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Abstract. In this paper, fuzzy sets are established for different states of a rein‐
forced concrete bridge based on finite element model of the bridge. This bridge
has been monitored continuously using vibrational signals obtained from accel‐
erometer and strain gauge sensors installed on girders of the bridge. A Finite
element model of the bridge is calibrated based on real data gathered from the
bridge to be a close representation of the real structure. The calibrated finite
element models of the bridge are then constructed for healthy, medium damaged
and severe damaged states of the bridge. Using fuzzy set principles, the healthy,
medium and severe damage states of the bridge are constructed with fuzzy bell
functions. Fuzzy pattern recognition using similarity between fuzzy sets is then
utilized to identify any unknown states of the bridge that can give authorities an
unbiased tool for efficient maintenance of the bridge.
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recognition · Finite element model

1 Introduction

Structural health monitoring (SHM) is an ongoing field of research mainly focus on
detecting and locating damage in structures. The main goal of SHM systems is to
increase the safety and reliability of infrastructure with minimum human intervention
and more efficiency. Since defining damage is a challenging task, researchers agreed
that damage cannot be measured but its influence on the structure’s response might be
sensed/observed [1]. Based on Farrar et al. [2] damage is defined as “Intentional or
unintentional changes to the boundary conditions and system connectivity, which
adversely affect the current or future performance of that system.” Other definitions of
damage such as decrease in stiffness, crack growth and strain thresholds exist in the
SHM literature [3–5].

Much effort has been done to probe damage in a structure, before it reaches a critical
state. Damage reduces the structure stiffness and hence affects the performance of the
structure. Identifying a proper feature that can be observed to realize changes that occur
in the structural response due to presence of damage has been the focus of most research
efforts. Most current damage features rely on dynamic characteristics of the structure
such as natural frequency, modes shapes, etc., because vibration characteristics
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demonstrate the degradation in stiffness and are relatively easy to measure in the time
domain [6]. Using vibration signals, it has been shown that some damage features can
be identified in the frequency domain or the wavelet domain [7, 8]. The size and
complexity of civil infrastructure play a major role in developing efficient SHM systems.
For some structures, the measurements of interest might not be limited to strain and
vibration measurements. For instance, in cable-stayed bridges, measuring force and the
condition of strands are a major focus in monitoring the health of the cables. In pipeline
structures, corrosion of pipelines is of major interest for its health monitoring [9].

Bridges are among the most important infrastructure of any nation and they play a
key role in transportation system. One of the major responsibilities of Departments of
Transportation and the Federal Highway Administration is to maintain high standards
in safety and reliability of bridges. Based on a recent report of ASCE bridges received
a grade of C+ and it mentioned that one in nine of the nation’s bridges are rated as
structurally deficient which necessitates $20.5 billion investment annually. This cost
covers not only the shoring up of bridges, but also includes keeping a watchful eye on
bridges with degrading performance, thereby helping the U.S. Departments of Trans‐
portation (DOTs) to make efficient decisions on future maintenance, repair or full
replacement of the nation’s bridge infrastructure. This will open great opportunities to
implement SHM systems on civil infrastructure for researchers. It became obvious to
the public that if a simple monitoring system was installed on the I-35 Bridge in Minne‐
apolis, the significance of the disaster of the total failure of this bridge would have been
lessened or prevented. After this tragedy, researchers utilized more SHM systems on
bridges [10–15]. On the other hand, SHM systems can be incorporated in a great number
of civil infrastructure under construction. Deploying efficient monitoring systems on
bridges can provide early warning about potential damage. Moreover, continuous moni‐
toring of bridges and critical infrastructure may enable us to move from the current
schedule-based maintenance to condition-based maintenance. This should save millions
of dollars and allow for the focusing of resources. Furthermore, using new advances in
sensing technology and wireless systems made the remote monitoring of bridges a
reality.

