s) of the election. For two candidates x, y ∈ A, and
�PP∈ Ln

A, alternative x beats y in a pairwise comparison if |{i ∈ N : x �i

y}| > n/2, that is, if a (strict) majority of agents prefer x to y. A well-known
voting rule is the Condorcet method : the Condorcet winner is an alternative that
beats every other alternative in a pairwise comparison. The Condorcet paradox
is a situation in which collective preferences can be cyclic (i.e. not transitive),
even if the preferences of individual agents are not cyclic. A voting cycle occurs
when we have 3 alternatives x, y, z such that |{i ∈ N : x �i y}| > n/2,
|{i ∈ N : y �i z}| > n/2, and |{i ∈ N : z �i x}| > n/2.

Argumentation. In order to be general with regards to the deliberation step,
we are using the abstract argumentation framework proposed in [4]:

Definition 1 (Argumentation framework). An argumentation framework
(AF) is a pair (A,R), where A is a finite nonempty set of arguments and R is
a binary relation on A, called attack relation. Let a, b ∈ A, aRb means that a
attacks b .

The coherent sets of arguments (called “extensions”) are determined according
to a given semantics whose definition is usually based on the following concepts:

Definition 2 (Conflict-free set, defense and admissibility). Given an AF
(A,R), let a ∈ A and S ⊆ A,

– S is conflict-free iff there does not exist a, b ∈ S such that aRb.
– S defends an argument a iff each attacker of a is attacked by an argument of

S.
– S is an admissible set iff it is conflict-free and it defends all its elements.

Definition 3 (Semantics). Given an AF (A,R), let E ⊆ A. E is

– a complete extension iff E is an admissible set and every argument which is
defended by E belongs to E.

– a preferred extension iff E is a maximal admissible set (wrt set inclusion ⊆).
– the grounded extension iff E is a minimal (wrt ⊆) complete extension.
– a stable extension iff E is conflict-free and attacks

any argument a /∈ E.

Given a semantics, the set of extensions of (A,R) is denoted by E.

It should be noted that in this paper we focus on the preferred semantics since it
ensures the existence of at least one extension, which is needed since extensions
will be used as voters, and their maximality, which ensures that each extension
represents a full ranking over the alternatives. Other semantics will be considered
in future work.
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3 A Decision Model Based on Justified Preferences

In the proposed model we are considering the case of taking a decision using
a qualitative argumentative approach and voting theory. Observe that the sug-
gested process is an argumentative approach that relies on combining the quali-
tative preferences and not a voting rule whose role is to aggregate the individual
preferences with quantitative methods. In our problem we have a set of alterna-
tives and the agents whose justified preferences over the alternatives will deter-
mine the decision to be taken. Each agent provides a justification for each of the
preference relations on the alternatives and we demand the preference relations
to be transitive so a ranking with the preferences of the agent is built. We use
this information to formulate arguments which express the agents’ preferences.
More precisely, we are going to distinguish between three types of arguments:
preference relation arguments, ranking arguments and generic arguments.

Preference relation arguments. A preference relation argument axy repre-
sents a justification given by an agent to consider the preference x � y. Note
that we may have multiple axy arguments, in the case where some agents have
different justifications for the preference x � y. The set of preference relation
arguments is denoted AP .

It should be noted that due to what they represent, the arguments axy
and ayx cannot be considered together in a coherent view point since they are
“opposed”. Consequently, we assume that those arguments attack each other.

Ranking arguments. A ranking argument represents one of the possible rank-
ing over the considered alternatives. It is important to note that in our setting,
we always consider all the possible ranking arguments; it will be the agents’ pre-
rogative to justify why a ranking should not be considered as we will see below.
We denote by AR the set of all the possible ranking arguments and by ARx···y
the set of ranking arguments where the preference x � · · · � y is satisfied. More-
over, we define a special ranking argument a∅ that represents a ranking without
preference; it can be seen as the blank vote resulting from either non-transitive
preference relations or no justified preferences.

Like preference relation arguments, we consider ranking arguments as mutu-
ally inconsistent. For this reason, we assume that ranking arguments attack each
other, with the exception of a∅ that attacks no argument. In this way, we repre-
sent the fact that having a reason to consider a ranking forbids the possibility
of considering blank voting. Furthermore, ranking arguments can be attacked
by preference relation arguments. Indeed, giving a justification for x � y (i.e.
giving an argument axy) is a reason for ignoring the rankings with y � x (i.e.
ARyx

): axy is attacking the elements of ARyx
.

Generic arguments. Generic arguments regroup all the other possible argu-
ments that can arise during a debate. In particular, those arguments are only
able to attack other generic arguments and preference relation arguments (for
instance if the reason given for considering x � y is itself justified to be
wrong). It is important to note that while the flexibility offered by the abstract
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argumentation setting is convenient for its generality, it can also lead to unde-
sirable behaviors. Hence, we propose the following restriction.

Axiom 1 (Independence of preference justifications). Given two prefer-
ence relation arguments axy and auv, such that {x, y} 	= {u, v}, then there is no
generic argument ag such that both paths of attacks from ag to axy and from ag
to auv exist.

The intuition is that the discussions about each pairwise preference are indepen-
dent, i.e. a generic argument cannot have an impact on preferences over different
alternatives.

Computing the justified profile. Using the arguments and attacks shown
above in an argumentation framework, it is possible to compute the sets of
“coherent preferences”, represented by the extensions. Hence, it is important to
remark that this process allows to move from the direct aggregation of agents’
preferences to the aggregation of rational and justified preferences (and their
corresponding rankings).

More precisely, multiple extensions are computed (unless there is a consensus
among the agents). Each extension contains preference relation arguments and a
single ranking argument which corresponds to a coherent aggregation of possible
preference relations with their justifications. Hence, it is now possible to consider
the extensions as (virtual) voters and aggregate their rankings. We consider
the ranking of each extension (except if the extension contains the blank vote)
as a justified preference J Pk. The set of justified preferences is denoted by
J P; hence, |J P| = |E \ {E ∈ E : a∅ ∈ E}|. Each justified preference has
preferences over the alternatives denoted with x �J Pk

y which means that
justified preference J Pk prefers alternative x to y. Informally, the collective
justified preference profile is the set of all the justified preferences.

Definition 4 (Justified preference profile). A justified preference profile
�J P = 〈�J P1 , . . . , �J P|JP|〉 ∈ L|J P|

A is a collection of linear orders for all the
justified preferences.

As noted before, the justified preference profile can have multiple justified
preferences (extensions) so we refer to classical social theory for aggregating
them. The construction of the justified preference profile allows to avoid the
Condorcet paradox.

Theorem 1. There are no voting cycles in any justified preference profile under
the preferred semantics.

4 Conclusion and Future Work

In this paper, we have proposed a framework for decision-making using qualita-
tive preferences instead of social choice methods which rely only on the quanti-
tative aggregation of the individual preferences. The method allows to take into
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account the justifications behind these preferences, and compute the collective
justified preferences which allows to overcome the Condorcet paradox.

As future work, we want to extend our research on Argumentation and Com-
putational Social Choice towards multi-criteria decision-aiding. The combination
of these two fields will allow to explain the decisions rationally, which may allow
for decisions procedures that will have more chances to be accepted by the soci-
ety. To strengthen this view we plan to propose quantitative methods that can
evaluate the different decision-making procedures, in particular in the context
of real world examples.
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Abstract. Conditional importance networks (CI-nets) provide a formal
framework for modeling and reasoning with qualitative preferences over
sets of many variables. Existing approaches for verifying the satisfiability
of a CI-net operate on a complete model of the CI-net’s semantics, but
the time required to construct this model limits the practical usefulness
of CI-nets. We present an algorithm that decides a CI-net’s satisfiability
by analyzing a sufficient partial model of its semantics, and we show how
to efficiently construct such a model. Our method significantly reduces
the average time needed to verify the satisfiability of CI-nets.

1 Introduction

Conditional importance networks, or CI-nets [1], provide an expressive language
for specifying and reasoning over qualitative conditional preferences among sets
of items. To ensure that preference reasoning over a CI-net is sound, one must
verify that the CI-net is satisfiable, i.e., it contains no cycles of preferences.
Existing methods for this, including [1,4], construct a preference graph that
explicitly represents the (partial) preference ordering defined by a CI-net. A CI-
net is satisfiable if and only if its preference graph is acyclic [1], but the time
cost to construct the graph dominates the time cost to verify satisfiability.

This paper presents a new algorithm for verifying CI-net satisfiability without
the full preference graph, which significantly reduces the average time needed to
verify a CI-net’s satisfiability. We describe and empirically evaluate our imple-
mentation of this algorithm, then discuss future applications of this work.

2 Overview of CI-Nets

We use the definitions for conditional importance statements (CI-statements)
and conditional importance networks (CI-nets) from [1], given here as Defini-
tion 1. Let V be a finite set of binary variables, each of which indicates whether
a given proposition is true or false. We assume that each proposition is preferred
to be true and that propositions do not directly contradict each other.

Definition 1. A CI-statement on V is a quadruple (S+, S−, S1, S2) of pairwise
disjoint subsets of V. This CI-statement can be written as S+, S− : S1 � S2. A
CI-net on V is a set C of CI-statements on V.
c© Springer International Publishing AG 2017
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Informally, a CI-statement can be interpreted to mean: “Given two sets of
items chosen from V, if both sets include the items in S+ and neither set includes
the items in S−, then I would rather have the set that has all items in S1 instead
of the set that has all items in S2, ceteris paribus (all else being equal).”

The semantics of CI-nets are defined by [1] in terms of worsening flips, which
are pairs of sets of variables (V1, V2) such that V1 is preferred to V2 (V1 � V2). In
contrast, [4] defines CI-net semantics in terms of improving flips, where (V1, V2)
means that V2 is preferred to V1 (V2 � V1). Our proofs are based on improving
flips, but it is simple to rewrite them using worsening flips. From this point on,
the word “flip” denotes either a worsening or an improving flip unless noted.

Given variable sets V1 and V2, V1 is preferred to V2 under a CI-net C (C |=
V1 � V2) if and only if C defines an improving flipping sequence from V2 to V1.

