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Abstract. Scientific optimization has become a popular term in the modern
design of electrical machines. Due to the current completive and dynamic
market, and the increasing importance of energy efficiency and energy conser-
vation, the design optimization of electrical machines has become an essential
strategy for research and development. Yet the multi-disciplinary, multiobjec-
tive, high-dimensional, nonlinear, and coupled nature of the electrical machines’
design optimization poses a great challenge to the research communities.
Nevertheless, the recent advanced algorithms for multiobjective optimization
and multiple-criteria decision analysis have been empowering designers to push
the existing boundaries of electrical machines design in dealing with the com-
plexity for the novel concepts and innovative designs. This paper presents a state
of the art survey on the advancements of the novel optimization tools and
applications, and further demonstrates the progress of the academic research in
this realm.
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1 Introduction

The task of solving optimal engineering design problems of electrical machines is
considered as a demanding decision-making process where the real-life design prob-
lems have to be considered simultaneously from very different perspectives [1, 2]. In
fact the design objectives of the electrical machines are often in contradiction as
described in literature [3]. In addition, due to the large number of design parameters
and constraints of the machines’ performance, finding an optimal solution which can
simultaneously satisfy the design objectives can be an overwhelming task [4]. Even
though there exists a number of case studies utilizing classical optimization algorithms,
e.g. [5], their applicability is heavily constrained. For instance the objective function
needs to be continuous and derivable.

Many electrical machines models are based on finite element models, without
analytical expressions for the optimization model itself. Thus, various intelligent

© Springer International Publishing AG 2018
D. Luca et al. (eds.), Recent Advances in Technology Research and Education,
Advances in Intelligent Systems and Computing 660, DOI 10.1007/978-3-319-67459-9_27



optimization algorithms using non-analytical machine models have been employed,
particularly in multiobjective optimization problems, such as those based on the
popular genetic algorithms (GAs) [6], and particle swarm optimization (PSO) algo-
rithms [7].

2 Optimization of Electrical Machines

A general workflow for finite element analysis (FEA) for electrical machines opti-
mization was presented by Stipetic et al. [8]. According to their proposed workflow the
process of optimization starts with the description of the problem i.e., identifying the
boundary conditions, objectives and a set of constant model parameters e.g., topology
of the motor, number of slots on the rotor and stator, number of poles, and type of
winding. After setting the optimization algorithm, the following steps are performed
iteratively in a loop: (1) the optimization algorithm generates variables (e.g. vectors of
design variables), (2) the variables are converted to model parameters, (3) the model is
converted into a FEA environment, (4) the FEA model is solved, (5) the performance
of the model is extracted, (6) constraint functions and objective functions values are
calculated, (7) the values of these constraint and objective functions are given back to
the optimization algorithm. After the termination of the algorithm a set of optimal
solutions or so called Pareto optimal front is created. According to Lei et al. [6],
differential evolution algorithm (DEA), nondominated sorting genetic algorithm
(NSGA) [9], Kriging-model based optimization [10], and PSO [7], follow the similar
principle design optimization workflow with the widest usage in electrical machines
design.

2.1 Genetic Algorithms

Lei et al. [6] well describe the potential and drawbacks of using GAs in optimal design
of the electrical machines. The algorithm starts with a set of population represented by
chromosomes. Solutions from one population (known as parent population) are taken
and used to form a new population (known as offspring or children population) by three
genetic operations of crossover, mutation and selection. The solutions which are used
to generate new solutions are selected in terms of their fitness. This means that the more
suitable the solutions are, the more opportunities they have to reproduce in the evo-
lution process. This strategy of optimization is repeated until the design objectives are
satisfied [11]. GAs are popular and are widely used due to their capabilities to find
global optimum and not get trapped in the local minima [8]. However they are not
considered the most computationally efficient [11]. In a recent study [9] the reluctance
network of a synchronous reluctance motor (SynRM) was successfully optimized by
means of a GA. With some modifications the GAs can be well adapted for solving
multiobjective optimization problems of electrical machines [12]. Multiobjective
genetic algorithm (MOGA) [10], the nondominated sorting algorithm (NSGA/
NSGA-II) [11–13], and the strength Pareto evolutionary algorithms (SPEA/SPEA2)
[14], are a number of real-life case studies.
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2.2 Differential Evolution