In this paper, a monitoring system consisting of accelerometers and strain gauges
was designed and installed on a reinforced concrete (RC) bridge. Then a finite element
(FE) model of the bridge was developed and calibrated based on the real vibration data
from the monitoring system. Fuzzy sets are established using the real data and data from
the FE model of the bridge for healthy and damaged states of the bridge. These fuzzy
sets are then used to identify the current state of the bridge based on the principles of
fuzzy pattern recognition. Proper identification of the current state of the bridge will
help authorities to make effective decision in maintenance planning and/or replacing the
existing bridge.

2 Bridge Description and the Designed SHM System

An RC bridge on Interstate 40 in New Mexico was selected for installation of the moni‐
toring system. This three span bridge consists of five RC K-frame girders with a total
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length of about 200 feet. Figures 1 and 2 shows the RC bridge which is located in the
City of Tucumcari in NM.

Fig. 1. Bridge 7937 in Tucumcari NM.

Fig. 2. K-frames of Bridge 7937.

The monitoring system that was used for this bridge consists of twenty PCB 333B50
accelerometers (5 installed on each girder) and Vishay electromechanical strain gauges.
Accelerometer sensors were used to acquire vibrational data from the bridge. These
sensors are connected to a Compact Rio data acquisition device that consists of two
important parts: (1) a real-time controller that has volatile memory and nonvolatile
memory for data storage. The real-time controller also encompasses an Ethernet port
with built-in file servers allowing access by HTTP and FTP, and (2) a multi-slot recon‐
figurable chassis that contains FPGAs and a Peripheral Component Interface (PCI) bus
interface that connects between the FPGA and the real-time controller. This built-in data
transfer protocol is used to communicate data to the controller where post processing,
data logging and communication to a host computer can take place. The FPGA chip
connects directly to the analogue input modules using FPGA functions. Different types
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of sensors can be connected to different types of analogue modules. Figure 3 shows the
Compact Rio data acquisition device with the modules connected to the chassis.

Fig. 3. Compact Rio data acquisition device.

Before installing the SHM system on the RC bridge, all the sensors, FPGA modules
and data acquisition device were tested and no error were found in the monitoring system
(Fig. 4). The following figures show the installed monitoring system on the bridge:

Fig. 4. Steel box used for the data acquisition device housing.

3 Finite Element Model of the Bridge and Fuzzy Damage
Classification

A three dimensional finite element (FE) model of the bridge was developed using
SAP2000 software. The FE model was calibrated using the real signals received from
accelerometer and strain gauge sensors on the bridge. This model simulates the variable
cross sections of girders along with the RC slab on top of them and presents the behavior
of the bridge under traffic loadings. Since the bridge is in a healthy state, we used the
calibrated 3D FE model to introduce different damage states to the bridge (Fig. 5). The
damage states were developed by decreasing the flexural stiffness (EI) of different
elements. Figure 6 illustrates the 3D FE model of the bridge.
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Fig. 5. Accelerometer sensors installed on the bridge.

Fig. 6. 3D FE model of the bridge.

Once the FE model of the bridge was established, damage features, which were the
energy of acceleration signals in wavelet domain, were extracted at each node of the FE
model. Here, we utilized fuzzy set theory in order to represent damage features. Different
damage states in structures are defined by different fuzzy sets that are established by
principles of inductive reasoning. The vagueness and uncertainties associated with the
damage definition and the significant overlap between different damage states in struc‐
tures make damage-state description amenable to fuzzy definitions and fuzzy pattern
recognition. Inductive reasoning or inductive inference is the process of extracting
general rules from limited and specific sets of information [16]. Inductive reasoning is
considered a cognitive activity that integrates probabilistic and non-probabilistic uncer‐
tainty for approximate reasoning of observations. The damage definition process is
always based on limited and uncertain information. Damage detection and damage
pattern recognition is therefore a proper field for utilizing principles of inductive
reasoning [17]. Our method aims at classifying damage states in the structure by estab‐
lishing fuzzy sets. Since different damage states in the structure have significant overlap
and vague boundaries, fuzzy sets are used to describe these damage states. Using fuzzy
set theory, the two kinds of uncertainties (i.e. aleatoric and epistemic) associated with
defining damage states in structures are considered.

