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Preface

Patch-based techniques play an increasingly important role in the medical imaging field,
with various applications in image segmentation, image de-noising, image super-
resolution, super-pixel/voxel-based analysis, computer-aided diagnosis, image regis-
tration, abnormality detection, and image synthesis. Dictionaries of local image patches
are increasingly being used for example in the context of segmentation and
computer-aided diagnosis. Patch-based dictionaries are commonly used in conjunction
with pattern recognition techniques to model complex anatomies in an accurate and easy
way. The patch-level representation of image content is between the global image and
localized voxels. This level of representation is shown to be successful in areas such as
image processing (e.g., enhancement and de-noising) as well as image feature extraction
and classification (e.g., convolution kernels and convolutional neural networks).

The main aim of this workshop series is to help advance scientific research within
the broad field of patch-based processing in medical imaging. It focuses on major
trends and challenges in this area, and it presents work aiming to identify new
cutting-edge techniques and their use in medical imaging. We hope that this workshop
series will become a new platform for translating research from bench to bedside and
for presenting original, high-quality papers on innovative research and development in
the analysis of medical image data using patch-based techniques.

Topics of interests include but are not limited to patch-based processing dedicated
to:

• Image segmentation of anatomical structures or lesions (e.g., brain segmentation,
cardiac segmentation, MS lesions detection, tumor segmentation)

• Image enhancement (e.g., de-noising or super-resolution dedicated to fMRI, DWI,
MRI, or CT)

• Computer-aided prognostic and diagnostic (e.g., for lung cancer, prostate cancer,
breast cancer, colon cancer, brain diseases, liver cancer, acute disease, chronic
disease, osteoporosis)

• Mono and multimodal image registration
• Multi-modality fusion (e.g., MRI/PET, PET/CT, projection X-ray/CT, X-ray/

ultrasound) for diagnosis, image analysis, and image-guided interventions
• Mono and multi modal image synthesis (e.g., synthesis of missing a modality in a

database using an external library)
• Image retrieval (e.g., context-based retrieval, lesion similarity)
• Dynamic, functional, physiologic, and anatomic imaging
• Super-pixel/voxel-based analysis in medical images
• Sparse dictionary learning and sparse coding
• Analysis of 2D, 2D+t, 3D, 3D+t, 4D, and 4D+t data.

An academic objective of the workshop is to bring together researchers in medical
imaging to discuss new techniques using patch-based approaches and their use in



clinical decision support and large cohort studies. Another objective is to explore new
paradigms in the design of biomedical image analysis systems that exploit the latest
results in patch-based processing and exemplar-based methods. MICCAI-PMI 2017
featured a single-track workshop with keynote speakers, technical paper presentations,
poster sessions, and demonstrations of state-of-the-art techniques and concepts that are
applied to analyzing medical images.

We received a total of 26 submissions. All papers underwent a rigorous
double-blind review process by at least 2 members (mostly 3 members) of the Program
Committee composed of 38 well-known experts in the field. The séléction of the papers
was based on significance of results, technical merit, relevance, and clarity of pre-
sentation. Based on the reviewing scores and critiques, the 18 best papers were
accepted for presentation at the workshop and chosen to be included in the present
proceedings.

Authors of selected papers will be invited to submit an extended version to the
PatchMI Special Issue in the Computerized Medical Imaging and Graphics Journal.

July 2017 G. Wu
B. Munsell

Y. Zhan
W. Bai

G. Sanroma
P. Coupé
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4D Multi-atlas Label Fusion Using
Longitudinal Images

Yuankai Huo1(&), Susan M. Resnick2, and Bennett A. Landman1

1 Electrical Engineering, Vanderbilt University, Nashville, TN, USA
yuankai.huo@vanderbilt.edu

2 Laboratory of Behavioral Neuroscience, National Institute on Aging,
Baltimore, MD, USA

Abstract. Longitudinal reproducibility is an essential concern in automated
medical image segmentation, yet has proven to be an elusive objective as
manual brain structure tracings have shown more than 10% variability. To
improve reproducibility, longitudinal segmentation (4D) approaches have been
investigated to reconcile temporal variations with traditional 3D approaches. In
the past decade, multi-atlas label fusion has become a state-of-the-art segmen-
tation technique for 3D image and many efforts have been made to adapt it to a
4D longitudinal fashion. However, the previous methods were either limited by
using application specified energy function (e.g., surface fusion and multi model
fusion) or only considered temporal smoothness on two consecutive time points
(t and t + 1) under sparsity assumption. Therefore, a 4D multi-atlas label fusion
theory for general label fusion purpose and simultaneously considering temporal
consistency on all time points is appealing. Herein, we propose a novel longi-
tudinal label fusion algorithm, called 4D joint label fusion (4DJLF), to incor-
porate the temporal consistency modeling via non-local patch-intensity
covariance models. The advantages of 4DJLF include: (1) 4DJLF is under the
general label fusion framework by simultaneously incorporating the spatial and
temporal covariance on all longitudinal time points. (2) The proposed algorithm
is a longitudinal generalization of a leading joint label fusion method (JLF) that
has proven adaptable to a wide variety of applications. (3) The spatial temporal
consistency of atlases is modeled in a probabilistic model inspired from both
voting based and statistical fusion. The proposed approach improves the con-
sistency of the longitudinal segmentation while retaining sensitivity compared
with original JLF approach using the same set of atlases. The method is
available online in open-source.

1 Introduction

An essential challenge in volumetric (3D) image segmentation on longitudinal medical
images is to ensure the temporal consistency while retaining sensitivity. Many efforts
have been made to incorporate the temporal dimension into volumetric segmentation
(4D). One family of 4D methods is to control the longitudinal variations during
pre/post-processing [1]. Another family is to incorporate the longitudinal variations
within segmentation methods [2]. In the past decade, multi-atlas segmentation
(MAS) has been regarded as de facto standard segmentation method in 3D scenarios

© Springer International Publishing AG 2017
G. Wu et al. (Eds.): Patch-MI 2017, LNCS 10530, pp. 3–11, 2017.
DOI: 10.1007/978-3-319-67434-6_1



[3–5]. To improve the performance of 4D MAS for longitudinal data, several previous
avenues have been explored [6–8]. However, these methods are restricted on surface
labeling application, availability of multi-modal data, or only considering two con-
secutive time points (t and t + 1) while assuming the l1-norm sparsity of fusion
weights. When more than two longitudinal target images are available, the more
comprehensive strategy is to consider the spatial smoothness on all time points (Fig. 1).

In this paper, we propose a novel longitudinal label fusion algorithm, called 4D
joint label fusion (4DJLF) to incorporate the probabilistic model of temporal perfor-
mance of atlases to the voting based fusion. Briefly, we model the temporal perfor-
mance of atlases on all time points in a probabilistic model and incorporate the leading
and widely validated joint label fusion (JLF) framework.

2 Theory

2.1 Model Definition

A target image be represented by Tt; t 2 1; 2; . . .; k½ �. 4DJLF considers all available
longitudinal target images, T ¼ T1; T2; . . .; Tkf g where Tt represents a target image.
First, all longitudinal target images are registered to the first-time point using rigid
registration [9]. n pairs of atlases (one intensity atlas and one label atlas) A ¼
fA1;A2; . . .;Ang are used in the MAS. Then, we register the n intensity atlases to k
longitudinal target images to achieve m ¼ n� k registered pairs of atlases. For
mathematical convenience, we concatenate all registered atlases (based on the sequence
in T) to derive m registered intensity atlases set I and m registered label atlases set S as

Fig. 1. An example of the inconsistency of 3D joint label fusion (JLF) segmentation across
longitudinal multiple scans from the same subject. 4DJLF is proposed to improve the consistency
while maintain the sensitivity.

4 Y. Huo et al.



I ¼ fI 1ð Þ
1 ; . . .; I 1ð Þ

n ; I 2ð Þ
nþ 1; . . .; I

2ð Þ
2n ; � � � ; I kð Þ

2nþ 1; . . .; I
kð Þ
m g

S ¼ fS 1ð Þ
1 ; . . .; S 1ð Þ

n ; S 2ð Þ
nþ 1; . . .; S

2ð Þ
2n ; � � � ; S kð Þ

2nþ 1; . . .; S
kð Þ
m g

ð1Þ

where the superscripts “(∙)”indicate to which target image that atlas was registered.
The k longitudinal target images provide m registered atlases, where each atlas

corresponds to one time point (target image). The consensus segmentation �S for voxel x
on tth target image is �St xð Þ ¼ Pm

i¼1 w
t
i xð ÞSi xð Þ ¼ wtðxÞ � SðxÞ,where wt xð Þ ¼

fwt
1 xð Þ;wt

2 xð Þ; . . .;wt
mðxÞg are spatially varying weights restricted by

Pm
i¼1 w

k
i xð Þ ¼ 1.

Adopting [10], the error dtiðxÞ made by atlas Si on tth target image in the binary
segmentation is dti xð Þ ¼ StT xð Þ � Si xð Þ; where StT xð Þ is the hidden true segmentation.
dti xð Þ ¼ 0 indicates the right decision is made, while dti xð Þ ¼ �1 or 1 means the wrong
decision is made. Then, our purpose is to find a set of voting weights wt xð Þ for each
target image Tt that minimize the total expected error between the automated labeled
image �Sk and hidden true StT , given by the following energy function

Edt1 xð Þ;...;dtm xð Þ StT xð Þ � �St xð Þ� �2jT; I
h i

¼ Pm
i¼1

Pm
j¼1 w

t
i xð Þwt

j xð ÞEdti xð Þdtj xð Þ dti xð Þdtj xð ÞjT1; . . .; Tk; I1; . . .; Im
h i

¼ wtT
x M

t
xw

t
x

ð2Þ

where wtT
x is the transpose of vector wt

x at voxel x. M
t
x is a m� m pairwise dependency

matrix that Mt
x i; jð Þ ¼ pðdti xð Þdtj xð Þ ¼ 1jT1; . . .; Tk; I1; . . .; ImÞ. Finally, the estimated

weights ŵt
x, which is our target, is derived by ŵt

x ¼ argmin
wt

x

wtT
x ðMt

x þ aIÞwt
x:

2.2 JLF-Multi

As a baseline, we consider to use simple temporal model (JLF-Multi) to perform the 4D
label fusion. We assume that each target image in T contributes equally to the label
fusion for target Tt. In this case, Mt

x i; jð Þ is can be approximated as

Mt
x i; jð Þ /

X
y2BðxÞ �jTt yð Þ � Ii N i yð Þð Þj � jTt yð Þ � IjðN j yð ÞÞj ð3Þ

where the R improves the spatial smoothness by adding multiple voxels y in a patch
neighborhood BðxÞ (e.g., 2� 2� 2 by default), and the non-local patch searching is
conducted within a search neighborhood N yð Þ (e.g., 3� 3� 3 by default).

2.3 4DJLF

In JLF-Multi, each longitudinal target image contributes equally to the 4D label fusion.
However, this assumption is not always valid. Herein, we propose the new dependency
matrix €Mt

x i; jð Þ by adaptively evaluating the longitudinal raters’ performance on any
target image patches using a probabilistic model

4D Multi-atlas Label Fusion Using Longitudinal Images 5



€Mt
x i; jð Þ ¼ p Tq xð Þ; Tr xð ÞjTt xð Þ� �

�
X

y2B xð Þ Tq yð Þ � I qð Þ
i N i yð Þð Þ

���
��� � Tr yð Þ � I rð Þ

j N j yð Þ� ����
���

� �
ð4Þ

where the new dependency matrix €Mt
x i; jð Þ not only evaluates the similarity between

atlases and target images but also considers the longitudinal similarities between target
images. The “ðqÞ” and “ðrÞ” indicate which atlases that Ii and Ij were registered to and
the value of q and r are derived from Eq. (1). Then, probability of using the raters
(atlases) from Tq and Tr given target Tt is modeled in a conditional probability

p Tq xð Þ; Tr xð ÞjTt xð Þ� � ¼ p TqðxÞjTtðxÞ
� � � p TrðxÞjTtðxÞð Þ ð5Þ

by assuming Tq and Tr are conditionally independent, we have

p TqðxÞjTtðxÞ
� �� � ¼ exp b �

X
y2B xð Þ

Tq yð Þ � Tt yð Þ�� ��
Tq yð Þ � I qð Þ

i N i yð Þð Þ
���

���

0
B@

1
CA ð6Þ

p TrðxÞjTtðxÞð Þð Þ ¼ exp b �
X

y2B xð Þ
Tr yð Þ � Tt yð Þj j

Tr yð Þ � I rð Þ
j N j yð Þ� ����

���

0
B@

1
CA ð7Þ

where b is a sensitivity coefficient and is empirically set to 100 in the experiments.

