
Chapter 4
Artificial Neural Network (ANNs)

This chapter presents a review of the major forms of the Artificial Neural Networks
(ANNs) (Sordo 2002). The particular topic of discussion of this chapter is how
learning takes place in these models. Different ways of training the networks are
examined.

• Background of the ANNs, its structure and applications
• Kohonen Self organizing maps and Hop-field networks
• Historical perspective of ANNs and its Evolution
• Applications and importance of Computational Development in the field of ANNs
• Catastrophic Forgetting
• Conclusion and summary of the relevance to the CGPDN.

1 Artificial Neural Network

The computational systems made up of interconnected neurons are termed as Artifi-
cial Neural Networks (ANNs). The properties of these neurons resemble those of the
biological neurons. They can exhibit complex global behaviour which is dependent
upon the interconnection of neurons, their internal parameters and their functions.
These artificial neurons are bound together through different connections. The seam-
less transmission of signals from one neuron to another neuron takes place through
these connections.
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1.1 Applications of ANN

ANNs are used in different real life applications such as function approximation,
time series prediction, classification, sequence recognition, data processing, filtering,
clustering, blind signal separation, compression, system identification and control,
pattern recognition, medical diagnosis, financial applications, data mining, visual-
ization and email spam filtering (Dorffner and Porenta 1994; Dorffner 1996; Sjoberg
et al. 1994; Timothy 1994; Murray 1993; Ripley 1996).

1.2 History of ANN

The first generation of Artificial Neural Networkswere based on theMcCulloch-Pitts
threshold neurons, which generated binary outputs (McCulloch and Pitts 1943). If
the weighted sum of the inputs is above the threshold value, the unit was taken
as ‘on’; else the unit was taken as ‘off’. The nature of inputs is either decimal or
floating point numbers. The output of these neurons is only digital, but they have been
successfully applied in artificial neural networks. The second generation Neurons
utilize a continuous activation function for calculating their output. It makes them
suitable for analogue input and output. Some of the frequently employed activation
functions are sigmoid, and hyperbolic tangent. The second generation neurons are
regarded as stronger than the first generation neurons. If the output layer of the second
generation uses first generation binary units, they can be used for digital computations
with few neurons in comparison to a network consisting of only the first generation
units. They can also be used to approximate any analogue functionwhichmakes these
networks universal for analogue computation (Maass et al. 1991). The continuous
output of second generation ANN units can be interpreted in terms of a firing rate
model. This value indicates the normalized firing rate of the unit in response to a
particular input pattern. That is why second generation neuronmodels are considered
a close approximation to the biological neurons and they are also more powerful than
the neuron models of the first generation (DasGupta and Schnitger 1992).

The third generation of neural networks generate individual output spikes; hence
they are closer to biological neurons (Ferster and Spruston 1995). The outputs can be
interpreted using pulse coding mechanisms. The neurons send and receive individ-
ual pulses. The third generation networks are sometimes termed as Spiking Neural
Network (SNN) (Gerstner and Kistler 2002) as explained in the next subsection. A
wider range of neural coding mechanisms are entertained such as pulse coding, rate
coding and mixtures of the two (Gerstner et al. 1999).

The recent experimental results have shown that the neurons of the cortex can
carry out analogue computations at a very high speed. It has also been shown that the
human’s analysis and classification of visual inputs take place under 100 ms (Thorpe
et al. 2001). At least 10 synaptic steps are required from the retina to temporal lobe,
thus leaving 10 ms of processing time per neuron. This time is considered to be too
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short for averaging mechanisms like rate coding for processing the information. So
whenever speed is an issue, pulse coding schemes are thought to be the best (Gerstner
et al. 1999; Thorpe et al. 2001).

1.3 Spiking Neural Networks (SNN)

The interaction between the biological neurons take place through a short pulse
called action potential or spikes (Gerstner and Kistler 2002). Recently, researchers
have shown that neuron can encode information in timing of these spikes instead of
average firing frequency. The implementation of these SNN models takes place on
this principal. Both in conventional ANNs and Spiking Neural Networks (SNNs), the
information is usually distributed in the weight matrix. The interval between the time
of spike of post synaptic neuron and pre synaptic neuron is used to adjust the weights
in the SNN. The processing of a rapid temporally changing stimulus, which cannot
be reproduced by having more neurons or connections, is only possible through the
synaptic plasticity (Mehrtash et al. 2003).

1.4 Mode of Operation

The artificial networks can operate either in a learning (training) or testing mode.
Once the learning starts, from a random set of parameters, the weights and thresholds
are continuously updated until the desired solution is obtained; the parameters are
then frozen and remain fixed during the testing process. During the adaptive process
of learning, the weights between all the interconnected neurons are updated until an
optimum point is attained. The weights of the network can be either floating point
numbers or parameter dependent functions.