The use of inductive reasoning for classification is based on the fact that the process
of induction is associated with minimum uncertainty. Shannon [18] introduced entropy
as a measure of disorder in classifying data in 1948 to describe uncertainty or to quantify
the information content in a dataset. The uncertainty associated with the value of a
discrete random variable (𝜉) can be measured by the entropy (S) as
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S(𝜁) = −
∑

𝜁∈Z

p(𝜁) log p(𝜁) (1)

where p(𝜉) is the probability of the occurrence of 𝜉. In order to minimize uncertainty,
the entropy S(𝜉) should be minimized. The minimized entropy S(𝜉) will partition the
domain into two classes [19, 20]. This entropy can be used as a reasoning basis to obtain
generalized classes for a specific set of limited observations. Fuzzy categories are
formulated based on the premise of an argument regardless of the fact that such cate‐
gories are not certain [21].

In order to establish fuzzy sets to describe damage states of the structure, the
threshold values defining the boundaries of these fuzzy sets need to be identified. First,
two fuzzy sets can be established as a two class partitioning problem, then other fuzzy
sets describing other damage states of the structure can be established by generating
subclasses for each individual class. Based on inductive reasoning principles the first
threshold partitions a domain into two classes. This point (x0) that minimizes entropy in
the interval [x1, x2] can be used to partition this domain. The entropy of point (x0) on the
damage feature domain (x) can divide the interval [x1, x2] into two intervals [x1, x0] and
[x0, x2]. The entropy S can be calculated as

S(x) =
∑

i

pi(x)Si(x) (2)

Si(x) = −
∑

j

pi

j
(x) ln pi

j
(x) (3)

where pi
j
(x) is a conditional probability that the class j sample is in the region [xi, xi + x]

and [xi + x, xi+1] and pi(x) are probabilities that all samples are in the region [xi, xi + x]
and [xi + x, xi+1]. The values pi

j
(x) and pi(x) are calculated as

pi

j
(x) =

ni
j
(x) + 1

ni(x) + 1
(4)

pi(x) =
ni(x)

n
,
∑

pi(x) = 1 (5)

where ni
j
(x) is the number of class j samples located in the ith interval [xi, xi + x], ni(x)

is the total number of samples located in the ith interval and n is the total number of
samples in the interval [xi, xi+1].

By choosing the type of membership function (MF) (triangular, bell shape and etc.),
fuzzy sets are established in the damage feature domain. To consider the fuzziness in
the damage detection process, some degree of overlapping between two adjacent fuzzy
sets needs to be achieved. To establish secondary fuzzy sets accounting for other damage
states of the structure, the secondary threshold values are obtained based on the primary
threshold value. In other words, the damage feature with the highest membership value
in an intermediate fuzzy set corresponds to the minimum membership value in the two
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neighbouring fuzzy sets. That enables a significant overlap between the damage fuzzy
sets which directly correlates to the level of fuzziness (uncertainty) in the damage
states [22].

For Tucumcari Bridge, one primary threshold value and two secondary threshold
values were identified to establish three fuzzy sets describing three damage states in the
bridge: healthy, medium damage and severe damage. It is important to note the impor‐
tance of correlating that fuzzy level of damage to mechanical damage in the structure.
A few methods have been recently proposed for establishing such correlation [23, 24].

The process of classifying an unknown fuzzy set based on known fuzzy sets is called
fuzzy pattern recognition. As the fuzzy damage sets are established as explained above,
using fuzzy pattern recognition, datasets of damage feature can be classified to one of
the damage classes already defined by fuzzy sets on the damage feature domain. Such
classification can be developed using the degree of similarity approach. The degree of
damage similarity (DM) between two fuzzy damage vectors Di

∼
 and Dj

∼
 is defined as

DM = (Di

∼
◦Dj

∼
) ∧ (Di

∼
⊕Dj

∼
) (6)

Where (Di

∼
◦Dj

∼
) is the inner product of the two fuzzy vectors Di

∼
, Dj

∼
 and (Di

∼
⊕Dj

∼
) is the

complement of the outer product of the two vectors. When the value of DM approaches
1, the two fuzzy vectors are similar and when DM approaches 0, the two fuzzy vectors
are dissimilar.

