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Abstract. This study tackles the challenge of operational damage identification
on wind turbine blades and proposes a novel framework for damage detection
and localization. A vibration-based scheme is proposed, which tracks the vari-
ability of the mode shape curvatures (MSCs) of the blade along its plane
direction. The method consists of a training and a diagnostics stage. In the
former, MSC information for a number of predefined modes is extracted over
varying operational conditions in the healthy state of the blade and, via the
implementation of the principal component analysis (PCA), a statistical char-
acterization of each blade’s node is estimated. Then, during the diagnostics
stage, the MSCs are assembled and the same PCA mapping is enforced.
A corresponding damage index is established, in order to detect and localize
damage, if it exists. In both stages, MSC extraction is based on the successful
estimation of vector autoregressive moving average (VARX) models that rely on
pressure excitation and distributed strain measurements.

Keywords: Wind turbines � Operational conditions � Damage localization �
Principal component analysis � Mode shape curvatures

1 Introduction

Structural damage detection and localization forms a scientifically difficult and tech-
nologically important issue that has, over the past years, attracted the attention of
researchers, engineers, as well as infrastructure stakeholders and insurance companies.
Among other candidate approaches, vibration-based structural health monitoring
methods have been extensively investigated, as a result of their sound theoretical basis,
and the further support provided through well-established and cost effective instru-
mentation schemes [1, 2].

Focusing on structures that operate on harsh and diverse conditions, such as wind
turbine blades, an important aspect of this problem pertains to decision-support, for
powering off or intervening for inspection/repair of these components, in light of the
variability of the environments they are exposed to. A major challenge lies in the notable
influence exerted on damage-sensitive features, such as natural frequencies and mode
shapes, by the aforementioned environmental influences [3, 4]. These effects are more
extensively documented on bridge structures, with an approximately 5% frequency
variation on the Alamosa Canyon bridge reported in Farrar et al. [5] due to changing
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environmental conditions, while Alampalli [6] reports an up to 50% variation in natural
frequencies of an abandoned bridge in Claverack (NY) as a result of freezing of the
supports.

Available methodologies for incorporating or discarding operational variability
from structural models and associated indicators may be cast in two prominent cate-
gories [7]: (i) output-only methods, relying on response data alone, which seek to
remove environmental influences from extracted vibrational features [8, 9], and
(ii) input-output methods, which instead aim to determine a functional relationship
between the response features and the measured operational conditions [10, 11]. In the
first class of methods, PCA [12] or its nonlinear ramifications (kernel PCA [13], Factor
Analysis), holds a prominent role in solving the unsupervised learning problem by
identifying patterns that are indicative of the effects of the unobserved inputs.

Powered by PCA on modal frequencies, Yan et al. [14, 15] detect damage in both
experimental and simulated data under varying environments. Bellino et al. [16] pro-
pose a PCA approach suitable for time-varying systems, a topic of particular interest for
wind turbine facilities. Nguyen and coworkers [17] suggest a temporal and spectral
implementation of PCA for treatment of eigenfrequency and modal shape features
respectively, extracted from a bridge in Luxemburg for the purpose of damage
detection and localization.

Surprisingly, while the MSCs have been extensively used for damage detection and
localization, they have not been exploited to such an end under the influence of
changing operational and environmental conditions. For instance, Limongelli et al. [18]
employ PCA and MSCs to localize artificial damage on a cantilever aluminum beam
tested in the laboratory, under the premise however of invariant environmental con-
ditions. In incorporating such a consideration, Shokrani et al. [19] recently introduced a
framework for exploiting MSCs for damage localization, demonstrated on the
numerical case study of a bridge system. The present study advances this approach for
implementation with simulations of dynamic strain data, extracted from an operational
wind turbine blade under temperature variations. For this purpose and under normal
operating conditions, the variation of MSCs is tied to the independent sources of
operational variability. Thus, during a training stage, the MSCs formulated across a
representative operational period, a residual matrix is calculated and a statistical
characterization of each node of the blade is derived. Accordingly, in every diagnostic
stage, the corresponding MSCs are decomposed using the PCA information established
at the training stage and an induced damage index is utilized for achieving damage
detection and localization. It is noted that the method uses pressure excitation and
distributed strain responses. The latter are deemed preferable when fatigue analysis is
of interest, they do not take much space, while recent sensor technologies (e.g. Fiber
Bragg Grating) indicate that strain sensors can be embedded into composite materials
and integrated into several arrays, which imply structural information from a large
number of points [20]. The method can be directly applied, however, to other types of
excitation response pairs as well.
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2 Blade Description

