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Abstract. It has been recently demonstrated that the local BOLD signals in
resting-state fMRI (rs-fMRI) can be captured for the white matter (WM) by
functional correlation tensors (FCTs). FCTs provide similar orientation infor-
mation as diffusion tensors (DTs), and also functional information concerning
brain dynamics. However, FCTs are susceptible to noise due to the low
signal-to-noise ratio nature of WM BOLD signals. Here we introduce a robust
FCT estimation method to facilitate individualized diagnosis. First, we develop
a noise-tolerating patch-based approach to measure spatiotemporal correlations
of local BOLD signals. Second, it is also enhanced by DTs predicted from the
input rs-fMRI using a learning-based regression model. We evaluate our trained
regressor using the high-resolution HCP dataset. The regressor is then applied to
estimate the robust FCTs for subjects in the ADNI2 dataset. We demonstrate for
the first time the disease diagnostic value of robust FCTs.

1 Introduction

Resting-state functional magnetic resonance imaging (rs-fMRI) has been widely
applied as the non-invasive imaging technique for studying the human brain functional
organization architecture. It was originally designed to detect the variations and
covariations of the blood-oxygenation-level-dependent (BOLD) signals mostly related
to the spontaneous neural activities [1]. The majority of rs-fMRI studies focus on the
gray matter (GM), while the rs-fMRI signals in white matter (WM) pathways are
treated as noise and artifacts. However, recent studies indicate that WM may also
contain meaningful BOLD signals, which carry potentially valuable information
complementary to GM-based rs-fMRI studies. Nevertheless, utilizing WM BOLD
signals for basic and clinical neuroscience studies is challenging, as WM has blood
vasculature that is much less denser, and also the BOLD signal in WM is significantly
weaker than in GM [2].

Despite the challenges, attempts have been made to investigate WM fMRI. Early
task-based fMRI studies have revealed consistent, reliable task activations in several
corpus callosal WM areas linking activated GM structures [3, 4]. Recently, Ding et al.

© Springer International Publishing AG 2017
G. Wu et al. (Eds.): Patch-MI 2017, LNCS 10530, pp. 65–73, 2017.
DOI: 10.1007/978-3-319-67434-6_8



[5] found WM functional anisotropic patterns using local functional connectivity
(FC) using rs-fMRI, which grossly resemble the anisotropic diffusivity reflected by
diffusion tensor imaging (DTI) in several major WM structures. They employed
functional correlation tensor (FCT) to capture such anisotropy, allowing functional
WM tractography based on rs-fMRI data of a small group of healthy subjects. How-
ever, it is challenging when applied to other large cohorts, owing to the limited
signal-to-noise ratio (SNR) of the WM BOLD signals. Moreover, the FCT estimation
method proposed in [5] does not leverage any prior knowledge of DT data that can help
overcome the SNR issue. Thus, a robust and reliable FCT estimation technique is
important for greater utility of WM anisotropy in neuroscience studies and also as
biomarkers for disease diagnosis.

In this paper, we propose a robust FCT estimation technique to address the
aforementioned issues. First, we develop a novel patch-based correlation measurement
strategy to suppress noise. Second, we propose to leverage the underlying WM fiber
orientation information as prior knowledge when calculating the FCT. This is based on
the finding that the dominant direction of the local WM FC anisotropic pattern,
extracted from rs-fMRI, is roughly consistent with that of the diffusion tensors
(DTs) from DTI [5] in major WM fiber structures. Thus, we can improve FCT esti-
mation by increasing weighting along the dominant directions of DTs. Ideally, the DTs
can be obtained from DTI [6]. In the case where DTI is not available, we employ a
learning based method to predict the DTs from the rs-fMRI data. This is achieved by
using random forest regression with cascaded learning strategy [7] to learn the
FC-to-DT mapping [8, 9] with a training dataset containing both rs-fMRI and DTI.
Thus, for a testing rs-fMRI, the learned mapping can be applied to predict DTs. Also
note that to consider between-tissue difference, the tissue probability features of
GM/WM/cerebrospinal fluid (CSF) from T1-weighted MRI are also used to guide the
FC-to-DT mapping process.

