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Abstract. At the same time that civil engineering structures are increasing in
number, size and longevity, there is a conforming increasing preoccupation
regarding the monitoring and maintenance of such structures. In this sense the
demand for new reliable Structural Health Monitoring systems and damage
detection techniques is high. A model-free damage detection approach based on
Machine Learning is presented in this paper. The method performs on the
collected feature measurements on a railway bridge, which for this study were
gathered in a numerical experiment using a three dimensional finite element
model. The first step of the approach consists in collecting the dynamic response
of the structure, simulated during the passage of a train over the bridge, in both
the healthy and damage states of the structure. The next step consists in the
design and unsupervised training of Artificial Neural Networks that use as input
accelerations and axle loads and compute a novelty index, called prediction
error, based on a novelty detection approach. The distribution of the obtained
prediction errors is statistically evaluated by means of a Gaussian Process and,
after this process, damage indexes can be defined. Finally, the efficiency of the
method is assessed in terms of Type I (false positive) and Type II (false neg-
ative) errors using Receiver Operating Characteristic curves. The promising
results obtained in the case study demonstrate the capability of the presented
method.

Keywords: Structural Health monitoring � Machine Learning � Damage
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1 Introduction

1.1 General

Civil engineering structures are aging and being used past their life expectancy, at the
same time carrying heavier traffic loads due to the increasing demand for transport
capacity. Bridges in particular are a critical link in modern transport networks and, thus,
this is probably the most appropriate time for the development of robust and reliable
structural damage detection systems that ensure the operation of bridges in safe
conditions.
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Structural Health Monitoring (SHM) consists in the implementation of a damage
detection and classification strategy for engineering structures, making it a concept
shared in many areas of research such as Aerospace, Civil and Mechanical engineering.
The aptitude to monitor a structure and eventually detect damage at the earliest possible
stage supports clever maintenance strategies and provides accurate remaining life
predictions.

A review of some of the most recent developments within SHM divulged in
published articles is here presented. A topic of relevant research interest is the optimal
sensor location, when done adequately provides the maximum information with the
least number of sensors, thus allowing for cost reduction. Regarding this topic, some
works worth mentioning are [1–3]. One of the dominant research topics within SHM is
the discrimination of the changes in structural response caused by operational and
environmental variability (e.g. temperature fluctuation) from the changes caused by
damage. An efficient way to make this distinction of sources of variability in structural
behavior is by applying algorithms such as Artificial Neural Networks [4]. Machine
Learning has highly contributed to most of the new advances in the field of SHM.
These algorithms normally belong to the outlier detection category, which considers
training data coming exclusively from the normal condition of the structure (unsu-
pervised learning), exposing structural abnormalities from monitoring data. It is worth
pointing out the important work done by Worden and Farrar [5] in monitoring of
structures using machine learning techniques such as neural networks, genetic algo-
rithms and support vector machines. Not surprisingly, the newest proposed methods
that show superior performance, with improved accuracy and stability, result from the
integration of several techniques that may already exist but that were not previously
used in combination with others. Some examples are: a novel damage identification
technique combining Proper Orthogonal Decomposition (POD) with time–frequency
analysis using Hilbert Huang Transform (HHT) and Dynamic Quantum Particle Swarm
Optimization (DQPSO) [6]; a structural damage detection method based on posteriori
probability Support Vector Machine (PPSVM) and Dempster-Shafer (DS) evidence
theory [7]. Finally, the performance of the damage detection method based on machine
learning techniques, often so-called classifier, should be evaluated. Some commonly
tools used to perform that evaluation are the Receiver Operating Characteristic curves
[8] or Probability of Detection curves [9].

