
Studies in Computational Intelligence 725

Gul Muhammad Khan

Evolution of
Artificial Neural
Development
In Search of Learning Genes

Studies in Computational Intelligence

Volume 725

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the world-wide distribution,
which enable both wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/7092

http://www.springer.com/series/7092

Gul Muhammad Khan

Evolution of Artificial Neural
Development
In Search of Learning Genes

123

Gul Muhammad Khan
Electrical Engineering Department
University of Engineering and Technology, Peshawar
Peshawar
Pakistan

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-3-319-67464-3 ISBN 978-3-319-67466-7 (eBook)
https://doi.org/10.1007/978-3-319-67466-7

Library of Congress Control Number: 2017954270

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Acknowledgements/Dedication

I dedicate this work to my Supervisor and Teacher in Life, Dr. Julian Francis Miller.
The ideas and work presented here is the reflection of his guidance and his thinking
of True AI. The whole concept is a culmination of our continuous discussions and
his views of what Artificial Intelligence should be doing. Without him building
some developmental concepts were almost next to impossible. He guided me during
my Ph.D. and helped me develop systems capable of learning for itself, or at least
the concept of it. Through his guidance I learned the very basics of life itself.
I learned about myself, what am I? How I was built? Where I am in my body? How
a single cell transformed into what I am today? The group behaviour of my cells in
body and brain. I learned it all from you Julian, you are a true science to me.

Secondly I am thankful to Engr. Saba Gul and Engr. Rabia Arshad, My students
and Colleagues who helped me review the book and transform it into a better shape.

And finally to all my friends and family members who supported and encour-
aged me to accomplish the task of completion of this book.

v

Contents

1 Making the Computer ‘Brained’ . 1
1 AI-Defining Intelligence . 2
2 Making the Computer ‘Brained’ . 2

2 The Biology of Brain: An Insight into the Human Brain 9
1 Human Nervous System . 9
2 Central Nervous System (CNS) . 10

2.1 The Cerebral Cortex . 11
2.2 Types of Cells in the Human Brain 12

3 Neurons . 12
3.1 Dendrites . 13
3.2 Axon . 14
3.3 Summary of Differences Between Axons

and Dendrites . 15
3.4 Synapse . 16

4 Electrical Signaling . 17
4.1 Membrane Biophysics . 17
4.2 Resting Ion Channel . 19
4.3 The Action Potential . 20
4.4 Sub Threshold Behavior . 22
4.5 Cable Theory . 23

5 Learning in the Brain . 24
5.1 Synaptic Plasticity . 25
5.2 Hebbian Theory . 25
5.3 Short Term Memory . 26
5.4 Long Term Potentiation (LTP) . 26
5.5 Developmental Plasticity: Synaptic Pruning 27

vii

3 Evolutionary Computation . 29
1 Evolutionary Computation . 29

1.1 Evolutionary Strategies . 30
1.2 Evolutionary Programming . 30
1.3 Genetic Algorithms (GAs) . 31
1.4 Genetic Programming . 31

2 Cartesian Genetic Programming (CGP) . 32
3 Co-Evolution . 33
4 Developmental Systems . 35

4 Artificial Neural Network (ANNs) . 39
1 Artificial Neural Network . 39

1.1 Applications of ANN . 40
1.2 History of ANN . 40
1.3 Spiking Neural Networks (SNN) 41
1.4 Mode of Operation . 41
1.5 Learning Rules . 41

2 Types of Neural Networks . 42
2.1 Feed Forward Neural Network . 42
2.2 Kohonen Self Organizing Neural Networks 44
2.3 Hopfield Networks . 45

3 Neuro-Evolution . 47
4 Neural Development . 50
5 Catastrophic Forgetting . 53
6 Conclusion . 55

5 Structure and Operation of Cartesian Genetic Programming
Developmental Network (CGPDN) Model . 57
1 Fundamental Attributes and Biological Basis for the CGPDN

Model . 57
2 The CGP Developmental Network (CGPDN) 62

2.1 Health, Resistance, Weight and Statefactor 64
2.2 Cartesian Genetic Program (Chromosome) 64
2.3 Evolutionary Strategy . 66
2.4 Inputs and Outputs . 67

3 CGP Model of Neuron (The Genotype) . 69
3.1 Electrical Processing . 69
3.2 Weight Processing . 74
3.3 Life Cycle of Neuron . 75

4 Information Processing in the Network . 77

6 Wumpus World . 83
1 Wumpus World Problem . 83

1.1 The Proposed Wumpus World . 84
1.2 CGPDN Setup . 86

viii Contents

1.3 Results and Analysis . 86
1.4 Development of Network Over Agent’s Lifetime 89
1.5 Testing the Network Without Life Cycle Programs 91
1.6 Learning and Memory Development in CGPDN 93

2 Competitive Learning Scenario . 95
2.1 Results and Analysis . 99

7 Checkers . 107
1 Checkers: The Game . 108

1.1 Experimental Setup . 108
1.2 Fitness Calculation . 109
1.3 Inputs and Outputs of the System 109

2 Co-evolution of Two Agents Playing Checkers 111
2.1 Learning ‘How to Play’ . 112

3 An Agent Plays Against a Minimax . 115
3.1 Results and Analysis . 116

8 Concluding Remarks and Future Directions 125

Bibliography . 131

Contents ix

Declaration

The work presented in this book is the author’s own work, unless it is stated
otherwise. The following items have been previously published during this
research.

1. Khan, G. M., & Miller, J. F. (2014). In search of intelligence: evolving a
developmental neuron capable of learning. Connection Science, 26(4), 297–333.

2. Khan, G. M., Miller, J. F., & Halliday, D. M. (2011). Evolution of cartesian
genetic programs for development of learning neural architecture. Evolutionary
Computation, 19(3), 469–523.

3. Khan, G. M., & Miller, J. F. (2011). The cgp developmental network. Cartesian
Genetic Programming, 255–291.

4. Miller, J. F., & Khan, G. M. (2011). Where is the Brain inside the Brain?
Memetic Computing, 3(3), 217–228.

xi

Hypothesis
Is it possible to implement an autonomous computational system inspired by
neuroscience capable of continuously learning and adapting in complex
environments.

xiii

Chapter 1
Making the Computer ‘Brained’

For men at first had eyes but saw no purpose; they had ears but
did not hear. Like the shapes of dreams they dragged through
their long lives and handled all things in bewilderment and
confusion. They did not knew of building houses with bricks to
face the sun; they did not how to work with wood. They lived like
swarming ants in holes within the ground, in sunless caves of the
earth. For them there was no secure token by which to tell winter
nor the flowering spring nor the summer with its crops; all their
doings were indeed without intelligent calculations until I
showed them the rising of stars and their setting, hard to
observe. And further, I discovered to them numbering,
pre-eminent among subtle devices and the combining of letters
as a means of remembering all things, the Muses’ mother skilled
in craft. It was I who first yoked beasts for them, in the yokes and
made of those beasts the slaves of trace chain and pack saddle
that they might be man’s substitute in the hardest tasks; and I
harnessed to the carriage so that they loved the rein, horses the
crowning pride of rich man’s luxury. It was I and none other
who discovered ships and sail driven wagons that the sea
buffets. Such were the contrivances that I discovered for men.

—AESCHYLUS, Prometheus Bound

In his play Prometheus Bound; Aeschylus, a Greek dramatist describes how a ti-
tan, Prometheus freed mankind of ignorance and enlightened them with the gift of
knowledge by deceiving the Greek god Zeus; and how this transgression incurred
the wrath of Zeus. This brings in the light significance of knowledge and the fact that
since time immemorial, there has been a struggle to acquire knowledge.

© Springer International Publishing AG 2018
G.M. Khan, Evolution of Artificial Neural Development, Studies in Computational
Intelligence 725, https://doi.org/10.1007/978-3-319-67466-7_1

1

2 1 Making the Computer ‘Brained’

1 AI-Defining Intelligence

We use the word “Intelligence” quite often but when asked to define the term, it
puts us in a quandary. What is the basis for defining intelligence? What are the
bases of factors that are used to define intelligence? Is it something that we are born
with or does it come through our experiences and encounters in the physical world?
But then are the sensations experienced by each individual similar? We are unable
to quantify intelligent behavior as we are unable to define the basis for defining
intelligence. We are unable to quantify intelligent behavior as we are unable to
define the basis for defining intelligence. Intelligence is a relative term; an attempted
definition of intelligence is; “To respond appropriately to a particular situation in
a specific environment or under certain conditions.” Artificial intelligence is the
incorporation of intelligent behavior in machines.

2 Making the Computer ‘Brained’

There is a famous saying that ‘Necessity is the mother of invention’, and the rise
of science completely complements it. The rise of Science has also been due to
the human necessities and their desire for fulfilling these necessities. With the de-
velopments in the field of Science and Technology, Human Desires and necessities
have also increased proportionally. In the pre-historic days, human beings developed
various tools for the sake of their safety and shaping their environment. Gradually
human beings shifted their attention to controlling nature and environment. Science
has provided us with the tools to do what used to be ‘unthinkable’ and ‘impossible’.
It has provided us with answers for the questions which were thought out to be great
mysteries like weather conditions, planetary motions, economical development, and
various other social, natural and cultural phenomena.

The major breakthrough in the field of Science and Technology was the devel-
opment of Electronic Computers. It was that ‘Magic Wand’ which enabled us to
reach the unprecedented heights. Now that Electronic Computer has provided us
with various valuable tools for controlling and predicting our nature, scientists have
turned their attention to developing computer programs which bear traits of human
intelligence.

Recently, numerous Grand Challenges have been proposed in the USA and UK
in the field of Computer Science. A Grand Challenge (GC) in computer research has
already been established in UK.1 As of now, there are eight Grand Challenges. GC5
“TheArchitecture of Brain andMind” lays the foundation for various sub taskswhich
should be investigated for developing a robot which has the cognitive abilities of a
human child. Sub task 1 deals with non-hierarchical description, design and frame-
work of a series of computation models describing the functionality of the Brain.

1Brown, A., Furber, S., andWoods, R. “GrandChallenges inMicroelectronicDesign.” A report sup-
ported by EPSRC Network grant, EP/DO54028/1. See http://intranet.cs.man.ac.uk/apt/uElecCV/
for further details.

http://intranet.cs.man.ac.uk/apt/uElecCV/

2 Making the Computer ‘Brained’ 3

This just deals with only a computational model. The aim of GC7 “Journeys in non-
classical Computation” is the development of a mature science of all forms of cal-
culations which can unite classical and non-classical issues. An integral component
of this challenge is to refine, evaluate and understand the bio-inspired and complex
systems. The Computing ResearchAssociation also held a conference inUSAduring
the year 2003 which was called the “Grand Research Challenges” in Computer Sci-
ence and Engineering. GC5 was concerned with conquering system complexity. The
authors argued that such systems should be self-configuring, self-optimizing, self-
maintaining, self-healing, self-protecting, self-differentiating and robust. According
to the authors, achieving such systems will need an understanding and ability to
control the emergent behaviors as well as the understanding of achieving learning in
multi-agent systems. UK’s funding agency, the EPSRC, has supported the research
network which produced “Grand Challenges in Microelectronics Design”.

Andrew Brown, Steve Furber, Rogers Woods along with their colleagues pre-
sented a report which listed and garnished these grand challenges. The last challenge
that they offered was GC4 “Building Brains: Neurologically Inspired Electronic Sys-
tems.” TheGC4 can aid theGC5 through “developments in brain inspired novel com-
putation.” Systems which show intelligence, has the ability to learn, self-replication
and self-adaptation are an inspiration to the idea of constructing a program which is
modeled on brain. There are numerous features in human brain which are highly de-
sirable but difficult to emulate in conventional computer systems. During the human
life time, brain evolves and gradually gains the ability to deal with complex tasks
encountered through development of abstract symbolic models. While keeping its
integrity intact, the brain is adaptive and shows flexibility to any change in the en-
vironment by incorporating new experiences and responses to stimuli. Brain shows
resilience to injuries by self-restoration and organizing mechanism.

The interconnected networks of similar neurons make the building blocks of brain
which have the ability to learn and adapt. We believe that the seasoning of brain lies
in the ability of neuron to develop and evolve, which highlights the importance of the
research objective in acquiring a computational equivalent of neuron. Although in-
spired from the ability of the brain to evolve, the Artificial Neural Networks (ANNs)
has not yet been able to reproduce many characteristics of biological neural systems
(Gurney 1997) such as neural development, structure and mechanism of communi-
cation among neurons. The reason behind this was the lack of computation power
for the model, however the modern growth in the computational power of computers
along with our increased knowledge of neuroscience has made it possible to design
more complex neuro-inspired approaches. ANNs deal with brains as a connectionist
system such as a nodal networkwhere every neuron serves as a node having the ability
to process a signal. In biological neurons, before the arrival of signal at soma, com-
plex signal processing takes place in neurite branches. Based on the signal received
from the dendrites, decision about signal transformation is made. Since neurons are
present in space, they are capable of redirecting signals to their neighbors by making
a synapse through an electrochemical impulse (See Chap.2, Sect. 5.4). The synaptic
connections, the structure of branching and the number of neurons change with the
passage of time resulting in the learning and adaptation ability of brain. The model

http://dx.doi.org/10.1007/978-3-319-67466-7_2

4 1 Making the Computer ‘Brained’

discussed in this book has a dynamic structure which varies according to the task
environment. The ultimate goal is the development of a system which has the ability
to learn.

Biologically inspired computational systems have attracted the interest of re-
searchers, where neural computation is not only considered from computing per-
spective but also from the perception of neuro science. Evidence clearly indicates
that the sub-processes of neurons are dependent on timewhere different structures are
rebuilt and altered.Memory is also not static and there is a constant gradual change in
localization and mechanism for the stored (remember) information (Smythies 2002).
The act of remembering is a process involving the reconstruction and the change in
the primary structure associated with the particular event (Rose 2003). The physi-
cal topology of the neural structures keep on changing and plays an important role
in learning ability of the brain (Kandel et al. 2000) (pp. 67–70). Koch and Segev
(2000) have suggested that the “Dendritic Trees enhance the computational power”.
Dendrites are mostly responsible for shaping and integration of signals in complex
manner (Stuart et al. 2001). They themselves cannot be simply credited for collecting
and passing synaptic inputs to the soma (Stuart et al. 2001). The communication be-
tweenNeurons take place through synapses which not only are the connection points,
but they can also affect the shape and strength of the signal on short term (Kleim
et al. 1998; Roberts and Bell 2002) as well as long term (Terje 2003). Over the years,
there has been much proof provided about the importance of the physical structure of
the Neuron. Biological neuron is very complicated on the basis of internal dynamics.
That is why it is hard to replicate it into a dynamic computational model. There are
also many processes in Biological Neuron that may not be necessary in the machine
learning technique. However, to be able to identify essential subsystems for replicat-
ing the biological neuron in a computational model; this book assumes that the reader
understands the gross morphology and connectivity of neurons (Alberts et al. 2002;
Shepherd 1990). The conventional neural networks ignore the genetic makeup of
neurons and its evolution process during learning; while it considers brain as a static
connectionist system. Genetic Programming (GP) provide the concept of transfer-
ring genetic changes through the generations. Therefore Genetic Programming can
be used for representing complex neuron engines which can be further advanced to
behave like real neural systems going far beyond the boundaries of theoretical model
of such systems. GP can solve such problems (Koza 1992). Such solutions show
sudden incipient behaviours such as self-construction and self-reparability (Miller
2003, 2004) similar to living systems.

We explore CartesianGenetic Programming (CGP) (Miller and Thomson 2000), a
class of GP for developing the proposed computational network that is demonstrated
to be capable of learning. An individual neuron is considered to be the computational
unit comprised of chromosomes representing its sub-processing parts. The genotype
of neuron is an assembly of chromosomes representing the integrant of neuron. The
chromosomes are evolved to achieve the desired intelligent behaviour.

The model under discussion provides a neuron with structural morphology of
dynamic synapses (Graham 2002), soma, dendrites (Panchev et al. 2002) and ax-
ons provided with branches. It employs the concept of synaptic communication for

2 Making the Computer ‘Brained’ 5

internal and external communication with neighboring branches. Branches attain a
sense of virtual proximity by placing the neurons in a two dimensional toroidal grid.
The branches can grow, shrink and communicate through the axon and dendritic
branches. CGP chromosomes encode combinational digital circuits to idealize and
represent the seven neural components (Khan et al. 2007). The chromosomes have
the ability of encoding computational functions. This model allows the neurons, den-
drites and axon branches to expand, perish and vary while attempting to unravel a
problem. The information processing continue to be affected by synaptic morphol-
ogy. Though this model is complex and there are a lot of parameters and variables
involved, but it is getting closer to the complexity of the brain in search of intelligent
behaviour. The seven chromosomes when run form a computational network, that
can grow an assembly of neurons, neuritis and synapses having internal dynamics
and environmental interactions of their own.

The learning ability of this network has already been tested on Wumpus World
and checkers. The network exhibited learning proficiency in solving the wumpus
world. According to (Hillis 1990) two agents in a co-evolutionary wumpus world
can hardly perform tasks and they struggle with their own survival in a predator-
prey relationship. There is a separate CGP computation network for controlling the
agent. The “health” quality of agents may increase or decrease due to their decisions
and experience in a two dimensional artificial environment. First agent can improve
health by obtaining useful encounters and avoiding deleterious encounters. The other
agent improves the health by head on confrontation with the first agent. According
to (Paredis 1995), this is a “life time fitness evaluation” and discussed the manner in
which this “arm race” can be a driving force for complexity.

Nolfi and Floreano also performed experiments which involved the seasoning
of competing predators and prey robots to indicate that life time learning can help
the individuals in obtaining ability for producing effective behaviour in varying
conditions (Nolfi and Floreano 1998). The interesting part of this experiment is that
both prey and predators keep changing fromgeneration to generation, so both of them
will face varying and more complex challenges. It was seen that in this situation,
evolution can also display certain limitations. In spite of all of this, the research
literature of evolved artificial developmental neural approaches is limited. These
approaches will be reviewed and discussed in the section of neural development (see
Chap.4, Sect. 6). Our designed system can help the computational network make
itself complex in response to its internal dynamics and environmental influences.
The main reason behind this decision was the biological brain itself as it can do it
without reshaping the underlying genetic makeup.

The basis of learning lies in the process of biological development. The devel-
opment takes place with the passage of time. During the development, the system
grows and the environmental interactions shape it. Biology proves that this emergent
operation is initiated at the genetic level. Now the puzzling part is how the learning
ability lies at the genetic level? This book has tried to entertain this question on the
basis of two classical problems associated with artificial intelligence, i.e. Wumpus
World and game of Checkers. A worthwhile object of AI research is to develop

http://dx.doi.org/10.1007/978-3-319-67466-7_4

6 1 Making the Computer ‘Brained’

computer programs which can play games. Shannon (1950) presented the concept
of utilizing a game tree which has a certain depth. He also suggested employing a
board evaluation function which can allocate numeral score on the basis of better
position of board.

According to (Dimand and Dimand 1996), Minimax is the method which can be
used to determine the best moves. Samuel (1959) exploited it on computer checkers
as a board evaluation function. As of now, the world champion in the game of
checkers is Chinook (Schaeffer 1996) which employs “deep minimax search”, “a
huge database of end game positions” and “a handcrafted board evaluation function”
based on human expertise.

Recently the Artificial Neural Networks (ANNs) have been employed for ob-
taining board evaluation functions for various games. The weights are adjusted on
the basis of evolutionary techniques Othello (Moriarty and Miikulainen 1995), Go
(Richards et al. 1998),Chess (Kendall andWhitwell 2001), andCheckers (Chellapilla
and Fogel 2001).

From literature of computer games, many effectual methods (e.g. minimax, board
evaluation function) are introduced. Human beings on the other hand don’t use such
methods, instead they consider only few probable moves, and the decision making
regarding ‘how to play’ is highly instinctive and empirical. The computer programs
also learn the game just like a human being learns to be better at a game. But how is
this possible? The main interest of our work is to ascertain the rise in learning ability
and how it can be incorporated in a genotype, which after execution results in a neural
networkwith the ability to play a game at a higher standard of decisionmaking. Every
player contains a genotype which develops into a computational neural framework
during the game. Our method uses only a few of the traditional perceptions which are
utilized in the Artificial Neural Networks. Most of the aspects of the neural functions
are primarily due to the genotype’s evolution.

To test the ability of our approach for learning, the model of this book made
two seasoned players compete against each other utilizing a form of co-evolution.
This model also tested the exhilaration each player for competing against a minimax
based checker program (MCP). During the previous case, the two agents were loaded
with Cartesian Genetic Programming Developmental Network (CGPDN) and then
they were evolved together for a number of generations. After performing many
evolutionary runs of the system, all of the more evolved agents were tested against
the less evolved ones. With the result being in favour of the more evolved agents. In
later case, when the player is evolved in competition with a MCP, the more evolved
players were once again tested with the lesser evolved players with more evolved
players out performing them.This clearly indicates that the evolutionwith the passage
of time produces programs which grow into a better checker playing systems.

Further analysis of self-configuration and experiential learning abilities of the sys-
tem exhibited interesting results. The system had the tendency to optimize its neural
architecture, and manipulate random number of inputs and outputs at execution.

In Chap.2, a review of the essential biology and neuroscience which lay the
foundation for the model is discussed. Chapter 2 also provides a detailed background

http://dx.doi.org/10.1007/978-3-319-67466-7_2
http://dx.doi.org/10.1007/978-3-319-67466-7_2

2 Making the Computer ‘Brained’ 7

of the biological brain, neurons, different Compartments of neurons, neural signal
processing and learning in brain.

Chapter 3 provides a review of computational evolution and gives a deep insight
into genetic programming technique called Cartesian Genetic Programming which
has been used in our work.

Chapter 4 highlights all the relevant work done in the sphere of Artificial Neural
Networks (ANNs). It also discusses the various types of ANNs, neuro-evolution,
neural development techniques, and catastrophic forgetting.

Chapter 5 will give a comprehensive description of the model explored, explain-
ing the layout of the neurons, their internal architecture, their interface with the
environment and internal signal processing.

Chapter 6 will highlight various methods of application of the developmental
model presented in this research, to the ‘WumpusWorld problem’ for demonstration
of its learning abilities. Both evolutionary and co-evolutionary methods are explored
to obtain genes that can create learning abilities in neurons and ultimately the systems
they are installed in.

Chapter 7 will give an insight into the methods of playing checkers using the
model of this work. The network starts with simple random genes and random neural
architecture. Later on it develops and learns the method of playing checkers with the
evolved genes that develops a neural architecture capable of learning. The training
of system is carried out through co-evolution and against a minimax based checker
software program.

Chapter 8 will present the conclusion and discussions on the the present work and
highlight the plans for future work.

http://dx.doi.org/10.1007/978-3-319-67466-7_3
http://dx.doi.org/10.1007/978-3-319-67466-7_4
http://dx.doi.org/10.1007/978-3-319-67466-7_5
http://dx.doi.org/10.1007/978-3-319-67466-7_6
http://dx.doi.org/10.1007/978-3-319-67466-7_7
http://dx.doi.org/10.1007/978-3-319-67466-7_8

Chapter 2
The Biology of Brain: An Insight into
the Human Brain

Human brain is a very complex but fascinating subject. The structure of brain has
always been an attractive topic to the human beings. This small mass miraculously
controls every action of the human body. Unfortunately it is not possible to cover
every single aspect of the human brain in just one book. This book will try to explain
various aspects of brain which are thought to be the main cause of the learning ability
of the brain. Brain itself is made up of small building blocks called the “neurons”
that are a major source of attraction on their own. The complexity of neurons, its
structure and its functionality is a debated topic. Neurons are spread throughout the
body and are present in different shapes, however their basic mechanism does not
change (Kuffler et al. 1984). Figure1 shows various types of neurons that exist in the
human nervous system. This is why; we are going to begin with a detailed insight
into The Human Nervous system.

1 Human Nervous System

The Human Nervous System is comprised of two main parts:
Central Nervous System: The information from sensory neurons is carried to

the Central Nervous System (CNS), where it is processed and sent to the desired
motor neurons. The motor neurons are responsible for controlling various physical
activities of humans. The CNS is responsible for these functionalities as well as
creating a memory of these processes for future reference.

Peripheral Nervous System: It is made up of the motor and sensory neurons.
Once the sensory neurons send the information about the environment to the CNS,
the CNS then processes the signals. The desired behaviour is visible in the form of
various human activities controlled by motor nerves through signals. The output of
Motor Neuron is visible in the form of the human body’s motor action.

© Springer International Publishing AG 2018
G.M. Khan, Evolution of Artificial Neural Development, Studies in Computational
Intelligence 725, https://doi.org/10.1007/978-3-319-67466-7_2

9

10 2 The Biology of Brain: An Insight into the Human Brain

Fig. 1 Different types of Neurons, taken from (Mel 1994), a Alpha motorneuron in spinal cord of
cat, b Spiking interneuron in mesothoracic ganglion of locust, c Layer 5 neocortical pyramidal cell
in rat, d Retinal ganglion cell in postnatal cat, e Amacrine cell in retina of larval tiger salamander, f
Cerebellar Purkinje cell in human, g Relay neuron in rat ventrobasal thalamus, h Granule cell from
olfactory bulb of mouse, i Spiny projection neuron in rat striatum, j Nerve cell in the Nucleus of
Burdach in human fetus,k. Purkinje cell inmormyrid fish, lGolgi epithelial (glial) cell in cerebellum
of normal-reeler mutant mouse chimera, m Axonal arborization of isthmotectal neurons in turtle

2 Central Nervous System (CNS)

The Central Nervous System is responsible for controlling all the processes of the
human body and producing actions in response to the environmental inputs. These
inputs can be in different forms such as pressure on muscle receptors, visual input
of eyes, chemical inputs through taste, auditory and/or olfactory inputs. There are
more than 1011 neurons in the central nervous system. These neurons form tens of
thousands of connections with other neurons.

The outer area of the human brain is a grey layer, which is only a few millimetre
in thickness. This grey layer contains neuron bodies. This area is termed as cerebral
cortex or simply cortex (Kandel et al. 2000). The cortex has a large surface area,
and is highly folded, and as described by (Kandel et al. 2000) the most complicated,
most studied and fascinating part of the brain. The next layer of brain is mostly made
up of myelination and is termed as the white matter. The insulation to the axons
of neurons is provided by this layer. It also supports the structure. Figure2 depicts
different regions of the brain which are explained below.

2 Central Nervous System (CNS) 11

Fig. 2 Schematic diagram of various regions of the brain, taken from http://wps.prenhall.com/wps/
media/objects/1928/1974895/f04-10.gif

• Heart rate, breathing, peristalsis, and various reflexes such as swallowing, cough-
ing, sneezing and vomiting are controlled by the Medulla.

• The temperature homeostasis, water homeostasis and the release of hormones of
pituitary gland is controlled by the Hypothalamus.

• Different hormones are secreted by the Pituitary Gland also known as the Master
Gland.

• Cerebellum is responsible for the coordination of muscle movement; hence con-
trolling balance, posture, walking, jumping and running.

2.1 The Cerebral Cortex

Different functions of cortex are localized into discrete areas, which can be divided
into three groups (Kandel et al. 2000):

http://wps.prenhall.com/wps/media/objects/1928/1974895/f04-10.gif
http://wps.prenhall.com/wps/media/objects/1928/1974895/f04-10.gif

12 2 The Biology of Brain: An Insight into the Human Brain

• Sensory Areas: The sensory inputs from the sensory organs are received and
processed by the sensory areas. Every sense organ has different sensory areas
such as visual, auditory, smell and skin.

• Motor Areas: Those areas which organize and send motor outputs to skeletal
muscles.

• Associative Areas: These areas are involved in higher processing. The short term
memories called sensory maps are produced by the associative areas for real world
experiences. There are multiple copies of sensory maps present in the associative
areas that change as the sensorymap changes. These copies are of great importance
as they can be used to either compare or associate sensory inputs with the prior
experiences and then make decisions based on them. So they play their role in var-
ious advanced skills namely visual recognition, language understanding, speech,
writing and memory retrieval.

2.2 Types of Cells in the Human Brain

According to (Kandel et al. 2000), the Nervous System consists of two types of cells:

• Ganglia (Glia) Cells, and
• Neurons

There are about 100 billion neurons in the brain, while glial cells are 10 to 50
times more than the number of neurons in the brain. Glial cells are responsible for
maintaining the structure of the nervous system. They also provide assistance in
maintaining a lossless flow of electrical spikes in the axon through the provision of
electrical insulation to the axon.Glia cells also constitute themyelin sheath around the
axon. The processing of information in the brain is done by the neurons. According
to (Kandel et al. 2000) neurons are different from the rest of the cells in the body as
they differ both in functionality as well as the biophysical structure.

The next section will describe the neurons in detail.

3 Neurons

Neurons are the building blocks of brain. According to (Kuffler et al. 1984) the
appearance and structure of neurons vary based on their location in the brain (as
shown in Fig. 1). However, the basic structure of neuron is same. There are three
main parts in the neuron (as shown in Fig. 3).

• Dendrites: They are the inputs of the neuron. They receive the information sent
by other neurons and then transfer it to the cell body. The structure of dendrites is
just like a tree. Their branches are close to the cell body.

3 Neurons 13

Fig. 3 Schematic of neuron showing its different parts: dendrite, soma, axon, axon hillock and
axon butons. Taken from http://www.virtualventures.ca/~neil/neural/neuron1.gif

• Axons: Axons are considered to be the outputs of neurons. The transfer of infor-
mation from one neuron to another takes place through the axons by propagation
of spike or action potential. Axons make branches away from the cell body. They
make synapses or connections with the dendrites and cell bodies of other neurons.

• Cell body: It is the area which performs the main processing for the neurons. The
instruction from dendrite branches is received in the form of electrical disturbances
which are then converted into action potentials. They are then transferred to other
neurons through the axons. The development of neurons and branches is also
controlled by the cell body.

Compartments of neurons are further elaborated in the following subsections:

3.1 Dendrites

Dendrite comes from the Greek word “dendron” which means tree. As described
by the name, the structure of dendrite resembles that of a tree (as shown in Fig. 3).
Dendrites have spines that make synapses with the axon of other neurons. Synapses
are responsible for the reception of the bulk of electrical signals from other neu-
rons. Dendrite spines can also be used for reception of signals from some dendrites.
There are channels present along the length of dendrites which are responsible for the
modulation of signals either through amplifying (voltage gated channels) or attenu-
ations (leaky channels) (Alberts et al. 2002). The membrane channels are biological
membrane proteins. This allows the movement of ions, water and other solutes for
passively passing through the membrane due to an electrochemical gradient.

http://www.virtualventures.ca/~neil/neural/neuron1.gif

14 2 The Biology of Brain: An Insight into the Human Brain

3.1.1 Dendrite Spine

It is a small (sub-micrometer), thrust out membrane. It extends out from a dendrite
and half of a synapse ismade up of dendrite spine (Nimchinsky et al. 2002). The spine
contains a number of receptor channels. The opening and closing of the channels
is based on signals received from the axon buttons (as shown in the Fig. 3) of the
other neuron through the neurotransmitters. Neuro-transmitters are chemicals and
are responsible for communication between the neurons.

Neuro-transmitters act on the receptor channels at the dendrite spine,which causes
the channels to open. After the channels are opened, the ions flow in and out of the
spine due to which a disturbance is produced in the electrical potential of the dendrite
spine.

Spines are present in the dendrites of pyramidal neurons, the medium spiny neu-
rons of the striatum and purkinje cells. They are responsible for the modulation of
the signal which comes from other neurons. Spines have a variety of shapes and
these shapes are in accordance with the distinct evolutionary stages and strengths of
a synapse (Nimchinsky et al. 2002).

3.2 Axon

The long filament which extends from the cell body (the soma) of the neurons is
called the axon. It is responsible for carrying nerve impulses away from the soma
to the presynaptic terminal buttons. These impulses are then transmitted to other
neurons. However if we are dealing with motor neurons, then the impulses will be
transmitted to the muscles. Axons are usually long and can be up to 1m in length.
The impulses are carried at the speeds of 100m/s or more. According to (Michael
et al. 1998), the transmission speed of the nerve impulse is directly proportional to
the axon’s diameter. Many axons can be seen through the naked eye.

The insulation is provided to most of the neurons through myelination (as shown
in Fig. 4). The axons are folded in myelin which assists in flow of signal in the axon.

The myelin sheaths are present at discrete points around the axons, thus some
breaks are left behind (as shown in Fig. 4). These breaks are called nodes of Ranvier.
The active transmission of signal along the axon is made possible through these
nodes. The membrane channels are exposed at these nodes, which results in the jump
of signal from node to node. This results in an increased conductivity velocity. The
Ranvier nodes contain sodiumchannels and can serve in preventing the decayof nerve
impulses by amplifying them (Kandel et al. 2000). The amplification is done through
the action potential firing in the nearby node. The jumping of action potential from
one node to another is called “saltatory conduction” which was suggested by Ralph
Lillie in 1925 (Lillie 1925). The first empirical affirmation of saltatory conduction
was provided by ichiji Tasak and Taiji Takeuchi, Alan Hodgkin and Robert Stmpfli
(Tasaki 1939; Tasaki and Takeuchi 1942; Huxley and Stmpfli 1949).

There are two main parts of an Axon

3 Neurons 15

Fig. 4 Schematic of neuron showing nodes of Ranvier and myelination. Taken from http://www.
coolschool.ca/lor/BI12/unit12/U12L03/Saltatorycondn.png

• Presynaptic Terminals
• Axon Hillock

3.2.1 Presynaptic Terminals

Axons also have projections called buttons. They perform the task of a presynaptic
terminal (as shown in Fig. 3). They are present either at the end of an axon or along
the length of axons (Kandel et al. 2000). The classification of axonal buttons can be
performed based on their synaptic vesicle characteristics. An individual button can
form single or multiple synapses with their postsynaptic partners.

3.2.2 Axon Hillock

They are present at the axon base, and the number of ion channels present there is
greater. As a result of which, the probability of occurrence of firing is most in this
region (Kandel et al. 2000).