2.1 Finite Element Model

Figure 1(a) displays the FE model geometry of the wind turbine blade considered,
which is 1750 mm long and weighs approximate 5 kg. It consists of woven materials
by E-glass and Polyurethane resin matrix, as well as four shear webs in root region. The
finite element (FE) model is constructed using shell elements for the outer surfaces of
the blade with orthotropic material of equivalent mechanical properties (relying on the
specifications provided by the manufacturer).

Accurate simulation of the blade in its healthy and damaged states is ensured by
careful meshing of the associated geometry, especially with respect to the contact
regions among the different blade constitutive materials and elements. This applies
specifically to the contact regions between (i) the shell surface and the core foam,
(ii) the shear webs’ edges and the outside shell surface, (iii) the shear webs’ edges and
the core foam, and (iv) the shear webs’ faces and the core foam. A bonded contact type
has been realized for these regions, implying no relative movement (with or without
friction) among the edge-surface contacts during simulation.

Following the work described in Ou et al. [21], the FE model is subsequently
updated using nonlinear optimization. This is accomplished by minimizing the relative
error between the first six natural frequencies and those obtained through the experi-
mental modal analysis data on the actual blade. The reference temperature of the
updating process is 20 °C.

(a) ANSYS Workbench® FE model geometry (b) ANSYS Workbench® FE model damage detail

(c) Blade’s plane view, showing the axes, the boundary, the damage areas and the sparse data configuration

Fig. 1. Details of the blade’s numerical model.
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In order to include a realistic operational framework, the working temperature of
blade is arranged from −15 °C to 40 °C and it is decomposed into 12 uniform intervals
of 5 degrees. As temperature changes, the Young’s modulus and the shear modulus in all
directions are reduced in accordance to existing thermal constitutive equations [22–24].
The Poisson ratios remain constant, while the thermal energy conduction time is
ignored, since the analysis is carried out in the steady-state.

2.2 Damage Areas

As Figs. 1(b) and (c) indicate, two typical damage locations at approximately 35%
(location A) and 70% (location B) along the z-axis in the flapwise direction of the blade
are considered [25]. These are realized as a percentage reduction in the associated
material properties within two areas of sizes [210 � 65] mm and [185 � 65] mm. The
mesh (obtained by applying shell elements) of the 35% damage area (closer to blade
root) is illustrated in Fig. 1(b).

2.3 Wind Pressure Excitation

Blade excitation adopts the model described in Ou et al. [26], according to which the
dynamic pressure applied is provided by

Pw tð Þ ¼ 1
2
Cpqu

2
wðtÞ ð1Þ

where Cp and q denote the pressure coefficient (assumed constant) and the density of
air, respectively, while uw is the wind speed load, given by the sum of an average speed
(ua), a wind speed ramp (urðtÞ), a wind gust (ugðtÞ) and a turbulence (utðtÞ), as

uw tð Þ ¼ ua þ ur tð Þþ ug tð Þþ ut tð Þ ð2Þ

The ramp and the gust components evolve over specific intervals, Tsr; Ter½ � and
Tsg; Teg
� �

