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Abstract. Mobile radio tomography applies moving agents that per-
form wireless signal strength measurements in order to reconstruct an
image of objects inside an area of interest. We propose a toolchain to
facilitate automated agent planning, data collection, and dynamic tomo-
graphic reconstruction. Preliminary experiments show that the approach
is feasible and results in smooth images that clearly depict objects at the
expected locations when using missions that sufficiently cover the area
of interest.
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1 Introduction

Radio tomography is a technique for measuring the signal strength of low-
frequency radio waves exchanged between sensors around an area, and recon-
structing information about objects in that area. We send a signal between a
source and target sensor of a bidirectional link. The signal passes through objects
that attenuate it, resulting in a detectably weaker signal at the receiving end. This
phenomenon makes it possible to determine where objects are located. The typical
setup for radio tomography is illustrated in Fig. 1(left), in which the sensors are
situated on the boundaries in an evenly distributed manner. Gray lines represent
unobstructed links and red lines indicate links attenuated by the object.

Radio tomography has several benefits over other detection techniques. We
can see through walls, smoke or other obstacles. The technique does not require
objects to carry sensor devices. The radio waves are non-intrusive, with no per-
manent effects on people. The technique is less privacy-invasive than optical
cameras as the possible level of detail is inherently limited due to the nature of
the radio waves. It is not possible to accurately identify a person, but we do aim
for reconstructed objects that we recognize as such.
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Fig. 1. The sensor network and the physical realization of a vehicle.

A static sensor network with a large number of affordable sensors, placed
around an area of interest, can be used to reconstruct and visualize a smooth
image in real time [15]. The drawbacks of a static network are the requirement of
a large number of sensors and the inability to resolve gaps in the sensor coverage
or to react to information obtained through the reconstruction.

One way to resolve these issues is to move the sensors around using agents,
which are realized as autonomous vehicles as pictured in Fig. 1(right). We posi-
tion them along a grid which defines discrete and precise sensor positions. These
positions produce a matrix of coordinate-based pixels in the reconstructed image.
In comparison to the static setup, we require fewer sensors and less prior knowl-
edge about the area. We may adapt the coverage dynamically, for example by
zooming in on a part of the area. We name this concept mobile radio tomography,
which includes both the agent-based measurement collection and the dynamic
reconstruction approach.

In this paper, we present our toolchain for mobile radio tomography using
intelligent agents, as an engineering effort that builds upon and combines several
techniques. In Sect. 2 we describe the key challenges for mobile radio tomography
and the components in our toolchain that address them. We then cover two such
challenges in greater detail: (i) planning the paths of the agents in Sect. 3, and
(ii) reconstructing an image from the measurements in Sect. 4. Results for real-
world experiments are presented in Sect. 5, followed by conclusions and further
research in Sect. 6. This paper is based on two master’s theses on the subject of
mobile radio tomography [10,14].

2 Toolchain

Compared to existing localization and mapping techniques that use stati-
cally positioned sensors [11,15], radio tomographic imaging with dynamically
positioned agents leads to several new challenges. In particular, routes must be
planned for each agent such that they obtain isotropic sampling of the network
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Fig. 2. Diagram of components in the toolchain.

while also shortening the total scanning time and ensuring collision-free move-
ment. Images must be reconstructed from the measurements in real time, requir-
ing algorithms and models that work with a restricted set of data that is poten-
tially incomplete and certainly noisy. Synchronization between the agents must
be interleaved with data acquisition using a robust communication protocol.

To deal with these challenges, we developed an open-source, component-
based toolchain. The toolchain is mainly written in Python, with low-level hard-
ware components written in C. The diagram in Fig. 2 shows the toolchain’s
components.

The planning components generate missions for signal strength measure-
ments, as discussed in Sect. 3. The problem of devising a set of link positions
to measure is solved by an evolutionary multiobjective algorithm that simulates
reconstruction models to ensure that the links cover the entire network. Next, a
waypoint assignment algorithm distributes the sensor positions for each link over
the vehicles. A path graph search algorithm prevents the vehicles from clashing.

Execution of the mission is taken care of by the vehicle control components.
The monitor oversees the process and tracks auxiliary sensors on the vehicles,
such as distance sensors for obstacle detection. It makes the RF (radio frequency)
sensor perform the signal strength measurements and it may use the search
algorithm for collision avoidance during a mission. The mission consists of the
waypoints for the vehicle and provides instructions to the vehicle controller.
During a mission, this causes the vehicle to move toward the next waypoint.