3.3 Summary of Differences Between Axons and Dendrites

There are many differences between axons and dendrites. Some of them are listed
below:

• The job of the dendrite is to transfer information to the cell body while the axons
transfer information away from it.

• The surface of axon is smooth while the surface of dendrites is rough.

http://www.coolschool.ca/lor/BI12/unit12/U12L03/Saltatorycondn.png
http://www.coolschool.ca/lor/BI12/unit12/U12L03/Saltatorycondn.png

16 2 The Biology of Brain: An Insight into the Human Brain

• Dendrites are not insulated by the myelination while axons have myelin sheet
around it.

• The branching of dendrites is near the cell body while the branching of axons is
distant from the cell body.

• Dendrites work as receivers due to the neuro-receptor release sites while axons
work as transmitters due to the presence of neuro-transmitter release sites.

3.4 Synapse

Synapse is the junction between the two neurons (Shepherd 1990). Due to the move-
ment of ions across the gap, the presynaptic electrical signals are transferred to a post
synaptic terminal at the synapse. The nerve impulse received from the soma opens
the voltage gated channels at the pre-synaptic terminal. This results in the inward
flow of the calcium ions. Figure5 shows voltage gated calcium channels.

The presence of calcium ions is responsible for the fusion of the synaptic vesicles
with the cell membrane. Then the contents i.e., the neurotransmitter chemicals are
released through “exocytosis” (a cellular process through which the cells excrete by
products or chemical transmitters) as shown in Fig. 5. The neurotransmitters then
diffuse across the synaptic cleft where they are bound for the neuro-receptors in the
post synaptic membrane. This results in the opening of channels causing the inward
flow of sodium ions in the post synaptic terminal. Depolarization of the post synaptic
cell membrane takes place. In this way the information is transferred across synapse
from one neuron to other.

Fig. 5 Schematic of a synapse showing pre and post synaptic terminals and synaptic cleft and inter-
nal dynamics. Taken from http://upload.wikimedia.org/wikipedia/en/4/46/SynapseIllustration.png

http://upload.wikimedia.org/wikipedia/en/4/46/SynapseIllustration.png

3 Neurons 17

3.4.1 Different Parts Synapse

There are three constituents in a synapse (Kandel et al. 2000).

• Pre-synaptic Terminal
• Synaptic Cleft
• Post Synaptic Terminal

They are further detailed below:

Presynaptic Terminal

The synaptic vesicles are present in the presynaptic element. The synaptic vesicles
are filled with neuro-transmitters (as shown in Fig. 5). There can be variation in the
size, shape and content of the vesicles on the basis of type of synapse.

Synaptic cleft

It is a 20–30nm wide separation between the presynaptic and postsynaptic mem-
branes. It is usually filled with a dense plaque of inter-cellular material (as shown in
Fig. 5).

Post Synaptic Terminal

It is mostly the dendrite spines which consist of the neuro-receptors (as shown in
Fig. 5). The opening of channels and the influx of ions to the dendrite spines is due to
the combination of the neuro-receptors and neuro-transmitters. Every neuro-receptor
reacts to a particular neuro-transmitter.

4 Electrical Signaling

4.1 Membrane Biophysics

Movement of ions is responsible for the processing of information in biological
organisms. These ions are either cations like Sodium (Na+), Potassium (K+), Cal-
cium (Ca2+) or anions like Chloride (Cl−) (Mummert and Gradmann 1991). The
flow of ions can take place either through diffusion or electric fields. The difference
in the concentration of ions between the two regions, results in the diffusion of ions.
The difference in the concentration of electric fields between the two regions can also
result in the flowof ions. Themembrane around the cell is impermeable to ions,which

18 2 The Biology of Brain: An Insight into the Human Brain

makes it difficult for the ions to diffuse through the membrane. This causes a net
potential difference across the membrane (Lieb and Stein 1986). The ions can move
across the membrane through two different mechanisms which are discussed below.

4.1.1 Membrane Channels

The membrane channels are biological membrane proteins which permit the passive
movement of ions, water and other solutes to pass through the membrane down
towards their electrochemical gradient (Alberts et al. 2002). Channels can be in two
different states. They will either be open to let the flow of ions take place through
diffusion or they can be fully closed. The fully closed channels can be voltage-
sensitive channels which open when a certain threshold voltage is established across
the membrane. It can also be Ligand-Gated Channel which opens in response to
a ligand neuro-transmitter. Ligand is a specific chemical. There are also certain
channels which are sensitive to light, temperature and pressure.

4.1.2 Ion Pumps

Every animal’s cell membrane contains a protein pump known as the Na+K+ATPase
pump (Kandel et al. 2000). This pump is responsible for continuous pumping out
of 3 sodium ions (Na+) from the cell and pumping in 2 potassium (K+) ions (as
shown in Fig. 6). If this process keeps on going, then there will be no potassium or
sodium ions left for pumping. However, there exist some leaky channels as well (see
Sect. 2.6.2). The concentration of different ions vary inside and outside the neurons
such as the concentration of Potassium ions outside the neuron is 20 times greater
than the concentration of Potassium ions inside, and the concentration of sodium ions
inside is 9 times greater than the concentration of sodium ions outside the neuron
(Steinbach and Spiegelman 1943).

Fig. 6 Schematic of ATP
pump

http://dx.doi.org/10.1007/978-3-319-67466-7_2

4 Electrical Signaling 19

4.1.3 Membrane Potential

Na+K+ATPase pump along with the leakage channels are responsible for causing a
stable imbalance of Na+ and K+ ions across the membrane. This imbalance results
in a potential difference across the cell membranes of all animals. This potential
difference is called the membrane potential which is always negative inside the cell
and its magnitude varies from −20 mV to −200 mV in different cells and animal
species.

4.2 Resting Ion Channel

There are resting ion channels present in the biological neurons which are open all
the time (Kandel et al. 2000) (page 125–139). These are also known as the leakage
channels or leak channels. There is an electrochemical gradient present in the resting
ion channels which allows the flow of ions across the membrane. The positively
charged Potassium ions (K+) are allowed to flow outwards while the negatively
charged Chloride (Cl−) ions move into the cell through the electrochemical gradient.
The resting membrane potential is hyperpolarized or negative due to the net efflux of
positively charged ions as the number of resting sodium channels is less compared
to the resting potassium and chloride ions. This continuous flow of ions is termed
as the “leakage current” which is much smaller in magnitude as compared to the
currents flowing through the voltage-gated ion channels. The flow of ions, continues
across these channels till the net current becomes zero which indicates that the
equilibrium potential is attained. The equilibrium voltage can be represented by the
Nernst Equation (Bernstein 1902).

E = RT

nF
ln

[outside ion concentration]

[inside ion concentration]
.

where;
n =The valence charge of the ion such as +1 for K+, +2 forCa2+ and−1 for Cl−)
T = The temperature in Kelvin
R = Molar gas constant
F = Total Charge of a mole of electrons
According to the Nerst equation, the equilibrium voltage of Potassium ((EK)) is

−75 mVwhile the equilibrium voltage of Sodium (ENa) is +55 mV. These potentials
show that these currents can never be zero, however at somevoltage Em the net current
of all ions across the membranes can be zero as indicated by the Goldman Equation
(Goldman 1943).

Em = RT

F
ln

(
PK[K+]out + PNa[Na+]out + PCl[Cl−]in
PK[K+]in + PNa[Na+]in + PCl[Cl−]out

)

20 2 The Biology of Brain: An Insight into the Human Brain

where;
Pion = The permeability
[ion]out = The extracellular concentration
[ion]in = The intracellular concentration of the ion

The equilibrium potential Em also known as resting potential is typically
−70 mV.

4.3 The Action Potential

Neurons can produce the ‘action potentials’ whose nature was discovered by Alan
Lloyd Hodgkin and Andrew Huxley in 1952 (Hodgkin and Huxley 1952). It is also
called a nerve impulse and is formed due to signals from other neurons. Other neu-
rons produce these signals at their dendrite spine either through electro-chemical
synapses or pressure or chemicals. The production of action potential takes place
due to opening and closing of voltage sensitive channels as a result of changes in
membrane voltage Vm . The change in membrane voltage also results in the change of
membrane’s permeability. The Goldman equation clearly indicates that the variation
in ionic permeability can cause a change in the equilibrium potential Em and the
membrane voltage Vm (Goldman 1943). There is a positive feedback which arises
from interaction between Vm and ion channels. This positive feedback is respon-
sible for rising phase of the action potential. Most of the voltage-sensitive sodium
ion channels are opened by raising Vm . An action potential has following four main
phases (as shown in Fig. 7).

• Rising phase
• Falling phase
• Undershoot phase
• Refractory period

4.3.1 Rising Phase

Action potentials rise from the influx of sodium cations into the cell which increases
Vm . This results in opening of more voltage gated sodium channels to open which
increases membrane permeability to sodium ions. As long as the sodium channels
are being charged and Vm does not approach ENa (55 mV), the positive feedback
continues as shown in Fig. 7. This process usually takes place at the axon hillock.

4.3.2 Falling Phase

When the membrane potential gets closer to ENa , it causes a reduction in the active-
ness of the sodium channels; resulting in the reduction of the membrane’s perme-

4 Electrical Signaling 21

Fig. 7 Schematic and real action potential curve, taken from http://upload.wikimedia.org/
wikipedia/commons/thumb/c/cc/Action-potential-vert.png/422px-Action-potential-vert.png

ability to sodium. It also causes the movement of Vm towards resting potential. This
marks the end of the falling phase. This is the point where the potassium channels
start to open a bit more, which causes the permeability of potassium to increase. It
also drives Vm towards EK . This phase is also called repolarization.

4.3.3 Undershoot Phase

During the falling phase, some of the potassium channels remain open even after the
membrane potential reaches its normal resting potential. This causes the membrane

http://upload.wikimedia.org/ wikipedia/commons/thumb/c/cc/ Action-potential-vert.png/422px-Action-potential-vert.png
http://upload.wikimedia.org/ wikipedia/commons/thumb/c/cc/ Action-potential-vert.png/422px-Action-potential-vert.png

22 2 The Biology of Brain: An Insight into the Human Brain

voltage to go below the resting potential as shown in Fig. 7. This process is termed
as undershoot or hyperpolarization.

4.3.4 Refractory Period

When the membrane potential reaches its resting potential, then most of the channels
reach the refractory state. Since they have not returned to their normal state, therefore
it is cumbersome to fire a new action potential. To be able to quickly recover to
the firing state, the membrane potential has to stay in hyperpolarized state for a
longer period of time. This time during which the neuron cannot fire is known as
the refractory period, and the period in which there is no new action potential; that
is called the “absolute refractory period”. There is also a period in which it is more
troublesome to produce action potential and is termed as “relative refractory period”.
Due to these refractory periods, the transfer of action potential is always in a single
direction, i.e., it moves away from the soma, along the axon. A stronger stimulus
will make the neuron fire quickly by overcoming the relative refractory period.

4.4 Sub Threshold Behavior

The signals are usually initiated at the dendrite spines where the cations are injected
because of the chemical synapses, sensory neurons or pacemaker potentials. There
are two phases termed as the depolarization and repolarization. Depolarization takes
place when the neurotransmitters, released by the neurons, move across a synaptic
cleft and bound themselves to specific proteins (neuro receptors) on the post synap-
tic terminal of the neuron. This results in a variation in the ion channels of the post
synaptic terminals, causing the opening of channel and the flow of ions through the
pore. These ionic currents can be caused by Sodium (Na+) and Calcium (Ca2+)
ions which results in depolarization. The ionic currents can also result from the
influx of Chloride (Cl−) ions or outward flow of Potassium (K+) ions causing hyper
polarization. Depolarization takes place when the normal voltage polarity (negative
inside) becomes positive while hyperpolarization takes place when the voltage polar-
ity becomesmore negative. Hyperpolarization takes place due to inhibitory synapses.
This restores the original polarity and is known as repolarization. This signal is then
transferred to soma through the dendrites. If the net effect (potential) is above a
certain threshold (soma threshold), then an action potential will be produced. How-
ever, if it is below the threshold value; the decay of the signal will start until it is
incremented by a stimulus coming from another dendrite.

4 Electrical Signaling 23

4.5 Cable Theory

This theorywasoriginally developedbyLordKelvin for transatlantic telegraph cables
(Kelvin 1855). Then Hodgkin and Rushton used it for modeling of the signaling in
neuron (Rall 1989). This model considers a neuron as cylindrical transmission cable
which has passive properties. It can be represented through the differential equation:

τ
∂V

∂t
= λ2 ∂2V

∂x2
− V

Where
V = Voltage across the membrane.
t = Time
x = The position along the length of neuron
λ = The characteristic length and τ = The characteristic time at which the voltage

decays in response to a stimulus.
Figure8 presents the circuit diagram of the model. It is the compartmental model

of a cable. The characteristic length and time scale can be determined in terms of
resistance and capacitance per unit length using the following relations:

τ = RmCm

λ =
√

Rm

Rl

where;
Rm = The membrane resistance
Cm = The capacitance due to electro static forces
Rl = The longitudinal Resistance.

Fig. 8 Cable theory’s simplified view of a neuronal fiber. The connected RC circuits correspond
to adjacent segments of a passive neurite. The extracellular resistances Re (the counterparts of the
intracellular resistances Ri) are not shown, since they are usually negligibly small; the extracellular
medium may be assumed to have the same voltage everywhere, taken from http://en.wikipedia.org/
wiki/Action-potential-Cell-membrane

http://en.wikipedia.org/wiki/Action-potential-Cell-membrane
http://en.wikipedia.org/wiki/Action-potential-Cell-membrane

24 2 The Biology of Brain: An Insight into the Human Brain

The effect of the diameter of the neuron on conduction velocity in fibers which
have no myelination can be seen from the above mentioned parameters. As a conse-
quence, it can be seen that the resistance is inversely proportional to the diameter and
there is a direct proportionality between the capacitance and diameter of a neurite. In
this section we discussed the signaling mechanism within and between the neurons.
The next section will discuss the learning and memory capabilities in the brain from
the context of signal modulation and developmental process.

5 Learning in the Brain

Neural processes are function of time. Neuron has a highly complex architecture
inside (Smythies 2002). The synapses between the neurons can be replaced, deleted
and there can even be a creation of new synapses. These variations occur more
often compared to the anatomical changes in the brain. The variations take place
actively, where new connections are made and the unused brain connections are
discarded. The locations and mechanism for the remembered or stored information
are in constant though largely gradual change (Rose 2003). There are some variations
in a specific area of brain which takes place due to the learning experience. This
persists for a couple of hours. It is because of the shifting of the number and the
position of a few dendrite spines on a few neurons in a specific region of brain.
The physical structure of neuron topology inside the brain constantly reshapes and
is a fundamental part of acquiring the ability to learn (Kandel et al. 2000). The
capability of brain to develop hierarchical structure gives it the ability to react to
changes in the environment along with adapting to new information and growing
in relation to the variation in the physical development of the individual (Hawkins
2004). The ability of brain to produce these memory structures is dependent upon the
internal processes involved at the neuron level. To date; habituation, sensitization and
associative learning have been identified as the types of learning (Wood 1988). All of
these have shown the tendency to be for short term, ranging from the order of minutes
to hours. They have also shown long term characteristics which have the order of
days or weeks, but themechanism for each of them is different. Short termmemory is
also accounted for by changes in ion concentrations and ion pathways in the pre and
post synaptic sides of the synapse. On the other hand, the anatomical changes in the
synaptic connections give rise to the long term learning. The model discussed in this
book comprehends both short term and long termmemory developmentmechanisms.
For the modulation of signals and neural development for long term memories, a
weighted adjustment mechanism has been used. The next subsection provides a
detailed description of various kinds of learning mechanisms in brain.

5 Learning in the Brain 25

5.1 Synaptic Plasticity

Synaptic Plasticity means the variability of the strength of a signal transmitted
through a synapse (Debanne et al. 2003). It might also involve the variation of the
post-synaptic neuron’s excitability (the chance that it will fire after the given level
of stimulus) in response to the amount of stimulus it might have received in the past
(Gaiarsa et al. 2002). The receptors on the membrane can also be varied by synap-
tic activity (Frey and Morris 1997). Experiments have indicated that a permanent
developmental change to neural architecture can also take place due to the develop-
ment of a positive feedback loop. The positive feedback loop is developed due to
the reinforcement of strength of synapse by stimulation or weakening of the strength
of synapse due to the lack of stimulation. The positive feedback causes some of the
cells to never fire while others firing a lot (Gaiarsa et al. 2002).

5.2 Hebbian Theory

This theory is about the basic mechanism of synaptic plasticity. The synaptic vari-
ation occurs from the presynaptic cell’s recurring and sustained stimulation of the
postsynaptic cell. This theory was proposed by Donald Hebb in 1949 (Hebb 1949).
According to this theory: “When an axon of cell A is near enough to excite a cell B
and repeatedly or persistently takes part in firing it, some growth process ormetabolic
change takes place in one or both cells such that A’s efficiency, as one of the cells
firing B, is increased.” The theory is also stated as “Cells that fire together, wire
together” (Shatz 1994). This form of learning is also termed as activity dependent
synaptic plasticity. The work of Donald laid the foundations for Synaptic Plasticity
in Spiking Neural Network (SNN) models (Chap.4 Sect. 4.2.3); the basic doctrine
of this model is “the repeated and persistent stimulation of a postsynaptic neuron by
a pre-synaptic neuron” (Hebb 1949). This results in strengthening of the connection
between two cells.

Hebbian learning is alsoof use in the “Spike-timing-dependent plasticity (STDP)”‘
(Roberts and Bell 2002). STDP relies on the relative timing of the pre-synaptic and
post-synaptic action potentials. This type of synaptic modification automatically
results in balanced synaptic strengths for making the postsynaptic firing irregular.
However it makes it more sensitive to presynaptic spike timing. The synapsesmodifi-
able by STDP compete for control of the timing of the postsynaptic action potentials.
Any stimulus which can cause post synaptic neuron to fire within short intervals of
time is also able to develop strong synapses.

STDP rules can be utilized to update the weights in SNN networks (Roberts and
Bell 2002). The changes in weight are dependent upon the relative timing of the
pre- synaptic and post-synaptic spikes. Different rules were proposed by Song for
modifications in the STDP (Song et al. 2000). The modification of synapses takes
place whenever there is correlation between presynaptic and postsynaptic activity

http://dx.doi.org/10.1007/978-3-319-67466-7_4
http://dx.doi.org/10.1007/978-3-319-67466-7_4

26 2 The Biology of Brain: An Insight into the Human Brain

according to STDP. However such correlated activity occurs only once in a while
and it happens by chance. That is why ANN’s must utilize the covariance basedmod-
ification rather than opting for correlation based modification. According to Song,
the synaptic weakening through STDP is more efficient than the synaptic strength-
ening. This indicates that the uncorrelated synapses are weakened by the STDP and
the synapses which can provoke the action potential in the postsynaptic neurons are
strengthened. These systems rely on an update rule depending on the firing time
of only two neurons; they result in interesting patterns of global behaviour which
includes the competition between synapses (Van Rossum et al. 2000). Despite many
important features of the Hebb’s rule, there are also some drawbacks associated with
it. The first drawback is causality such as in Hebb’s rule the firing of neuron A must
precede the firing of neuron B. So Hebb’s rule is not valid for the simple correlation
in which the order of spike times is unimportant. Hebb’s discussion only considers
neural interaction mediated by spikes, so the critical role is explicit for the postsy-
naptic cell and implicit for the presynaptic cell. Finally Hebb’s rule only considers
the conditions under which the synaptic efficacy increases; it doesn’t describe the
condition under which the synaptic efficacy decreases. Since the information in the
nervous system is coded by spike rate instead of timing of individual spikes, the
central roles of causality and spike-timing have been under scrutiny (Roberts and
Bell 2002). Our system includes aspects of these ideas by allowing the variation of
three different types of neural weights in response to the firing of neurons.

5.3 Short Term Memory

Eric Kandel (2000 Nobel Prize winner), in 1965 discovered that the mechanism
for short term learning is situated at the synapse. His discovery was made possible
through his studies on the marine snail aplysia in habituation, sensitization and
classical conditioning. Kandel traced the electrophysiological changes which are
caused by these combined stimuli to specific synapses (Kandel et al. 2000).

Kleim showed that the rats could develop enhanced synaptogenesis when exposed
to motor skill learning tasks (Kleim et al. 1998). It has also been shown that animals
which live in complex environments can develop greater dendritic branching. These
variations can be developed very quickly and their duration can range from minutes
to hours (Greenough et al. 1985).

5.4 Long Term Potentiation (LTP)

The increase in synaptic strength between two neurons which is caused by their
simultaneous stimulation is called LTP. LTP is considered to be one of the integral
mechanisms which are responsible for the memory in the brain, since the learning
experiences are all stored in the form of synaptic strength between the neurons (Cajal

5 Learning in the Brain 27

1894). Memories are not dependent upon neural growth; they might be formed by
improving the effectiveness of the communication between the neurons through
strengthening the connections between the existing neurons.

Terje Lomo discovered the LTP for the first time in 1966 while working in the
laboratory of Per Andersen (Terje 2003). He conducted several neurophysiological
experiments on the anesthetized rabbits for exploring the role of the hippocampus
and the process of LTP.

LTP increases the sensitivity of post synaptic neurons to the signals received from
presynaptic neurons; hence it enhances the communication between neurons as well
(Malenka and Bear 2004). Increasing the activity of existing receptors or increasing
the number of receptor on the postsynaptic neurons can improve the sensitivity of the
post synaptic neurons. This results in a permanent variation of synaptic signalling
which results in long lasting effects and is considered to be responsible for production
of long term memory of the event.

5.5 Developmental Plasticity: Synaptic Pruning

The process in which the weaker synaptic contacts are eliminated, while the stronger
connections are preserved and strengthened is known as synaptic pruning. At times,
during the developmental phase; a greater number of structural elements such as
neurons and neurites are produced than the actual requirement. This is termed as an
overshoot phenomenon (Ooyen and van Pelt 1994). Due to the overshoot, the system
can then tune itself soundly on the basis of environmental conditions (GoodMan and
Shatz 1993). The death of inappropriately connected neurons or the reduction in the
number of synapses maintained by the individual neurons or both can be used for
refinement.

The strengthening and pruning of connections can be determined through experi-
ence. The connections which are activatedmore frequently are preserved. Theremust
be a purpose for a neuron to live; else it will die through a process called “apoptosis”.
In this process, neurons which neither receive nor transmit information are damaged
and then die (Gopnic et al. 1999). The ineffective or weak connections are pruned.
The plasticity is responsible for the process of developing and pruning connections;
thus allowing the brain to adapt to the environment.

Many aspects of neuroscience which are relevant to the model were discussed in
this chapter. The building block of brain are neurons. They can arrange themselves
in variety of structures. Based on these structures they attain their functionalities.
The model discussed in this book includes the neural morphology as it allows the
neurons to have random number of dendrites, dendrite branches, and axon branches.
It also allows the branches to grow and shrink along with the variation in architec-
ture in response to the environmental signals. There is an artificial space given to
the neurons in this model which assists them in interacting with their neighbours
through making synapses. The neuron in the model discussed in this book has three
main parts which are the soma (cell body), dendrites with its branches, and an axon

28 2 The Biology of Brain: An Insight into the Human Brain

with its branches. The potentials of all the branches and the soma after every cycle
are reduced, in an attempt to replicate the biological neuron. A mechanism in which
the signals from all the neurons in the environment are received through dendrites is
also implemented, and then the decision about firing or not firing the action potential
is made. This is also inspired from the process of action potential described in Sect. 6
(Electrical Signalling). Synaptic Plasticity lays the foundation for learning andmem-
ory development in the brain as mentioned in Sect. 2.7. Using it as the guideline, we
have also implemented a mechanism synaptic plasticity in the model of this book’s
network as well through the addition of weight to each branch and soma updated at
runtime during the development.

The next chapter provides detailed discussion on evolutionary computation. It
explains all the methods relevant to the work of this book, in detail.

http://dx.doi.org/10.1007/978-3-319-67466-7_6
http://dx.doi.org/10.1007/978-3-319-67466-7_2

Chapter 3
Evolutionary Computation

This chapter is divided into four main sections.

• Evolutionary Computation (EC)
• Cartesian Genetic Programming (CGP)
• Co-Evolutionary Computation (CC)
• Developmental Systems (DS)

1 Evolutionary Computation

The field of Evolutionary Computation has existed for more than 50years (Fogel
1998). The basic idea behind the evolutionary computation is that the candidate
solutions of problems can progressively become better through some combinations
of mutation (varying a solution randomly) and cross over (mixing two solution to
form a new one) to vary the solution as evolution continues. A fitness function is used
to measure the candidate solutions that can give an approximation of the closeness
of the proposed solution to the desired solution.

Evolutionary Computation can be divided into four main categories:

• Evolutionary Strategies (ES)
• Evolutionary Programming (EP)
• Genetic Algorithms (GA)
• Genetic Programming (GP)

A brief discussion of these types are presented below.

© Springer International Publishing AG 2018
G.M. Khan, Evolution of Artificial Neural Development, Studies in Computational
Intelligence 725, https://doi.org/10.1007/978-3-319-67466-7_3

29

30 3 Evolutionary Computation

1.1 Evolutionary Strategies

They were first introduced in Germany by Rechenberg (Rechenberg 1971) and later
developed by Schwefel (Back et al. 1991). The purpose behind their design was to
find the function minima for large multi-variant functions and discover a real valued
vector that can minimize a function for the problem. The earliest algorithm relied
on a population consisted of a parent and a child. The child arose from the parent
through the addition of normally distributed random numbers to the elements of the
vector. The child would then be evaluated for its performance to be better than the
parent and allowed to replace the parent at the next iteration. This was called the two
membered ES.

Later on Rechenberg proposed a multi-membered ES. The multi-membered ES
consisted of more than one parent (μ) and child (λ) (Rechenberg 1994). This type of
ES was represented by μ+1 ES. It was further improved by increasing the number
of off-springs. Then the new ES was called μ+λ ES. This selection operates on both
parents and off-springs. The parents survived until better off-springs were produced.
This technique when applied to problems involving dynamic fitness functions would
often get stuck at a non-optimal position. To solve this problem, Schwefel introduced
a generational ES known as (μ, λ) ES. In this case every parent was replaced by the
offspring in the upcoming generation. The system presented in this book is based
on 1+λ ES which indicated the presence of one parent and more offspring. Miller
has shown that this algorithm works well for many problems in CGP (Miller 1999;
Miller et al. 2000).

1.2 Evolutionary Programming

Evolutionary Programmingwas first introduced in 1966,when presented as candidate
solutions for finite state machines to evolve them (Fogel et al. 1966). Earlier work
was based on population of three and five solutions, and the genetic alteration was
carried out by one of the five types of mutations as mentioned below.

(1) Adding a state and randomly assigning all transitions for that state.
(2) Deleting a state and randomly assigning any transitions which were previously

feeding into that state.
(3) Change an output symbol on a transition.
(4) Alter a transition associated with an input symbol.
(5) Change the starting state.

Mutation is employed as the primary variation operator. Rather than being consid-
ered asmembers of the same specie, each constituent of the population is reckoned as
a part of specific specie. Every member of population can produce its own off-spring.
Just like ES and GA’s, EP is a useful method of optimization when techniques like
gradient descent or analytical discovery are not possible.

1 Evolutionary Computation 31

1.3 Genetic Algorithms (GAs)

The GAs were first invented at University of Michigan by John Holland. Further
development took place as a group of Holland, his students and colleagues at the
University of Michigan in 1960s and 1970s (Holland 1975a). Holland’s method
involved the study of the natural phenomenon of adaptation, and then using it as a
guideline; thismechanism could have been imported into the computer systems. They
are often used for optimization issues, where the form of solution is already known.
A fixed length binary string can be used to find the variable involved in finding the
solution. The algorithm starts with a “population” of randomly generated possible
solutions of the problem which are then allowed to evolve over generations for better
solutions. The population is actually a collection of the candidate solutions which
are considered during the course of the algorithm. Each solution in the population is
considered to be an individual. Generation after generation, new members are added
and the older members are removed from the entire population. A number termed
as fitness is found out for every individual which indicates how good the solution is.
The selection of better individual is done probabilistically. The individuals of better
caliber are then used to produce new population, either through recombination or
through mutation. The mixing of the two solutions result in recombination or ‘cross
over’ for the production of new individuals. By slight variation to each individual, we
can achieve mutation as well. The size of population can highly vary. The number of
possible solutions is dependent upon the population size, and if the number of possible
solutions is more; then there is a higher variation in the population. Variations are
indication of better solutions being created. That is why there is a need for increasing
the population as much as possible. However, the increase in population cause an
increase in the computational burden. Thus an optimal size of population based on
the type of problems is always challenging.

1.4 Genetic Programming

It is a technique to achieve “computer programs” that are able to solve user defined
tasks byusing evolutionary strategies.NilsAallBarricelli in 1954 laid the foundations
for GP through evolutionary algorithms (Barricelli 1954). However the work of Ingo
Rechenberg in the 1960s and early 1970s made evolutionary algorithms as a popular
optimization method (Rechenberg 1971). The work of John Holland was also very
influential in the 1970s (Holland 1975b). Stephen F. Smith and Nichael L. Cramer
reported the first result on the GP methodology (Smith 1980; Cramer 1985). Forsyth
put forward evolution of small programs in forensic science for the UK police in the
year 1981 (Forsyth 1981). Schmidhuber proposed Meta-GP which is a form of GP
(Schmidhuber 1987). It is a recursive algorithm which can be stopped, resulting in
avoiding an infinite recursion. Themajor aim of his workwas to produce aGP system
which could work on the principle of finding a better program modifying program

32 3 Evolutionary Computation

which means a GP for improvement of GP or learning for learning. John R. Koza is
the main proponent of GP and has founded the application of genetic programming
in various complex optimizations and search problems (Koza 1990, 1992, 1994;
Koza et al. 1999, 2003). Following the AI computer language, LISP, Koza used trees
to implement programs. The terminals functioned as the inputs of the program along
with some constants. If the desired output is either a number or a list of numbers, the
common choice for the function would be the standard arithmetic and transcendental
operators like +,−, exp, and log. If the output is in form of Boolean or logical value,
then the choice for function would be logical operators like AND, OR, and NOT.
One can also use some other appropriate functions for other problems.

Usually the generation of random individuals, takes place through a recursive
algorithm which arbitrarily selects a non-terminal or end stage at each node. The
selectionof terminal concludes in terminationof the recursion.However, the selection
of a non-terminal results in the application of algorithm recursively for generating
children nodes. The maximum size of the tree is defined, and those trees which have
greater size then the maximum defined size; they are not generated. The maximum
size might be maintained throughout the entire process. Mutation and cross over
will result in the production of new individuals. A parental individual is selected
through the probability based on fitness and then mutation operates on this parental
individual. Any node of the tree can be chosen randomly and then mutated for the
production of new individuals. Mutation is usually applied at lower rates. For the
sake of crossover, two parental individuals are selected through the probability based
on fitness. One node is chosen arbitrarily from the tree of the individual parent. Then
the sub-tree based at the selected node in one parent is swapped with the sub-tree
based at the selected node of the other parent. Both mutations and crossovers are
applied separately which means that either crossover, mutation or none is applied to
each individual. Crossover and mutation cannot be applied to the same individual.
For obtaining the fitness of the individual, the program is tested on different test
cases. On the basis of the selection criteria, the best individuals are promoted to the
next generation.

In this section, we discussed the evolutionary computation along with its relevant
sub fields. We utilized the evolutionary strategies in our computational network and
have also used a special form of GP known as the CGP (explained in the next section)
for implementing a genotype of the model discussed at a later stage.

2 Cartesian Genetic Programming (CGP)

Miller and Thomson’s work laid the foundations for the Cartesian Genetic Program-
ming while evolving feed forward digital circuits (Miller et al. 1997; Miller 1999;
Miller and Thomson 2000). Directed acyclic graphs are used to represent the pro-
grams in CGP. The advantages of these graphs are that they can allow the re-use
of sub graphs. The original form of CGP used a rectangular grid of computational
nodes where the nodes were not allowed to take their inputs from a node of the same

2 Cartesian Genetic Programming (CGP) 33

column. However, with the passage of time; this restriction vanished by letting the
number of rows always selected to be one (as used in the model of this book). The
genotype in CGP has a fixed length. The genes are integers which can encode the
function and connections of each node in the directed graph. The phenotype can be
obtained through following referenced links in the graph which might indicate that
some of the genes are not referenced in the path from the inputs of the program to its
outputs. The result is a variable length bounded phenotype. This might cause some
non-coding genes which do not influence the phenotype at all; thus there is a neu-
tral effect on genotype fitness. Characteristics of such genotypic redundancy have
been investigated thoroughly and it has been extremely beneficial to the evolutionary
process on the problems studied (Miller et al. 2000; Vassilev and Miller 2000; Yu
and Miller 2001, 2002).

Every node in the graph is the representation of a particular function and its
connections. One gene is used for encoding the function of the node, while the
remaining genes used for encoding the input connections. The inputs of the nodes
are either the output of the previous node or a program input (terminal). The number
of inputs to the node is dependent on the number of inputs required by the function
it is representing.

Recent works have brought up the module acquisition and evolution into CGP
(Walker and Miller 2004). This also showed that these techniques are even more
scalable on harder problems. Our work in this book hasn’t taken these methods into
account.

CGP is used to find the unknown neural functions and neural developmental
programs inside the neurons of the model presented in this book.

3 Co-Evolution

The result of two species affecting each other’s evolution is termed as co-evolution. It
might be either cooperative or competitive. This is a not a phenomenon which occurs
through the environment, indeed it occurs through one-on-one interaction; such as
predator and prey, host-symbiont or host-parasite pair. Competitive environment is
the platform where the maximum use of Co-evolutionary computation takes place
(Pollack et al. 1996; Rosin 1997). The interactions are either between individuals
who are competing in a game context or between the different populations which are
competing in predator-prey type relationships (Hillis 1991; Paredis 1994a, b; Cliff
and Miller 1996; Juille and Pollack 1998).

