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Abstract. Textual Inference is a research trend in Natural Language
Processing (NLP) that has recently received a lot of attention by the sci-
entific community. Textual Entailment (TE) is a specific task in Textual
Inference that aims at determining whether a hypothesis is entailed by a
text. This paper employs the Child-Sum Tree-LSTM for solving the chal-
lenging problem of textual entailment. Our approach is simple and able
to generalize well without excessive parameter optimization. Evaluation
done on SNLI, SICK and other TE datasets shows the competitiveness
of our approach.
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1 Introduction

Natural Language Inference (NLI) or put in another way, Textual Inference,
refers to the process of identifying the type of logical/semantic relationship that
exists between two texts. Since Dagan et al. [14] conceived the task of Recog-
nizing Textual Entailment (RTE), it has continued to receive a lot of interest
from researchers. To be specific, entailment, contradiction and neutral are exam-
ples of the inference relationships that are to be determined. Other examples of
language inference tasks include text similarity [17], answer sentence selection
[15], as well as Paraphrase Detection [28]. These tasks are challenging due to the
prevalent variability and ambiguity in natural languages [13].

The preceeding work in NLI employs typical machine learning (ML) clas-
sifiers, this requires a lot of efforts for handcrafting feature for the classifiers.
Moreover, these systems also rely on many language resources and tools, e.g.,
Semantic Nets etc. Also, the tiny size of the datasets involved, i.e., the SICK1

and RTE2 corpuses, which were the earliest datasets for RTE evaluation, con-
tributes to the choice of ML classifiers because they have small training samples.
This discourages the use of neural networks, which are more data-intensive. Most
importantly, these systems rarely or slightly outperform simple baselines which
rely on simple surface string similarity and word-overlap approaches [1,4].
1 http://clic.cimec.unitn.it/composes/sick.html.
2 https://www.aclweb.org/aclwiki/index.php?title=Textual Entailment Resource

Pool.
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Fig. 1. Sample texts from SNLI showing different classes of inference relationship

NLI is purely a classification task between different classes of inference rela-
tionship. Figure 1 shows one example for each of the three classes ‘contradiction’,
‘neutral’ and ‘entailment’ from the SNLI corpus3.

Since the release of SNLI by Bowman et al. [9], a lot of research work that
is based on neural networks have been published. Quite a good number of these
systems are based on sentence encoding [9,11,26], where the Long Short-Term
Memory (LSTM) networks have been used to embed premises and hypothesis in
the same vector space. This enhances parameter sharing throughout the other
components of a neural network model. Other techniques like the attention mech-
anism [20,21,23], extended memory structure [12,22] and factorization-based
matching [32] builds on the former by providing more interaction between the
embedded sentences.

Even though these systems have reported impressive result, they often exhibit
a deep sentence modeling, which often translates to having excessive trainable
parameters. Furthermore, the kind of interaction that the systems focus on down-
plays the syntactic relationship and interplay between the words in each sentence.
However, we know that words do not live in isolation, and the meaning of a word
is context dependent. Therefore, in order to know the true meaning of a word, it
is also required that we know the meaning of the neighouring words that modifies
its meaning.

This work employs a Tree-LSTM to obtain the representation of both the
Premise4 and its Hypothesis. Tree-LSTM is a linguistically intuitive choice for
it readily captures the syntactic interpretations of a sentence structure [30].
Moreover, it combines the simplicity of the bag-of-word models with the order-
sensitivity of the sequential models. Furthermore, similar to [32], we employ a
matching scheme that parallelizes interaction between each child-node in the
premise text to the nodes in the hypothesis text. Where, by nodes, we mean a
dependency parsed representation of the texts under consideration. Our goal is to
present a simple approach with fewer parameters and that does not require exces-

3 http://nlp.stanford.edu/projects/snli.
4 Throughout the paper, we use the words ‘Premise’, ‘Text’ or ‘First text’ interchange-

ably to mean the same thing, except otherwise specified.

http://nlp.stanford.edu/projects/snli
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sive parameter optimization, while being able to generalize well. The remaining
parts of the paper are organized as follows. In the next section, we give a succinct
review of some related work. Then, we describe our proposed method as well as
the evaluation and result.