1.5 Learning Rules

The methods used for adjusting certain quantities responsible for the learnt infor-
mation, typically weights are termed as learning rules. Supervised and unsupervised
learning are the two main mechanisms of learning. When a desired output result is
used to guide the update in the neural parameters, it is termed as supervised learning.
While in the later mechanism, the training of the network is entirely dependent upon
the input data and there is no provision of the target results for updating the network
parameters which can be used to extract features from the input data (Hinton et al.
2006).

Back-propagation and evolutionary methods are the two conventional learning
methods. In the back-propagation, the output and the desired results are compared
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with each other, and the error is reflected backward to update the weights of ANNs
accordingly. In evolutionary methods, the weights of the best performing ANN are
slightly changed (either through mutation or cross over) for the production of next
set of weights. In this manner, the optimum performance weights are obtained. Back
propagation is also used for multilayer perceptron having input layer, hidden layers
and output layer. Cost function is the predefined error function which can be calcu-
lated by comparing the output with target in back propagation. The cost function is
given by

e = f (di − yi )
Where;
di = The desired value
yi = The system output
e = error
In order to reduce the error, it is fed back such that the weight of each connection

is adjusted in a direction that minimizes the overall error. The process is repeated for
converging the network to a state of minimum possible error.

Gradient Descent is an optimization method used for adjusting the weights in a
manner which reduces the net error. The error function is differentiated with respect
to the network weights. On the basis of the results of differentiation, the weights are
adjusted for reducing the error. Because of this reason, back propagation is applied
to networks which have differentiable active function.

The units of the intermediate layer of the feed forward neural network can be
instructed through back propagation algorithm. The features of the input vector for
predicting the desired output are represented by these units (Rumelhart et al. 1986).
This training can be performed through the provision of information regarding the
discrepancy between the actual output and the desired output of the network in order
to customize the connection weights to reduce the discrepancy.

2 Types of Neural Networks

Different types of neural networks have been introduced over the years, but the most
common one are feed-forward, Kohonen Self organizing maps, and Hopfield neural
networks.

2.1 Feed Forward Neural Network

These networks are usually arranged in the form of layers where each layer has a
number of neurons as the processing units (Sordo 2002). Signals are transferred from
layer to layer through the input-output manner, where signals are processed at each
layer and transferred in the forward direction. This basic architecture of a traditional
ANN is called Multilayer Perceptron (MLP). Figure1 presents a sketch of a general
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Fig. 1 Multilayer
perceptron
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model of Multi-layer perceptron consisting of an input layer, hidden layer and an
output layer.

There are usually two layers of processing elements and a hidden layer in theMLP
networks (as shown in Fig. 1), however the number of hidden layers can vary. The
external signal arrives at the input layer which is then propagated by the input layer
to the next hidden layer as a weighted sum. The hidden layer processes it through the
activation function. The commonly used activation functions are hyperbolic tangent,
the value of which ranges from −1 to 1;

φ(xi ) = tanh(xi )

and sigmoid function with values range from 0 to 1;

φ(xi ) = (1 + e−xi )−1

xi is the received weighted and summed up signal from the input layer.
The job of the hidden layer is to transfer the processed signal to the neurons of

another hidden layer, and if it is the last hidden layer; then it transfers the processed
signal to the output. The signals reach output as the weighted sum, processed through
the activation function. The output of the network is taken from the last layer.

The training of MLP networks is carried out by altering their connection weights
after every processing interval. The variation in the weights is dependent upon the
error between the output and the desired value. Usually this is done through back
propagation. The error (e) in output node j in the nth data point is given by;

e j (n) = d j (n) − y j (n)

where;
d = target value
y = value produced by the perceptron (Haykin 1998).
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The error can be used to adjust the weights of the nodes in a manner that the
energy E of error in the entire output is minimized as given by:

E(n) = 1

2

∑
j
e2j (n).

2.2 Kohonen Self Organizing Neural Networks

The Self Organizing Maps (SOMs) which are used as computational methods for
the visualization and analysis of high dimensional data were introduced by Teuvo
Kohonen (Kohonen 1982, 2001). The maps are based on unsupervised competitive
learning whose source of inspiration is the biological structure of the cortex. Cortex
has different areas which are responsible for different human activities (motor, sen-
sory, visual and somatosensory). Every sensory area is mapped to the corresponding
area in the cerebral cortex. It is thought that the cortex contains the self-organizing
computational map of the body. The sensory cortex also preserves the spatial rela-
tions between the body parts as much as possible. The same phenomenon also occurs
in the motor cortex.

