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Abstract. Facilitating detection of early-stage damage is crucial for in-time
repairs and cost-optimized maintenance plans of civil engineering structures.
Preferably, the damage detection is performed by use of output vibration data,
hereby avoiding modal identification of the structure. Most of the work within
the vibration-based damage detection research field assumes that the unmea-
sured excitation signal is time-invariant with a constant covariance, which is
hardly achieved in practice. In this paper, we present a comparison of a new
Mahalanobis distance-based damage detection method with the well-known
subspace-based damage detection algorithm robust to changes in the excitation
covariance. Both methods are implemented in the modal analysis and structural
health monitoring software ARTeMIS, in which the joint features of the
methods are concluded in a control chart in an attempt to enhance the damage
detection resolution. The performances of the methods and their fusion are
evaluated in the context of ambient vibration signals obtained from, respec-
tively, numerical simulations on a simple chain-like system and a full-scale
experimental example, namely, the Dogna Bridge. The results reveal that the
performances of the two damage detection methods are quite similar, hereby
evidencing the justification of the new Mahalanobis distance-based approach as
it is less computational complex. The control chart presents a comprehensive
overview of the progressively damaged structure.

Keywords: Structural health monitoring � Ambient excitation � Damage
detection � Control chart-based algorithm fusion

1 Introduction

In the field of damage diagnosis, the vibration-based methods have proven effective in
detection of structural deterioration solely based on the operational data from the
structure [1]. The practical aspect of using only the output measurements cause several
difficulties due to the variations in the ambient excitation, which can be due to vari-
ability in environmental conditions, for example, wind, temperature and precipitation,
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and operational conditions [2]. This issue is addressed in several detection techniques
available in the literature [2–7] and used for the condition-based maintenance and the
early damage detection in practice [5]. A general review of different damage detection
strategies is presented in [8, 9].

The concept of vibration-based damage detection relates to identification of the
damage-induced deviations in the damage-sensitive features of the collected output data.
The deviations are defined by a relative comparison of the reference and operational
states of the system. The commonly used features for the detection are the modal
parameters (natural frequencies, mode shapes and damping ratios) identified from the
data. However, some research questions the use of the modal parameters, arguing that the
modal data itself is not sensitive enough to detect the local faults [9], especially when in
practice the structure is excited by low-frequency inputs. One workaround for the system
identification when estimating the features is to use the statistical properties of the data.
The statistical methods use the probability distributions of the deviations, which differ
between the damaged and the undamaged states, hence indicating faults in the system.

The focus of this work is twofold. One is to present a simple statistical approach for
the damage detection based on the Mahalanobis distance featured with the Hankel
matrices. The distance metric is calculated on the output vibration data processed in the
framework similar to subspace-based methods [12], hereby providing an approach that
is robust to changes in the excitation covariance. As such, damage is detected as
deviations of the distance from the reference test state. The deviations are compared
with the v2-test build on the residual from the subspace-based methods [13]. The
second objective is to present a complete, practical overview of the damage indicators
combined from both methods in the Hotelling control chart [18].

The performance of both methods is tested on numerical simulations and data from
a full-scale bridge. The numerical, academic example is a coupled spring-mass system,
excited by white noise of random variance. The full-scale case is the Dogna Bridge,
Italy. The bridge is artificially progressively damaged and excited by the wind.

The structure of the paper is as follows. The basic principles of the robust
subspace-based damage detection method and the methodology based on the
Mahalanobis distance calculated on the Hankel matrices are presented in Sect. 2. The
two test examples are described in Sect. 3. Both the comparison and joint performance
of the methods on the numerical and full scale detection cases are presented in Sect. 4.
The results are concluded in Sect. 5.

2 Methodology

In this section we recall the basic principles of the subspace-based damage detection [7]
and present the algorithm for the Mahalanobis distance-based damage detection. Both
methods are data-driven.

