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Abstract. Viscoelastic materials can dissipate a large amount of energy when
subjected to cyclic shear deformations. However, they have low bearing
capacity. Therefore, they are often employed as damping layer in sandwich
structures. These sandwich structures present a high damping ratio and simple
application. In order to design sandwich structures, many aspects ranging from
computer modelling to laboratory testing should be considered. In this paper,
results from a test set of experiments are compared with a numerical fractional
derivative based model, in order to establish a method to support viscoelastic
sandwich beams design. In this way, starting from the dynamic properties of a
viscoelastic material, a numerical model is used to evaluate the behavior of these
structures. Comparisons with uncontrolled structures are also presented, show-
ing the dissipative characteristics of this passive control.

Keywords: Viscoelastic sandwich beam - Fractional derivative model -
Damping

1 Introduction

With the increasing use of flexible structures in civil engineering, it has become
important to develop strategies to reduce the vibrations experimented by them. Because
of the large flexibility, the vibrations amplitudes can grow to unwanted values. This
leaded to an extensive research into active, semi-active and passive vibration control
methods, where the latter ones standout due to no need of external energy source and
its robustness.

Among these strategies, the passive control with viscoelastic materials (VEM) has
shown reasonable efficiency. These materials have low bearing properties with high
dissipative capacity when subjected to cyclic shear deformations. That is the main
reason that justifies the wide application of VEM in sandwich layers with stiff elastic
materials working as a passive control system. This type of vibration control has
experienced a growth in practical applications also due to some benefits related to
cost-effectiveness [1-3].

The differences between the behavior of viscoelastic and other materials are basi-
cally due to its frequency dependent rheological properties. Because of this and due to
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the difficulties to establish models in time domain, time domain models are not as
numerous as the frequency domain models. In view of the benefits that the time domain
models may directly provide, such as the maximum displacement range, many
researchers have been working on numerical methods to simulate the dynamical
response of VEM in time domain.

Among the time-domain based methods for VEM, those that introduce extra dis-
sipation coordinates or internal variables in a Finite Element Model have been applied
in several applications, e.g. Golla-Hughes-McTavish (GHM) method [4, 5] and
Anelastic Displacement Field model (ADF) [6, 7]. In recent years, time-domain models
based on fractional derivative calculus [8—10] are attracting attention due to its
advantages: the reduced computational memory consumption, precision on its results
and easiness to curve fit experimental data.

Another advantage of fractional derivative (FD) models is its theoretical approach.
That seems to be more suitable to model VEM than the GHM and ADF models. The
actual mechanical behavior of a VEM is a function of its whole histories of stresses and
strains experienced. In regard to this, it will be shown that the evaluation of fractional
derivatives allows a direct approach to account these histories.

In this way, the present work presents a computational FD model and it is used to
evaluate the behavior of viscoelastic sandwich beam. Comparisons between experi-
mental and numerical results are also presented.

2 Viscoelastic Fractional Derivative Based Model

Traditionally, the behavior of linear viscoelastic materials may be represented by means
of rheological models composed of linear elastic and linear viscous elements. These
basic elements have their stress-strain relations well defined and they are given,
respectively, by the following equations:

a(t) = E¢(t) and (1)
a(t) = n,De(1), (2)

where o(t) and &(f) are the stress and strain time dependent functions, E is the Young
modulus, 7, is the viscosity and D is the first order derivative operator. Considering the
concepts of fractional calculus one can write a general stress-strain relation as:

a(1) = pD*e(1), (3)

where o(f) and &(f) are the stress and strain time dependent functions, p is a propor-
tionality factor, o is the derivative order, with o € [0,1], and D* is the fractional
derivative operator defined by Riemann-Liouville as:

y _d” B 1 d ., x(s)
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with I'(f) being the gamma function.



516 W. Felippe and F. Barbosa

In that way, when o = 0 Eq. (3) becomes the linear elastic model (a(¢) = pe(?)) and
when o = 1 this equation becomes the linear viscous model (¢(¢z) = pé(t)), or dashpot
element. Therefore, as soon as o assumes values on interval [0,1], one has a model with
intermediary behavior. A graphical interpretation of these three elements can be seen in
Fig. 1.
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(@) () (©

Fig. 1. Rheological elements used in viscoelasticity: (a) elastic, (b) dashpot and (c) fractional
order elements

Considering the Standard Linear Solid rheological model, or Zener model, and its
mathematical representation given by:

a(t) +16(1) = Epe(t) + tEx&(1), (5)

where 7 is the relaxation time, E is the relaxated Young modulus and Es is the
non-relaxated Young modulus. This model can be written using de fractional deriva-
tive operator, D, in the following way:

a(t) +1*D*a (1) = Epe(t) + t*ExD”e(t) (6)

One challenge to implement a computational model with Eq. (6) is the numerical
evaluation of fractional order derivatives. Diethelm et al. [11] present different ways to
numerically evaluate the fractional derivatives. The Griinwald-Letnikov definition is
the one that seems to be the most attractive one, since it is valid for any value of « and
its easiness of computational implementation. The Griinwald-Letnikov definition is
given by:

