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Abstract. In this paper, we discuss about reconstructing the global deformed
shape of slender structures such as pipelines, tethers, or cables from a limited set
of scalar surface strain measurements. We present a comprehensive approach
that captures the effect of curvature, shear, torsion, and axial deformation. Our
primary focus is to demonstrate the applicability of the approach to aid in
damage detection algorithms. This theory utilizes Cosserat rod theory and
exploit localized linearization approach that helps to obtain local basis function
set for the displacement solution in director frame. The uniaxial strain vector and
the surface strain for the Cosserat beam incorporating the above-mentioned
effects are obtained and used to develop the reverse algorithm to reconstruct
global shape of the structure. Error analysis due to noise in measured strain
values is performed and results are discussed.
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1 Introduction

This paper discusses the formulation of global shape sensing algorithm that captures
the effect of curvature, shear, torsion and axial deformation focusing on the applica-
bility of the shape sensing methodology in civil structures. The theoretical framework
for shape sensing using finite strain measurements are laid by the work of Todd et al.
[1] and Chadha and Todd [2]. The formulation holds the Euler-Bernoulli rigid
cross-section assumption primarily because Poisson’s effect and warping of the
cross-section are not the dominant effects in slender structures.

The global shape sensing of slender structures is desirable in many instances like
pipelines, oil exploration, tethers, cables, and even non-civil applications like cardiac
catheters, surgical tubing, and others. This theory is geometrically exact and fully
nonlinear; hence it can capture large deformations. The mechanics developed for this
problem is rooted to the work of Cosserat and Cosserat [3], Simo [4], Simo and
Vu-Quoc [5], Iura and Atluri [6], and Reissner [7–9].
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As mentioned in [2], the distributed strain sensing may be grouped into non-contact
and contact methods. The technique illustrated here assumes a contact sensing method.
This technique focus on obtaining the local uniaxial surface strain measures through
any type of multiplexed sensing approach, including fiber Bragg gratings (FBGs),
Rayleigh backscatter, or conventional resistive strain gauges.

The remainder of the paper is arranged as follows: Sect. 2 briefs the kinematics of
the problem, develops the surface strain measurement incorporating the aforemen-
tioned deformation effects, and presents a locally-exact solution basis on which a global
deformed shape is built. Section 3 presents the application of the techniques to
underground pipeline monitoring in case of seismic events. Section 4 culminates the
discussion with conclusions and observations.

2 Kinematic Description

2.1 Geometry of the Beam-Midcurve and the Directors

We briefly discuss about the theoretical framework developed in [2] as a matter of
completion. The global shape of the structure is defined by a midcurve (the locus of
cross-sectional geometric centroids), and the director triad attached to the midcurve.
Therefore, in a pure geometric sense, the problem is a single manifold problem with the
arc length n1 being the manifold parameter. We define the initial unstrained reference
configuration by Xo � R

3. We assume that the initial shape is known (in which the
strain gauges are attached to the object in a zero-strain state), which we assume is
straight for simplicity. The geometric description of the configuration of the beam is
same as defined in [2], which we shall briefly discuss.

We define an orthogonal frame fEig. The domain of the beam is defined by the
material point fn1; n2; n3g, such that the origin of the frame fEig is at fni ¼ 0g with
i ¼ 1; . . .; 3. Let Lo represent the length of midcurve in the undeformed reference state
Xo � R

3, such that n1 2 ½0; Lo�. Any configuration of the structure is defined by the
mid-curve. The position vector u n1ð Þ ¼ uiEi, parametrized by the undeformed
arclength n1; represents the midcurve. The orientation of any cross-section in the
deformed configuration X � R

3 is defined by the set of orthogonal Cosserat director
triad di n1ð Þf g, such that di n1ð Þ ¼ dij n1ð ÞEj. The vector d1ðn1Þ is perpendicular to the
cross-section and the vectors fd2ðn1Þ; d3ðn1Þg spans the cross-section of the beam at
n1. We note that

di n1ð Þ ¼ Q n1ð ÞEi: ð1Þ

Here, Qðn1Þ represents family of orthogonal matrices that belongs to SOð3Þ rota-
tional groups. Hence, they satisfy QQT ¼ I and detQ ¼ 1. Qðn1Þ being a curve on the
manifold SOð3Þ, the tangent vector to this curve in SOð3Þ is expressed as Q;n1 that
represents the tangent space of SOð3Þ. It can be easily obtained that Q;n1Q