Definition 2 ([4], after [1]). A sequence of sets of variables V1, V2, · · · , Vn is an
improving flipping sequence w.r.t. a CI-net if and only if, for 1 ≤ i < n, either

1. (Monotonicity Flip) Vi+1 ⊃ Vi; or
2. (Importance Flip) a CI-statement S+, S− : S1 � S2 satisfies the following:

(a) Vi+1 ⊇ S+, Vi ⊇ S+, and Vi+1 ∩ S− = Vi ∩ S− = ∅;
(b) Vi+1 ⊇ S1, Vi ⊇ S2, and Vi+1 ∩ S2 = Vi ∩ S1 = ∅; and
(c) if V̄ = V \ (S+ ∪ S− ∪ S1 ∪ S2), then V̄ ∩ Vi = V̄ ∩ Vi+1.

Condition 1 states that a set with more variables is always preferred to a set
with fewer variables. Condition 2 states that if the variables in S+ are included
and the variables in S− are not included, then including the variables in S1 is
more important than including the variables in S2, all else being equal (ceteris
paribus). The same flip may be both a monotonicity flip and an importance flip,
and monotonicity and importance flips may directly oppose each other.

3 Efficiently Verifying CI-Net Satisfiability

A CI-net is satisfiable if and only if it does not define any cycle of flips (Proposi-
tion 2 in [1]). We begin this section by proving several results that lead to a new
necessary and sufficient condition for satisfiability of a CI-net, which is equivalent
to the condition defined in [1] but can be verified for a given CI-net using only
its importance flips. We then use these results to define our new algorithm for
verifying a CI-net’s satisfiability without constructing the full preference graph.

Theorem 1. Let an empty CI-net be a CI-net that contains no CI-statements.
Every empty CI-net is satisfiable.

Proof. Suppose an empty CI-net C over a set of preference variables V is not sat-
isfiable. Then C has a cycle of k flips V1� · · ·�Vk �V1, where k ≥ 1 and V1, . . . , Vk

are unique subsets of V. Since C is empty, all flips of C are monotonicity flips.
Therefore V1 ⊃ · · · ⊃ Vk ⊃ V1, which is not possible. �
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It follows directly from Theorem 1 that monotonicity edges alone cannot
form a cycle. Therefore, it is sufficient for a model of a CI-net’s semantics to
encode only importance flips. The following results show that we can focus our
efforts on a subset of the importance flips without compromising correctness.

Definition 3. An importance flip (or edge) V1 �V2 of a CI-net C is widening if
|V1| > |V2|, steady if |V1| = |V2|, or narrowing if |V1| < |V2|. These classes form
a partition of the set of importance flips (or edges) of C.

The following proofs use improving-flip semantics, i.e., widening flips move
in the same direction as monotonicity flips. If worsening-flip semantics are used,
then narrowing flips must be used instead of widening flips (and vice versa).

Theorem 2. Every CI-net with zero or more widening importance flips, but no
other (steady or narrowing) importance flips, is satisfiable.

Proof. By induction on the number n of widening flips. When n = 0, Theorem 1
holds. For n > 0, let C be a satisfiable CI-net with n − 1 widening flips and no
steady or narrowing flips. Add one widening flip V1 � V2 to C. Since |V1| > |V2|
(Definition 3), there is no monotonicity flip from V1 to any subset of V2. There
is also no importance flip from V1 to any subset of V2, since C has no narrowing
flips. Thus V2 is not reachable from V1, so C has no cycles and is satisfiable. �	
Theorem 3. A CI-net C is satisfiable if and only if it has no steady or nar-
rowing importance flips that are part of a cycle.

Proof. Immediate from Proposition 2 in [1] and from Theorem 2. �	
Theorem 3 suggests an effective algorithm for verifying CI-net satisfiability,

shown here as Algorithm 1. The IsSatisfiable function first constructs the set
CImp of all importance flips induced by a given CI-net C. Each pair (Vi, Vj)
in CImp denotes an importance flip Vj � Vi specified by C. IsSatisfiable then
calls InCycle to begin analyzing the CI-net semantics. With each recursive call,
InCycle checks whether each flip from a given variable set Vj leads to a “safe”
set of variables, i.e., one that has been verified to not be in a cycle. If all recursive
calls to InCycle return false, then Vj is safe, so the original call to InCycle
returns false. If InCycle is called twice on the same variable set during the
recursion, then Vj leads to a cycle; in this case, InCycle returns true.

To avoid repeatedly exploring flips, IsSatisfiable and InCycle share a
mapping M that stores the current status of each variable set: either New (not
explored yet), OnPath (currently being explored), or Safe (already explored and
found to be safe). Initially, M(Vi) is set to New for every Vi ⊆ V. The mapping
is updated by InCycle as it explores the CI-net’s semantics. After a variable
set’s status is set to Safe, its outgoing flips will not be explored again.

4 Evaluation and Future Work

Theorem 4. A given CI-net C is satisfiable if and only if IsSatisfiable
returns true when invoked with C as its argument.
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Algorithm 1. Decide if CI-net is satisfiable
function IsSatisfiable(C)

let V be the set of CI-variables over which C is defined
let CImp = ∅ � CImp is the set of importance flips
for all statements S+, S− : S1 � S2 ∈ C do

for all γ ⊆ V \ (S+ ∪ S− ∪ S1 ∪ S2) do
CImp ← CImp ∪ {(γ ∪ S+ ∪ S2, γ ∪ S+ ∪ S1)}

let M : 2V → {New ,OnPath,Safe}, where initially ∀Vi ⊆ V : M(Vi) = New
for all CI-variable sets Vi ⊆ V in descending order from V to ∅ do

for all importance flips Vj � Vi ∈ CImp where |Vj | ≤ |Vi| do
if InCycle(CImp , M, Vj , |Vi|) then

return false
return true � if no statement is in a cycle

function InCycle(CImp , M, Vj ,n)
if M(Vj) = Safe then

return false � Vj is not part of any cycle
else if M(Vj) = OnPath then

return true � cycle found: Vj already visited on this path
else if M(Vj) = New then

M(Vj) ← OnPath
if ∃Vk ⊆ V : Vk � Vj ∈ CImp and InCycle(CImp , M, Vk,n) then

return true
if ∃Vk ⊆ V : Vk ⊃ Vj , |Vk| ≤ n, and InCycle(CImp , M, Vk,n) then

return true
M(Vj) ← Safe � no path from Vj is in a cycle
return false

Proof. ImportanceFlips returns CImp , which is the set of all importance flips
induced by C. For any given set of variables Vi, InCycle returns true if and
only if it finds a cycle of improving flips that is reachable from Vi according to
the CI-net semantics. Since IsSatisfiable invokes InCycle on every steady
or narrowing importance flip of C and returns true if any one call to InCycle
returns true, the satisfiability condition of Theorem 3 is fulfilled. �	

It is PSPACE-complete to check the satisfiability of CI-nets and similar mod-
els [3]. The theoretical time complexity of Algorithm 1 is O

(
N2

)
, where N is

the number of possible outcomes (sets of variables). This is not an apparent
improvement over [4], but we suspect that it is not a tight upper bound for our
algorithm’s complexity; space constraints prevent a detailed discussion here.

Figure 1 compares the mean time and memory used by our method and the
method of [4] (using version 2.6.0 of the NuSMV model checker) to verify 780
randomly generated CI-nets, defined over 5 to 17 binary variables with either 5
or 10 CI-statements. The test set contained 30 CI-nets with each combination of
n variables and m statements. This figure shows that our algorithm significantly
reduces the average time and memory needed to check the consistency of many
CI-nets, compared to an approach that constructs the entire preference graph.
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Fig. 1. Empirical evaluation results: mean time usage with (a) 5 statements and (b)
10 statements, and mean memory usage with (c) 5 statements and (d) 10 statements.

We are exploring how to further improve this algorithm’s efficiency while pre-
serving its correctness. One possibility might be a hybrid approach that uses our
method to construct reduced models of parts of the CI-net semantics, which are
then verified using model checking as in [4]. We are also exploring the feasibility
of a Datalog approach to CI-net satisfiability verification, similar to the Data-
log implementation of CP-nets as Logical Conditional Preferences (LCP) in [2].
This algorithm is a step toward our long-term goal of developing a “preference
workbench”, which will include facilities for editing, visualizing, comprehending,
and tracing preferences within a CI-net (or related) preference model.
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Abstract. The objective we focus on here consists in discovering the
topology of an energy distribution network modeled by a flow digraph
from which we only know the set of arcs without identification of their
extremities. We also have as inputs a set of temporal series of flow mea-
sures on these arcs and the correlation matrix of the arcs, with possible
errors. From these inputs, we consider the graph which incidence matrix
is the correlation one. If the correlation matrix contains no errors, this
graph is the line graph of the network to be discovered. Thus, given this
graph, we then propose here algorithms determining the graph with the
same vertex set being a line graph and maximizing the set of similar edges
with the initial correlation graph. We then evaluate the performances of
this approach by simulation on 50 networks, randomly generated.

Keywords: Flow network · Line graph · Topology discovery

1 Introduction

The aim of our work is to predict a probable topology of the network, consid-
ered as a DAG, knowing only the links (without knowing their extremities) and
matching to the flow measures on them. Indeed, the contribution of this paper
consists in algorithms to discover the topology of a flow network from a binary
adjacency matrix called matE obtained by the correlation of the flow measures.
Let’s remember that 1 means two measures are correlated and 0 means two
measures are not correlated. The method used to correlate measures is Symbolic
Aggregate approXimation (SAX) [2]. These correlations, if they are correct,
induce the line graph [3] of the underlying undirected graph of the network
under consideration. In fact, a line graph L(G) of an undirected graph G is a
graph such that each vertex of L(G) represents an edge of G and two vertices of
L(G) are adjacents iff their corresponding edges share a common endpoint in G.
Unfortunately, measure errors often appear and the topology deduced from the
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correlations is not that of the desired line graph. The objective is to correct this
graph in order to obtain a line graph as close as possible to that of the DAG.

Various works have been devoted to the discovery of a graph from its line
graph [1,3,4]. In particular, initial works [4] show that a graph is a line graph iff
it admits a decomposition of its set of edges in cliques such that each vertex is
covered by one or two cliques. Line graphs can also be characterized by a set of
nine forbidden induced subgraphs [3]. A concept of root graph was introduced by
Whitney [5] and he proved that if two line graphs are isomorphic and connected,
then their root graphs are isomorphic except for the triangle graph.