Based on the work of González [10], a model-free damage detection approach
using Machine Learning techniques is presented in this paper. The method performs on
the collected feature measurements on a railway bridge, which for this study consists of
vertical linear accelerations gathered in a numerical experiment using a three dimen-
sional finite element model. The first step of the approach consists in collecting the
dynamic response of the structure, simulated during the passage of a train over the
bridge, in both the healthy and damage states of the structure. The next step consists in
the design and unsupervised training of Artificial Neural Networks that use as input
accelerations and axle loads and compute a novelty index, called prediction error, based
on a novelty detection approach. The distribution of the obtained prediction errors are
statistically evaluated by means of a Gaussian Process and, after this process, damage
indexes can be defined. Finally, the efficiency of the method is assessed in terms of
Type I (false positive) and Type II (false negative) errors using Receiver Operating
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Characteristic curves. The promising results obtained in the case study demonstrate the
capability of the presented method.

1.2 Structural Health Monitoring

Structural Health Monitoring is a powerful instrument to ensure structural integrity and
safety and it has become vastly popular over the past few decades. SHM consists in the
implementation of a strategy to detect damage in infrastructures, combining a variety of
sensing technologies with an embedded measurement system to capture, log, and
analyze real-time data.

Implied in Axiom II of SHM [5], the damage identification process involves the
comparison between two distinct states of the system, the baseline case and the atypical
case. Therefore, SHM can be seen as a problem of statistical pattern recognition which
is composed of four parts: operational evaluation; data acquisition, normalization and
cleansing; feature extraction and data compression; statistical-model development for
feature discrimination. Table 1 depicts a general scheme of the SHM process and what
is involved in each of the parts.

Diagnosis of damage in structural systems primarily involves the identification of
damage, followed by the identification of its location, type and severity. A robust SHM
system is composed of the following stages of damage identification, accordingly to [5]:

• Level 1: Is there damage present in the structure?
• Level 2: What is the geometric location of the damage?
• Level 3: What is the type of damage?
• Level 4: What is the severity of the damage?
• Level 5: What is the prediction of the remaining service life of the structure?

The idea behind this hierarchy is that the higher the level of assessment the more
information one will have about the structural condition but it also raises the difficulty
in acquiring that information. Hence, the several levels will have different requirements
on the types of sensors, the type of algorithm used for monitoring damage and number
of model parameters.

Table 1. Parts of a SHM system

1. Operational Evaluation
2. Data Acquisition, 
Normalization and 

Cleansing

3. Feature Extraction 
and Data Compression

4. Statistical model 
Development

- Life-safety and economic 
justifications to perform 
SHM;

- Definition of damage to be 
detected;

- Operational and 
Environmental conditions;

- Data Acquisition 
limitations.

- Type and amount of 
data to be collected;

- Periodicity in data 
acquisition;

- Data normalization 
procedures;

- Sources of 
variability.

- Selection of the
best features of the 
data from damage 
detection;

- Statistical 
distribution of the 
features;

- Data condensation.

- Damage or not 
damaged;

- Damage location;
- Damage extension;
- Damage Type;
- Remaining useful life 

of the structure;
- Incorrect diagnosis of 

damage (FP and FN).
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The first stage of damage identification uses methods that provide a qualitative
indication of the presence of damage in the structure, which can be accomplished
without prior knowledge of how the system behaves when damaged – unsupervised
learning. These algorithms are referred as outlier or novelty detection methods and to
solve the task of novelty detection one can use learning algorithms such as Artificial
Neural Networks (ANNs).

2 Method

2.1 Artificial Neural Networks

Artificial Neural Networks are a family of mathematical models that is inspired by the
structure of biological neural networks in which the basic processing unit of the brain is
the neuron (Fig. 1). Neurons interact with each other by summing stimuli from con-
nected neurons (Fig. 2). Once the total stimuli exceed a certain threshold, the neuron
fires - a phenomenon called activation - and it generates a new stimulus that is passed
on into the network. Knowledge is encoded in the connection strengths between the
neurons in the brain.