The reconstruction component converts the signal strength measurements to
a two-dimensional visualization of the area of interest. We describe this process
in detail in Sect. 4. The weight matrix determines which pixels are intersected
by a link, and a weighting model describes how the contents of pixels contribute
to a measured signal strength.

3 Missions

We instruct the autonomous vehicles to travel to specific locations around the
area of interest, that two-by-two correspond to the positions where sensor mea-
surements must be performed. A vehicle executes its mission, which consists of
waypoints denoting locations to be visited in order. We wish to plan the mis-
sion algorithmically instead of assigning waypoints by hand. The vehicles per-
form measurements together while traversing short and safe paths that do not



66 K.J. Batenburg et al.

conflict with concurrent routes. This problem is related to various multi-agent
vehicle routing problems with synchronization constraints [6,9,13]. We propose
a two-stage algorithm, and describe both parts in text as well as pseudocode.

We assume that we know which links we measure for collecting tomographic
data; later on we generate these links using an evolutionary algorithm. To measure
a link, sensorsmust be placed at twopositions at the same time.Wedistribute these
tasks over the vehicles. Our assignment algorithm is given as input a set

P = {(p1,1, p1,2), (p2,1, p2,2), . . . , (pω,1, pω,2)} (1)

with ω location pairs of coordinate tuples (two-dimensional vectors), and a
set V = {v1, v2, . . . , vη} of η ≥ 2 vehicles, initially located at coordinate
tuples S1, S2, . . . , Sη. Now define U = {(u, v) |u ∈ V, v ∈ V, u �= v}, the
pairwise unique permutations of the vehicles, e.g., with two vehicles, this is
U = {(v1, v2), (v2, v1)}.

Our greedy assignment in Algorithm 1 then works as follows: for each vehicle
pair ϑ = (va, vb) ∈ U and each sensor pair ρ = (pc,1, pc,2) ∈ P , determine the
distances d1(ϑ, ρ) = ‖Sa − pc,1‖1 and d2(ϑ, ρ) = ‖Sb − pc,2‖1. We use the L1

norm ‖·‖1 to only move in cardinal directions on a grid; in other applications
we may use the L2 norm ‖·‖2. Next, take the maximal distance (since one agent
must wait for the other to perform a measurement), and finally select the overall
minimal pair combination, i.e., solve the following optimization problem:

arg min
(ϑ,ρ)∈U×P

(
max(d1(ϑ, ρ), d2(ϑ, ρ))

)
(2)

Algorithm 1. Greedy waypoint assignment
1: procedure Assign(S1, S2, . . . , Sη, P, V )
2: let Ai be a sequence of waypoints for each vehicle vi, with i = 1, 2, . . . , η
3: U ← {(u, v) | u ∈ V, v ∈ V, u �= v}
4: while P �= ∅ do
5: δm ← ∞
6: for all (ϑ, ρ) ∈ U × P do � ϑ = (va, vb) and ρ = (pc,1, pc,2)
7: d ← max(‖Sa − pc,1‖1 , ‖Sb − pc,2‖1)
8: if d < δm then
9: δm ← d, ϑm ← ϑ and ρm ← ρ

10: end if
11: end for � ϑm = (va, vb) and ρm = (pc,1, pc,2)
12: append pc,1 to the assignment Aa for vehicle va

13: append pc,2 to the assignment Ab for vehicle vb

14: Sa ← pc,1 and Sb ← pc,2

15: remove ρm from the set P
16: end while
17: return the assignments A1, A2, . . . , Aη

18: end procedure
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The selected positions are then assigned to the chosen vehicle pair, and removed
from P . Additionally, Sa becomes the first position and Sb becomes the second
sensor position. The greedy algorithm then continues with the next step, until
P is empty, thus providing a complete assignment for each vehicle.

Secondly, we design a straightforward collision avoidance algorithm that
searches for routes between waypoints that do not conflict with any concurrent
route of another vehicle; see Algorithm 2. The algorithm is kept simple in order
to incorporate it into an evolutionary algorithm (see [7,12] for more intricate
methods which result in optimized routes). We use a path graph search algo-
rithm to find a safe route that crosses no other routes. Once a vehicle performs
a measurement involving another vehicle, their prior routes no longer conflict.