Algorithms, we present here, are two main features. First, they propose the
best clique decomposition whether there are no errors in the correlation matrix.
We use the Kirchhoff law of flows to find out a cover of vertex in the ambiguity
situation (Fig. 1). Second, for cases in which the correlation matrix contains
errors i.e. some 1 in the matrix should be 0 and vice versa, algorithms suggest a
flow network topology which is as near as possible to the initial topology of the
network considered. The predicted topology is close to the real topology if few
false negative and false positive correlations are corrected.

This paper is structured as follows. Section 2 relates to the definition of the
problem. Section 3 defines the algorithms for resolving our problem and finally
Sect. 4 presents the results obtained from the simulation of algorithms on 50
networks of 25 vertices generated randomly.

2 Problem

We consider that we only know the set of arcs on the flow network, i.e. the
extremities of each arc are unknown. To each arc, we have a serie of measures
with possible errors. Our goal is to find the topology of the initial network
from these measures. We suppose that the binary adjacency matrix matE of
arcs has already be computed through a SAX method [2]. Columns and rows
of the matrix matE are the arcs of the flow network we want to predict. Let
G be the undirected graph from which matE is the adjacency matrix. If matE
is correct then G is the line graph of the unknown target DAG GR. The aim
is then to determine GR from G, using line graph properties. If not, we look
for a line graph G′ = (V,E′) the closest one to G. To be done, we define the
Hamming distance dH(G,G′) between two graphs like the Hamming distance
between these adjacency matrices i.e. the number of different edges between
two matrices. We denote by line-distance of G, noted DL(G), the smallest
Hamming distance between G and a predicted line graph, assuming that they
have the same vertices. If matE is incorrect then the graph G is not a line graph
and we use proxy-line to get this property. Let the following problem be:

Problem: Proxi-Line
Data: A graph G = (V,E) and an integer k.
Question: Is there DL(G) ≤ k?

We are interested in a minimisation problem combined with Proxi-Line i.e.
the resolution of DL(G).

The problem is clearly NP. We conjecture that it is NP-complete.
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3 Algorithms

To solve this problem, we propose to use two consecutive algorithms in order to
resolve Proxi-Line problem. Consider G the undirected graph from which matE
is the adjacency matrix. It is known that a graph G = (V,E) is a line graph
iff it exists a set of cliques C of G such as each vertex of V belongs to one or
two cliques of C and each edge of E belongs to a subgraph induced by only one
clique of C. In this case, the set C is called a correlation cover of G.

3.1 Cover Algorithm

This algorithm is similar to Lehot’s algorithm [1] since it looks for the clique
decompositions of the line graphs. In fact, at each step, the algorithm selects
first the vertices not treated enough covered by one clique and afterwards the
vertices not treated covered by two cliques. At the end of the algorithm, the
correction algorithm is launched if it exists the vertices belonging to any cliques.

We have demonstrated that the only cases, where a line graph has two cor-
relation covers, are in the Fig. 1 (framed vertex). These ambiguities are resolved
using the measure correlations.

Fig. 1. Possible graphs with two covers and framed ambiguity points

3.2 Correction Algorithm

We suggest an algorithm which applies to the vertices covered by any cliques
and modifies the initial set EC by adding or deleting edges in order to get a line
graph. Let Ei

C be the edge set of G after the (i-1)-th vertices had been already
treated in the order z1, z2, ..., zt. In the following, we denote by z = zi a vertex
and by Ci the set of cliques of GC at the i-th step. Thus E1

C = EC et C = C1.
The idea of this algorithm is to cover the neighborhood of the vertex z into

three partitions π1, π2, πs such as:

– π1 ∩ π2 = {z}
– π1 (resp. π2) is the union of two cliques C1 and C2 ∈ C which any edge [u, v]

of EC such that u ∈ C1 and v ∈ C2 is not covered by a clique (other that
{u, v}) in C. Edges, missing to the partition π1 (resp π2), are added to the
edge set EC .

– πs is the set of vertices such as the edges [v, z] ∈ EC , v ∈ πs have to be
removed.
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Fig. 2. A partition example (Color figure online)

Figure 2 is an example of the partition π1, π2, πs in which the vertex z belongs
to two cliques π1 (in red) and π2 (in green). The dashed lines are the added
edges and the dotted lines are the removed edges.

A cost c(T ) of partition T = π1, π2, πS is minimal and takes into account the
edges to add (linked to π1 and π2) and to remove (linked to πS). The following
update procedures allow to obtain Ci+1 and Ei+1

C by applying this partition:

– Delete all cliques Cz of cardinal more than 1 covered by π1 and π2 in Ci.
– Add π1 and π2 in Ci, delete from Ei

C all edges {[z, v] ∈ Ei
C : v ∈ πS}.

– Assign Cliq(z) to 1 (if π1 or π2 is empty) or 2 (else).

Thus, for each vertex zi of a list z1, z2, . . . , zt taken in that order, we consider
a minimum partition cost cim and we apply it. At the end of process, we obtain a
correlation graph Gt

C = (V,Et
C) whose the modified set C is a correlation cover.

The line-distance verifies DL(G0
C , Gt

C) ≤ ∑
1≤i≤t cim. We notice that during a

j > 1 step, the vertex zj and its neighborhood are covered by one or two cliques
after the processing of j − 1 previous vertices.

The two algorithms process once each vertex in the graph. The complexity of
vertex processing is exponential depending of each vertex degree and the cliques
to which the vertex belongs, here again depends on the size and the number of
cliques. Global algorithm is thus pseudo-polynomial depending on the degree of
the graph.

4 Result Analysis

We consider n = 50 flow networks having 25 vertices and the degree of each
vertex is between 2 and 5. The line graphs of the flow network are generated
and we deleted k = [1..5] edges on these graphs. We introduce two metrics: line-
distance mean (noted moy DL) and Hamming distance mean (noted moy DH)
corresponding respectively to the means of the line-distance and the Hamming
distance when k different edges are deleted α times randomly. If this number
(moy DL or moy DH) is 0, there are no edge differences between the predicted
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Fig. 3. Mean line/Hamming distances

and initial line graphs. Whereas, these line graphs have no common edge when
the number is 1.

Figure 3 shows the distribution of the number of graphs in relation to
moy DL or moy DH. In the x-axis, there are values of the line-distance mean
and of the Hamming distance mean. In the y-axis, there is the number of line
graphs associated to a specific mean.

We find that:

– More than 50% of the predicted line graphs are close to line graphs with
deleted edges. They have the line-distance mean less than 0.033.

– If the initial line graphs have a lot of deleted edges, most predicted line graphs
are not near from the latter. This is illustrated by the case of 5 deleted edges
where there is no graph having moy DL <0.017.

– There is a gap between the line-distance mean and Hamming distance mean.
This is explained by the discovery of some deleted edges in a proportion of
25%. However, it is difficult to find out deleted edges when there are removed
many edges. This is illustrated in the 4 deleted edges and 5 deleted edges cases
(Fig. 3) where the histogram points of Hamming distance mean are greater
than those of line-distance mean.

We conclude that our algorithms provide line graphs very close to the original
line graphs. However, they tend to add missing edges (i.e. missing correlations)
in the case of weak errors in the correlation matrix and imaginary edges when
the adjacency matrix has too much correlation errors. Furthermore, tests are
realized on real flow networks. It was not conclusive because of the number of
errors in the correlation matrix and the high degree (i.e. around 10) of each
vertex.

The evaluation of simulations of these algorithms shows that they predict
corrected graphs close to the real ones when the number of measure correlation
errors is weak. In the future, we improve the correction algorithm in order to
treat a graph in which each vertex has a high degree and also look for directing
edges i.e. which sets on edges are incoming or outgoing of a vertex.
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Abstract. Effective management of border security requires effective measure‐
ment of the impact of alternative policies on unwanted cross-border flows. There
are no agreed-upon ways to measure the amount of any particular inflow; some
indicators are believed to rise and fall with each in-flow, but they do not measure
the total flow. To combine multiple measures proportional to an unmeasurable
flow, we introduce Principal Ray Analysis. The resulting estimates of fractional
change in unseen flows, combined with cost information, support optimal incre‐
mental resource allocation, for any single type of flow. Extension to multiple
flows requires agreement on the relative importance of reducing each of the flows.
A common data store is recommended to support rational debate on cross-flow
allocations and overall “security.”

Keywords: Decision making · Resource allocation · Principal Ray Analysis

1 Introduction

Effective management of border security requires measuring the impacts of alternative
policies. Despite considerable research [1, 4, 5, 8], and principles from other domains
(Espenshade [2]), there are no accepted ways to measure any particular inflow, in a given
week, month or year. Some indicators may rise and fall with each inflow, but none
provides an accurate measure of the total flow. Thus counterfeit purses detected (with
constant effort; not with a change in practices) likely represents some fraction of all
counterfeit purses, at least on the average. If so, a 25% increase in detected purses
suggests a 25% increase in the (unknown) number of undetected purses. Similar argu‐
ments will apply to other inflows.

For any specific flow of goods or persons, the key “measure of harm” is the part of
the flow that is neither deterred nor detected. Stakeholders in one state may be more
concerned to reduce flows into their own state, and less concerned if the flow is merely
diverted to another state, rather than being reduced. This very brief note considers the
problem of a single flow, as it is assessed by a single state or stakeholder.

For a single flow, and a single stakeholder we ask: “which of several alternative
policies should receive the next increment of funding?” A radical restructuring of the
entire program might yield lower flow than can be found by incremental search among
policy alternatives, but seems politically unrealistic.

With limitation to a single flow the decision problem is: which of several increments
in resource allocation yields the greatest reduction in that flow? We do not know how
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to measure the volume of flow and propose using a collection of parallel measures to
estimate the fractional reduction, but not the absolute reduction. The flow, and actions
to reduce it, form a temporal and conceptual sequence. Flow begins with “motivating
factors,” leading actors to initiate a cross-border activity. Their actions next reflect any
“deterrent factors,” which are perceived to increase the cost or risks of cross-border
activity. The next factors are “detection/apprehension.” Finally, experts suggest that
“consequences” of apprehension, although coming last in the chain, affect the motivating
factors. They are only in play if apprehension occurs.