An individual’s fitness in a competitive coevolution is evaluated on the basis of
how the individual performs against the opponent in the population. However, fitness
is a mere indication of the comparative robustness of the solution; not the absolute
strength of the solutions. This results in a relative decrease in the fitness of the
opponent. These competing solutions lead to an ‘Arms Race’ for better solutions
(Dawkins and Krebs 1979; Van Valin 1973). The feedback mechanism among each
individual on the grounds of their selection push them towards increased complexity.

34 3 Evolutionary Computation

Cooperative coevolution has been evaluated to solve different problems such as
the difficulty in choosing a proper encoding mechanism for the individuals and the
difficulty in decomposing the composite problems (Paredis 1995; Jong and Potter
1995). Studies have shown that there is a need for balanced cooperation and compe-
tition for preventing evolutionary algorithms from being stuck in local optimum, or
mediocre stable states (Ficici and Pollack 1998).

Predator-Prey relation is one of the best examples for co-evolution. The task
of the prey is to defend itself against the predator by developing new strategies
such as running quicker, growing bigger shields, and better camouflage in response
to the predator’s action. The predators also respond to the improvement in their
prey by improving their attacking strategies such as stronger claws, and better eye-
sight. This battle of improvement goes on between the prey and predator due to
which they adapt to complex strategies. Hillis was the first one to come up with
the idea of a co-evolutionary competitive learning environment of predator and prey
where both of them strive to accomplish their assignments and persist (Hillis 1990).
Traditionally, Competitive evolution is utilized for evolving interactive behaviours
and are intricate to develop with absolute fitness function. Karl Sims evolved 3D
creatures in a simulated environment, where the goal was to capture the ball before
the opponent captures it (Sims 1994). This resulted in various effective interactive
strategies.

Co-evolutionary algorithms are of great importance in artificial life, optimiza-
tion, game learning and machine learning problems. The past several years have
witnessed the use of evolutionary techniques in various games such as Othello (Mori-
arty and Miikulainen 1995), Go (Lubberts and Miikkulainen 2001), Chess (Kendall
and Whitwell 2001), Kala (Irving and Uiterwijk 2000), (Wee-Chong and Yew-Jin
2003) and Checkers (Schaeffer 1996), (Fogel 2002). Chellapilla and Fogel utilized
co-evolution of Artificial Neural Networks (ANNs) and were able to evolve an ANN
which could play at amaster’s level. Lindgren co-evolved iterated prisonersDilemma
strategies in order to exhibit their correspondence to phases in natural evolution
(Lindgren and Johansson 2001).

A new method called Pareto Co-evolution has already been introduced by Ficici
and Noble which selects the unrivaled apprentice and mentors of the two populations
by using co-evolution as multi-objective optimization problem (Ficici and Pollack
2001; Noble and Watson 2001). This allows the best individuals to reproduce, while
maintaining an informative and diverse set of opponents. If the search space is fixed
then it will not be open ended and will stop at local optimum. It is not dependent
upon how well the selection is performed or how well the competitors are chosen.
At times, the addition of a new search space can assist in escaping from a local
optimumwhich is relatively easier compared to searching for a new path through the
original space. Such techniques which increase the complexity can be used to add
new dimensions to the search space. The process continue indefinitely, even if the
global optimum is attained while searching space of solutions. The addition of new
dimensions can open up higher dimensional space where even better optima might
exist.

3 Co-Evolution 35

The ability of a network to play against a high quality player of possible oppo-
nents encourages interesting and sophisticated strategies in competitive co-evolution
(Stanley and Miikkulainen 2004). This can be achieved through the evolution of
two separate populations, where each population is evaluated against an intelligently
chosen sample of networks from the opposing population. The population which
is evaluated is called the host population while the opponent’s population is called
the parasite population (Rosin and Belew 1997). This strategy makes evolution more
efficient andmore reliable compared to the one based on random or round robin tour-
nament.

Floreano and Nolfi used a master game approach where the champion of each
generation was compared with the champions of all the other generations (Floreano
and Nolfi 1997). However, this technique is expensive, time consuming and a huge
number of resources are required to undergo all these competitions. This section
presented a detailed explanation of co-evolution through different applications and
methods tried. The co-evolutionary strategies have also been used in the Wumpus
world and checkers problem (later in the book). Co-evolution was found helpful in
generating learning capabilities in the networks.

Next section presents a detailed explanation of development and developmental
systems.

4 Developmental Systems

In the biological world, the complex systems are formed from simple gene structures
through developmental processes. The same process can be used in computation
development for the production of complex systems from simple systems capable of
learning and adaptation.

There are some critics of development that believe that as long as evolutionary
algorithms can solve the problems, there is no need for development (Kumar 2003).
But there is a serious problem with the use of traditional evolutionary algorithm,
which is that the genotype usually has a one to one relationship with the solution
description; and with an increase in complexity of the problem; the size of genome
which encodes the solution increases with the same ratio. If the solution to a problem
has n constituents, then there is a dire need for at least n genes. But the value of n can
go as high as thousands or millions. To solve this problem, we can add constraints
as rules and or knowledge in the genes and allow the system to develop on the
basis of these rules. This will result in the development of a complex network from a
simple genotype, which can solve different problems. The biological kingdom ranges
from microscopic to gigantic organisms; however they all use similar fundamental
process of development. Due to this development, evolution has been able to give
rise to greater complexity.

36 3 Evolutionary Computation

Evolutionary algorithms rely on the use of a direct and linear calibration between
the genotype and phenotype for evolving outcomes in computers, while development
relies on highly indirect and non-linear mappings. According to Kumar and Bent
(Kumar 2003) (pp. 13–14), “for development to occur in computermodels,we require
a developmental encoding, i.e., our genes must act like instructions. Development
then becomes the process (es) of executing those instructions and dealing with the
highly parallel interactions between them and the structure they create.”

The above definition clearly identifies the method of computation development
capable of solving problems. The genes must have the information of developing
a system. In the biological system the genome has a complete description of the
phenotype and does not have any direct mapping with the developed phenotype and
its functionality. The genome has no interaction with the environment, so it develops
a phenotype which can interact with the environment. During the development, the
Genes interact with each other at different hierarchical levels in the phenotype. This
results in the ability of self-organization, which is similar to complexity developed in
an ant colony (Holland 1998; Bentley 2002). Evolutionary algorithms can get stuck
at local optima. There are measures such as increasing mutation rates which can
counter it, but they are useful only at early stages of evolution when solutions are not
very fit. The small mutational variations of developmental systems can sometimes
completely change the kind of phenotype developed, which might result in the added
problem of being trapped (Kumar 2003).

The above section explained the development in general. The next chapter will
present detailed developmentalmodels of neural networks. The introduction of devel-
opmental genetic programming in the model discussed in this book is for controlling
the developmental process or neural structures on the task environment (Chap. 5
contains the details).

This chapter presented a review of Evolutionary Computation, Cartesian Genetic
Programming, Coevolution and Developmental Systems. The chapter presented an
overview of Evolutionary Computation along with its subfields consisting of Evo-
lutionary strategies, Evolutionary Programming, Genetic Algorithms and Genetic
Programming. The reason behind the review of the Evolutionary Strategies was
that they are used as the selection process in the evolution of the system (Cartesian
Genetic Programming Developmental Network (CGPDN)) as mentioned in Sect. 2.2
in Chap.5. The unknown functions of CGP neurons which help in their development
and electrical processingwere found out through theCartesianGenetic Programming
(Chap.5 Sect. 5.3 contains the details). The CGPDN system has been tested in a co-
evolutionary environment in Wumpus world (Explained in Chap. 6) and checkers
(Explained in Chap.7) environments. Co-evolutionary behaviour has been described
in Sect. 2, Chap.6. The CGPDN develops a complex neural structure (see Chap. 5)
while solving a particular task.

The purpose behind the use of CGP is that it is a highly effective form of GP and
its hardware implementation is simple and convenient (Walker andMiller 2008). The
conventional ANNs could have also been used in place of CGP for finding out the
unknown functions inside the neuron, but their hardware implementation is much
more complex; since ANNs use floating point numbers and non-linear mathematical

http://dx.doi.org/10.1007/978-3-319-67466-7_5
http://dx.doi.org/10.1007/978-3-319-67466-7_5
http://dx.doi.org/10.1007/978-3-319-67466-7_5
http://dx.doi.org/10.1007/978-3-319-67466-7_6
http://dx.doi.org/10.1007/978-3-319-67466-7_7
http://dx.doi.org/10.1007/978-3-319-67466-7_6
http://dx.doi.org/10.1007/978-3-319-67466-7_5

4 Developmental Systems 37

functions such as sigmoid or hyperbolic tangent. The next chapter presents a detailed
description of the Artificial Neural Network, with description of the background and
related work in the field, neuro evolution, neural development and the major problem
with ANNs, ‘The Catastrophic Forgetting’.

Chapter 4
Artificial Neural Network (ANNs)

This chapter presents a review of the major forms of the Artificial Neural Networks
(ANNs) (Sordo 2002). The particular topic of discussion of this chapter is how
learning takes place in these models. Different ways of training the networks are
examined.

• Background of the ANNs, its structure and applications
• Kohonen Self organizing maps and Hop-field networks
• Historical perspective of ANNs and its Evolution
• Applications and importance of Computational Development in the field of ANNs
• Catastrophic Forgetting
• Conclusion and summary of the relevance to the CGPDN.

1 Artificial Neural Network

The computational systems made up of interconnected neurons are termed as Artifi-
cial Neural Networks (ANNs). The properties of these neurons resemble those of the
biological neurons. They can exhibit complex global behaviour which is dependent
upon the interconnection of neurons, their internal parameters and their functions.
These artificial neurons are bound together through different connections. The seam-
less transmission of signals from one neuron to another neuron takes place through
these connections.

© Springer International Publishing AG 2018
G.M. Khan, Evolution of Artificial Neural Development, Studies in Computational
Intelligence 725, https://doi.org/10.1007/978-3-319-67466-7_4

39

40 4 Artificial Neural Network (ANNs)

1.1 Applications of ANN

ANNs are used in different real life applications such as function approximation,
time series prediction, classification, sequence recognition, data processing, filtering,
clustering, blind signal separation, compression, system identification and control,
pattern recognition, medical diagnosis, financial applications, data mining, visual-
ization and email spam filtering (Dorffner and Porenta 1994; Dorffner 1996; Sjoberg
et al. 1994; Timothy 1994; Murray 1993; Ripley 1996).

1.2 History of ANN

The first generation of Artificial Neural Networkswere based on theMcCulloch-Pitts
threshold neurons, which generated binary outputs (McCulloch and Pitts 1943). If
the weighted sum of the inputs is above the threshold value, the unit was taken
as ‘on’; else the unit was taken as ‘off’. The nature of inputs is either decimal or
floating point numbers. The output of these neurons is only digital, but they have been
successfully applied in artificial neural networks. The second generation Neurons
utilize a continuous activation function for calculating their output. It makes them
suitable for analogue input and output. Some of the frequently employed activation
functions are sigmoid, and hyperbolic tangent. The second generation neurons are
regarded as stronger than the first generation neurons. If the output layer of the second
generation uses first generation binary units, they can be used for digital computations
with few neurons in comparison to a network consisting of only the first generation
units. They can also be used to approximate any analogue functionwhichmakes these
networks universal for analogue computation (Maass et al. 1991). The continuous
output of second generation ANN units can be interpreted in terms of a firing rate
model. This value indicates the normalized firing rate of the unit in response to a
particular input pattern. That is why second generation neuronmodels are considered
a close approximation to the biological neurons and they are also more powerful than
the neuron models of the first generation (DasGupta and Schnitger 1992).

The third generation of neural networks generate individual output spikes; hence
they are closer to biological neurons (Ferster and Spruston 1995). The outputs can be
interpreted using pulse coding mechanisms. The neurons send and receive individ-
ual pulses. The third generation networks are sometimes termed as Spiking Neural
Network (SNN) (Gerstner and Kistler 2002) as explained in the next subsection. A
wider range of neural coding mechanisms are entertained such as pulse coding, rate
coding and mixtures of the two (Gerstner et al. 1999).

The recent experimental results have shown that the neurons of the cortex can
carry out analogue computations at a very high speed. It has also been shown that the
human’s analysis and classification of visual inputs take place under 100 ms (Thorpe
et al. 2001). At least 10 synaptic steps are required from the retina to temporal lobe,
thus leaving 10 ms of processing time per neuron. This time is considered to be too

1 Artificial Neural Network 41

short for averaging mechanisms like rate coding for processing the information. So
whenever speed is an issue, pulse coding schemes are thought to be the best (Gerstner
et al. 1999; Thorpe et al. 2001).

1.3 Spiking Neural Networks (SNN)

The interaction between the biological neurons take place through a short pulse
called action potential or spikes (Gerstner and Kistler 2002). Recently, researchers
have shown that neuron can encode information in timing of these spikes instead of
average firing frequency. The implementation of these SNN models takes place on
this principal. Both in conventional ANNs and Spiking Neural Networks (SNNs), the
information is usually distributed in the weight matrix. The interval between the time
of spike of post synaptic neuron and pre synaptic neuron is used to adjust the weights
in the SNN. The processing of a rapid temporally changing stimulus, which cannot
be reproduced by having more neurons or connections, is only possible through the
synaptic plasticity (Mehrtash et al. 2003).

1.4 Mode of Operation

The artificial networks can operate either in a learning (training) or testing mode.
Once the learning starts, from a random set of parameters, the weights and thresholds
are continuously updated until the desired solution is obtained; the parameters are
then frozen and remain fixed during the testing process. During the adaptive process
of learning, the weights between all the interconnected neurons are updated until an
optimum point is attained. The weights of the network can be either floating point
numbers or parameter dependent functions.

1.5 Learning Rules

The methods used for adjusting certain quantities responsible for the learnt infor-
mation, typically weights are termed as learning rules. Supervised and unsupervised
learning are the two main mechanisms of learning. When a desired output result is
used to guide the update in the neural parameters, it is termed as supervised learning.
While in the later mechanism, the training of the network is entirely dependent upon
the input data and there is no provision of the target results for updating the network
parameters which can be used to extract features from the input data (Hinton et al.
2006).

Back-propagation and evolutionary methods are the two conventional learning
methods. In the back-propagation, the output and the desired results are compared

42 4 Artificial Neural Network (ANNs)

with each other, and the error is reflected backward to update the weights of ANNs
accordingly. In evolutionary methods, the weights of the best performing ANN are
slightly changed (either through mutation or cross over) for the production of next
set of weights. In this manner, the optimum performance weights are obtained. Back
propagation is also used for multilayer perceptron having input layer, hidden layers
and output layer. Cost function is the predefined error function which can be calcu-
lated by comparing the output with target in back propagation. The cost function is
given by

e = f (di − yi)
Where;
di = The desired value
yi = The system output
e = error
In order to reduce the error, it is fed back such that the weight of each connection

is adjusted in a direction that minimizes the overall error. The process is repeated for
converging the network to a state of minimum possible error.

Gradient Descent is an optimization method used for adjusting the weights in a
manner which reduces the net error. The error function is differentiated with respect
to the network weights. On the basis of the results of differentiation, the weights are
adjusted for reducing the error. Because of this reason, back propagation is applied
to networks which have differentiable active function.

The units of the intermediate layer of the feed forward neural network can be
instructed through back propagation algorithm. The features of the input vector for
predicting the desired output are represented by these units (Rumelhart et al. 1986).
This training can be performed through the provision of information regarding the
discrepancy between the actual output and the desired output of the network in order
to customize the connection weights to reduce the discrepancy.

2 Types of Neural Networks

Different types of neural networks have been introduced over the years, but the most
common one are feed-forward, Kohonen Self organizing maps, and Hopfield neural
networks.

2.1 Feed Forward Neural Network

These networks are usually arranged in the form of layers where each layer has a
number of neurons as the processing units (Sordo 2002). Signals are transferred from
layer to layer through the input-output manner, where signals are processed at each
layer and transferred in the forward direction. This basic architecture of a traditional
ANN is called Multilayer Perceptron (MLP). Figure1 presents a sketch of a general

2 Types of Neural Networks 43

Fig. 1 Multilayer
perceptron

Input
Layer Hidden

Layer

Output
Layer

model of Multi-layer perceptron consisting of an input layer, hidden layer and an
output layer.

There are usually two layers of processing elements and a hidden layer in theMLP
networks (as shown in Fig. 1), however the number of hidden layers can vary. The
external signal arrives at the input layer which is then propagated by the input layer
to the next hidden layer as a weighted sum. The hidden layer processes it through the
activation function. The commonly used activation functions are hyperbolic tangent,
the value of which ranges from −1 to 1;

φ(xi) = tanh(xi)

and sigmoid function with values range from 0 to 1;

φ(xi) = (1 + e−xi)−1

xi is the received weighted and summed up signal from the input layer.
The job of the hidden layer is to transfer the processed signal to the neurons of

another hidden layer, and if it is the last hidden layer; then it transfers the processed
signal to the output. The signals reach output as the weighted sum, processed through
the activation function. The output of the network is taken from the last layer.

The training of MLP networks is carried out by altering their connection weights
after every processing interval. The variation in the weights is dependent upon the
error between the output and the desired value. Usually this is done through back
propagation. The error (e) in output node j in the nth data point is given by;

e j (n) = d j (n) − y j (n)

where;
d = target value
y = value produced by the perceptron (Haykin 1998).

44 4 Artificial Neural Network (ANNs)

The error can be used to adjust the weights of the nodes in a manner that the
energy E of error in the entire output is minimized as given by:

E(n) = 1

2

∑
j
e2j (n).

2.2 Kohonen Self Organizing Neural Networks

The Self Organizing Maps (SOMs) which are used as computational methods for
the visualization and analysis of high dimensional data were introduced by Teuvo
Kohonen (Kohonen 1982, 2001). The maps are based on unsupervised competitive
learning whose source of inspiration is the biological structure of the cortex. Cortex
has different areas which are responsible for different human activities (motor, sen-
sory, visual and somatosensory). Every sensory area is mapped to the corresponding
area in the cerebral cortex. It is thought that the cortex contains the self-organizing
computational map of the body. The sensory cortex also preserves the spatial rela-
tions between the body parts as much as possible. The same phenomenon also occurs
in the motor cortex.

The self-organizing networks have a two layer topology (as shown in Fig. 2). The
first layer is the Input layer while the second one is the Kohonen Layer. There is a
node for each dimension of the input in the input layer where every input is connected
to all the nodes in the Kohonen layer hence the two layers are fully connected. The
node value in the Kohonen layer represents the output. The number of nodes in the
Kohonen or output layer must be at least equal to the number of categories to be
recognized. One neuron in the output layer has to be activated for every dimension
of the input. The Kohonen layer neurons are neighboured by the grid (Kohonen and
Somervuo 2002; Kaski et al. 1998;Martinetz et al. 1993). These networks are of great
importance in applications, such as data clusteringwhichoccurs in speech recognition
and handwriting recognition for sparsely distributed data. Lateral inhibitions are used
by themwhich are inspired by the vision systemworking in biological neural systems.

Fig. 2 Structure of Kohonen
Self Organizing map,
showing input neurons and
the kohonen layer neurons.
Input neurons are fully
connected with the kohonen
layer neurons, A winning
neuron represented by a
black dot. Taken from (Hertz
et al. 1991)

2 Types of Neural Networks 45

Kohonen networks rely on the principal of mapping input vectors (pattern) of
arbitrary dimension onto the Kohonen network in a way where the sequences closer
to each other in the input space should be within close range. The training in Koho-
nen network begins with the fairly large sized neighbourhood of the winner. As the
training proceeds, the distance reduces. The unit whoseweight vector has the shortest
Euclidean distance from the input sequence is the winning output unit. The neigh-
bourhood of a unit consists of all the units which lie in its proximity on the map (not
in the weight space). In the process of training, the closely distant node is selected
along with its neighbour’s weight; the modification for increasing the similarity with
input takes place. The radius of neighbourhood decreases with the passage of time,
and finally only a specific area in the network is identified for an input pattern is left.
The following equation is used for updating the weights of the winning unit along
with its neighbourhood.

wi = wi + α(xi − wi)

where;
wi = The weight of ith unit
xi = The input
α = The Kohonen’s rule for adjustment of weights.
In order to model the directional motion in the visual cortex, Farkas and Miikku-

lainen used SOMs (Farkas 1999). Their neuron model has ‘leaky integrators’ at
synapses. It performs time-dependent summation with decay of incoming spikes.
Once the dynamic threshold is exceeded, then a spike is fired. The spikes decay
exponentially with time and are accumulated over a set of afferent and lateral inputs.
The weighted output from leaky integrator is then applied to the spike generator. The
spike generator will generate a spike only if the input threshold is exceeded. The
output spike is then applied again for increasing the threshold, which makes it less
likely to produce the second spike. There is an exponential decrease in the threshold
with time. Every node has the receptive field of the receptors in the retina. They are
weighted and integrated over time for creating a Hebbian type weight adjustment.

2.3 Hopfield Networks

Arecurrent neural network is known asHopfieldNetwork (Hopfield 1982). Recurrent
networks possess the property of bi-directional flow of information i.e. forward and
backward direction. The nodes in such networks are fully connected to each other
and they can function as both the input and output. The idea behind it is that the
instability of states is iterated until a stable state is attained. This guarantees the
convergence of the dynamics (Fig. 3).

46 4 Artificial Neural Network (ANNs)

Fig. 3 Hopfield Network:
Three node Hopfield
network, with xi = Input,
yi = Output, and
wi j = Weights attached
to connections

1

3

2

X1 X2 X3

W11=0

w12

w13

w21

W22=0

w31

w32

W33=0
w23

Y1

Y2

Y3

The processing units which are used are binary threshold units. The binary thresh-
old units only take two different values for their state. The values can be either −1
and 1, or 1 and 0. The two possible definitions for the activation yi of unit i’s are

yi ←
{

1 if
∑

j wi j x j > θi ,

−1 otherwise.
(1)

yi ←
{
1 if

∑
j wi j x j > θi ,

0 otherwise.
(2)

where;
wi j = weight of the connection
x j = The state of unit j
θi = The threshold of unit i
There are two main restrictions in the connections of Hopfield net.

• No unit must be connected with itself
• Connections are symmetric

There is an energy function associated with every state of the network in Hopfield
net given by the following equation:

E = −1

2

∑
i �= j

wi j xi x j +
∑

i
θi xi

2 Types of Neural Networks 47

where;
E = Energy of the network state.
wi j = The weight of connection.
xi = The state of unit i
x j = The state of unit j
θi = The threshold of unit i

With update in the network, there is decrease in the energy till a minimum is
reached. In Hopfield networks, the energy of the states is lowered in the training
phase. However, the network keeps track of its energy state (Hopfield and Tank
1985). The network can approach a previous state if it is granted only a portion
of that state, hence working as a content addressable memory system. We can also
recover a distorted input from the trained state of the network. The input most similar
to the distorted form is used as the recovery. As the memory recovery is based on
the basis of similarity, therefore it is termed as the associative memory. As a result,
Hopfield Networks are sometimes called associative networks as well.

Hopfield networks can be used in many optimization problems. The problem
first has to be transformed into variables in a way that the desired optimization
corresponds to the minimization of the respective energy function (Hopfield and
Tank 1985). Hopfield networks can also be applied to the non-linear factorization
problems (Husek et al. 2002).

In the next section, inclusion of artificial evolution into ANNs is described.

3 Neuro-Evolution

This section describes the Neuro-evolution (NE), which involves the use of artificial
evolution with ANNs. Neuro-evolution refers to the evolution of various aspects
of neural network. It is a combination of ANN and genetic algorithm, with ANN
being the phenotype and genetic algorithm being the corresponding genotype. The
genotype can represents the connection weights, connection type, node function,
topology of ANNs or combination of any two, three or all the parameters. The
genotype is evolved until desired phenotypic behaviour is achieved. Encoding is the
important aspect of the NE system, since it affects the search space of the solutions
(Yao 1999). Depending upon the methods, either the weights of the network or the
topologyor both are evolved.When afixed topologynetwork is used andonlyweights
are evolved, the network solution space is constrained; it has to work in a restrictive
environment not attaining any novel solution to the problem. It is not an easy job
to select the proper topology of ANN for a specific problem. The Topology and
Weight Evolving Neural Networks (TWEANNs) evolve both weights and network
topologies. In this method, evolution is provided with flexibility for selecting the
desired topology and weights for its network. So, TWEANNs genotype can encode
both the topology and weight of the network. This increases the efficiency of the
network, but it comes at the cost of increase in computational cost.

48 4 Artificial Neural Network (ANNs)

TWEANNs can also use both direct and indirect encoding methods of genotype.
In direct encoding of genotype, every connection and node in the phenotype has
to be specified in the genotype (Zhang and Muhlenbein 1993; Lee and Kim 1996;
Dasgupta andMcGregor 1992; Opitz and Shavlik 1997; Yao and Liu 1996; Angeline
et al. 1993; Maniezzo 1994). In indirect encoding, only the rules for constructing
the phenotype are specified in the genotype (Bongard and Pfeifer 2001; Gruau et al.
1996; Hornby and Pollack 2002; Mandischer 1993). The genotype doesn’t specify
every node and connection in the phenotype in the indirect encoding. TWEANNs
which utilize the indirect encoding use a developmental approach that is akin to
an artificial embrogeny (AE) (Stanley and Miikkulainen 2003) in which the small
phenotypical structures act as the starting point which are developed to produce the
final phenotype.

ENZO (Evolver and Network optimizer) is a system which can optimize both
topology and connections’ weights at the same time. ENZO uses direct encoding
scheme (Braun and Weisbrod 1993). The set of the possible connections is fixed
as the gene corresponds to a connection in the network. ENZO scheme provide
introduction of new combinations of the parental properties through merging the
parent’s genes which is done through the crossover with the connection specific
distance coefficients. This increases the rate of the learning process by inheriting
the knowledge from parents, which is termed as weight transmission. Pujol and
Poli evolved weight, topology and activation functions of ANNs through genetic
programming (Pujol and Poli 1997). Since pole balancing is a standard issue in the
design of control systems, they tested the system for the development of a neural
controller for a pole balancing problem; and obtained promising results.

Krishnan presented a method which could evolve the rules for changing the net-
work weights, instead of the weights itself (Krishnan and Ciesielski 1994). Krishnan
used an indirect encoding scheme where the gene represented a rule for changing
the weights. They also applied the mutation and crossover operation of a standard
genetic algorithm to genes until they obtained the desired weight adjustment func-
tion. This network was called the 2-Delta GANN (Whitley and Hanson 1989). This
network performed better than the back propagation technique for the benchmark
problems. For smaller problems, the back propagation technique was more effective,
however according to the author; 2-Delta GANN was effective in solving problems
which were known to be very difficult for BP. This technique also provided better
results than other GANN which directly encoded the neural network weights in the
chromosomes.

Yaoexplored all combinations ofANNparameters including: connectionsweights,
architectures, learning rules and input features (Yao 1999). Yao explored evolving the
neural architecture and found that evolution can find a near optimal ANNarchitecture
automatically. Yao also evaluated direct and indirect genetic encoding scheme, con-
cluding that direct encoding scheme is good at fine tuning and generating a compact
architecture, while the indirect genetic encoding is superior for finding a particular
type of ANN architecture quickly. He also explored various combinations of ANN
parameter for evolution and concluded that evolving both ANN architectures and
connection weights can produce better results.

3 Neuro-Evolution 49

Stanley presented a new type of TWEANN, the Neuro-Evolution of Augment-
ing Techniques (NEAT) (Stanley and Miikkulainen 2002). He identified three major
challenges of TWEANNs and introduced solutions for them. His solutions include:
“tracking geneswith historical markings for easy crossover between different topolo-
gies”, “innovative protection through speciation”, and “starting from aminimal struc-
ture and making it complex with the passage of the generations”. NEAT performed
faster than many other neuro-evolutionary techniques. The complexity of NEAT net-
work continue to grow during evolution. It starts with a very simple structure with
no hidden neurons, and a simple feed-forward network of input and output neurons.
During the course of evolution, the network continues to grow by addition of neurons
to existing connections or by addition of a new connection between the unconnected
neurons. NEAT doesn’t involve the development of the neural network during the
particular generation of evolution. It only updates its architecture from generation to
generation. That is why NEAT is not a developmental model. The indirect method
of NE is called the neural development, which will be discussed in the next section.

(Khan et al. 2013d; Khan and Zafari 2016) used CGP to introduce four different
ways of evolving neural networks: Feed-forward CGP evolved ANN (FCGPANN)
(Khan et al. 2013a), Recurrent CGP evolved ANN (RCGPANN) (Khan and Zafari
2016), Plastic CGP evolved ANN (PCGPANN) (Khan et al. 2013b), and Plastic
Recurrent CGPANN (PRCGPANN).

In the first case, CGP is transformed to a feed-forward neural network by con-
sidering each node as a neuron, and providing each connection with a weight. The
neurons of such a network are arranged in Cartesian format with rows and columns
inspired by original CGP architecture, and later on restricted to a single row mostly
giving the network an ability to create infinite graphs/topologies. Each neuron in
the network can acquire connection from either a previous neuron or from the sys-
tem input. Not all neurons are necessarily connected with each other or with system
inputs, this provides the network with an ability to continuously evolve its complex-
ity along with the weights. All the network parameters are represented by a string
of numbers called genotype. The number of active neurons (connected from inputs
to outputs), varies from generation to generation subject to the genotype selection.
Output of any neuron or a system input can be a candidate for the system’s output
selection. The ultimate system functionality is identified by interconnecting neurons
from output to input. FCGPANN was initially tested for its speed of learning, and
evaluated against the previously introduced neuro-evolutionary techniques on bench-
marks such as single and double Pole balancing (Khan et al. 2013d) showing superior
performance in comparison to the previously introduced neuro-evolutionary tech-
niques. FCGPANN is explored in a range of applications including: breast cancer
detection, prediction of foreign currency exchange rates, load forecasting, internet
multimedia traffic management, cloud resource estimation, solar irradiance predic-
tion, wind power forecasting and arrhythmia detection (Nayab et al. 2013; Khan et al.
2013a, c; Arbab et al. 2014; Rehman et al. 2014a; Khan et al. 2014). FCGPANN out-
performed all the previously introduced techniques as highlighted in the literature.
The second type of CGPANN is the Recurrent CGPANN (RCGPANN). These net-
works are more suitable for modelling systems that are dynamic and nonlinear. This

50 4 Artificial Neural Network (ANNs)

network is a modification to one of the earliest networks, the Jordan’s network (Jor-
dan 1986). In the Jordan’s network there are state inputs that are equal in number
to the outputs. These inputs are fed by the outputs through unit weights. The state
inputs are present only at the input layer. In RCGPANN unlike the Jordan’s network
the state inputs can be connected, not necessarily to the first layer but to any layer.
RCGPANN was also tested initially for its speed of learning similar to FCGPANN
on both single and double pole balancing for both Markovian and non-Markovian
cases. Its performance relative to other neuro-evolutionary techniques was superior.
RCGPANN has been successfully applied to a number of applications including:
Load forecasting, foreign currency exchange rates, bandwidth management and esti-
mation (Khan and Zafari 2016; Khan et al. 2013c; Rehman et al. 2014b; Khan et al.
2013a) performing better than the previous neuro-evolutionary techniques.

Plasticity in neural networks has been the characteristic of choice when it comes
to applications in dynamic systems due to its comparatively better performance
(Papadrakakis et al. 1996; Sadeghi 2000; Carpenter and Grossberg 1988). The
improved performance in Plastic neural networks can be attributed to the adaptabil-
ity of its morphology to environmental stimuli. This is similar to the natural neural
system. Plastic CGPANN has also been successfully applied to evolve a dynamic
and robust computational model for efficiently predicting daily foreign currency
exchange rates in advance based on past data (Khan et al. 2013b).

Plastic Recurrent Cartesian Genetic Programming Evolved Artificial Neural Net-
work (PRCGPANN) is an online learning approach that incorporates developmental
plasticity in Recurrent Neural Networks. Recurrent Neural Networks can compute
random sequences of inputs due to their capability to acquire internalmemory access.
In a Plastic RCGPANN the output gene not only forms the system output but also
plays a role in the developmental decision.

The research in artificial neural development is discussed in the next section.

4 Neural Development

The motivation behind the artificial neural networks was to replicate the computa-
tional models of the nervous system. ANN models mostly overlook the aspect that
neurons present in the nervous system are part of the phenotype originated from the
genotype through developmental procedure. Most of the aspects of the nervous sys-
tem are determined from the information specified in the genotype (Kumar 2003).
The genotype lays down the regulations for the development of the nervous system.
The natural organisms have both the nervous system and genetic information stored
in the nucleus of their cells (genotype).

The motive behind the development schemes is to increase the scalability of the
ANNs, which is possible by having a minimum number of genes that can define
the properties of the network instead of having a one to one relationship between
the phenotype and genotype. These gene groups can influence several unrelated
phenotypic traits with no dependency of the genotypic dimension on the phenotypic

4 Neural Development 51

size. For example, there is a common estimation of 30–40 thousand genes in the
human genotype (45 million DNA bases out of a total 109) while a mature phenotype
consists of 1014 cells (Elliot and Elliot 2001; Lodish et al. 2003).

According to Parisi and Nolfi, the neural networks should be considered along
with the genotypes to be viewed in biological context, as part of a population and
inherited by the offspring fromparents (Parisi 1997; Parisi andNolfi 2001). Parisi and
Nolfi utilized a growing encoding scheme (Nolfi et al. 1994; Nolfi and Parisi 1995)
for evolving the architecture and the connection strength of the neural networks for
controlling a smallmobile robot (for a similarmethod see (Husbands et al. 1994)). The
network comprises of a 2-D space having a group of the artificial neurons distributed
with growing and branching axons. The genetic code provides the instruction for
growth of the axons and the branching of neurons.

A neural development model, which starts with the single cell that undergoes the
process of cell division and migration, was proposed by Cangelosi (Cangelosi et al.
1994). Every cell produces two daughter cells where the new cells are separated in
a 2-dimensional space. This process of cell division and migration continues until a
group of neurons which are arranged in a 2D space is produced. Finally, the neurons
grow their axons to produce connections among each other. This process keeps going
on until a neural network is developed. The rules for the cell division and migration
are present in the genotype (for a related approach see (Dalaert and Beer 1994)).