2.1 Subspace-Based Damage Detection

The damage detection consists of monitoring the deviations of the current system
from its reference state, characterized by some nominal property repeatable for every
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healthy conditions. The deviations are defined by a residual that, theoretically, differs
between the healthy and the damaged states [13]. Consider the discrete state space model

xkþ 1 ¼ Fxk þ vk
yk ¼ Hxk þwk

ð1Þ

with the state transition matrix F 2 Rnxn, the observation matrix H ∊ Rrxn, the states
xk ∊ Rn and the outputs yk ∊ Rr, where r is the number of sensors and n denotes the
order of the system [6]. The unmeasured white noise input vk drives the dynamics of
the system and wk is the measurement noise. Any perturbation in the structural
properties of the system, manifested in the stiffness or mass, leads to deviations in the
state matrices and are subsequently reflected in yk. As a consequence, damage changes
the eigenstructure of the state space model. Hence, the damage-sensitive system
property relates to F.

Let Rs ¼ E xkþ 1xTkþ 1

� �
be the state covariance matrix and G ¼ E xkþ 1yTk

� � ¼
FRsHT the cross-covariance between the states and the outputs [6]. The output covariance
yields Ki ¼ E ykþ iy

T
k

� � ¼ HFi�1G and can be structured in the block-Hankel matrix

Hpþ 1;q ¼

K1 K2

K2 K3

� � �
. . .

Kq

Kqþ 1

..

. ..
. . .

. ..
.

Kpþ 1 Kpþ 2 . . . Kpþ q

2
6664

3
7775 ¼ Hank Kið Þ: ð2Þ

Hpþ 1;q 2 R pþ 1ð Þr x qr where p and q are parameters such q = p + 1. The Hp+1,q can
be factorized into the observability and controllability matrices such

Hpþ 1;q ¼ Opþ 1;qCq ð3Þ

where the observability matrix, Opþ 1;q 2 R pþ 1ð Þr x n, and controllability matrix,
Cq 2 Rn x qr, are given by

Opþ 1;q ¼
H
HF
..
.

HFp

2
6664

3
7775;Cq ¼ G FG . . . Fq�1G

� �
: ð4Þ

The subspace-based damage detection test detects if the residual of the character-
istic property of the reference (healthy) state of the system based on Op+1,q, or sub-
sequently Hp+1,q (Eq. 5), is significantly different from zero. Consider the space, or a
property of the reference state, where

STĤpþ 1;q � 0: ð5Þ
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Ĥpþ 1;q is the empirical output block-Hankel matrix and S is the left kernel U0 of the
reference state Ĥpþ 1;q, hence

Ĥ
ref
pþ 1;q ¼ U1 U0½ � D1 0

0 D0

� �
VT

1
VT

0

� �
; ð6Þ

where D1 contains non-zero singular values. The reference and the subsequently tested
states share the same left null space only when no damage occurs. Bearing that in mind,
the residual vector is defined as

n ¼
ffiffiffiffi
N

p
vec STĤpþ 1;q

� �
: ð7Þ

Note that the excitation of the system is ambient, which leads to changes in the
cross-covariance matrix, G, (recall G ¼ E xkþ 1yTk

� � ¼ FRsHT ), and consequently in

the output block Hankel matrix Ĥpþ 1;q. That results in non-zero residuals (Eq. 7)
between the healthy states. To avoid that, [13] use the fact that Ĥpþ 1;q shares the same
null space with its principal left singular vectors U1, so for each healthy state it holds
that STU1 � 0. Matrix U1 contains n independent column vectors that span the column
space of Ĥpþ 1;q and are principal directions of the data, invariant to the change in
excitation covariance [19]. The robust residual is defined as

n ¼
ffiffiffiffi
N

p
vec STU1

� �
; ð8Þ

which is tested for being significantly different from zero by use of the v2-test,

v2n ¼ nTR�1
n n; ð9Þ

where Rn is the empirical covariance of the residual calculated as in [7].

2.2 Mahalanobis Distance-Based Damage Detecion

The Mahalanobis distance, MD, is a metric used in multivariate statistics to calculate
the distance between a point and a distribution. The formulation of the metric takes into
account the correlations between different data dimensions by the covariance matrix of
the data. For the multivariate normally distributed variables, the squared MD follows
the v2-distribution [20]. One of its practical uses is detection of outliers [16] and
recently detection of structural damages based on the transmissibility functions or
AR-coefficients as a feature [14, 15].