2 Materials and Methods

Two datasets are employed in this paper: (1) The Human Connectome Project
(HCP) [10] dataset and (2) the Alzheimer’s Disease Neuroimaging Initiative Phase-II
(ADNI2) dataset [11]. The HCP dataset contains high spatial and temporal resolution
rs-fMRI, multi-shell diffusion MRI data, and T1-weighted MRI for each subject. It is
hence suitable for training the regression model. The ADNI2 dataset focuses on cap-
turing the progression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD) with both rs-fMRI and T1 MRI. It contains data for early MCI patients,
which are used for validation of the improved FCTs in enhancing AD diagnosis.

2.1 Data Preprocessing

HCP Dataset: We randomly select 96 subjects from the dataset, which are all
scanned with a customized Siemens Skyra 3T scanner with the same imaging
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parameters (rs-fMRI: voxel size = 2 � 2 � 2 mm3, 1200 volumes; DTI: voxel
size = 1.25 � 1.25 � 1.25 mm3; T1: 0.7 � 0.7 � 0.7 mm3). Note that the first 30
frames in the rs-fMRI images are discarded for magnetization equilibrium. The first
600 frames (7 min and 12 s) of the remaining data are used to estimate FCTs. The
preprocessing of the rs-fMRI and DTI data is based on the HCP pipeline (https://github.
com/Washington-University/Pipelines), but modified for our requirements as below:

(1) The DTs are computed using dtifit in FSL [12]. An average b0 image is used for
inter-modality registration to rs-fMRI using flirt in FSL.

(2) The tissue probability maps for GM/WM/CSF segmentation are obtained from the
T1 MRI by using fast in FSL, and are linearly warped to each subject’s own
rs-fMRI space using flirt.

(3) FCT computation is performed in the native space of the rs-fMRI per subject. The
DTs are warped to each subject’s own rs-fMRI space.

(4) The minimally preprocessed rs-fMRI (in native space) are further band-pass fil-
tered (0:01� f � 0:08 Hz). No spatial smoothing is applied. All subjects’ head
motion profiles are checked to ensure that they are within an acceptable range.

ADNI2 Dataset: 39 early-stage MCI (eMCI) and 42 age- and gender-matched nor-
mal controls (NC) are included. The rs-fMRI (TR = 3000 ms, 140 frames, voxel
size = 3.3 � 3.3 � 3.3 mm3, eyes open) and T1 MRI (voxel size = 1 � 1 � 1 mm3)
are obtained using 3T Phillips Achieva scanners. Data preprocessing is conducted
based on SPM8 (https://www.fil.ion.ucl.ac.uk/spm/soft-ware/spm8/), REST (http://
www.restfmri.net/forum/REST_V1.8), and DPARSFA (http://rfmri.org/DPARSF) tool
boxes with similar procedures as those used for HCP data. T1 MRI is also segmented
and coregistered to each subject’s native rs-fMRI space. No subject’s head motion
exceeds 2 mm or 2°.

2.2 Regression Forest for FC-to-DT Mapping

We describe here how the DT-like tensors can be estimated from the HCP rs-fMRI
data, and how the learned DT-like tensors can be used to guide FCT estimation using
the ADNI2 rs-fMRI data. In the training stage, we extract features from randomly
selected 3D patches. Using the obtained patch feature vectors, the regression forest
method is trained to predict the corresponding DT at a center voxel of each patch. In the
testing stage, the trained regression model is applied patch-wise to the input image to
estimate DT-like tensors.

The feature vector is composed of two types of features: (1) local FC from rs-fMRI
and (2) tissue probability maps of WM/GM/CSF from T1 MRI. For rs-fMRI, we follow
[5] for computing the local FC as the correlation features. Specifically, we compute the
Pearson’s correlation coefficients between the center voxel and its neighboring voxels.
Note that, unlike [5], we also include voxels beyond the neighboring 26 voxels. For
each of the three probability maps obtained from T1 MRI, we use the 3D Haar-like
operators [9] to compute tissue-probability features. These two types of the features
extracted from the two modalities are then concatenated as a single feature vector.
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The process of training the regression forest generally follows the steps in [8, 9].
The major difference here is in the splitting function that is used to split the patch
samples in the current node into the left and right child nodes. The criterion of the
splitting function is based on one feature selected by exhaustive search within the
feature subset, which can maximize the information gain of the splitted groups of
training patches based on their corresponding target values. Specifically, the target DT
information can be formatted as a 3 � 3 symmetric matrix, which includes six effective
components and can be reshaped as a DT vector; therefore, the splitting function
produces six estimates of the information gain corresponding to the six elements of the
DT target, which are then averaged as an overall information gain to guide the splitting.
In this way, the forest method can gauge all the information in the target vector for
training the regressor. It is worth noting that, by combining tissue probability-based
features, DT-like tensors can be estimated with more accuracy, because the local FC
patterns in the GM and WM could be different, and accordingly the “FC-to-DT”
mapping for GM voxels could also be different from the “FC-to-DT” mapping for WM
voxels. Our experiment has shown that, by adding tissue-specific features, the testing
rs-fMRI data can generate much better DT-like tensor maps.