Gruau also proposed a similar method (Gruau 1994). A single cell goes through
various stages of cell division and differentiation until the development of a complete
neural network. Every cell is divided into two daughter cells. The old connections
are strengthened along with establishing new connections. The rules related to cell
division and transformation lie in the genotype. The genotype of Gruau’s model is
similar to the binary tree structure of GP (Koza 1992). The top node of the genotype
tree is the initial cell. Every node of the genotype in the tree encodes the operation
of that cell, while the sub trees specify the operation which should be applied to the
two daughter cells. As a result of following the tree using instructions in these cells,
the neural network is developed.

As a result of further work done by Gruau, a method which was based on the
genotype-phenotype mapping that allows the repetition of phenotypical structure
by re-using the same genetic information was introduced. In this case, the terminal
cell or nodes point to the other trees. This encoding method can result in complex
phenotypical networks from compact genotype. Gruau termed this method as an
“automatic definition of neural sub-networks (ADNS)” (Gruau 1994).

For evolving the parameters which grow into artificial neurons with bio-inspired
morphology, Rust and Adams used a developmental model combined with a genetic
algorithm. Although Rust andAdamswere able to producemorphologies of neurons,
they did not apply it to substantive problems (Rust et al. 2000; Rust andAdams 1999).

For dynamic neural growth mechanism in cognitive development, Quartz and
Sejnowski provided a powerful manifesto (Quartz and Sejnowski 1997). Marcus
also laid emphasis on the importance of the growing neural structures by using
a developmental approach. In his words “I want to build a neural networks that

52 4 Artificial Neural Network (ANNs)

grow, networks that show a good degree of self-organization even in the absence of
experience” (Marcus 2001).

Jakobi developed an impressive artificial genomic regulatory network where the
genes coded for proteins and the proteins either activated or suppressed the genes
(Jakobi 1995). Jakobi defined the neurons, which had excitatory or inhibitory den-
drites, through proteins. The individual cells divided and moved due to the interac-
tion of the protein with the artificial genome. This resulted in the development of a
multicellular system. After differentiation, every cell grew dendrites following the
chemical sensitive development cones in-order to connect the cells. This resulted
in a recurrent ANN capable of controlling a simulated Khepera robot for avoiding
obstacles and navigation through corridors. The genotypes of every generation devel-
oped phenotypical structures, which were tested and the best one were chosen for
breeding. Artificial evolutionary operations like cross over and mutation are utilized
for creating offspring genotypes.

Various researches have studied the potential of Lindenmeyer Systems in develop-
ing ANNs and generative design (Lindenmeyer 1968). Boers and Kuiper adapted the
L-systems for developing the architecture of the artificial neural networks (ANNs)
i.e. a number of neurons and their interconnections (Boers and Kuiper 1992). A
feed forward neural network was generated by evolving the rules of an L-System.
They came to the conclusion that this methodology resulted in more modular neural
networks, that performed better than the networks with the pre-defined structure.

Federici came up with an implicit encoding procedure for the development of the
neuro-controller (Federici 2005). He also compared it with the direct scheme. He
used adaptive rules relied on correlation between the post synaptic electrical activity
and the local concentration of the synaptic activity and refractory chemicals.

Federici produced the neuro-controllers through two steps:

• He used a growth program in the genotype for developing the whole multi-cellular
network in the form of the phenotype. This growth program inside every cell relies
on local variables and is implemented by a simple recursive neural network which
has a hidden layer (Similar to our use of CGP).

• During the second step, all the cells are translated into spiking neurons.

Every cell of the mature phenotype is a neuron of a spiking neuro-controller. The
internal dynamics and synaptic properties of the corresponding neuron are specified
by the type and metabolic concentrations of the cell. The topological properties of
neurons such as its connections to the inputs, outputs and other neurons are produced
by the position of the cell within organisms.

This networkwas implemented on aKhepera robot and the performancewas tested
both with direct and indirect coding schemes. Although the indirect method reached
the high fitness faster, it had trouble in refining the final fitness value. Downing is
in favour of a higher abstraction level in the neural development, because it avoids
the complexities related with the axonal and dendritic growth. It also maintains the
key aspects of the cell signalling, competition and cooperation of neural topologies
in nature (Downing 2007). Downing also developed a system which he tested on a
simple movement control problem called starfish. The task of the k-limbed animate

4 Neural Development 53

is to move as far as possible in a limited time from the starting point. This produced
positive preliminary results.

The next section explains one of the major problems with ANNs known as the
‘catastrophic forgetting’.

5 Catastrophic Forgetting

Catastrophic forgetting is one of the main issues with ANN. During catastrophic
forgetting, the network forgets the previous task; once it is trained to do a new task.
The short term memory in The Human brain can be regarded as a forgetting problem
with the Biological brain, but evolution has minimized that over time (Seipone and
Bullinaria 2005). The problem is more catastrophic in traditional ANNs and it is a
serious limitation in such models (McCloskey and Cohen 1989; French 1999). There
aremanymethods available for either reducingor eliminating this problem.Oneof the
basic reasons behind the catastrophic forgetting is interference in the shared weights
(McCloskey and Cohen 1989; Ratcliff 1990). There are many methods used for
reducing this interference such as sharpening algorithm for reducing the hidden unit
activation overlap (connection usage) and the HARM model (Sharkey and Sharkey
1995); that implements a lookup table and divides the main task into two sub-tasks
(French 1999; Seipone and Bullinaria 2005). There are also certain methods which
use dual additive weights where the fast weights learn new tasks and slow weights
are used for long term (Hinton and Plaut 1987). A large number of the methods rely
on dual model architectures which consist of two distinct networks for processing
early and long term storage processing (French 1991). The inspiration behind these
methods is that human brains do not suffer from catastrophic forgetting as their brains
evolve two different areas i.e. hippocampal system for learning the new information,
and neocortical system for slow and long term learning and problem solving.

Brain has the capability of retaining information; some of this information might
degrade over time in a gradual manner. Connectionist networks which are trained
with a particular set of patterns when presented with new input patterns with no
correlation to the old pattern, they adapt to the new patterns and completely forget
the previous patterns. Robert addresses the problem of catastrophic forgetting in
connectionist networks; it’s consequences by highlighting the possible reasons that
cause this behaviour and possible solution to this problem. According to Robert
(French 1994), the problem of catastrophic forgetting can be alleviated by having
separate areas for information handling andprocessing; and for retention of processed
information.

“Conservative Training” and “Support Vector Reversal (SVR)” are presented in
(Albesano et al. 2006) as solutions to mitigate the effect of catastrophic forgetting
in ANNs in the domain of automatic speech recognition. In conservative training
instead of assigning a value of zero to the missing units, target uses the output of the
original network as an objective. While in SVR, support vectors are used to define

54 4 Artificial Neural Network (ANNs)

the borders of the classes to keep the classification boundaries of the new network
close to that of the originally trained network.

An Algorithm, elastic weight consolidation (EWC) inspired from the neuro-
biological model of synaptic consolidation; that is the mammalian brain is able
to retain information as the excitatory synapses are strengthened. Continual learn-
ing is enabled by implementation of EWC which prevents the information of the
previous task from being erased by reducing the plasticity of parameters from the
previously learned task (Kirkpatric et al. 2017). Catastrophic interference can be
seen in conjunction with a general dilemma coined by Grossberg (Grossberg 1980,
1982); the stability-plasticity dilemma which he published in his book in 1980. He
states: “How can an organism’s adaptive mechanisms be stable enough to resist envi-
ronmental fluctuations which do not alter its behavioural success, but plastic enough
to rapidly change in response to environmental demands that do alter its behavioural
success”.

Age limited learning effects are explained in the context of catastrophic forget-
ting by exploring the plasticity-stability dilemma in ANNs. In a parallel-distributed
system, plasticity is essential for acquiring and incorporation of new information.
Stability on the other hand is required to retain previously acquired knowledge.
ANNs exhibit plasticity by readily adapting and learning new information at the
cost of previously acquired knowledge (Mermillod et al. 2013). Human memory
is emulated within a back propagation network by introducing grace degradation
of information with the help of interleaved learning. Sparse encoding and activation
function adjustment were also tested to assuage catastrophic interference. The results
however revealed that they influenced the performance of the network but could not
eradicate catastrophic forgetting in the network (Abdallah El Ali et al. 2008).

Robins’ pseudo-rehearsal solution and French’s activation sharpening algorithm
were tested to overcome the problem of catastrophic interference with the former
producing promising results. The solutions serve to reduce the catastrophic forgetting
to some extent but fail a general solution to the problem (Ole-Marius et al. 2005). In
Reinforcement learning (RL) problems, catastrophic forgetting can be prevented by
avoiding overtraining and reasonably orthogonalising the input layer. To completely
eliminate catastrophic forgetting into an RL agent, pseudo-rehearsal, a powerful
continual learner can be adapted. Although, CHILD is a faster and more capable
continual learner but due to its complex nature is difficult to execute (Cahill 2010).

These methods have reduced the catastrophic forgetting slightly; still the current
models of ANNs cannot eliminate these problems. Although the ANN models have
slightly adapted the biological neural structure, still they are not as complex as
the biological neural systems. The biological neural systems can develop their own
memory due to the changes in the synaptic connections, neural architecture, neurite
growth, shrinkage and the variations of the chemical concentrations.

6 Conclusion 55

6 Conclusion

This chapter described various artificial neural networks, learning methods and their
applications. Historical perspectives of evolutionary methods applied to ANNs were
also elaborated. The chapter also presented a review of differentmethods for develop-
ment of ANNs. The use of ANNs has spread to engineering and medical diagnostics.
ANNs are the bio-inspired models of the brain. They have adopted some properties
of biological neurons, but they are yet to match the complexity of the biological
neurons.

The ANNmodels can perform efficiently in fixed task environment, however they
seem to struggle with dynamically changing environment. As the learnt information
in anANN is encoded in theweights, retrainingwill cause theweights to change. This
will affect the performance on the previous task. The performance of the network
can also be affected; if the environmental conditions slightly change while the same
task is being solved. Our network is yet to be tested on different task environments;
however the weights and morphology of the network continue to develop during the
task environment.

Our implemented system is inspired by the neuro-science. It also produced an
artificial environment for the neurons. Our basic neuron model is based on biolog-
ical study of neuron, their development and their mechanism of signal processing.
The neurons can either grow more neurons or can die. They are able to produce
complex neural structures based on the task requirement. We also evolved the rules
for the model discussed in this book’s development on the basis of neuro develop-
ment techniques which were described earlier. Chalup proposed that an incremental
scheme results in the development of the network in its stage of learningwhichwould
function more effectively than the artificially imposed inflexible system architecture
(Chalup 2001). This argument supports the approach adopted by us.

The motivation for the model discussed is the work done on neuro-development
techniques discussed in this chapter. The book evolves the rules for development of
the neural architecture and their internal processing. It is evaluated on two learn-
ing environments i.e. the Wumpus world and the checkers, details are provided in
Chaps. 6 and 7.

The next chapter will provide an insight into the design of the model along with
biological inspiration in detail.

http://dx.doi.org/10.1007/978-3-319-67466-7_6
http://dx.doi.org/10.1007/978-3-319-67466-7_7

Chapter 5
Structure and Operation of Cartesian
Genetic Programming Developmental
Network (CGPDN) Model

This chapter presents detailed description of the CGPDN model.

• Key features and the biological basis of the CGPDN model
• General characteristics of CGPDN model
• Detailed description of neurons used in the CGPDN
• Information processing in the network
• Summary and concluding remarks.

The CGPDN model is very much influenced by the biological morphology of
neurons and their arrangements. The neuron model deliberated here consists of a
soma, dendrites, dendrite branches and axon branches. These neurons are arranged
in a Euclidean grid based space. This gives a sense of virtual proximity and dynamic
morphology to the branches. These neurons make synapses to the neighbouring
branches; hence establishing communication among the neurons. The architecture
of neurons is allowed to develop and evolve the genetic code inside neurons in search
of desired intelligent behaviour.

1 Fundamental Attributes and Biological Basis
for the CGPDN Model

In this section we present the main inspiration from literature and the key features
incorporated into the CGPDN model. The section also explains the biological grounds
of these concepts. All the characteristics of biological models integrated into CGPDN
are enlisted in Table 1. The table also shows the presence and absence of these
properties in existing ANNs and the neural development models.

Similar to the ANN models discussed earlier on, the system discussed in this book
also consists of interconnected neurons. More bio-inspired features are incorporated

© Springer International Publishing AG 2018
G.M. Khan, Evolution of Artificial Neural Development, Studies in Computational
Intelligence 725, https://doi.org/10.1007/978-3-319-67466-7_5

57

58 5 Structure and Operation of Cartesian Genetic Programming …

Table 1 List of all the properties of biological systems that are incorporated into CGPDN or are
present in ANNs and neural development models

S.No. Name ANNs Neural
develop-
ment

Compartmental
models

Biology CGPDN

1 Neuron structure Node
with con-
nections

Node
with con-
nections
dendrites

Soma with
dendrites, axon
and dendrite
branches

Soma with
dendrites,
axon and
dendrite
branches

Soma with
dendrites,
axon and
dendrite
branches

2 Interaction of
branches

No No No Yes Yes

3 Neural function Yes Yes Yes Yes Yes

4 Resistance No No Yes Yes Yes

5 Health No No No Yes Yes

6 Weight Yes Yes Yes Yes Yes

7 Neural activity No No No Yes Yes

8 Synaptic
communication

No No Yes Yes Yes

9 Arrangement of
Neurons

Fixed Fixed Fixed Arranged in
space
(Dynamic
Morphol-
ogy)

Arranged in
Artificial
space
(Dynamic
Morphol-
ogy)

10 Electrical
signalling

Yes Yes Yes Yes Yes

11 Chemical
signalling

No No No Yes No

12 Developmental
plasticity

Yes No No Yes Yes

13 Spiking
(Information
processing)

Yes, but
not all

Yes, but
not all

Yes, but not all Yes Yes

14 Arbitrary I/O No No No Yes Yes

15 Learning rule Specified Specified Specified Unspecified Unspecified

into the neurons of this system and have close resemblance to neuro-developmental
models. These bio-inspired features are the morphological features. Every neu-
ron contains different number of dendrites with each dendrite having a number of
branches for the reception of the input signals. Axon being the major compartment of
the neuron is responsible for output of the system. The axon comprises of a number
of branches. The dendrite and axon branches are provided with the flexibility to grow
and shrink and produce offspring (new dendrite and axon branches). The system is
capable of generating its own structure based on the functionality required for the

1 Fundamental Attributes and Biological Basis for the CGPDN Model 59

desired problem. The neurons of the model discussed in this book have three key
morphological components.

• The dendrite with branches which can receive and process inputs.
• Cell body which can process signals received from the dendrites.
• An axon which can transfer signals to other neurons through axon branches.

Traditional ANNs only have nodes and connections, they don’t have any con-
cept of branches or axon and dendrites. The neural development methods discussed
in Chap. 4 Sect. 4.5 introduced the concept of axon and dendrite branches, which
develop into a network.

The architecture of both ANNs and neural developmental systems remain fixed
during the evaluation period, they are changed only during the evolutionary period.
The biological neurons exist in space. They interact with each other and move their
branches from one place to another. The model of the book also adapted similar
mechanism which places neurons with its dendrite and axon branches in Euclidean
grid space. This places them in close proximity to each other so that they can interact.
The axon and dendrite branches can navigate in the space, causing the morphology
of the network to change; while solving the problem. Though the ANNs and neural
development sometimes consider the connections between the neurons as dendritic;
still they are yet to replicate the biological dendrites in the types of morphology
that exist. The signals of different dendritic branches can interact with each other in
biological dendrites, while such interaction do not exist in ANNs and neural develop-
ment. The model of this book has adopted this feature and evolved the functions for
the interaction between the branches, since there is no precise mathematical model
for approximating these functions.

The neuron branches have the property of resistance which depends upon branch
length and affects the signals propagating through them. However, there is no concept
of branch lengths in ANN literature or neural development models. The model dis-
cussed in this book adapted this property for biological axon and dendrite branches.
Resistance affects the signals which propagate in these branches.

The biological neurons have the property of ‘health’ which affects the signal
processing inside neurons and neurites. This property is also not present in the pre-
viously introduced ANN and neural-development models. The incorporation of the
health property in the model allows the neuron or neurites to replicate and die. The
synapses can transfer electrical signals between the neurons. The ANN and neural
development literature consider the synapses as only the contact point; however the
biological synapses provide a complex mechanism for signal transfer and modula-
tion. The CGP programs have been evolved for finding out the useful mechanisms
which allow signal transfer across a synapse. In biological brain, spikes are respon-
sible for signalling; which is also used in some of the ANN and neural development
models. The model in this book has also used a similar mechanism, as the signals are
transferred to other neurons only if the neuron fires. The potential of the branches is
affected by the synapses in biological systems through the changes in the concentra-
tion of chemicals (ions in the space between the neurons). Though the synapses in the

http://dx.doi.org/10.1007/978-3-319-67466-7_4

60 5 Structure and Operation of Cartesian Genetic Programming …

CGPDN are not chemical, the synapse made in the CGPDN updates the weights and
potential values of the neighbouring branches. It is similar to the chemical changes
at the synapses.

The biological neurons are constantly changing. Their internal processes and
morphology change all the time in response to the environmental signals. The external
environmental signals affect the development process of the brain, which is termed
as “developmental plasticity”. It usually occurs in the form of synaptic pruning
(Van Ooyen and Pelt 1994).

The developmental plasticity eliminates the weaker synaptic contact, but it pre-
serves and strengthens the stronger connections. The decision about keeping or
pruning the connections is made on the basis of the common experiences which
generate similar sensory inputs. The frequently activated connections are preserved.
The process of apoptosis results in the death of the neuron. The neurons are damaged
and then they die. The plasticity assists the brain in adapting to the environment.

The model discussed in this book also incorporates a form of developmental
plasticity due to which branches can prune as well as new branches can grow. The
“life cycle” chromosome controls this process. This chromosome determines whether
the branches are to be pruned or new branches are to be introduced. Every time a
branch is active, a life cycle program runs to determine whether the branch should
be removed or it should continue to be a part of the processing. The life cycle also
determines if there is need for any daughter branch in the network.

Starting from the randomly connected network, the new branches are allowed
to navigate (they can move from one grid sequence to another resulting in new
connections) in the environment on the basis of the evolutionary rules explained in
Chap. 5, Sect. 4. An arbitrary connectivity sequence can alleviate the time spent in
discovering the connection in the early developmental stage of neuron. Most of the
neural development techniques which were described earlier (See Chap. 4, Sect. 4)
start with a single cell which then develops into a complete network before they can
be processed.

Plasticity is a very important concept for understanding the neural systems. It is
the ability of permanently changing or reforming which manifests at various levels
in the nervous system. Synaptic plasticity is responsible for the dynamic abilities
of the neural system. The synaptic plasticity represents the variation in the synaptic
transmission (Debanne et al. 2003). The synaptic plasticity can occur both at the
post-synaptic and the pre-synaptic levels. It might involve the variation in the post-
synaptic excitability (the probability of generating action potential in response to the
fixed stimulus), which depends on the previous pattern of the input (Gaiarsa et al.
2002). Synaptic activity can also alter the number of receptors (sites of the neuro-
transmitter action) on the membrane (Frey and Morris 1997). These procedures can
communicate, which results in positive feedback effects. Certain cells might never
fire while others might saturate at some maximal firing rate.

http://dx.doi.org/10.1007/978-3-319-67466-7_5
http://dx.doi.org/10.1007/978-3-319-67466-7_4

1 Fundamental Attributes and Biological Basis for the CGPDN Model 61

Synaptic plasticity is integrated in the CGPDN through the introduction of three
types of weights one for each:

(1) Dendrite Branch
(2) Soma, and
(3) Axon Branch

During the development of the network, the genetic processes are used to adjust
the weights. The changes in the weights of dendrite branches are analogous to the
amplifications of a signal along the dendritic branch (see (London and Husser 2005)),
while the changes in axon branch weight are analogous to the variations in the pre-
synaptic level and post-synaptic level (at synapse). The observation that a fixed
stimulus induces myriad responses in a variety of neurons, justifies the inclusion of
soma weight (Traub 1977).

The synaptic plasticity in the SNN models is primarily based on the work of
Heb, which is based on the principal that repeated and persistent stimulation of a
post-synaptic neuron by a pre-synaptic neuron results in the strengthening of the
connection between the two cells. The recent development in this idea is to use the
spike time dependent plasticity (STDP) rules in order to update the weights in SNN
network (Roberts and Bell 2002; Song et al. 2000).

The variations in the weights are dependent upon the relative timing of the pre-
synaptic and post-synaptic spikes. Various neural systems have documented this
process. There have been numerous rules proposed in which weights either increase,
decrease or remain unchanged, reviewed in (Roberts and Bell 2002). These schemes
result in interesting patterns of global behaviour, including competitions between
synapses, despite the fact that these schemes use an update rule; which depends on
the firing time of only two neurons (Van Rossum et al. 2000).

Some aspects of the above ideas are adopted in the CGPDN system by allowing
the three different types ofweights that vary in response to the firing of neurons. With
every fire of neuron, the life cycle and weight processing chromosomes run; which
updates their values (details present in the CGP neuron sections). The variations in
weight allow neurons and branches to become more active when they are involved
in processing data. The next section will explain that the active dendrite branches,
axon branches and soma are updated more often as their genetic code is executed
as long as they are operational. This interaction influences the developmental and
evolutionary processes by the sequence of activity transmitting through the system.
This interaction is considered to be significant for the biological neural systems, in
which the sensory input and other environmental parameters are of importance in
defining evolutionary facets (Kandel et al. 2000).

Plasticity is an emergent property of the brain for developing memory, while it is
mostly imposed on ANN models. The model presented in this book, adapts plasticity
by allowing the network to develop its own plasticity; rather than imposing it. The
CGPDN model idealizes the behaviour of neuron in terms of seven main processes.
The first three (3) are electrical processes, while the next three (3) are life cycle
(developmental) mechanism and the last one (1) is weight processing (chemical
concentration):

62 5 Structure and Operation of Cartesian Genetic Programming …

(1) Electrical Processing in dendrite: Local interaction among neighbouring branches
of the same dendrite.

(2) Electrical Processing in Soma: Processing of signals which are received from
dendrites at the soma, and the decision about firing an action potential.

(3) Electrical Processing in Axo-Synaptic branch: Synaptic connections which
transfer potential through the axon branches to the neighbouring dendrite
branches.

(4) Life Cycle of Dendrite branch: The growth and shrinkage of the dendrite branch
as well as production of new dendrite branches, and removal of old branches.

(5) Life Cycle of Axo-Synaptic Branch: The growth and shrinkage of the axon
branch as well as the production of new axon branches along with the removal
of old branches.

(6) Life Cycle of Soma: Creation or destruction of neurons.
(7) Weight Processing: Updating the synaptic weights (Consequently the ability

to make synaptic connections) between the axon branches and neighbouring
dendrite branches.

A separate chromosome (CGP program) is used to represent every aspect. The next
section will describe the model of CGPDN, its sub-parts, its evolutionary strategy
and its interfacing with the external environment.

2 The CGP Developmental Network (CGPDN)

This section explains the detailed structure of the CGPDN, the rules and the evolu-
tionary strategy which is used for evolving the system. There are two main aspects
associated with the CGPDN.

(a) A phenotype in the form of Neurons comprising of Axon and a number of
Dendrites, with Axon and each Dendrite having a number of branches.

(b) A genotype representing the genetic code of the neurons. Every genotype has
seven chromosomes where every chromosome is represented with a digital cir-
cuit.

Aspect (a) is mainly related to the neural components and their properties while
aspect (b) deals with the internal behaviour of the neurons in the network. The func-
tionality of different parts of the neuron is represented by chromosomes. During
evolution, the second aspect (genotype) evolves towards the best functionality while
the first aspect (neural components and their properties) only varies while it is per-
forming the learning task, i.e. during its lifetime. The CGPDN has been organized
in such a way that all the neurons are placed randomly in a two dimensional grid
i.e. the CGPDN grid; that is why they only know about their neighbours (as shown
in Fig. 1). The users specifies the initial number of neurons. Every neuron initially
has a random number of dendrites, dendrite branches, an axon and a random number
of axon branches. Neurons receive information through dendrite branches, and then
transfer this information to the neighbouring neurons through axon branches. The

2 The CGP Developmental Network (CGPDN) 63

Fig. 1 On the top left a grid is shown containing a single neuron. The rest of the figure is an
exploded view of the neuron. The neuron consists of seven evolved computational functions. Three
are electrical and process a simulated potential in the dendrite (D), soma (S) and axo-synapse
branch (AS). Three more are developmental in nature and are responsible for the life-cycle of
neural components (shown in grey). They decide whether dendrite branches (DBL), soma (SL) and
axo-synaptic branches (ASL) should die, change, or replicate. The remaining evolved computational
function (WP) adjusts synaptic and dendritic weights and is used to decide the transfer of potential
from a firing neuron (dashed line emanating from soma) to a neighbouring neuron

dynamics of the network vary during this process; the branches might grow or shrink
and can move from one CGPDN grid point to another. They can also produce new
branches and can even disappear. Neurons might die or even produce new neurons.
The axon branches transfer information only to the nearby dendrite branches. This
process takes place by passing signals from all the neighbouring branches through a
CGP program. This acts as an electro-chemical synapse, and it updates the potential
values only in neighbouring branches. The communication between the neurons and
the internal processing of neurons takes place through the electrical potential which
is represented by an integer. Before the inputs and outputs are applied to the network,
they are also translated in terms of potentials (integers). The next four subsections
explain the parameters of CGPDN (Resistance, Health, Weight and Statefactor),

64 5 Structure and Operation of Cartesian Genetic Programming …

Cartesian Genetic Program (used as genotype), Evolutionary Strategy, and the way
inputs and outputs are applied to the network.

2.1 Health, Resistance, Weight and Statefactor

There are four variables which are incorporated into the CGPDN. They represent
either the fundamental properties of the neurons (health, resistance, weight) and
are used as an aid to computational efficiency (statefactor). There are three variables
assigned to every dendrite branch and axo-synaptic connection. These three variables
are health, resistance and weight. The values of these variables can be adjusted
through the CGP programs. The health variable governs the replication and death
of dendrites and axon branches. The resistance variable controls the growth and/or
shrinkage of dendrites and axon branches. Theweight variable is used for calculating
the potentials in the network. Every soma contains the weight and health variables.
Figure 9 summarizes the use of these variables. The health, weight and resistance
are represented by integers.

Statefactor is a parameter used for the reduction of the computational burden. This
is achieved by keeping some of the neurons and branches inactive for a number of
life cycles. A ‘zero’ statefactor indicates that the neurons and the branches are active
and their corresponding program is run. The CGP programs influence the value of
statefactor, since it relies on the CGP electrical processing chromosomes (explained
later). Statefactor is inspired from the characteristic of biological systems that not
all neurons and dendrite branches are effectively participating in every process.

2.2 Cartesian Genetic Program (Chromosome)

Multiplexer are used as the CGP nodes function (Miller et al. 2000). Every function
node has three inputs and an output. There are four set of functions used as shown
in Fig. 2. The multiplexers can be thought of as atomic in nature as they can be used
for representing any logic function (Chen and Hurst 1982; Miller et al. 2000).

The inputs are A, B and C in the Fig. 2. These functions can be either arithmetic
(Refer to Chap. 6, Wumpus world) or Boolean (Refer to Chap. 7, Checkers). In case

Fig. 2 Multiplexer diagram,
showing inputs A, B and C,
and function Fi. Figure also
lists all the four possible
functions that can be
implemented by multiplexer

http://dx.doi.org/10.1007/978-3-319-67466-7_6
http://dx.doi.org/10.1007/978-3-319-67466-7_7

2 The CGP Developmental Network (CGPDN) 65

of arithmetic these operations are additions (+), multiplications (.) and complements.
All the inputs are considered to be 8-bit integers. In case of Boolean functions, these
operations are either logical AND (.) or logical OR (+). There are four genes required
for the multiplexer to describe the type of multiplexer (underlined in Fig. 3) and its
connections. The multiplexer operate bit-wise on 32-bit data in case of Boolean
operations and 8-bit integers in case of arithmetic operations.

The model in the book initially uses arithmetic operations on 8-bit data as it
performs slowly with high bit values. The discrepancy associated with using the
arithmetic operations with fixed data is the loss of information during the multipli-
cation process through the removal of the lower 8-bits. Boolean bitwise operations
do not result in the loss of information, however all the bits are independent. The
arithmetic operations require more processing time compared to the Boolean oper-
ations, which causes the reduction in the speed of evolution; since multiplication is
involved causing increase in computation time.

The function set and other parameters can be modified, and new methods can be
introduced to have linear/non-linear function sets to find the unknown functions in
DNA of neuron. The method described in this book, pitch the idea, and the function
sets are not the ultimate.

The genotype and the obtained corresponding phenotype are shown in Fig. 3 where
they connect the nodes as specified in the genotype. Figure 3 also shows the inputs
and outputs of the CGP. The output is taken from the nodes 6, 8 & 4 as specified in
the genotype. The model of this book does not specify the output in the genotype
and uses a fixed pseudo random list of numbers for specifying location of the output.

As mentioned earlier (Chap. 3 Sect. 3.3), there is only one row and number of
columns are the same as the number of nodes. User defines the maximum number of
nodes. These nodes are not necessarily all connected. There are two ways to apply
the inputs to the CGP chromosomes. They are

• Scalar
• Vector

If the inputs are applied in a scalar way, then the inputs and outputs are in form of
integers while in case of vector, the inputs which are required by the chromosomes;
are arranged in the form of arrays. The array is then divided into 10 CGP input
vectors. If the total number of inputs cannot be divided into ten equal parts then
they are padded with zeroes. This allows the CGP circuit chromosome to process an
arbitrary number of inputs by clocking through the vector’s elements. Generally, the
CGP cannot take variable number of inputs at run time. Since the inputs are arranged
in vector form, where every vector has arbitrary number of elements; this method
will result in some noise. The noise will be more pronounced if the number of inputs
are less than ten, because we padded it with zeroes when the number of inputs could
not have been divided into ten sub vectors. The increase in the number of inputs will
cause the noise to decrease.

http://dx.doi.org/10.1007/978-3-319-67466-7_3

66 5 Structure and Operation of Cartesian Genetic Programming …

Fig. 3 Structure of CGP chromosome. Showing a genotype for a 4 input, 3 output function and its
decoded phenotype. Inputs and outputs can be either simple integers or an array of integers. Note
nodes and genes in grey are unused and small open circles on inputs indicate inversion. The function
type in genotype is indicated by underline (underneath the integer showing function of multiplexer).
All the inputs and outputs of multiplexers are labeled. Labels on the inputs of the multiplexer show
where are they connected. Input to CGP is applied through the input lines as shown in figure. The
number of inputs (four in this case) and outputs (three in this case) to the CGP are defined by the
user, which is different from the number of inputs per node (three in this case i.e. a, b and c.)

2.3 Evolutionary Strategy

The evolutionary strategy used in this work is of the form 1+λ, where λ is set to
4 (Yu and Miller 2001). This means that it has one parent with 4 offspring so the
population size is 5. The parent remains unvaried while the offspring are produced by
the mutation of parents. The best chromosome gets promoted to the next generation.
In case, if there is a tie between the highest fitness of two chromosomes, then the
one genetically newer is selected (Miller et al. 2000).

The evolutionary cycle occurs in the following steps.

• A random population of 5 genotypes is created where each genotype consists of
seven chromosomes of neurons.

• A CGPDN with a user defined initial number of Neurons with random number of
dendrites and branch structures is created.

• An evolutionary generation consists of:

2 The CGP Developmental Network (CGPDN) 67

– For every genotype C in the population, a random copy of the CGPDN is pro-
duced. Then the genotype is provided to the CGPDN, which is run on target
application. The Fitness F(C) of the resulting CGPDN is calculated for the task
scenario.

• Among the population, the one with the best fitness F(C) is selected. In case if
there is a tie between the fitness, then the newer one of them is selected (Miller
et al. 2000).

• A new population is created through mutation, while the promoted genotype
remains unchanged. This process continues until either maximum number of gen-
erations or a solution is found.

Initially random network of neurons, dendrites, dendrite branches and axon
branches can grow into a mature network by the execution of the program encoded
in the genotype.

The promoted genotype is then mutated for the production of new genotypes
(offspring) as under:

(1) The number of genes which are to be mutated, are calculated first. Mathemati-
cally,
Number of bits to be mutated= number of genes X mutation rate/100
Where:
The number of genes = (number of inputs per node (3 in this case) + 1) X number
of nodes per chromosomes X number of chromosomes (7 in this case)

(2) The genes are selected pseudo-randomly one at a time, and they are also mutated
pseudo-randomly. The mutation of gene means;

– If it is a connection, it is replaced with another connection.
– If it is a function, it is replaced with another function.

The evolutionary strategy 1+λ is used because it performs better for CGP, in case
different genetic programming or machine learning is used for finding DNA function
set of neuron, then a corresponding strategy best for those algorithms should be
introduced. Also rank based selection is used in this book, although probabilistic
selection might perform better, and can be explored in future.

2.4 Inputs and Outputs

The axo-synaptic electrical processing chromosomes can be used to apply inputs to
the CGPDN through axon branches. Just like the axon branches of neurons shown
in the Fig. 4, these branches are distributed in the network. The branches can be
considered to be the “input neurons”. The input is taken from the environment and
then transferred directly to the input axo-synapses. The programs encoded in the axo-
synaptic electrical branches are executed to apply input to the system. The resulting
signal is then transferred to the neighbouring active dendrite branches.

68 5 Structure and Operation of Cartesian Genetic Programming …

Fig. 4 A schematic illustration of a 3 × 4 CGPDN grid having five neurons, with each a number of
dendrites comprises of branches, an axon with branches. Inputs are applied using input axo-synapse
branches located 5 different locations by running axosynaptic CGP programs. Outputs are taken
from five random locations through output dendrite branches

Similarly there are output neurons which can read the signals from the system
through the dendrite branches. These output dendrite branches are distributed across
the network as shown in Fig. 4. Just like other dendrite branches, that are part of
system neurons, the axo-synaptic chromosomes of neurons update these branches
as well. After every five cycles, without further processing, the output from these
output dendrite branches representing output neurons is taken. The number of inputs
and outputs can vary at run time (during development). An existing branch can be

2 The CGP Developmental Network (CGPDN) 69

removed, or a new branch for input or output may be introduced into the network.
Due to this CGPDN can handle arbitrary number of inputs or outputs at run time.