Assuming the current state of the bridge 7937 as healthy, all of the acceleration data
obtained from the bridge using installed sensors can be used to calculate the energy of
the signals in wavelet domain as a damage feature for healthy state. Since high corre‐
lation was observed between signals obtained from the calibrated FE model and the
signals from accelerometers on the bridge, the FE model can be used to generate accel‐
eration signals for different damaged states of the bridge. The damage is defined on the
FE model as reductions in stiffness of the frame elements in the locations that are more
prone to be cracked. For this reason three elements located on the joint of the K-frame
on Girder 3 of the FE model are selected as damaged elements. These elements are
located at the location of maximum negative moment. By reducing the flexural stiffness
in these three elements by 10% to 50% in the FE model, the damage feature is calculated
from the nodes of the FE model. Using the principles of inductive reasoning and a bell
function for establishing fuzzy membership functions, three fuzzy damage states in the

Fig. 7. Healthy, medium damage and severely damage states fuzzy sets for the bridge.
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structure: healthy (H
∼

), medium damage (MD
∼

) and severe damage (SD
∼

) were developed
as shown in Fig. 7.

4 Results and Discussions

After establishing fuzzy sets representing different states of the bridge, an unknown data
set from the real signals from the bridge was obtained. Figure 8 shows the unknown data
set A

∼
 in comparison with the known states of healthy, medium damage and severely

damage states of the bridge.

Fig. 8. An unknown data set A
∼
 in comparison to the known states of the bridge.

Using the similarity degree (DM) described by Eq. (6), the similarity between the
unknown dataset and the established fuzzy damage states of the RC bridge can be calcu‐
lated by the means of fuzzy pattern recognition. Based on this equation, the known fuzzy
set A

∼
 has 95% degree of similarity with the healthy state and 33% degree of similarity

with the medium damage and no degree of similarity with severe damage state. These
results confirm that the accelerometer data were obtained from the healthy state of the
bridge. Using fuzzy pattern recognition and comparing data with the known established
states of the bridge will give authorities a good feedback about the current state of the
bridge. This feedback would certainly inform the decision making for efficient mainte‐
nance of the bridge.

5 Conclusions

In this paper, a fuzzy pattern recognition method was introduced and utilized on a real
bridge to identify the current and future states of the bridge with respect to the known
healthy, medium and severe damage states of the bridge. The RC bridge already had an
installed monitoring system consisting of accelerometers and strain gauge sensors
connected to an FPGA data acquisition device. The 3D FE model of the bridge was
developed and calibrated using real data from the bridge. The calibrated FE model was
used to provide the data for the medium and severe damage states of the bridge. Using
these data along with the principles of inductive reasoning, a group of fuzzy sets for
healthy, medium damage and severe damage states of the bridge were established. An
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unknown state of the bridge created using the acceleration data from the bridge was used
to confirm the efficiency of the method in identifying the current state of the bridge. It
was shown that the unknown state of the bridge has 95% similarity to the healthy state,
using the degree of similarities between fuzzy sets. The fuzzy pattern recognition would
be an effective tool for authorities to make better decisions on the safety and maintenance
needs of the bridge.

References

1. Lemaitre, J., Desmorat, R.: Engineering Damage Mechanics: Ductile, Creep, Fatigue and
Brittle Failures. Springer, New York (2002)

2. Farrar, C.R., Lieven, N.A.J., Bement, M.T.: An Introduction to Damage Prognosis. In: Inman,
D.J., Farrar, C.R., Lopes, V., Steffen, V. (eds.) Damage Prognosis for Aerospace, civil and
Mechanical System. Wiley, West Sussex, England (2005)

3. Broek, D.: Elementary Engineering Fracture Mechanics. Martinus Nijhoff Publishers,
Dordrecht (1986)

4. Worden, K., Dulieu-Barton, J.M.: An overview of intelligent fault detection in systems and
structures. Struct. Health Monit. 3(1), 85–98 (2004)