It is worth noting that we also incorporate the auto-context model [7, 9] as cascade
learning strategy for helping improving the mapping performance. Specifically, we
refine the mapping by cascading multiple stages of regressions. The first-stage
regressor uses only the correlation and tissue-probability features, while, in the sub-
sequent stages, the context features obtained from the DTs predicted in the previous
stage are also considered. Since each DT consist of six elements, the context features
are computed using Haar-like operators for each DT element and then concatenated
together.

2.3 FCT Estimation

We use the ADNI2 data to calculate the FCT with the guidance from the DTs predicted
from the rs-fMRI data with the learned mapping model (using the HCP rs-fMRI data).
For each voxel Vi from the input rs-fMRI data, the FCT Ti is represented using a 3 � 3
symmetric matrix, which is in the same mathematical form as the DT:

Ti ¼
Txx Txy Txz
Txy Tyy Tyz
Txz Tyz Tzz

2
4

3
5: ð1Þ

To estimate it, the first step is to compute the Pearson’s correlation coefficient Cij

between the center voxel Vi and each of its 26 neighboring voxels Vj. To increase the
robustness of such a process to the noise and artifacts in rs-fMRI, we follow a
patch-based strategy to implement the correlation measurement. Denote Qi and Qj as
the two k � k � k patches centered at voxel Vi and Vj, respectively. Here, we set k ¼ 3
which suits the spatial resolution of the mostly-adopted rs-fMRI data such as in the
ADNI dataset. The correlation coefficient Cij is therefore given as
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Cij ¼
Pk

x¼1

Pk
y¼1

Pk
z¼1 b x; y; zð Þfcorr Qi x; y; zð Þ;Qj x; y; zð Þ� �

Pk
x¼1

Pk
y¼1

Pk
z¼1 bðx; y; zÞ

; ð2Þ

where Q x; y; zð Þ is the voxel at location x; y; zð Þ of the patch Q, fcorrðVi;VjÞ is the

Pearson’s correlation comparing the time courses of Vi and Vj, b x; y; zð Þ ¼
exp � x�lð Þ2 þ y�lð Þ2 þ z�lð Þ2

2q2

� �
is the Gaussian kernel used for weighting the correlations,

with l ¼ ðkþ 1Þ=2 and q as a scaling coefficient. In our study, q2 ¼ 1:25 gives the
optimal results.

Next, we compute a unit vector nij ¼ fnij;1; nij;2; nij;3g describing the direction from
the center voxel Vi to each of its neighbors Vj, the dyadic tensor Dij is given as

Dij ¼
nij;1 � nij;1 nij;1 � nij;2 nij;1 � nij;3
nij;2 � nij;1 nij;2 � nij;2 nij;2 � nij;3
nij;3 � nij;1 nij;3 � nij;2 nij;3 � nij;3

0
@

1
A: ð3Þ

Third, the orientation information derived from the DT-like tensors is calculated by
applying an orientation distribution function (ODF) [13] to obtain the weighting

function b nij
� � ¼ 1= 4pZ Bj j12 nTijB

�1nij
� �1

2

� �
, where Z is a normalization constant and

B is the learned DT represented using a 3 � 3 symmetric matrix.
Finally, we compute the robust FCT Ti by summing up all the dyadic tensors Dij

with their respective correlation coefficients Cij and corresponding weighting coeffi-
cients b nij

� �
:

Ti ¼
X

j
CijDij bðnijÞ: ð4Þ

In this way, the dyadic tensors along with the main directions of DT-like tensor
have higher weights in b nij

� �
than those at other directions. The overall framework of

FCT computation is summarized in Fig. 1.