2.4 Relationship Between 4DJLF to JLF

The proposed 4DJLF theory is a generalization of JLF. If the b is set to a large number,
the p TqðxÞ; TrðxÞjTtðxÞ

� �
will be large for atlases from other time points, but still equals

to 1 for the atlases from the target image itself. Therefore, the weights of the atlases
from other time points will be close to zero and essentially only the atlases registered to
the target time Tt are considered. In that case, 4DJLF degenerates to JLF. To see the
relationship in Fig. 2, we redefine the right side of Eq. (5).

Cx i; jð Þ ¼
X

y2B xð Þ � Tq yð Þ � I qð Þ
i N i yð Þð Þ

���
��� � Tr yð Þ � I rð Þ

j N j yð Þ� ����
��� ð8Þ

Then, we define a matrix Up;q as the following

Ux q; rð Þ ¼
Cx i0; j0ð Þ Cx i0; j0 þ 1ð Þ

Cx i0 þ 1; j0ð Þ Cx i0 þ 1; j0 þ 1ð Þ � � � Cx i0; j0 þ kð Þ
Cx i0 þ 1; j0 þ kð Þ

..

. . .
. ..

.

Cx i0 þ k; j0ð Þ Cx i0 þ k; j0 þ 1ð Þ � � � Cx i0 þ k; j0 þ kð Þ

2
6664

3
7775 ð9Þ

6 Y. Huo et al.



where i0 ¼ q� 1ð Þ � kþ 1 and j0 ¼ r � 1ð Þ � kþ 1. For simplify, we assume three
longitudinal target images are used and the first time point is the target image (upper

row in Fig. 2). We rewrite the p TqðxÞjTtðxÞ
� �� �

as px
Tq
Tt

� �
to visualize the €Mt at the first

time point (t ¼ 1 and the subscript x is omitted for simplicity). Since p T1
T1

� �
¼ 1, the

€M1 is further simplified to

€M1 ¼
U 1; 1ð Þ U 1; 2ð Þp T2

T1

� �
U 1; 3ð Þp T3

T1

� �

U 2; 1ð Þp T2
T1

� �
U 2; 2ð Þp T2

T1

� �2
U 2; 3ð Þp T2

T1

� �
p T3

T1

� �

U 3; 1ð Þp T3
T1

� �
U 3; 2ð Þp T3

T1

� �
p T2

T1

� �
U 3; 3ð Þp T3

T1

� �2

2
66664

3
77775

ð10Þ

where €M1 is identical to the upper right matrix in Fig. 2. Note that U 1; 1ð Þ is the same
as the Mx in JLF [10], which demonstrates the relationship between 4DJLF and JLF.

Fig. 2. The 4DJLF framework. First, the same set of atlases are registered to the longitudinal
target images (3 time points in figure). Then, the U matrices are calculated using Eq. (9). Finally,
the spatial temporal performance of all atlases are model by Eq. (10), which leads to the final
segmentations (“Seg.”). Note that the upper right 3� 3 matrix is identical to Eq. (11). The
original JLF estimates the block diagonal elements of the generalized covariance matrix
(highlighted in magenta, green, and yellow) which would result in independent temporal
estimates. (Color figure online)
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3 Experimental Methods and Results

Six healthy subjects with 21 longitudinal T1-weighted (T1w) MR scans (mean age
82.3, range: 72.5–90.2) were randomly selected from Baltimore Longitudinal Study of
Aging (BLSA) [11]. Each image had 170 � 256 � 256 voxels with 1.2 � 1 � 1 mm
resolution. 15 pairs of atlases from BrainCOLOR (http://braincolor.mindboggle.info/
protocols/) were employed. The intensity atlases had 1 mm isotropic resolution and the
label atlases contained 132 labels. In order to evaluate the sensitivity, one randomly
selected T1w image from a healthy subject (age 11) in ADHD-200 OHSU dataset
(http://fcon_1000.projects.nitrc.org/indi/adhd200/) was used in the robustness test. The
21 longitudinal target images were first affinely registered to the MNI305 atlas. Then,
the spatially aligned longitudinal atlases T ¼ fT1;T2; . . .; Tkg were derived by rigidly
registering each target image to the first time point. Then, 15 atlases were non-rigidly
registered [12] to all target images to achieve the intensity and label atlases in Eq. (1)
(performed m ¼ 15� 21 non-rigid registrations). The same preprocessing was also
deployed to the one ADHD-200 target image.

JLF was deployed on all 21 longitudinal target images independently using default
parameters. The longitudinal reproducibility of JLF, JLF-multi and 4D JLF were
evaluated by calculating the Dice similarity coefficients between all pairs of longitu-
dinal images (Fig. 3a) Wilcoxon signed rank test and Cohen’s d effect size were
performed on JLF-Multi vs. JLF and 4D JLF vs. JLF. The “*” indicated the difference
satisfied (1) p < 0.01 in Wilcoxon signed rank test, and (2) d > 0.1 in effect size. The
temporal changes on volume sizes of whole brain, gray matter and white matter were
shown in Fig. 4. Figure 5 shown the qualitative results from subject 5 in Fig. 4.

Fig. 3. Quantitative results. (a) The reproducibility experiment shown that the proposed 4DJLF
had overall significantly better reproducibility than JLF and JLF-Multi. (b) The robustness test
indicated that 4DJLF maintained the sensitivity as JLF, while JLF-Multi was not able to do so.
The red “*” means the method satisfied both p < 0.01 and effect size > 0.1 compared with JLF
(“Ref.”), while the “N.S.” means at least one was not satisfied. The black “*” means the
difference between two methods satisfied both p < 0.01 and effect size > 0.1. (Color figure
online)
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Second, a robustness test was conducted to evaluate the sensitivity of JLF,
JLF-Multi and 4DJLF. We combined the previously mentioned ADHD-200 image to
each target image to formed 21 dummy longitudinal pairs. This test simulated the large
temporal variations since the two images in each pair were independent and collected
from different scanners. Then, the 4D segmentation methods were deployed on such

Fig. 4. This figure presents the longitudinal changes of whole brain volume, gray matter volume
and white matter volume for all 6 subjects (21 time points). The black arrows indicate that the
proposed 4DJLF reconciles some obvious temporal inconsistency by simultaneously considering
all available longitudinal images.

Fig. 5. Qualitative results of deploying longitudinal segmentation methods on two examples.
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cases to see if the 4D methods can maintain the sensitivity compared with JLF. The
Fig. 3b indicated the 4DJLF had “trivial” changes on reproducibility (effect size < 0.1)
compared with JLF, while JLF-Multi had large differences compared with JLF.

4 Conclusion

We propose the 4DJLF multi-atlas label fusion strategy by modeling the spatial tem-
poral performance of atlases. The proposed theory incorporates the ideas from the two
major families of label fusion theories (voting based fusion and statistical fusion) by
generalizing the JLF label fusion method to a 4D manner. The results demonstrated that
the proposed method was not only able to improve the longitudinal reproducibility
(Figs. 3a, 4 and 5) but also reduces the segmentation errors compared with traditional
3D JLF (Fig. 5). Meanwhile, the 4DJLF did not significantly change the segmentation
reproducibility when performing on dummy longitudinal pairs of images (Fig. 3b).
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Abstract. Automatic labeling of anatomical structures in brain images plays an
important role in neuroimaging analysis. Among all methods, multi-atlas based
segmentation methods are widely used, due to their robustness in propagating
prior label information. However, non-linear registration is always needed,
which is time-consuming. Alternatively, the patch-based methods have been
proposed to relax the requirement of image registration, but the labeling is often
determined independently by the target image information, without getting
direct assistance from the atlases. To address these limitations, in this paper, we
propose a multi-atlas guided 3D fully convolutional networks (FCN) for brain
image labeling. Specifically, multi-atlas based guidance is incorporated during
the network learning. Based on this, the discriminative of the FCN is boosted,
which eventually contribute to accurate prediction. Experiments show that the
use of multi-atlas guidance improves the brain labeling performance.

1 Introduction

Accurate labeling of neuro-anatomical regions is highly demanded for quantitative
analysis of MR brain images. Many attempts have been made in automatic labeling
methods since it is infeasible to manually label a large set of 3D MR images. However,
it remains a challenging problem due to the complicated brain structures and also the
ambiguous boundaries between some regions of interest (ROIs).

The multi-atlas based methods have emerged as the standard way in the brain
image labeling for its effectiveness and robustness. By using the atlases, each with a
single MRI scan and its manual label maps, the multi-atlas based methods first register
multiple atlases to the target image and then fuse the respective deformed atlas label
maps to obtain the labeling results. Many relevant works have been made to improve
the performances of these registration and label fusion steps in the multi-atlas based
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methods, as summarized in [1–3]. However, one major limitation of these multi-atlas
based method is that it always needs non-rigid registration for aligning atlases to the
subject, which is time-consuming [4]. Besides, it is also a challenging work to obtain
accurate registration, which will eventually affect the final labeling performance.

On the other hand, the patch-based methods have gained increased attentions
recently, which are mainly developed to relax the high demands of registration accu-
racy in the multi-atlas based methods. Specifically, in the patch-based methods, each
patch in the target subject image looks for its similar patches in the atlas images
according to patch similarity. Then, the label of those selected atlas patches are fused
together to label the center voxel of subject patch [5, 6]. The weights of selected atlas
patches in the label fusion process are estimated based on their intensity similarity with
the target subject patch. Also, Wu et al. [7] further proposed using a multi-scale feature
representation and label-specific patch partition method to extend the label fusion
strategy. In this method, each patch is represented by the multi-scale features that
encode both local and semi-local image information, and then the image patch is
further partitioned into a set of label specific partial image patches. Finally, the hier-
archical patch-based label fusion is followed to finish the labeling. On the other hand,
the learning-based methods have also been incorporated into the brain image labeling
process, generally in a patch-based manner. For example, Tu and Bai [8] extracted the
3D Haar features from the atlases and then employed the probabilistic boosting tree
(PBT) to learn the classifier for brain labeling. Hao et al. [9] introduced a hippocampus
segmentation method using L1-regularized support vector machine (SVM), with a
k-nearest neighbor (kNN) based training sample strategy. Moreover, the random forest
has also been widely applied, since it can efficiently handle a large number of training
atlases, and can largely avoid the overfitting problem in the conventional decision tree
methods by incorporating the uniform bagging strategy [10, 11]. Recently, fully con-
volutional networks (FCN) [12] have shown excellent performance in natural image
segmentation and recognition. Some researchers have also employed the FCN model
for medical image segmentation. For example, Nie et al. [13] adopted the FCN model
for brain tissue segmentation, which has shown a promising result.

However, the main limitation of the current methods is that they determine the
target labels merely on the local appearance of target image patch, without considering
the direct label information from those similar atlas patches. Besides, although
patch-based methods can relax the demand of accurate registration, most methods
[6–10] still apply non-rigid registration to preprocessing the data, for the benefit of
labeling improvements.

In this paper, we intend to solve the aforementioned issues by proposing a
multi-atlas guided 3D FCN model for improving the performance of brain labeling.
The major contribution here is two-fold. First, we develop a novel multi-atlas guidance
strategy, which can directly utilize prior information in the atlases to guide and improve
the labeling capability. Second, different from the conventional multi-atlas based
methods, we need no non-rigid registration for aligning atlases to the target image, by
still guaranteeing the reasonable labeling performance. This will greatly reduce the time
cost for the overall labeling process, thus making it more applicable for future clinical
applications.
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2 Methods

In this section, we will illustrate the details of our proposed multi-atlas guided FCN
method, which consists of the training and testing stages. In the training stage, we first
select a number of images from the training set, and consider them as the atlas images.
Then, we extract 3D cubic patches from the training images, and, for each selected
training patch, we also select K most similar atlas patches from the linearly-aligned
atlas images. Next, each training patch and its corresponding selected atlas patches
(including intensity patches and label patches) are used together to train the FCN
model. In the testing stage, the trained FCN model is first applied to each input testing
patch (of the new testing image) and its selected atlas patches, for obtaining a predicted
label patch. Then, all the predicted label patches from all locations of the testing image
are fused together to give the final labeling result.