Differential evolution (DE) algorithms [15] are among the widely used algorithms in
designing the electric machines [16]. Like the genetic algorithms, the DE method
works on a population which is a set of individuals, where each individual presents one
machine design configuration [17]. Initial population is randomly initialized within the
constraints of the design boundary. The candidate population is obtained by crossover
and mutation processes from the existing population. As Zhang [16] describes in a case
study the next generation of the design solutions is obtained by comparing the existing
and candidate population by choosing members that satisfy boundary functions and as
well as objective functions. Mutluer and Bilgin [17] utilize an effective DE algorithm in
solving a number of real-life problems in electric machines design optimization where
the effectiveness of the DE algorithm is compared with the stochastic methods.

2.3 Particle Swarm Optimization

The standard particle swarm optimization (PSO) is an evolutionary population-based
optimization technique inspired by the behavior of bird flocks searching for food,
widely used in designing of the electric machines [18]. As Sankardoss and Geethanjali
[7] describe a PSO algorithm begins with the population of individuals called particles.
Each particle constitutes a number of parameters to be optimized known as a candidate
solution in a multidimensional space. The population of particles is called the swarm.
The PSO then starts with the random initialization of swarm size and particle of the
swarm. The swarm starts searching for the optimal solution in a multidimensional
parameter space with random position and zero velocity. The swarm then moves in the
search space depending on the fitness value estimated from the defined objective
function [2]. The particles in the swarm drive toward the best solution by adjusting the
velocity based on own experience and other particles’ experience known as neigh-
borhood solutions at every time step in the parameter search solution. The velocity and
hence the position of each particle are updated over a time in a number of iterations by
evaluating the fitness function and comparing current solution with the personal best
position of the particle and the group’s best solution [11]. Along with its multiobjective
version (MOPSO) the algorithm’s many variants, e.g. the dynamic particle swarm
optimization (DPSO) [18], and distance-based intelligent particle swarm optimization
(DiPSO) [19], were utilized widely in numerous electrical machines design
optimization.

2.4 Comparisons

In a study conducted by Mutluer and Bilgin [17], the design optimization of
16-poles/18-slots concentrated winding surface-mounted PMSM was investigated by
using GA, simulated annealing (SA), and DE. The results showed that DE was more
reliable than the other two methods. In two recent articles by Rebahi [20, 21], PSO,
GA, and DE was compared in the optimization of a doubly salient 8/6 switched
reluctance machine (SRM) aiming at the best results for the chosen objective functions.
Computation cost or running time of algorithms was not considered. They concluded
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that GA and DE gave almost equally sufficient values, better than the results found by
PSO. Though, ranking attempts between the different algorithms are not truly appro-
priate outer the framework of an optimization problem, their performance is therefore
strongly case-dependent [22]. Furthermore it has been reported that the integration of
PSO algorithms with GAs would result robust and efficient algorithms [21].

A brushless DC motor benchmark problem was presented in [23] and the
MATLAB source code created for computing the objective function of a single
objective optimization. A multiobjective problem definition for the same motor uti-
lizing SPEA2, NSGA-II and sequential quadratic programming (SQP) algorithms are
presented in [24]. The optimization problem was characterized by five continuous
design variables subjected to six inequality constraints which are related to techno-
logical, and operational considerations regarding the wheel motor. The brushless DC
motor benchmark problem was further used to test advanced algorithms suitable for
electrical machine optimization e.g. modified social spider optimization (MSSO)
algorithms [25], multiobjective symbiotic organism search (MOSOS) and improved
multiobjective symbiotic organism search algorithms [26], the multiobjective krill herd
algorithm (MOKH) [27], improved teaching-learning-based-optimization (ITLBO)
technique [28], multiobjective firefly optimization (MOFO) and modified multiobjec-
tive firefly optimization (MOBFO) in [29].