2 Related Work

The task of recognizing textual entailment (RTE) aims at making machines
to mimic human inference capability, i.e., given a text P and a ground truth
hypothesis Q, humans can easily recognize whether the meaning of Q can be
directly inferred from P [14]. The goal of the RTE task is to design algorithms
that replicate this human capability.

Bowman et al. [9] introduced the SNLI corpus, which contains 570 k human
annotated text pairs. They used a lexical classifier as a baseline for their LSTM
encoding-based network. Now, their approach is simple, both the premise and
hypothesis were embedded in the same space using Glove vectors and then the
sum of vectors of words in each sentence was used as the input to the LSTM.
The authors in [26] proposed a word-by-word neural attention mechanism which
is also based on LSTM. LSTM seems to be the natural choice because of its abil-
ity to retain information over many time-steps, although, Convolutional Neural
Networks (CNN) has likewise shown to be a good choice for similar task [34].

In the work of Rocktaschel et al. [26], two LSTMs was used. While the first
LSTM is reasoning over the sequence of tokens in the text, the other is per-
forming the same computation on the hypothesis sequence. The second LSTM
is conditioned by the output of the first one, i.e., its memory is initialized by
the output (i.e., the last cell state) of the last hidden state of the first LSTM
when reading each input from the hypothesis. An extension of their basic model
instead utilized a Bi-directional LSTM, which was used in a similar manner in
order to create a dual-attention. Baudis et al. [3] also reproduced an attention
model similar to the question answering model in [31]. They utilized a Recurrent
Neural Networks (RNN) model, a CNN model as well as a hybrid RNN-CNN
model. The RNN captures long-term dependencies and contextual representation
of words before being fed to the CNN.

Parikh et al. [23] improved on the attention mechanism of [26] by introducing
two components, Compare and Aggregate. The former compares aligned phrases
in the premise with that of the hypothesis and vice versa, using a feed-forward
neural networks. The resulting vectors are summed over in the latter component,
i.e. the Aggregate part. Cheng et al. [12] proposed a type of LSTM with enhanced
memory, called the LSTMN which is similar to the memory networks of Wetson
et al. [33]. They used two attention schemes, which they called the Shallow
fusion and the Deep fusion. The Shallow fusion considers only the attention
between the words in a text, which is usually called the intra-attention. The Deep
fusion likewise performs the intra attention but much more, it tries to identify
the importance of the words in the first text, in relation to the words in the
second text. This is sometimes referred to as an inter-attention. The Deep fusion
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architecture utilizes both the inter-attention and intra-attention between the text
and its corresponding hypothesis. Consequently, the Deep fusion architecture
achieved a superior performance. Overall, both models achieved near state of
the art results on the tasks of textual entailment, sentiment analysis.

Wang et al. [32] introduced a model which they called the Bilateral Multi-
Perspective Matching model (BiMPM) for NLI. Their model obtained the state-
of-the-art result when evaluated on the SNLI corpus. BiMPM share many com-
monalities with a few of the previous work which are already cited above. Specif-
ically, Wang et al. [32] also utilized a Bi-directional LSTM. Now, a Bi-directional
LSTM makes use of two LSTMs that are run in parallel. The first LSTM operates
on the input sequence from the first time-step to the last time-step (forward)
while the second LSTM operates on the same input sequence by performing com-
putation from the last time-step to the first time-step (backward). Essentially,
the hidden state of any time-step is the concatenation of both its forward and
backward hidden states. Bi-directional LSTM is thus able to capture information
in both context, i.e., the past and future information.

The innovative part of the work of Wang et al. [32] is how they utilized
Bi-directional LSTM (BiLSTM) for the matching scheme that they proposed.
First, a BiLSTM was used to separately encode the premise and the hypothesis.
Then, using any of the four matching functions that they proposed, namely, the
Full matching, Maxpooling matching, Attentive matching and the Max-attentive
matching, each time-step of the premise is matched against every time-steps of
the hypothesis and vice-versa. Another BiLSTM then combines the result before
passing through a fully connected (FC) layer for classification. Apart from the
choice of matching, the architecture remains the same. They obtained the best
performance when the Full-Matching function was used.