Mundane examples of applications of ANNs are: speech recognition and genera-
tion, optimization of chemical processes, manufacturing process control, cancer cell
analysis, transplant time optimizer, recognition of chromosomal abnormalities, solution
of optimal routing problems such as the Traveling Salesman Problem, etcetera. ANNs
are a powerful tool for SHM in the aid of problems in sensor data processing that
require parallelism and optimization due the high complexity of the variables’ inter-
actions. Generally, the ANNs offer solutions to four different problems: auto associa-
tion, regression, classification and novelty detection.

Fig. 2. Small network of neurons: the den-
drites receive the input signals, the body of
the cell (nucleus) is responsible for process-
ing the input signals and the axon sends the
signal from the body of the cell towards the
neighbor neurons.

Fig. 1. The biological neuron.
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The idea behind using ANNs for SHM is to use a data set of signal parameters
obtained from a reference structure, such as an undamaged structure or a numerical
model of a structure, and to use soft computing methods to warn about damage and its
characteristics. Only the data from normal operating condition of the structure is used
as training data – unsupervised learning. This is normally what happens in reality as
concerning civil engineering structures one lacks the data for damaged condition of the
structure of interest due to costs and practicality constraints. The downside of using
such unsupervised methods is that they do not have much diagnostic ability beyond
simple detection. With these methods, a reference model of the normal condition is first
created and then the newly acquired data (e.g. from measurements of the structure) is
compared with the data obtained from the model. If there are significant deviations, the
algorithm is said to indicate novelty, meaning that the structure has departed from its
normal condition and damage is probably present.

2.2 Receiver Operating Characteristic Curve

One approach that enables the statistical evaluation of the errors related with false
detection is the Receiver Operating Characteristic (ROC) curve [11]. A ROC curve is a
two-dimensional graphic in which the True Positive rate (TPr) is plotted in the y axis
and the False Positive rate (FPr) is plotted in the x axis and the graphic demonstrates
relative trade-offs between these benefits and costs, respectively, depending on a
threshold that is selected, for example comparing a damage index (DI) with it.
Recalling the definition of DI, one that surpasses the threshold will make the system
warn for damage, whereas one that falls behind the threshold makes the system to not
warn for damage. It is then understandable that a very high threshold will never
indicate damage since the classifier finds no positives (resulting in 0% of False and
True Positives), whereas a very low threshold will always indicate damage since
everything is classified positive (resulting in 100% of False and True Positives). Fig-
ure 3 illustrates the Probability Density Functions (PDFs) of the null (structure is
undamaged) and alternative (structure is damaged) hypotheses, which are in the basis
of the process with which the ROC curve is created. When the threshold is placed to the
right of the null distribution, damage is not detected and therefore both probabilities of
TP and FP are zero. By translating the threshold to the left, the area under the null
distribution increases (and thus does the probability of true detection) but so will the
area under the alternative distribution increase (and thus does the probability of false
detection). If the threshold is pulled to the extreme left, the TP and FP probabilities will
approximate the unity. Using the distributions of Fig. 3 as an example, for the fixed
threshold depicted the ROC registers approximately 70% TPs ( shaded area) against
15% FPs ( shaded area). Well-known characteristics of the ROC curve are:

• the trade-off between sensitivity and specificity (Fig. 4). An increase in sensitivity is
achieved by moving the cutpoint to a higher value – making the criterion for a
positive test less strict. An increase in specificity is achieved by moving the cutpoint
to a lower value – making the criterion for a positive test more strict;

• the closer the curve comes to the left and the top borders of the ROC space, the
more accurate is the damage detection method ( ROC curve in Fig. 4); the closer
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the curve comes to the 45-degree diagonal of the ROC space, the less accurate is the
damage detection method ( ROC curve in Fig. 4);

• the area under the curve is a convenient way of comparing the classifier methods’
accuracy: an ideal perfect one as a value of 1.0 whereas a random worthless one has
a value of 0.5;

• the slope of the tangent line at a certain threshold gives the likelihood ratio for that
value of the test;

3 Bridge and Finite Element Model

A numerical 3D model of a single-track railway bridge was developed in the FEM
software ABAQUS [12]. The structure consists of a concrete deck, two steel girder
beams that support the deck and steel cross bracings that connect the girders. The deck
and the girder beams were modelled as shell elements and the cross bracings were
modelled as truss elements. All the elements of the bridge are assumed to be rigidly
connected to each other.