2.1 Training Data Preparation

Data Preprocessing: The first step is normalizing the intensity of data in the range
from 0 to 255. And before the patch extraction process, for each training image, we first
register all atlases to its space. As stated above, we need no non-rigid registration;
instead, we just use affine registration, which can be implemented more efficiently.
Specifically, we first linearly align the intensity images of atlases to the target training
image using the flirt in FSL [14], and warp the label maps of all atlases to the training
image space by using the obtained respective linear transformation for each atlas.

Patch Extraction: Since there are high variations of ROI sizes for different brain ROIs
under labeling, we develop a specific patch extraction strategy to ensure that the
sufficient training patches can be extracted from each ROI under labeling. Specifically,
this strategy ensures an adequate number of patches extracted around the boundary of
each ROI, since boundaries contain the direct shape information vital for ROI labeling.
To do this, we first employ a canny edge detector to find boundaries in each of the atlas
label maps. Then, we randomly select the patches by ensuring that (1) the number of
patches extracted from every ROI is similar, and (2) the number of patches extracted
from the boundary of each ROI is similar to the number of patches extracted from
internal part of each ROI.

Atlas Patch Selection: For each given training image patch PTðI;jÞ; centered at voxel j
and extracted from the training image I, we can find one most similar atlas image patch
from each atlas in the 3D cubic searching neighborhood cðjÞ; i.e., according to the
image intensity similarity. This step can be mathematically summarized by Eq. 1,
where ðM; nÞ is an atlas image patch selected from the atlas image at the location of
voxel n, and jj � jj2 is a Euclidean distance measure between image patches under
comparison.
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P̂ ¼ fPA M;nð Þj min
n2cðjÞ

jjPTðI; jÞ � PA M;nð Þjj22g ð1Þ

By ranking all the selected atlas image patches according to their respective sim-
ilarities to the training image patch ðI; Þ, we can finally select the top K (i.e., K = 3)
atlas image patches. Then, each training image patch and its K selected atlas image
patches are combined as joint input to train our proposed FCN model. Figure 1
summaries all steps in our method for prepressing the training data to train the FCN
model.

2.2 Fully Convolutional Networks (FCN) Configuration

We employ an FCN model for the brain ROI labeling. FCN model is an end-to-end
learning structure, with its output as a patch. Compared with the convolutional neural
networks (CNN) [16] that output is just the label for the center voxel of the input image
patch, FCN can label the whole patch in one process, thus more efficient and potentially
more spatially-consistent labeling than CNN. The configuration of our FCN (as shown
in Fig. 2) is briefed below. (1) We first learn K + 1 mapping structures separately for
the training image patch and K selected atlas image/label patches. Specifically, in the
first layer, for each of K sets of selected atlas image/label patches, we use K concate-
nated layers to group the image patch and label patch of the same atlas together. For the
training image patch, since there is no label patch, it is simply input the FCN. Next,
three convolution layers are applied to each of K + 1 mapping structures, followed by a
max pooling layer for down sampling the mapped data. (2) After separately mapping
the training image patch and the K selected atlas image/label patches, we use another
concatenation layer to combine K + 1 sets of mapped data together, followed by two

Fig. 1. A brief illustration of steps for preparing the training data. The green dash box is the
searching neighborhood. (Color figure online)
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convolution layers and a max pooling layer. (3) Finally, we use two deconvolution
layers to get the label map. Note that the rectified linear units (ReLU) is used as our
activation function for all the convolution layers, and also cross-entropy loss is used as
our loss function.

2.3 Brain Labeling

For each new testing brain image, we first use affine registration to align all the atlases
to this target image. Then, for each (testing) image patch (with the same size as all the
training image patches) extracted from the testing image, we select its K most similar
atlas image patches from all linearly-aligned atlases as described in Sect. 2.1. Next,
each testing image patch and its K selected atlas image/label patches are combined and
inputted to our trained FCN for obtained the patch labeling result. Finally, the labeling
results from all testing patches covering the whole testing image are fused together
(with majority voting) to produce a final label map for the testing image.

3 Experimental Results

We use the LONI LPBA401 dataset to evaluate the performance of our proposed brain
ROI labeling method. The LONI LPBA40 dataset contains 40 T1-weighted MR brain
images with 54 manually labeled ROIs. In our method, four-fold cross validation is

Fig. 2. Detailed structure and parameters of our proposed FCN model for patch labeling.

1 http://www.loni.ucla.edu/Atlases/LPBA40.
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used. Specifically, in each fold, we select 10 images as the testing images, and the rest
as the training images. Furthermore, we select 10 images from those 30 training images
as the atlas images, and other 2 images as the validation images for FCN training. Note
that we also train another FCN model without using multi-atlas guidance (i.e., just
using the training image patch), and use it as the baseline method. Note that the
network structures and parameters are same in both our proposed multi-atlas guided
FCN method and this baseline method. In our paper, we use the patch size of
24 � 24 � 24 in voxels, and the searching neighborhood size of 30 � 30 � 30 also in
voxels. The number of training image patches sampled from each training image is
8,400. For the testing image, we evenly visit patches with a step size of 9 voxels, to
ensure a sufficient overlap for the neighboring patches.

We evaluate the labeling performance using the Dice Similarity Coefficient (DSC).
The results on LONI LPBA40 show that our proposed method can achieve the average
DSC of (80.33 ± 1.26)% for 54 ROIs. Table 1 lists the comparison of our method with
the state-of-art methods. Note that, for these state-of-art methods, we simply copied
results from [7, 10, 11] for fair comparison. It can be observed that our proposed
method outperforms the non-local based method [11] for more than 2%, and also
achieves a comparable labeling results to the non-rigid registration methods [7, 10].
Although the mean DSC estimations by the multi-atlas method [10] and our proposed
method are close, it can be observed that our method has a much smaller standard
deviation, suggesting that our method is more reliable. Furthermore, it often takes 2–
20 h for just the non-rigid registration step in multi-atlas method [15], while our
proposed method takes less than 15 min for labeling a testing image which is definitely
more efficient in the application stage.

We further compared our method with the baseline method (namely FCN-single
patch) in Table 1, which shows significant improvements for ROI labeling using
multi-atlas guidance in our method. The structure of baseline method is similar with
proposed method, except that baseline method does not have atlas patches. Figure 3
also shows a labeled testing image by the baseline method (FCN-single patch) and our
proposed method (Proposed). Figure 3(a) shows the golden standard (obtained with
manual delineation). Figure 3(b) shows the labeling result by the baseline method
(FCN-single patch), and Fig. 3(c) shows the labeling result by our proposed method
(Proposed). It can be observed that, the labeling results on the boundary by proposed
method is smoother than the baseline method. Moreover, there are wrong predictions
inside of some ROIs by the baseline method, as indicated in Fig. 3(b). When using
multi-atlas guidance to train the FCN model in our proposed method, more prior
labeling information from multiple atlases can be used to directly help refine the
labeling results, thus avoiding the wrong labeling by the baseline method.

Table 1. Quantitative comparison between the proposed method and the state-of-arts methods.

Method Non-rigid registration Affine registration
Multi-atlases [7] Learning [10] Non-local [11] FCN-single patch Proposed

DSC (%) 81.46 ± 2.25 80.1 ± 4.53 78.26 ± 4.83 78.20 ± 1.60 80.33 ± 1.26
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4 Conclusion

In this paper, we have presented a multi-atlas guided 3D FCN method for brain ROI
labeling. Different from the traditional neural networks, the input to our FCN includes
not only the intensity image patch from training (or testing) image, but also both the
intensity and label patches from the atlases. Such combination can provide a clearer
guidance for FCN to better label the target brain images. Furthermore, our proposed
method requires no non-rigid registration for data preprocessing. The validation results
on a public dataset show that our proposed method outperforms the non-local based
methods in accuracy and non-registration based methods in speed, as well as the
baseline method in terms of labeling accuracy.
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Abstract. Numerous brain disorders are associated with ventricu-
lomegaly; normal pressure hydrocephalus (NPH) is one example. NPH
presents with dementia-like symptoms and is often misdiagnosed as
Alzheimer’s due to its chronic nature and nonspecific presenting symp-
toms. However, unlike other forms of dementia NPH can be treated
surgically with an over 80% success rate on appropriately selected
patients. Accurate assessment of the ventricles, in particular its sub-
compartments, is required to diagnose the condition. Existing segmenta-
tion algorithms fail to accurately identify the ventricles in patients with
such extreme pathology. We present an improvement to a whole brain
segmentation approach that accurately identifies the ventricles and par-
cellates them into four sub-compartments. Our work is a combination of
patch-based tissue segmentation and multi-atlas registration-based label-
ing. We include a validation on NPH patients, demonstrating superior
performance against state-of-the-art methods.

Keywords: Brain · MRI · Enlarged ventricles · Hydrocephalus

1 Introduction

The ventricular system of the human brain is made up of four cavities: the left
and right lateral ventricles and the third and fourth ventricles. These cavities
are connected via narrow channels, with the foramina of Monro connecting each
of the lateral ventricles with the third ventricle and the cerebral aqueduct con-
necting the third and fourth ventricles. Each of these cavities contain choroid
plexus, which is responsible for producing cerebrospinal fluid (CSF). In a healthy
c© Springer International Publishing AG 2017
G. Wu et al. (Eds.): Patch-MI 2017, LNCS 10530, pp. 20–28, 2017.
DOI: 10.1007/978-3-319-67434-6 3
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system, CSF is allowed to flow from the lateral ventricles into the third and then
the fourth ventricle and subsequently into the central canal of the spinal cord
and up into the subarachnoid space, before passing through the arachnoid villi
into the venous sinuses.

(a) (b) (c) (d) (e)

Fig. 1. Shown in each row is the (a) T1-w MPRAGE of a NPH patient and the ventricle
segmentation (green/cyan is the right/left lateral ventricle, blue is the 3rd ventricle)
generated by (b) FreeSurfer [8], (c) MALPEM [9], (d) RUDOLPH, and (e) a manual
delineation. The first row shows a NPH patient where all three algorithms performed
well and the second row shows a more severe case where FreeSurfer and MALPEM have
failed. The other colors show the rich tapestry of labels available in all three methods.
(Color figure online)

Normal pressure hydrocephalus (NPH) is a disorder of the ventricular system
caused by obstruction of the flow of CSF leading to the expansion of the cerebral
ventricles and with symptoms including [1]: gait disturbance, urinary inconti-
nence, and dementia. An example of a T1-weighted (T1-w) magnetization pre-
pared rapid gradient echo (MPRAGE) of an NPH patient can be seen in Fig. 1(a).
The expanded ventricular system presses against the surrounding structures
causing the brain shape to become distorted and results in brain damage. NPH
is routinely misdiagnosed as other forms of dementia, such as Parkinson’s dis-
ease or Alzheimer’s disease. However, unlike other forms of dementia, NPH is
treatable and the associated symptoms can be reversed (to a certain extent) [10].
Treatment involves shunt surgery or endoscopic third ventriculostomy. However,
diagnosing NPH patients is challenging using current methods, and the bene-
fit of surgical intervention is sensitive to properly selected patients [14]. The
chronically dilated ventricles are readily observed through magnetic resonance
imaging (MRI), which when used in conjunction with a lumbar puncture and
evaluation of the clinical response to removal of CSF can help to diagnose the
condition. However, having accurate parcellation of the ventricular system into
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its sub-compartments would be of great clinical benefit to better characterize
the pathology of NPH as well as to help in surgical planning, such that patients
who will benefit from surgical treatments could be more robustly identified.