Our proposed approach also utilizes a type of LSTM, i.e., the child-sum Tree
LSTM for sentence encoding. The motivation for using this is that in a depen-
dency parsing-based tree, because a headword incorporates information from
each child, a natural intra-attention is created within each sentence, since the
hidden vector of the headword is composed from those of its children. Further-
more, we also incorporate a high-level interaction scheme for the two texts, using
a similar matching function to the one proposed in [32]. However, our approach
is more simple and has fewer parameters. The Tree-structure LSTM network
builds sentence representation from headword-child subphrases of a text, but
takes into account more compositional features for better generalization.

3 Methods

We describe the general LSTM architecture. Specifically, this work employs the
Child-Sum Tree-LSTMs proposed by [30]. We describe our inter attention scheme
using a form of perspective matching [32].
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Long Short-Term Memory Networks

Recurrent Neural Networks (RNNs) have connections that have loops, adding
feedback and memory to the networks over time. This memory allows this type of
network to learn and generalize across sequences of inputs rather than individual
patterns. LSTM Networks [16] are a special type of RNNs and are trained using
backpropagation through time, thus overcoming the vanishing gradient problem.
LSTM networks have memory blocks that are connected into layers, the block
contains gates that manage the blocks state and output. These gates are the
input gates which decides the values from the input to update the memory
state, the forget gates which decides what information to discard from the unit
and the output gates which decides what to output based on input and the
memory of the unit. LSTMs are thus able to memorize information over a long
time-steps, since this information are stored in a recurrent hidden vector which
is dependent on the immediate previous hidden vector. A unit operates upon an
input sequence and each gate within a unit uses the sigmoid activation function
to control whether they are triggered or not, making the change of state and
addition of information flowing through the unit conditional.

At each time step t, let an LSTM unit be a collection of vectors in R
d where

d is the memory dimension: an input gate it, a forget gate ft, an output gate ot,
a memory cell ct and a hidden state ht. The state of any gate can either be open
or closed, represented as [0,1]. The LSTM transition can be represented with
the following equations (xt is the an input vector at time step t, σ represents
sigmoid activation function and � the elementwise multiplication. The ut is a
tanh layer which creates a vector of new candidate values that could be added
to the state):

it = σ

(
W (i)xt + U (i)ht−1 + b(i)

)
,

ft = σ

(
W (f)xt + U (f)ht−1 + b(f)

)
,

ot = σ

(
W (o)xt + U (o)ht−1 + b(o)

)
,

ut = tanh
(

W (u)xt + U (u)ht−1 + b(u)
)

,

ct = it � ut + ft � ct−1,

ht = ot � tanh ct (1)
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Tree-Structured LSTM

Tree-LSTM is a specialized type of LSTM that adopt the tree-structure topology,
i.e., at any given time step t,the LSTM is able to compose its states from an input
vector and hidden states of its child-nodes simultaneously. This is unlike the
standard LSTM that assumes a single child per unit, since the gating vectors and
memory cell updates are dependent on the states of all child-nodes. Moreover, it
maintains a forget gate separately for each child node. This characteristic enables
the Tree-LSTM to be able to aggregate information from each child node. A good
variant of the Tree-LSTM is the Child-Sum Tree-LSTM, which was proposed by
Tai et al. [30]. The Child-Sum Tree-LSTM state transition is represented by the
following equations, where C(j) is the set of the children of a node j, and k ∈
C(j).

ĥj =
∑

k∈C(j)

hk,

ij = σ

(
W (i)xj + U (i)ĥj + b(i)

)
,

fjk = σ

(
W (f)xj + U (f)ĥk + b(f)

)
,

oj = σ

(
W (o)xj + U (o)ĥj + b(o)

)
,

uj = tanh
(

W (u)xj + U (u)ĥj + b(u)
)

,

cj = ij � uj +
∑

k∈C(j)

fjk � ck,

hj = oj � tanh(cj) (2)

Fig. 2. Composing the memory cell c1 and hidden state h1 of a 2-children (subscripts
2 and 3) Tree-LSTM [30]
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Tree-LSTM for Textual Entailment