Next section will describe the complete neuron model along with its sub-
processes.

3 CGP Model of Neuron (The Genotype)

The neural functionality of the model under deliberation is divided into three major
categories:

• Electrical Processing
• Life Cycle
• Weight Processing

3.1 Electrical Processing

The electrical processing part is responsible for signal processing inside neurons and
communication between the neurons. There are three chromosomes in the electrical
processing part (as shown in Fig. 6).

• Electrical Processing in dendrite.
• Electrical Processing in Soma.
• Electrical Processing in axo-synaptic branch.

Fig. 5 Electrical processing in neuron at different stages, from left to right branch potentials are
processed by DECGP, then averaged at each dendrite, and soma, which processes it further using
the Soma-ECGP giving a final soma potential. This is fed in to a comparator which decides whether
to fire an action potential. This is transferred using the AS-ECGP

70 5 Structure and Operation of Cartesian Genetic Programming …

The manner in which the electrical signals are processed and transferred to other
neurons is depicted in Fig. 5.

3.1.1 Electrical Processing in Dendrite

It is a vector processing chromosome, which handles the interaction between the
potentials in different dendrite branches belonging to the same dendrite. The inputs
and outputs are shown in Fig. 6. The inputs are made up of the potentials of all
the active branches, which are connected to the dendrite and the soma potential.
Practically there are many dendrite branch potentials and one potential of soma.
The importance of soma potential is made more prominent by increasing its entries
(equal to the number of active dendrite branches) in the input vector before applying
it to the CGP program encoded in the chromosome. The updated values the dendrite
branch potentials are produced by the CGP program as the outputs. The input and
outputs to the Dendrite Electrical Processing CGP (DECGP) can be seen in Fig. 6.
The updated values of the branch potentials are further processed. The processing of
the potential of each branch takes place through the addition of the weighted values
of Resistance, Health, and Weight by utilizing the following equation:

P = (Ṕ + αDH + βDW − γDR)& Mask (1)

where;
P = Processed Potential
Ṕ = Updated potential respectively
H = Health of the dendrite branch
W = Weight of the dendrite branch
R = Resistance of dendrite branch
αD , βD and γD = adjustment parameters whose values are between 0 and 1 (usually

defined by user).
Here in this case, its values are 0.02(2%), 0.05(5%) and 0.05(5%) respectively.

We have used these values intuitively, but they can be evolved or looked deeply into
biology to get the best optimum. The masking of the processed potential can avoid
the overflow and it is based on the number of bits used for processing. Equation 1
also shows that there is a direct relationship between the health & weight of the
branches and the potential. The increase in the health and weight of the branches
will cause an increase in the potential as well. The direct relationship between the
health,weight and potential is justified by that fact that healthy branches facilitate the
flow of potential, whileweights are responsible for the amplification of potential. The
equation also indicates that there is an inverse relationship between the resistance and
potential (which is a common behaviour of resistor). An increase in the resistance
will result in the decreased potential.

The adjustment of statefactor of the branches takes place on the basis of the
updated value of the branch potential. An increase in the activity of the branch takes
place with the increase in the change in potential during the DECGP process and

3 CGP Model of Neuron (The Genotype) 71

Dendrite
Electrical CGP

Program

Axosynapse
Electrical CGP

Program

Soma
Electrical CGP

Program

Updated Poten al of
connected dendrite

branches Poten al of
connected dendrite

branches

Soma Poten al

Average Poten al of
connected dendrite

branches

Updated Soma
Poten al

Feeds into soma
threshold firing

func on

Soma Poten al

Soma Poten al

Poten al of
neighboring dendrite

branches

Updated Poten al of
neighboring dendrite

branches

Synapse Poten al

Fig. 6 Electrical processing in neuron showing dendrite branch, soma and axosynapse electrical
CGP programs with their corresponding inputs and outputs

vice versa. The motive behind this is encouraging the sensitive branches to participate
in the process by keeping them active. A range of thresholds are arranged for the
statefactor. If any of the branches have its statefactor equal to zero i.e. they are
active; and its life cycle CGP program is run. However if the branch is not active, the
processing of other dendrites is initiated, and same is repeated for all the dendrites
and their corresponding branches. After processing all dendrites, the average value
of all the dendrite potentials is taken. It is also the average value of all the active
dendrite branches attached to them. This potential along with the soma potential are
applied to the CGP soma electrical processing chromosome as inputs. The details
will be explained in the following subsections.

3.1.2 Electrical Processing in Soma

This is a scalar processing chromosome which is responsible for determining the
final value of soma potential after all the signals are received from the dendrites. The
dendrite potentials are averaged which are also the averages of potentials of active
branches attached to them as shown in Fig. 5. This average potential along with the

72 5 Structure and Operation of Cartesian Genetic Programming …

soma potential is applied as input to the soma electrical processing chromosome
(Soma-ECGP) as shown in Fig. 6.

The chromosome also produces an updated value of the soma potential ((Ṕ)) as
the output. It is then further processed with a weighted summation of Health (H) and
Weight (W) of the soma by using the following equation.

P = (Ṕ + αSH + βSW)& Mask (2)

where the values of αS and βS are chosen to be 0.02 and 0.05.
The processed soma potential is then compared with the threshold potential of

the soma. This comparison helps in the decision regarding the firing of the potential.
In case the soma fires, then it is kept inactive for a few cycles (refractory period)
by varying its statefactor and its threshold value is also adjusted to a new value
(maximum). Following this, the soma life cycle chromosome is run and the firing
potential is sent to other neurons by running the axo-synapse electrical processing
chromosome.

If the soma does not fire then the processed potential value is checked and fol-
lowing actions are taken:

• If the soma potential value is less than one third of the maximum value, its statefac-
tor is set to a higher value; such that it is kept inactive for three cycles (a parameter
that can be changed). This indicates that if the potential of soma is a low value,
which makes it unable to fire; then it is kept inactive for more time. The firing
somas are encouraged and kept more active.

• If the soma potential value is more than one third but less than the half of the
maximum value (a parameter that can be changed), then it is kept inactive for one
cycle (a parameter that can be changed).

• If the soma potential is higher than half of the maximum value, then it is kept
active for the next cycle and its life cycle program is run. This indicates that somas
with higher potentials are kept more active.

3.1.3 Electrical Processing in Axo-Synaptic Branch

It is a vector processing chromosome in which the potential is transferred from soma
to the other neurons through the axon branches. Both the axon branches and the
synapse are thought to be a single entity with combined properties. The axo-synapses
transfer the signal only to the neighbouring active dendrite branches as described in
Fig. 7. Those branches which share the same grid square form a neighbourhood.
Figure 6 shows both the inputs and outputs of the chromosome responsible for the
electrical processing in each axo-synaptic branch. As discussed earlier, the potential
of the soma is biased through the introduction of the multiple entries of potential of
the soma for its increased impact.

This chromosome produces an updated value of the neighbouring dendrite branch
potentials. It also yields the updated value of the axo-synaptic potential as output.

3 CGP Model of Neuron (The Genotype) 73

Fig. 7 Diagram showing one of the grid squares in which signal is transferred from axo-synapse
to dendrite branches, showing inactive and active branches

Equation 3 is used for processing the axo-synaptic potential as the weighted summa-
tion of the Health, Weight and Resistance of the axon branch.

P = (Ṕ + αASH + βASW − γAS R)& Mask (3)

where;
P = Potential
Ṕ = Updated Potential
H = Health of axon branch
R = Resistance of the axon branch
W = Weight of the axon branch
αAS , βAS and γAS = The adjustment parameters which can have values between

0 and 1.
In this case, there values are 0.02, 0.05, and 0.05 respectively.
After the above process, the axo-synaptic branch weight processing program

(shown in Fig. 8) runs and the processed axo-synaptic potential is assigned to the
dendrite branch which has the highest updated Weight. The updated value of branch
potential is used to adjust the statefactor of branches. There is a direct relation
between the activeness of branch and the change in the potential during the Axo-
Synapse Electrical CGP (AS-ECGP). The branch will become more active with the
increase in the change in the potential during the AS-ECGP and vice versa. The life

74 5 Structure and Operation of Cartesian Genetic Programming …

CGP program of the active branches is run. The axo-synaptic branch CGP is run in
all the active axon branches one by one.

3.2 Weight Processing

It is also a vector processing chromosome which updates theweights of the branches.
It is just made up of one chromosome. The weights of axon and dendrite branches
affect their ability of modulating and transferring the information efficiently. The
modulation of potential is the responsibility of the weights. Weights affect almost
every neural process either by being an input to a chromosomal program or by being
a factor in the post processing of the signals.

Figure 8 shows the inputs and outputs of the axo-synaptic weight processing chro-
mosome. The CGP program, encoded in the chromosome, takes the weight of an
axo-synapse and the neighbouring dendrite branches as its input; while its output is
their updated values. The synaptic potential produced at the AS-ECGP, is assigned
to the dendrite branches which have the highest weight after weight processing.

Axosynapse
Weight Ajustment

CGP

Axosynapse
Weight

Weights of
neighbouring

ac ve dendrite
branches

Updates
weights of

neighboring
dendrite
branches

Updated
Axosynap c

Weight

Fig. 8 Weight processing in axosynaptic branch with its corresponding inputs and outputs

3 CGP Model of Neuron (The Genotype) 75

3.3 Life Cycle of Neuron

The life cycle of neuron is responsible for either the growth or the decrease in the
number of neurons and neurite branches. It is also responsible for the migration of
the neurite branches. There are three chromosomes in the life cycle of neurons:

• Life Cycle of Dendrite branch
• Life Cycle of Soma
• Life Cycle of Axo-synapse branch

3.3.1 Life Cycle of Dendrite Branch

It is a scalar processing chromosome. Figure 9 shows the inputs and outputs of the
chromosome. This process updates resistance and health of the branch. The variation

Dendrite
Branch Life
Cycle CGP

Branch Health

Branch Weight

Branch Resistance

Updated Branch Health

Updated Branch Resistance

Soma Life
Cycle CGP

Soma Health

Soma Weight

Updated Soma Health

Updated Soma Weight

AxoSynapse
Branch Life
Cycle CGP

AxoSynapse Health

AxoSynapse Resistance

Updated AxoSynapse
Health

Updated AxoSynapse
Resistance

Resistance:determines whether branches grow or shrink
Health: decides whether component will replicate, stay
the same or die
Weights:used in electrical processing of the signal

Fig. 9 Life cycle of neuron, showing CGP programs for life cycles in dendrite branch, soma, and
axosynapse branch with their corresponding inputs and outputs

76 5 Structure and Operation of Cartesian Genetic Programming …

in resistance of the dendrite branches is utilized to decide whether it will grow, shrink
or remain unchanged. The branch can migrate randomly to a different neighboring
location if the resistance variation, during the process goes above the threshold (RDB).
There are 8 possible neighbouring squares in the rectangular grid, where the branch
can migrate. However its movement is restricted to only one square at a time. The
variation in resistance can be either negative or positive i.e. the branch can shrink or
grow. The Absolute change in resistance is used to decide whether the branch should
migrate or stay at its current position. The growth or shrinkage can be identified
through the increase or decrease in the resistance during the process.

The updated health value of the dendrite branch decides whether to produce the
offspring, to die or remain unchanged with its updated health value. There are three
possibilities of the updated health values

• If the updated value is above a certain threshold (Hdbmax) value, then it is allowed
to produce offspring.

• If the updated value is below a threshold (Hdbmax) value, then it is removed from
the dendrite.

If an offspring is produced, then a new branch is introduced in CGPDN grid point
connected to the same dendrite. It is also the responsibility of the user to specify the
values of RDB , Hdbmax and Hdbmin .

3.3.2 Life Cycle of Soma

It is also a scalar processing chromosome. This chromosome is used for evaluating
the life cycle of a neuron. The output of this chromosome is the updated values of
health and weight of the soma. The decision about the soma producing an offspring
is dependent upon the value of the health. There are three possible values of the
updated health as well.

• If the updated value of health is above a certain threshold (Hsmax) value, then it can
produce offspring.

• If the updated value of health is below a certain threshold (Hsmax) value, then it is
removed from the network along with its dendrites, dendrite branches and axon
branches.

In case it produces a new offspring; then a neuron with random number of den-
drites, dendrite branches and axon branches is introduced into a pseudo-random grid
location. There are upper (Bmax) and lower (Bmin) limits for the random number of
dendrites, dendrite branches and axon branches. The model under analysis has an
upper limit (Bmax) of 5 (may be allowed for evolution to decide), and a lower limit
(Bmin) of 2. The soma and branches are provided with an initial value of health, and
a pseudo-random value of resistances, statefactors and weights. Users specify the
values of the Hsmax , Hsmin , Bmax and Bmin . Figure 9 shows the inputs and outputs of
the soma life cycle processing.

3 CGP Model of Neuron (The Genotype) 77

3.3.3 Axo-Synaptic Branch Life Cycle

It is a scalar processing chromosome whose role is just like the dendrite branch life
cycle chromosome. The inputs to this chromosome are the health and resistance of
the axon branches, while the output is in form of the corresponding updated values
of health and resistance. The decision about the growth, shrinkage or no change is
made on the basis of the updated value of the resistance. It can move to a different
random neighbouring location if the value of the axon resistance is above certain
threshold (RAS).

The updated value of the health decides the future of the branch. There are three
possibilities on the basis of the updated value of health:

• If the updated value is above the threshold (Hasmax) value, then the branch will
produce an offspring.

• If the updated value is below the threshold (Hasmax) value, then the branch will be
removed from the axon.

The production of offspring will give rise to a new branch at the same CGPDN
grid point connected to the same axon. Figure 9 shows the inputs and outputs of the
axo-synaptic branch life cycle chromosome. Next section explains the information
processing mechanism in the entire network.

4 Information Processing in the Network

There are three steps involved in the initialization of information processing in
CGPDN. These steps are

(1) Production of a random CGPDN Network with neurons and neurite branches
located at pseudo random locations in CGPDN grid.

(2) Production of the initial population of genotypes, with each consisting of seven
chromosomes.

(3) The description of the number of inputs and outputs of neural network and their
distribution at pseudo random locations in the network.

A pseudo-random network can be formed by specifying:

(1) the initial number of neurons (Ni),
(2) the maximum number of branches per dendrite and axon (Nbmax),
(3) the maximum number of dendrites (Ndmax),
(4) the maximum neuron state factor (Ns f),
(5) the maximum branch state factor (Bs f),
(6) the mutation rate (μ),
(7) the dimension of the 2D toroidal space of neuron i.e. the number of rows (Nrow)

and columns (Ncol),
(8) the neuron and branch life threshold (Hmin),
(9) offspring threshold (Hmax), and

78 5 Structure and Operation of Cartesian Genetic Programming …

(10) the health, weight, and potential reduction factors of neurons and branches
(σHdb , σHs , σHas , σWdb , σWs , σWas , σPdb , σPs and σPas).

An initial number of neurons having different number of dendrites and axon branches
are produced. Every dendrite has a range of branches. The neurons along with their
branches are pseudo-randomly positioned in the 2-Dimensional CGPDN grid. Soma
and the branches of dendrite and axon are assigned with initial pseudo-random values
of health, weight, with branches assigned resistance value as well. The thresholds
for all the operations are specified. After the creation of network, initial population
of genotypes take place, by stating:

(1) the number of off-springs (λ),
(2) the number of nodes per chromosome,
(3) the set of node functions and the number of connections per node.

The initial number of inputs and outputs of the system and their corresponding
locations in the CGPDN grid are also specified at the start. Once the population of
genotypes is created, then the rules for information processing in the network are to
be specified, as follows:

(1) The input from the environment should be applied to the network first to start of
the process.

(2) The network should then run for five cycles (Ncycles) (user defined parameter,
the value can change) before reading the updated values of output.

(3) A 10% reduction (user defined parameter, the value can change) in the potential
of soma and branches(σPdb , σPs and σPas) should occur after every 5 cycles (user
defined parameter, the value can change).

(4) The weights and health of the soma and branches should also reduce by 10%
after every five cycles (user defined parameter, the value can change).

(5) The soma threshold potential (ηth) should be reduced by twice the reduction
(user defined parameter, the value can change) factor of soma potential after
every cycle.

(6) The state factor of all the branches and soma should be reduced by one unit (user
defined parameter, the value can change) after every cycle which allows them to
move towards activity.

The CGPDN network is now ready for operation. To apply the input to the network:

(1) First of all find the location of each input branch.
(2) Select the active dendrite branches at that location.
(3) Bias (duplicate their value in input vectors which is equal to the number of

active dendrite branches in this case) the input axo-synaptic branch potential
(user defined parameter, the value can change).

(4) Apply the potentials of active dendrite branches and biased input potentials as
input to axo-synapse electrical chromosome (CGP program).

(5) The axo-synapse electrical chromosome program will update the values of the
dendrite branch potentials (shown in Fig. 10).

4 Information Processing in the Network 79

Fig. 10 A diagram of input
signal transfer to CGPDN by
executing axo-synapse
program. The input branch is
shown by a black line. The
dark circle represents soma
electrical processing
chromosome (S), red circles
represent dendrite electrical
processing chromosomes
(D), and blue circle
axosynapse (AS). The dotted
green lines represent dendrite
branches of the other neurons
in the network. Small red
bars at the top of circles and
branches show the potentials
of branches. Yellow circle
highlights the circle whose
CGP program is about to run

(6) Repeat the same process in all the input branches.

Once the input is applied to the CGPDN, it must be run for many cycles (5 in this
case). In order to run the network for one cycle:

(1) All the active neurons must be selected.
(2) Every neuron is processed one by one in pseudo random sequence.
(3) The processing of every neuron takes place by processing every dendrite con-

nected to the neuron.
(4) At every dendrite, select all the active dendrite branches attached to it. Then

apply their potential along with the biased soma potential to the CGP dendrite
electrical processing chromosome.

(5) The updated values are produced as outputs.
(6) Process every branch potential on the basis of weight, resistance and health

values by using Eq. 1.
(7) After this process, if there is any branch active. Its life cycle is run by applying

its resistance, weight and health as input to the CGP dendrite branch life cycle
chromosome. This results in updated values. Depending on the updated value
of resistance, the decision about migration of the branch from current location
is taken. The health decides whether an offspring should be created, the branch
should die or remain unchanged.

80 5 Structure and Operation of Cartesian Genetic Programming …

(8) This process is then repeated for all the dendrites and their corresponding
branches.

(9) Once all the dendrites are processed, the average value of potentials of all
the dendrites is taken. This is also the average value of all the active dendrite
branches attached to them.

(10) The average potential of the active dendrite branches and potential of the soma
are applied as inputs to the CGP soma electrical processing chromosome.

(11) This results in an updated value of the soma potential (Ṕ) as output. Equation 2
is used to process the soma potential by using the health (H) and weight (W)
of soma. After processing, the soma potential and soma threshold potential are
compared. In case the soma potential is higher, the soma fires. This indicates
that the soma potential is set to the maximum value. The soma statefactor is
also set to its maximum value (Maximum values are specified by the user)
which results in soma being inactive for a number of cycles. When the soma
fires, its life cycle is run as well as its potential is transferred to other neurons
through the axo-synaptic branches by running the CGP axo-synaptic electrical
processing chromosome.

(12) In case the soma does not fire, the state factor is adjusted on the basis of the
value of the processed potentials. When the soma life cycle is run, the weight
and health of the soma are considered as input; and it produces the output in
form of their updated values. Once the soma life goes below the threshold (one
tenth of maximum in this case), it dies. This indicates the removal of neuron
from the network along with its branches.

(13) If the value is above soma offspring threshold, it results in production of another
neuron in the network at the same location with a random number of den-
drites, branches and other parameters. After the soma fires, the signal has to be
transmitted to other neurons which is done by running the axo-synaptic CGP
electrical processing chromosome (shown in Fig. 11).

Fig. 11 Axosynaptic
potential transfer to the
neighbouring dendrite
branches, showing Soma(S),
two Axo-Synapse(AS)
branches, a grid square and a
number of dendrite branches
attached to other neurons and
their corresponding
potentials, and a Weight
Processing(WP)
chromosome. The dotted
green (blue) lines represents
dendrite (axosynapse)
branches of the other
neurons in the network

4 Information Processing in the Network 81

Fig. 12 Weight processing
of the neighbouring dendrite
branches, showing soma, two
axo-synapse branches, a grid
square and a number of
dendrite branches attached to
other neurons and their
corresponding weights, and
weight processing
chromosome highlighted in
the grid square. Wi shows
the weights of axosynapse
and dendrite branches

(14) All the active dendrite branches near every active axon branch are selected
and then their potential values along with the biased soma potential (equal to
number of active branches) are applied as inputs of the CGP Axo-synaptic
electrical processing chromosome.

The chromosome results in updated potentials of all the dendrite branches
along with the axo-synaptic potentials. Then Eq. 3 is used for processing the
axo-synaptic potential. Once we obtain the processed potential, we run the
weight processing CGP chromosome. This takes the weights of the active
dendrite branches in the neighbourhood of the axon branch, and its axo-synaptic
weight as the input. This also produces the updated values as shown in Fig. 12.
The dendrite branch which has the maximum weight after weight processing
is assigned the axo-synaptic potential (as shown in Fig. 13). After the axo-
synaptic electrical processing, if the potential of the axo-synaptic branch is
above certain level; then it is kept active and its life cycle is run. The health and
resistance of the axon are the input to the life cycle of the axo-synapse. The
variation in the resistance of the branch is compared with a threshold value in
order to decide whether the branch should migrate or stay at its current location.
If the health of branch is above the offspring threshold, it will results in another
branch at the same location. The new branch will have the same health, pseudo
randomly selected weight and resistance.
In case the health falls below the threshold value, the branch dies and is removed
from the axon. This process is repeated in all the axon branches.

When the network is run for 5 cycles, the output is read from the output branches.
The updated potential values of the network processes affect the output branches.
When the task is completed, the network fitness is assessed; and the genotype which
has the highest fitness is selected. The new offspring chromosomes can be produced
through mutation.

82 5 Structure and Operation of Cartesian Genetic Programming …

Fig. 13 Transfer of potential
to highest weight after
weight processing, showing
soma, two axo-synapse
branches, a grid square and a
number of dendrite branches
attached to other neurons and
their corresponding weights,
and a weight processing
chromosome, and the highest
weighted branch highlighted
where the axo-synapse
potential is transferred

This chapter described the structure and operation of the CGPDN Model. The
inspiration for this model is from the principle of neurosciences. The chapter also
presented detailed comparison between ANN models, neural development models
and biological neural system. The neurons in CGPDN were arranged in a way that
they had a sense of virtual proximity. CGPDN is developed as a result of processing
environmental signal by its genetic code. The genetic code is a combinational digital
circuit developed by using CGP. The genetic code is evolved by using evolutionary
strategies. The evolution is carried out until we get the desired functionality. The
input is applied to the CGPDN through the axo-synapse branches by running axo-
synapse CGP programs. The output is taken from the output dendrite branches,
whose potentials are affected by the CGPDN processes. The inputs and outputs are
the interface of the CGPDN with the external environment. Potential is used as a
communication parameter between the external environment and CGPDN.

CGPDN is a developmental network which is capable of self-configuration during
the task environment. The evolved genotype of the network is executed which results
in a complete network of neurons, dendrites, dendrite branches and axon branches,
capable of learning. The number of neurons and neurites vary in a task environment.
It should also be noted that not all the neurons are active at any one stage of the
network.

Next chapter will examine the characteristics and performance of the model in
the context of an intelligent agent which tries to solve a learning task known as the
Wumpus world.

Chapter 6
Wumpus World

Having gone through all the design procedures, it is now time to test the learning
capabilities of the CGPDN in the Wumpus World environment. Wumpus world is a
learning problem scenario which is based on agents and artificial environment. All
the work discussed over the past few chapters is evaluated in a testing environment to
examine and assess the learning ability of the CGPDN. The model discussed under
analysis has been tested and results along with the various interesting behavioural
characteristics demonstrated are going to be presented in this chapter.

1 Wumpus World Problem

Wumpus world is inspired by “Hunt the Wumpus” game which is an agent-based
learning problem (Yob 1975). It is used as a test bed for different learning techniques
in the field of Artificial Intelligence. Wumpus World was presented by Michael
Genesereth (Russell and Norvig 1995). The Wumpus world is made up of two-
dimensional grid and is comprised of many pits, a Wumpus, Gold and an agent. The
agent starts from a unique square (home) in the corner of the grid. The agent has to
avoid the Wumpus and pits. It also has to find the gold and return to its home. The
agent is able to perceive a breeze in squares adjacent to the pits, a stench in the squares
adjacent to theWumpus, and a glitter of the gold square. The agent can also have one
or two arrows for shooting the Wumpus. Some of the environments provide a safe
route for retrieving the gold. There are also some environments in which the agent
has to choose whether it wants to go home empty handed or gamble on either taking
gold or die trying. The most commonWumpus world environment is the rectangular
grid (Yob 1975 used an environment that was a flattened dodecahedron). Spector and
Luke investigated the use of the Genetic Programming for dealing with the Wumpus
world problem (Spector 1996; Spector and Luke 1996).

© Springer International Publishing AG 2018
G.M. Khan, Evolution of Artificial Neural Development, Studies in Computational
Intelligence 725, https://doi.org/10.1007/978-3-319-67466-7_6

83

84 6 Wumpus World

1.1 The Proposed Wumpus World

The model introduced in this book has been explored in a Wumpus world envi-
ronment, however some changes in the environment are introduced to improve the
capacity of learning for the agent. The agent is only weakened by the Wumpus and
is not killed. The agent doesn’t possess arrow intended for shooting the Wumpus.
The glitter is on the side squares of the gold. The CGPDN learns everything from
the scratch and builds its own memory.

The agent starts with a couple of neurons randomly interconnected. Evolution
helps in establishing a stable computational network and finds various ways for
processing infrequent environmental signals (Fig. 1).

Evolution helps the agent in navigating around the Wumpus world environment
by building the capability of memory development. The goal-driven behaviour in
the agent is initiated due to evolution. The Wumpus world for the model of this
book is a 10× 10 two dimensional grid. It has 10 pits, one Wumpus and the Gold.
The location of the pits, Wumpus and Gold is random. The agent has the ability
to perceive the glitter, stench and breeze in the adjacent squares. The input to the
CGPDN is represented by a number called the potential. The value of the potential is
dependent upon what the agent sees. Zero potential indicates that there is nothing on
the square. If the potential is 60, it means that there is a pit in the square. 120 indicates
the presence of a Wumpus while 200 indicates the presence of the Gold. Magnitude
of the input signals to the agent varies depending upon the direction that the agent
perceives the signal from. The magnitude of breeze potential can help the agent’s
CGPDN in perceiving the direction of the breeze. The book chooses the following
set of values for representing various directions. North side of the pit is represented
by a value of 40, east by 50, south by 70 and west side of the pit is represented by
a value of 80. The direction of stench signal is also represented by the magnitude

Fig. 1 A two dimensional
grid, showing Wumpus
world environment, having
one wumpus, One agent on
the bottom left corner
square, three pits and gold
(Russell and Norvig 1995)

1 Wumpus World Problem 85

Table 1 Priority of various signals

Square Priority order

Wumpus 1

Gold 2

Pit 3

Stench 4

Glitter 5

Breeze 6

of the potentials. North side is represented by 100; East by 110, South by 130 and
West by 140. The values for the glitter of gold are 180, 190, 210, and 220 for north,
east, south and west respectively. A special input signal helps the agent detect that
it is at its home square. Other safe locations do not provide any signal. The agent
is able to perceive only one signal in the square even if there are multiple signals
available. The priority table for the signals is given below (All these parameters are
user defined and purely based on intuition and subject to change).

In Table1, one(1) means the highest priority while six(6) the lowest. The agent
has a quantity called Energy. The initial value of the energy is chosen to be 200
units which reduces by 60% if the Wumpus catches the agent. A pit will reduce
the energy by 10 units while gold increases the energy by 50 units. When the agent
reaches home, it perishes. With every single move, the agent loses energy by one
unit. That is why the agent has to constantly search for energy by solving various
tasks otherwise it will die.

The ability of an agent to complete learning tasks can be used to calculate the
fitness of agent. The fitness keeps accumulating over the period where the energy
level of the agent is more than zero or before it returns home. The fitness value can be
calculated when energy E >= 0. With every move of the agent, its fitness increases
by 1 unit to encourage the agent to have a brain; which remains active and does not
die. When the agent returns home with gold, its fitness increases by 2000; while
returning without gold will increase the agent’s fitness only by 200. In case the agent
obtains gold its fitness increases by 1000.

TheWumpus world game starts when, the potential used to represent the status of
square that is Home is fed as the input to the agent. The computational system of the
agent receives the input through the axo-synapse branches that are distributed across
the CGDPN at five distinct locations; thus updating the potentials of neighbouring
dendrite branches in the CGPDN grid linked to different neurons.

Then the network operates for five cycles which updates the output potential
of dendrite branches. The potential of dendrite output branches is also the output
of the CGPDN. Once this step completes the updated potentials of all the output
dendrite branches are recorded and then averaged. This average potential is utilized
for assisting in the decision regarding the direction of movement of the agent. For
more than one direction, the potential is divided into as many ranges as the possible
directions of movement.

86 6 Wumpus World

The agent dies when either it runs out of energy, or the neurons die, or all the
dendrite or axon branches die or the agent gets home safely. There are five (1+4 evo-
lutionary strategy) randomly generated genotypes produced. The fitness is obtained
by assessing the corresponding agent behaviour. The best genotype is chosen as
parent for a new population.

1.2 CGPDN Setup

The book uses a 3× 4 CGPDN grid (it is different from theWumpus world grid). The
smaller grid helps the branches communicate with each other because of the smaller
number of neurites and neurons. The inputs and outputs of the network are positioned
at five different random CGPDN grid squares. The initial number of neurons is set to
5, the dendrites, the number of dendrite and axon branches are all pseudo-randomly
generated with upper limit being 5. The initial structure of the network is selected
pseudo-randomly which adjusts itself in the task environment. The computation time
is reduced by letting the maximum branch statefactor to be 7. The statefactor of soma
is kept at 3 as it should be inoperative after firing for a minimum of two cycles. The
rate of mutation is set at 5%. The quantity of nodes per chromosome assigned has
a maximum value of 100. 8-bits are used for representing the potential, resistance,
weight and health for this model. Its maximum value can be 255. The length of
chromosome is 400 integers (100 × (3-inputs per node + node function)). All these
parameters are intuitively chosen and are subject to change.

1.3 Results and Analysis

The agent’s performance is assessed on the basis of its ability to solve three types of
tasks. These tasks are

• Finding its way back home.
• Finding the gold.
• Bringing the gold back to home.

The agentmust perform all these tasks in onewumpusworld independentlywithin
a time frame of one life. The greatest fitness is attained by performing the last task.
The population performance of every agent is evaluated in theWumpus world where
the position of Gold, pits and Wumpus are fixed. The agent struggles to live by
evading pits and the Wumpus and return home before it runs out of energy on which
its life span depends. An agent must maintain the neural network for solving its
task. The model has evaluated the agent’s performance in individual evolutionary
processes with identical Wumpus world and disparate primary populations.

Table2 presents the performance of the agent in twenty independent evolutionary
runs. The table clearly shows that the agent solves the first two assignments swiftly

1 Wumpus World Problem 87

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500 600

Fi
tn

es
s

Number of Generations

One run of Wumpus world

Fig. 2 Fitness diagram depicts the performance of an unrivaled agent over a span of several gen-
erations during its evolution

Table 2 The average, maximum, and minimum number of generations taken to perform various
tasks in a fixed Wumpus World in 20 independent evolutionary runs

S. No. Task Average No. of
generations

Minimum No. of
generations

Maximum No. of
generations

1 Home empty
handed

4 1 15

2 Found the gold 13 2 95

3 Home with gold 300 12 1108

compared to the last one as it is much difficult in comparison. Figure2 depicts the
fitness of an agent during its training process to solve the Wumpus world problem.
The fitness is initially low, but after a few generations (12); the fitness curve shows
a drastic increase when the agent manages to find the gold. The fitness of the agent
keeps increasing as its life span increases and is successful in finding gold. After
280th generation, the agent found the route to home with the gold.

The network is evaluated further with similar primary population and different
Wumpus worlds where the location of pits,Wumpus and gold were changed. Diverse
agents are evolved in every run which are able to solve these tasks. Table3 highlights
the effectiveness of the agent in ten individual evolutionary runs. The table makes
it clear that, similar number of generations are recorded as the first case for solving
the problem. This indicates that the initial Wumpus world generated arbitrarily had
an average level of toughness.

88 6 Wumpus World

Table 3 The average, maximum, and minimum number of generations taken to perform various
tasks on different Wumpus Worlds starting with the same initial population in ten independent
evolutionary runs

S. No. Task Average No. of
generations

Minimum No. of
generations

Maximum No. of
generations

1 Home empty
handed

5 2 11

2 Found the gold 20 2 79

3 Home with gold 530 12 1769

The fitness function is arranged in such a way that initially it forces the agent to
sustain its network which results in an increase in its life span. Initially the agent
does not achieve any goal, but fitness improves with time which agent spends in the
environment. During this time, the agent has to maintain the network; that’s why
evolution attempts to shape a steady and robust computational framework in the
earlier part of evolution. After achieving this, evolution initiates the production of
agents that learn how to come back home, how to find the gold and finally, how to
bring the gold to home.

Initially, the agent does not know anything about the Gold, Home, Wumpus, Pets
and the signals which indicate the presence of these subjects. When the system is
evolved, the genetic code in the agent allows building a computational structure
which holds memory of the meaning of these signals during the agent’s life cycle.
The source of building this knowledge is the initial genetic code when it is run on the
initial randomly wired network. After examining the various runs of the experiment,
one can conclude that in all the cases; agent learns to avoid the Wumpus, pits and
strives to get the gold. In CGPDN, those programs are evolved which can build and
change continuously a computational network within an external environment.