T ¼ Kðn1Þ
such that Kðn1Þ is the linear space of skew symmetric matrices. Therefore, there exists
an axial vector j ¼ �jidi associated with Kðn1Þ such that K n1ð Þg ¼ j� g. Here, g ¼
�gdi represents any vector in R

3. Therefore, from (1),
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di;n1 ¼ Q;n1Q
T� �
di ¼ Kdi ¼ j� di: ð2Þ

The vector j ¼ �jidi represents a Darboux vector associated with the infinitesimal
rotation tensor K, parametrized by n1. Equation (2) represents the differential equation
that governs the evolution of the directors and hence the cross-sections.

To define the position vector u and the governing differential equation corre-
sponding to u, we define the following:

1. Let hðn1Þ and /ðn1Þ represent the pitch and yaw angle of the mid-curve. We define
another triad fT;V;Hg that originates from the centroid of each cross-section such
that the vector fT;Vg spans the pitch angle plane. The vector Tðn1Þ is the tangent
vector to the midcurve. Thus, H ¼ T� V. If there is no shearing in the beam, the
triad fT;V;Hg coincides with fdig. The definition is made clear in the Fig. 1
below. Therefore,

T n1ð Þ
V n1ð Þ
H n1ð Þ

2
4

3
5 ¼

cos hðn1Þ cos/ðn1Þ sin hðn1Þ cos hðn1Þ sin/ðn1Þ
� sin h n1ð Þ cos/ n1ð Þ cos h n1ð Þ � sin h n1ð Þ sin/ðn1Þ

� sin/ n1ð Þ 0 cos/ n1ð Þ

2
4

3
5 E1

E2

E3

2
4

3
5

¼ W1

E1

E2

E3

2
4

3
5:

ð3Þ

2. Assume that the deformed arc length coordinate is given by s. The infinitesimal
length of the undeformed mid-curve dn1 deforms to ds causing infinitesimal axial
strain eðn1Þ. If the object is subjected to shear and torsion, the orientation of the
cross-section changes. The tangent vector is no longer perpendicular to the
cross-section. The shearing effect is quantified by the angles c11ðn1Þ, p

2 � c12ðn1Þ
and p

2 � c13ðn1Þ subtended by the directors d1; d2 and d3 with the tangent vector

T n1ð Þ ¼ @u
@s ; as shown in Fig. 1. Hence following relation can be noted:

Fig. 1. Relationship between fd1; d2; d3g and fT;V;Hg material frame of reference (Color
figure online)
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e ¼ ds� dn1
dn1

;
@n1
@s

¼ 1
1þ e

;

u;s � di ¼
1

1þ e
u;n1 � di ¼

cos c1i; when i ¼ 1
sin c1i; when i ¼ 2; 3

� �
: ð4Þ

Therefore,

u;n1 ¼ 1þ eð Þ cos c11d1 þ 1þ eð Þ sin c12d2 þ 1þ eð Þ sin c13d3 ¼ 1þ eð ÞT: ð5Þ

3. It is necessary to define the parameters a1ðn1Þ, a2ðn1Þ and a3ðn1Þ as the angles
subtended by the directors d1; d2 and d3 with the vector V respectively. This is done
to define the relation between T;V;Hf g and fdig. Therefore, from the expression
of tangent vector in Eq. (5), we can express,