Previous work on ventricle segmentation [5,13] has focused on the ventricu-
lar system as one component of the brain. Newer methods [9] that provide an
improved ventricle segmentation rely, in part, on multi-atlas segmentation frame-
works, which enable them to identify some of the components of the ventricles
(right and left lateral, 3rd, 4th) based on the labels available within their atlases.
These more recent methods, however, often fail to correctly identify the extents
of the ventricles in pathological cases, see Fig. 1. This occurs chiefly because they
depend on a registration between the atlas and subject, which in pathological
cases is rarely optimum. To address this problem in our work, we incorporate
a patch-based segmentation method [11,12] to provide a prior for a multi-atlas
label fusion framework [9]. Our method, known as robust dictionary-learning
and label propagation hybrid (RUDOLPH) [7], provides a parcellation of the
entire brain, providing 138 brain labels (in the cerebellum and cerebrum) while
performing accurate ventricular segmentation even with enlarged ventricles. We
present a detailed evaluation of this method with respect to the four main cav-
ities of the ventricular system of NPH patients (noting that RUDOLPH also
provides a parcellation of the whole brain, examples of which can be seen in
Fig. 1). In Sect. 2, we describe RUDOLPH. Section 3 includes our experiments
comparing our approach and two state-of-the-art segmentation algorithms on
our manual delineations. We conclude with a discussion of the presented work
in Sect. 4.

2 Method

The proposed method integrates the subject specific sparse dictionary learn-
ing (S3DL) method [11,12] and the multi-atlas label propagation with
expectation-maximization (MALPEM) method [9]. S3DL is a patch-based seg-
mentation method that uses sparse dictionary learning to classify the human
brain into seven structures (cerebellar and cerebral white matter; cortical,
subcortical, and cerebellar gray matter; and ventricular and cortical CSF).
MALPEM is a multi-atlas label fusion scheme, which we modify to incorporate
the seven labels from S3DL, intelligently guiding the multi-atlas label fusion
framework. MALPEM cannot, in general, segment the ventricles in moderate to
severe cases of NPH patients, due to the pathology (see Fig. 1(b)).

We first process a subject’s MR image through S3DL. S3DL requires an atlas
with its corresponding hard segmentation, and spatial priors depicting where
the different tissues are expected to be located. The priors are computed using a
simple blurring of the known atlas segmentation. S3DL adaptively modifies the
subject priors to handle anatomical variability. The CSF labels from S3DL are
incorporated within MALPEM, as described below.

We then register using SyN [2] 15 manually labeled atlases into the sub-
ject’s space, with each atlas made up of 138 cortical and subcortical labels from
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Neuromorphometrics1. This is similar to the first step of MALPEM, which
uses 30 atlases. The output of this step is a probabilistic segmentation Π =
{π1, . . . , πn}, where πi is a K-dimensional vector representing the K = 138
labels in the atlases, and n is the total number of voxels in the subject’s image.
MALPEM provides two label correction schemes; the first based on intensity-
refined posterior probabilities, and the second relaxes the probabilities, Π, to
correct for misregistration of the atlases. The eight CSF labels within Neuro-
morphometrics are assumed to come from the Gaussian distribution (μCSF, σCSF)
which is estimated based on Π. For each label k, (k = 1, . . . ,K) we estimate
(μk, σk) from the subject’s image intensities. Then Π is relaxed to ΠR using the
distributions (μk, σk) as follows. At each voxel i, a fraction αik of prior πik is
redistributed from label k to one of the eight CSF labels based on the spatial
proximity of the label to the CSF label with the highest probability. Both of
these conditions fail in NPH patients since at the boundary of severely dilated
ventricles the closest CSF label is usually cortical CSF and not the desired ven-
tricular CSF and the severe deformation of NPH patients means that spatial
information from anatomical atlases is incorrect.

To address this, we use the segmentation from S3DL. Thus, we identify the
appropriate CSF label kCSF as

kCSF =

⎧
⎪⎪⎨

⎪⎪⎩

arg max
k∈CMALPEM

πik if πik �= 0 for some
k ∈ CMALPEM,

arg max
k∈CS3DL

dk(i) otherwise,
(1)

where dk(i) is the distance from the voxel i to the nearest voxel with the cur-
rent label k, and CMALPEM and CS3DL are the CSF labels of MALPEM and S3DL,
respectively. We follow the MALPEM framework and compute the relaxation
fraction, αik, based on the probability that the voxel x comes from either the
intensity distribution Nk(x) estimated by label k or from one of the CSF distri-
butions estimated by NkCSF(x),

αik =
{

0 Nk(x) ≥ NkCSF(x),
max (0,min (0.5 − πikCSF , πik)) otherwise. (2)

The relaxed prior ΠR is computed as

αR
ik =

{
πik +

∑
l �=kCSF

αil if k = kCSF,

πik − αik otherwise.
(3)

ΠR is then updated through an expectation-maximization framework [15], with
smoothness of the final segmentation maintained through a Markov Random
Field [17], which is the same as in the MALPEM framework.

1 http://www.neuromorphometrics.com.

http://www.neuromorphometrics.com
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3 Results

Our data was acquired on a Siemens 3 T scanner using a T1-w MPRAGE with
TR = 10.3 ms, TE = 6 ms, and 0.82× 0.82× 1.17 mm3 voxel size. We processed
a total of 45 NPH patients that were broadly classified based on the sever-
ity of their ventricular expansion into mild, moderate, and severe cases. All 45
NPH patients had their ventricular system manually delineated. This was done
by identifying the anatomical structure of the ventricles, which required 3–4 h
per patient. These were reviewed by separate experts in neuroanatomy, with
possible correction or return to the delineator for correction. For 18 of the 45
NPH patients, once a ventricular system mask was agreed, the components of
right and left lateral ventricles, both foramina of Monro, third ventricle, cerebral
aqueduct, and fourth ventricle were identified. This parcellation of the ventric-
ular system took another hour per patient to complete. The cerebral aqueduct
and the foramina of Monro are not included within our validation as there do not
currently exist such detailed anatomical atlases of the ventricular system in use
elsewhere. Thus for validation purposes, the foramina of Monro is included with
the corresponding lateral ventricle, and the cerebral aqueduct with the fourth
ventricle, making the labeling comparable with Neuromorphometrics.
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Fig. 2. The top row shows the mean volume in mm3 for the manual masks and the
three methods over the 45 NPH patients, ordered based on the volume of the manual
masks. The y-axis uses a log scale to help differentiate the volumes of the different
methods across the whole range of volumes. The bottom row shows the Dice coefficient
over the same 45 NPH patients with the same ordering. The NPH patient shown in
the top row of Fig. 1 has Patient ID #39 and the bottom row corresponds to Patient
ID #43.
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We processed the 45 NPH patients using RUDOLPH and two state-of-
the-art whole brain segmentation methods: FreeSurfer (Version 5.3.0) [8] and
MALPEM [9]. We ran FreeSurfer with the -bigventricles flag. We used an in-
house [3,4] approach to skull strip the data, as we have found that this improves
the performance of both FreeSurfer and MALPEM on our NPH cohort. The
volumes generated by FreeSurfer, MALPEM, and RUDOLPH for the entire ven-
tricular system are shown in the top row of Fig. 2; the patients are ordered based
on the volume of the manual delineations which is also shown in the figure. The
NPH patient shown in the top row of Fig. 1 corresponds to Patient ID #39 in
Fig. 2, the bottom row of Fig. 1 corresponds to Patient ID #43. We computed
the Dice coefficient [6] for these 45 NPH patients on the entire ventricle system,
the results are reported in Table 1. A paired two-sided Wilcoxon Signed-Rank
Test [16], without a correction for multiple comparisons, comparing FreeSurfer
to MALPEM on the entire ventricle system yielded significant differences with
a p-value <0.001. We also obtained a similar p-value (<0.001) when compar-
ing MALPEM to RUDOLPH on the entire ventricle system. These Dice coef-
ficients are shown in the bottom row of Fig. 2, ordered by the volume of the
manual masks. We also computed the Dice coefficient for each of the automat-
ically labeled ventricular cavities with the corresponding manual delineation;
see Table 1 and Fig. 3. RUDOLPH produces more accurate segmentation of the
third ventricle and the left and right lateral ventricles than both MALPEM and
FreeSurfer; these results also reach statistical significance. The fourth ventri-
cle is most accurately segmented by MALPEM, however it is not statistically
significantly better than RUDOLPH (see Table 2).

0.0

0.2

0.4

0.6

0.8

1.0

D
IC
E
C
O
EF

FI
C
IE
N
T

T HIRD
V ENTRICLE

F OURTH
V ENTRICLE

R IGHT

L ATERAL
L E FT

L ATERAL

R UDOLPH

MALPEM

F R EE S URFER

Fig. 3. Box plots of the Dice coefficient with respect to our manual masks over 18
NPH patients comparing the automatically generated labels from the three methods
for four ventricular cavities: third ventricle, fourth ventricle, right lateral ventricle, and
left lateral ventricle.



26 A. Carass et al.

Table 1. The mean Dice coefficient (and standard deviation) over our population of
NPH patients measuring similarity between manual labels and automatically generated
labels from the three methods. For 45 NPH patients we compare the entire (Entire)
ventricle system. For 18 of those 45 we compare four ventricular cavities, third ventri-
cle (3rd), fourth ventricle (4th), right lateral ventricle (RLV), and left lateral ventri-
cle (LLV).

FreeSurfer MALPEM RUDOLPH

Entire 0.815 (±0.150) 0.890 (±0.172) 0.957 (±0.021)

3rd 0.775 (±0.091) 0.780 (±0.140) 0.869 (±0.065)

4th 0.656 (±0.156) 0.720 (±0.152) 0.694 (±0.205)

RLV 0.799 (±0.181) 0.810 (±0.278) 0.956 (±0.022)

LLV 0.803 (±0.192) 0.825 (±0.262) 0.959 (±0.018)

Table 2. p-values for a paired two-sided Wilcoxon Signed-Rank Test [16], without
a correction for multiple comparisons, between the two methods listed for the noted
ventricle cavity. This is across the 18 patients that are also compared to manual masks
and presented in Fig. 3. The key for the ventricular cavities is: third ventricle – 3rd;
fourth ventricle – 4th; right lateral ventricle – RLV; and left lateral ventricle – LLV.

Comparison 3rd 4th RLV LLV

FreeSurfer vs. MALPEM 0.6397 0.0007 0.2837 0.0987

FreeSurfer vs. RUDOLPH 0.0007 0.1187 0.0000 0.0000

MALPEM vs. RUDOLPH 0.0007 0.2462 0.0023 0.0016

4 Discussion and Conclusions

We have presented a method for whole brain segmentation that provides a robust
segmentation of the ventricular system in patients with severely enlarged ven-
tricles. We have shown that the approach is more robust on the ventricles than
either FreeSurfer or MALPEM across 45 NPH patients; it consistently tracks the
volume generated by the manual delineation of the ventricles better than either
method as shown in the top row of Fig. 2. In particular, we note that both the
FreeSurfer and MALPEM estimates of the ventricular CSF volume become more
erratic as the volume increases. This is particularly troubling as the ventricles do
naturally increase in size through natural brain atrophy over the time course of
healthy patients. This study would call into question the validity of using these
methods in a fully automated fashion without some quality assurance review of
the results. We also note that FreeSurfer appears to level off and be unable to
provide ventricular volumes above a certain level, which may be a limitation of
the approach. MALPEM also exhibits instability in its results as the ventricular
volume increases (see Fig. 2), however these do not always seem to be tied to
the volume of the ventricles. As noted earlier the MALPEM estimates of the
ventricular volume for Patient ID #39 are reasonable. Yet Patient ID #40 has
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a similar volume to Patient ID #39 and MALPEM performs poorly; whereas
Patient ID #36 has less volume and MALPEM essentially fails. The results
suggest that these patients may have significantly differently shaped structures
which is leading to the failure of MALPEM. Our initial review of these results
suggest that misregistrations within the multi-atlas phase of MALPEM may be
the cause of these problems; which reinforces our belief that our enhancements
to MALPEM are appropriate fixes for pathology cases. We also demonstrated
that our approach can more accurately estimate the ventricular cavities of the
lateral ventricles and the third ventricle (see Table 1).