The key ideas are:

1. Assess the fractional decrease in flow per unit cost for each alternative.
2. Fractional measure of improvement supports allocation if the proportionality of

measure to unseen variable is stable over the data analysis and policy implementation.
3. With several imperfect indicators of the unmeasured flow: (1) apply “ray clustering,”

[not illustrated here] to find a cluster of imperfect indicators moving together over
time and believed (by experts) to “move in proportion” to the unseen flow; and (2)
use a relative of orthogonal projection which we call Principal Ray Analysis to
extract an indicator that is, in a well-defined sense, proportional to the unseen flow.

4. Use this common indicator to assess the fractional impact of a policy change, during
a trial period.

5. After a set of trial periods, rank alternate policies, based on the ratio of the fractional
improvement to the cost of that policy.

2 Context of the Problem

These suggestions flow from several years of research, interviews within the US Depart‐
ment of Homeland Security (DHS), including operational personnel and Washington
decision makers, and review of relevant literature. That research sought a “single
measure for the security of the border.” While some agencies and decision makers might
offer such measures, for some flows, none are directly observable. An example is “total
dollar value of counterfeit luxury items.” Similarly, one U.S. Coast Guard officer noted
“what really counts is not how much cocaine is caught or dumped. What counts is
reducing the number of deaths from imported narcotics, isn’t it.”

Stakeholders for the problem of measuring border security include: lawful manu‐
facturers and retailers of proprietary goods, employers with undocumented workers;
property owners along the border, etc. Local, tribal, state and federal agencies are tasked
with enforcing laws that constrain these inflows. Finally, the citizens of each nation,
have concerns from, on the one hand, stemming flow of synthetic drugs to, on the other
hand, owning an inexpensive counterfeit handbag or wristwatch.

No policy change will jointly increase the welfare of these diverse stakeholders. We
suggest that a common collection of objective data will serve them all, permitting
rational and democratic discussion of the tensions among goals, and of the effectiveness
of various plans and policies. Despite recent public attention to the bizarre notion of
“alternative facts,” we hold, with the late US Senator Moynihan [9], that each party to
a debate is entitled to his own opinions, but not to “his own facts.”
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3 Sequential Causal Factors

A flow occurs when a member of some potential population is motivated to attempt a
border crossing, is not deterred and is not detected/apprehended. This chain may be
represented as a product: (Fx(t) = undetected attempts of type x in time period t.
Gx(t) = undeterred attempts of type x in time period t; Hx(t) = potential attempts of type
x in time period t; qx(t) = the fraction of attempts that are deterred; cx(t) = fraction of
(undeterred) attempts that are detected and apprehended). These are related by:

Fx(t) =
(
1 − cx(t)

)
Gx(t)

Gx(t) =
(
1 − qx(t)

)
Hx(t)

If we find indicators approximately proportional to these inflows at any stage, we
can infer useful information about the effect of factors “to the right” in these equations,
even while the magnitude of the overall inflow remains undetermined.

4 Measuring Flow Reduction

Suppose for the moment, that there is a single preferred indicator, Ix(t) for each of the
flows Fx(t). Information collected during trials of alternative policies lets us divide the
percentage reduction by the added cost of the practice (see Table 1). We must be careful.
First, many techniques from statistics or engineering use interval scale data; cost and
the fractional improvement are ratio scale data [6, 7]. Second, detection or search
exhibits diminishing returns, making it important to test similar effort levels.

Table 1. Notional comparison of several practices. If experiments are done at the same border
point, to improve comparison; they can’t be done at once. The prior value for the indicator will
not be the same in each trial. Therefore improvement is measured as the fractional reduction in
the flow. Added cost is measured, e.g., in Euros. The Impact is the fractional improvement divided
by the incremental cost of the tested practice, rescaled to O(1). See text.

Added
practice

Prior indicator Effect
indicator

Improvement Cost of
practice

Impact
(×10,000)

Practice 1 243 216 11% (2) €1,800 0.62 (1)
Practice 2 195 180 8% €1,600 0.48
Practice 3 302 285 6% €800 0.70

Notes: (1) Impact is measured in “percentage improvement per €10,000.” (2) For a large change, such as 11%, the relation
between effort and Indicator may not be linear.

Table 1 shows that Practice 3 has the greatest impact, suggesting that it is the best
way to spend the next increment to reduce this flow. But efforts at deterrence or detection
(like search efforts generally) improve more slowly as they approach 100%. Practice 1,
with nearly twice the improvement, at more than twice the cost, might show higher
impact than Practice 3, if funded at only €800. Whether to change policy now, or do
another trial is best left to the agencies. Note, our analysis applies only if the amount of
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funding for controlling this (or any other) specific flow is fully pre-allocated, which is
in principle sub-optimal. To compare policies affecting different or multiple flows, one
must weight the relative importance of distinct improvements.

5 Inferring Single Measures: Principal Ray Analysis (PRA)

Our procedure is akin to orthogonal regression, used in econometrics [3]. We seek a
single ray (normalized Euclidean vector) most nearly aligned with all of the rays repre‐
senting the several indicator time series. We minimize the summed squared distance
from the ray sought, to the indicator rays. The indicator rays are: xk

t
, (k labels the K

indicators; t labels the time periods). Using Lagrange multipliers, one finds that the
closest ray, itself a time series, is the non-negative eigenvector of the (T-by-T, where T
is the number of time periods) matrix:

Mst =
∑

1≤k≤K

uk

s
uk

t
.

This eigenvector time series is shown as column “PRA” of Table 2 (data simulated).

Table 2. Principal component analysis contrasted to principal ray analysis (see text)

X1 X2 X3 X4 PCA factor 1 PRA True level Fract change
2.90 3.47 10.58 14.61 −0.80 0.23 3 NA
2.89 3.15 9.65 15.69 −0.95 0.24 3
2.85 3.07 11.62 14.35 −0.90 0.24 3
4.01 4.26 15.45 21.11 1.09 0.34 4 41%
4.03 4.13 19.06 20.98 1.42 0.36 4
4.41 3.53 15.50 16.87 0.62 0.30 4
2.76 1.92 5.87 7.63 −2.59 0.13 2 −53%
2.23 1.93 11.21 8.15 −2.20 0.17 2
1.90 1.73 10.47 8.73 −2.46 0.17 2
5.31 5.84 19.54 24.20 3.01 0.40 5 138%
5.09 4.56 16.99 25.03 2.19 0.39 5
4.49 4.76 19.11 17.43 1.59 0.33 5

An unwary reader might seek the hidden driver using Factor Analysis, or Principal
Component Analysis (PCA). We show the results of applying PCA in Table 2. While
PCA (similarly, Factor Analysis) immediately shows the four time periods to be quite
different, what it cannot do is to tell us the relative size of the latent driving variable,
denoted by “True Level.” PRA yields a unique eigenvector whose elements are all
different from zero and of the same sign. This vector is shown as PRA in Table 2. Since
the interventions are constant in each set of three time periods we average the corre‐
sponding values of, PRA, to support estimates of fractional change in the (hidden) vari‐
able of interest. The reader may verify that the ratio of this mean, to the “Truth” is very
nearly constant. We then compute the fractional change in the mean. This estimator of
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proportional variation is in pretty good agreement with the actual change from period
to period (e.g., from 3 to 4, 33% estimated as 41%). These estimators have larger errors
than the estimates for the sub-periods, as they use differences of two independently noisy
estimators. Increasing their precision requires more measurement per period, increasing
the duration of the trial, decreasing the interval used for measurement, or increasing the
number of indicator variables entering the analysis.

6 Translational Considerations

In a real application the set of indicators (X1,…XK) will be determined by a combination
of mathematical and expert analyses. Details will be presented elsewhere. For multi-
flow comparison we recommend that the Impact ratios be reported objectively, to
support open discussion of their relative importance (weight) to stakeholders.

Excel is widely accepted and serves for data entry. The PRA eigen-vector finding is
done in freely available Octave, and if invoked by Excel, completes a usable package.

Acknowledgments. The author thanks Isaac Maya, Henry Willis, and Ali Abbas, of the
CREATE Center at USC for valuable discussions, and experts at the US Department of Homeland
Security (DHS) who contributed time and expertise to educating us; DHS/OUP program officers
Joseph Kielman and Gia Harrington, head DHS Office of University Programs (OUP), Matt Clark
who saw the potential of rigorous management science in managing border security. Crucial
thanks to Fred Roberts, and colleagues at CCICADA; and to Vicki Bier and Jeff Linderoth at the
University of Wisconsin Dept. of Industrial and Systems Engineering, for support. Supported by
DHS Contract 2009-ST-061-CCI002-07 and NSF Grant #1247696. Opinions expressed are those
of the author and not of CCICADA, the DHS or the NSF.

References

1. Cfir, D.: A model of Border Patrol to support optimal operation of border surveillance sensors.
Thesis, Naval Postgraduate School (2005). http://calhoun.nps.edu/handle/10945/1837

2. Espenshade, T.J.: Undocumented migration to the United States: evidence from a repeated
trials model. In: Bean, F.D., Edmonston, B., Passel, J.S. (eds.) Undocumented Migration to
the United States: IRCA and the Experience of the 1980s, pp. 159–181 (1990)

3. Malinvaud, E.: Statistical Methods of Econometrics. North-Holland Pub., American Elsevier
Pub., Amsterdam, New York (1970)

4. Morral, A.R., et al.: Measuring Illegal Border Crossing Between Ports of Entry: An Assessment
of Four Promising Methods. Rand Corporation, Santa Monica (2014)

5. Roberts, B., Hanson, G.: An Analysis of Migrant Smuggling Costs Along the Southwest
Border. Office of Immigration Statistics Working Paper (2010)

6. Roberts, F.S.: Limitations on conclusions using scales of measurement. In: Handbooks in
Operations Research and Management Science, vol. 6, pp. 621–671 (1994)

7. Stevens, S.S.: On the theory of scales of measurement. Science 103, 677–680 (1946)
8. Wein, L.M., et al.: Analyzing the Homeland security of the US-Mexico Border. Risk Anal.