We use the Child-Sum Tree-LSTM to generate sentence representation for both
the text and hypothesis, taking as input the dependency-parse tree representa-
tion of the Premise and the Hypothesis texts. Giving a sentence, the structural
connection between its constituent words form a deep branching graph, with ele-
ments and their dependencies where each connection in principle unites a head
term and its dependent term(s). The dependent term maintains a one-to-one cor-
respondence with its head, thus distinguishing between semantically useful words
like nouns and verbs to say, a determinative word. With constituency parsing, a
phrase-like one-to-one correspondence between the words is observed. The Child-
Sum Tree-LSTM works better for dependency parse tree representation of a sen-
tence, where each child is a node in the representation. For each node, the LSTM
unit takes as input the vectors of its head word to which it is dependent. In the
case of constituency parsing, an LSTM unit takes as input the exact vector of the
node. Figure 2 shows how the hidden state and the memory cell for a Tree-LSTM
unit with 2-children is composed. In the figure, labeled edges correspond to gat-
ing by the indicated gating vector, with dependencies omitted for compactness.
The most important benefit of the Child-Sum Tree-LSTM is its discriminative
capability, i.e., the model can learn parameters such that important words in the
sentence are distinguished from unimportant words. This provides a natural and
simple solution to what Attention mechanism [2] is used for.

Our approach can be divided into three parts, i.e., word encoding, sentence
encoding and feature generation. Furthermore, we used two approaches for fea-
ture generation and classification, i.e., the distance based approximation and the
perspective matching based approximation. The high-level representation of the
two approaches is given in Figs. 3 and 4.

We assume two texts P = (p1,....,pi,....,pM ) and Q = (q1,....,qj ,....,pN ) both
of length M and N respectively. Also, a label y ∈ Y is given, which shows the
relationship, or put differently, the label for classification, e.g., entailment, neu-
tral etc. For most of the datasets used in this work, y is either a binary output
or a ternary output. P is typically the Premise or text and Q is the Hypothesis.

Fig. 3. A high-level illustration of
the Distance-based model

Fig. 4. A high-level view of the
Matching-based model
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In anyway, the data representation follows the format: (P,Q,y) triples. The goal
then, is to estimate the conditional probability Pr(y | P, Q) based on the train-
ing set, and predicting the relationship for testing samples by y∗ = argmaxy∈Y

Pr(y | P, Q).
Irrespective of the approach, we first encode each word with a BiLSTM and

then obtain a sentential representation for both the Premise and the Hypothe-
sis using a Child-Sum Tree-LSTM, which operates on a dependency parse tree
representation of the texts.

Word Encoding

Here, we represent each word in the sentences P and Q with a d-dimensional
vector, where the vectors are obtained from a word embedding matrix. Generally,
we make use of the 300-dimensional GLOVE vectors, obtained from 840 billion
words [24]. A Bi-directional LSTM is then used in order to obtain contextual
information between the words. A Bi-directional LSTM is essentially composed
of two LSTMs, one capturing information in one direction from the first time
step to the last time-step while the other captures information from the last
time-step to the first. The outputs of the two LSTMs are then combined to
obtain a final representation which summarizes the information of the whole
sentence. Equations (3) and (4) describes this computation.

−→
hp
i =

−−−−→
LSTM(

−−→
hp
i−1, Pi), i ∈ [1, ...,M ]

←−
hp
i =

←−−−−
LSTM(

←−−
hp
i−1, Pi), i ∈ [M, ..., 1] (3)

hf
i = [

−→
hp
i ;

←−
hp
i ] (4)

Typically, when using an ordinary LSTM or BiLSTM to encode the words
in a sentence, the whole sentence representation can be obtained as the final
hidden state of the last word or time-step. The significant difference in our
approach is that instead of using such final hidden state from the last time-
step, we instead obtain the hidden states for each time-steps separately and
then feed these hidden states into the Child-Sum Tree-LSTM. Analogously, we
can also feed in the raw embedding vectors of each word into the Child-Sum
Tree-LSTM, such that a dependent node takes the fixed raw vectors of its head
while a head node takes the sum of its vectors and that of all its dependents.
However, using the hidden states obtained when we first encode each word with
a BiLSTM ensures that we have a context-aware high-level representation such
that a dependent node takes the hidden state value of its head while a head node
takes the sum of its hidden state along with that of all its dependents.