Future work includes creating manual delineations on a larger cohort of
patients—in particular patients suffering from ventriculomegaly by other causes.
We also plan to further refine the parcellation of the ventricles to include the
subchambers—anterior, occipital, and temporal horns of the lateral ventricles. A
future goal will be correlating the volumetrics of these structures with surgical
outcomes for NPH patients.
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Abstract. The hippocampus is a brain structure that is involved in several
cognitive functions such as memory and learning. It is a structure of great
interest in the study of the healthy and diseased brain due to its relationship to
several neurodegenerative pathologies. In this work, we propose a novel
patch-based method that uses an ensemble of boosted neural networks to per-
form the hippocampus subfield segmentation on multimodal MRI. This new
method minimizes both random and systematic errors using an overcomplete
autocontext patch-based labeling using a novel boosting strategy. The proposed
method works well on high resolution MRI but also on standard resolution
images after superresolution. Finally, the proposed method was compared with a
similar state-of-the-art methods showing better results in terms of both accuracy
and efficiency.

1 Introduction

The hippocampus (HC) is a complex gray matter structure located under the surface of
each temporal lobe. It is involved in many cognitive functions such as memory and
spatial reasoning [1]. It has been largely studied in the last years to understand its
healthy evolution across the lifespan in normal aging [2] but also due to its key role in
several dysfunctions such as epilepsy [3], schizophrenia [4] or Alzheimer’s disease [5].

The hippocampus is composed of multiple subfields that can be divided into sec-
tions called the dentate gyrus, the cornu ammonis (CA) and the subiculum. The CA is
also subdivided in sub-sections CA1, CA2, CA3, CA4, layers alveus, stratum oriens,
stratum pyramidale, stratum radiatum, stratum lancosum and stratum moleculare. These
layers present a high neuron density and are very compact so high resolution imaging is
required to identify them.

Due to this morphological complexity and MR related image resolution limitations,
mainly whole hippocampus volume analysis has been performed in the past by seg-
menting it as a single object [6]. Even with this limitations whole HC volume has been
shown to be a good biomarker for Alzheimer’s disease [7]. However, hippocampus
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subfields have shown to be affected differently by AD and normal aging in ex-vivo
studies [5] which makes them excellent candidates for early diagnosis.

Although high resolution MRI is becoming more accessible in research scenarios,
manual segmentation, which is the most accurate analysis method, is not a feasible
option since it is a highly time consuming procedure which requires expert trained
raters taking many hours per case.

To overcome this problem some automated segmentation solutions have been
developed in the last years. One of the first methods was proposed by Van Leemput
et al. using a statistical model of MR image formation around the hippocampus to
produce automatic segmentation [7]. Recently, Iglesias et al. pursued this work and
replaced the model by a more accurate atlas generated using ultra-high resolution
ex-vivo MR images [8]. Chakravarty et al. proposed a multiatlas method based on the
estimation of several non-linear deformations and a label fusion step [9]. Also using a
multiatlas approach, Yushkevich proposed a method where a multiatlas approach is
combined with a similarity-weighted voting and a learning-based label bias correction
[10] and Romero et al. also proposed a multiatlas multispectral method [21].

In this work, we propose a fast and accurate patch-based method to segment the
hippocampus subfields using an ensemble of boosted neural networks. In the next
sections, we will describe the method details as well as some experiments to demon-
strate the accuracy and efficiency of the proposed approach.

2 Materials and Methods

2.1 Image Data

In this paper, we used a High Resolution (HR) dataset composed of 25 cases with
T1-weighted and T2-weighted images to construct a library of manually labeled cases.
This dataset includes 25 subjects from a public repository (http://www.nitrc.org/
projects/mni-hisub25) (31 ± 7 yrs, 12 males, 13 females) with manually-drawn labels
dividing the HC in three parts (CA1-3, DG-CA4 and Subiculum). MRI data from each
subject consist of an isotropic 3D-MPRAGE T1-weighted (0.6 � 0.6 � 0.6 mm3) and
anisotropic 2D T2-weighted TSE images (0.4 � 0.4 � 2 mm3). Images underwent
automated correction for intensity non-uniformity, intensity standardization and were
linearly registered to the MNI152 space. T1w and T2w images were resampled to a
resolution of 0.4 mm3 (Fig. 1). To reduce interpolation artifacts, the T2w data was
upsampled using a non-local super resolution method [19]. For more details about the
labeling protocol see the original paper [11].

2.2 Preprocessing

All the images (T1 and T2) were first filtered with a spatially adaptive non-local means
filter [15] and inhomogeneity corrected using the N4 method [16]. Later, they were
linearly registered to the Montreal Neurological Institute space (MNI) using the ANTS
package [17] and the MNI152 template. Next, we left-right flipped the images and
cropped them to the right hippocampus area to produce 50 right hippocampus crops.
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After that, we non-linearly registered the cropped images to the cropped MNI152
template to better match the hippocampus anatomy. Finally, we normalized the image
intensities using Nyúl and Udupa [18] method. Hippocampus labels were spatially
registered to the same space.

2.3 Proposed Method

After the described preprocessing, a region of interest (ROI) is computed fusing all
manual segmentations of the library and dilating the resulting region with a 5 � 5 � 5
voxels kernel to create a HC candidate region. For each voxel of this candidate region a
feature set is created to be used to train a classifier. Several classifiers can be used to
relate the image features and the corresponding labels. Lately high performance clas-
sifiers such as random forest [12] have been used. In our proposed method, we have
used a neural network-based classifier [13].

• Features: The features used to train the network were three 3D patches per image
modality of different size around the voxel/s to be classified, the x, y and z voxel
coordinates of the center voxel of the patches and a value representing the a priori
label probability. This apriori label probability map was obtained computing the
average of all training label masks (convolved with a 5 mm3 Gaussian kernel). In
our experiments, we used a P1 of size 3 � 3 � 3, a P2 of 7 � 7 � 7 and P3 of
9 � 9 � 9 voxels (however, for efficiency, we subsampled the patches P2 and P3 so
we took only 27 samples uniformly spaced in all three dimensions). This leads to a
feature vector X of 166 elements (i.e. 27 for P1, 27 for P2 and 27 for P3 on T1, the
same for T2, x, y and z coordinates and the prior probability).

• Network topology: A feedforward multilayer perceptron with two hidden layers was
used. The network that we used had 166 � 85 � 55 � 27 weights. The network
output is a patch of the same size of P1. Note that an overcomplete approach was
used so each voxel has contributions from several adjacent patches. This improves
segmentation accuracy (more votes per voxel) and enforces the final label regu-
larity. To further improve classification results a second autocontext network is
trained using an expanded feature vector constructed concatenating the original

Fig. 1. Example of an HR MRI case. Figure shows T1w and T2w images and its corresponding
manual segmentation.
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feature vector X with the output of the first network. This leads to a feature vector
Xa of 193 elements (166 + 27). Final classification is obtained from the output of
network 2. Note that both networks are independently trained (Fig. 2).

Ensemble-Based Classification

A common approach for improving classification results is the use of the so-called
ensemble learning. Ensemble methods (i.e. combination of several classifiers) allow in
general to improve classification results by minimizing random and systematic errors.

In our proposed method, we have used a boosting strategy to leverage classification
accuracy. Boosting [14] is an algorithm that combines the output of several classifiers
to minimize the variance and bias of the final classification. In boosting, each classifier
is trained using the information of the previous one to minimize the errors of the current
prediction. This is done giving more weight to the samples wrongly classified by the
previous classifier or performing a non-random selection on the training dataset
selecting with higher probability samples wrongly classified previously. While typi-
cally each network uses random initial weights (network reset) we decided to use the
weights of the previous network as done in transfer learning which improves ensemble
classifier accuracy while minimizing training time due to faster convergence. Finally,
the different classifier outputs are combined according to their accuracy.

We trained four ensembles of M autocontext modules (Fig. 2) (one ensemble per
subfield plus the background) over the whole hippocampus region and each voxel was
labeled with the class of higher network output.

Fig. 2. Autocontext neural network. Original feature vector x used to train network 1 is
expanded using the output of the network (posterior probabilities) to train network 2.
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3 Experiments and Results

In this section, a set of experiments are presented to show the performance of the
proposed method. All the experiments have been done by processing the cases from the
described library splitting the 50 cases first into a 30 training cases set and 20 test cases
and later switching training and test datasets to evaluate the whole dataset.

3.1 Ensemble Training

We explored two variants of ensemble training, the classical one with network reset
and one without reset. For these experiments, we trained M = 10 autocontext networks
using only 10000 samples randomly selected from the candidate regions of the training
dataset. All resulting networks outputs were averaged according to the accuracy to
produce the final output.

We evaluated the impact of the two boosting variants (with and without reset) and
estimated the optimal number of neural networks. In Fig. 3 (left), the evolution of the
DICE coefficient (during training without reset) as a function of the number of indi-
vidual and averaged trained networks is shown. In Fig. 3 (right), the same results with
reset option are also shown.

As can be noticed, both boosting variants improved the classification results
reaching a plateau at around 10 networks. However, no-reset boosting produced a more
pronounced improvement compared to classical reset approach (0.9091 versus 0.9052).
To understand the improved results we can look at the accuracy of each individual
network of the ensemble. As can be noticed, reseted networks show a pseudo stable
behaviour while non-reseted networks show maintained improvements as long as the
number of ensemble networks increases. In fact, non-reseted last individual networks
almost reach the accuracy of the whole ensemble.
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Fig. 3. Left: Dice coefficient in function of the number of networks for each network in nthe
ensemble and for the ensemble prediction with the proposed boosting. Right: Same results with
classical boosting. Note that using previous network in the embeding not only improves overall
ensemble accuarcy but also produces more accurate individual networks.
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With this settings, we trained the final network ensemble (M = 10) using randomly
selected sets of 1000000 samples from the total population of 2600000 patches. To
train the 4 ensembles took around 8 h while the time to segment a new case is around
10 s. To evaluate all 50 cases we trained two ensemble sets (one using the 30 training
cases and applied to the remaining 20 cases and another trained on the 20 cases and
applied to the 30 cases). We could do a leave-one-out approach to further improving
the results but this would result on a large training time of around two weeks. Table 1
shows the dice coefficient of the different subfields for the 50 cases. We have also
included the results when using only the best network instead of the ensemble (thus
requiring only 1 s to perform the segmentation).

3.2 Standard Resolution vs High Resolution

High resolution MR images are not widely available, especially in clinical environ-
ments. For this reason, we analyzed the effectiveness of the proposed method on
upsampled standard resolution images. For this purpose, we reduced the resolution of
the library HR images by a factor 2 by convolving the HR images with a 2 � 2 � 2
boxcar kernel and then decimating the resulting image. The down-sampled images
were upsampled by a factor 2 using BSpline interpolation and a superresolution method
called Local Adaptive SR (LASR) [19]. Results are shown in Table 2. As can be
noticed, segmentations performed on images upsampled with SR were better than using
BSpline interpolation. Moreover, this experiment shows that the proposed method is
able to produce competitive results even when using standard resolution images.

Table 1. Mean DICE and standard deviation for each structure segmentation using two variants
of the proposed method. Best results in bold.

Structure Proposed (best network) Proposed (ensemble)
Average 0.8681 0.8695
CA1-3 0.8992 0.9001
CA4\DG 0.8384 0.8404
Subiculum 0.8667 0.8678
Hippocampus 0.9518 0.9523

Table 2. Mean DICE for each structure segmentation using the high resolution library and
applying BSpline interpolation and LASR to the previously downsampled image to be
segmented. Best results in bold.

Structure BSpline LASR HR

Average 0.8595 0.8662 0.8695
CA1-3 0.8930 0.8981 0.9001
CA4\DG 0.8250 0.8349 0.8404
Subiculum 0.8605 0.8655 0.8678
Hippocampus 0.9480 0.9513 0.9523
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3.3 Comparison

We compared our method with other recent methods applied to hippocampus seg-
mentation using the same number of structures and labeling protocol. The compared
methods are called ASHS [10] and Surfpatch [20]. Table 3 shows that the proposed
method obtained higher DICE coefficients for all the structures. In terms of compu-
tation efficiency, our method requires only few seconds while ASHS and Surfpatch
have an execution time of several hours per case.

