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Abstract. The current gold standard for interpreting patient tissue
samples is the visual inspection of whole–slide histopathology images
(WSIs) by pathologists. They generate a pathology report describing the
main findings relevant for diagnosis and treatment planning. Searching
for similar cases through repositories for differential diagnosis is often
not done due to a lack of efficient strategies for medical case–based
retrieval. A patch–based multimodal retrieval strategy that retrieves sim-
ilar pathology cases from a large data set fusing both visual and text
information is explained in this paper. By fine–tuning a deep convo-
lutional neural network an automatic representation is obtained for the
visual content of weakly annotated WSIs (using only a global cancer score
and no manual annotations). The pathology text report is embedded
into a category vector of the pathology terms also in a non–supervised
approach. A publicly available data set of 267 prostate adenocarcinoma
cases with their WSIs and corresponding pathology reports was used to
train and evaluate each modality of the retrieval method. A MAP (Mean
Average Precision) of 0.54 was obtained with the multimodal method in
a previously unseen test set. The proposed retrieval system can help in
differential diagnosis of tissue samples and during the training of pathol-
ogists, exploiting the large amount of pathology data already existing
digital hospital repositories.

1 Introduction

Health professionals often take decisions based on previously acquired textbook
knowledge and their personal experience but rarely search for past cases to
reinforce their medical assessment. Retrieval systems are developed to better
exploit the large amount of digital medical data contained in hospital repositories
for clinical decision support [1]. In retrieval systems, a query can be performed
using text information, images or both (multimodal), resulting in a list of relevant
cases ranked according to their similarity with the query case [2]. The integration
of these systems into the clinical workflow remains a challenge [3].

In [4], a multimodal radiology case–based retrieval benchmark was reviewed.
The cases included radiologic RadLex terms automatically extracted from radi-
ology reports and 3D patient scans. Image retrieval systems have also been pro-
posed in the growing field of digital pathology [5–7]. Nevertheless, multimodal
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case–based retrieval strategies for histopathology are rare, even though they
could be a helpful tool for pathologists during training and to perform differ-
ential diagnosis. To our knowledge, only one multimodal retrieval system fusing
histopathology image patches and semantics exists [5]. However, this method did
not explore full pathology reports (since it was based on manual data annota-
tions) and included only isolated image patches.

Whole Slide Image (WSI) scanning started to be applied at a large scale only
recently, and a full digitization of pathology departments in hospitals will result
in large scale digital WSI repositories [8]. Pathologists usually select candidate
regions of interest (ROIs) in the WSIs at a low resolution and proceed to evaluate
the selected regions in high–power fields. Currently available retrieval systems
for histopathology are designed with either small tissue arrays, ROIs from WSIs
or individual patches as visual input. To the best of our knowledge, there are no
methods in literature proposed for WSI retrieval.

Hand–crafted visual features, such as texture and architecture features, are
commonly used to represent images in retrieval systems [9]. In the past few
years, deep learning (DL) methods have obtained a better performance for visual
content description in comparison with traditional hand–crafted features in this
regard [10–12]. In this paper, we propose a content–based retrieval system that
uses the output features from a fine–tuned DL model, trained to classify cancer
gradings in histopathology images, to represent the visual features from WSIs.
An unsupervised analysis of the pathology report content was used to train the
DL model and not time–consuming manual annotations from pathologists in
the WSIs. This enables the reuse of already existing pathology cases for a more
integral comparison of new cases to previously assessed ones. A search can in
this case be a full case with WSIs and a report or only one of the two, giving
several options for browsing.

2 Methods

2.1 Data Set

The Cancer Genome Atlas (TCGA) contains a large collection of digital pathol-
ogy WSIs and their corresponding pathology reports [13]1. Cases with prostate
adenocarcinoma (PRAD), the second most common cancer in men, are avail-
able [14]. The Gleason grading is the standard evaluation of histopathologi-
cal samples from prostate cancer patients [15]. 267 cases (WSIs and pathology
reports) from prostatectomies of patients with prostate adenocarcinoma (PRAD)
were included in this work, aiming at having balanced Gleason scores. The Glea-
son score (6–10) given to each WSI was manually obtained from the reports. The
number of cases for each Gleason score were: G6 35, G7 87, G8 53, G9 83, G10
9. The cases were randomly divided as follows: 162 WSIs for training, 54 WSIs
for validation and 51 WSIs for testing (approx. 60%–20%–20%). The pathology

1 http://cancergenome.nih.gov/, as of 11 June 2017.
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report length and content varied depending on the pathology center that gen-
erated them and the patient case. The hematoxylin and eosin stained WSIs do
not contain any manual annotations (Fig. 1).