T n1ð Þ
V n1ð Þ
H n1ð Þ

2
4

3
5 ¼ W2

d1
d2
d3

2
4

3
5: ð6Þ

Therefore, from Eqs. (3) and (5) we have,

d1
d2
d3

2
4

3
5 ¼ W�1

2 W1

E1

E2

E3

2
4

3
5: ð7Þ

The component of the orthogonal tensor Q in Eq. (1) can be obtained from Eq. (7)
in terms of the parameters hðn1Þ;/ðn1Þ; c1iðn1Þ; ai n1ð Þð Þ such that QT� �

di�Ei
¼

W�1
2 W1: Note that the following orthogonality constrains hold,

Tj j ¼ Vj j ¼ Hj j ¼ 1; Tj j;n1¼ Vj j;n1¼ Hj j;n1¼ 0: ð8Þ

Therefore, the component of the Darboux vector can be obtained from the Eq. (2) in
terms of the deformation parameters hðn1Þ;/ðn1Þ; c1iðn1Þ; ai n1ð Þð Þ and their deriva-
tives, satisfying the constraints in Eq. (8). The expressions for �j1; �j2 and �j3 can be
referred to Appendix A.1 in [2]. From Eqs. (2) and (5) we arrive at an important
equation that governs the evolution of the system as,

u;n1
d1;n1
d2;n1
d3;n1

2
664

3
775 ¼

0 1þ eð Þ cos c11 1þ eð Þ sin c12 1þ eð Þ sin c13
0 0 �j3 ��j2
0 ��j3 0 �j1
0 �j2 ��j1 0

2
664

3
775

u
d1
d2
d3

2
664

3
775: ð9Þ
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2.2 The Strain Vector

The position vector of any material point ðn1; n2; n3Þ in the deformed configuration X is
given as,

R n1; n2; n3ð Þ ¼ u n1ð Þþ n2d2 þ n3d3: ð10Þ

The strain vector � for this problem is obtained as,

� ¼
X3
i¼1

@R
@ni

� di

� 	
¼ @R

@n1
� d1: ð11Þ

Using Eq. (10), following expressions can be obtained,

@R
@ni

¼ u;n1
� d1 þ n2d2;n1 þ n3d3;n1


 �
þ d1 ¼ � þ d1; when i ¼ 1;

di; when i ¼ 2; 3:

(
ð12Þ

Equations (11) and (12) represent the fact that only the first component of any
infinitesimal vector in the undeformed state Xo gets strained to �þ d1. Any vector on
the cross-section plane of the beam rotates and is not strained. Using Eqs. (9), (11) and
(12), the expression of strain vector in terms of deformation parameters e; c1i; �jið Þ
becomes

� ¼ 1þ eð Þ cos c11 � 1ð Þ � n2�j3þ �j2n3f gd1 þ 1þ eð Þ sin c12 � �j1n3f gd2 þ 1þ eð Þ sin c13 þ �j1n2f gd3:
ð13Þ

Consider a point q on the surface of the undeformed section on which the strain
gauge is attached. If p represent the midcurve point, the vector rpq ¼ n2E2 þ n3E3

represents the position vector of the strain gauge with respect to the midcurve for the

given section. We represent the magnitude of the vector rpq as r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 þ n23

q
. The

vector rpq makes an angle r with E2. Hence, n2 ¼ r cosr and n3 ¼ r sinr.
To find the scalar value of strain in the strain gauge, we need the orientation of the

strain gauge. If l is the angle subtended by the strain gauge with the vector E1 in
undeformed configuration or d1 in the deformed configuration, the direction of the
strain gauge in the deformed configuration is obtained as n ¼ cos ld1 �
sin l sin rd2 þ sin l cos rd3 as obtained in [2]. We define the following strain
parameters

S1 ¼ 1þ eð Þ cos c11 � 1ð Þ; S2 ¼ 1þ eð Þ sin c12; S3 ¼ 1þ eð Þ sin c13
S4 ¼ r�j1; S5 ¼ r�j2; S6 ¼ r�j3;

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S1 þ 1ð Þ2 þ S22 þ S23

q
� 1: ð14Þ
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The scalar strain is obtained as a function of the strain parameters Si using Eqs. (13)
and (14) as

e ¼ � � n
¼ S1 � cos r � S6 þ sin r � S5f g cos l

� S2 � sin r � S4f g sin l sinrþ S3 þ cos r � S4f g sin l cos r ð15Þ

2.3 Solution Approach

We demonstrate the solution for the circular section such that jrpqj is constant for all the
strain gauges. The solution may be easily extended to the non-circular section based on
the theory discussed above. Solution of Eq. (9) requires 6 strain parameters
ðS1; . . .; S6Þ. This requires 6 strain gauges per cross-sections. Equation (15) can then be
inverted to obtain the strain parameters ðS1; . . .; S6Þ. To obtain the approximate
structure, we discretize the object into N segments. At the nth discretized cross-section
n1 ¼ n1n
� �

; we attach 6 strain gauges with angles rn;m, at a distance of rn;m ¼ r from
the centroid, where m ¼ 1; . . .; 6. Thus, the scalar strain at the nth cross-section is
obtained by,

en;m ¼ S1n � cos rn;m � S6n þ sin rn;m � S5n
 �

cos rn;m
� S2n � sin rn;m � S4n
 �

sin ln;m sin rn;m þ S3n þ cos rn;m � S4n
 �

sin ln;m cos rn;m

ð16Þ

Therefore, the discretized form of Eq. (9) becomes,

un;n1
d1n;n1
d2n;n1
d3n;n1

2
664

3
775 ¼

0 S1n þ 1 S2n S3n
0 0 S6n

r � S5n
r

0 � S6n
r 0 S4n

r

0 S5n
r � S4n

r 0

2
6664

3
7775

un
d1n
d2n
d3n

2
664

3
775: ð17Þ

We use a localized linear approach, linearizing the coefficient in Eq. (17) locally in
each nth segment, which is then solved analytically. We use the boundary and conti-
nuity condition to solve for the constants of integration. The midcurve position vector
unðn1Þ and the directors dinðn1Þ are obtained as Eq. (19) in [2]. In the next section, we
demonstrate some application of the shape sensing algorithm to damage detection in
underground pipelines.

3 Application to Damage Detection in Underground Pipelines

The underground pipelines are prone to severe damage due to seismic activities like
earthquake, liquefaction- induced lateral spreading, landslide, and others. These events
have global effect on the pipeline configuration. Hence, monitoring the performance of

322 M. Chadha and M.D. Todd



underground pipelines during these seismic events and in real time is equally important
as developing resilient design methodologies for the same.

Earthquakes causes transient ground deformation and permanent ground defor-
mations. In the simplest sense, the primary cause of underground pipeline deformation
is the movement of soil mass associated with the seismic activities. There is abrupt
ground deformation at the margin of landslide.

The paper by O’Rourke et al. [10] describes a large-scale test conducted on high
density polyethylene pipelines that were subjected to 1.22 m of strike-slip displacement
at a vertical fault crossing an angle of 65°. We simulate a similar kind of pipe
deformation except that we do it for a much longer circular pipeline of 500 m with a
diameter of 800 mm. The schematic diagram of the strike-slip fault effecting the
underground pipeline is shown in Fig. 2.

Since we ignore Poisson’s effect, the algorithm is material-independent. We impart
the pipeline with the axial strain shown in Fig. 3. We model the pipeline such that the
left end is fixed. This represents the case where the portion of pipeline to the left of the
considered portion is not effected by the seismic event. The scalar surface strain values
for a given deformed shape at the set cross-sections for a strain gauge is obtained
analytically using Eq. (15). The values of the strain parameters for the nth section
fS1n ; . . .; S6ng (as required in Eq. (17)) is obtained by solving 6 simultaneous equations
in Eq. (16). Note that if we include the Poisson’s effect, we will have 7 unknown strain
parameters. But excluding Poisson’s effect simplifies the Eq. (16) to depend on
fS1n ; . . .; S6ng. We fix the angles for 6 strain gauges at nth cross-section as rn ¼
p
4 ;

p
2 ;

3p
4 ; p;

5p
4 ;

3p
2

 �
and ln ¼ p

4 ;� p
4 ;

p
4 ;� p

4 ;
p
4 ;� p

4

 �
. The set of angles rn and ln must

be such that Eq. (16) is invertible.
The curvature is the dominant deformation for the pipeline with this geometric

conditions. Hence, we primarily consider the deformation to consist of �j2; �j3, and the
axial strain e. We run the simulation for 6 cases varying the number of equally spaced
cross-sections N = (5, 10, 20, 50, 100), about which the strain gauges are attached.