Algorithm 2. Collision avoidance
1: procedure Avoid(V, S1, S2, . . . , Sη, vp, vq, Np)
2: let W1, W2, . . . , Wη be sets, with Wi = {vi} for i = 1, 2, . . . , η
3: let G be a graph of discrete positions and connections in the area
4: remove incoming edges of nodes in G that enter forbidden areas
5: remove incoming edges of S1, S2, . . . , Sη from G
6: let R1, . . . , Rη be empty sequences of routes
7: for all vi ∈ V \ Wp do
8: remove the edges for nodes in Ri from G
9: end for

10: R∗ ← Search(G, Sp, Np) � find a safe path R∗ in G from Sp to Np

11: append R∗ to Rp

12: reinsert the edges for Sp into the graph G
13: remove incoming edges for the node Np

14: Sp ← Np and Wp ← Wp ∪ {vq}
15: for all vi ∈ V do
16: if vi /∈ Wp then
17: reinsert the edges for nodes traversed by the path Ri into G
18: end if
19: if vi �= vp and Wi = V then
20: clear the sequence Ri

21: Wi ← {vi}
22: end if
23: end for
24: return Rp

25: end procedure

Let vp be the vehicle that we currently assign the position Np to, and vq

the vehicle that will visit the other sensor position. We also initialize sets
W1,W2, . . . ,Wη, where each Wi indicates with which other vehicles the given
vehicle vi has recently performed a measurement. We assume that the search
algorithm is given as input a graph G, start point Sp and end point Np, and
outputs a route of intermediate points R∗, or an empty sequence if there is no
safe path.
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We use the collision avoidance algorithm every time the waypoint assign-
ment algorithm assigns a position to a vehicle, so twice per step. Thus, we
detect problematic situations as they occur, which are either solved via detours
(although the vehicle might also search for a faster safe path while the mission
takes place), or by rejecting the entire assignment. The resulting assignments
should be collision-free, assuming that all vehicles follow their assigned route
and wait for each other at synchronization points, where they also perform their
signal strength measurements.

In order to supply the waypoint assignment algorithms with a non-static
set of sensor positions P (see (1)), we utilize an evolutionary multiobjective
algorithm [8]. The iterative algorithm generates a set of positions and alters
it in such a way that it theoretically converges toward an optimal assignment.
We keep a population (X1,X2, . . . , Xμ) of multiple individuals, each of which
contains variables that encode the positions in an adequate form. After a random
initialization, the algorithm performs iterations in which it selects a random
individual Xi and slightly mutates it to form a new individual [2].

In our situation, the variables of an individual encode coordinates for posi-
tions around the area of interest, and possibly inside of it as well. Define m(i)

as the number of pairs of positions that are correctly placed, such that the
link between the positions intersects the network. Using these positions, we can
deduce other information, such as a weight matrix A(i) (containing link influence
on pixels; see Sect. 4), for each individual Xi. The algorithm then removes an
individual that is infeasible according to the domain of the variable or due to
the constraints in (3) and (4), such as a minimum number of valid links ζ. The
constraints are wrapped into a combined feasibility value in (5):

Q
(i)
1 : ∃j : ∀k : A

(i)
j,k �= 0 (3)

Q
(i)
2 : m(i) ≥ ζ (4)

fi =

{
0 if ¬Q

(i)
1 ∨ ¬Q

(i)
2

1 if Q
(i)
1 ∧ Q

(i)
2

(5)

In the case that all constraints and domain restrictions are met by each indi-
vidual, the multiobjective algorithm uses a different selection procedure based
on the objective functions. We remove an individual if its objective values are
strictly higher than those of one dominating individual in the population. If
none of the individuals are dominated, we remove the one with the minimum
crowding distance [5]. The crowding distance is defined as the area around the
individual within the objective space. We can place the objective values in this
space as a plotted function, which is known as the Pareto front.

We provide two objective functions that the evolutionary multiobjective algo-
rithm should minimize. Certain parts of the algorithm favor two over more than
two objectives, which is why we combine related functions as terms of one over-
arching objective. Maximization problems, such as achieving optimal coverage
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area with the generated links, are converted to minimization objectives by negat-
ing them. The objective functions in (6) and (7) describe desirable properties
for intersecting links and minimized distances, respectively:

g1(Xi) = −
m(i)∑
j=1

n∑
k=1

A
(i)
j,k (6)

g2(Xi) = δ ·
⎛
⎝

m(i)∑
j=1

∥∥∥p
(i)
j,1 − p

(i)
j,2

∥∥∥
2

⎞
⎠ + (1 − δ) · T (i) (7)

In the entire selection step of the evolutionary algorithm, we use the reconstruc-
tion, waypoint assignment and collision avoidance algorithms to check that a
new individual adheres to the constraints and to calculate the objective values.
Aside from the link weight matrix A(i) for one individual Xi, we calculate the
pairwise L2 norms between sensor positions, and T (i), the sum of minimized
route distances (2), weighted by a factor δ. These algorithms generate missions
that provide sufficient network coverage. When we stop the evolutionary multi-
objective algorithm, we can manually select one of the individuals and use the
mission it generates, using the Pareto front as a reference for balanced objective
values [5].