N, .
D*x(t) ~ Ar* ijo A 1x(t — jAY), (7)

where At is the time step increment, N, is the number of time steps considered to
evaluate the fractional and A;,, the Griinwald coefficients given by:

j—oa—1
— A, (8)

Ajp1 =

with Al =1.
For illustrative purposes Table 1 presents some values of Griinwald coefficients for
four values of o. As can be seen, the A;,; coefficients take smaller values as j increases,
when j = 99 the coefficients are lower than 107°. Therefore, it can be said that the
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Table 1. Griinwald coefficients for different values of o and j

j+1|a=03 a=05 a=0.7 a=09
1 1.0000 1.0000 1.0000 1.0000
2 -0.3000 -0.5000 —0.7000 -0.9000
3 -0.1050 -0.1250 -0.1050 —0.0450
5 -0.0402 -0.0391 -0.0262 -0.8663 x 1072
10 |-0.0163 —0.0109 -0.5985 x 1072 —0.1608 x 10~°
100 |—0.5893 x 1073 | —-0.2875 x 1073| —0.9533 x 10~*| —0.1542 x 10°*
1000 | —0.2914 x 107*|-0.8937 x 107> | —0.1863 x 107> | —0.1893 x 1076

contribution of first time instants becomes smaller as j increases. In this context, the full
history of x(f) need not to be computed.

Analyzing Eq. (7), one can observe that the numerical evaluation of Dx*(¢) depends
on the functions history, x(t — jAf). Therefore, in order to numerically evaluate the
model defined by Eq. (6) it is necessary to evaluate the derivatives and store the stresses
and strains histories, o(f) and &(¢). In order to reduce the computational cost of the
model, Glaucio et al. [12] introduce an internal variable, &(z), to eliminate the fractional
derivative D*a(¢). This variable is defined by the following expression:

&(t) = &) — ? . 9)

o]

Applying the Finite Element Method on Egs. (6) and (9), one can show that is
possible to write the following equation system for a discrete time instant t = n + 1:

.. Eo —E N, _
qu+1 +E0 (1 +ch0)qun+l +CEooKv ijlAj+1qn+1*j = FII+17 (10)

_ E _EO N; _
Q1 =(1— C)OOE—OO‘lnH - CZ,':lAJ'HqﬂH*j’ (11)

where M is the mass matrix, K, is the geometrical contribution of stiffness, q is the
displacement vector, q is an auxiliary displacement vector, F the force vector and

- _
c= ™+ Ar

3 Experimental Data

In order to evaluate the viscoelastic model, experimental data was taken from literature.
Huang et al. [13] performed a wide laboratory study. In these laboratory studies, a set
of thirty sandwich beams were tested. The beams layer configuration consists in two
elastic layers (base beam and clamped restraining layer) and one viscoelastic layer, as
can be seen at Fig. 2.
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Fig. 2. An extract of the Finite Element mesh used to model the viscoelastic sandwich beams.

From this set two sandwich beams were selected, here called SB-1 and SB-2. These
beams have rectangular cross section and 290 mm length; the base beam has 1.91 mm
height; the viscoelastic layer of SB-1 has 1.0 mm height and 1.96 mm on SB-2; and the
elastic constraining layers has 0.5 and 1.96 mm height for SB-1 and SB-2 beams,
respectively.

The elastic material was aluminium and the viscoelastic material used was ZN-1,
developed by Aerospace Research Institute of Materials & Processing Technology
(ARIMT). Some mechanical properties of these materials are listed in Table 2.

Table 2. Mechanical properties of beam materials.

Properties | Aluminium | ZN-1
E (GPa) 69.9 -
v 0.30 0.49

p (kg/m?) | 2700.0 1010.0

These beams were excited under the action of a hammer impact and the transversal
accelerations were measured and at the free end section. The experimental measure-
ments in terms of natural frequencies, F,, and damping ratios, &, for the first three
vibration modes are presented in Table 3.

Table 3. Experimental results in terms of natural frequencies and damping ratios of SB-1 and
SB-2 beams.

Vibration SB-1 beam SB-2 beam

mode Natural frequency | Damping ratio | Natural frequency | Damping ratio
(Hz) (%) (Hz) (%)

1 25.3 10.52 31.5 21.12
130.3 13.59 142.5 18.86

3 347.3 14.97 351.8 17.01

Usually structural damping is in the order of 0.5% [14]. Analyzing the data from
Table 3, one can see that this type of vibration control can improve significantly the
damping ratios of original structures.
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3.1 VEM Characterization

Huang et al. [13] present the results of VEM characterization test in terms of Young
Modulus, E/(w) and Loss Factor, n(w), for frequencies between 5 and 600 Hz. After
the values of Complex Modulus are experimentally determined, one can adjust the
curves of the real part of the Complex Modulus and the loss factor for the points
obtained experimentally. In the case of the presented fractional derivative formulation,
they are given, in terms of Shear Modulus, by:

E(w) = Eo + (Exe 4 Eo) (1) cos(n10/2) + Eoo (7)™
1+ 2(wt)"cos(mo/2) + (wr)2°‘

and (12)

_ (Ex + Ep)(w7)sin(ma/2) .
Eo + (Es + Eo)(w7)"cos(ne1/2) 4 Eso (7)™

n(w) (13)

where o is the system’s vibration frequency, defined in hertz.