Damage in the bridge is simulated considering two damage scenarios: in damage
case 1, a section of the bottom flange of one girder beam is removed (Fig. 5), in an
attempt to represent a damage situation where a fatigue crack exists. The cut out section
has the dimensions of some longitudinal length l by the flange width, reflecting a
situation when a propagating crack has reached its critical depth (about 30% of the
flange’s width or less) causing the sudden rupture through the whole flange width; in
damage case 2 one bracing is removed (Fig. 6), which equivalently corresponds to
reducing to approximately zero its Elastic modulus in the model. Assuming that girder

Fig. 3. ROC curve construction. Null (Nor-
mal condition) and Alternative (Abnormal
condition) PDFs along with the detection
threshold moving from the right (higher
threshold) to the left (lower threshold). TP –

True Positive; FP – False Positive; FN – False
Negative; TN – True Negative.

Fig. 4. ROC curves: excellent; good;
worthless.
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beam and bracings are connected by high-tension bolts, this can reflect a situation
where there is looseness in the bolted connection [13] yielding the bracing to become
inefficient in its function. The numbers 1 to 6 in the figures below represent the
locations of the accelerometers that are installed on the top of the bridge deck: three
aligned with the train track and three aligned with the girder beam in which damage in
DC1 takes place.

The proposed method for structural assessment is intended to identify existing
damage from the measured vibration of the bridge. Dynamic loads typically come from
traffic, which is expected to be continuous while the bridge is in service. Traffic induced
vibration was simulated in the numerical model by means of the passage of a train with
a fixed configuration, crossing the bridge with a speed within the range [70–100] km/h,
in increments of 0.1 km/h. A total of 300 different train passages were simulated and
the corresponding measurement data sets were gathered and saved. The moving axle
loads were modelled as series of constant moving forces with short time steps con-
forming to vehicle motion.

4 Results

Figure 7 illustrates the Root Mean Squared Error (RMSE) of the predicted accelera-
tions by the six sensors, in the presence of an undamaged structure (in blue) and for a
damaged structure (in red), reflecting Damage case 1 with the removal of a 0:9�
0:4m2 section from the flange. For each sensor and each train passage, in a similar way
for both healthy and damaged scenarios, one can estimate the RMSE as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

i¼1 outputi � targetið Þ2
T

s

ð1Þ

where, for a certain instant i, targeti. is the expected acceleration in healthy condition of
the bridge, outputi is the acceleration predicted by the network and T is the time
interval during which the accelerations were recorded. The train passages in the x axis
are ordered by increasing speed and it is, thus, possible to observe a tendency for the
error to increase with increasing train speed. Moreover, for the highest speeds (96–

Fig. 5. Damage Case 1 (DC1). Track align-
ment; Bracing; Damage location; 1-6 Sensor
numbering and location.

Fig. 6. Damage Case 2 (DC2). Track align-
ment; Bracing; Damage location; 1-6 Sensor
numbering and location.
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100 km/h) it seems like even the response for healthy structural condition is poorly
predicted, yielding large errors. This phenomenon can be explained by the fact that the
maximum considered speeds excite the structure to frequencies close to its natural
frequencies. As a consequence of that, the behavior of the structure may depart from its
expected normal behavior and the trained network is not able to correctly predict the
resulting accelerations anymore. Also noticeable is that the sensors positioned closer to
the geometric middle of the bridge (sensors 2 and 5) seem to perform damage detection
more efficiently, whilst sensors placed nearby the end supports (sensors 1 and 4) are not
as efficient in the detection. This may be due to the fact that the dynamic response of
the structure is more accentuated in the middle of the span than in its extremities and,
accordingly, measurements registered in the middle of the span are expected to enable
the network to make a clearer distinction between structural states.