4 Reconstruction

The reconstruction phase takes care of converting a sequence of signal strength
measurements to a two-dimensional image of size m × n pixels that may be
visualized. Let M = {(s1, t1, r1), . . . , (sk, tk, rk)} be the input, in which si and
ti are pairs of integers indicating the x and y coordinates on the grid for the
source and target sensor i, respectively, ri is the received signal strength indica-
tor (RSSI ) and k is the total number of measurements. We express the conver-
sion problem algebraically as Ax = b. Here, b is a column vector of RSSI values
(r1, r2, . . . , rk)T , x is a column vector of m · n pixel values (in row-major order)
and A is a weight matrix that describes how the RSSI values are to be distrib-
uted over the pixels that are intersected by the link, according to a weighting
model.

In general, signal strength measurements contain a large amount of noise due
to multipath interference. The wireless sensors send signals in all directions, and
thus more signals than those traveling in the line-of-sight path may reach the
target sensor, causing interference. This phenomenon is especially problematic
in indoor environments due to reflection of signals. Although techniques exist to
include an estimate of the contribution of noise inside the model [15], we sup-
press noise outside the model using calibration measurements and regularization
algorithms. The difficulty lies in the fact that the reconstruction problem is an
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ill-posed inverse problem, which we have to solve for highly noisy and unstable
measurements.

The weight matrix A defines the mapping between the input b and the output
x . If and only if the contents of a pixel with index i attenuate a link with index
�, then the weight w�,i in row � and column i is nonzero. Given a link �, a
weighting model determines which pixels have an influence on this link and are
thus assigned nonzero weights. The weights may be normalized using the link
length d� to favor shorter links [16]. The variable d�,i is the sum of distances
from the center of pixel i to the two endpoints of link �.

The line model in (8) assumes that the signal strength is determined by
objects on the line-of-sight path, as shown in Fig. 3a; the ellipse model in (9) is
based on the definition of Fresnel zones:

w�,i =

{
1 if link � intersects pixel i

0 otherwise
(8)

w�,i =

{
1/

√
d� if d�,i < d� + λ

0 otherwise
(9)

w�,i = e−(d�,i−d�)
2/2σ2

(10)

Fresnel zones, used to describe path loss in communication theory, are ellipsoidal
regions with focal points at the endpoints of the link and a minor axis diameter
λ. Only pixels inside this region are assigned a nonzero weight, as seen in Fig. 3b.

Fig. 3. Illustration of weight assignment for a link from (0, 0) to (16, 16) by the
weighting models.

Moreover, we introduce a new Gaussian model in (10). This model is based
on the assumption that the distribution of noise conforms to a Gaussian dis-
tribution. The log-distance path loss model is a signal propagation model that
describes this assumption as well [1].
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The general Gaussian function is defined as f(x) = α e−(x−μ)2/2σ2
. In this

equation α is the height of the curve’s peak, μ is the location of the peak’s center
and σ is the standard deviation that controls the width of the top of the curve.
The Gaussian model uses the Gaussian function to assign weights for the pixels.
Most weight is assigned to pixels on the line-of-sight path and less weight is
assigned to pixels that are farther away, depending on their distance from the
line-of-sight path (d�,i − d�). We specifically use a Gaussian function with α = 1
and μ = 0 since this ensures that pixels on the line-of-sight path get the highest
weight, as depicted in Fig. 3c. The parameter σ may be tuned as in practice
there appears to be a wide range of suitable values.

Due to the ill-posed nature of the problem, in general there exists no exact
solution for Ax = b because A is not invertible. Instead, we attempt to find a
solution xmin that minimizes the error using least squares approximation [3] as
defined in (11), where R(x) is a regularization term:

xmin = arg min
x

(
‖Ax − b ‖ 2

2 + R(x )
)

(11)

The singular value decomposition (SVD) of A may be used to solve this and
is defined as A = UΣV T , in which U and V are orthogonal matrices and Σ
is a diagonal matrix with singular values [16]. If we use the exact variant of
singular value decomposition which does not apply any regularization, then we
have the regularization term R(x ) = 0. Truncated singular value decomposition
(TSVD) is a regularization method that only keeps the τ largest singular values
in the SVD and is defined as A = UτΣτV T

τ [16]. Small singular values have low
significance for the solution and become erratic when taking the reciprocals for
Σ. Moreover, the truncated singular value decomposition is faster to compute,
which is an important property for reconstructing images in real time.