29(5), 699–713 (2009)
9. Moynihan, D.: Wikiquote. https://en.wikiquote.org/wiki/Daniel_Patrick_Moynihan

Measuring Border Security for Resource Allocation 365

http://calhoun.nps.edu/handle/10945/1837
https://en.wikiquote.org/wiki/Daniel_Patrick_Moynihan


Doctoral Consortium



Incremental Preference Elicitation for Collective
Decision Making

Margot Calbrix(B)

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6 CNRS,
UMR 7606, LIP6, 75005 Paris, France

margot.calbrix@lip6.fr

1 Introduction

Most of collective decision procedures used in group decision making require a
full ranking or rating of the alternatives from the agents. However, the complete
specification of preferences can be a cognitively difficult task when the number
of alternatives increases. It is particularly the case on combinatorial domains,
as alternatives are very numerous and implicitly defined. Moreover, the deter-
mination of a winner does not necessary requires the agents to express their
preferences over the entire set of alternatives. Even when preference information
is too poor to determine a winner, it may be sufficient to rule out some alter-
natives. Additionally, a partial specification of preferences would allow them to
keep a certain privacy. This shows the importance of designing computer-aided
elicitation procedures aiming to focus the elicitation burden on the useful part
of preference information and motivates the topic of my PhD.

2 Related Works

Different ways of dealing with incompletely specified preferences are being devel-
oped. A first approach consists of checking if available preferences are sufficient
to determine a necessary winner (i.e. an alternative that is optimal whatever the
missing preferences are). If no such alternative exists, we may focus our attention
on possible winners (i.e. alternatives that are optimal for at least one complete
extension of preferences), see [4,11,17]. However, it may be the case that the
available preference information is too poor for a necessary winner to exist,
and that possible winners are too numerous. Incremental elicitation enables to
overcome this problem by gathering new preference information to progressively
reduce the set of possible winners and potentially determine a necessary winner.

Several methods are being developed to minimize the communication and
cognitive burden imposed on the agents by the preference elicitation procedure.
Some methods [6,7] rely on the progressive updating of a probability distribution
on the set of preferences: preference queries are selected according to the expected
value of information provided by the possible answers. Some other methods [5,16]
adopt a more pessimistic approach based on max-regret minimization. In this
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case, preference queries are selected according to their ability to reduce regrets
in the worst case scenario of answer.

Incremental elicitation is of particular interest on combinatorial domains, as
the agents cannot be expected to provide preferences over the entire set of feasi-
ble alternatives. However the determination of a necessary winner as well as the
active selection of informative preference queries are much more difficult due to
the implicit definition of the set of alternatives. Some recent works tackle this
problem in specific contexts such as constraint satisfaction [9], planning [14],
state space search [1], spanning trees [2]. This approach has also been extended
to multi-agents decision problem, e.g. in stable matching problems [8] and mul-
tiwinner social choice [3,12]. Following this line, we investigate in this thesis the
parallel incremental elicitation of individual preferences in new collective deci-
sion contexts. For the sake of illustration, we will consider below the incremental
elicitation of cardinal utilities in the Multi-agents Knapsack Problem (MKP).

3 The Example of the Multi-agent Knapsack Problem

Consider a set of items N = {1, . . . , n}, and a set of agents A = {1, . . . , p}. Each
item i is characterized by its positive weight wi, and p positive utilities u1

i , . . . , u
p
i

that represent the subjective values attached to this item by the agents. A knap-
sack is a subset of N modeled by a vector x = (x1, . . . , xn) of binary variables
where xi = 1 if and only if item i belongs to the subset of selected items. The goal
is to maximize the agents satisfaction under a weight constraint:

∑n
i=1 wixi ≤ W .

Applications of the MKP cover multiple concrete issues, such as multiwinner
elections, projects selection, and capital budgeting [12,13,15]. As usual in the
standard knapsack problem (KP), agent’s preferences over subsets are repre-
sented by additive utilities of the form: f j

u(x) =
∑n

i=1 u
j
ixi, j ∈ A. For purposes

of simplicity, we consider here the utilitarian criterion to represent social pref-
erences, measuring the overall utility of a solution by: fu(x) =

∑p
j=1 f

j
u(x). In

this problem, the preference information is completely specified by the matrix u
of general term uj

i , i = 1, . . . , n, j = 1, . . . , p.
When the matrix u is known, maximizing the overall utility fu(x) clearly

boils down to a standard single agent KP. However, when individual utilities are
unknown, the multi-agents version of the problem cannot be reduced straightfor-
wardly to a standard KP. Incremental elicitation takes place in this context, and
consists in interleaving preference elicitation with a combinatorial optimization
algorithm to progressively focus the search on the preferred alternatives until
determining a necessary optimal knapsack.

Combining Elicitation and Dynamic Programming. The standard KP is usually
solved by dynamic programming as a sequential decision problem. Starting with
the empty set, the algorithm considers the decision of selecting or not select-
ing item k at step k. Let Xk be the set of all sequences of decisions of type
(x1, . . . , xk) that fulfill the weight constraint

∑k
i=1 wixi ≤ W . Let U be the set

of possible utility matrices (uncertainty set) constrained by some knowledge of
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the agents’ preferences. Given the uncertainty set U , we consider the following
dominance relation over Xk:

(x1, . . . , xk) �k
U (y1, . . . , yk) ⇐⇒

{
∀u ∈ U,

∑k
i=1(xi − yi)

∑p
j=1 u

j
i ≥ 0

∑k
i=1(xi − yi)wi ≤ 0

The asymmetric part of relation �k
U (denoted �k

U hereafter) is useful to
prune partial solutions that cannot be extended into an optimal solution. If
(x1, . . . , xk) �k

U (y1, . . . , yk), then any extension of solution (y1, . . . , yk) is domi-
nated by the same extension of (x1, . . . , xk), whatever the utility matrix u ∈ U .
Remark that any new preference statement of type “I prefer x to y” from an agent
j in A translates into a linear constraint of the form

∑n
i=1(xi−yi)u

j
i ≥ 0 restrict-

ing U . Hence, assuming that some preference statements have been obtained
from the agents, U is nothing else but the convex polyhedron defined by the
linear constraints derived from these statements. Interestingly, relation �k

U can
be tested using linear programming by checking that:

minu∈U

∑k
i=1(xi − yi)

∑p
j=1 u

j
i ≥ 0 and

∑k
i=1(xi − yi)wi ≤ 0

These remarks lead us to propose a dynamic programming algorithm to con-
struct the possibly optimal knapsacks for a given uncertainty set U , using at any
step k ∈ {1, . . . , n} the relation �k

U to prune dominated solutions in Xk. This
algorithm is actually a baseline to design incremental elicitation algorithms. If
at any step k, we obtain a new preference statement reducing the uncertainty
set U , relations �k

U will be refined, allowing a better discrimination between
partial solutions under consideration. So we propose inserting preference queries
at every step of the dynamic programming algorithm. In order to generate use-
ful preference queries, we introduce now a new regret minimization strategy
specially tailored for the KP.

The fact that, at a given step k, partial solutions of different weights are
present in Xk prevents us to implement a standard max-regret minimization
process. In order to overcome this problem, we define symmetrical pairwise
max regret (SPMR) of a pair of solutions x, y ∈ Xk, as the minimum between
PMR(x, y) and PMR(y, x) where PMR(x, y) = maxu∈U{fu(y)−fu(x)}. The pair
of solutions (x∗, y∗) that maximizes the SPMR is used to generate the queries
we ask to the agents (one per agent), and we keep asking preference queries until
the max-SPMR drops below a given positive threshold. The preference queries
are generated as follows: we identify for each agent the item having the most
imprecise utility in those items belonging to x∗ XOR y∗; then we use a standard
gamble query per agent to reduce the uncertainty attached to the items under
consideration. We also test another approach based on the direct rating of item
k at step k.

Numerical Tests. We have implemented and tested both strategies on randomly
generated instances of different size (the number of items varies from 10 to 20 and
the number of agents varies from 10 to 30) and we evaluated their performances
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in terms of computation time and number of questions. The results obtained
by averaging over 30 instances can be seen in Fig. 1 for the approach based on
gamble queries, and in Fig. 2 for the approach based on direct rating. We can see
that both strategies are efficient. The average computational time never exceed
10 min. If the average number of questions is greater than the number of items
in the approach based on the gamble queries, it is nonetheless much smaller
than the number of feasible knapsacks, and of course smaller than the number
of queries necessary to obtain a precise definition of individual utility functions.
Numbers of queries are significantly reduced with the strategy based on direct
rating but the direct assessment of items may be cognitively difficult for users,
especially when the range of the proposed utility scale is important.

n 10 15 20

10 agents 3.1 16.2 52.1
20 agents 4.9 42.5 248.2
30 agents 9.9 62.4 363.1

(a) computation time (in s)

n 10 15 20

10 agents 12.3 24.5 36.0
20 agents 13.9 28.2 40.6
30 agents 14.0 29.0 43.3

(b) queries per agent

Fig. 1. Computation time and number of gamble queries

n 10 15 20

10 agents 5.9 42.2 130.3
20 agents 11.4 104.2 407.7
30 agents 19.1 147.3 572.1

(a) computation time (in s)

n 10 15 20

10 agents 6.1 10.5 15.1
20 agents 6.0 10.3 15.0
30 agents 5.9 10.5 14.5

(b) queries per agent

Fig. 2. Computation time and number of direct rating queries

4 Perspectives

The model we studied (utilitarian model with additive preferences) is simple: we
chose to address difficulties one at the time, and, this way, we have been able to
tackle the problem of building an appropriate incremental elicitation procedure.
The simplicity of this model also makes it improvable. A first way to improve
it would be to resort to more sophisticated social welfare functions. It would
be interesting to extend the study by considering Ordered Weighted Average
(OWA) for fu. However, the OWA is not a linear criterion, it is therefore difficult
to compute the PMR values. Moreover, OWA-optimal solutions may include
subsolutions at step k that are OWA-dominated, which prevents resorting to
standard dynamic programming algorithm.

The representation of agents preferences can be improved too. In practical
problems that can be modeled as a KP, items often interact and we may want
to model positive or negative synergies between items. Preferences involving
synergies can be represented by Choquet Integrals, or k-additives utilities [10].
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Of course, these representations would require a greater number of questions
to be elicited. There is a subtle balance to keep between expressiveness of the
model used and the elicitation burden imposed by the model.