Fig. 1. The overall pipeline for robust FCT computation.
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3 Experimental Results

We demonstrate the validity of our proposed framework by evaluating both the learned
DT-like tensors and the final FCTs. For the HCP dataset that is used to learn the
regression model, we first show the accuracy of the learned DT-like tensors by com-
paring them with the actual DTs derived from DTI. This is done using 4-fold
cross-validation on the HCP dataset. The parameters for training the regression model
are identical in all folds. From each rs-fMRI data, we extract 20000 patches with the
size of 11 � 11 � 11 in voxels. The number of correlation features for each patch is
set to be 1000, and the number of tissue-probability features for each segmented ROI is
also set to be 1000. The trained regression forest has 20 trees, and the minimum sample
number for the leaf node is set as 8. Note that when implementing the cascaded
learning strategy, we connect three regression models. The maximum of the tree depth
is 30 in the first regression model as it is trained without context features, and 33 for
each of the later stages.

We evaluate the similarity between the predicted DTs in different stages of the
cascade and the actual DTs by measuring Pearson’s correlations of their fractional
anisotropy (FA) maps. The overall correlation coefficients without the cascade is 0.877
± 0.015, which is improved to 0.894 ± 0.015 with the cascade. This shows the
validity of the mapping and the effectiveness of the cascade. Furthermore, Fig. 2 shows
the FA maps computed from the predicted DTs using the two different configurations,
as well as the actual FA map from DTI for reference.

In the second experiment, we show the generalizability of the trained regression
model (based on the HCP dataset), by directly applying it to the ADNI2 dataset for
robust FCT estimation. Figure 3 shows the FA maps using the original FCT calculation
method proposed in [5] and using our proposed FCT estimation method. It can be
observed that noise is significantly reduced with our method, and the estimated FA map
is more reasonable, i.e., with high FA values in the major WM structures (such as the
genu and splenium parts of corpus callosum) compared with the FA in the GM regions.

In the third experiment, we further evaluate the validity of our method by applying
the resultant FCTs from both eMCI and NC subjects in ADNI2 as features for early AD

Fig. 2. The FA maps from the DTI-like tensors and actual DTI (used as reference).
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diagnosis. Specifically, given the FA maps computed in the native space from the FCTs
based on rs-fMRI of ADNI2, SPM8 is used to non-rigidly register them to the standard
MNI-152 space. Next, an in-house WM fiber bundle probability template, consisting of
359 major WM segments linking 359 pairs of Automated Anatomical Labeling
(AAL) brain regions and generated based on the DTI data of 500 subjects in HCP, is
applied to each subject’s registered FA map. The fiber-probability-weighted average
FA and the weighted variance of FA values in each of the 359 WM segments are
computed as features for subsequent classification. In this way, each subject has two
359-by-1 feature vectors (corresponding to the weighted mean FA and the weighted FA
variance obtained from FCTs). LASSO-based feature selection [14] is conducted to the
two feature vectors separately. Two support vector machine (SVM) classifiers [15] are
then trained, respectively. The prediction scores from the two classifiers are fused to
give a final classification result. Leave-one-out cross-validation is used to evaluate
classification performance.

Experiments show that using FCTs from rs-fMRI, even extracted from only several
major WM structures and fed into a simple classifier, the accuracy (ACC) and the
area-under-curve (AUC) for eMCI classification still reach the satisfactory level (i.e.,

Fig. 3. The FA maps of the obtained FCTs using the method of Ding et al. (left) and our
proposed method (right).

Fig. 4. The ROC curve for the eMCI-NC classification using Ding et al.’s method and our
proposed method, respectively.
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72.84% and 73.63%, respectively). On the other hand, if using the original FCT
calculation method [5], the performance is relatively low (i.e., ACC = 67.90% and
AUC = 64.53%). The improvements by our proposed FCT calculation method are also
visualized using ROC curves in Fig. 4.

4 Conclusion

In this work, we have presented a novel framework for robust FCT estimation. First,
based on high-resolution rs-fMRI and DTI data, we employ regression forest for
predicting DTs by using both local temporal correlation features from rs-fMRI and
tissue-probability features from T1 MRI. Then, the predicted DTs are further used as a
prior to improve FCT estimation. In the experiments, we have also demonstrated that
the resulting FCTs can be used as features for diagnosis of eMCI.
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