The self-organizing networks have a two layer topology (as shown in Fig. 2). The
first layer is the Input layer while the second one is the Kohonen Layer. There is a
node for each dimension of the input in the input layer where every input is connected
to all the nodes in the Kohonen layer hence the two layers are fully connected. The
node value in the Kohonen layer represents the output. The number of nodes in the
Kohonen or output layer must be at least equal to the number of categories to be
recognized. One neuron in the output layer has to be activated for every dimension
of the input. The Kohonen layer neurons are neighboured by the grid (Kohonen and
Somervuo 2002; Kaski et al. 1998;Martinetz et al. 1993). These networks are of great
importance in applications, such as data clusteringwhichoccurs in speech recognition
and handwriting recognition for sparsely distributed data. Lateral inhibitions are used
by themwhich are inspired by the vision systemworking in biological neural systems.

Fig. 2 Structure of Kohonen
Self Organizing map,
showing input neurons and
the kohonen layer neurons.
Input neurons are fully
connected with the kohonen
layer neurons, A winning
neuron represented by a
black dot. Taken from (Hertz
et al. 1991)
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Kohonen networks rely on the principal of mapping input vectors (pattern) of
arbitrary dimension onto the Kohonen network in a way where the sequences closer
to each other in the input space should be within close range. The training in Koho-
nen network begins with the fairly large sized neighbourhood of the winner. As the
training proceeds, the distance reduces. The unit whoseweight vector has the shortest
Euclidean distance from the input sequence is the winning output unit. The neigh-
bourhood of a unit consists of all the units which lie in its proximity on the map (not
in the weight space). In the process of training, the closely distant node is selected
along with its neighbour’s weight; the modification for increasing the similarity with
input takes place. The radius of neighbourhood decreases with the passage of time,
and finally only a specific area in the network is identified for an input pattern is left.
The following equation is used for updating the weights of the winning unit along
with its neighbourhood.

wi = wi + α(xi − wi )

where;
wi = The weight of ith unit
xi = The input
α = The Kohonen’s rule for adjustment of weights.
In order to model the directional motion in the visual cortex, Farkas and Miikku-

lainen used SOMs (Farkas 1999). Their neuron model has ‘leaky integrators’ at
synapses. It performs time-dependent summation with decay of incoming spikes.
Once the dynamic threshold is exceeded, then a spike is fired. The spikes decay
exponentially with time and are accumulated over a set of afferent and lateral inputs.
The weighted output from leaky integrator is then applied to the spike generator. The
spike generator will generate a spike only if the input threshold is exceeded. The
output spike is then applied again for increasing the threshold, which makes it less
likely to produce the second spike. There is an exponential decrease in the threshold
with time. Every node has the receptive field of the receptors in the retina. They are
weighted and integrated over time for creating a Hebbian type weight adjustment.

2.3 Hopfield Networks

Arecurrent neural network is known asHopfieldNetwork (Hopfield 1982). Recurrent
networks possess the property of bi-directional flow of information i.e. forward and
backward direction. The nodes in such networks are fully connected to each other
and they can function as both the input and output. The idea behind it is that the
instability of states is iterated until a stable state is attained. This guarantees the
convergence of the dynamics (Fig. 3).
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Fig. 3 Hopfield Network:
Three node Hopfield
network, with xi = Input,
yi = Output, and
wi j = Weights attached
to connections
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The processing units which are used are binary threshold units. The binary thresh-
old units only take two different values for their state. The values can be either −1
and 1, or 1 and 0. The two possible definitions for the activation yi of unit i’s are

yi ←
{

1 if
∑

j wi j x j > θi ,

−1 otherwise.
(1)

yi ←
{
1 if

∑
j wi j x j > θi ,

0 otherwise.
(2)

where;
wi j = weight of the connection
x j = The state of unit j
θi = The threshold of unit i
There are two main restrictions in the connections of Hopfield net.

• No unit must be connected with itself
• Connections are symmetric

There is an energy function associated with every state of the network in Hopfield
net given by the following equation:

E = −1

2

∑
i �= j

wi j xi x j +
∑

i
θi xi
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where;
E = Energy of the network state.
wi j = The weight of connection.
xi = The state of unit i
x j = The state of unit j
θi = The threshold of unit i

With update in the network, there is decrease in the energy till a minimum is
reached. In Hopfield networks, the energy of the states is lowered in the training
phase. However, the network keeps track of its energy state (Hopfield and Tank
1985). The network can approach a previous state if it is granted only a portion
of that state, hence working as a content addressable memory system. We can also
recover a distorted input from the trained state of the network. The input most similar
to the distorted form is used as the recovery. As the memory recovery is based on
the basis of similarity, therefore it is termed as the associative memory. As a result,
Hopfield Networks are sometimes called associative networks as well.