Conventional artificial neural networks operate by updating weights in order to
converge towards the solution of a particular assignment. These networks require
retraining for a minute variation in the essence of the problem (Cunningham et al.
2000).

One of the major points of interest is, whether these evolved programs can build
a network that can lead to successful agent behaviour in different Wumpus worlds.
To explore this, we chose the program of the more evolved agent showing promising
results in a particular Wumpus world and test its potential in randomly generated
Wumpus worlds. Various tests indicate that by changing the locations of the pits and
Wumpus, the agent is able to always bring the gold to home. However, if the position
of gold is changed; then some of the agents can get the gold (30% of the time) but
they cannot find the route to home. About 50% of the time the agents returned home
without gold. 20% of the time the agent was neither able to find the gold nor able to
return home. These facts indicate that the model has to be improved as there is still
some noise in the network. We need to achieve a general problem solving behaviour.

1 Wumpus World Problem 89

One of the interesting findings of these tests is that the agent always looks for the
previous position of the gold even if the environment is changed. This is a positive
indication because it shows that the evolved genetic codes can build a computational
network which is capable of retaining information.

1.4 Development of Network Over Agent’s Lifetime

The Structure of CGPDN changes while it is solving the Wumpus world. Figure3
demonstrates the changes in the energy of one of the agent while searching for gold
and bringing it back home. The energy level decreases after the agent falls into the
pit. The energy decreases by 10 units for every fall. The figure shows the case where
agent falls into the pit three times. However, the Wumpus does not catch it. Once the
agent finds the gold its energy increases by 50 units. After the agent reaches home,
it is terminated by making its energy equal to zero.

Figure4 depicts the variation in the number of neurons, dendrite branches and axon
branches during an agent’s life while Fig. 5 demonstrates the variation in the number
of active neurons, dendrite branches and axon branches at various stages during the

Fig. 3 The correlation between energy level, number of steps taken by the agent and variation in
its energy level on encountering gold or a pit is shown

90 6 Wumpus World

Fig. 4 Variation in numbers of neurons, and neurites (axon branches and dendrite branches) at
various stages of an agent’s life while solving wumpus world problem shown against the number
of completed cycles. The numbers of these components fluctuate at the start, and then appear to
stabilize later at around 200 cycles

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350 400

Number of Cycles

Number of Active Neurons
Number of Active Axon Branches

Number of Active Dendrite Branches

Fig. 5 Variation in numbers of active (with state factor zero) neurons, axon branches and dendrite
branches at different stages of an agent’s life while solving wumpus world problem

1 Wumpus World Problem 91

Fig. 6 Structural changes in agent CGPDN network at different stages of wumpus world shown
against number of completed steps. The network starts with 5 neurons and end up with 21 neurons
after completing 80 steps. Black squares show somas, red thick lines the dendrites, yellowish green
lines the axons, green lines the dendrite branches, and blue lines showing axon branches

life time of agent. Figure6 shows the changes in the neural structure and growth
of CGPDN at different stages. With the development of the network, old dendrite
branches disappear; while new dendrite branches arise. After ten steps, the network
gains three new neurons. Figure6 also shows that network changes randomly, but it
adopts a stable topology later. An interesting fact is that the network starts with 2–4
dendrites and after all the variations that take place, it ends with the similar numbers.

Figures4, 5, and 6 present very fascinating network dynamics. The network
dynamics are random initially which then get a robust framework as the agent per-
forms its task. The time taken by the agent to achieve its second goal isway lesser than
the time it takes to achieve the first goal. The reason behind this is the development
of a sustainable network which allows it to quickly achieve the goal.

This also suggests that an agent can make a map of the environment during
the development stage, which is used for finding the return path. The analysis also
indicates that “the return to home” is usuallymore direct compared to the path leading
to gold. If we visualize that the movement of the agent is determined by throwing a
dice, it might take an infinite time to get the gold and bring it home. Since every empty
square gives the same signal, the agent might oscillate between any two squares all
the time. The pits also give similar signals, so it is hard to figure out the locations of
the pits. All these issues make Wumpus world a tough problem to solve.

1.5 Testing the Network Without Life Cycle Programs

We investigate the behaviour of the evolved networks on a Wumpus world which
has different initial populations but a fixed morphology in the CGPDN. Fixed mor-
phology means that there is no life cycle program run inside the neurons, dendrite
branches and axon branches. That is why the network structure does not vary, and

92 6 Wumpus World

Fig. 7 Neuron’s
arrangement in CGPDN grid
showing five neurons with
different structures (dendrite
and axon branches)
representing the exact
locations

only electrical and weight processing chromosomes are run and evolved. The model
under analysis is also provided with a random CGPDN structure which initially has
five neurons.

First (S1) and second (S2) Neurons are provided with four dendrites; neuron three
(S3) and five (S5) with three while neuron four S4 with one dendrite as depicted in
the Fig. 7. The position 5, 2, 5, 2 and 4 in the CGPDN grid are provided with a
distribution of axo-synaptic branches. At location 8, 6, 11, 8 and 9 in the grid, the
output dendrite branches are assorted. Neuron S1 has one axon branch, neuron S2
has four, neuron S3 has 3, neuron S4 has two and the fifth (S5) neuron has three axon
branches.

The arranged neurons are shown in Fig. 7 in a way that they are fully connected.
All the neurons are connected in the path starting from the input to the output. This
fixed network takes at an average three times longer for solving the Wumpus world
problem in comparison to the one in which neurons and neurites has a life cycle and
develop in real time. The model discussed in this book is run for four independent
evolutionary runs. Table4 shows that the number of generations which the fixed
CGPDN network took to complete various tasks.

The table demonstrates that the life cycle of the neural components is an important
factor in the learning ability of the network, since it took longer to achieve some of
the tasks, and could not achieve the main task of bringing the Gold home in some
of the cases. Chalup proposes an incremental learning system which assists the
development of the network during the learning phase. It performs much better in

1 Wumpus World Problem 93

Table 4 Number of generations took agentswith fixedCGPDN to performvarious tasks inWumpus
World starting with different initial population in four independent evolutionary runs

Run. No Found the gold Home with gold

1 4 290

2 1 1420

3 2 3302

4 0 More than 5000

comparison to artificially imposed fixed network structure (Chalup 2001), supporting
the above argument.

1.6 Learning and Memory Development in CGPDN

The model in this book is further evaluated through various experiments performed
on the Wumpus world. It is also exploited to check the validity of the argument
stating that “the genotype of agent obtained through evolution holds a memory of its
ancestors’ history of the Wumpus world environment in its genetic structure.”

Experiments are conducted to evaluate the learning behaviour of ten highly
evolved agents in various scenarios. Instead of killing the agent after it reaches home
with gold, it is allowed to move in the environment and live longer. 50% of the time
the agent went towards the gold, while at other times the agent moved randomly in
the environment and then came back home. The agents then go out again and visit
different areas. They return back home and then end up oscillating near the home
(30% of the time). 20% of the time, the agent leaves home and gets stuck somewhere
in the corner of theWumpus world where it oscillates and eventually dies. Mostly the
agent strives to get the gold again while finding a shorter path to reach the gold. This
indicates the presence of the map of the environment in the genetic code of CGPDN.
It also indicates that the agent has a goal driven nature, which is why it goes for gold
again and again. Some agents ended up showing oscillating behaviour which may
be caused by the agent being in an unusual situation of being in the corner. However
this is a rare behaviour.

We have examined a specific case in which an evolved agent retrieves the gold
three times. However it ends up oscillating. The evolved agent reaches the gold by
following the path shown in Fig. 8a and then gets back to home by utilizing the route
shown in Fig. 8b.

Figure10 demonstrates all the variations in the energy level of the same agent.
Figure 9 shows the steps of agent across grid squares in terms of grid numbers.

It is interesting to know that the agent that moves in a straight line is highly non-
random. The probability of a random move at the edge is 33%. So the probability
of an eight step straight path while returning to home is 0.0152%. The probability

94 6 Wumpus World

Fig. 8 Path followed by the agent, starting from upper left corner (home square), a from home
towards the gold, b from gold back to home

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180 200

G
rid

 N
um

be
r

Number of steps

Agent Path

Fig. 9 Path followed by the agent in graphical form, from home to gold and back to home, with
grid points enumerated along rows from top left to bottom right (0–99). The graph highlights the
oscillatory behaviour of the agent

shows that it is very unlikely to be random. The work then examines the movement
of the same agent. Figure8 shows the various paths which the agent follows in four
subsequent journeys. Figure12 shows the changes in the energy level of the agent.
There is a similarity between Figs. 11a and 8a which shows the first path followed
by the agent towards the gold. During the first journey, the agent takes 135 steps to
find the gold. Figure11b shows the path followed by the agent in its second journey.

1 Wumpus World Problem 95

Fig. 10 Variation in agent energy during its trip from home to gold and back to home. Their is a
continual decrement in energy of 1 per step, and sudden drops when caught by pit (steps 7, 104,
151), and a sudden increase when it gets the gold (step 140)

It can be seen that in this journey the agent almost takes a straight path towards
the gold with a few oscillations on the way. The agent also encounters a pit on the
way which is shown by the dip in energy level in Fig. 12. The agent takes 38 steps
for the second journey. Figure11c demonstrates the paths taken by the agent in its
third journey. The path that the agent chooses is almost same as the second journey,
however this time it is with more oscillations. It also faces two pits. It reaches the
gold in a longer time compared to the second journey. It took 44 steps for the third
journey. The fourth journey also has a similar path like the third journey, however
this time the oscillations increase and the agent gets stuck in a corner until its energy
level becomes zero, and it dies.

2 Competitive Learning Scenario

Co-evolutionary computation is largely used in a competitive environment. In com-
petitive evolution, the fitness of individual is based on how it competes against an
opponent. Hence fitness is the measure of the relative strength of solution. Such com-
peting solutions results in an “arms race” of increasingly better solutions (Dawkins
and Krebs 1979; Rosin and Belew 1997; Van Valin 1973). There is a feedback mech-
anism present between the individuals on the basis of their selection, which produces

96 6 Wumpus World

Fig. 11 Trips of the agent in four scenarios in search of gold. a Primary trip to find gold beginning
with an initial random CGPDN. b Second trip taken by agent to take the gold home, note the
relatively shorter route taken. c The agent attempts to find the shortest path to acquire gold but ends
up getting caught twice. dA trip similar to that of case c is followed, but the agent begins to oscillate
and ceases by losing its energy

a strong force towards complexity (Paredis 1995). Traditionally competitive evolu-
tion is used for evolving interactive behaviours which is a hard task to evolve using
an absolute fitness function. For encouraging interesting and sophisticated strategies
in competitive co-evolution, every player’s network should compete against a high
quality opponent.

There is a feedback mechanism present between the individuals on the basis
of their selection, which produces a strong force towards complexity (Stanley and
Miikkulainen 2004). Traditionally competitive evolution is used for evolving inter-
active behaviours which is a hard task to evolve using an absolute fitness function.
For encouraging interesting and sophisticated strategies in competitive co-evolution,
every player’s network should compete against a high quality opponent.

2 Competitive Learning Scenario 97

Fig. 12 Variation in agent energy level during the four journeys illustrated in Fig. 11. The energy
shows a continual decrement of 1 per step, sudden increases when the gold is retrieved (steps 40,
172, 214), and sudden drops when caught by a pit (steps 24, 104, 159, 178, 195, 221, 235, 237)

The work in this book also evaluates the performance of the CGPDN in co-
evolutionary scenario, in which both agent and the Wumpus are provided with a
CGPDN. The agent and Wumpus live in a 2-D 10× 10 grid which has 10 pits as
shown in Fig. 13. Here the Wumpus is also provided with a home square which is
located at the bottom right corner as shown in the Fig. 13. The agents’ task is slightly
modified. Once the agent gets the gold, it automatically gets to home. It is then sent
to get the gold again. The task of the agent is to get gold as many times as possible
during its life time while avoiding the pits and Wumpus. Wumpus has to catch the
agent as many times as possible. The task of the Wumpus is difficult compared to
the agent since the target of the agent is static while the target of Wumpus is mobile.

Both the Wumpus and agent are placed at their home squares at the start of the
experiment. Learning is a difficult task in the co-evolutionary scenario compared to
the single agent world. The reason behind this is that every time theWumpus catches
the agent; its task of catching the agent again becomes harder, because the agent
learns and tries a different path to the gold in order to avoid the Wumpus. Pits affect
the energy of the agent. There is a decrease in the energy of the agent when it passes
through the pit. The home of the Wumpus is diagonally opposite to the home of the
agent. The agent and Wumpus can sense the breeze in squares adjacent to the pits
while they sense the smell of each other when they are in squares adjacent to each
other. They can sense the glitter while passing near the gold. They receive different
signals while passing through squares near these locations. The agent and Wumpus
have to learn not only how to deal with the breeze and smell, they also have to sense
the direction from where they are coming and make a decision to move accordingly.

98 6 Wumpus World

Fig. 13 A two dimensional 10× 10 grid, showing Wumpus world environment, With a wumpus
at bottom right corner, an agent on the top left corner, ten pits at various places and gold on square
86

All the safe locations other than the home provide zero signals. The pits and the gold
directly affect the agent, which is why the Wumpus has to learn how to differentiate
between all these noise signals. It also has to identify the presence of the agent for
catching it. Both agent and Wumpus can perceive only one signal on a grid square
and stay alive as long as their energy is above “zero”.

Initially both the agent andWumpus have the energy level of 100 units. They also
have only one life cycle. They can move only one square at a time. They cannot stay
in the same square, since theymust move in any of the possible directions. In case the
Wumpus catches the agent, its energy reduces by 60% while the energy of Wumpus
increases by 60%. With every single move, the energy of both the Wumpus and the
agent decreases by one level. Their fitness keeps accumulating over their lifetime.
With every move, their fitness increases by one. When the agent is successful in
finding gold, its fitness increases by 1000. When the Wumpus catches the agent, the
Wumpus’s fitness increases by 1000.

The behaviour of five agent population members against the best performing
Wumpus genotype from the previous generation is explored. The initial random
network remains unchanged for both the agent and the Wumpus. The genotype in
each generation is responsible for generating different networks and their associated

2 Competitive Learning Scenario 99

functionalities. The best agent and Wumpus genotypes are selected as the respective
parents for the new population.

It is demonstrated that the agents learn during their life time while their energy
level is above zero. This showcases that evolution enhances the ability to learn. The
initial CGPDN setup is the same for both the agent and Wumpus. Thus the genetic
code in themature network builds the genetic memory which is obtained by the agent
during its life time which can be transferred to next generation through the genetic
code. Only genotype changes in each generation. The starting neural structure of
both the agents is same.

2.1 Results and Analysis

Figure14 demonstrates the change in the fitness of agent and Wumpus in one partic-
ular evolutionary run over 1250 generations. It is clear that there can be increases and
decreases in the fitness at various stages of every agent and Wumpus where either of
them can hold the edge over the other.

The dynamic behaviours of the agents andWumpus vary. These are the behaviours
that the Wumpus and agent adopt due to the interactions between the neurons. They

Fig. 14 Variation in fitness
of the best agent (top) and
wumpus (lower) during
evolution. Oscillatory
response in fitness variation
of both at the beginning,
with improvement in fitness
at a higher generation

100 6 Wumpus World

arise due to the internal genetic code. Initially the agent and Wumpus are not aware
of the gold, pits, their interactions with each other and the signals which indicate
the presence of the nearby objects. As they evolve, they develop their own memory
of their life’s experiences which is encoded genetically. Initially the agent has a
randomly assigned neural structure which develops during the lifetime of the agents,
making it reasonably skilful and capable to achieve the goal.

Thefitness graph in Fig. 14 shows that initially the fitness of the agent andWumpus
varies a lot. However, with the increase in the number of generations; both the agent
and Wumpus become more skilful and the frequency of the changes in the fitness
reduces. This indicates that the two CGPDN behave in a manner in which one of
the CGPDN benefits at the cost of the other. There are certain points in the graph
where the fitness of both Wumpus and the agent goes down; this indicates that both
have failed to achieve their tasks. Usually they are able to find a way to achieve their
goals in the next generation. It is observed that around generation 680, both agent
and Wumpus become reasonably skilful.

The agent obtains the gold twice while on one occasion it obtains the gold three
times. TheWumpus catches the agent twice and then three times. Then the agent and
Wumpus get a fluctuating fortune. Then around at generation 1100, both the agent
andWumpus are more successful in achieving their goals, however Wumpus is more
successful.

While observing the behaviour of the agent and the Wumpus, we observe that,
when the initial energy of the Wumpus and the agent is increased to 300, it allowed
the agent to find the gold more frequently as shown in Fig. 15. The Wumpus caught
the agent just once. Figure15 also shows the movement of the agent and Wumpus
over the 6 journeys. The Wumpus dies during the fourth outing in panel D that is
why it is not shown in panel E and F.

The squares in the Fig. 15 are numbered from 0 to 99 along rows from top left
to bottom right. The gold is on square 86. In Fig. 15a the Wumpus and the agent
begin with the same randomly assigned initial networks. These networks turn into
mature networks when the seven CGP programs are run. The agent almost takes a
direct route to the gold while encountering two pits on its way towards its gold. The
Wumpus spends a lot of time in square 98, 88 and then moves towards the gold just
after the agent re-spawns from its home square after obtaining the gold. Figure15b
shows the next journey of the agent, which takes a different, but shortest path to the
gold while avoiding all the pits. In the meantime, the Wumpus lurks near the gold,
spending all its time on square 96 and 86. This is an efficient strategy as the agent
eventually comes close to the grid and this gives the Wumpus a chance to catch the
agent. However this time the Wumpus is unlucky and it moves away from the gold
at the same time when the agent obtains it.

The agent always has to move since it is not allowed to be stationary. Figure15C
shows the third journey. The agent follows an identical path to the gold as it initially
did. This is surprising as the CGPDN network develops with experiences during its
lifetime. This indicates that the agent has encoded the map of the environment, but
when it arrives at the square of the gold, theWumpus attacks it and it is relocated to its
home square. The behaviour shown in Fig. 15D is interesting. The agent now follows

2 Competitive Learning Scenario 101

(a) (b) (c)

(d) (e) (f)

Fig. 15 A–F Various paths taken by agent and wumpus towards their goals in coevolutionary task.
The agent starts from home (the upper left corner) towards the gold, the wumpus starts from the
lower right corner (home) towards the agent. The agent trip is shown by black arrows, while that
of the wumpus by grey arrows, pits by circles, and gold by a box. Wumpus dies during trip D, thus
not available in E and F

a different and meandering path to the gold. It spends some of its time alternating
between the square 8 and 9 and then the agent turns back and arrives at it home. After
which, it goes down the left hand side in the direction of the gold.

The Wumpus, on the other hand behaves in an odd manner. After it attacks the
agent, it is relocated to its home. It moves around briefly in the bottom right four
squares before its CGP developmental network dies. This demonstrates a very fas-
cinating but strange phenomenon, which we observed with the other evolved agents
andwumpuses. Usually, their CGPDN dies when their energy level is a small number
and becomes more active when their energy level increases. This is puzzling because
the energy level is not supplied as an input to the CGPDN. The beneficial encounters
usually result in greater number of neurons and branching, while deleterious encoun-
ters usually result in removal of neurons and branches from the network. Figures15E
and F show the subsequent behaviour of the agent in which it obtains the gold again
(Panel E) and dies before it reaches the gold (Panel F). These results indicate that the
agent can produce amemorymap of the environment early in its evolutionary history.
Once the Wumpus attacks the agent, the CGPDN of the agent is strongly affected
due to which it follows a different path. In case the agent does not find gold, it returns

102 6 Wumpus World

Fig. 16 Fluctuation in the energy level of the agent and wumpus during the task environment of
Fig. 15. Continuous drop of 1 per step, and rise of 60% on acquiring gold, sudden drop of 60%
when caught by the wumpus, and a reduction by 10 units when encounter a pit. The agent seems to
be successful in acquiring the gold 5 times and is caught once by the wumpus

to its home square and then uses the same path which led to the attack of Wumpus.
Hence it can eventually find some gold. Further test results demonstrate that the
agent looks for the shortest path to gold. Even after the events described in Fig. 15E,
experiments revealed that whenever the agent is relocated to its starting position; it
follows a short path to get to the gold. But unfortunately on its way to find gold, the
agent dies. The behaviour of this agent is evaluated in different situations. When all
the pits are removed the agent started to move around the environment apparently at
random without finding the gold. So the agent has environmental cues to navigate.
The Wumpus is also moved to square 56 which is right in the path of the first agent
in Fig. 15B. The behaviour of the agent is similar to its previous behaviour with the
exception of getting caught by the Wumpus. It also does not avoid that square when
it encounters the smell signal on square 46. This is the indication that this agent’s
network building program has not yet given it a general response of avoiding the
wumpus. Moreover, this encounter also affects the network and causes it to follow
a different path in order to avoid the wumpus. Here the agent and wumpus from the
generation 220 were explored, since they are not highly evolved, they still have to
learn how to behave in the wumpus world environment. The agent does not properly
respond to the presence of the wumpus and the degree to which it affects its energy
level. If the agent is evolved for a longer period of time, both the wumpus and agent
get better and will result in a stable behaviour where the agent gets the gold many
times, while at times the wumpus catches the agent as shown in Fig. 14.

2 Competitive Learning Scenario 103

In the earlier generations, the agents wander around in the wumpus world envi-
ronment attaining low fitness values, and not selected during the course of evolution.
Initially the cause of increase fitness is avoiding pits and wumpus and live longer,
causing it to attain an oscillatory behaviour while lurking between two squares. The
rise in fitness occurs when the agent achieves any of their goals during the course
of evolution causing them to be selected for the next generation. This is where the
agent gets the sense of goal, and the sense of goal makes one of them the agent and
other the wumpus. Figures15 and 16 show the results of well evolved agents which
have a sense of goal.

Considerable variation takes place in the structural development and activity of
the CGPDN during the life time of the agent and Wumpus. The results of experi-
ments performed demonstrates this by showing the variation in energy level and the
changes in networkmorphology during the life time of the agent andWumpus whose
behaviour is shown in Fig. 15. Figure16 shows the variation in energy level of the
agent and wumpus. The change in the energy level is a reflection of experiences. The
increase in the energy level of the agent is an indication that the agent found the gold
while the decreases indicated that the agent either faced a pit or was attacked by a
wumpus. If the agent faces a pit then the decrease in energy is less compared to the
decrease in energy due to the attack of wumpus. Here in this case as well, the energy
of both agent and wumpus increases if they achieve their tasks. The energy level of

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200

Number of Cycles

Number of Neurons
Number of Axon Branches

Number of Dendrite Branches

Fig. 17 Variation in neurons and neurites(dendrite and axon branches) against number of cycles,
of the agent’s CGPDN during the course of co-evolutionary task illustrated in Fig. 15. Variations in
the network structure seems to coincide with the events illustrated in Fig. 16. Each step in Fig. 16
requires 5 cycles to complete

104 6 Wumpus World

Fig. 18 Variation in neurons and neurites(dendrite branches and axon branches) during neural
cycles of the wumpus CGPDN during course of the co-evolutionary task illustrated in Fig. 15. A
continuous drop showing death of neuron and neurites causing death of wumpus at cycle 270 (step
54 in Fig. 16)

the agent drops by 60% if the wumpus attacks it. Strangely, all the neurons in the
wumpus CGPDN network die shortly after the attack. Figure17 shows the variation
in number of neurons, axon branches and dendrite branches during the agent’s life.
Figure18 shows the above mentioned numbers for a wumpus.

One of the observations is that mostly when the agent is caught by the wumpus,
it is never able to get the gold again during its lifetime, since the interaction with the
wumpus affects its network by causing the death of neurons. The work in this book
tests the validity of this argument by increasing the initial energy level as indicated
by Fig. 15. Through this, it is shown that the agent is able to get the gold even after
being caught by the wumpus. But in such cases, the wumpus dies quickly after the
encounter with the agent. This is due to the fact that the wumpus was about to die
right before it catches the agent as shown in Fig. 15. The encounter seems to have
increased its life span by triggering a brief increase in the number of neurons and
branches.

The work also evolves the agent and wumpus with various values of initial energy.
The influence of deleterious and beneficial environmental encounters is diminished
by increasing the energy level to 300. As soon as the energy level is decreased to
50, the deleterious encounter outweighs the beneficial effects. The work in this book
recommends an initial life of 100 to be a suitable balance. CGPDN builds a net-
work and a learned behavioural memory in the environment. But this environmental

2 Competitive Learning Scenario 105

responsiveness comes at the cost of possible dwindling away of all the neurons, since
the networks are time dependent.

This chapter described a method of evolution of the CGPDN network on a classic
AI problem of the wumpus world and also a co-evolutionary version in the same
environment. Though the wumpus world problem has been modified, the results
presented are quite promising. It was demonstrated that the system can solve dynamic
task environments. Even if the network is tested ondifferentwumpusworld problems,
the stability of the network is preserved. The agents show the ability to build their
own environment map which is constructed during the development as a result of
environmental experiences (Spector 1996; Spector and Luke 1996).

The next chapter will explore the learning abilities of the CGPDN in the game
environment of checkers. It will also be demonstrated that how the two random
networks develop a neural structure through evolution which can play checkers at a
reasonable level of game.

Chapter 7
Checkers

The learning capabilities of CGPDN are explored to ‘recognize’ and ‘learn to play’
the arcade board game. The game of Checkers is selected as the arcade game since it
was reconnoitred previously for learning by a number ofAI algorithms.LikeWumpus
world, checkers is also a grid based game however it is much more challenging and
complicated compared to Wumpus world. Checkers is of great importance in the
history of Artificial Intelligence and can be used as a test bed for evaluating the
learning techniques (Dimand and Dimand 1996). The game of checkers is used here
for demonstrating the capability of evolved networks to improve their ability to learn
(level of play) by continuously playing against better opponents.

Building computer programs which can play games has been given importance
ever since the rise of the Artificial Intelligence (Shannon 1950; Samuel 1959; Neu-
mann 1928). Over the years various ideas have been presented about computer pro-
grams which can play games and there have been different checker playing pro-
grams. Modern understanding about the game of checkers is that this problem has
been solved (Schaeffer and Herik 2002). The current world champion at checkers is
a computer program called Chinook which is mostly based on a linear handcrafted
evaluation function (Schaeffer 1996). The function considers the features of the game
board such as piece count, king’s count, trapped count, turn, run away checkers and
other minor factors. The program can access the library of opening moves from
games played by grand masters. It also has the complete endgame database for all
boards with eight or fewer pieces. The program is based on human knowledge and
there is no machine learning methods used in its development.

In spite of the fact that there have been many effective and outstanding methods
used for the computer games, still it does not bear any resemblance to the human
being’s approach for games; since human beings do not use a numerical board eval-
uation function and they do not employ minimax. Human beings learn the game
through experience. The model discussed in this book is based on the ability of
learning which can be encoded in the genotype. After execution, it gives rise to a
CGPDN network which can play the game efficiently.

© Springer International Publishing AG 2018
G.M. Khan, Evolution of Artificial Neural Development, Studies in Computational
Intelligence 725, https://doi.org/10.1007/978-3-319-67466-7_7

107

108 7 Checkers

1 Checkers: The Game

The checkers board is available in different dimensions throughout the world. The
Standard English checker’s board is 8× 8 with alternating light and dark squares.
There are two players in the game of checkers which sit opposite to each other.
Every player has 12 pieces. The pieces are of two different colours which are used
to differentiate between the pieces of the two players. At the start, these pieces are
placed on alternating squares of the same colour which are closest to the player’s
side. Usually the player with the dark coloured pieces starts the game. The pieces
can only move diagonally only one square at a time, unless there is possibility of
jump. Jump can take place when a piece moves diagonally over an opposing piece
and land in an unoccupied square on the other side. If a piece jumps over the piece of
opponent, the opponent’s piece is removed. Multiple jumps can also occur if there is
a jump possible after the first jump. If a piece reaches the first row of the opponent,
it will become a king. Although a normal piece can move diagonally forward, the
king can move diagonally in both directions. Jump has the highest priority among
other moves. If there are multiple jumps available, then it depends upon the user’s
choice to make the move. However, a jump with king has higher priority. When a
player has no pieces left or cannot make a move; he is considered the loser.

1.1 Experimental Setup

The model is a CGP Developmental Network (CGPDN). For the sake of checkers
game, the model is arranged as under:

(1) The CGPDN of every player has neurons and branches which are located in a
4× 4 toroidal grid.

(2) The initial number of neurons is 5, with each neuron having a maximum number
of dendrites equal to 5.

(3) The maximum number of dendrite branches are chosen to be 200, and the max-
imum number of axon branches 100.

(4) The maximum statefactor of the branch is 7 while that of the soma is 3.
(5) The mutation rate is 5%.
(6) The maximum number of nodes per chromosomes is 200.
(7) The maximum number of moves that a player can make is 20.
(8) The chromosome length is 800 integers.

The signal and other parameters are represented by a 32-bit integer. The nodes oper-
ation in CGP genetic code are 32- bit logical operations.

1 Checkers: The Game 109

1.2 Fitness Calculation

Both the agents can make only a limited number of moves and the fitness of the
agents is accumulated at the end using the following equation:

Fitness = A + 200NK + 100NM − 200NOK − 100NOM + NMOV , Where;

NK is the number of kings
NM is the number of men of the current player
NOK , NOM are the number of kings and men of the opposing player
NMOV is the total number of moves played.
The value of ‘A’ is 1000 for a win while it is 0 for a draw. A limit is set on the

maximum number of moves as it reduces the computational time in assessing the
abilities of poor game playing agents. In case the number ofmaximummoves allowed
is reached even before any player wins the game, then the value of ‘A’ will be ‘0’
which means that it will be considered a draw. The number of pieces and the type of
pieces is then used for assessing the fitness value of the agent. The number of kings
is multiplied with twice the number as that of the normal pieces, for conveying the
importance of the kings. These numbers are arbitrarily chosen but can be modified
by the users. The number of moves is of significance since it encourages the agents
to make more moves and live longer.

1.3 Inputs and Outputs of the System

The input to the system is in form of 32 element array of board values. Each element
represents a playable board square. These 32 inputs can represent five different values
depending on the square of the board which are represented by ‘I’. The values of ‘I’
are as follows:

• I = 0 for an empty square.
• I =Maximum value (M) = 232 − 1
• I = (3/4)M for a piece.
• I = (1/2)M for the opposition piece.
• I = (1/4)M for opposition king.

These parameters are chosen intuitively and can change.
The board inputs are applied in the form of pairs to all the sixteen locations of

the CGPDN grid. The playable squares are 32 as shown in Fig. 1. Figure 1 shows the
interfacing of the checker board with CGPDN. There are input axo-synapse branches
for every playable board positions. The inputs can run the axo-synapse electrical CGP
to provide input to the CGPDN.

The input potentials of the two board positions and the neighbouring dendrites
branches are applied to the axo-synapse chromosomes. This chromosome produces

110 7 Checkers

Fig. 1 Interface of CGPDNwith Checker board. Four board positions shown being interfaced with
the CGPDN

the updated values of the dendrite branches in that particular CGPDN grid square.
There are two branches for two board positions in the CGPDN grid square. After
this, the axo-synapse chromosome is run for every square individually starting from
square one and finishing at square sixteenth. Output has two forms. The first form is
used to select the piece to move while the second to decide where the piece should
be moved. There is an output dendrite branch in the CGPDN for every piece on
the board. Every piece has a unique ID that represents the CGPDN grid square in
which its branch is located. These branches have a potential which is updated during
the CGPDN processing. The possibility of moving the piece is dependent upon the
values of the potential. The piece with the highest potential is moved, however if
there are pieces which can jump; then the piece with the highest potential among
them is moved. The king which can jump has the highest priority. In case there are
two kings who can jump, then the king with highest potential jumps. There are also
five output dendrite branches which are present in various random locations in the
CGPDN grid. The direction of movement of the piece is determined by the average
value of dendrite branches potentials. If any piece is removed due to a jump, its
dendrite branch is removed from the CGPDN grid.

2 Co-evolution of Two Agents Playing Checkers 111

2 Co-evolution of Two Agents Playing Checkers

The method of evolving two or more systems together such that they affect each
other’s evolution is known as Co-evolution. These techniques have been applied to
various games and have been found effective (Irving andUiterwijk 2000;Wee-Chong
and Yew-Jin 2003; Fogel 2002).

Competitive co-evolution using CGPDN is implemented where each agent com-
pete with one another in the game of checkers. There are 5 genotypes in the agent’s
population. Each of the first five agent population members are tested against the
best performing second agent genotype of the previous generation in a single game
(Stanley and Miikkulainen 2004). The co-evolution happens as under:

• Both agents are provided with a population of five genotypes
• In every generation, the genotypes of the first agent are tested against the best
genotype of the second agent and vice versa.

• The fitness of all the genotypes is evaluated and the agent with the highest fitness
is selected as the parent for the upcoming generation. Both the agents are then
mutated for producing four offspring (1+4 Evolutionary Strategy). The arrange-
ment is made in such a manner that the fifth one is the parent and the first four
are offspring for the next generation. So the fifth one is the optimum performing
genotype from the last generation of both agents.

• The process mentioned above is repeated until a solution is found or maximum
number of generations is attained.

During the first generation, the initial random CGPDN structure of both the agents
is same. Initially at the start of the experiment, the input to the agent playing black is
applied with the board values. Axo synapses are used to apply inputs to its CGPDN.
The CGPDN network is then run for five cycles, during which the potentials of the
output dendrite branches are updated. The average of dendrite potentials is taken
and utilized to decide the direction of movement for the corresponding piece. The
CGPDNalso updates the potentials of the output branches for the pieces. The updated
potential values are used for deciding which piece is to be moved. In case if there
is any jump available, then the jump has the priority. If there are multiple jumps
available, then the one with the highest potential has the priority. This process is also
repeated for the opponent and it continues repeating until the game ends.

The game will stop if any of the following things happen

• The CGPDN of the agent or its opponent dies.
• The opponent loses all its players.
• The agent or opponent cannot move anymore.
• The allotted number of moves is taken.