Besides, the incremental approach is worth investigating in other combinato-
rial optimization problems involving multiple agents such as multiagent assign-
ment problems or multiagent scheduling problems.

References

1. Benabbou, N., Perny, P.: Combining preference elicitation and search in multiob-
jective state-space graphs. In: IJCAI, pp. 297–303 (2015)

2. Benabbou, N., Perny, P.: On possibly optimal tradeoffs in multicriteria spanning
tree problems. In: International Conference on Algorithmic DecisionTheory, pp.
322–337 (2015)

3. Benabbou, N., Perny, P.: Solving multi-agent knapsack problems using incremental
approval voting. In: 22nd European Conference on Artificial Intelligence (ECAI
2016) (2016)

4. Betzler, N., Dorn, B.: Towards a dichotomy for the possible winner problem in
elections based on scoring rules. J. Comput. Syst. Sci. 76(8), 812–836 (2010)

5. Boutilier, C., Patrascu, R., Poupart, P., Schuurmans, D.: Constraint-based opti-
mization and utility elicitation using the minimax decision criterion. Artif. Intell.
170(8–9), 686–713 (2006)

6. Chajewska, U., Koller, D., Parr, R.: Making rational decisions using adaptive utility
elicitation. In: Proceedings of AAAI 2000, pp. 363–369 (2000)

7. Dery, L.N., Kalech, M., Rokach, L., Shapira, B.: Reaching a joint decision with
minimal elicitation of voter preferences. Inf. Sci. 278, 466–487 (2014)

8. Drummond, J., Boutilier, C.: Elicitation and approximately stable matching with
partial preferences. In: IJCAI, pp. 97–105 (2013)

9. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Elicitation strategies
for soft constraint problems with missing preferences: Properties, algorithms and
experimental studies. Artif. Intell. J. 174(3–4), 270–294 (2010)

10. Grabisch, M., Labreuche, C.: A decade of application of the choquet and sugeno
integrals in multi-criteria decision aid. Ann. Oper. Res. 175(1), 247–286 (2010)

11. Konczak, K., Lang, J.: Voting procedures with incomplete preferences. In: Proceed-
ings of IJCAI-05 Multidisciplinary Workshop on Advances in Preference Handling,
vol. 20 (2005)

12. Lu, T., Boutilier, C.: Multi-winner social choice with incomplete preferences. In:
Proceedings of IJCAI 2013, pp. 263–270 (2013)

13. Oren, J., Lucier, B.: Online (budgeted) social choice. In: AAAI, pp. 1456–1462
(2014)

14. Regan, K., Boutilier, C.: Regret-based reward elicitation for Markov decision
processes. In: UAI, pp. 444–451 (2009)

15. Skowron, P., Faliszewski, P., Lang, J.: Finding a collective set of items: from pro-
portional multirepresentation to group recommendation. In: Proceedings of AAAI
2015, pp. 2131–2137 (2015)

16. Wang, T., Boutilier, C.: Incremental utility elicitation with the minimax regret
decision criterion. In: Proceedings of IJCAI 2003, pp. 309–316 (2003)

17. Xia, L., Conitzer, V.: Determining possible and necessary winners given partial
orders. J. Artif. Intell. Res. (JAIR) 41, 25–67 (2011)



Logic-Based Merging in Fragments of Classical
Logic with Inputs from Social Choice Theory

Adrian Haret(B)

Databases and Artificial Intelligence Group (DBAI),
Institute of Information Systems (E184/2), TU Wien, Vienna, Austria

haret@dbai.tuwien.ac.at

1 Background

Aggregation. One does not need to look far to find problems which require har-
monization of different, possibly conflicting, preferences. Problems of this sort
occur, on a grand scale, in national elections. But they also occur on smaller
scales, in day-to-day decision processes such as friends settling on a place for
lunch, or co-workers choosing available timeslots for a meeting. And, of course,
they are encountered in the technical domain: an automated recommender sys-
tem designed to suggest items to a group of agents, will first have to get an idea
of the group’s preferences. To do that it should take into account the individual
preferences, typically by looking at how they rate various products, and distil
them into a portrait of the group’s desires [15,16]. Elections, hungry friends
and target groups are all situations in which a collection of agents needs to be
thought of and modelled as a single agent. And one wonders, naturally, about
the best, most efficient way to do this.

Combinatorial domains. Aggregation of preferences has been studied for some
time under the umbrella of Social Choice Theory. In the standard Social Choice
model agents collectively choose from a given set of alternatives, each agent
ranking the alternatives on a list. An aggregation rule then combines the lists
and selects a winner.

But we can easily imagine that, instead of having to pick one winner, agents
are required to vote on several issues at the same time; or, that they may have to
choose a combination of alternatives, such as a committee. We can also imagine
that preferences have a structure which is richer than what a simple list of
the alternatives can represent. An agent may say to itself: “I want A only if
B is there as well; if not I would rather have C and D, but then A and C is
better than B and C,” and so on. In other words, agents can have preferences
over bundles of alternatives, and it might not be straightforward to infer these
complex preferences from rankings on individual alternatives. My father, for
example, likes to smoke and drink coffee. And his tastes are such that if he
cannot do both activities at the same time, he would rather do none of them
than either in isolation.

Known as combinatorial voting, this topic has lately been subject to intense
scrutiny [1,6,14]. Most work is dedicated to reconciling two extremes, both of
c© Springer International Publishing AG 2017
J. Rothe (Ed.): ADT 2017, LNAI 10576, pp. 374–378, 2017.
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which are untenable: either we simplify the aggregation procedure to a point
where results threaten to become meaningless, or we require things from voters
which are prohibitively costly. A workable solution needs to be found somewhere
in between, and this frames the underlying question addressed by my research:

What are the means available for artificial agents to express complex pref-
erences? And how shall (inevitable) conflicts be resolved?

What we need is a language in which voters can express preferences in a com-
pact form, a way in which one can say very much with very little. Preferably,
such a language is easy to handle (by machines) and intuitive (for us), an agree-
able middle ground between the formal rigour of computers and the cognitive
sensibilities of human reasoners.

2 Research Topics

The approach I take in the thesis is to start from a known and beloved for-
mal language which has already proven its worth in representing knowledge,
namely propositional logic. To handle aggregation problems in propositional
logic we design an operator tasked with performing exactly this kind of reason-
ing: given multiple sources of information, the operator analyses them, resolves
conflicts and returns a consistent compromise view. ‘Design’ is an appropriate
word here, since it involves formulating suitable properties which such an oper-
ator is expected to satisfy. The sub-field of Artificial Intelligence called belief
merging [13] studies the variety of ways in which the aggregated perspective is
obtained and gives a systematic picture of the entire process.

Nonetheless, belief merging still does not go all the way towards solving the
issues raised in the previous section. Below I elaborate on the main shortcomings,
which constitute the subject of my thesis.

Topic 1. Reasoning in fragments. The price to be paid is that, from the point
of view of computational complexity, the reasoning involved in merging propo-
sitional knowledge bases can be costly [12]. Often, though, it seems that propo-
sitional logic actually provides more than enough resources, and for practical
purposes we may find that we can get along with a restricted version—a frag-
ment—of the language. Merging in fragments has, except for some notable excep-
tions [5,7], not been investigated to a great extent.

Topic 2. More than one way of being fair. Aggregation, in the social sphere, is
supposed to be fair towards the parties involved. Since merging was mainly moti-
vated by the idea of obtaining a consistent result, the basic properties expected
of merging operators tend to be light on the social aspect, and only consider the
most basic of fairness criteria. On the other hand the Social Choice literature, in
its analysis of voting rules, has developed a sophisticated arsenal of properties
relating to aggregation procedures. With some exceptions [11,18], the relation
between these properties and merging operators has until quite recently been
largely unexplored.
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Topic 3. Branching out. We know how to do merging in propositional logic and,
from work on Topic 2, we would be able to understand merging in fragments.
But human knowledge comes in other forms as well. Representation results show
us that merging operators behave as if they have preferences over the possible
outcomes described by the language, but these preferences are not encoded in
the language itself. However, there do exist formalisms designed specifically to
handle preferences [3,4] and it would be a significant achievement to extend our
results to these languages.

Research questions. Building on the topics elaborated above, the main issues
engaged with in the thesis can be summarized as follows.

1. How apt are well-known fragments of propositional logic at supporting merg-
ing tasks?

2. How do merging operators (in the case of both propositional logic and frag-
ments thereof) behave with respect to properties studied in Social Choice
Theory?

3. Can we export insights gained in (1) and (2) to other notable formalisms?

Progress so far. My research on Topic 1 has consisted in work on merging in
the Horn fragment [19] and on the deviation of standard operators from known
fragments [17]. Deviation has been introduced as a measure for quantifying a
problem often encountered when working in fragments, which is that the output
cannot always be expressed in the fragment we are working with. Research on
Topic 2 has gone towards adapting properties from Social Choice Theory to
the context of (propositional) merging, and on studying their relationship with
existing operators [18]. It remains to be seen how these properties behave in
fragments.

One outcome of Topic 1 is that we have developed a toolbox for working
with fragments, and we also have an idea of what fragment works for what kind
of task. I believe, though, that these insights can be applied more broadly. A
first confirmation was obtained by results on Argumentation Frameworks [8,10],
another prominent formalism in AI. What would give significant weight to the
thesis, now, would be an understanding of merging in languages conceived to
handle preferences. Such an application would be striking and useful, and it is
also the subject of ongoing work.

DC presentation. Voting on multiple issues is tricky because, as described in
Sect. 1, we have to strike a balance between two extremes: requiring full rankings
over all possible outcomes places too much of a burden on the agent, but using
too little information can lead to universally loathed results.

Using a language like propositional logic allows one to package combinations
of outcomes in the form of formulas, which one can then combine with a belief
merging operator. But viewed from a Social Choice perspective, merging works
by effectively asking the agents to state only their most preferred options: the
knowledge bases they provide are taken to encode the interpretations which they
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believe (or want) to be true, and these are taken to be the top choices in a set of
rankings over all possible worlds. The remaining possible worlds are then ranked
as less plausible, though under the condition that each ranking is completely
fixed by the top choices (known as the principle of irrelevance of syntax). It is
an interesting question if aggregating rankings over possible worlds under such
restrictions is still subject to celebrated results from Social Choice Theory, such
as Arrow’s theorem [2]. There exists some recent work in this direction [9], but
it requires giving up some key merging properties, like the irrelevance of syntax
mentioned above. Part of the presentation will focus on obtaining an Arrow-like
impossibility result in the merging framework, if such properties are kept.