2.5 Surrogate Models, Multi-level and Hybrid Methods

Because of the high computational cost of FEM, methods based on approximate
models can present an effective way to solve optimization problems [30]. By using
design of experiments (DoE) techniques [11, 31], and statistical analysis methods [32],
approximate models [33] can be established as surrogate models for FEM or circuit
models, to reduce the high computation cost of the iterative optimization process [34].
Though in problems with high number of design variables the number of FEM samples
required for the DoE techniques is comparable to those required for a direct opti-
mization with an evolutionary algorithm [35]. The two popular surrogate models in
electrical machine design are the response surface (RS) [36], and the Kriging model
[37]. Abbaszadeh [28] combined DoE and the RS method in a single-objective opti-
mization problem to reduce cogging torque in a surface mounted permanent magnet
motor. Similar methodology was used in a study by Zhu [29] for multiobjective
optimization of magnetic planetary geared permanent magnet brushless machines.
A recent example for application of a Kriging model based optimization can be found
in [38], where the waveform of air-gap flux density was optimized in a flywheel motor.
To do so Bu [9] combines DoE, surrogate model and a multiobjective evolutionary
optimization algorithm (NSGA-II). A similar Kriging model was adopted by Tan [10]
where the output power of a doubly-fed induction generator (DFIG) was optimized by
means of DoE, Kriging-model construction and a PSO algorithm.

As an alternative to the above surrogate models, multi-level optimization
methodologies can be utilized to address the demanding and complexity of machines
design optimization for a robust design [3]. According to Lei [39] a multi-level opti-
mization is done via initially subdividing the design variables set in many subsets in
such a way that the first part of the optimization is driven by the more sensitive
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variables for a better search. This subdivision is conducted in order to quickly approach
the region of Pareto-optimal solutions, and then switching to the full set of variables, in
order to focus on the details of the search region [40].

Although, one may find the multi-level optimization not time-efficient, a thorough
case study by Bramerdorfer [41], investigates the possibilities of speeding-up the
process. They clarify that combining surrogate modeling and evolutionary algorithms,
generally would lead to a reduction of the required number of FE simulations needed to
achieve high-quality Pareto fronts [42]. This would lead to the sophisticated opti-
mization techniques of hybrid optimization algorithms [43]. Applications include the
FE model simplification based on geometrical symmetry and the symmetry of the time
course of machine parameters [12, 31]. A great number of such hybrid optimization
methods have been developed and applied in electrical machine design [44–47].
Thorough investigation of these methods exceeds the framework of the recent survey
and it is going to be the matter of further research. Figure 1 illustrates the annual
progress of the number of academic publications considering the well-known
algorithms/methods used in the context of design optimization of electric machines.

NSGA, DE, PSO, and Kriging, are considered as the major optimization algorithms
widely used in the design optimization of the electric machines. These algorithms are
seen as the essential but not sufficient tools to enhance creating the efficient global
optimization approaches in dealing with dimensionality [12, 48, 49]. The dimensions of
the real-life optimization problems due to the increasing number of variables, objec-
tives, constraints and decision criteria are ever expanding. Yet, presenting a decision-
maker with numerous representative solutions on a multidimensional Pareto-optimal
set strongly reported to be impractical [13, 36, 50]. In fact dealing with the ever
increasing dimensionality a supplementary decision-support system to enhance the
existing optimization algorithms would be essential [51]. On the other hand in a
number of studies e.g. [52, 53], it has been reported that performing the process of
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Fig. 1. Growth of the major optimization algorithms used for electric machines design presented
in the literature (2003–2016) (source: village database www.engineeringvillage.com)
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optimal design within the integrated design environment of a commercial optimization
package [54], would be highly desirable. Via commercial optimization packages e.g.
[55] the coupling and integration requirements are well customized, and it further fill
the gap between optimization approaches and electric machines optimal design. Fur-
thermore the true potential of machine learning [56, 57], and intelligent optimization
[49], has still not been explored in the realm of electric machines design.

3 Conclusions

The design of the electrical machines has been dramatically revolutionized by utilizing
the advanced optimization algorithms. A great number of methods have been intro-
duced to solve the electrical machines optimization problems, and the research in this
field has become a booming topic in recent years. The multiobjective and hybrid
algorithms provide a solid platform for designers to explore the design space for a
robust design and the global optimum options. In this article we surveyed the latest
advancements in this realm and visualized the ever increasing progress of the appli-
cations of the novel optimization algorithms.
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