Hopfield networks can be used in many optimization problems. The problem
first has to be transformed into variables in a way that the desired optimization
corresponds to the minimization of the respective energy function (Hopfield and
Tank 1985). Hopfield networks can also be applied to the non-linear factorization
problems (Husek et al. 2002).

In the next section, inclusion of artificial evolution into ANNs is described.

3 Neuro-Evolution

This section describes the Neuro-evolution (NE), which involves the use of artificial
evolution with ANNs. Neuro-evolution refers to the evolution of various aspects
of neural network. It is a combination of ANN and genetic algorithm, with ANN
being the phenotype and genetic algorithm being the corresponding genotype. The
genotype can represents the connection weights, connection type, node function,
topology of ANNs or combination of any two, three or all the parameters. The
genotype is evolved until desired phenotypic behaviour is achieved. Encoding is the
important aspect of the NE system, since it affects the search space of the solutions
(Yao 1999). Depending upon the methods, either the weights of the network or the
topologyor both are evolved.When afixed topologynetwork is used andonlyweights
are evolved, the network solution space is constrained; it has to work in a restrictive
environment not attaining any novel solution to the problem. It is not an easy job
to select the proper topology of ANN for a specific problem. The Topology and
Weight Evolving Neural Networks (TWEANNs) evolve both weights and network
topologies. In this method, evolution is provided with flexibility for selecting the
desired topology and weights for its network. So, TWEANNs genotype can encode
both the topology and weight of the network. This increases the efficiency of the
network, but it comes at the cost of increase in computational cost.
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TWEANNs can also use both direct and indirect encoding methods of genotype.
In direct encoding of genotype, every connection and node in the phenotype has
to be specified in the genotype (Zhang and Muhlenbein 1993; Lee and Kim 1996;
Dasgupta andMcGregor 1992; Opitz and Shavlik 1997; Yao and Liu 1996; Angeline
et al. 1993; Maniezzo 1994). In indirect encoding, only the rules for constructing
the phenotype are specified in the genotype (Bongard and Pfeifer 2001; Gruau et al.
1996; Hornby and Pollack 2002; Mandischer 1993). The genotype doesn’t specify
every node and connection in the phenotype in the indirect encoding. TWEANNs
which utilize the indirect encoding use a developmental approach that is akin to
an artificial embrogeny (AE) (Stanley and Miikkulainen 2003) in which the small
phenotypical structures act as the starting point which are developed to produce the
final phenotype.

ENZO (Evolver and Network optimizer) is a system which can optimize both
topology and connections’ weights at the same time. ENZO uses direct encoding
scheme (Braun and Weisbrod 1993). The set of the possible connections is fixed
as the gene corresponds to a connection in the network. ENZO scheme provide
introduction of new combinations of the parental properties through merging the
parent’s genes which is done through the crossover with the connection specific
distance coefficients. This increases the rate of the learning process by inheriting
the knowledge from parents, which is termed as weight transmission. Pujol and
Poli evolved weight, topology and activation functions of ANNs through genetic
programming (Pujol and Poli 1997). Since pole balancing is a standard issue in the
design of control systems, they tested the system for the development of a neural
controller for a pole balancing problem; and obtained promising results.

Krishnan presented a method which could evolve the rules for changing the net-
work weights, instead of the weights itself (Krishnan and Ciesielski 1994). Krishnan
used an indirect encoding scheme where the gene represented a rule for changing
the weights. They also applied the mutation and crossover operation of a standard
genetic algorithm to genes until they obtained the desired weight adjustment func-
tion. This network was called the 2-Delta GANN (Whitley and Hanson 1989). This
network performed better than the back propagation technique for the benchmark
problems. For smaller problems, the back propagation technique was more effective,
however according to the author; 2-Delta GANN was effective in solving problems
which were known to be very difficult for BP. This technique also provided better
results than other GANN which directly encoded the neural network weights in the
chromosomes.