It should be noted that the non-linear input-output relating function that the network
uses can become quite complex and for that reason training an ANN that covers all the
train load cases and speeds is extremely difficult. Fortunately, bridges are designed to
be normally crossed by trains of the same configuration, very similar axle load and
moving consistently within a limited range of speeds. Therefore the ANN is trained to
predict accelerations only for those specific cases of speed and train type. In fact, the
range of speeds (70–100 km/h) considered to train the network could actually be
reduced, most likely yielding further accurate predictions of accelerations and, for
example, reducing the disorder observed in the plots of sensors 1 and 4 in Fig. 7. In any
case, even not making this adjustment, the results turned out to be very satisfactory.

Throughout the testing phase and after the errors in the predictions are determined,
one has already qualitative indication that the network can successfully discriminate
between structural states. However, making inferences based only on the plot from
Fig. 7 would constitute a subjective way of judging what degree of separation is
enough to suspect that damage is indeed present in the structure. Even if the bridge is

Fig. 7. RMSE against increasing speed of the
train. Damage case 1: damage extension of
0:9� 0:4m2. Data from healthy structural
condition; Data from damaged structural
condition.

Fig. 8. GP fitted by prediction errors against
increasing train speed. A Log-Normal Distri-
bution of the error is considered. ― Mean;
Standard deviation; Data to fit the GP; Data
from healthy condition; Data from damaged
condition, considering Damage Case 1 with a
0:9� 0:4m2 section reduction.
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found to be in good condition, the recorded dynamic response will be different for each
train passage, as the magnitude of the response depends on the speed and axle load of
the train plus other variations such as the operational and environmental settings. In
short, this means that the prediction errors will oscillate for each train passage, even
within the normal condition of the bridge. Hence there is a distribution of the errors that
needs to be characterized stochastically and it is the errors that significantly deviate
from this distribution that will work as a warning that damage in the structure may
exist.

The prediction errors from 150 randomly selected train passages in healthy con-
dition of the bridge are used to fit a statistical distribution that will work as a baseline
for each sensor [10]. The Gaussian process (GP) [14] consists in assigning a normally
distributed random variable to every point in some continuous domain. For each train
speed the associated predicted errors are normally distributed and the mean and stan-
dard deviation of the error can differ between speeds. New data is then compared
against the baseline: 150 other train passages in healthy condition and 150 in damaged
condition. The idea is to compute discordancy measures for data and then compare the
discordancy with a threshold, from which one is able to discriminate between healthy
and damaged structural condition.

After the outcome of the prediction error is characterized by a GP (Fig. 8), damage
detection can be performed by checking predictions that differ significantly from the
expected values. A discordancy measure for normal condition data is the deviation
statistic

z ¼ xn � �xj j
rx

ð2Þ

where xn is the candidate outlier and �x and rx are, respectively, the mean and standard
deviation of the data sample. The Mahalanobis distance [15] is one common measure
of novelty in data and can be used in standard outlier analysis to provide a Damage
Index (DI). To take into account only the train passages that give high prediction errors
the distance to the mean is given in standard deviations and the error’s differences,
(RMSEnðvÞ � lnðvÞÞ, are signed. The DI for each train speed v is then defined as