While the dimensionality reduction from TSVD does stabilize the solution,
the resulting images may still contain unstable spots. Iterative regularization
methods incorporate desired characteristics of the reconstructed images. Total
variation minimization (TV, see [16]) enforces that the reconstructed images
are smooth, i.e., that the differences between neighboring pixels are as small as
possible, by favoring solutions that minimize variability in the resulting image.
The gradient ∇x of x is a measure of the variability of the solution. The reg-

ularization term in (11) is set to R(x ) = α
∑ξ−1

i=0

√
(∇x ) 2

i + β, in which ξ is
the number of elements in ∇x . The parameter α indicates the importance of
a smooth solution and leads to a trade-off as a high value indicates more noise
suppression, but less correspondence to the actual measurements. The term is
not squared, so we need an optimization algorithm for the minimization. The
parameter β is a small value that prevents discontinuity in the derivative when
x = 0, as that generally needs to be supplied to optimization algorithms.

Finally, let us consider another measure of variability. Maximum entropy min-
imization (ME ) smoothens the solution by minimizing its entropy. Entropy is a
concept in thermodynamics that provides a measure of the amount of disorder
in a structure. The Shannon entropy is defined as H = −∑γ−1

i=0 qi log2(qi), in
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which γ is the number of unique gray levels in the solution and qi is the probabil-
ity that gray level i occurs in the solution. Low entropy indicates a low variation
in gray levels (which we observe as noise). While this regularization technique is
well-known [4], we have found no previous work discussing its application to radio
tomographic imaging. The regularization term in (11) is set to R(x ) = αH. We
calculate a numerical approximation of the derivative. The described reconstruc-
tion methods and weighting models allow us to obtain a clear image of the area.

5 Experiments

To study the effectiveness of our approach, we perform a series of experiments.
Two vehicles drive around on the boundaries of a 20 × 20 grid in an otherwise
empty experiment room. We use hand-made missions that apply common pat-
terns used in tomography, such as fan beams. With this setup we create a dataset
with two persons standing in the middle of the left side and in the bottom right
corner of the network, and a dataset with one person standing in the top right
corner of the network. A separate dataset is used for calibration.

The first experiment compares all combinations of regularization methods
and weighting models to determine which pair yields the most accurate recon-
structions. We use the dataset with the two persons, so both must be clearly
visible. The outcomes of this experiment are presented in Fig. 4, in which darker
pixels indicate low attenuation and brighter pixels indicate high attenuation.

The first observation is that SVD indeed leads to major instabilities because
of the lack of regularization. Noise is amplified to an extent that the images do
not provide any information about the positions of the persons. TSVD, while
being a relatively simple regularization method, provides more stable resulting
images that clearly show the positions of the two persons. The ellipse model and
the new Gaussian model yield similar clear results, whereas using the line model
leads to slightly more noise compared to the former two. Even though TV and
ME use different variation measures, the reconstructions are visually the same
and equally clear.

Besides providing a clear indication of where the persons are located inside
the network, it is important that the reconstructed images are smooth. The
second experiment studies the smoothening effects of the regularization methods
using 3D surface plots of the raw grayscale images, i.e., without any additional
coloring steps applied. The only difference between the experiment runs are the
regularization method, so any other parameters remain the same, such as the
Gaussian weighting model and the precollected dataset with the two persons
that we use as input. The results for this experiment are shown in Fig. 5.

The ideal surface plot consists of a flat surface with two spikes exactly at
the positions of the persons. The surface plot for SVD is highly irregular, which
leads to noticeable noise in the image due to a high variance in pixel values. In
contrast, the surface plot for TSVD is smooth and the two spikes are clearly
distinguishable. However, there are still some small unstable spots. The sur-
face plots for TV and ME are, again, practically the same and have even fewer
instabilities.
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(a) SVD, line (b) TSVD, line (c) TV, line (d) ME, line

(e) SVD, ellipse (f) TSVD, ellipse (g) TV, ellipse (h) ME, ellipse

(i) SVD, Gaussian (j) TSVD, Gaussian (k) TV, Gaussian (l) ME, Gaussian

Fig. 4. Reconstructions combining regularization methods and weighting models (two
persons dataset).