112 7 Checkers

2.1 Learning ‘How to Play’

Checkers is a difficult game. In order to learn the game, the two agents start playing
with only a few neurons which have a number of dendrites and branches. The agents
build a developmental network which is capable of solving the task while keeping
a stable network. They also find a way for processing the environment signals and
differentiating among them. They understand the spatial layout of the board. The
agent then develops a memory or knowledge about the meanings of the signals from
the board. They also develop the memory of previous moves and determine whether
theywere beneficial or deleterious. The agents also need to know about the benefits of
making a king or jumping over. The agents perform all these mentioned tasks while
playing the game. Agents have the ability to learn from each other about favourable
moves as the generations pass by. The learning is transferred from one generation to
the other through genes.

In order to find out about the performance of the more evolved agents, the work
here presents an example in which a more evolved agent is tested against a lesser
evolved agent. This verifies that the agents of later generations perform better. The
lesser evolved agent will almost always lose at the hands of the more evolved ones,
however sometimes there can be a tie between the two agents. Even in case of tie,
the more evolved agent will end up having more kings and pieces compared to the
lesser evolved.

The variation in the fitness of amore evolved agent against the fitness of a series of
agents from earlier generations (less evolved ones) in the same evolutionary run has
been presented in Fig. 2. It also explains the cumulative fitness graph, showing the
summation of fitness over various generations. It can be clearly seen that the more
evolved agent playing white has higher fitness values compared to the less evolved
agent playing black. The behaviour of the more evolved agent is not uniform as in
one run; the more evolved player can beat its less evolved opponent (opponent at
generation 100) by a huge margin; while in another run the might not play well
against the less evolved player of generation 100. Although it might do very well
against the less evolved player at 150th generation.

In Fig. 2 it can be seen that initially the agent beats the opponent by a margin
greater than 4 kings or 8 pieces, within twenty moves. This difference reduces with
the decrease in evolutionary training differences. Figure4 showcases a more evolved
agent (in white) playing a lesser evolved agent (in black from generation 5). When
the game starts, the initial board position is fed into the CGPDN of the agent (black);
the CGPDN then runs for five cycles. After this the CGPDN makes decisions about
which piece is to bemoved andwhere it should bemoved. Table1 shows the sequence
of moves up to move 31 (Fig. 3).

2 Co-evolution of Two Agents Playing Checkers 113

Fig. 2 Fitness variation of a more evolved agent playing checkers against different generations of
the lesser evolved player

The game goes fine up till the 8th move when the white takes a black piece. Then
at the 10thmove, black has the opportunity to take awhite piece in twoways. After an
ensuing series of forced exchanges, white piecesmove further up the board compared
to black. This is a sensible move as it is the only way one can obtain kings. Move 19
is a catastrophic one for the black as white can take two pieces and acquires a king.
Move 24 is also a disastrous one for black pieces as it loses two more pieces to the
white pieces. Both the players develop the ability to protect their pieces by placing
pieces behind them. The defensive move occurred at 4, 7, 15 and 16. There were 10
possible moves at move 4 when there were five pieces which each could move in two
directions. However the player selected only one for defending its previous move.
At move 7, there were 8 possible moves. The player again defended its previous
move. At move 15 there were 8 possible moves however the player selected the
move to defend its piece. Finally at move 16 there were 12 possible moves, however
the player defends its piece again. In move 31, the black piece moves to the edge
which is interesting as edges are safe places to be in. The white wins the match in

114 7 Checkers

Table 1 The first 31 moves of a game between a more evolved player (white) against a less evolved
player (black)

Move number Move Comment Move Comment

1 B1 10–13 Opening

2 W2 23–19

3 B3 11–15

4 W4 28–23 Defend

5 B5 5–10

6 W6 23–20

7 B7 1–5 Defend but . . .

8 W8 20–11 Takes

9 B9 6–15 Takes

10 W10 22–18 Offer

11 B11 15–22 Takes

12 W12 26–19 Takes

13 B13 13–22 Takes

14 W14 27–18 Takes

15 B15 2–6 Defend

16 W16 30–26 Defend

17 B17 6–11

18 W18 32–28

19 B19 9–13 Blunder

20 W20 18–9 Takes

21 W21 9–2 Takes, gets K

22 B22 11–14

23 W23 28–23

24 B24 14–18 Blunder

25 W25 21–14 Takes

26 W26 14–5 Takes

27 B27 7–11

28 W28 31–27

29 B29 11–14 Blunder

30 W30 19–10 Takes

31 B31 12–16 Move to edge

48 moves with one king and eight pieces left. Both white and black players play
the game sensibly, however the black made some blunders; and white made some
good moves which resulted in a victory for the white. This example demonstrated
the learning ability of the agent and showed how the two developmental programs
learned to play checkers through co-evolution.

3 An Agent Plays Against a Minimax 115

Fig. 3 Accumulated fitness variation of more evolved agent playing checkers against different
generations of lesser evolved player

Fig. 4 Labelled Board and positions at different stages of the game. Numbers beneath boards show
the board at moves 10, 19 and 24

3 An Agent Plays Against a Minimax

We also present CGPDN checker players that are investigated for its learning behav-
iour against aminimax based checkers program (MCP) instead of using co-evolution.
MCP program plays at a higher level. Every genotype of the agent plays five games
against theMCP. The agent starts the game from a random network. The best playing
genotype based on fitness is selected as the parent for the new populations and is
promoted to the next generation along with four offspring without any change.

In this case, the MCP makes the first move and the updated board is then applied
to the agent CGPDN. The CGPDN network is then run for deciding the piece and
the move. This process is repeated until the game is stopped.

116 7 Checkers

3.1 Results and Analysis

MCP always had the upper hand over the agent, so it is very tough to find out the
variation in fitness of agent during the course of evolution whether it has learning
or not. Despite learning a lot of moves during the course of the game, the agent is
still not able to beat the MCP. That is why the agent’s fitness level is low and varies
randomly. The MCP produces a database of game, which it uses for computation of
the next move. Due to this reason, the MCP plays a different game every time even
against the same opponent. This makes it difficult for the evolution to select the best
genotype from the next generation. The genotype of the best agent is promoted to
the next generation; however it produces different fitness values. That is why it is
quite difficult to obtain any improvement against MCP.

In order to check if there is any improvement in the level of play of the agent, we
have evaluated the more evolved agents against the lesser evolved ones. As discussed
earlier, the more evolved agents always have an edge over the lesser evolved ones
showing the improved level of play. Figure5 shows the fitness of a more evolved
agent against a series of agents from the earlier generations. It can be clearly seen
that the more evolved agent (white) always beats the less evolved agent (black).
Figure6 shows that the more evolved agent beats the early ancestors by a huge
margin, however with the progress in evolution; this margin reduces. This shows the

Fig. 5 Fitness variation of a more evolved agent against earlier ancestors

3 An Agent Plays Against a Minimax 117

Fig. 6 Accumulated fitness variation of a more evolved agent against ancestors

increase in learning ability of agents over the course of evolution. Table2 presents
the game between a more evolved agent and a lesser evolved agent. Figure8 shows
some of the important board positions during the game scenario. The more evolved
agent plays black while the ancestor agent plays white now.

Initially the board position is fed into the CGPDN of the agent playing black; the
CGPDN is run for five cycles. Then the CGPDN makes the decision about which
piece to move and where to move. The first 4 moves that the players make are normal
moves, however, the white pieces move further advanced. The black leaves an empty
square on its back after move 4. This move results in a catastrophe with move from
the square 12 to 15. The white piece takes two black pieces and becomes a king.
Then some reasonable moves are made. Again the black piece moves from square
10 to 14 allowing the white king to take two black pieces. Despite black taking some
white pieces in move 16, white proves to be too strong to be handled and wins the
game.

This example just described the difference in the level of play of the two agents.
A few more examples ascertain the learning ability of the agent. Experiments

demonstrated that it is very tough for an agent to learn from a highly skilled system.
Figure7 shows that it is hard to asses if any learning can take place in case an evolved
agent plays against the MCP. Figure9 shows the changes in the fitness of an evolved
agent from the 2000th generation (white pieces) while playing against lesser evolved
agents from earlier generations. The plot shows the average fitness in consecutive
games of the two agents. It is evident that the more evolved agents hold an upper

118 7 Checkers

Table 2 Game played between a more evolved player (white) against a less evolved player (black)

Move number Black White

1 B1 10–14 W1 24–20

2 B2 6–10 W2 23–19

3 B3 14–23 W3 28–19

4 B4 3–6 W4 27–23

5 B5 12–15 W5 19–12
12–3

6 B6 11–14 W6 23–19

7 B7 14–23 W7 31–28

8 B8 10–14 W8 3–10
10–19

9 B9 4–7 W9 19–14

10 B10 7–11 W10 14–7

11 B11 23–27 W11 30–23

12 B12 8–12 W12 7–16

13 B13 9–13 W13 23–19

14 B14 2–6 W14 21–17

15 B15 6–11 W15 17–10

16 B16 5–14
14–23

W16 28–19

17 B17 11–14 W17 19–10

18 B18 1–5 W18 10–1

hand over the lesser evolved agents. The network of both agents, develops in the
game series, so they start the new game with the developed architecture.

Figure9 shows that the well evolved player does not play any better against the
later generations compared to the earlier generations. The MCP updates its database
after every game. Its approach in every game is very different even if it is playing the
same opponent. This indicates that it is tough for the agent to maintain its previously
gained higher value of fitness in the following game. For achieving higher fitness, the
agent has to alter the way it plays a game. If the less evolved players do not change
the way they play a game (it happens when they are playing close ancestral relative)
they are easily beaten by the well evolved players, however they are hard to beat
if they change the way they play a game (it happens when they are playing distant
ancestral relative).

In another example, an agent begins every game with a random network while
the other agent is allowed to retain its network and develop it over the course of the
games. A well evolved agent of 2000th (white pieces) generation competes against
an agent from 50th generation (black pieces). The agreed rules for the games are
that both agents can make 20 moves and the 50th generation agent starts playing
every game with the same initial random network on which it was initially trained;

3 An Agent Plays Against a Minimax 119

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700 800 900 1000

Fi
tn

es
s

Number of Generations

MCP
CGPCN

Fig. 7 Variation in fitness of CGPDN against MCP while playing checkers during course of evo-
lution

Fig. 8 Labelled Board and
positions at different stages
of the game. Numbers
beneath boards show the
board at moves 5, 6, 8, 10
and 12

120 7 Checkers

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400

Fi
tn

es
s

Number of Generations

 White
Black

Win
Lose

Fig. 9 Graph showing the fitness (Averaged after every five games) variation of a well evolved
agent (white) playing checker against different generations of less evolved player (Black) playing
five games each

while the 2000th generation agent continues with the network it had at the end of
the previous game. The genotypes do not change; only architecture of CGPDN and
its morphology is allowed to develop. The fitness of both the agents are calculated
at the end of the game. Figure10 shows the fitness variations of the agents obtained
at the end of every game. They are also some peaks at various stages which indicate
the case in which the more evolved agent beats the opponent within 20 moves. When
the agent plays against the MCP or any other highly skilled checker program, it was
not able to beat the opponent within 20 moves.

However, during the developmental stages; when the agent plays 5 or more con-
secutive games, it was able to beat the opponent in 20 moves. The agent continues to
develop and play without evolution, its ability to beat the opponent within 20 moves
increases as proven by the average fitness stay above the x-axis in Fig. 11.

Figure11 shows the averaged fitness of five consecutive games. The un-dashed
line represents the 2000th fitness, which is always above zero. This indicates that its
performance is better throughout the 500 games, while it is developing its network.

Figure12 is the accumulated fitness graph of the well evolved agent over 500
games. It can be clearly seen that the network, despite the changes in the network
during every game, is able to sustain its integrity of getting higher fitness over the
less evolved agent. This shows that the agent does not forget playing checker better.

Figure13 shows the changes in the number of neurons and neurites of a well
evolved agent of 2000th generation during the games. The figure clearly shows that
the network initially varies a lot. At some point, it reduces to the minimum structure.
Later on it stabilizes to structure with a fixed number of neurons and neurites.

3 An Agent Plays Against a Minimax 121

Fig. 10 Graph showing the fitness variation of a well evolved agent (white) against a less evolved
agent (black)

This is very interesting as the network can still develop, though the number of
neurons and neurites become stable; the branches are still able to migrate and weight
of neurites being updated. The network is not trained to find a small network, however
in consecutive games; it continues to change until it finds aminimal suitable structure
which can play better as evident from the accumulated fitness graph in Fig. 12. Deep
analysis of the examples can show that even the updated network repeats its initial
moves, which results in two double jumps and the opponent losing its 4 pieces. This
shows that opponent always starts with the same initial condition and repeats the
same initial moves. In the first 100 games, it is observed that the agent repeats its
initial 8 moves almost every time which causes the agent taking 4 pieces. This is
because the agent does not know when one game ends and the other starts. It starts
the other game with a different network which forces the opponent to repeat the same
mistakes. As a result of the repetitive mistakes, the opponent loses the game. This
indicates that the agent can respond to the variations in the board positions and is
able to make the same moves with a different network. This is the indication of a
stable behaviour even when the obtained CGPDN is changing.

The discussed examples clearly demonstrate that the system can improve with
evolution. The CGPDN network can develop during the game and it is the cause for
the intelligent behaviour of the agent. The agent can learn experimentally when it is
trained in a consecutive game scenario. This also causes the development of a net-

122 7 Checkers

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

0 20 40 60 80 100 120
Number of Games

White Fitness
Black Fitness

Fig. 11 Graph showing the average fitness variation of a well evolved agent (white) playing five
games of checkers against a less evolved agent (black)

Fig. 12 Graph showing the accumulated fitness of a well evolved agent (white) playing checker
against a less evolved player

3 An Agent Plays Against a Minimax 123

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Neurons
Number of Axon Branches
Number of Dend Branches

Fig. 13 Graph showing the variation in number of neurons and neurites of a well evolved
agent(white) over five hundred games

work which can sustain its architecture and continue performing better with different
architectures. The examples also show that the CGPDN network can maintain the
consistency in winning the games, even if the architecture is updated. The CGPDN
network also obtains a default minimum structure which is suitable for it. The exam-
ples show that the network can repeat similar moves, every time a new game is
started. This indicates that the network has the ability to carry out intelligent action
repeatedly in the board environment, even if the network is varying. The examples
reveal that the CGPDN can adapt to varying environment, sustain its architecture and
it can solve tasks even while developing. The robustness and adaptation of the system
makes is suitable for different application in the field of science and technology.

The network presented is a biologically plausible developmental network which
has a dynamic morphology. It is able to handle the arbitrary number of inputs and
outputs. The response to the following statement was presented up to some extent
through the model demonstrated:

Implementation of an autonomous computation system inspired by neuroscience which is
capable of continuously learning and adapting in complex environments. A possibility or a
dream

124 7 Checkers

It was demonstrated that the CGPDN has the ability to adapt to the variations in the
environment and to sustain its architecture which proves its robustness. The CGPDN
system has the potential to solve tasks while continuing to develop.

However there is still a lot of work to be done in the CGPDN. Improvements can
be made to produce intelligent behaviours which are much more like the mammalian
brain. Implementing the CGPDN in hardware form will also be something to look
forward to in the near future. This will be a major breakthrough if achieved as it
will be opening the doors to heights never attained before in the field of science and
technology.

Chapter 8
Concluding Remarks and Future Directions

Developing an intelligent network capable of learning and adapting in a complex
environment without human intervention has been the main focus of this work. We
will discuss to what extent the goals of this research have been accomplished and
how significant are its contributions to the field of artificial intelligence.

At the beginning of this work, the following hypothesis was stated:

Is it possible to implement an autonomous computational system inspired by neuroscience
capable of continuously learning and adapting in complex environments.

From the evidence provided in Chaps. 6 and 7 of this book, it can be concluded
that the hypothesis has been supported to a certain extent. The CGPDN introduced, is
a biologically plausible computational network as explained in Chap. 5. The network
produced has a dynamic morphology and is capable of handling an arbitrary number
of inputs and outputs as explained in Chap.5. The system is inspired by the biological
brain. Chapter 5 introduces CGPDN, which incorporated ideas from the biological
brain and neural development and allows the network to develop its architecture. The
genotype of the network is evolved so that it develops an environment to produce a
network that can solve the task.

The structure and operation of the CGPDNModel is inspired by principles of neu-
roscience, its general layout, operation and implementation is discussed in Chap. 5.
The Cartesian Genetic Program (CGP), which is used as a genotype for the model
and the method of interfacing CGPDN with external environments is provided in
Chap.5. Detailed explanations of the information processing in the CGPDN and
neuron model have been discussed.

We have examined the characteristics and performance of themodel in the context
of an intelligent agent trying to solve a learning task called Wumpus world. Results
are very promising and indicate that this system is capable of developing an ability
to learn continuously within a task environment. We found that a network tested on
a different Wumpus world preserves the sustainability of the network and develops
the learning ability of the agent to avoid pits and the Wumpus.

© Springer International Publishing AG 2018
G.M. Khan, Evolution of Artificial Neural Development, Studies in Computational
Intelligence 725, https://doi.org/10.1007/978-3-319-67466-7_8

125

http://dx.doi.org/10.1007/978-3-319-67466-7_6
http://dx.doi.org/10.1007/978-3-319-67466-7_7
http://dx.doi.org/10.1007/978-3-319-67466-7_5
http://dx.doi.org/10.1007/978-3-319-67466-7_5
http://dx.doi.org/10.1007/978-3-319-67466-7_5
http://dx.doi.org/10.1007/978-3-319-67466-7_5
http://dx.doi.org/10.1007/978-3-319-67466-7_5

126 8 Concluding Remarks and Future Directions

Thenetworkdevelopswhile solvingWumpusworld in a dynamicmanner in search
of desired neural architecture capable of solving the task. Different experiments are
performed with CGPDN having different initial populations and Wumpus world
environments to test whether the agent is capable of solving the task.

We have also tested the capability of CGPDN in a co-evolutionary competitive
learning environment. Two antagonistic agents are provided with different CGPDN
which grow and change in response to behaviour, interactions with each other and
the environment.

From the results in Chap.6 we found that the agents can learn from their experi-
ences and interaction with each other and appear to build a map of their environment,
providing evidence of learning and memory development.

We have tested CGPDN in the context of playing the well-known game of
checkers. We co-evolve two agents having CGPDN as their main processing unit.
After a number of generations we tested the well evolved agents against the lesser
evolvedones and the results showed that thewell evolved always beat the less evolved.
Thus evolution had improved the level of play of agents. We also evolve the agent
against a Mini-max based checker program (MCP) and evaluated more evolved pro-
grams against the lesser ones, once again we obtained similar results, with more
evolved players always beating the lesser evolved players.

Chapter 7 provides a detailed description of the game of checkers, and demon-
strated how two random networks end up developing a neural structure through
evolution, that can play checkers at a reasonable level.

Our results are encouraging and demonstrate that the system improves with evo-
lution. The CGPDN morphology continues to change during a game, allowing the
agents to adapt learning behaviour.

We trained the agent for experiential learning, by allowing the agent to play five
games each against MCP without changing its network and allowing it to develop.
The agents always start with a random network in the first game and inherit its
updated network from the previous game in the subsequent games. This allows the
agent to have experience of more than one game scenario. Again we have evaluated
more evolved agents against lesser ones in five game scenarios, with more evolved
agents always beating the lesser ones as evident from the results in Chap.7.

In order to test whether CGPDN maintains its integrity of solving the task even
when its network is developed into a completely different network rather than the
one it is trained on, we allowed a more evolved agent to play five hundred games
against a lesser evolved agent so that the well evolved agent can inherit its network
from previous games and continue to develop, whereas less evolved agents always
started from a random initial neural structure. The experiment produced interesting
results with themore evolved agent continuously beating the less evolved agent, even
when the network is changed a lot during development, and stabilizes at a minimum
structure at the end. Additionally, close observation of the games, reveals that the
agent repeats similar initial moves causing it to get an initial advantage over the
opponent, although its network is different (more developed) from the one in the
previous game. This shows that the network has the capability of carrying out the

http://dx.doi.org/10.1007/978-3-319-67466-7_6
http://dx.doi.org/10.1007/978-3-319-67466-7_7
http://dx.doi.org/10.1007/978-3-319-67466-7_7

8 Concluding Remarks and Future Directions 127

same intelligent and useful behaviour even though its network changes. This further
suggests that the network may not suffer from catastrophic forgetting.

In future we are planning to train the network in co-evolutionary environment
for experiential learning. At the moment the system resources take long to evolve,
because fitness evaluation is very slow with limited computational resources. We
are planning to implement the network on high speed hardware, to speed up the
evolutionary process.

We studied different models of ANNs and neuroscience literature and imple-
mented a system at neuron level, and provided it with an artificial environment
where neurons can interact with each other. The basic neuron model we produced
is based on biological studies of neurons, their development and signal processing
mechanisms. These neurons can grow and produce complex neural structures based
on the requirements of the task.

Ourmodel is inspired by thework on the neurodevelopment techniques; we evolve
the rules for development of the neural architecture and their internal processing.

Chapter 5 has introduced a novel technique called CGPDN, which is a develop-
mental model of neural computation using CGP inspired by the biological brain. This
network is capable of self-development during the task environment. The network is
produced using biological principles of neurons and neural computation. We allow
the genes of the network to evolve, so that it develops neural structure capable of
learning.

Experimental evidence in Chaps. 6 and 7 has shown that the system might be
developing a memory of its experiences during development. The research in this
book provides the idea of next generation of neural networks by adding more bio-
logical plausibility to neural networks. In this model most of the processes inside the
neuron are considered and a CGP model for these processes has been introduced.
The input/output to the system is also applied through dendrite and axon branches.

The model also provides a new dimension to Cartesian Genetic Programming by
using a collection of chromosomes. The group model of chromosomes in this case
is inspired by biological neurons. Genetic programming is used to encode the gene
information inside the neuron and to evolve intelligent behaviour in the neuron.

We used evolutionary strategies for selection process in evolving the system
(CGPDN), and Cartesian genetic programming to find the unknown functions inside
neurons for their development and electrical processing. CGP is used because it is
simple and easy to implement. Conventional ANNs could in principle, also be used
instead of CGP to find the unknown functions inside neurons. We tested the system
(CGPDN) in a co-evolutionary task environment where intelligent behaviour was
rewarded in wumpus world (explained in Chap. 6) and checkers (see Chap. 7). We
used neural development techniques to develop the architecture of CGPDN in a task
environment (post evolution).

Our research model is based on biological morphology of neurons and allows
the neurons in our system to have random number of dendrites and branches that
grow and branch to produce their own desired structure based on the functionality
required.We divided the neuron into threemain parts, the soma (cell body), dendrites
with branches, and an axon with a number of branches. Inspired by leakage currents

http://dx.doi.org/10.1007/978-3-319-67466-7_5
http://dx.doi.org/10.1007/978-3-319-67466-7_6
http://dx.doi.org/10.1007/978-3-319-67466-7_7
http://dx.doi.org/10.1007/978-3-319-67466-7_6
http://dx.doi.org/10.1007/978-3-319-67466-7_7

128 8 Concluding Remarks and Future Directions

in neurons, we reduced the potential of all the branches and soma after every cycle
giving it a sense of time and change.

We have implemented the mechanism of action potential generation in which
the signals are received from all the neurons in the environment through dendrites,
deciding on whether to fire an action potential or not.

We introduced the process of synaptic plasticity in our network by adding weights
to branches and soma which is updated at runtime based on the biological synaptic
plasticity.

One of the main problems with ANNs is that if their weights are changed they are
unlikely to be able to solve the same task or give better performance. Whereas the
CGPDNseems to retain its integrity of solving the task and improving its performance
while its morphology and weights are changed during the task environment. The
results obtained from the environments of Wumpus world and checkers suggest
that this does not cause a problem for the CGPDN. The network when explored on
different Wumpus worlds seems to have ability of keeping stable network and goal
driven behaviour causing it to avoid pits, and wumpus and collect gold. CGPDN is
a developmental network, capable of self-configuration during a task environment.
It is capable of handling variation in the number of inputs and outputs at run time.
The genotype of the network is evolved to get a generalized capability of learning
and functionalities.

Based on the above results and analysis, we can conclude that CGPDN has the
capability of adapting to changes in the environment, and of sustaining its architec-
ture. It has a potential for solving a task while continuing to develop. This robustness
and adaptation capability of the system makes it useful for a number of applications
both in science and technology.

This model should provide a completely new area of research that we hope will
be capable of producing intelligent behaviour that in some ways is more like the
mammalian brain.

This research is of a fundamental nature. There are very few developmental
approaches to neural networks, currently being considered and the evolved com-
partmental model of neural function is entirely novel. The potential benefits of this
research are great. If it is made possible for a program to evolve via learning through
experience then there are many potential applications. Our initial research on this
topic has been highly encouraging.

In future work, we are looking forward to explore CGPDN in a more challenging
and diverse environments to see if? it is possible to evolve a general capability for
learning? We will also look into the dynamicity of CGPDN for its ability to solve
problems faster and accurate through repeated experience of its task environment
(online learning).

We will be looking for other applications in future work, as the network seems to
have dynamic behaviour, and is capable of solving a range of dynamic problems.

In future we propose to investigate the current model of CGPDN for its capability
of learning through experience. The genetic programs in CGPDN are encoded as
digital circuits built from multiplexers. Such circuits fit well with modern mux-
based Field Programmable Gate Array Architectures (FPGA). The idea is to develop

8 Concluding Remarks and Future Directions 129

the network on high speed hardware, in order to speed up the evolutionary process
and test CGPDN in co-evolutionary environment for experiential learning. Also the
network has many parameters and it is difficult to test the importance of different
parameters and chromosomes, as the evolutionary processes take a long time on
desktop machines (PCs).

We have the following two main objectives for future work:

• To analyse and refine the current model of Cartesian Genetic Programming Devel-
opmental Network (CGPDN) and show that it allows generalized learning through
experience in the context of playing checkers

• To build a prototype CGPDN on electronic hardware

Objective 1: Analysis and refinement of the CGPDN to demonstrate experi-
ential learning

Our objective is to analyse and refine the current model of CGPDN and train it
to achieve a high standard of checkers by a combination of evolution and learning.
We wish to evaluate and show that evolved genotypes when run in the task envi-
ronment improve their performance through experience alone (i.e. post evolution).
In addition we wish to understand the relevance and role of various parameters and
predefined rules in the model with respect to evolvability and learning capability.
There are various ways that an arbitrary number of inputs may be introduced into
CGP chromosomes. We wish to evaluate the effectiveness of these and to understand
and visualize morphological changes and the changes in activities of the CGPDN
during long periods of training. The task will be divided into following four sub
tasks:

(1) Analysis and Refinement of CGPDNmodel: The CGPDN is complex as it makes
use of seven evolved circuits along with many predefined rules and parameters.
The importance and role of these rules need to be understood in more detail.
Investigations into various ways of applying an arbitrary number of inputs to
CGP chromosomes and assessing their effectiveness.

(2) Investigation of various parameters: Investigation of importance of various fixed
parameters in the CGPDN with regard to the speed of evolution and the degree
of acquisition of its capability for learning.

(3) Visualization and Statistical analysis of CGPDN : Visualization and statistical
analysis of morphological, ‘electrical’ activity, and life-cycle changes during the
development of the CGPDN from its initial random state and from its ’mature’
untrained state to its ‘mature’ trained state.

(4) Investigation of fitness functions: Assessment of various ways of accumulating
fitness to encourage experiential learning, including repeated task environments.
Introducing agent energy and mechanisms for accumulating fitness within task
environment. Analysis and demonstration of experiential learning.

Objective 2: Hardware implementation of CGPDN
Hardware implementation can be considered the ultimate goal of a neural net-

work approach, as it allows a direct interface with the real world and can perform
parallel computation that can only be approximated in software. For an evolutionary

130 8 Concluding Remarks and Future Directions

implementation, hardware has an even greater importance, since it is only through
the speedup it allows, that the complex computation required by genetic algorithms
can be scaled up to large networks.

Since all the processes inside neurons in ourmodel are based on simplemultiplexer
operations, implementing the evolved genotype in hardware will allow the neurons
to do processing in parallel rather than serially. We expect a considerable increase
in processing speed, as at present the program runs on a sequential computer that
does multiplexer operations one at a time, whereas an FPGA implementation would
allow the multiplexers to operate in parallel. By exploiting the speed of a hardware
implementation to time-multiplex neurons, we will be able to test our approach on
much larger networks of neurons; on the other hand,we are also looking to investigate
the feasibility of evolving the genetic code in a real time hardware environment. The
ultimate goal of this is to design a hardware implementation of CGPDN and the
evolutionary system.

This implementationwill allowus to realize large networks of neurons and analyse
features of our model (e.g., the evolution of learning capabilities and the synergy
between evolution and neuronal plasticity) that cannot be studied in small networks.

In addition to these features, CGPDN finds numerous applications in medicine
that is pattern recognition for diagnosis of diseases, image processing, and in a variety
of intelligent control systems.

Bibliography

Abdallah El Ali, L. B., Groen, I., Hermanides, E., Kool, W., Neville, D., & Rattner, K. (2008).
Forget-me-net: Overcoming catastrophic forgetting in backpropagation neural networks. CSCA
Summerschool.

Alberts, B., Johnson, A., Walter, P., Lewis, J., Raff, M., & Roberts, K. (2002). Molecular biology
of the cell (3rd edn.). Garland Science.

Albesano, D., Gemello, R., Laface, P.,Mana, F., & Scanzio, S. (2006). Adaptation of artificial neural
networks avoiding catastrophic forgetting. IJCNN (pp. 1554–1561). IEEE.

Angeline, P. J., Saunders, G. M., & Pollack, J. B. (1993). An evolutionary algorithm that constructs
recurrent neural networks. IEEE Transactions on Neural Networks, 5, 54–65.

Arbab, M. A., Khan, G. M., & Sahibzada, A. M. (2014). Cardiac arrhythmia classification using
cartesian genetic programming evolved artificial.

Back, T., Hoffmeister, F., & Schwefel, H. (1991). A survey of evolution strategies. InProceedings of
the 4th International Conference on Genetic Algorithms (Vol. 1802, pp. 2–9). Morgan Kaufmann.

Barricelli, N. A. (1954). Esempi numerici di processi di evoluzione. Methodos, 45–68.
Bentley, P. (2002). Digital biology. Simon and Schuster.
Bernstein, J. (1902). Untersuchungen zur thermodynamik der bioelektrischen strme. Pfulger’s

Archives Gesellschaft Physiology, 92, 521–562.
Boers, E. J. W., & Kuiper, H. (1992). Biological metaphors and the design of modular neural

networks. Masters thesis, Department of Computer Science and Department of Experimental and
Theoretical Psychology, Leiden University.

Bongard, J. C. and Pfeifer, R. (2001). Repeated structure and dissociation of genotypic and pheno-
typic complexity in artificial ontogeny. In Spector et al. 2001 (pp. 829–836).

Braun, H., &Weisbrod, J. (1993). Evolving feedforward neural networks. In Proceedings of ICAN-
NGA93, International Conference on Artificial Neural Networks and Genetic Algorithms. Inns-
bruck: Springer.

Cahill, A. (2010). Catastrophic forgetting in reinforcement-learning environments. A thesis sub-
mitted for the degree of Master of Science at the University of Otago, Dunedin, New Zealand.

Cajal, S. R., & y., (1894). The croonian reading: The fine structure of the centres nervous. Proceed-
ings of the Royal Society of London, 55, 444–468.

Cangelosi, A., Nolfi, S., & Parisi, D. (1994). Cell division and migration in a ‘genotype’ for neural
networks. Network-Computation in Neural Systems, 5, 497–515.

Carpenter, G.A.,&Grossberg, S. (1988). The art of adaptive pattern recognition by a self-organizing
neural network. Computer, 21(3), 77–88.

Chalup, S. K. (2001). Issues of neurodevelopment in biological and artificial neural networks. In
Proceedings of the Fifth Biannual Conference on Artificial Neural Networks and Expert Systems
(ANNES’2001), 40–45.

© Springer International Publishing AG 2018
G.M. Khan, Evolution of Artificial Neural Development, Studies in Computational
Intelligence 725, https://doi.org/10.1007/978-3-319-67466-7

131

132 Bibliography

Chellapilla, K., & Fogel, D. B. (2001). Evolving an expert checkers playing program without using
human expertise. IEEE Transaction on Evolutionary Computation, 5, 422–428.

Chen, X., & Hurst, S. (1982). A comparison of universal-logic-module realizations and their appli-
cation in the synthesis of combinatorial and sequential logic networks. IEEE Transactions on
Computers, 31, 140–147.

Cliff, D., & Miller, G. F. (1996). Co-evolution of pursuit and evasion ii: Simulation methods and
results. InProceedings of the Fourth International Conference on Simulation of Adaptive Behavior
(pp. 506–515). MIT Press Bradford Books.

Cramer, N. L. (1985). A representation for the adaptive generation of simple sequential programs.
In J. J. Grefenstette (Ed.), Proceedings of an International Conference on Genetic Algorithms
and the Applications. Carnegie Mellon University.

Cunningham, P., Carney, J., & Jacob, S. (2000). Stability problems with artificial neural networks
and the ensemble solution. Artificial Intelligence in Medicine, 20(3), 217–225.

Dalaert, F., & Beer, R. (1994). Towards an evolvable model of development for autonomous agent
synthesis. In R. Brooks & P. Maes(Eds.), Proceedings of the Fourth Conference on Artificial Life.
MIT Press.

Dasgupta, D., & McGregor, D. (1992). Designing application-specific neural networks using the
structured genetic algorithm. Proceedings of the International Conference on Combinations of
Genetic Algorithms and Neural Networks, 87–96.

DasGupta, B., & Schnitger, G. (1992). The power of approximating: A comparison of activation
functions. Advances in Neural Information Processing Systems, 5, 363–374.

Dawkins, R., & Krebs, J. R. (1979). Arms races between and within species. Proceedings of the
Royal Society of London Series B, 205, 489–511.