5. Lemaitre, J., Desmorat, R.: Engineering Damage Mechanics: Ductile, Fatigue and Brittle
Failures. Springer, New York (2002)

6. Neild, S.A., McFadden, P.D., Williams, M.S.: A review of time-frequency methods for
structural vibration analysis. Eng. Struct. 25, 713–728 (2003)

7. Chang, C.-C., Chen, L.-W.: Damage detection of cracked thick rotating blades by a spatial
wavelet based approach. Appl. Acoust. 65, 1095–1111 (2004)

8. Reda Taha, M., Noureldin, A., Osman, A., El-Sheimy, N.: Introduction to the use of wavelet
multi-resolution analysis for intelligent structural health monitoring. Can. J. Civ. Eng. 31(5),
719–731 (2004)

9. Thein, A.: Pipeline structural health monitoring using macro-fiber composite active sensors.
Master Thesis, Department of Mechanical, Industrial, and Nuclear Engineering, University
of Cincinnati (2006)

10. Hu, X., Wang, B., Ji, H.: A wireless sensor network-based structural health monitoring system
for highway bridges. Comput. Civ. Infrastruct. Eng. 28(3), 193–209 (2013)

11. Catbas, F.N., Susoy, M., Frangopol, D.M.: Structural health monitoring and reliability
estimation: long span truss bridge application with environmental monitoring data. Eng.
Struct. 30(9), 2347–2359 (2008)

12. Yang, C., Wu, Z., Zhang, Y.: Structural health monitoring of an existing PC box girder bridge
with distributed HCFRP sensors in a destructive test. Smart Mater. Struct. 17(3), 035032
(2008)

13. Torres, B., Payá-Zaforteza, I., Calderón, P.A., Adam, J.M.: Analysis of the strain transfer in
a new FBG sensor for structural health monitoring. Eng. Struct. 33(2), 539–548 (2011)

14. Bao, Y., Beck, J.L., Li, H.: Compressive sampling for accelerometer signals in structural
health monitoring. Struct. Health Monit. 10, 235–246 (2010)

15. Ooijevaar, T.H., Loendersloot, R., Warnet, L.L., De Boer, A., Akkerman, R.: Vibration based
structural health monitoring of a composite T-beam. Compos. Struct. 92(9), 2007–2015
(2010)

16. Feeney, A., Heit, E.: Inductive Reasoning: Experimental, Developmental and Computational
Approach. Cambridge University Press, UK (2007)

Fuzzy Pattern Recognition in Vibration-Based Structural Health 291



17. Tenenbaum, J.B., Griffiths, T.L., Kemp, C.: Theory-based Bayesian models of inductive
learning and reasoning. Trends Cogn. Sci. 10(7), 309–318 (2006)

18. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423
(1948)

19. Kim, C.J., Russell, B.D.: A learning method for use in intelligent computer relays for high
impedance faults. IEEE Trans. Power Delivery 6(1), 109–115 (1991)

20. Ross, T.J.: Fuzzy Logic with Engineering Applications. Wiley, West Sussex (2004)
21. Applebaum, D.: Probability and Information: An Integrated Approach. Cambridge University

Press, NY (2003)
22. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic, Theory and Application. Prentice Hall,

Upper Saddle River (1995)
23. Zhang, J., Sato, T., Iai, S., Hutchinson, T.: A pattern recognition technique for structural

identification using observed vibration signals: nonlinear case studies. Eng. Struct. 30(5),
1417–1423 (2008)

24. Sheyka, M.: Analytical and Experimental Investigations of Photonic Crystals for Sub-Micron
Damage Detection. M.Sc. Thesis, Department of Civil Engineering, University of New
Mexico, NM, USA (2008)

292 M. Azarbayejani


	Fuzzy Pattern Recognition in Vibration-Based Structural Health Monitoring
	Abstract
	1 Introduction
	2 Bridge Description and the Designed SHM System
	3 Finite Element Model of the Bridge and Fuzzy Damage Classification
	4 Results and Discussions
	5 Conclusions
	References