With regard to the algorithmically generated missions discussed in Sect. 3,
we perform a parameter optimization by comparing the average objective values
of the resulting individuals in multiple runs of the evolutionary algorithm. The
twelve parameters influence the sensitivity and scale of the optimization algo-
rithm, as well as the waypoint assignment and collision avoidance algorithms.
Certain features, such as a mutation operator specially designed to optimize link
positions, can be enabled and disabled this way as well. We provide 350 unique
combinations of values to these parameters, and repeat each experiment five
times.

We find that some of these variables influence the performance in terms of
stability, convergence speed and finding optimized positions. For example, the
specialized mutation operator finds individuals that have better objective values,
but result in chaotic populations over time. The population size hardly affects the
algorithm’s effectiveness nor speed. Other parameters produce missions which
are applicable only if we change the dimensions of the area of interest.
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(a) SVD (b) TSVD

(c) TV (d) ME

Fig. 5. 3D surface plots of the reconstructions for each regularization method (two
persons dataset).

For the final experiment, we generate a mission for a 20 × 20 grid using the
evolutionary multiobjective algorithm, and compare it to a hand-made mission
used previously. The algorithm is tuned to place sensors for at least 320 and up to
400 valid links to be measured during the mission. The results of the parameter
optimization are applied as well. At 7000 iterations, we end the generation run
and pick a knee point solution that optimizes both objectives in the resulting
Pareto front. A manual check using the collision avoidance algorithm determines
that this assignment is safe. In Fig. 6, we show the images resulting from the
tomographic reconstruction of the dataset with one person.

The reconstruction, which is run in real time during the collection of signal
strength measurements, uses TV and the Gaussian model. We can track the time
it takes before a mission provides a smooth and correct result, in terms of quality
and realism. In Fig. 6a, we are around halfway through the planned mission, with
204 out of 382 measurements collected. The reconstructed image clearly shows
the person standing in the top right corner. Figure 6b shows the reconstructed
image provided by the hand-made mission after 413 out of 800 measurements.
Although this mission’s movements are less erratic (and more measurements



Mobile Radio Tomography: Agent-Based Imaging 75

(a) Algorithmically planned
mission, halfway result

(b) Hand-made mission,
halfway result

(c) Hand-made mission,
final result

Fig. 6. Reconstructions for algorithmically planned and hand-made missions (one per-
son dataset).

per time unit are made), it is not stable enough to clearly show one person
while it develops. Figure 6c shows the end result, where the hand-made mission
does provide an acceptable reconstructed image. The planned mission does not
diverge from its initial smooth image and we can stop the mission early.

6 Conclusions and Further Research

We propose a mobile radio tomography toolchain that collects wireless signal
strength measurements using dynamic agents, which are autonomous vehicles
that move around with sensors. We plan missions, which describe the locations
that the agents must visit and in what order. Novel algorithms provide us with
generated missions, guaranteeing that two sensors are at the right locations to
perform a measurement. The algorithms avoid conflicts between the routes and
provide an optimized coverage of the network.

The measurements are passed to the reconstruction algorithms to create a
visualization of the area of interest that corresponds to the patterns in the data
as best as possible. Regularization methods suppress noise in the measurements
and increase the smoothness of the resulting image. We introduce a new Gaussian
weighting model and apply maximum entropy minimization to the problem of
radio tomographic imaging. Preliminary experiments show that the mobile radio
tomography approach is effective, i.e., it is able to provide smooth reconstructed
images in a relatively short time frame using algorithmically planned missions.

There is much potential for further research. One interesting topic is to
replace the agents, that currently operate on the ground using small-scale robotic
rover cars, with drones that fly at different altitudes. This leads to 3D reconstruc-
tion, e.g., by performing a reconstruction at different altitudes and combining
the images, which are slices of the 3D model. The reconstruction algorithms
could be modified to allow performing measurements anywhere in the 3D space,
although this makes the problem more difficult to solve in real time.
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Finally, improvements could be made to the algorithms related to planning
and waypoint assignment tasks. This includes altering the objectives of the evo-
lutionary multiobjective algorithm and using predetermined patterns that we
encode in the variables. It is also not entirely clear yet how the network coverage,
or the lack thereof, influences the quality of the reconstruction. The waypoint
algorithm could be rebalanced to take less greedy steps or to factor in the time
that certain actions take, such as turning around. Altering missions dynamically
helps making adaptive scanning a viable approach.
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