The square Mahalanobis metric of the observations in the data vector xi, from the
reference data vector with the sample mean l and the covariance matrix R is defined as

MDi ¼ xi � lð ÞTR�1 xi � lð Þ: ð10Þ

In this paper the Mahalanobis distance is calculated on the empirical block-Hankel
matrices with the output correlations between a reference and damaged states and used
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directly as a damage indicator. The proposed metric is robust towards the variations of
the excitation covariance and can therefore be used with the operational measurements.
Consider m reference data sets and i tested states, so that

MDi � Tm ! healthy
MDi [ Tm ! damaged

:

where Tm is a threshold calculated for the reference state. The MD increases as the
system is subjected to any change that affects its vibration characteristics. The modified
version of the squared MD featured with the Hankel matrices is defined as

MDi ¼ vec Ĥ
corr
pþ 1;q

	 
T
R
Ĥ

corr;ref
pþ 1;q

� ��1

vec Ĥ
corr
pþ 1;q

	 

: ð11Þ

Let Y 2 Rr x mN where Y is the output response, m is the number of the reference
sets and N is the length of one data set. The formulation of the empirical block-Hankel
matrix yields

Ĉi ¼ 1
mN

XmN

k¼1

YkYT
k�i

rkrk�i
; Ĥ

corr;ref
pþ 1;q ¼ Hank Ĉi

	 

: ð12Þ

Consequently, Ĥ
corr
pþ 1;q is determined using Eq. 12 for each tested data set with

m = 1. The covariance of the empirical, vectorized Hankel matrix is estimated from the
covariance of the sample mean with the methodology recalled from [7]. The threshold
above which the data set is considered damaged is defined as one standard deviation
above the mean value of the reference state, which theoretically should approach zero.

2.3 Simple System Simulation

For the numerical test, we considered a coupled spring-mass system with 15 DOF,
Fig. 1. Output accelerations are simulated using white noise input of variance taken
randomly from the normally distributed vector in between [1 50], acting on the last
DOF. The acceleration data is recorded in all DOF along the system. To challenge the
robustness of the damage detection methods, different amounts of white noise, namely,
3%, 10% and 30%, are added to the response signals.

Fig. 1. Simple system scheme.
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The damage is simulated as a progressive reduction in the stiffness of the 8th spring
by 2%, 5%, 10% and 30%. The sampling frequency is 50 Hz. The system is excited for
1000 s in blocks of 50 data sets for each simulated case. That results in 250 data
records per sensor per noise level with a random variance in between each set.

3 Results

The damage is detected for the three noise levels present in the response of the simple
system. 30 out of 50 healthy data sets are used to establish the reference state. The
thresholds for both of the methods are defined as a number of standard deviations
above the mean metric of the reference state. One standard deviation for the unsafe
zone, and two standard deviations for the damaged zone.

The comparison of the damage indicators for the case of 3% and 30% of white
noise added to the response data is illustrated in Figs. 2 and 3. The percentage of the
detected damage sets with respect to the simulation case and degree of the damage is
summarized in the Table 1.

Both methods are robust towards the change in variance of the excitation and detect
each degree of the damage present in the response data containing 3% of white noise,
Fig. 2. While increasing the noise level to 30%, the Mahalanobis-based approach
performs more accurate in detecting the smaller deviations, see Fig. 3 and Table 1. The
fusion of the methods in a control chart, created for the 30% noise case, results in
detection of all the 5% damage sets and half of the 2% damaged sets; what was not
possible with a single method, see Fig. 4.

4 Dogna Bridge

TheDogna bridge, Fig. 5, crosses the River Fella and connects the villages of Crivera and
Valdogna (Dogna) in Friuli Venezia Giulia, a region located in the North East of Italy.

Fig. 2. Damage detection in simple system. Case-3% of noise in the response. Damage
indicators for the Mahalanobis-based (left) and robust subspace-based (right).
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Fig. 3. Damage detection in simple system. Case-30% of noise in the response. Damage
indicators for the Mahalanobis-based (left) and robust subspace-based (right).

Table 1. Comparison of the detection methods. Ability to detect damage in the simple system
for different noise levels.