, respectively, and they are calculated by

ur tð Þ ¼ Aramp
t�Tsr
Ter�Tsr

; t 2 Tsr; Ter½ �
0; otherwise

�
ð3Þ

ug tð Þ ¼ Agust 1� 2cos 2p t�Tsg
Teg�Tsg

� �� �
; t 2 ½Tsg; Teg�

0; otherwise

(
ð4Þ

with Aramp and Agust corresponding to the ramp and gust amplitudes, respectively. The
turbulent component is given by

ut tð Þ ¼
ffiffiffi
2

p XN

k¼1
PD xkð ÞDx½ �1=2cos xktþukð Þ ð5Þ
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where xk are frequencies in rad/s, uk are random phases in 0; 2p½ � and PD xkð Þ is a
spectral density function calculated by

PD xkð Þ ¼ lua ln
h
z0

� 	� 	�1

1þ 1:5
xkl
ua

� 	�5
3

ð6Þ

In Eq. (6), h (m) is the height of the hub from the ground, l (m) is the turbulence
length scale and z0 (m) is the roughness length. The spectral density values to be used
in Eq. (5) are sampled by evenly discretizing PD xkð Þ at Nx frequency points,
xk ¼ kDx, for a resolution Dx and a cutoff frequency xc ¼ NkDx.

3 The Operational Damage Localization Framework

The proposed method consists of two interrelated steps that take on (i) the acquisition of
sufficient information describing the healthy operational regime of the blade, during a
training stage; and (ii) the establishment of a robust hypothesis test, which provides
information on where a damage has occurred, during a diagnostics stage. The method
currently assumes the availability of pressure excitation and strain response data, but it can
be easily adapted to any type of available vibration excitation-response pairs. Both stages
are based on the effective identification of a representative number of blade’s vibration
modes and the subsequent estimation of a function that approximates the curvature of each
vibration mode’s shape. To this end, an estimation module is integrated to the method,
which accepts vibration excitation-response data recorded at distinct operational points
(either training, or diagnostics) and returns the curvature functions of the vibration modes.

3.1 The Estimation Module

During each operational point, a VARX model of the form

e t½ � þ
Xna

k¼1
Ake t � k½ � ¼

Xnb

m¼0
BmPw t � m½ � þ e½t� ð7Þ

is fitted to the data, where e t½ � is the s� 1½ � vector of recorded strains at the monitored
locations on the blade, Pw t½ � is the excitation pressure, Ak, Bm are the s� s½ � and s� 1½ �
coefficients of the associated AR and exogenous matrix polynomials, respectively, and
e½t� is a zero mean vector Gaussian white noise with covariance matrix Ree.

VARX model estimation is quite standard and it reduces to a typical linear
regression problem that is solved through ordinary linear least squares. The interested
reader is referred to Ljung [27] for further details. Upon availability of a VARX model,
the next step pertains to the derivation of its state-space realization [21, 28, 29]

n tþ 1½ � ¼ Fn t½ � þGPw t½ � þKe½t� ð8aÞ

e t½ � ¼ Hn t½ � þMPw t½ � þ e½t� ð8bÞ

Operational Damage Localization of Wind Turbine Blades 265



in which n t½ � is the s � na� 1½ � state vector and F, G, K, H, M are the matrices of the
state and the output equations, of appropriate orders. For the purposes of the current
study, only F and H are of particular interest. The former is of size s � na� s � na½ � and
corresponds to the block companion matrix of the VAR matrix polynomial. By solving
the eigenvalue problem of F

FP ¼ PK ð9Þ

the eigenvectors P and the eigenvalues K ¼ diagfk1; k2; . . .g are extracted and the
vibration modes of the blade are estimated [21]. Accordingly, “mode shape”-type
information at the measurement locations may be retrieved by U ¼ realfHPg.

Based on the calculated values for U and the boundary conditions of the blade, a
“mode shape”-type function f ðy; zÞ is approximated using biharmonic spline interpo-
lation [30] on a denser scattered data grid within the shape of the blade. Then, the
MSCs along the two directions can be computed by

Wj;y y; zð Þ � @2f y; zð Þ
@y2

¼ f yþ dy; zð Þ � 2f y; zð Þþ f y� dy; zð Þ
dy2

ð10aÞ

Wj;z y; zð Þ � @2f y; zð Þ
@z2

¼ f y; zþ dzð Þ � 2f y; zð Þþ f y; z� dzð Þ
dz2

ð10bÞ

with j ¼ 1; 2; . . .; n denoting vibration mode.