4 Discussion

In this paper, we present a new hippocampus subfield segmentation method based on a
boosted ensemble of autocontext neural networks. The proposed method achieves
state-of-the-art accuracy very efficiently. Furthermore, the proposed method has been
shown to perform well on standard resolution images, obtaining competitive results on
typical clinical data. This fact is very important because it will allow analyzing large
amounts of legacy data. Finally, it has been also shown that the proposed method
compares well to another related state-of-art method obtaining better results in terms of
both accuracy and reduced execution time.
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Abstract. Multi-atlas segmentation has shown promising results in the
segmentation of biomedical images. In the most common approach, reg-
istration is used to warp the atlases to the target space and then the
warped atlas labelmaps are fused into a consensus segmentation. Label
fusion in target space has shown to produce very accurate segmenta-
tions although at the expense of registering all atlases to each target
image. Moreover, appearance and label information used by label fusion
is extracted from the warped atlases, which are subject to interpolation
errors. This work explores the role of extracting this information from
the native spaces and adapt two label fusion approaches to this scheme.
Results on the segmentation of subcortical brain structures indicate that
using atlases in their native space yields superior performance than warp-
ing the atlases to the target. Moreover, using the native space lessens
the computational requirements in terms of number of registrations and
learning.

Keywords: Label fusion · MRI · Multiatlas segmentation · Patch space

1 Introduction

Multi-atlas segmentation (MAS) has recently shown promising results in the
segmentation of biomedical images. In the MAS setting, multiple atlases are used
to segment a given target image, as opposed to single atlas-based segmentation,
where there is only one atlas. By using multiple atlases, MAS can better capture
the anatomical variability of the entire population. The major steps common
to all MAS approaches consist on registration and label fusion (LF). During
registration, the atlases and the target image are spatially transformed to the
same space in order to establish spatial correspondences. Then, LF finds the
optimal strategy to combine all atlas labelmaps into a consensus segmentation
on the target image. The present work focuses on patch-based LF [4], which uses
a 3D patch around the voxel of interest to represent its appearance information.
There are several choices in patch-based LF that need to be considered in the
fusion process: fusion strategy, fusion space and patch space.
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Fusion Strategy. The strategy used to fuse the multiple atlas labelmaps is an
important step in MAS. In this work, we focus on two widely-known strategies.
Given a set of atlas patches xi and their corresponding labels yi, the target patch
xt is segmented as follows:

1. Similarity-based LF: atlas labels, yi, are weighted according to the similarity
of their intensity patches with the target patch [4,6]. The more similar xi is
to the target patch xt, the higher the contribution of its label, yi.

2. Learning-based LF: these approaches learn from the atlas patches xi a func-
tion that maps local image appearances to the corresponding label, yi [3,5].
When a target image arrives, this function is used to predict a label for each
target voxel.

Fusion Space. This is the space where the estimated segmentation is computed
via LF. It is typically done in one of the following spaces:

1. Target fusion space: the target labelmap is computed directly in the target
space. To that end, spatial transformations between the atlases and the target
image are computed to warp the atlases to the target space, where LF takes
place (see Fig. 1).

2. Template fusion space: the target labelmap is computed in a template space.
To that end, both atlases and target are warped to a template space (e.g.,
MNI152) and LF is performed in this common space using warped atlases Ãi

and the warped target T̃ . The estimated segmentation is then warped back
to the target space (see Fig. 2).

Fig. 1. Target fusion space. The target labelmap is computed directly in the target
space via LF using the warped atlases Ãi. (Color figure online)



Patch Spaces in Patch-Based Label Fusion 39

Fig. 2. Template fusion space: target labelmap is computed in the template space using
the warped atlases and target to the template space. Then, the estimated segmentation
is warped back to the target space.

In the vast literature on MAS, the most common space used to perform
LF is the target space (i.e., target fusion space), especially for methods using
similarity-based fusion strategies. The main advantage of target fusion space is
that the target labelmap does not need to be warped back to the target space,
thus incurring in label interpolation errors. Also, the target image suffers no
distortion due to registration-based interpolations. However, given N training
atlases, the computational burden of this approach is high because it requires N
registrations per target image. In this direction, researchers proposed non-local
patch-based label fusion strategies that only use coarse registrations to lower the
computational requirements [4,6]. Although the computational burden can be
alleviated by composing the atlas-to-target registration through a template.

The template fusion space is usually adopted by methods using a learning-
based fusion strategy [7], since classifiers to label each voxel can be trained offline.
On the other hand, using the target fusion space implies learning the classifiers
online for each new target image, which is computationally demanding [5,8].
Classifiers are trained on the warped atlases to segment a single target image
and cannot be reused to segment other target images. Here, atlas selection [1]
can be used to reduce the size of the training set and hence learning times,
though atlas selection introduces another free parameter (i.e., the number of
most similar atlases) into the MAS setting, to be chosen during an intermediate
validation step, for instance.

Patch Space. Patch space refers to the spaces used to extract the appearance
(e.g. patches) and label information used in LF. In most approaches, the patch
space coincides with the fusion space. Particularly, LF in target fusion space is
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based on patches extracted from the atlases warped to the target, Ãi (see green
arrows in Fig. 1), not the atlases in their native space (i.e., Ai). Similarly, in tem-
plate fusion space, patches are extracted from the atlases and the target image
warped to the template (i.e., Ãi and T̃ respectively, as shown in Fig. 2). Irrespec-
tive of fusion space, the warped atlases are subject to interpolation errors. This
is an important drawback because the interpolation strategy used for the atlas
intensity images (e.g., linear) is different from the one used for the labelmaps
(e.g., nearest neighbors). In this way, a deformed labelmap might be no longer
faithful to its corresponding deformed intensity image under the manual segmen-
tation protocol followed by the expert. In case of using the template as fusion
space, there is an additional source of error due to interpolation of the estimated
labelmap, which occurs when warping it back to the target space.

Little attention is paid by researchers in MAS to the space where the patches
are extracted from. In this work, we propose a LF approach that uses appearance
and label information from the native spaces of both atlases and target images,
the so-called native patch space. Thus, registration is used to only find spatial
correspondences between the atlases and the target image, without deforming
any of them. The advantages of native patch space are threefold: (1) there is no
need to warp the atlases, thus avoiding any inaccuracies between atlas images
and corresponding labelmaps due to interpolation artifacts. This allows LF to be
driven by the true appearance patterns used by the expert to create the ground
truth, (2) avoiding warping the atlases also implies a higher storage efficiency,
since there is no need to keep two instances of each atlas (i.e., the original and
the warped one), (3) learning-based fusion strategies can be applied directly in
the target fusion space, whithout the need to train the classifiers online for each
target.

The paper is organized as follows. In Sect. 2 we present the details of our
method. In Sect. 3 we describe the experimental setting and present the results,
and in Sect. 4 we conclude the paper.

2 Method

The proposed approach is based on the observation that LF in template or
target fusion spaces relies on different (i.e., deformed) versions of the atlases
and not the original ones, and therefore, there exists a risk of introducing noise
in the segmentation process due to interpolation errors. On the contrary, in
our approach, the mappings computed during registration are only used to find
spatial correspondences between the atlases and the target image, but the images
are not deformed. In order to avoid registering the atlases each time a novel
target image arrives, atlases are registered to a common reference space. Figure 3
illustrates how LF is carried out in our novel approach. Throughout the rest of
the paper, we will refer to it as LF in native patch space.

In the proposed approach, we adopt a non-local patch-based approach [4].
Let φi be the mapping of the i-th atlas, Ai, to the template space and φt the
mapping of the target image. For each voxel vt and corresponding patch xt (see
red box in Fig. 3) on the target image:
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Fig. 3. LF in native patch space. Correspondences between the atlases Ai and the
target image T are used to extract the patches from their respective native spaces.
Target labelmaps are directly computed in the target fusion space.(Color figure online)

1. Find corresponding voxel in template space (red arrow in Fig. 3):

ṽ = φt(vt). (1)

2. Find corresponding voxels in each atlas space (green arrows in Fig. 3):

vi = φ−1
i (φt(vt)) = φ−1

i (ṽ), i = 1, . . . , N. (2)

with i indexing the atlases in the database.
3. Extract patches and corresponding labels in the neighborhood of vi (see green

boxes in Fig. 3):

D = {(xij , yij)|∀j ∈ S(vi), i = 1, . . . , N} (3)

where yij ∈ {−1,+1} is the label of the j-th voxel in the neighborhood of vi,
denoted as S(vi), indicating foreground (i.e., +1) or background (i.e., −1).

4. Label target patch xt using the set of patches D and some LF strategy as
explained in the following.

The first fusion strategy is a similarity-based approach (SimLF) [4]. The
SimLF strategy estimates the target label as a weighted combination of atlas
labels, where atlas patches more similar to the target patch have higher contri-
bution. It is defined as follows:

ŷt = sign
( |D|∑

k=1

K(xk, xt)yk
)

(4)

where K(·, ·) is a similarity measure between patches, and |·| denotes cardinality.
Here, we use the exponential of the negative SSD as similarity measurement [4],
defined as K(xt, xk) = exp(−‖xt −xk‖2/γ), where γ is a normalization constant
defined as γ = min ‖xk − xt‖2 [4].
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The next fusion strategy (LearnLF) consists on learning a labeling func-
tion that relates the patch intensities and their corresponding anatomical labels
(xk, yk) using as training set the atlas patches and labels in D. Learning-based
fusion strategies have already been proposed [5,8]. Using the well-known kernel-
SVM for training the labeling function, the expression for estimating the target
labels at test time is defined as follows:

ŷt = sign
( |D|∑
k=1

K(xk, xt)ykαk + b
)

(5)

where K(·, ·) is the RBF kernel defined as K = exp(−‖xt−xk‖2/γ), with γ being
the kernel width hyperparameter of kernel-SVM, and αk and b are the coefficients
of the support vectors and the intercept, respectively, which are computed offline
during training.

Similarly to SimLF, LearnLF also weighs the contribution of the altas
labels based on their similarity. Note the striking similarity between SimLF and
LearnLF when using the RBF kernel in LearnLF. Key differences between both
approaches are that LearnLF includes the learned coefficients αk which, by def-
inition of kernel-SVM, are only different than zero for the atlas patches playing
the role of so-called support vectors. This could be interpreted as a form of patch
selection. Finally, note that due to the fact that the proposed approach uses the
native patch space, the atlas training patches for each classifier are invariant to
the to-be-labeled target image, and therefore the classifiers for each point can
be learned offline.

3 Experiments

All methods were evaluated on the MICCAI 2013 SATA Challenge dataset1. This
dataset is composed of 35 T1-w MR images of control subjects with ground-truth
segmentations available for seven subcortical structures: accumbens, amygdala,
caudate, hippocampus, pallidum, putamen and thalamus proper.

All images were registered to the MNI152 template. For label fusion in target
fusion space, pairwise mappings between the images were obtained by composing
the transformations through the template. Furthermore, for image intensity to
be consistent across atlases, histogram matching was used.

We compared the LF performance using all the patch spaces, namely, tem-
plate, target and the proposed native patch space. Both SimLF and LearnLF
fusion strategies were used in each of the patch spaces. Different patch and
neighborhood sizes were used, with a radius of 1 and 2. For validation, a 3-fold
cross-validation procedure was used with Dice similarity coefficient to assess the
performance. Finally, all experiments were repeated using 2 registration settings:
affine and non-rigid using the symmetric diffeomorphic mapping of ANTs [2].

Figure 4 shows mean overall Dice scores achieved by the tested LF strategies
for different registration settings, comparing their performance depending on
1 https://masi.vuse.vanderbilt.edu/workshop2013.

https://masi.vuse.vanderbilt.edu/workshop2013
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Fig. 4. Comparison of different patch spaces (colored lines), different fusion strategies
and different registration settings. Top row: SimLF. Bottom row LearnLF. Left col-
umn: Affine registration. Right column: non-rigid registration. Vertical axis represents
performance (Dice score) and horizontal axis indicate different patch and neighborhood
radius values.(Color figure online)

patch space. Table 1 reports overall dice scores using a radius of 2 (i.e., size of
5 × 5 × 5) for both patch and neighborhood search, with which all methods
reached their best performance. Regardless of patch and neighborhood sizes,
when using the native patch space, both SimLF and LearnLF produced the best
segmentations. Moreover, for affine registration, the difference in performance
when compared with LF in target space (i.e., target patch space) is the largest.
Finally, it is worth noting that the LearnLF achieved better performance than
SimLF, which highlights the importance of the learning approach versus the
similarity-based approach.