Case Method Damaged sets detected
2% damage 5% damage 10% damage 30% damage

Noise 3% Subspace-based 100% 100% 100% 100%
Mahalanobis-based 100% 100% 100% 100%

Noise 10% Subspace-based 10% 26% 100% 100%
Mahalanobis-based 40% 100% 100% 100%

Noise 30% Subspace-based 2% 8% 100% 100%
Mahalanobis-based 0% 40% 100% 100%

Fig. 4. Hotelling T2 control chart for simple system. Robust subspace and Mahalanobis-based
detection. Case: noise 30%.
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The bridge is a four-span, single-lane concrete bridge. The span is 16 m, with a 4 m
lane. The deck is made of a 0.18 m reinforced concrete (RC) slab, supported by three
longitudinal simply supported RC beams with a rectangular cross-section of
0.35 � 1.20 m. The beams are connected to the supports with the rectangular RC

diaphragms 0.3 � 0.7 m. The piers are RC walls 1.5 m thick, 4.5 m deep, and 3.6 m
high. The pylons are fixed in a piled foundation that consists of a 1 m thick RC slab
supported by a drilled RC piles of 1 m in diameter and 18 m in length.

For traffic safety reasons, the Dogna bridge was demolished on May 2008 and has
been replaced by a new bridge built about 200 m downstream. A test campaign was
carried out from April 02 to 11 2008 and consisted of a series of tests progressively
damaging one of the bridge spans. The tests were carried out under similar environ-
mental conditions so the influence of temperature and humidity on the structure is
insignificant. Figure 6 shows the artificially damaged bridge span during the tests.

The bridge was equipped with ten accelerometers mounted on its deck. The sam-
ples were taken with the frequency of 400 Hz. The measurement campaign lasted
50 min in total while the reference state was measured for 20 min. The damage was
introduced in three blocks: the first cut, the second cut and the third cut with the
damaged center span.

5 Results

For the general overview of the measurements, the first six singular values of the
cross-spectral densities from the output acceleration data for the reference state are
plotted in Fig. 7.

A total number of 22 data sets are analyzed. Each measurement lasts 147.5 s. In the
frequency range of 0–40 Hz there are three modes excited at 10.2 Hz, 14.2 Hz and
27.2 Hz, Fig. 7.

Fig. 5. Dogna bridge, Italy.
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The reference measurement model for the damage detection is built from 6 out of 8
healthy data records. Data sets between 9 and 14 are the measurements from the damaged
state corresponding to the cuts in the beams. Damaged in the centerline was introduced in
data sets from 15 to 22. The comparison of the subspace-based and Mahalanobis-based
detection methods and the control chart combining the methods is illustrated in Fig. 8.

Both the subspace-based and Mahalanobis-based damage indicators do not increase
with the number of the cuts in the beams in sets 9–14, see Fig. 8. However, each
method clearly distinguishes the healthy data from the damaged and detects the last
stage of the damage (the damage of the centerline of the span), see Figs. 6 and 8. In this
case, the fusion of the detection methods in the control chart does not enhance the
damage detection, however results in similar indicators as obtained from the robust
subspace and Mahalanobis distance-based methods.

Fig. 7. First six singular values of the cross spectral densities of the output acceleration data for
the reference state.

Fig. 6. Artificially damaged beams. The cuts introduced progressively during the tests, along
with the damage in the centerline of the span.
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6 Conclusions

In this paper a recently developed Mahalanobis distance-based damage detection
method was presented and compared to well-known and proven subspace-based
damage detection approaches. The methods were tested on noisy simulation data and a
full-scale bridge example. Both test cases were excited by ambient excitation with a
changing intensity.

The performance of the new Mahalanobis distance-based detection method appears
similar to the subspace-based methods for the low-noise numerical and experimental
cases. As well as the subspace-based methods, the proposed algorithm is robust to
changes in the excitation covariance. The new method reveals advantage over the
subspace-based methods regarding detection of the damages based on the noisy simu-
lations. The combination of the methods in the control chart was successful and resulted
in the most effective detection of the damages both for simulations and the full-scale test.

The research regarding the detection methods will continue with focus on testing
the algorithms on more extensive full-scale experimental campaigns with different
types and extent of damages. The fusion of the methods enhanced the performance of
the combined damage indicators, hence research on this subject will proceed.
The use of empirical block-Hankel matrices as damage sensitive features will be further
examined and compared with different transformation of the output data.

Fig. 8. Damage detection in Dogna bridge. Damage indicators from top: Robust subspace (left).
Mahalanobis-based (right). From bottom classical subspace (left), Hotelling control chart (right).
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