Yaoexplored all combinations ofANNparameters including: connectionsweights,
architectures, learning rules and input features (Yao 1999). Yao explored evolving the
neural architecture and found that evolution can find a near optimal ANNarchitecture
automatically. Yao also evaluated direct and indirect genetic encoding scheme, con-
cluding that direct encoding scheme is good at fine tuning and generating a compact
architecture, while the indirect genetic encoding is superior for finding a particular
type of ANN architecture quickly. He also explored various combinations of ANN
parameter for evolution and concluded that evolving both ANN architectures and
connection weights can produce better results.
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Stanley presented a new type of TWEANN, the Neuro-Evolution of Augment-
ing Techniques (NEAT) (Stanley and Miikkulainen 2002). He identified three major
challenges of TWEANNs and introduced solutions for them. His solutions include:
“tracking geneswith historical markings for easy crossover between different topolo-
gies”, “innovative protection through speciation”, and “starting from aminimal struc-
ture and making it complex with the passage of the generations”. NEAT performed
faster than many other neuro-evolutionary techniques. The complexity of NEAT net-
work continue to grow during evolution. It starts with a very simple structure with
no hidden neurons, and a simple feed-forward network of input and output neurons.
During the course of evolution, the network continues to grow by addition of neurons
to existing connections or by addition of a new connection between the unconnected
neurons. NEAT doesn’t involve the development of the neural network during the
particular generation of evolution. It only updates its architecture from generation to
generation. That is why NEAT is not a developmental model. The indirect method
of NE is called the neural development, which will be discussed in the next section.

(Khan et al. 2013d; Khan and Zafari 2016) used CGP to introduce four different
ways of evolving neural networks: Feed-forward CGP evolved ANN (FCGPANN)
(Khan et al. 2013a), Recurrent CGP evolved ANN (RCGPANN) (Khan and Zafari
2016), Plastic CGP evolved ANN (PCGPANN) (Khan et al. 2013b), and Plastic
Recurrent CGPANN (PRCGPANN).

In the first case, CGP is transformed to a feed-forward neural network by con-
sidering each node as a neuron, and providing each connection with a weight. The
neurons of such a network are arranged in Cartesian format with rows and columns
inspired by original CGP architecture, and later on restricted to a single row mostly
giving the network an ability to create infinite graphs/topologies. Each neuron in
the network can acquire connection from either a previous neuron or from the sys-
tem input. Not all neurons are necessarily connected with each other or with system
inputs, this provides the network with an ability to continuously evolve its complex-
ity along with the weights. All the network parameters are represented by a string
of numbers called genotype. The number of active neurons (connected from inputs
to outputs), varies from generation to generation subject to the genotype selection.
Output of any neuron or a system input can be a candidate for the system’s output
selection. The ultimate system functionality is identified by interconnecting neurons
from output to input. FCGPANN was initially tested for its speed of learning, and
evaluated against the previously introduced neuro-evolutionary techniques on bench-
marks such as single and double Pole balancing (Khan et al. 2013d) showing superior
performance in comparison to the previously introduced neuro-evolutionary tech-
niques. FCGPANN is explored in a range of applications including: breast cancer
detection, prediction of foreign currency exchange rates, load forecasting, internet
multimedia traffic management, cloud resource estimation, solar irradiance predic-
tion, wind power forecasting and arrhythmia detection (Nayab et al. 2013; Khan et al.
2013a, c; Arbab et al. 2014; Rehman et al. 2014a; Khan et al. 2014). FCGPANN out-
performed all the previously introduced techniques as highlighted in the literature.
The second type of CGPANN is the Recurrent CGPANN (RCGPANN). These net-
works are more suitable for modelling systems that are dynamic and nonlinear. This
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network is a modification to one of the earliest networks, the Jordan’s network (Jor-
dan 1986). In the Jordan’s network there are state inputs that are equal in number
to the outputs. These inputs are fed by the outputs through unit weights. The state
inputs are present only at the input layer. In RCGPANN unlike the Jordan’s network
the state inputs can be connected, not necessarily to the first layer but to any layer.
RCGPANN was also tested initially for its speed of learning similar to FCGPANN
on both single and double pole balancing for both Markovian and non-Markovian
cases. Its performance relative to other neuro-evolutionary techniques was superior.
RCGPANN has been successfully applied to a number of applications including:
Load forecasting, foreign currency exchange rates, bandwidth management and esti-
mation (Khan and Zafari 2016; Khan et al. 2013c; Rehman et al. 2014b; Khan et al.
2013a) performing better than the previous neuro-evolutionary techniques.

Plasticity in neural networks has been the characteristic of choice when it comes
to applications in dynamic systems due to its comparatively better performance
(Papadrakakis et al. 1996; Sadeghi 2000; Carpenter and Grossberg 1988). The
improved performance in Plastic neural networks can be attributed to the adaptabil-
ity of its morphology to environmental stimuli. This is similar to the natural neural
system. Plastic CGPANN has also been successfully applied to evolve a dynamic
and robust computational model for efficiently predicting daily foreign currency
exchange rates in advance based on past data (Khan et al. 2013b).