Table 1. Overall performance in terms of average Dice overlap (and standard devia-
tion) for the different patch spaces. Bold type indicates the best average segmentation
performance.

Affine Non-rigid

SimLF LearnLF SimLF LearnLF

Template 0.843 ± 0.040 0.855 ± 0.031 0.826 ± 0.036 0.825 ± 0.037

Target 0.838 ± 0.052 0.868 ± 0.032 0.866 ± 0.032 0.874 ± 0.027

Native 0.857± 0.044 0.874± 0.030 0.870± 0.031 0.878± 0.027
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4 Conclusions

In this work, we revisited the well-known patch-based LF framework to pro-
pose an improvement that leads to superior performance and considerably
reduced runtimes in terms of registration and learning. In most patch-based
LF approaches, fusion is carried out in the target space, which requires all train-
ing atlases to be spatially transformed to the target image. Extracting patches
and their corresponding labels from the atlases’ native space instead of using
some deformed version after warping them, for instance, to the target space, has
shown to be more beneficial. For learning-based approaches, classifiers can be
learned offline using the available training atlases and reused in the segmenta-
tion of novel target images. Finally, our experiments showed that learning-based
LF outperforms similarity-based LF, which reinforces the advantage of using the
native patch space due to the added computational advantages that it implies
for the learning-based LF.

Acknowledgments. This work is co-financed by the Marie Curie FP7-PEOPLE-
2012-COFUND Action, Grant agreement no: 600387.
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Abstract. We introduce a functional for the learning of an optimal
database for patch-based image segmentation with application to coro-
nary lumen segmentation from coronary computed tomography angiogra-
phy (CCTA) data. The proposed functional consists of fidelity, sparseness
and robustness to small-variations terms and their associated weights.
Existing work address database optimization by prototype selection aim-
ing to optimize the database by either adding or removing prototypes
according to a set of predefined rules. In contrast, we formulate the data-
base optimization task as an energy minimization problem that can be
solved using standard numerical tools. We apply the proposed database
optimization functional to the task of optimizing a database for patch-
base coronary lumen segmentation. Our experiments using the publicly
available MICCAI 2012 coronary lumen segmentation challenge data
show that optimizing the database using the proposed approach reduced
database size by 96% while maintaining the same level of lumen segmen-
tation accuracy. Moreover, we show that the optimized database yields
an improved specificity of CCTA based fractional flow reserve (0.73 vs
0.7 for all lesions and 0.68 vs 0.65 for obstructive lesions) using a train-
ing set of 132 (76 obstructive) coronary lesions with invasively measured
FFR as the reference.

Keywords: Energy minimization · Prototype sampling · K-nearest
neighbor · Coronary lumen segmentation

1 Introduction

Segmentation of anatomical structures from medical images plays an important
role in many clinical applications. Automatic segmentation can be challenging
due to the large variability in anatomical structures shape and appearance.
Patch-based, non-parametric segmentation algorithms such as the K-nearest
neighbor (KNN) algorithm [2] have demonstrated their potential in automatic
c© Springer International Publishing AG 2017
G. Wu et al. (Eds.): Patch-MI 2017, LNCS 10530, pp. 47–54, 2017.
DOI: 10.1007/978-3-319-67434-6 6
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segmentation of challenging anatomical structures. For example, Mechrez et al.
[7] use the KNN algorithm followed by a spatial consistency refinement step to
segment Multiple-Sclerosis lesions from MRI data, and Wang et al. [11] demon-
strate the potential of KNN algorithm in defining a search-space for improved
patch-based segmentation of cardiac MR data and abdominal CT data. Specifi-
cally in the cardiovascular domain, Olabarriaga et al. [9] used the KNN algorithm
to steer a model-based segmentation of abdominal aortic aneurysms and more
recently, Freiman et al. [3] used the KNN algorithm to estimate the likelihood
component within a graph min-cut framework for coronary artery lumen seg-
mentation.

While the KNN algorithm has several theoretical and practical advantages
[2], two main limitations of this algorithm are: (1) large storage to retain the
set of examples which defines the training set, and (2) low efficiency due to the
re-calculation of the similarity between the test and training samples at each
evaluation [4].

Among the approaches previously proposed to address these issues, database
optimization by prototype selection is an attractive approach as it maintains
originally an-notated data rather than generating artificial data. The optimal
prototype selection is an NP-hard problem which can be mapped onto a set-
cover problem and solved using an approximation algorithm [1]. Alternatively,
the prototype selection problem can be relaxed by introducing some order on the
prototypes. Then, the prototype selection approaches can be divided into three
categories: (1) incremental search, in which the algorithm adds prototypes to the
reduced data based on some rule, (2) decremental search in which the algorithm
aims to remove prototypes from the database according to some rule, and; (3)
hybrid approach which combines both incremental and decremental steps. For a
comprehensive review of methods aimed to reduce KNN algorithm storage and
computational demand we refer the reader to Garćıa et al. [4].

In this work we formulate the database optimization problem as an
energy minimization which enables the optimization using common numerical
approaches. Our functional consists of fidelity, sparsity and robustness to small
variations terms along with their associated weights. We applied the proposed
functional to optimize a database used in Freiman’s et al. patch-based coronary
artery lumen segmentation algorithm [3]. We evaluated the influence of database
optimization on the segmentation performance by means of segmentation accu-
racy using the publicly available MICCAI 2012 Coronary Lumen Segmentation
Challenge Database [5]. We also evaluated the impact of the database opti-
mization on CCTA based fractional flow reserve (CT-FFR) estimates using a
database of 132 coronary lesions with invasively measured FFR as the reference.

Our results show that the database size can be reduced by 96% while main-
taining the same level of coronary lumen segmentation accuracy on the MICCAI
2012 Coronary lumen segmentation challenge database [5] and even improving
the performance of CT-FFR estimates obtained with 3D models generated from
the automatic segmentation results.



Learning a Sparse Database for Patch-Based Medical Image Segmentation 49

2 Method

Our goal is to select a subset of prototypes from a given database so that the
classification performance for any new sample will be as accurate as possible.
The sub-sampled database should represent the full structure of the population
with as few prototypes as possible. First, we define a property describing the
distribution of the prototypes in the original database. Next, we define a set of
parameters used to generate a sub-sampled database, and finally, we formulate
the optimal parameter finding as an energy minimization problem.

2.1 Prototype Ranking

Inspired by the work of Bien and Tibshirani [1], we rank prototypes in the orig-
inal database according to their location on the manifold. Specifically, we will
consider a prototype as located in the center of its class when its neighbor-
ing most similar prototypes according to some pre-defined metric are from of
the same class and as located on the boundary between classes if it has many
neighbors similar samples which are belonging to other from different classes.
Formally, for a prototype feature-vector x, we define the sample ranking score
R(x) as follows:

R(x) =
#NN with other class
#NN with same class

=
∑K

k=1 1 − δ(C[x], C[xk])

max(
∑K

k=1 δ(C[x], C[xk]), 1)
(1)

where K is the number of the nearest prototype neighbors xi that are similar
according to the chosen distance metric, C[xi] is the class of xi, x is a prototype
similar to xi, and:

δ(C[xi], C[xk]) =

{
1, C[xi] = C[xk]
0, C[xi] �= C[xk]

(2)

According to this definition R(x) gets a high value when the prototype x has
many similar prototypes from other classes, and a low value when the prototype
x has many similar prototypes from its own class.

2.2 Database Sparsification

We describe the distribution of the classification sample ranking scores of the
prototypes in the original database for each class using a histogram with N bins.
The bins boundaries are set (and kept fixed) to be percentiles of the overall
samples per class to normalize against various sample ranks distributions. We
define a sparsified database as a function of the percentile of prototypes to be
selected from each bin of the histogram DB(N), where N ∈ N

N is the vector
containing the number of prototypes to be put in each of the N bins. The
subsampling is done deterministically by selecting the Ni prototypes with highest
ranking score for bin i.
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2.3 Database Optimization

Given the function DB(N) to sample the original database, we define a func-
tional to estimate the sampling parameters N i.e. the number of prototypes per
bin. Our goal is to find N that maximizes the capability of the sampled data-
base to correctly classify each sample while minimizing the overall number of
samples. We also would like the classification to be robust to small variations in
the samples. Formally, our functional is defined as:

Eα,β(N) =
M∑

i=1

robustness
︷ ︸︸ ︷
ρ(N ,xi) +α

M∑

i=1

fidelity
︷ ︸︸ ︷

(C(xi) − f (DB(N),xi))
2 +β

sparsity
︷ ︸︸ ︷
‖DB(N)‖ (3)

where: DB(N) is the sampled database constructed from the original data-
base by sampling the different bins according to the percentiles specified by N ,
f (DB(N),xi) is the classification of the prototype xi using the sampled data-
base DB(N), ‖DB(N)‖ is the number of the prototype in the sampled database
DB(N), M is the number of prototypes in the original database, α,β are weight-
ing meta-parameters controlling the contribution of each term, and TV (N) mea-
sures the robustness of the the classification of each prototype using DB(N) to
a small variation in its appearance as follows:

ρ(N ,x) =
J∑

j=1

‖f (DB(N),x) − f (DB(N),x + ej) ‖1 (4)

where J is the dimension of the prototype x, the unit vector ej is of the same
dimension as with zeros at all entries except at entry j, and ‖f (DB(N),x) −
f (DB(N),x + ej) ‖1 is the absolute difference between the classification of
x and x + ej given the database DB(N).

We find the optimal database sampling parameters by minimizing the energy
functional:

N̂ = argmin
N

Eα,β(N) (5)

2.4 Coronary Lumen Segmentation

We apply the proposed approach to reduce the database size required for the
coronary lumen segmentation algorithm proposed by Freiman et al. [3]. For the
sake of completeness, we briefly describe the relevant parts of the algorithm here.
We refer the interested reader to a detailed and complete description provided in
[3]. The algorithm formulates the segmentation task as an energy minimization
problem over a cylindrical coordinate system [6] where the warped volume along
the coronary artery centerline is expressed with the coordinate i representing
the index of the cross-sectional plane, and θ, r represent the angle and the radial
distance determining a point in the cross-sectional plane

E(X) =
∑

p∈P

ψp(xp) + λ
∑

p,q∈E

ϕp,q(xp, xq) (6)
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where P is the set of sampled points, xp is a vertex in the graph representing
the point (ixp , θxp , rxp) sampled from the original CCTA volume, ψp(xp) rep-
resents the likelihood of the vertex to belong to the lumen or the background
class, p, q are neighboring vertices according to the employed neighboring system
E, and ϕp,q(xp, xq) is a penalty for neighboring vertices belonging to different
classes ensure the smoothness of the resulted surface. The algorithm uses the
KNN algorithm [2] to calculate the likelihood of each vertex xp belonging to the
coronary lumen from a large training database with rays sampled from cardiac
CTA data along with manually edited lumen boundary location represented as
a binary rays serving as the database prototypes. The likelihood term is addi-
tionally adjusted to account for partial volume effects and a L2 norm used as
the regularization term as described in [3].

2.5 Application of the Database Optimization

The original database used in the coronary lumen segmentation algorithm con-
sists of ∼2,130,000 prototypes obtained from 97 CCTA datasets segmented man-
ually by a cardiac CT expert. We consider the lumen radii as the different classes
of the rays. We use the L2 norm as the distance metric to define the sample rank
(Eq. 1), and experimentally set the number of bins in the histogram N (Eq. 3)
to 5. We optimize the functional hyperparameters to achieve the maximal area
under the curve (AUC) for CT-FFR estimates with the segmentations obtained
using the optimized database with invasive FFR measurements as the reference.
Formally, we define a two-phase optimization task, where the outer loop opti-
mized the model hyperparameters α and β:

α̂, β = argmax
α,β

AUC (FFRCT (DB (N)) − FFRGT ) (7)

and the inner loop find the optimal model parameters for given α, β using Eq. 5.
We carried out the optimization using the derivative-free BOBYQA algorithm
by Powell [10].