Consequently, we obtain the sentence representation for both P and Q, using
the Child-Sum Tree-LSTM. An interesting thing is that with this setup, we do
not require any form of Attention. Moreover, Attention is a way of focusing
specially on some important parts of an input, and has been used extensively in
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some language modeling tasks [2,23]. Essentially, it is able to identify the parts
of a text that are most important to the overall meaning of the text.

Distance Based Approximation

The idea here follows the work of [30]. A high level representation of this approach
is shown in Fig. 3. First, we use the child-sum Tree-LSTM to encode sentences P
and Q as explained in Sect. 3, to obtain the representations hP and hQ.

The representations hP and hQ can be regarded as a high level representation
of both texts P and Q. Given hP and hQ, we predict the label ŷj by using a fully
connected (FC) perceptron neural network which encodes the entailment relation-
ship {r}j = (hP , hQ) as the distance and angle between the element-wise summed
vectors of the pair (hP , hQ). We describe this process using Eqs. (5) and (9).

h× = hP � hQ (5)

h+ = hP − hQ (6)

hs = σ

(
W (×)h× + W (+)h+ + b(h)

)
(7)

p̂θ(y|{r}j) = softmax

(
W (p)hs + b(p)

)
(8)

ŷj = arg max
y

p̂θ(y|{r}j) (9)

We trained our model with the negative log-likelihood of the true class labels
y(k) according to Eq. (10), where m is the size of the training sample and is an
L2 norm regularization hyperparameter.

J(θ) = − 1
m

m∑
k=1

logp̂θ(y(k)|x(k)) +
λ

2
||θ||22 (10)

Matching-Based Approximation

The distance based approach assumes some form of intra-attention with the
child-sum Tree LSTM representation. Inter-sentence attention schemes have
proven very effective at various semantic inference tasks e.g. machine transla-
tion [2] and even NLI [21]. Similar to the Distance-based approximation, we use
the Child-sum Tree-LSTM to obtain the sentence representation of the premise
(P) and hypothesis (Q), after separately obtaining an annotation for each word
by encoding with a BiLSTM. We then use a matching-function which is sim-
ilar to the one proposed by Wang et al. [32]. The matching function creates
a similarity interaction between two texts, i.e., from one text to another text,
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this eventually creates a kind of inter-sentence attention. Note that unlike in
[32], we did not include Bi-LSTM to explicitly model the contextual relationship
between words of each sentence, this is already amply captured by the Child-
sum Tree-LSTM which we used to encode each sentence. Also, instead of using
the multi-perspective cosine function, we utilized the conventional cosine simi-
larity without an additional trainable parameter. The matching function work
as explained below.

−−−−−→
matchi

forward = sim(
−→
hi

P ,
−→
hi

Q) (11)

←−−−−−
matchi

backward = sim(
−→
hi

Q,
−→
hi

P ) (12)

sim = cos(V 1, V 2) (13)

Given two inputs P and Q, we represent an interaction (P→Q) by a forward
pass and interaction (Q→P) by the backward pass. In the forward pass (see
Eq. 11), we compare the time-step from the last hidden state of P to every time-
steps of Q. Similarly, in the backward pass (see Eq. 12), the computation is done
in a similar way. We compare the time-step of the hypothesis from the last hidden
state of Q to each of the time-steps in P. For both forward and backward passes,
the comparison is done by obtaining how similar the two vectors are, using the
cosine similarity formula in Eq. (13). This matching function creates a form of
interconnection from one-time-step to every other time-steps, thus yielding two
vectors of similarity scores.

In the original full-matching method of [32], they compared each time-step
from one text to every time-step in the other text. Furthermore, the comparison
is done with a Bi-LSTM which makes the approach further computationally
expensive. Here, we only compare the sentence representation of one sentence
with each word in the other sentence and vice-versa. Also, for simplicity, we use
the hidden state from the last time-step of a text as its encoding representation.