3.2 The Training Stage

It is herein assumed that excitation-response data can be acquired from the blade in a
distinct number of operational points s1; s2; . . .; sq, during the healthy state of the
blade. At each such point, a VARX model is identified and the MSCs of Eqs. (10a),
(10b) are extracted for n vibration modes. By denoting all available grid nodes by
k ¼ 1; 2; . . .; p (a unique grid node corresponds to any ðz; yÞ point on the surface of the
blade), a p� q½ � matrix is defined for every mode and along each direction as

D ¼
W½s1; 1� � � � W½sq; 1�

..

. . .
. ..

.

W½s1; p� � � � W½sq; p�

2
64

3
75 ð11Þ

where the bracket notation implies MSC information in a specific operational point and
at a specific node. Application of the PCA maps D by

K ¼ TD ð12Þ

where K 2 R
d�q and T 2 R

d�p is an orthogonal matrix. Both T and d are calculated by
the singular value decomposition of the covariance matrix of D [14, 19], while d\\p
corresponds to the number of all individual sources that affect the MSC under normal
operating conditions and its choice is, in general, not critical.
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The loss of information from the mapping of Eq. (12) can be quantified by trun-
cating the mapped data back to the original space

D
_ ¼ TTK ¼ TTTD ð13Þ

and by defining a residual matrix

R ¼ D� D
_ ð14Þ

each row of which, say ½R�l;�, evaluates the loss of information at a specific node. The
aim of the training stage is thus to estimate the matrix T, as well as to fit a statistical
distribution to ½R�l;�. For the current study it is assumed that the normal distribution is
sufficient in characterizing the row samples of R. It must be noted, however, that this
assumption is not restrictive; it just determines the outlier detection method to be used
during the diagnostics stage.

3.3 The Diagnostics Stage

Consider now the acquisition of excitation-response data at an arbitrary operational
point sI. As before, the MSCs associated with this point are extracted via the estimation
module, leading to a column vector w (for every mode and every direction considered)
of the form

w ¼ W sI; 1½ �;W sI; 2½ �; . . .;W½sI; p�ð ÞT ð15Þ

To decide if the new data comes from a healthy or a damaged state of the blade, the
vector w is appended to the matrix D to define

DI ¼ ½Dw� ð16Þ

Just as in the training stage, projection and remapping of DI implies

D
_

I ¼ TTTDI ð17Þ

and the updated residual matrix is

RI ¼ DI � D
_

I ð18Þ

The latter residual matrix contains one additional sample in every row. Thus, a
simple hypothesis test can be established, in order to determine if this new sample
belongs to the estimated normal distribution of that row, implying that the new
operational point comes from a healthy state of the blade, or if it does not, implying that
this point likely comes from a damaged state of the blade. Under the assumption of
normality, the adopted hypothesis test pertains to the classical Grubbs’ test, where the
statistic G is compared against the critical value Gcr at a certain significance level a.
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If G\Gcr the null Hypothesis (e.g. no damage) is adopted, otherwise the alternative
Hypothesis (e.g. damage) is adopted instead. Based on this test, a damage index is
defined in terms of the distance of the new sample from the mean value of the cor-
responding distribution

bk ¼
0; G\Gcr

½R�k;sI


 



rk
; G\Gcr

(
ð19Þ

for k = 1,2,…, p. According to Eq. (19), a non-zero damage index not only implies the
presence of the damage, but also indicates the exact position (or a set of positions),
where this damage has occurred. It must be emphasized that there is no guarantee that
under a specific damage the same index is “excited” in all monitored modes. Indeed a
damage may be sensitive in only a subset of modes, or may not be captured at all.