An attractive alternative to merging is to use formalisms designed especially
for representing and reasoning with preferences [3]. This approach has its advan-
tages, because preference languages are very good at expressing the kind of struc-
tures on the space of alternatives that often characterize the preferences of real
world agents—which should come as no surprise, since preference languages are
designed with exactly this kind of thing in mind.

However, preference languages are confronted with the same kind of prob-
lems that appear in reasoning with propositional logic: expressive formalisms
make it hard to do efficient computation. So the idea arises, here as elsewhere,
of restricting the languages in some systematic way—that is to say, of using
fragments—in order to make the reasoning simpler.

Another part of the presentation will talk about merging applied to special-
ized formalisms for representing knowledge and preferences, such as the prefer-
ence logic PL and its conjunctive fragment. The focus here is on formulating
appropriate rationality constraints for a merging operator, and then exploiting
the semantic structure of the logic to obtain representation results.
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Distances have a major role in voting theory. They can determine the outcome
of an election or ways to influence elections via manipulation or bribery. In the
first part of this abstract, previotus results concerning distance-based committee
election rules are summarized, while current research questions are introduced
in the second part.
There is detailed work on elections where the desirable outcome of an election is
a single winner. However, in many situations a group of candidates is supposed
to be elected, such as a group of people for a certain project, a delegation of
politicians, or a selection of food for a party. Here we use a setting in which the
size of the committee is fixed, such that a committee election is defined by a
tuple (C, V, k), where C = {c1, . . . , cm} is the set of candidates, V = (v1, . . . vn)
a list of all votes given by the voters in the set {1, . . . , n}, and k the committee
size. As election rules the minisum- and minimax approaches are used. Brams
et al. [5] studied these procedures regarding approval voting and Baumeister and
Dennisen [3] enlarged on this matter by also considering trichotomous votes,
incomplete-, and complete linear orders. The complexity of winner determina-
tion and manipulation of these different variations was studied by Baumeister
et al. [4].

While casting votes in these forms may apply to many situations, it may not
always be sufficient or possible to rank all voters to different positions. As an
intermediate approach Baumeister et al. [2], inspired by Elkind et al.’s work on
Doodle poll games [8], introduced �-group rules.
In �-group rules, voters assort the candidates into � groups. Here a group may
be empty. The concluding vote is a list (G1, . . . , G�) with disjoint sets G(i), 1 ≤
i ≤ �, where G(i) contains all candidates allocated to group i by the voter in
question. As committee elections with a fixed size are considered, and as, in
order to calculate the election outcome, votes are compared to possible election
winners, only committees of size k are of relevance. We write W (i) = 1 for a
candidate ci in the committee W of size k and W (i) = � for a candidate ci /∈ W .
Similarly, let v(i) denote the group number of v(i) in v.
To define minisum- and minimax �-group rules the distance between a ballot v
and a committee W of size k is introduced as

δ�(v,W ) =
m∑

i=1

|v(i) − W (i)|,
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where m is the number of candidates in the election. When denoting a com-
mittee accordingly this distance corresponds to the Hamming distance between
the vote and the committee. In a minisum approach the committee (or the com-
mittees) which minimizes the sum of the distances between all votes and the
committee are the election winners.

Definition 1 (minisum �-group rule). The minisum �-group rule is a func-
tion f �

sum so that f �
sum(C, V, k) = arg minWof size k

∑
v∈V δ�(v,W ), i. e., f �

sum

minimizes the sum of disagreements of voters with the winning committees.

In the minimax approach the committee (or the committees) that minimizes
the maximal distance between a vote and the committee wins the election. The
minimax �-group rule is defined as follows:

Definition 2 (minimax � -group rule). The minimax �-group rule is a func-
tion f �

max so that f �
max(C, V, k) = arg minWof size k maxv∈V δ�(v,W ), i. e., f �

max

minimizes the disagreement of the worst satisfied voter with the winning com-
mittees.

The following example illustrates these voting rules.

Example 1. Let E = ({c1, c2, c3}, {v1, v2, v3}, 2) be an election with the following
votes:

v1 : {c1} >1 {c2} >1 {c3}
v2 : {c3} >2 {} >2 {c1, c2}
v3 : {c2, c3} >3 {} >3 {c1}

Table 1 shows each voter’s dissatisfaction with each possible committee of
size 2 as well as the voters’ sum of (respectively, the maximal) dissatisfaction
with the respective committee. For example, the dissatisfaction of the first voter
with the committee {c2, c3} is δ�(v1, {c2, c3}) = 2 + 1 + 2 = 5.

The winners under the minisum/minimax 3-group rule are highlighted in
Table 1. Under the minisum 3-group rule {c2, c3} is the unique winner of the
election (f �

sum(E) = {c2, c3}), whereas under the minimax 3-group rule candi-
date c2 is replaced by candidate c1 (f �

max(E) = {{c1, c3}}).

A central aspect of the work regards axiomatic properties. A summary of the
results by Baumeister et al. [2] is given in Table 2, while we refer to Baumeister
et al. [2] for the definitions of the properties.

However distances are not only used to determine election winners. One can
also introduce a distance to limit changes that can be made to a vote or to several
votes when elections are manipulated or bribed. In this setting we stick to single
winner elections, although an extension to committee elections is of great inter-
est. Manipulation in single winner elections, motivated by the famous results by
Gibbard [6] and Satterthwaite [9], was formally introduced by Bartholdi et al. [1]
and describes the problem of as to whether it is possible to obtain a more pre-
ferred result by voting insincerely. My current research, which is joint work with
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Table 1. Computing the winners of the committee election under the min-
isum/minimax 3-group rule

{c1, c2} {c1, c3} {c2, c3}
v1 1 3 5

v2 6 2 2

v3 4 4 0

Sum 11 9 7

Max 6 4 5

Table 2. Property results for minisum and minimax �-group rules

Properties �-group rules

Minisum Minimax

Non-imposition, Homogeneity � �
Consistency � ×
Independence of clones � ×
Committee monotonicity � ×
(Candidate) monotonicity � �
Positive responsiveness � ×
Pareto criterion � �
(Committee) Condorcet consistency × ×
Solid coalitions, Consensus committee × ×
Unanimity strong strong

my supervisor Dorothea Baumeister and Tobias Hogrebe from Heinrich-Heine-
Universität Düsseldorf, is based on a model of including distances in manipula-
tion problems introduced by Obraztsova and Elkind [7], who included distances
into manipulation by stating that it might be natural in some situations, that
a voter can only change his vote to a certain extent. In the case of construc-
tive manipulation in the unique winner model, which is of interest here, the
manipulator tries to make a distinguished candidate the unique winner of an
election.

A single winner election is a tuple (C, V ) with the set of candidates C and
the profile V , as above. The set of voters is {1, . . . n}, such that the vote vi of
voter i, 1 ≤ i ≤ n is given in V . The election outcome under a voting rule E
(we write E(C, V ) for short) is a set, containing the winner or the winners of
the election. A distance function is denoted by d. When exchanging the vote
vi in the profile V by another, here dishonest, vote vj the resulting new profile
is denoted by (V−i, vj). With these notations, the general form of the optimal
manipulation problem, where D is a family of integer-valued distances and E is
again a voting rule, can be stated as follows.
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(D, E)-OptManipulation [7]

Given: An election (C, V ) with C = {c1, c2, . . . , cm} and V = (v1, v2, . . . , vn),
a voter i ∈ {1, . . . , n}, a distinguished candidate p ∈ C, and a non-
negative integer b.

Question: Does there exist a vote s over C, such that E(C, (V−i, s)) = {p} and
d(vi, s) ≤ b?

One of the used distance measures, which we also consider here, is the swap-
distance. When writing x �i y if voter i strictly preferes candidate x over can-
didate y, the swap distance between two votes vi and vj is given by

dswap(vi, vj) = |{(x, y)|x �i y and y �j x}|.

A central task for further research is the adaption of this model to coalitional
manipulation, where several manipulators try to achieve their mutual goal by
giving possibly insincere votes, and its computational complexity.
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Profile Distances
In recent years, there has been increasing interest in defining and applying vari-
ous variants of distances for measuring the difference between two votes. Classic
examples are Dodgson and Kemeny voting [7] which already include vote dis-
tances. Another important example for this is the optimal manipulation of voting
rules [2] which defines manipulation problems, where the distance between the
truthful and nontruthful vote is limited. And finally the distance rationaliza-
tion of voting rules which already introduces the idea of measuring the distance
between two elections or profiles.

We introduce a new, easy to apply, technique of extending well-known vote
distances to profile distances with respect to the anonymity of every voter. Con-
sider the following well-known distances between votes.

Given a set of alternatives A = {a1, a2, ..., am} and two votes v, v′ as linear
orders over A. Let posv(a) be the position of a in vote v.

Spearman Distance [4]: dSpear.(v, v′) =
∑

a∈A |posv(a) − posv′(a)|

Swap Distance [3]: dSwap(v, v′) = |{(ai, aj) ∈ A × A | ai >v aj ∧ aj >v′ ai}|
One way of extending the previous vote distances to distances between pro-

files is to implement them in the following approach, based on the Bottleneck
distance [6].

Given two profiles P, P ′ over the set of alternatives A and a vote distance d.
The matching distance is given by:

DMat.,d(P, P ′) =
[

min
M∈M(P,P ′)

∑

(v,v′)∈M

d(v, v′)
]

+ ||P | − |P ′|| · Md

where Md(P, P ′) is the set of all possible maximum matchings between the votes
in P and P ′ and Md is the maximum value of d between two votes over A.

By maintaining the anonymity of the voters, it is not possible to compare the
two voices of a voter directly to each other. Because of this, the most natural
way of measuring the distance between two profiles seems to be to match the
votes in the minimal way. Considering two profiles, where one profile emerged
from the other through changed votes, a matching with minimal overall distance
between the votes appears to be the most likely assumption.
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Optimal Manipulation of Voting Rules
As mentioned by Obraztsova and Elkind [2], a natural direction for working
with the optimal manipulation of voting rules is to extend the study to more
vote distances and more general (e.g. weighted) distances.