Debanne, D., Daoudal, G., Sourdet, V., & Russier, M. (2003). Brain plasticity and ion channels.
Journal of Physiology-Paris, 97(4–6), 403–414.

Dimand, R. W., & Dimand, M. A. (1996). A history of game theory: From the beginnings to 1945
(p. 1). Urbana: Routledge.

Dorffner, G. (1996). Neural networks for time series processing. Neural Network World, 6(4),
447–468.

Dorffner, G., & Porenta, G. (1994). On using feedforward neural networks for clinical diagnostic
tasks. Artificial Intelligence in Medicine, 6(5), 417–435.

Downing, K. L. (2007). Supplementing evolutionary developmental systems with abstract models
of neurogenesis. In GECCO ’07: Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation (pp. 990–996). New York, NY, USA. ACM.

Elliot, W., & Elliot, D. (2001). Biochemistry and molecular biology. Oxford University Press.
Farkas, I., & Miikkulainen, R. (1999). Modeling the self-organization of directional selectivity in
the primary visual cortex. In International Conference on Artificial Neural Networks (ICANN
’99), Edinburgh.

Federici, D. (2005). Evolving developing spiking neural networks. In Proceedings of CEC 2005
IEEE Congress on Evolutionary Computation (pp. 543–550).

Ferster, D., & Spruston, N. (1995). Cracking the neuronal code. Science, 270, 756–757.
Ficici, S. G., & Pollack, J. B. (1998). Challenges in co-evolutionary learning: Arms-race dynamics,
open-endedness, and mediocre stable states. In C. Adami, R. Belew, H. Kitano, & C. Taylor
(Eds.), Artificial Life VI (pp. 238–247). Cambridge MA: MIT Press.

Ficici, S. G., & Pollack, J. B. (2001). Pareto optimality in coevolutionary learning. In J. Kelemen
(Ed.), Sixth European conference on artificial life. Berlin, New York: Springer.

Floreano, D., & Nolfi, S. (1997). God save the red queen! competition in co-evolutionary robotics.
Evolutionary Computation, 5.

Fogel, D. (1998). Evolutionary Computation: The Fossil Record. Wiley-IEEE Press.
Fogel, L., Owens, A., & Walsh, M. (1966). Artificial intelligence through simulated evolution.
Wiley.

Fogel, D. (2002). Blondie24: Playing at the Edge of AI. London, UK: Academic Press.
Forsyth, R. (1981). Beagle a darwinian approach to pattern recognition. Kybernetes, 10, 159–166.

Bibliography 133

French, R. (1991). Using semi-distributed representations to overcome catastrophic forgetting in
connectionist networks. In Proceedings of the Ninth Annual Conference of the Cognitive Science
Society (pp. 173–178). Hillsdale, NJ: LEA.

French, R. M. (1994). Catastrophic forgetting in connectionist networks: Causes, consequences and
solutions. Trends in Cognitive Sciences, 128–135.

French, R. M. (1999). Catastrophic forgetting in connectionist networks: Causes, consequences and
solutions. Trends in Cognitive Sciences, 3(4), 128–135.

Frey, U., & Morris, R. (1997). Synaptic tagging and long-term potentiation. Nature, 6, 385(6616),
533–536.

Gaiarsa, J., Caillard, O., & Ben-Ari, Y. (2002). Long-term plasticity at gabaergic and glycinergic
synapses: Mechanisms and functional significance. Trends in Neurosciences, 25(11), 564–570.

Gerstner, W., & Kistler, W. (2002). Spiking neuron models. Cambridge University Press.
Gerstner,W., Kempter, R., Hemmen, L.,Wagner, J., &Hebbian, H. (1999). Learning of pulse timing
in the barn owl auditory system in maass. Pulsed neural networks.

Goldman, D. (1943). Potential, impedance and rectification in membranes. Journal of General
Physiology, 27, 37–60.

GoodMan, C., & Shatz, C. (1993). Developmental mechanisims that generated precise patterns of
neuronal connectivity. Cell, 72, 77–98.

Gopnic, A., Meltzoff, A., & Kuhl, P. (1999). The scientist in the crib: What early learning tells us
about the mind. New York, NY: HarperCollins Publishers.

Graham, B. (2002). Multiple forms of activity-dependent plasticity enhance information transfer
at a dynamic synapse. In J. R. Dorronsoro (Ed.), ICANN 2002. Berlin, Heidelberg: Springer
(ICANN). LNCS, 2415, 45–50.

Greenough, W. T., Hwang, H. M., & Gorman, C. (1985). Evidence for active synapse formation
or altered postsynaptic metabolism in visual cortex of rats reared in complex environments.
Proceeding of National Academy of Science United State of America, 82(13), 4549–4552.

Grossberg, S. (1980). How does a brain build a cognitive code? Psychological Review, 81, 1–51.
Grossberg, S. (1982). Studies of mind and Brain. Boston, MA: D. Reidel Publishing Company.
Gruau, F., Whitley, D., & Pyeatt, L. (1996). A comparison between cellular encoding and direct
encoding for genetic neural networks. In J. R. Koza, D. E. Goldberg, D. B. Fogel, & R. L.
Riolo (Eds.), Proceedings of the First Annual Conference (pp. 81–89). MIT Press. (Genetic
programming 1996).

Gruau, F. (1994). Automatic definition of modular neural networks. Adaptive Behaviour, 3, 151–
183.

Gurney, K. (1997). An introduction to neural networks. London: Routledge.
Hawkins, J. (2004). On intelligence. Times Books.
Haykin, S. (1998). Neural Networks: A comprehensive foundation (2nd Edn.). Prentice Hall.
Hebb, D. (1949). The organization of behavior. New York: Wiley.
Hertz, J., Krogh, A., & Palmer, R. (1991). Introduction to the theory of neural computation. Addison
Wesley: Perseus Books.

Hillis, W. (1990). Co-evolving parasites improve simulated evolution as an optimization procedure.
Physica D: Nonlinear Phenomena, 42, 228–234.

Hillis, W. (1991). Co-evolving parasites improve simulated evolution as an optimization procedure.
Artificial life, 2, 313–324.

Hinton, G., & Plaut, D. (1987). Using fast weights to deblur old memories. In Proceedings of the
Ninth Annual Conference of the Cognitive Science Society (pp. 177–186). Hillsdale, NJ: Erlbaum.

Hinton, G. E., Osindero, S., Welling, M., & Teh, Y.W. (2006). Unsupervised discovery of nonlinear
structure using contrastive backpropagation. Cognitive Science: A Multidisciplinary Journal,
30(4), 725–731.

Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its
application to conduction and excitation in nerve. Journal of Physiology, 463, 391–407.

Holland, J. (1975b). Adaptation in natural and artificial systems. University of Michigan Press.
Holland, J. (1998). Emergence: From chaos to order. Oxford University Press.

134 Bibliography

Holland, J. (1975a). Adaptation in natural and artificial system. Ann Arbor: The University of
Michigan Press.

Hopfield, J. J., & Tank, D. W. (1985). Neural computation of decisions in optimization problems.
Biological Cybernetics, 55, 141–146.

Hopfield, J. (1982). Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences of the USA, 79, 2554–2558.

Hornby, G. S., & Pollack, J. B. (2002). Creating High-level components with a generative repre-
sentation for body-brain evolution. Artificial Life, 8.

Husbands, P., I., H., Cliff, D.,&Miller,G., (1994). The use of genetic algorithms for the development
of sensorimotor control systems. In P. Gaussier & J. D. Nicoud (Eds.), From perception to action.
IEEE Press.

Husek, D., Frolov, A., Rezankova, H., & Snasel, V. (2002). Application of hopfieldlike neural
networks to nonlinear factorization.

Huxley, A., & Stmpfli, R. (1949). Evidence for saltatory conduction in peripheral myelinated nerve-
fibers. Journal of Physiology, 108, 315–39.

Irving, G., D. J., & Uiterwijk, J. (2000). Solving kalah. International Computer Games Association
(ICGA) Journal, 23(3), 139–147.

Jakobi, N. (1995). Harnessing morphogenesis, cognitive science research paper 423. COGS: Uni-
versity of Sussex.

Jong, K. A. D. & Potter, M. A. (1995). Evolving complex structures via cooperative coevolution.
In Proceedings of the Fourth Annual Conference on Evolutionary Programming (pp. 307–317).
MIT Press.

Jordan, M. I. (1986). Attractor dynamics and parallellism in a connectionist sequential machine.
Juille, H., & Pollack, J. B. (1998). Coevolving the ideal trainer: Application to the discovery of
cellular automata rules. In Proceedings of the Third Annual Genetic Programming Conference.
Third Annual Genetic Programming Conference , Madison, Wisconsin.

Kandel, E. R., Schwartz, J. H.,& Jessell, T. (2000).Principles of neural science (4thEdn.).McGraw-
Hill.

Kaski, S., Kangas, J., & Kohonen, T. (1998). Bibliography of self-organizing map (som) papers:
1981–1997. Neural Computing Surveys, 1, 102–350.

Kelvin, W. (1855). On the theory of the electric telegraph. Proceedings of the Royal Society, 7,
382–99.

Kendall, G., & Whitwell, G. (2001). An evolutionary approach for the tuning of a chess evaluation
function using population dynamics. IEEE Congress on Evolutionary Computation (CEC 2001),
995–1002.

Khan, G. M., Ali, J., & Mahmud, S. A. (2014). Wind power forecasting? an application of machine
learning in renewable energy. In 2014 International Joint Conference on Neural Networks
(IJCNN) (pp. 1130–1137). IEEE.

Khan, G. M., Khattak, A. R., Zafari, F., &Mahmud, S. A. (2013a). Electrical load forecasting using
fast learning recurrent neural networks. In The 2013 International Joint Conference on Neural
Networks (IJCNN) (pp. 1–6). IEEE.

Khan, G. M., Nayab, D., Mahmud, S. A., & Zafar, H. (2013b). Evolving dynamic forecasting
model for foreign currency exchange rates using plastic neural networks. In 12th International
Conference on Machine Learning and Applications (ICMLA) 2013 (Vol. 2, pp. 15–20). IEEE.

Khan, G.M., Ullah, F., &Mahmud, S. A. (2013c).Mpeg-4 internet traffic estimation using recurrent
cgpann. In International Conference on Engineering Applications of Neural Networks (pp. 22–
31). Springer.

Khan, M. M., Ahmad, A. M., Khan, G. M., & Miller, J. F. (2013d). Fast learning neural networks
using cartesian genetic programming. Neurocomputing, 121, 274–289.

Khan, G., Miller, J., & Halliday, D. (2007). Coevolution of intelligent agents using cartesian genetic
programming. Proceedings of the 9th Annual Conference on Genetic and Evolutionary Compu-
tation, 269–276.

Bibliography 135

Khan, G. M., & Zafari, F. (2016). Dynamic feedback neuro-evolutionary networks for forecasting
the highly fluctuating electrical loads. Genetic Programming and Evolvable Machines, 17(4),
391–408.

Kirkpatric, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., et al. (2017,
March 28). Overcoming catastrophic forgetting in neural networks. Proceedings of the National
Academy of Sciences, 3521–3526.

Kleim, J., Napper, R., Swain, R., Armstrong, K., Jones, T., & Greenough, W. (1998). Selective
synaptic plasticity in the cerebellar cortex of the rat following complex motor learning. Neurobi-
ology of Learning and Memory, 69, 274–289.

Koch, C., & Segev, I. (2000). The role of single neurons in information processing. Nature Neuro-
science Supplement, 3, 1171–1177.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological
Cybernetics, 43, 59–69.

Kohonen, T. (2001). Self-organizing maps. Berlin: Springer.
Kohonen, T., & Somervuo, P. (2002). How to make large self-organizing maps for nonvectorial
data. Neural Networks, 15(8–9), 945–952.

Koza, J. R. (1990). Genetic programming: A paradigm for genetically breeding populations of com-
puter programs to solve problems. Stanford University Computer Science Department technical
report STAN-CS-90-1314. A thorough report, possibly used as a draft to his 1992 book.

Koza, J. (1992). Genetic programming: On the programming of computers by means of natural
selection. MIT Press.

Koza, J. R. (1994). Genetic programming II: Automatic discovery of reusable subprograms. MIT
Press.

Koza, J., Bennett, F., Andre,D.,&Keane,M. (1999).Genetic programming III: Darwinian invention
and problem solving. Morgan Kaufmann.

Koza, J., Keane, M., Streeter, M., Mydlowec, W., Yu, J., & Lanza, G. (2003). Genetic programming
IV: Routine human-competitive machine intelligence. Kluwer Academic Publishers.

Krishnan, R. & Ciesielski, V. B. (1994). 2delta-gann: A new approach to training neural networks
using genetic algorithms. Proceedings of the Australian Conference on Neural Networks, 194–
197.

Kuffler, S. W., Nichols, J. G., & Martin, A. R. (1984). From neuron to brain, a cellular approach
to the function of the nervous system (Second Edn.). Sinauer Press.

Kumar, S., & Bentley, B. J. (2003). On growth, form and computers. Academic Press.
Lee, C.-H., & Kim, J.-H. (1996). Evolutionary ordered neural network with a linked-list encoding
scheme. Proceedings of the 1996 IEEE International Conference on Evolutionary Computation,
665–669.

Lieb, W., & Stein, W. (1986). Chapter 2. Simple diffusion across the membrane barrier: Transport
and diffusion across cell membranes. San Diego: Academic Press.

Lillie, R. (1925). Factors affecting transmission and recovery in passive iron nerve model. Journal
of General Physiology, 7, 473–507.

Lindenmeyer, A. (1968). Mathematical models for cellular interaction in development, parts i and
ii. Journal of Theoretical Biology, 18, 280–315.

Lindgren, K., & Johansson, J. (2001). Coevolution of strategies in n-person prisoners dilemma. In
J. Crutchfield & P. Schuster (Eds.), Evolutionary dynamics—Exploring the interplay of selection,
neutrality, accident, and function. Reading, MA: Addison Wesley.

Lodish, H., Berk, A., Matsudaira, P., Kaiser, C., Krieger, M., Scott, M., et al. (2003). Molecular
cell biology. W.H: Freeman.

London, M., & Husser, M. (2005). Dendritic computation. Annual Review of Neuroscience, 28,
503–532.

Lubberts, A., & Miikkulainen, R. (2001). Co-evolving a go-playing neural network. In R. Belew &
H. Juille (Eds.), Coevolution: Turning adaptive algorithms upon themselves (pp. 14–19).

136 Bibliography

Maass, W., Schnitger, G., & Sontag, E. (1991). On the computational power of sigmoid versus
boolean threshold circuits. Proceedings of the 32nd Annual IEEE Symposium on Foundations of
Computer Science, 767–776.

Malenka, R., & Bear, M. (2004). Ltp and ltd: An embarrassment of riches. Neuron, 44(1), 5–21.
Mandischer, M. (1993). Representation and evolution of neural networks. In R. F. Albrecht, C. R.
Reeves, & U. C. Steele(Eds.), Artificial neural nets and genetic algorithms (pp. 643–649).

Maniezzo, V. (1994). Genetic evolution of the topology and weight distribution of neural networks.
IEEE Transactions on Neural Networks, 5(1), 39–53.

Marcus, G. F. (2001). Plasticity and nativism: Towards a resolution of an apparent paradox (pp.
368–382).

Martinetz, T., Berkovich, S., & Schulten, K. (1993). "neural gas" for vector quantization and its
application to time-series prediction. IEEE Transactions on Neural Networks, 4, 558–569.

McCloskey, M., & Cohen, N. (1989). Catastrophic interference in connectionist networks: The
sequential learning problem. The Psychology of Learning and Motivation, 24, 109–165.

McCulloch, & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The
Bulletin of Mathematical Biophysics, 5, 115–133.

Mehrtash, N., Jung, D., Hellmich, H., Schoenauer, T., Lu, V., & Klar, H. (2003). Synaptic plasticity
in spiking neural networks (sp/sup 2/inn): A system approach. IEEE Transaction on Neural
Networks, 14(5), 980–992.

Mel, B. (1994). Information processing in dendritic trees. Neural Computation, 6, 1031–1085.
Mermillod, M., Bugaiska, A., & BONIN, P. (2013). The stability-plasticity dilemma: Investigating
the continuum from catastrophic forgetting to age-limited learning effects. Frontiers in Psychol-
ogy, 4, 504.

Michael, S., Richard, B., & George, R. (1998). Cognitive NeuroScience. The Biology of the Mind:
W.W.Norton & Company.

Miller, J. F. (1999). An empirical study of the efficiency of learning boolean functions using a
cartesian genetic programming approach. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon,
V. Honavar, M. Jakiela, & R. E. Smith (Eds.), Proceedings of the Genetic and Evolutionary
Computation Conference (Vol. 2, pp. 1135–1142). Orlando, Florida, USA. Morgan Kaufmann.

Miller, J. F. (2003). Evolving developmental programs for adaptation, morphogenesis and self-
repair. In Proceedings of the 7th European Conference on Advances in Artificial Life. LNAI (Vol.
2801, pp. 289–298).

Miller, J. F. (2004). Evolving a self-repairing, self-regulating, french flag organism. In K. Deb et al.
(Eds.), Proceedings of GECCO (Vol. 3102, pp. 129–139).

Miller, J. F., & Thomson, P. (2000). Cartesian genetic programming. In Proceedings of the 3rd
European Conference on Genetic Programming (Vol. 1802, pp. 121–132).

Miller, J. F., Thomson, P., & Fogarty, T. C. (1997). Designing electronic circuits using evolutionary
algorithms. arithmetic circuits: A case study. Genetic algorithms and evolution strategies in
engineering and computer science (pp. 105–131). Wiley.

Miller, J. F., Vassilev, V. K., & Job, D. (2000). Principles in the evolutionary design of digital
circuits-part i. Genetic Programming, 1(1/2), 7–35.

Moriarty, D., & Miikulainen, R. (1995). Discovering complex othello strategies through evolution-
ary neural networks. Connection Science, 7(3–4), 195–209.

Mummert, H., & Gradmann, D. (1991). Action potentials in acetabularia: measurement and simu-
lation of voltage-gated fluxes. Journal of Membrane Biology, 124, 265–73.

Murray, S. (1993). Neural networks for statistical modeling. Van Nostrand Reinhold.
Nayab, D., Khan, G. M., & Mahmud, S. A. (2013). Prediction of foreign currency exchange rates
using cgpann. In International Conference on Engineering Applications of Neural Networks (pp.
91–101). Springer.

Neumann, J., & V. (1928). Zur theorie der gesellschaftsspiele. Mathematische Annalen, 100, 295–
320.

Nimchinsky, E., Sabatini, B., & Svoboda, K. (2002). Structure and function of dendritic spines.
Annual Review of Physiology, 64, 313–53.

Bibliography 137

Noble, J. &Watson, R. A. (2001). Pareto coevolution: Using performance against coevolved oppo-
nents in a game as dimensions for parerto selection. In In et al., L. S. (Ed.), Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-2001). San Francisco, CA:Morgan
Kaufmann.

Nolfi, S., & Parisi, D. (1995). Genotype for neural networks. In M. A. Arbib (Ed.), Handbook of
Brain theory and Neural Networks. MIT Press.

Nolfi, S., Miglino, O., & Parisi, D. (1994). Phenotypic plasticity in evolving neural networks. In D.
P. Gaussier & J. D. Nnicoud (Eds), Proceedings of the international conference from perception
to action. IEEE Press.

Nolfi, S., & Floreano, D. (1998). Co-evolving predator and prey robots: Do ’arm races’ arise in
artificial evolution? Artificial Life, 4, 311–335.

Ole-Marius, Moe-Helgesen, & Stranden, H. (2005). Catastophic forgetting in neural networks.
NTNU.

Ooyen, V. A., & van Pelt, J. (1994). Activity-dependent outgrowth of neurons and overshoot phe-
nomena in developing neural networks. Journal of Theoretical Biology, 167, 27–43.

Opitz, D. W., & Shavlik, J. W. (1997). Connectionist theory refinement: Genetically searching the
space of network topologies. Journal of Artificial Intelligence Research, 6, 177–209.

Panchev, C., Wermter, S., & Chen, H. (2002). Spike-timing dependent competitive learning of
integrate-and-fire neurons with active dendrites. In J. R. Dorronsoro (Ed.), ICANN 2002. Berlin
Heidelberg: Springer (ICANN); (LNCS, 2415, 896–901).

Papadrakakis, M., Papadopoulos, V., & Lagaros, N. D. (1996). Structural reliability analyis of
elastic-plastic structures using neural networks and monte carlo simulation. Computer Methods
in Applied Mechanics and Engineering, 136(1–2), 145–163.

Paredis, J. (1994a). Coevolutionary constraint satisfaction. InProceedings of the Third International
Conference on Parallel Problem Solving from Nature (Vol. 866, pp. 46–55). Springer.

Paredis, J. (1994b). Steps towards co-evolutionary classification neural networks. Artificial Life iv,
2, 102–108.

Paredis, J. (1995). Coevolutionary computation. Artificial Life, 2, 355–375.
Parisi, D., & Nolfi, S. (2001). Development in neural networks. In M. Patel, V. Honovar, & K.
Balakrishnan (Eds.), Advances in the evolutionary synthesis of intelligent agents. MIT Press.

Parisi, D. (1997). Artificial life and higher level cognition. Brain and Cognition, 34, 160–184.
Pollack, J., Blair, A., & Land, M. (1996). Coevolution of a backgammon player. In C. Langton
(Ed.), Proceedings artificial life 5. MIT Press.

Pujol, J. C. F., & Poli, R. (1997). Evolution of the topology and the weights of neural networks
using genetic programming with a dual representation. Technical Report CSRP-97-7, School of
Computer Science, The University of Birmingham, Birmingham B15 2TT, UK.

Quartz, S., & Sejnowski, T. (1997). The neural basis of cognitive development: A constructivist
manifesto. Behavioral and Brain Sciences, 20, 537–556.

Rall,W. (1989). Cable theory for dendritic neurons. C. Koch& I. Segev (Eds.).Methods in neuronal
modeling: From synapses to networks (p. 962).

Ratcliff, R. (1990). Connectionist models of recognition and memory: Constraints imposed by
learning and forgetting functions. Psychological Review, 97, 205–308.

Rechenberg, I. (1971). Evolutionsstrategie - optimierung technischer systeme nach prinzipien der
biologischen evolution (phd thesis). Reprinted by Fromman-Holzboog.

Rechenberg, I. (1994). Evolutionsstrategie ’94. Stuttgart: Frommann-Holzboog.
Rehman, M., Ali, J., Khan, G. M., & Mahmud, S. A. (2014a). Extracting trends ensembles in solar
irradiance for green energy generation using neuro-evolution. In IFIP International Conference
on Artificial Intelligence Applications and Innovations (pp. 456–465). Springer.

Rehman, M., Khan, G. M., & Mahmud, S. A. (2014b). Foreign currency exchange rates prediction
using cgp and recurrent neural network. IERI Procedia, 10, 239–244.

Richards, N., Moriarty, D., McQuesten, P., & Miikkulainen, R. (1998). Evolving neural networks
to play go. In 7th International Conference on Genetic Algorithms.

Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge University Press.

138 Bibliography

Roberts, P., & Bell, C. (2002). Spike-timing dependent synaptic plasticity in biological systems.
Biological Cybernetics, 87, 392–403.

Rose, S. (2003). The making of memory: From molecules to mind. Vintage.
Rosin, C. D. (1997). Coevolutionary search among adversaries. Ph.D. thesis, University of Cali-
fornia, San Diego.

Rosin, C. D., & Belew, R. K. (1997). New methods for competitive evolution. Evolutionary Com-
putation, 5.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-
propagating errors. Nature, 323, 533–536.

Russell, S., & Norvig, P. (1995). Artificial Intelligence. A Modern Approach: Prentice Hall.
Rust, A. G. & Adams, R. (1999). Developmental evolution of dendritic morphology in a multi-
compartmental neuron model. In Proceedings of the 9th International Conference on Artificial
Neural Networks (ICANN’99) (Vol. 1, pp. 383–388). IEEE.

Rust, A., Adams, R., & H., B. (2000). Evolutionary neural topiary: Growing and sculpting artificial
neurons to order. In Proceedings of the 7th International Conference on the Simulation and
synthesis of Living Systems (ALife VII) (pp. 146–150). MIT Press.

Sadeghi, B. (2000). A bp-neural network predictor model for plastic injection molding process.
Journal of Materials Processing Technology, 103(3), 411–416.

Samuel, A. (1959). Some studies in machine learning using the game of checkers. IBM Journal of
Research and Development, 3(3), 210–219.

Schaeffer, J., Herik, J., & V. D. (2002). Chips challenging champions. Amsterdam: Elsevier.
Schaeffer, J. (1996). One jump ahead: Challenging human supremacy in checkers. Berlin: Springer.
Schmidhuber, J. (1987).Evolutionary principles in self-referential learning. Diploma thesis, Institut
f. Informatik, Tech. Univ. Munich.

Seipone, T., & Bullinaria, J. A. (2005). The evolution of minimal catastrophic forgetting in neural
systems. In Proceedings of the Twenty-Seventh Annual Conference of the Cognitive Science
Society. Mahwah, NJ: Lawrence Erlbaum Associates.

Shannon, C. (1950). Programming a computer for playing chess. Philosophical Magazine, 41,
256–275.

Sharkey, N., & Sharkey, A. (1995). An analysis of catastrophic interference. Connection Science,
7(3–4), 301–330(30).

Shatz, J. C. (1994). Role for spontaneous neural activity in the patterning of connections between
retina and lgn during visual system development. Intenational Journal of Developmental Neuro-
science, 12(6), 531–546.

Shepherd, G. (1990). The synaptic organization of the brain. Oxford Press.
Sims, K. (1994). Evolving 3d morphology and behavior by competition. In Artificial life 4 proceed-

ings (pp. 28–39). MIT Press.
Sjoberg, J., Hjalmarsson, H., & Ljung, L. (1994). Neural networks in system identification.
Smith, S. (1980). A Learning System Based on Genetic Adaptive Algorithms, PhD dissertation.
University of Pittsburgh.

Smythies, J. (2002). The dynamic neuron. BradFord.
Song, S., Miller, K., & Abbott, L. (2000). Competitive hebbian learning through spiketime -
dependent synaptic plasticity.

Sordo, M. (2002). Introduction to neural networks in healthcare.
Spector, L. (1996). Simultaneous evolution of programs and their control structures. In P. J. Angeline
& K. E. Kinnear, Jr. (Eds.), Advances in genetic programming (Vol. 2, pp. 137–154). Cambridge,
MA, USA: MIT Press.

Spector, L., & Luke, S. (1996). Cultural transmission of information in genetic programming. In
J. R. Koza, D. E. Goldberg, D. B. Fogel, & R. L. Riolo (Eds.), Genetic programming 1996:
Proceedings of the first annual conference (pp. 209–214), Stanford University, CA, USA: MIT
Press.

Stanley,K.O.,&Miikkulainen, R. (2002). Evolving neural network through augmenting topologies.
Evolutionary Computation, 10(2), 99–127.

Bibliography 139

Stanley, K. O., & Miikkulainen, R. (2003). A taxonomy for artificial embryogeny. Artificial Life,
9(2), 93–130.

Stanley, K., & Miikkulainen, R. (2004). Competitive coevolution through evolutionary complexi-
fication. Journal of Artificial Intelligence Research, 3(21), 63–100.

Steinbach,H.,&Spiegelman, S. (1943). The sodiumandpotassiumbalance in squid nerve axoplasm.
Journal of Cellular and Comparative Physiology, 22, 187–96.

Stuart, G., Spruston, N., & Hausser, M. E. (2001). Iterative broadening: Dendrites. Oxford Univer-
sity Press.

Tasaki, I., &Takeuchi, T. (1942).Weitere studien ber den aktionsstromdermarkhaltigen nervenfaser
und ber die elektrosaltatorische bertragung des nervenimpulses. Pfulger’s Archives Gesellschaft
Physiology, 245, 764–82.

Tasaki, I. (1939). Electro-saltatory transmission of nerve impulse and effect of narcosis upon nerve
fiber. American Journal of Physiology, 127, 211–27.

Terje, L. (2003). The discovery of long-term potentiation. Philosophical Transactions of the Royal
Society of London. Series B, Biological Sciences, 358(1432), 617–20.

Thorpe, S., Delorme, A., & Van Rullen, R. (2001). Spike based strategies for rapid processing.
Neural Networks, 14, 715–726.

Timothy, M. (1994). Signal and image processing with neural networks. Wiley.
Traub, R. (1977).Motoneurons of different geometry and the size principal.Biological Cybernetics,

25, 163–176.
Van Ooyen, A., & Pelt, J. (1994). Activity-dependent outgrowth of neurons and overshoot phenom-
ena in developing neural networks. Journal of Theoretical Biology, 167, 27–43.

Van Rossum, M. C. W., Bi, G. Q., & Turrigiano, G. G. (2000). Stable hebbian learning from spike
timing-dependent plasticity. Journal of Neuroscience, 20, 8812–8821.

Van Valin, L. (1973). A new evolutionary law. Evolution Theory, 1, 130.
Vassilev, V. K., & Miller, J. F. (2000). The advantages of landscape neutrality in digital circuit
evolution. In Proceedings of the 3rd ICES (Vol. 1801, pp. 252–263). Springer.

Walker, J. A., & Miller, J. F. (2004). Evolution and acquisition of modules in cartesian genetic
programming. In Proceedings of the 7th EuroGP (Vol. 3003, pp. 187–197). LNCS, Springer.

Walker, J.,&Miller, J. (2008). The automatic acquisition, evolution and reuse ofmodules in cartesian
genetic programming. IEEE Transactions on Evolutionary Computation, 12.

Wee-Chong, O. & Yew-Jin, L. (2003). An investigation on piece differential information in co-
evolution on games using kalah. In Proceedings of the 2003 Congress on Evolutionary Compu-
tation CEC2003 (pp. 1632–1638). IEEE Press.

Whitley, D., & Hanson, T. (1989). Optimizing neural network using faster more accurated genetic
search. In Proceeding of Third International Conference on Genetic Algorithms (pp. 391–396).
Morgan Kaufman.

Wood, D. C. (1988). Habituation in stentor produced by mechanoreceptor channel modification.
Journal of Neuroscience, 2254(8),

Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87(9), 1423–1447.
Yao, X., & Liu, Y. (1996). Towards designing artificial neural networks by evolution. Applied

Mathematics and Computation, 91(1), 83–90.
Yob, G. (1975). Hunt the wumpus. Creative Computing, 51–54.
Yu, T., & Miller, J. (2001). Neutrality and the evolvability of boolean function landscape. In Pro-

ceedings of the 4th EuroGP, (pp. 204–217). Springer.
Yu, T., & Miller, J. (2002). Finding needles in haystacks is not hard with neutrality. In Proceedings

of the 5th EuroGP (Vol. 1801, pp. 13–25). Springer.
Zhang, B., & Muhlenbein, H. (1993). Evolving optimal neural networks using genetic algorithms
with occams razor. Complex Systems, 7, 199–220.

	Acknowledgements/Dedication
	Contents
	Declaration
	 Hypothesis
	1 Making the Computer `Brained'
	1 AI-Defining Intelligence
	2 Making the Computer `Brained'

	2 The Biology of Brain: An Insight into the Human Brain
	1 Human Nervous System
	2 Central Nervous System (CNS)
	2.1 The Cerebral Cortex
	2.2 Types of Cells in the Human Brain

	3 Neurons
	3.1 Dendrites
	3.2 Axon
	3.3 Summary of Differences Between Axons and Dendrites
	3.4 Synapse

	4 Electrical Signaling
	4.1 Membrane Biophysics
	4.2 Resting Ion Channel
	4.3 The Action Potential
	4.4 Sub Threshold Behavior
	4.5 Cable Theory

	5 Learning in the Brain
	5.1 Synaptic Plasticity
	5.2 Hebbian Theory
	5.3 Short Term Memory
	5.4 Long Term Potentiation (LTP)
	5.5 Developmental Plasticity: Synaptic Pruning

	3 Evolutionary Computation
	1 Evolutionary Computation
	1.1 Evolutionary Strategies
	1.2 Evolutionary Programming
	1.3 Genetic Algorithms (GAs)
	1.4 Genetic Programming

	2 Cartesian Genetic Programming (CGP)
	3 Co-Evolution
	4 Developmental Systems

	4 Artificial Neural Network (ANNs)
	1 Artificial Neural Network
	1.1 Applications of ANN
	1.2 History of ANN
	1.3 Spiking Neural Networks (SNN)
	1.4 Mode of Operation
	1.5 Learning Rules

	2 Types of Neural Networks
	2.1 Feed Forward Neural Network
	2.2 Kohonen Self Organizing Neural Networks
	2.3 Hopfield Networks

	3 Neuro-Evolution
	4 Neural Development
	5 Catastrophic Forgetting
	6 Conclusion

	5 Structure and Operation of Cartesian Genetic Programming Developmental Network (CGPDN) Model
	1 Fundamental Attributes and Biological Basis for the CGPDN Model
	2 The CGP Developmental Network (CGPDN)
	2.1 Health, Resistance, Weight and Statefactor
	2.2 Cartesian Genetic Program (Chromosome)
	2.3 Evolutionary Strategy
	2.4 Inputs and Outputs

	3 CGP Model of Neuron (The Genotype)
	3.1 Electrical Processing
	3.2 Weight Processing
	3.3 Life Cycle of Neuron

	4 Information Processing in the Network

	6 Wumpus World
	1 Wumpus World Problem
	1.1 The Proposed Wumpus World
	1.2 CGPDN Setup
	1.3 Results and Analysis
	1.4 Development of Network Over Agent's Lifetime
	1.5 Testing the Network Without Life Cycle Programs
	1.6 Learning and Memory Development in CGPDN

	2 Competitive Learning Scenario
	2.1 Results and Analysis

	7 Checkers
	1 Checkers: The Game
	1.1 Experimental Setup
	1.2 Fitness Calculation
	1.3 Inputs and Outputs of the System

	2 Co-evolution of Two Agents Playing Checkers
	2.1 Learning `How to Play'

	3 An Agent Plays Against a Minimax
	3.1 Results and Analysis

	8 Concluding Remarks and Future Directions
	Bibliography