Plastic Recurrent Cartesian Genetic Programming Evolved Artificial Neural Net-
work (PRCGPANN) is an online learning approach that incorporates developmental
plasticity in Recurrent Neural Networks. Recurrent Neural Networks can compute
random sequences of inputs due to their capability to acquire internalmemory access.
In a Plastic RCGPANN the output gene not only forms the system output but also
plays a role in the developmental decision.

The research in artificial neural development is discussed in the next section.

4 Neural Development

The motivation behind the artificial neural networks was to replicate the computa-
tional models of the nervous system. ANN models mostly overlook the aspect that
neurons present in the nervous system are part of the phenotype originated from the
genotype through developmental procedure. Most of the aspects of the nervous sys-
tem are determined from the information specified in the genotype (Kumar 2003).
The genotype lays down the regulations for the development of the nervous system.
The natural organisms have both the nervous system and genetic information stored
in the nucleus of their cells (genotype).

The motive behind the development schemes is to increase the scalability of the
ANNs, which is possible by having a minimum number of genes that can define
the properties of the network instead of having a one to one relationship between
the phenotype and genotype. These gene groups can influence several unrelated
phenotypic traits with no dependency of the genotypic dimension on the phenotypic
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size. For example, there is a common estimation of 30–40 thousand genes in the
human genotype (45 million DNA bases out of a total 109) while a mature phenotype
consists of 1014 cells (Elliot and Elliot 2001; Lodish et al. 2003).

According to Parisi and Nolfi, the neural networks should be considered along
with the genotypes to be viewed in biological context, as part of a population and
inherited by the offspring fromparents (Parisi 1997; Parisi andNolfi 2001). Parisi and
Nolfi utilized a growing encoding scheme (Nolfi et al. 1994; Nolfi and Parisi 1995)
for evolving the architecture and the connection strength of the neural networks for
controlling a smallmobile robot (for a similarmethod see (Husbands et al. 1994)). The
network comprises of a 2-D space having a group of the artificial neurons distributed
with growing and branching axons. The genetic code provides the instruction for
growth of the axons and the branching of neurons.

A neural development model, which starts with the single cell that undergoes the
process of cell division and migration, was proposed by Cangelosi (Cangelosi et al.
1994). Every cell produces two daughter cells where the new cells are separated in
a 2-dimensional space. This process of cell division and migration continues until a
group of neurons which are arranged in a 2D space is produced. Finally, the neurons
grow their axons to produce connections among each other. This process keeps going
on until a neural network is developed. The rules for the cell division and migration
are present in the genotype (for a related approach see (Dalaert and Beer 1994)).

Gruau also proposed a similar method (Gruau 1994). A single cell goes through
various stages of cell division and differentiation until the development of a complete
neural network. Every cell is divided into two daughter cells. The old connections
are strengthened along with establishing new connections. The rules related to cell
division and transformation lie in the genotype. The genotype of Gruau’s model is
similar to the binary tree structure of GP (Koza 1992). The top node of the genotype
tree is the initial cell. Every node of the genotype in the tree encodes the operation
of that cell, while the sub trees specify the operation which should be applied to the
two daughter cells. As a result of following the tree using instructions in these cells,
the neural network is developed.

As a result of further work done by Gruau, a method which was based on the
genotype-phenotype mapping that allows the repetition of phenotypical structure
by re-using the same genetic information was introduced. In this case, the terminal
cell or nodes point to the other trees. This encoding method can result in complex
phenotypical networks from compact genotype. Gruau termed this method as an
“automatic definition of neural sub-networks (ADNS)” (Gruau 1994).

For evolving the parameters which grow into artificial neurons with bio-inspired
morphology, Rust and Adams used a developmental model combined with a genetic
algorithm. Although Rust andAdamswere able to producemorphologies of neurons,
they did not apply it to substantive problems (Rust et al. 2000; Rust andAdams 1999).

For dynamic neural growth mechanism in cognitive development, Quartz and
Sejnowski provided a powerful manifesto (Quartz and Sejnowski 1997). Marcus
also laid emphasis on the importance of the growing neural structures by using
a developmental approach. In his words “I want to build a neural networks that
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grow, networks that show a good degree of self-organization even in the absence of
experience” (Marcus 2001).

Jakobi developed an impressive artificial genomic regulatory network where the
genes coded for proteins and the proteins either activated or suppressed the genes
(Jakobi 1995). Jakobi defined the neurons, which had excitatory or inhibitory den-
drites, through proteins. The individual cells divided and moved due to the interac-
tion of the protein with the artificial genome. This resulted in the development of a
multicellular system. After differentiation, every cell grew dendrites following the
chemical sensitive development cones in-order to connect the cells. This resulted
in a recurrent ANN capable of controlling a simulated Khepera robot for avoiding
obstacles and navigation through corridors. The genotypes of every generation devel-
oped phenotypical structures, which were tested and the best one were chosen for
breeding. Artificial evolutionary operations like cross over and mutation are utilized
for creating offspring genotypes.