Gleason score 10 
whole-slide image patches 

Gleason score 6 
whole-slide image patches 

benign malignant 

Fig. 1. Sample prostatectomy whole–slide images and patches. Far right: WSI and
patches corresponding to the lowest Gleason score, G6. Far left: WSI and patches with
the highest Gleason score, G10.

2.2 Whole–Slide Image Representation

A Convolutional Neural Network (CNN) is a specialized type of neural network
that can learn abstract and complex representations of visual data using a large
number of training samples [16]. Manually annotating WSIs in order to obtain
exclusively tumor patches from the WSIs, is a time–consuming and challenging
task. In [17], it was shown that a CNN can be successfully trained to classify
WSIs for prostate cancer grading with a fully automatic sampling of weakly
labeled patches i.e. only using the global Gleason score. A subset of 5000 random
patches were initially sampled per WSI. The number of cells in tissue increases
in the presence of tumors, which results in dark blue areas in the WSI due to
the eosin staining of cell nuclei. The sampled patches were subsequently ranked
according to the energy of the blue–ratio (BR), which is a feature that can be
closely related to cell density. Only the top 2000 patches from each WSI are
considered for characterizing the tissue samples.

To encode the visual features of every WSI, the CNN features generated from
the fine–tuned deep CNN network for prostate Gleason grading classification
were extracted from the patches. The network architecture for pathology images
presented in [17] was fine–tuned to classify five Gleason scores (6–10) instead of
high vs. low cancer grading. In the end, 1024 dimensional feature vectors from
the layer previous to the class probability output were extracted from each patch
with the trained network.

Let Sa, Sb be the sets of selected RGB patches from two WSI at 40× reso-
lution, in our setup |Sa| = |Sb| = 2000. Let f(p) ∈ R

1024 be the function that
takes a patch as input and computes the forward pass through the deep learning
network up to the previous–to–last layer. For two patches pk ∈ Sa, pl ∈ Sb we
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have vk = f(pk) and vl = f(pl), as the two CNN patch codes (or embeddings).
The similarity between two patches is computed using the cosine similarity:

simCNN (vk, vl) =
∑1024

i=1 vk
i vl

i√∑1024
i=1 vk

i

√∑1024
i=1 vl

i

The visual similarity between the two slides is calculated adding all the similar-
ities of the individual patches from each WSI:

simV(Sa, Sb) =
2000∑

k=1

2000∑

l=1

simCNN (vk, vl)

The cosine similarity is then computed between the vectors of a test query image
and the vectors corresponding to each of the training WSIs. This results in a
2000 × 2000 similarity matrix for each pair of cases, which is added up to obtain
a final visual similarity score.

2.3 Pathology Report Representation

Pathology reports contain information not only from the tissue samples but also
from the surgical procedure performed to remove the tissue. This means that
information not present in the histopathology images, such as tumor invasion
to other body parts, is reported as well. Five criteria of diagnostic relevance
for PRAD cases selected by a pathologist in addition to the Gleason score were
extracted manually from the pathology reports. The selected criteria include the
TNM classification of malignant tumors, with T (0–4) corresponding to the size
of the tumor and invasion to nearby tissue and N (0–1) was marked as positive
if lymph nodes were involved. Additionally, if the case showed angiolymphatic
invasion of the tumor, perineural invasion or if the seminal vesicles were involved
then each of these criteria was represented as 1, or 0 if absent. In cases with
missing data, the lowest score was given to the corresponding criteria as their
absence from the report could have signaled that it was not present during the
interpretation. In the experiments, the Gleason score was excluded from the
input criteria for the retrieval system.

Extracting the data from the reports automatically is not straightforward,
as many regular expressions need to be formulated. For example, it is common
to encounter the same grading written as Gleason Score: 9, Primary pattern:
5, Secondary pattern: 4, score= 5+4, ... This restricts the use of bag of words
models because the pathology reports are not standardized. A more general
approach was implemented to make use of unsupervised distributed models for
embedding text content. We propose the representation of the text content from
each report, embeddeding an n–dimensional space using an unsupervised distri-
bution to a paragraph vector model of doc2vec [18]. Doc2vec is a suitable model
for variable–length documents, as is the case of the pathology reports in the
data set that were embedded into a 100 dimensional space. The text similarity
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was computed with the cosine similarity between the case embeddings and the
similarity to the query cases was ranked according to this score. The proposed
strategy can also be used for different types of tissue and different pathologies.

2.4 Multimodal Fusion

Let Rv, Rt, be the ranking for each query case, sorting the visual and text sim-
ilarities. The generated late multimodal fusion rank R ranks the most relevant
cases for the query by weighting the visual and textual similarities:

R = (1 − α)Rv + αRt

In Fig. 2 a flowchart of the full approach is shown.