Let D be some vote distance and F some voting rule. We extend the orig-
inal definition of optimal manipulation by Obraztsova and Elkind [2] with an
additional matrix which can be used as input to D.

(D,F )-OptManipulation: Given a set of alternatives A = {a1, a2, ..., am}, pro-
file P = (v1, v2, ..., vn), a voter i ∈ {1, ..., n}, a preferred alternative p ∈ C, a
distance limit k ∈ N and some D-specific parameter matrix M .

The above instance is a yes-instance if and only if there exists a vote v′
i with

F ((v1, ..., vi−1, v
′
i, vi+1, ..., vn)) = {p} and DM (vi, v

′
i) ≤ k.

The natural direction of extending the swap distance is to add the possibility of
setting non-uniform costs [5]. This version is indirectly used in swap bribery [1].

Let A = {a1, a2, ..., am} be the set of alternatives and π : A × A → R≥0 a
symmetric swap price function. The swap (pseudo) distance with non-uniform
costs is given by:

dπ(v, v′) =
∑

(ai,aj) ∈ inv(v,v′)

π(ai, aj)

where inv(v, v′) = {(ai, aj) ∈ A×A | ai >v aj∧aj >v′ ai} is the set of inversions.
π can be expressed through a symmetric matrix M ∈ R

m×m
≥0 .

In terms of optimal manipulation this distance takes care of votes in a biased
election, e.g. where swapping some very conflicting alternatives seems to be a
very unnatural behaviour.

Our goal is to find new distances for measuring differences between votes and
profiles with respect to wishful properties. We are planning to use them in the
study of optimal manipulation and related topics.
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Introduction

A central theme in fair division is to study attacks on allocation procedures and
to discover the restrictions that make them strategy-proof. I concentrate on scor-
ing allocation correspondences, which are based on a model due to Brams and
King [1] and were further developed by Baumeister et al. [2]. They are concerned
with allocating resources to agents with the goal of social welfare maximization.
Further investigations were made by Nguyen et al. [3]. They considered deter-
mination of optimal allocations according to utilitarian social welfare, while I
intent to concentrate on egalitarian social welfare and social welfare by the Nash
product. Furthermore, I plan to focus on some other relevant restrictions, which
are mentioned below.

Set-Up

Consider a set A = {1, ..., n} of agents and a set R = {r1, .., rm} of indivisible,
nonshareable resources. All agents have ordinal preferences over all subsets of
resources, but for practical reasons each agent i only gives a linear order >i over
R. This leads to a preference profile P = (>1, ..., >n). An allocation π of the
resources to the agents is a partition π = (π1, ..., πn) of the resources, where
πi ⊂ R is agent i’s share.

Scoring Allocation Correspondence

Under this set-up, the scoring allocation procedure pursues the goal to provide a
set of allocations, which maximize the social welfare according to a given welfare
function.

First, a scoring vector s = (s1, ..., sm) ∈ R
m is chosen, where s1 ≥ ... ≥

sm ≥ 0 and s1 > 0. Let rank(r,>) ∈ {1, ...,m} be the rank of resource r ∈ R
under preference order >. Then the utility function u>,s : 2R → R for order >
and scoring vector s is defined by u>,s(B) =

∑
r∈B srank(r,>), for a subset B ⊆

R. Furthermore, a social welfare function, which provides a measure of overall
welfare under an allocation π = (π1, ..., πn), is chosen by sw(π) = �n

i=1u>i,s(πi),
where � is a symmetric, nondecreasing mapping from R

n to R.
Finally, a scoring allocation correspondence Fs is a function mapping a

given preference profile P to a nonempty set of allocations, and is defined by
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Fs(P ) = argmaxπ sw(π). Hence, Fs(P ) maximizes social welfare by using the
welfare function sw.

Considered Welfare Functions

Unlike Nguyen et al. [3], who observed scoring allocation correspondences under
utilitarian social welfare, I plan to consider the following welfare functions, lead-
ing to different scoring allocation correspondences:

– egalitarian social welfare: swe(π) = min{u>i,s(πi)|i ∈ A} and
– Nash social welfare: swN (π) =

∏
i∈A u>i,s(πi).

Strategy-Proofness

The question I want to study is whether a single agent i can benefit from sub-
mitting an insincere order >i over R. Since scoring allocation correspondences
determine a set of allocations, agents have to value their set of possible shares
instead of only single shares. Therefore, we use set-extension principles, which lift
the agents’ preferences. Consider the Kelly extension: Given two sets of shares
Π1 and Π2, we say that agent i weakly Kelly-prefers Π1 to Π2 (Π1 �K

i Π2)
if for every A ∈ Π1 and B ∈ Π2, it holds that A �i B or A = B. Another
considered principle is the Gärdenfors extension (given by �G

i ), whose defini-
tion we omit due to lack of space. For both extensions e ∈ {K,G} we define
Π1 �e

i Π2 ⇔ Π1 �e
i Π2 ∧ ¬Π2 �e

i Π1.
We say that a scoring allocation correspondence F is e-manipulable by an

agent i if there exists a profile P = (>1, ..., >n) and an order >′
i such that

F (P ′)i �e
i F (P )i, where F (P )i is the set of possible shares for agent i when

submitting >i and F (P ′)i is the analogous set for >′
i. F is said to be e-strategy-

proof if F is not e-manipulable by any agent.

Intended Investigations

My plans include to identify restrictions of the chosen scoring vector and the
number of agents, which guarantee strategy-proofness under different welfare
models. A good starting point could be fixing the number of agents. As results
from Nguyen et al. [3] suggest, it might be promising to investigate the impact
of limiting the number of different values in the scoring vector.

Finally, as further work it would also be interesting to consider the impact
of changing the underlying extension principle.
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This abstract can be classified into the field of fair division and more precisely
into multi-agent resource allocation of indivisible goods, where the aim is to
distribute some resources to the agents and meanwhile getting a fair allocation.
We consider the framework from Chevaleyre et al.’s work “Allocating Goods on a
Graph to Eliminate Envy” [1], where interactions between the agents are limited
to a negotiation topology, represented as a graph. After introducing the details
of this work I want to present an idea for expanding the environment by agents
that are not only utility maximizers but that can have altruistic influences.

There is a finite set of agents σ = {1, . . . , n} and a finite set of indivisible,
nonshareable goods R = {R1, . . . , Rm} that should be completely distributed
to the agents. An allocation is a function A : σ → 2R that allocates disjoint
bundles of goods to each agent. The negotiation topology is an undirected graph
G = (σ,E), where each node represents an agent. The nodes are connected if
the represented agents can see each other. Only if that is the case, the agents are
enabled to envy each other or to negotiate with each other as explained below.

A deal δ = (A,A′) is an exchange of two allocations, from A to A′. The
admitted deals are clique-deals, which are deals that involve only the agents of
a clique. A clique is defined as known from graph theory - it is a subset of the
nodes, in which each node is connected to every other node inside the clique. The
supermodular preferences of every agent i are expressed by a valuation function
vi : 2R → Q that is normalised. In order to reach envy-freeness, a monetary
sidepayment is connected to the deals. The payment function is p : σ → Q

with the restriction
∑

i∈σ p(i) = 0. In the negotiation process only individually
rational deals are allowed. A deal is individually rational (IR) when there exists
a payment function that satisfies the following condition: vi(A′) − vi(A) > p(i)
for all i ∈ σ. If A(i) = A′(i), it is allowed that p(i) = 0, so that there does not
have to be a payment, if nothing in the bundle changes from i’s point of view.
Nevertheless, it is possible that i receives money, although he is not directly
affected by the deal.

The payment function that is used is the globally uniform payment function
(GUPF ): (vi(A′) − vi(A)) − (sw(A′) − sw(A))/n where sw(A) =

∑
i∈σ vi(A)

is the utilitarian social welfare of allocation A as defined by Moulin [2]. The
payment balance π(i) sums up all the payments agent i made so far. A nego-
tiation state (A, π) combines an allocation with the associated payment bal-
ance. The definition of envy-freeness inside the graph relies on a utility function
ui(R, x) = vi(R) − x, where x is the payment that is subtracted from the valu-
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ation of agent i’s bundle. A state (A, π) is graph-envy-free (GEF ) based on the
graph G = (σ,E) iff ui(A(i), π(i)) ≥ ui(A(j), π(j)) holds for all agents i and j
that are connected in the graph G. That means that agents are only jealous of
bundles combined with payments of another agent. At least initial equitability
payments are provided, before the negotiations begin when the initial allocation
A0 is given. This initial payments must be of the form π0(i) = vi(A0)−sw(A0)/n.

From these definitions Chevaleyre et al. [1] conclude the following result.

Theorem 1. (Chevaleyre et al. [1]). If all valuations are supermodular and
if initial equitability payments have been made, then any sequence of IR clique-
deals using the GUPF will eventually result in a GEF state.

This theorem holds only by using exactly this payment function, which ignores
the negotiation topology of the graph and distributes the wealth globally all over
the agents.

Until here only selfish agents are considered. But it seems to be very natural
that humans do not only care about their own wealth. The following example
will give a better comprehension of the dilemma: There is a scholarship and my
sister and me both have preferences about getting it. In the assumption that we
are utility maximizers, the problem is easy to describe. But what if my utility
does not only depend on getting the scholarship for myself? I might also be just
as happy when my sister will have it. And on top of that, what if my sister
is even more altruistic so that she would prefer me to getting the scholarship
instead of her, provided the chance that one of us can have it at all?

For allocating the goods with regard to agents with this altruistic influence,
the preferences of the agents should be modified, so that some agents profit
by the fact that one special other agent gets a good in the allocation. It is
obvious, that agents can only care about the wealth of other agents, that they
can see. Transferred to the negotiation framework these are agents, that have to
be connected to each other in the graph.

To find the right form for describing the preferences of agents that care
about the wealth of other agents seems to be technically difficult, because now
the profit of an agent is not only depending on the allocation he gets for himself.
Before caring about envy-freeness in this modified enviroment, there must be a
reasonable representation of the altruistic influence of each agent. At this point I
am currently researching and trying to find a method that is intuitively natural
and that nevertheless does not complicate the fair allocation problem too much.
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