Various researches have studied the potential of Lindenmeyer Systems in develop-
ing ANNs and generative design (Lindenmeyer 1968). Boers and Kuiper adapted the
L-systems for developing the architecture of the artificial neural networks (ANNs)
i.e. a number of neurons and their interconnections (Boers and Kuiper 1992). A
feed forward neural network was generated by evolving the rules of an L-System.
They came to the conclusion that this methodology resulted in more modular neural
networks, that performed better than the networks with the pre-defined structure.

Federici came up with an implicit encoding procedure for the development of the
neuro-controller (Federici 2005). He also compared it with the direct scheme. He
used adaptive rules relied on correlation between the post synaptic electrical activity
and the local concentration of the synaptic activity and refractory chemicals.

Federici produced the neuro-controllers through two steps:

• He used a growth program in the genotype for developing the whole multi-cellular
network in the form of the phenotype. This growth program inside every cell relies
on local variables and is implemented by a simple recursive neural network which
has a hidden layer (Similar to our use of CGP).

• During the second step, all the cells are translated into spiking neurons.

Every cell of the mature phenotype is a neuron of a spiking neuro-controller. The
internal dynamics and synaptic properties of the corresponding neuron are specified
by the type and metabolic concentrations of the cell. The topological properties of
neurons such as its connections to the inputs, outputs and other neurons are produced
by the position of the cell within organisms.

This networkwas implemented on aKhepera robot and the performancewas tested
both with direct and indirect coding schemes. Although the indirect method reached
the high fitness faster, it had trouble in refining the final fitness value. Downing is
in favour of a higher abstraction level in the neural development, because it avoids
the complexities related with the axonal and dendritic growth. It also maintains the
key aspects of the cell signalling, competition and cooperation of neural topologies
in nature (Downing 2007). Downing also developed a system which he tested on a
simple movement control problem called starfish. The task of the k-limbed animate
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is to move as far as possible in a limited time from the starting point. This produced
positive preliminary results.

The next section explains one of the major problems with ANNs known as the
‘catastrophic forgetting’.

5 Catastrophic Forgetting

Catastrophic forgetting is one of the main issues with ANN. During catastrophic
forgetting, the network forgets the previous task; once it is trained to do a new task.
The short term memory in The Human brain can be regarded as a forgetting problem
with the Biological brain, but evolution has minimized that over time (Seipone and
Bullinaria 2005). The problem is more catastrophic in traditional ANNs and it is a
serious limitation in such models (McCloskey and Cohen 1989; French 1999). There
aremanymethods available for either reducingor eliminating this problem.Oneof the
basic reasons behind the catastrophic forgetting is interference in the shared weights
(McCloskey and Cohen 1989; Ratcliff 1990). There are many methods used for
reducing this interference such as sharpening algorithm for reducing the hidden unit
activation overlap (connection usage) and the HARM model (Sharkey and Sharkey
1995); that implements a lookup table and divides the main task into two sub-tasks
(French 1999; Seipone and Bullinaria 2005). There are also certain methods which
use dual additive weights where the fast weights learn new tasks and slow weights
are used for long term (Hinton and Plaut 1987). A large number of the methods rely
on dual model architectures which consist of two distinct networks for processing
early and long term storage processing (French 1991). The inspiration behind these
methods is that human brains do not suffer from catastrophic forgetting as their brains
evolve two different areas i.e. hippocampal system for learning the new information,
and neocortical system for slow and long term learning and problem solving.

Brain has the capability of retaining information; some of this information might
degrade over time in a gradual manner. Connectionist networks which are trained
with a particular set of patterns when presented with new input patterns with no
correlation to the old pattern, they adapt to the new patterns and completely forget
the previous patterns. Robert addresses the problem of catastrophic forgetting in
connectionist networks; it’s consequences by highlighting the possible reasons that
cause this behaviour and possible solution to this problem. According to Robert
(French 1994), the problem of catastrophic forgetting can be alleviated by having
separate areas for information handling andprocessing; and for retention of processed
information.

“Conservative Training” and “Support Vector Reversal (SVR)” are presented in
(Albesano et al. 2006) as solutions to mitigate the effect of catastrophic forgetting
in ANNs in the domain of automatic speech recognition. In conservative training
instead of assigning a value of zero to the missing units, target uses the output of the
original network as an objective. While in SVR, support vectors are used to define
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the borders of the classes to keep the classification boundaries of the new network
close to that of the originally trained network.