Once we obtain the similarity score vectors, i.e., Sp and Sq for P and Q
respectively, we introduce a merge layer in order to concatenate the two vec-
tors. The resulting vector is then passed to a fully connected Multilayer Percep-
tron (MLP) network to learn the entailment relationship. The predicted class
is obtained from the probability distribution given in Eq. (14). In order to train
our neural network, we use Multi-Class Cross-Entropy loss function, with 20%
dropout regularization [29].

ŷ = H([sp; sq]) (14)

ŷ = arg max
y

y(i)|x(i) (15)

We trained our model with the cross-entropy loss given in Eq. 16 where θF , θG,
θH are parameters to be learned.

L(θF , θG, θH) =
1
J

J∑
j=1

C∑
c=1

y(j)
c log

exp(ŷc)∑C
c=1 exp(ŷc)

(16)
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4 Evaluation

The RTE PASCAL challenge [14] is an important avenue for researchers to sub-
mit TE systems for public evaluation. We evaluated our system on the PASCAL
RTE3 dataset which consists of 800 sentence pairs both for development and
test set. The RTE3 dataset has only two classes, i.e., the entailment relation can
either be true or false. The SEMEVAL track offering similarity and entailment
tasks also make use of the SICK dataset5. SICK consists of 10000 sentence pairs
annotated for use in both sentence similarity and 3-way entailment task. Finally
we evaluated our system on the SNLI corpus [9] which is a big entailment dataset
that is publicly available.

In the context of our ongoing work in the legal domain6 [5,7,8], we evaluated
our models on a legal dataset of textual entailment. The three datasets cited
above contain sentences that are domain independent and thus have no technical
jargons. Our goal is to see how our model would perform within the complex
legal domain. Legal texts seem intuitive, because they have some peculiarities
which set them apart from day-to-day texts, since they employ legislative terms.
For instance, a sentence can have a reference to another sentence (e.g., an article)
without any explicit link to its text from within the quoting text. Also, sentences
are usually long with several clausal dependencies, that is notwithstanding of
its inter and intra-sentential anaphora resolution complexity. We opined that a
system that is able to achieve good result in this scenario would generalize well
given other domain dependent texts.

We used the COLIEE dataset7 which is a Question-Answering legal cor-
pus made available in the context of COLIEE Legal Information Extrac-
tion/Retrieval challenge. Task 2 of the challenge addresses NLI task, such that,
given a sentence and a Query, a system identifies if there is an entailment or not.
We provide our evaluation result on the 2015 training and test sets.

Experiment

In this work, we used the Child-sum Tree-LSTM similar to the one proposed in
[30] to encode the texts. We obtained dependency tree of both the text and the
hypothesis using Stanford dependency parser [10]. To embed the training data,
We used 300-dimensional Glove vectors [24]. Also, we keep the weights of the
embeddings fixed and thus, not trainable.

Our model was implemented based on Keras8. For the COLIEE, SICK and
RTE task, we used sigmoid for distributing output probability while we used soft-
max for SNLI with three classes. We apply a random Dropout of 0.2 throughout
the models.

5 http://clic.cimec.unitn.it/composes/sick.html.
6 Specifically, the MIREL project: http://www.mirelproject.eu, which is drawn from

our past project EUCases [6].
7 http://webdocs.cs.ualberta.ca/∼miyoung2/COLIEE2016.
8 https://github.com/fchollet/keras.

http://clic.cimec.unitn.it/composes/sick.html
http://www.mirelproject.eu
http://webdocs.cs.ualberta.ca/~miyoung2/COLIEE2016
https://github.com/fchollet/keras
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We used a uniform batch-size of 25 in all the experiments excluding that of
SNLI dataset, with the batch-size = 256. We used ADAM, a stochastic optimizer
with learning rate set at 0.01 and a decay value of 1e-4. Moreover, we used early-
stopping, in order to keep track of the point where the loss ceases to decrease
after 4 epochs. This also helps to reduce over-fitting on the training set.