Equations from (12) and (13) were used to determine the materials parameters. In
this work, it was applied a Particle Swarm Optimization (PSO) algorithm based
strategy [15] in order to curve fit the characterization equations.

Using the experimental data, the material parameters could be determined. These
fitted values, defined in terms of Young modulus, are: Ey = 1.9 x 10° Pa, E5,=9.1318 x
10 Pa, 7 = 2.1614 x 1077 s and o = 0.59088. Figure 3 shows two graphics comparing

the experimental values and the adjusted curves of E () and 5(w).
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Fig. 3. Experimental values and fitted curves of E () and ().

4 Numerical Evaluation

In order to numerically simulate the dynamical behavior of the beams, the structures
were discretized meshes as the ones stated by Barbosa and Farage [16]. Figure 4
presents an extract of the Finite Element mesh actually used to model SB-1 and SB-2
beams. This figure presents the Finite Element mesh and a representation of the beams
layers overlapped. It also presents the dimensions of base beam, H,;,, damping layer,
Hg,, and constraining layer, H,.
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Fig. 4. An extract of the finite element mesh used to model the viscoelastic sandwich beams.

As can be seen, the elastic layers are modeled with Plane Frame elements and the
damping layer with LST elements (quadratic triangular Finite Elements with 6 nodes).
The elastic and damping layers are connected with rigid link elements in order to
simulate the null line eccentricity of the elastic layers, e; and e,. These elements are
defined with plane frame elements with negligible mass and its Young modulus is
1000 the one of elastic layers. The final mesh was defined with 18240 LST elements
and 2280 elements for each elastic layer; this mesh has 2079 nodes and 5346 dof. This
configuration was achieved through a convergence analysis.

Once the mesh was defined, the value of the parameter N, could be determined
through another convergence analysis. The adopted value is N, = 402 for SB-1 beam
and N, = 355 for SB-2 beam. The time step during the simulations was Az = 107 s.

The models were simulated under the action of a hammer impact at 72.5 mm from
cantilever and the transversal displacements were observed along the time, at same point.
With the models given by Eqgs. (8) and (9), the time response of the beams could be
obtained. Natural frequencies and damping ratios were extracted by means of an auto-
matic Stochastic Subspace Identification algorithm as proposed by Cabboi et al. [17].

5 Results

Tables 4 and 5 list the natural frequencies and damping ratios numerically obtained for
the analyzed sandwich beams. They also present the errors between experimental and
numerical results.

Table 4. Comparisons of numerical and experimental evaluations of SB-1 beam in terms of
natural frequencies and damping ratios.

Vibration Frequencies (Hz) Damping ratios (%)
mode Numerical | Experimental | Relative Numerical | Experimental | Relative
error (%) error (%)
1 24.9 25.3 —1.58 13.81 10.52 31.27
129.8 130.3 —-0.38 12.22 13.59 —10.08
3 318.2 347.3 —8.38 10.40 14.97 -30.53
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Table 5. Comparisons of numerical and experimental evaluations of SB-2 beam in terms of
natural frequencies and damping ratios

Vibration Frequencies (Hz) Damping ratios (%)

mode Numerical | Experimental | Relative Numerical | Experimental | Relative
error (%) error (%)

1 28.2 31.5 -9.76 2541 21.12 20.31

2 142.0 142.5 —-0.35 17.79 18.86 —5.67

3 355.8 351.8 1.14 12.96 17.01 —23.81

6 Conclusions

This study evaluated a fractional derivative based model in order to establish a com-
putational model to simulate viscoelastic materials acting as structural sandwich
dampers. Based on experimental data available in literature, it was shown that this type
of passive control significantly improve the damping rates, since the damping contri-
bution of the elastic beams were close to zero and, after the damping treatment, the
sandwich beams achieved significant values for damping ratio as shown in Table 3. As
one can observe, beams with thicker viscoelastic layers present higher damping rate
than those with thinner ones. Nevertheless, this behavior tends to vanish at high
vibration modes.

Comparing the obtained responses of the computational FD viscoelastic model with
of their experimental counterpart, it is possible to notice that natural frequencies
identified with the numerical model have good agreement with the experimental
counterpart for all tested beams. Despite the good agreement between the experimental
characterization data and the fitted curves, the numerical model tends to under-evaluate
¢ values for higher frequencies. Previous results [18] show that those differences are
mostly due to the experimental dispersion observed in the VEM characterization data
and in the damping ratios. Despite this, other factors such as: the methodology used on
modal identification and the Finite Element discretization, also play a significant
influence on numerical results.

Considering the difficulties on predicting damping ratios, the authors suggest that
this model is accurate enough to be used to predict damping in current structures.
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