An Algorithm, elastic weight consolidation (EWC) inspired from the neuro-
biological model of synaptic consolidation; that is the mammalian brain is able
to retain information as the excitatory synapses are strengthened. Continual learn-
ing is enabled by implementation of EWC which prevents the information of the
previous task from being erased by reducing the plasticity of parameters from the
previously learned task (Kirkpatric et al. 2017). Catastrophic interference can be
seen in conjunction with a general dilemma coined by Grossberg (Grossberg 1980,
1982); the stability-plasticity dilemma which he published in his book in 1980. He
states: “How can an organism’s adaptive mechanisms be stable enough to resist envi-
ronmental fluctuations which do not alter its behavioural success, but plastic enough
to rapidly change in response to environmental demands that do alter its behavioural
success”.

Age limited learning effects are explained in the context of catastrophic forget-
ting by exploring the plasticity-stability dilemma in ANNs. In a parallel-distributed
system, plasticity is essential for acquiring and incorporation of new information.
Stability on the other hand is required to retain previously acquired knowledge.
ANNs exhibit plasticity by readily adapting and learning new information at the
cost of previously acquired knowledge (Mermillod et al. 2013). Human memory
is emulated within a back propagation network by introducing grace degradation
of information with the help of interleaved learning. Sparse encoding and activation
function adjustment were also tested to assuage catastrophic interference. The results
however revealed that they influenced the performance of the network but could not
eradicate catastrophic forgetting in the network (Abdallah El Ali et al. 2008).

Robins’ pseudo-rehearsal solution and French’s activation sharpening algorithm
were tested to overcome the problem of catastrophic interference with the former
producing promising results. The solutions serve to reduce the catastrophic forgetting
to some extent but fail a general solution to the problem (Ole-Marius et al. 2005). In
Reinforcement learning (RL) problems, catastrophic forgetting can be prevented by
avoiding overtraining and reasonably orthogonalising the input layer. To completely
eliminate catastrophic forgetting into an RL agent, pseudo-rehearsal, a powerful
continual learner can be adapted. Although, CHILD is a faster and more capable
continual learner but due to its complex nature is difficult to execute (Cahill 2010).

These methods have reduced the catastrophic forgetting slightly; still the current
models of ANNs cannot eliminate these problems. Although the ANN models have
slightly adapted the biological neural structure, still they are not as complex as
the biological neural systems. The biological neural systems can develop their own
memory due to the changes in the synaptic connections, neural architecture, neurite
growth, shrinkage and the variations of the chemical concentrations.
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6 Conclusion

This chapter described various artificial neural networks, learning methods and their
applications. Historical perspectives of evolutionary methods applied to ANNs were
also elaborated. The chapter also presented a review of differentmethods for develop-
ment of ANNs. The use of ANNs has spread to engineering and medical diagnostics.
ANNs are the bio-inspired models of the brain. They have adopted some properties
of biological neurons, but they are yet to match the complexity of the biological
neurons.

The ANNmodels can perform efficiently in fixed task environment, however they
seem to struggle with dynamically changing environment. As the learnt information
in anANN is encoded in theweights, retrainingwill cause theweights to change. This
will affect the performance on the previous task. The performance of the network
can also be affected; if the environmental conditions slightly change while the same
task is being solved. Our network is yet to be tested on different task environments;
however the weights and morphology of the network continue to develop during the
task environment.

Our implemented system is inspired by the neuro-science. It also produced an
artificial environment for the neurons. Our basic neuron model is based on biolog-
ical study of neuron, their development and their mechanism of signal processing.
The neurons can either grow more neurons or can die. They are able to produce
complex neural structures based on the task requirement. We also evolved the rules
for the model discussed in this book’s development on the basis of neuro develop-
ment techniques which were described earlier. Chalup proposed that an incremental
scheme results in the development of the network in its stage of learningwhichwould
function more effectively than the artificially imposed inflexible system architecture
(Chalup 2001). This argument supports the approach adopted by us.

The motivation for the model discussed is the work done on neuro-development
techniques discussed in this chapter. The book evolves the rules for development of
the neural architecture and their internal processing. It is evaluated on two learn-
ing environments i.e. the Wumpus world and the checkers, details are provided in
Chaps. 6 and 7.

The next chapter will provide an insight into the design of the model along with
biological inspiration in detail.

http://dx.doi.org/10.1007/978-3-319-67466-7_6
http://dx.doi.org/10.1007/978-3-319-67466-7_7
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