Tables 1, 2, 3 and 4 shows the evaluation result on the datasets that we used
in our experiment. For Table 2, we used the results from Rocktaschel et al., [26],
Baudis et al. [3] and Bowman et al. [9] as the baseline systems on SNLI and SICK
respectively. For PASCAL-RTE3, we compare our models to some ML classifier
baselines since there is no recent work which use similar deep learning approach
on that dataset. For the result on COLIEE dataset in Table 4, we include the
result reported by [18] on the same dataset. We can see that the performance of
our model is near state-of-the-art, even though we slightly have fewer trainable
parameters when compared with some of the baseline systems. Our model that is
based on the matching-interaction approach seems to generally outperform our
second model. The performance on SNLI corpus is very close to that of Wang
et al. [32], even though the architecture of our model is simpler in theory.

Table 1. Evaluation on SNLI dataset

Model k —θ—m Train Test

LSTM [9] 100 220 k 84.8 77.6

Classifier [9] - - 99.7 78.2

Neural Attention [26] 100 250 k 85.3 83.5

NTI-SLSTM-LSTM encoders [22] 300 400 k 82.5 83.4

BiLSTM encoders with intra-attention [21] 600 2.8 m 85.9 85.0

LSTMN with deep attention fusion [12] 450 3.4 m 88.5 86.3

ESIM + 300D Syntactic TreeLSTM [11] 600 7.7 m 93.5 88.6

BiMPM Ensemble [32] 300 6.4 m 93.2 88.8

Tree-LSTM-Distance-Angle (This Paper) 300 560 k 87.3 84.1

Tree-LSTM-Matching (This Paper) 300 2.2 m 90.6 86.4

Table 2. Evaluation on SICK dataset

Model SICK Train SICK Test

attn1511 [3] 85.80 76.70

LSTM-RNN [9] 99.90 80.80

Tree-LSTM-Distance-Angle (This Paper) 85.10 76.00

Tree-LSTM-Full-Matching (This Paper) 95.60 81.80
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Table 3. Evaluation on PASCAL-
RTE3 dataset

Model Train Test

Wikipedia co-training [35] - 57.25

Wiki + RTE-3 [35] - 59.00

SVM [25] - 66.37

Naive Bayes [25] - 65.87

Sha et al. [27] - 85.16

Tree-LSTM-Distance-Angle 95.76 86.90

Tree-LSTM-Full-Matching 93.80 89.20

Table 4. Evaluation on COLIEE 2015
Dataset

Model Accuracy (%)

Convolutional Neural Network [19] 51.5

Convolutional Neural Network

with TF-IDF [19]

53.0

Convolutional Neural Network

with LSA [19]

54.5

Tree-LSTM-Distance-Angle

(This Paper)

53.84

Tree-LSTM-Full-Matching

(This Paper)

57.40

Discussion and Conclusions

In this paper, we described a Child-Sum Tree-LSTM model which obtained a
good result on 3 well known textual entailment datasets. The results of our
evaluation are given in Tables 1, 2, 3, and 4.

We noticed that the worst result was obtained on the COLIEE corpus. How-
ever, the COLIEE corpus, with less than 500 training samples may not be a good
corpus for neural networks. Also, the uniqueness of the corpus, being legislative
texts, may also be a factor. Furthermore, compared to SNLI and SICK, both
the text and hypothesis in COLIEE are unusually long. Nevertheless, we report
improved result to the baselines from [18].

In Table 1, we can see that our result is very close to the current state-of-the-
art system [32], which has more than double trainable parameters, compared to
ours. In Table 2, we see that we obtained the best result on the SICK dataset.
Even though the RTE-3 dataset contains small training samples, still our models
significantly outperformed the ML classifiers, i.e., SVM and Naive Bayes. In all
the experiments, we obtained better accuracy with our interaction or matching-
based approximation model than the one with the distance-based approximation
model. This is because of the fact that entailment is not just a function of
similarity between the texts being compared as in the case of the distance-based
approximation model. Compared to all the benchmarked baselines, our approach
is simple, requires no attention mechanism and has fewer trainable parameters.
In the future, we would like to do a comparative qualitative analysis of our two
models. Also, we would like to see if incorporating attention will impact the
performance significantly.
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