DIðvÞ ¼
X6

n¼1

RMSEnðvÞ � lnðvÞ
rnðvÞ ð3Þ

where for each sensor n, RMSEn is the predicted error, ln is the mean predicted error
and rn is the standard deviation of the predicted error. If the feature vector is related to
undamaged condition, then DI � 0; otherwise, DI 6¼ 0. With the determined DIs for
different train passages, the Receiver Operating Characteristic (ROC) curve can be
constructed for each situation. Figure 9 depicts several ROC curves, each corre-
sponding to a different damage severity within damage case 1. One point in the ROC
space is considered better than another if it is associated to a higher TPr for the same
FPr. Based on this conviction, as expected and in general, one verifies that more severe
damage is related to a better detection. For example, for a fixed FPr of 8% we have
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associated 86, 90.7, 92, 96 and 99.3% TPr with damage severities of 20, 40, 70, 100
and 160 cm, respectively. Similarly, Fig. 10 depicts the ROC curve of the system in the
presence of damage case 2. The improvement in detection capability with increasing
damage is, however, not always verified as expected, since there are some operating
points of DI that actually make the system more apt to detect damage in the presence of
smaller rather than larger damage. For instance, we can see in Fig. 8 that the perfor-
mance of the classifier for very low values of FPr is worse in the presence of the largest
damage (160 cm), since it is related to a lower TPr when compared with any other
smaller damage. The fact that some ROC curves respecting different amounts of
damage intersect each other at certain thresholds, when ideally they should be separable
over all the ROC space, may be partially explained by the fact that when the ROC
curve is generated many assumptions and simplifications concerning parameters had to
be previously made. Furthermore the process encompasses statistical analysis, thus
yielding slightly different results every time it is repeated.

5 Conclusions

The novel methodology here proposed, based on the work presented in [10], provides a
rational fashion for enhancing the damage diagnosis strategy for damaged structures,
allowing for both improvements in safety and reduction of maintenance cost. The
method proposes the use of past recorded deck accelerations in the bridge as input to an
Artificial Neural Network that, after effectively trained, is able to predict an acceler-
ation at a certain time in the future. The nonconformity between the measured value
and the value predicted by the network will work as a primary indicator of damage.
This study comprises the statistical evaluation of the prediction errors of the network by
means of a Gaussian Process, after which one can select the optimal detection
threshold.

Fig. 9. ROC curves for different damage
extensions l of Damage Case 1: damage
resulting from cutting off a section of
extension l from the bottom flange of one
girder beam. 20 cm; 40 cm; 70 cm;
100 cm; 160 cm.

Fig. 10. ROC curve for DC2: damage
resulting from a malfunctioning intermediate
bracing.
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From the attained results it is possible to derive some general conclusions:

• the outcome revealed to be noise sensitive, as expected, but the method seems to be
robust and to perform well within typical levels of noise. It is a general conclusion
that damage is more prone to be noticed in the presence of weaker noise and severer
damage;

• lower vehicle speeds seem to overall provide measurements that enable better
predictions by the trained network, in the sense that the prediction errors in both
healthy and damaged structural condition are lower;

• the two sensors placed in the middle of the bridge seem to be the most efficient in
the damage detection process, apparently disregarding where in the bridge damage
takes place. This may be explained by the fact that the dynamic response of the
bridge is more emphasized at half-span.

• ROC curves associated with scenarios where damage is more severe generally
present a superior relation TP/FP, since for the same probability of TP one has to
accept an inferior probability of FP when compared to less evident damage.

The method has although some weaknesses that can be tackled with additional
research. This could concern the study of environmental and operational effects on the
proposed damage detection method - other relevant parameters than accelerations may
be given as input to the neural networks, such as temperature measurements. The
consideration of these will most likely produce networks with higher accuracy in the
prediction of the structural response, making the algorithm more shielded against the
influence of other factors unrelated to damage that can induce significant changes in the
behavior of the structure. The study presents a limited number of damage scenarios: a
wider range of possible locations for damage in the bridge should be considered,
including the impact of multiple damage scenarios, i.e. situations where damage events
occur simultaneously in different parts of the structure. It would also be interesting to
understand what are the limitations of the proposed method in terms of the smallest
damage it can detect.
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