Fig. 2. Schematic diagram of strike-slip fault (Color figure online)
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Each section has 6 strain gauges. Hence there are 6N number of total strain gauges in
the problem. The displacement of the distal end is 51:75E2 þ 51:1E2 (in m).

Figure 4 compares the reconstruction of the midcurve result (dotted black) for three
cases of N = (5, 10, 100), with the exact deformed shape (orange). Figure 5 compares
the reconstruction of the cross-sections by plotting the exact directors obtained using
forward model (d1 in red, d2 in blue, d3 in green) with the directors predicted by the
shape sensing algorithm (represented by dotted vectors). It is observed that the error is
recognizable for 5 sensor locations (spacing of 100 m) with root mean error of 44 m.
An excellent convergence is observed in the shape sensing with increase of sensor
locations. For N ¼ 10 and 100, the rms error is merely 2:354 and 0:015 m; respec-
tively, which justifies an excellent shape reconstruction. Figure 6 compares the exact
component of position vector of midcurve u and the director d1 with the predicted
components for N = 5, 10, and 50.

Fig. 3. Axial strain along the pipeline

Fig. 4. Exact deformed shape (orange curve) of pipeline vs. the reconstructed shape of the
pipeline (dotted black) (Color figure online)
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In the ideal case, the strain gauge reading is noise-free. However, practicality
dictates that an uncertainty/error analysis be performed, as real strain gages have noise.
As in [1, 2], to examine these influences for a first-order assessment of robustness, we
add uniformly distributed random noise to the strain values at a [−5, 5] microstrain
level and at a [−50, 50] microstrain level before inputting these values into the shape
sensing algorithm. We run fifty such realizations in the Monte-Carlo sense and evaluate
the average rms error for different numbers of sensor counts. In fact there are three
primary sources of error: the first is the error due to approximations in solving Eq. (17),
the second is the error due to noisy strain gauge readings, and the third is the uncer-
tainty in the boundary conditions. Figure 7 represents the average rms error for the
position vector at various noise levels. The black curve represents the error for the no
noise or the ideal case, where the primary cause of deviation is the approximations in
the algorithm. The red and blue curves represent the error due to [−5, 5] and [−50, 50]
microstrain noise, respectively. It is observed that the error depends on the noise level
and the complexity of deformation. The error reduces at a rate greater than exponen-
tially with the increase of sensor count.

Fig. 5. Exact directors (d1 in red, d2 in blue, d3 in green) compared to the predicted directors
(dotted arrows) (Color figure online)

Fig. 6. Comparison of the component of exact (solid black curve) vectors u and d1 with the
predicted components for five, ten and fifty strain gauge locations (red dot, green dot, black dot
respectively). (Color figure online)
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4 Conclusion

In this paper, we discussed about the shape sensing algorithm useful for the general
three-dimensional shape reconstruction of slender structures. The problem bears the
nature of a single manifold problem where the configuration of the structure is defined
by the midcurve and the director triad. The methodology presented uses geometrically
exact and nonlinear Cosserat rod theory, thereby making the method appropriate to
capture large deformation involving finite strain. The formulation captures the effects
due to elongation, shear, and curvatures ðe; �j1; �j2; �j3; c11; c12; c13Þ assuming
Euler-Bernoulli’s rigid cross-section assumption.

We established the expression for the surface strain measure in terms of the strain
parameters. The discretized form of the governing differential equations for the mid-
curve position vector and director are obtained, and the global solution to the set of
differential equations obtained is determined using the continuity conditions and the
boundary conditions.

The primary purpose of this paper is to demonstrate the ability of this shape sensing
methodology to monitor the deformed shape of underground pipelines, important for
seismic monitoring applications. It is known that the underground pipelines are
severely affected due to seismic activities like earthquake, landslide, and liquefaction.

We simulated a deformed shape for a portion of pipeline 500 m long and 800 mm
in diameter and attempted to reconstruct its shape by our algorithm. Excellent recon-
struction is obtained for as low as 10 sensor locations (50 m spacing, 60 sensors in
total). We observed that the rms error decays with increase in sensor count. Therefore,
the shape reconstruction method discussed above can serve as a useful aid in a damage
detection strategy that involves knowing the displacement shifts in the pipeline.
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