4 Results

The proposed damage localization method is now applied and assessed via the
small-scale wind turbine blade previously described. To this end, the blade is simulated
within the selected temperature range in its healthy state, as well as in distinct damage
states that pertain to both single and multiple damages. In every simulation, the
excitation consists of the same mean wind (12 m/s), ramp and gust components, and
different realizations of the turbulent component. All numerical values for the associ-
ated quantities of the excitation are adopted from Ou et al. [26, Table 1].

Using the sparse data grid of Figs. 1(c), Figs. 2 and 3 display the performance of
the damage index (Eq. (19)) when a 30% damage in location A is induced, for the first
six mode shapes of the blade and for MSCs calculated along both z and y axis. It is
apparent that the damage index has been activated only in the first mode, maintaining
almost negligible values in all other ones. Moreover, even if significant values are
returned for the first mode of the y axis (Fig. 3, top plot), these are located in very
narrow areas for away from the one of the actual damage. Such narrow areas are also

Fig. 2. Damage index for 30% stiffness reduction in location A (sparse grid, MSCs along z
direction).
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visible in the first mode of the z axis (Fig. 2, top plot) and they deserve further
attention, especially in respect to the underlying effects of the blade damage mecha-
nisms. In any case, it is, however, obvious that the damage index has successfully
detected and localized a significant area that lies exactly very close to the damage
location A. Following these results, only the first mode shape’s MSC along the z axis is
considered for further analysis and Fig. 4 illustrates the values of the damage index for
50% damage in location A. The damage has been successfully localized, while “false
alarm” areas are sufficiently suppressed.

The case of simultaneous damages at locations A and B is shown in Fig. 5, from
which similar remarks can be made. Interestingly, the damage index is activated along
the z axis before the two locations, a feature that is rather attributed to the finite
difference approximation of the MSCs. Notice also that difference damage levels may
mask damages in other locations. This is apparent in Figs. 5(b)–(c), where the damage
levels are different between locations and the index of the lower damage level is
masked by the one of the higher damage level. An adaptive strategy for handling such
cases, maybe through the use of structure-based information, is currently under
investigation.

Fig. 3. Damage index for 30% stiffness reduction in location A (sparse grid, MSCs along y
direction).

Fig. 4. Damage index for 50% stiffness reduction in location A (sparse grid, MSC along z
direction).
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5 Conclusions

A novel vibration-based damage detection and localization method for wind turbine
blades is outlined in this paper. The method accounts for environmental variability and
explores the behavior of the blade’s MSCs along distinct operational points. Based on an
estimation module, during which a VARX model is estimated and the MSCs are
extracted for a number of predefined modes, the proposed scheme constructs MSC data
matrices and applies the PCA, in order to estimate all individual sources of variability.
At a training level, this allows a statistical characterization of each individual node of the
blade in its healthy state. Then, during a diagnostics stage, new data is appended to each
node and the procedure is repeated using the quantities extracted at the training stage.
A simple and effective hypothesis test and an associated damage index assigned to each
node provide indications on whether damage has occurred, or if the new samples belong
to the estimated distributions, implying that the blade is still undamaged.

As the numerical results indicate, the method seems capable in identifying and
localizing both single and multiple damages at various levels. This encouraging per-
formance suggests further consideration of the method as a potential candidate for
damage localization under environmental variability. To this end, a number of
important issues are currently under systematic investigation by the authors. These
include the effects of data type and locations, the performance of the method in higher
modes, its adaptation to output-only schemes (through the use, for example, of simple
VAR models), the behavior of the underlying interpolation, as well as the validation of
the method through laboratory and field data.

(a) 30% stiffness reduction in A and both locations

(b) 50% stiffness reduction in location A and 30% stiffness reduction in location B

(c) 30% stiffness reduction in location A and 50% stiffness reduction in location B

(d) 50% stiffness reduction in both locations

Fig. 5. Damage index for multiple damages along the blade (MSCs along z direction).
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