Fig. 2. Flowchart of the full multimodal approach. The pathology reports are embed-
ded using doc2vec. The WSIs are represented as CNN–based features from automat-
ically selected patches. A late fusion is performed between the similarity scores from
both queries, obtaining the final multimodal ranking.

3 Experimental Results

The four retrieval methods for pathology cases presented in this paper were
tested and compared. A retrieved case was considered relevant if the Gleason
score from the case matched the query. To evalute the results, retrieval metrics
from the NIST (US National Institute of Standards and Technology) evaluation
procedures used in the Text Retrieval Conference (TREC) [19] were consid-
ered. The following five evaluation metrics were selected: mean average preci-
sion (MAP), geometric mean average precision (GM-MAP), binary preference
(bpref), precision after 10 cases retrieved (P10) and precision after 30 cases
retrieved (P30). The performance of each method is shown in Fig. 3.
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The method WS CNN Codes used only visual features obtained from a fine–
tuned CNN for Gleason grading classification, with 2000 selected patches at a
40× resolution per WSI. The model was trained using the Caffe framework and
took 15 h to train with 2 NVIDIA Tesla K80 GPUs.

For text representation we tested two approaches, the first (RepCateg) com-
puted a ranking based on the similarity of the report categories manually
extracted from the pathologist reports, without including the Gleason score.
The second text approach (Rep2Vec) was based on the unsupervised distrib-
uted representation of doc2vec [18]. Including or exculding information from the
report regarding the Gleason grading was unsupervised. The gensim library was
used with the default parameters and a total vocabulary of 3730 words, obtain-
ing 100 dimensional vectors for each report. The ranking was generated using
the cosine similarity between the doc2vec report representation.

The proposed multimodal approach (Multimodal) retrieved similar
histopathology cases fusing the ranking generated by the deep CNN represen-
tation of the WSIs and the ranking from the embedded pathology report text
using doc2vec. 10 values of α were explored in the range of [0, 1]. The best scores
were obtained by the multimodal approach with α = 0.3.

(a) Evaluation results of four tested case–based re-
trieval approaches.
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Fig. 3. Results from the text, visual and multimodal retrieval approaches.

4 Discussions

A multimodal case–based retrieval approach for histopathology cases based on
visual features obtained with deep learning is presented in this paper with an
automatic description of pathology reports. The main contributions are:

– This is the first multimodal histopathology strategy fusing visual features
from WSIs and text embeddings of pathology reports, resulting in a novel
case–based retrieval system.

– The method uses visual deep learning features for retrieval, representing
WSIs, generated with a CNN trained to classify cancer gradings.

– The visual CNN model was trained with weakly annotated data (global
Gleason scores from WSIs, without any manual annotations), and the free–
form text embeddings obtained with an unsupervised approach.
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The retrieval methods were trained, evaluated and compared on a publicly avail-
able test set. The visual–only approach (WS CNN codes) had better scores than
both of the two text–only approaches: RepCateg, using 5 report criteria man-
ually extracted and Rep2Vec, an unsupervised report to vector representation.
This could be the result of training the visual representation of the cases with
the 5 Gleason scores classes used to evaluate the relevance of the retrieved cases.
Moreover, there is an intensive similarity computation among the CNN featires
of the query case versus the remaining cases in the data set. When comparing
both text–only approaches, embedding full–text reports to a vector, Rep2Vec,
resulted in higher retrieval scores than RepCateg. Rep2Vec was able to better
mimic the defined relevance of the retrieved cases, mainly because the selected
criteria by a pathologist in the reports are only indirectly linked to the Glea-
son score. These criteria are focused on the surrounding organs and metastasic
events which can be considered for another relevance measure of the cases.

The methods were trained and tested with images from several scanners
and with no staining normalization. Adding such a normalization can improve
performance. The TCGA data and the manual categories extracted from the
reports are available for a fully reproducible setup of the proposed strategy. The
multimodal fusion tested in this paper is simple as this is the very first example of
retrieval fusing real medical reports and WSIs. More advanced fusion techniques
can be implemented in a straightforward manner.

Most of the computations can be performed offline and a full case query can
be performed in less than 8 s once the patches are extracted. The unsupervised
retrieval system strategy was successful in obtaining cases with the same cancer
grading even if these scores were not explicitly used in the text representations.
The proposed retrieval system could be implemented, with minor modifications,
for other organs and diseases. The task of assigning cancer gradings is strongly
subjective. The cases retrieved could be better exploited to harmonize pathology
case assessment and as a valuable resource for pathologists in training without
depending on expensive and time consuming manual annotations.
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