3 Experimental Results

We use two data sets as follows. The first dataset consists of CCTA data of 132
coronary lesions that were retrospectively collected from the medical records of
97 subjects who underwent a CCTA and invasive coronary angiography with
invasive FFR measurements due to suspected CAD. CCTA data was acquired
using either a Philips Brilliance iCT (gantry rotation time of 0.27 s) or Philips
Brilliance 64 (gantry rotation time of 0.42 s). Acquisition mode was either heli-
cal retrospective ECG gating (N = 54) or prospectively ECG triggered axial
scan (N = 43). The kVp range was 80–140 kVp and the tube output range was
600–1000 mAs for the helical retrospective scans and 200–300 mAs for the
prospectively ECG triggered scans.
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Cross-sectional area (CSA) based stenosis quantification was performed by
an expert reader on 132 lesions, out of which 56 were diagnosed as non-
obstructive lesions (CSA stenosis less than 50%) and 76 diagnosed as obstructive
lesions (CSA stenosis 50%–90%). According to the invasive FFR measurements,
48 lesions were hemodynamically significant (FFR≤0.8) and 84 lesions were
non-significant (FFR> 0.8). The coronary artery centerlines and the aorta seg-
mentation were computed automatically and adjusted manually by a cardiac CT
expert (–) to account for algorithm inaccuracies using a commercially available
software dedicated to cardiac image analysis (Comprehensive Cardiac Analysis,
IntelliSpace Portal 6.0, Philips Healthcare).

We tuned the model hyper-parameters and optimized the database using
Eqs. 5 and 7. Next, we segmented the coronary tree with Freiman’s et al. algo-
rithm [3] with the full and the optimized databases. Finally, we performed the
flow simulations using the lumped parameter model (LM) proposed by Nickisch
et al. [8].

We compared the flow simulation results from the 3D coronary tree mod-
els generated using the coronary lumen segmentation algorithm described in
Sect. 2.4, with the full and optimized training databases. The optimization
process reduced the database size by 96% from ∼2,130,000 prototypes to ∼84,000
prototypes. Figure 1 illustrates the reduction in the number of prototypes in the
database at the different bins of the prototypes histogram. The Functional-based
optimization prefers to keep prototypes with low sample ratio (i.e. closer to the
center of mass of each class) in the optimized database. Table 1 summarizes
the performance metrics for assessing the hemodynamic significance of coronary
lesions with automatic segmentation using the entire and optimized database
for entire set of coronary lesions and specifically for obstructive lesions (Cross
Sectional Area (CSA) stenosis ≥ 50%). The flow simulation results are slightly

Energy minimization based database dilution
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Fig. 1. The database reduction for each bin of the histogram of prototypes. The red
bars indicate 100% of the original database and the green bars indicates the percent-
age of the remaining prototypes after the optimization. Optimized database sampling
parameter for each bin is listed above the optimized histogram.(Color figure online)
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Table 1. Summary statistics of hemodynamic significance assessment of coronary
lesions by means of CT-FRR based on automatic segmentation with the entire data-
base and with the optimized database. Results presented for all (N=132) lesions and
specifically for obstructive (Obst.) lesions (N=76) separately.

Sensitivity Specificity Accuracy AUC

All Obst. All Obst. All Obst. All Obst.

Optimized database 0.85 0.86 0.73 0.68 0.77 0.76 0.84 0.83

Full database 0.85 0.86 0.70 0.65 0.76 0.75 0.84 0.82

Fig. 2. Representative example of straight multi-planar reconstructed images of coro-
nary artery segmentation results with the optimized (green) and full database.(Color
figure online)

Table 2. Summary statistics of coronary lumen segmentation accuracy using the
MICCAI 2012 challenge evaluation framework [5] for the training datasets (18 cases,
78 coronary segments). Results presented for healthy and diseased segments separately
and in the relevant metric units.

Dice (%) MSD (mm) MAX SD (mm)

Healthy Disease Healthy Disease Healthy Disease

Optimized database 0.69 0.74 0.49 0.27 1.69 1.24

Full database 0.69 0.74 0.49 0.27 1.69 1.22

better using the optimized database compared to the results of the full database,
although the optimized database has much less prototypes compared to the full
database.

Figure 2 depicts representative examples of straight multi-planar recon-
structed images of coronary artery segmentation results with the optimized
(green) and the full (red) database. Table 2 presents the segmentation accu-
racy results of our algorithm with the original and optimized database using the
MICCAI 2012 challenge framework training data [5]. We refer the reader to the
challenge website [5] for further comparison with the rest of the methods and
with the observer performance.

4 Conclusion

We presented an energy functional for optimizing the training database in patch-
based medical image segmentation algorithms. We define a ‘sample rank’ order



54 M. Freiman et al.

on the training database prototypes and formulate the prototype sampling as
an energy minimization task with hyper-parameters that can be adjusted to
the specific task. We demonstrated the application of this approach to reducing
database size and improving the performance of coronary lumen segmentation
algorithm from CCTA data. Our experiments show that the optimized database
can maintain overall segmentation results with added incremental improvements
of CT-FFR estimates based on the 3D models generated from the segmentation
results while substantially reducing the memory demand of the algorithm.
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Abstract. Recent innovations in tissue clearing and light sheet microscopy
allow rapid acquisition of three-dimensional micron resolution images in
fluorescently labeled brain samples. These data allow the observation of every
cell in the brain, necessitating an accurate and high-throughput cell segmenta-
tion method in order to perform basic operations like counting number of cells
within a region; however, large computational challenges given noise in the data
and sheer number of features to identify. Inspired by the success of deep learning
technique in medical imaging, we propose a supervised learning approach using
convolution neural network (CNN) to learn the non-linear relationship between
local image appearance (within an image patch) and manual segmentations (cell
or background at the center of the underlying patch). In order to improve the
segmentation accuracy, we further integrate high-level contextual features with
low-level image appearance features. Specifically, we extract contextual features
from the probability map of cells (output of current CNN) and train the next
CNN based on both patch-wise image appearance and contextual features,
extending previous methods into a cascaded approach. Using (a) high-level
contextual features extracted from the cell probability map and (b) the spatial
information of cell-to-cell locations, our cascaded CNN progressively improves
the segmentation accuracy. We have evaluated the segmentation results on
mouse brain images, and compared conventional image processing approaches.
More accurate and robust segmentation results have been achieved with our
cascaded CNN method, indicating the promising potential of our proposed cell
segmentation method for use in large tissue cleared images.
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1 Introduction

Our understanding of nervous system function is critically dependent on visualizing the
three-dimensional structures of the brain. Most critical aspects of cellular identity and
functionality, observed at the micron scale and measured by microscopy, are well
below the resolution of MRI (Magnetic Resonance Imaging), which acquires images at
millimeter resolution. However, higher resolution microscopy images have several
computational difficulties such as large image size, low image contrast, and inhomo-
geneous intensity, which create significant challenges for image analysis.

General speaking, the computational challenges are based on the data size and
complexity. A mouse brain (volume of 1000 mm3) imaged at high resolution (e.g., 0:25
lm� 0:25 lm� 1 lm) results in *30 TB of data for each fluorescent label [1]. More
critically, image quality is usually limited by the image acquisition hardware and scanning
time. As shown in Fig. 1, low image contrast (displayed in the red box) and intensity
inhomogeneity (displayed in the blue box) are very common which make the conven-
tional image processing methods unable to produce accurate cell segmentation results.

Current cell detection/segmentation methods are tailored for cell nuclei and use a
background subtraction by morphological opening method [1, 2]. Although the com-
putational cost is low for this method, it assumes that the shape of the feature to
segment (in this case nuclei) is similar across cell types. This assumption is likely
invalid across all cell types (e.g., neuronal nuclei are round whereas endothelial nuclei
are oblong) and therefore will result in poor segmentation. Moreover, since each image
point in the microcopy image stack is treated equally, such low-level image processing
methods are not sufficient to deal with the inhomogeneity issue.

Fig. 1. The challenges in segmenting cells from microscopy image
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To address above limitations, we propose a novel learning-based segmentation
method using convolutional neural networks [3, 4]. Specifically, we first construct a
neural network to learn the non-linear mapping between the appearance within the
image patch and the label at the center of the underlying image patch, in a
layer-by-layer manner. 3D convolution and max pooling techniques [5, 6] are used in
training the neural network, which have proven efficient at dealing with
high-dimensional volumetric imaging data. In order to address the challenges of poor
image contrast and high intensity inhomogeneity, we further proposed to use high-level
contextual feature to improve segmentation results. Specifically, the contextual feature
representation is extracted from the tentative probability map of cells, which charac-
terize the spatial coordinates with respect to the nearby cells. Then we use both
patch-wise image appearance and contextual information to train another CNN, where
the input of underlying CNN is the output of previous CNN. With additional high-level
contextual features at each voxel, the segmentation can be improved by correcting the
possible mis-segmentations by using image appearance features only. Since the con-
textual features are calculated based on cell probability map produced by the previous
CNN, our cascaded CNN can progressively improve the cell segmentation result by
refining the contextual features based on the more and more accurate cell probability
map. It is worth noting that deep neural network is very suitable for parallel computing
such as GPU programming. Hence, our CNN-based cell segmentation method is
scalable to apply to microscopy images in current neuroscience studies.

We have evaluated our cascaded CNN in segmenting cells from mouse brain
images acquired at the Neuroscience Center at the University of North Carolina at
Chapel Hill and imaged on a confocal microscope. Compared with conventional image
processing method, our proposed method achieves more accurate and consistent seg-
mentation results in terms of overlap ratio and visual inspection.

2 Methods

To achieve accurate cell segmentation results from a mouse microscopy image, we
propose a novel cascaded CNN approach, as shown in Fig. 2. The building block of
our proposed segmentation method is a convolutional neural network (the bottom of
Fig. 2). In the following, we will first present the CNN based segmentation in Sect. 2.1
and then extend to the cascaded CNN using the contextual feature in Sect. 2.2.

2.1 3D Convolutional Neural Network for Cell Segmentation

Suppose we have a set of image patches X ¼ fxiji ¼ 1; . . .;Ng and the known label
Y ¼ fyiji ¼ 1; . . .;Ng (yi 2 fcell; celledge; backgroundg (manually identified) at the
center of image patch. The goal is to learn a non-linear mapping f such that yi ¼ f ðxiÞ.
Since the mapping function f is usually highly complex, we used deep the learning
technique to find out the mapping in a layer-by-layer manner, that is, yi ¼ fL
ðfL�1 . . .f1ðxiÞð ÞÞ, where the neural network consists of L layers. Note, there are only

Accurate and High Throughput Cell Segmentation Method 57



three neurons (green nodes in the bottom of Fig. 2) in the last layer which produce the
probability to cell, cell edge, and back ground, respectively. Specifically, Let D and M
denote, respectively, the dimensions of hidden representations and input patches. Given

an input image patch xi 2 RM , neural network maps it to be an activation vector h1i ¼
h1i ðjÞ
� �T

j¼1;...;D2 RD by h1i ¼ f1 W1xi þ b1ð Þ, where the weight matrixW1 2 RD�L and the

bias vector b1 2 RD are the network parameters in the first layer. Here, f is the logistic
sigmoid function f að Þ ¼ 1= 1þ exp �að Þð Þ. It is worth noting that h1i is considered as the
low-level representation vector of the particular input training patch xi. Next, the rep-
resentation h1i from the hidden layer is used as the input of second layer to learn the
network parameter W2 and b2, where the activation vector h2i encodes the correlations
across the low-level features. We repeat the same procedure and construct L layers, as
shown in the bottom of Fig. 2. A typical gradient based back-propagation algorithm can
be used for fine tuning the network parameters [7, 8].

In order for robustness, the input image patch size is required to be set large
enough, e.g., 61 voxels in each dimension. However, it is too complex to learn
non-linear mapping in such high dimensional space. Hence, the convolutional tech-
nique is employed to reduce the data dimension. The input to the convolutional neural
network is the large image patch Pv with patch size Lv. To make it simple, here, we
explain the CNN with a 2D image patch as example. Since the dimension of the image
patch Pv is too large, we let a Lw � Lw (Lw \ Lv) sliding window Pw go through the
entire big image patch Pv, thus obtaining Lv � Lw þ 1ð Þ � Lv � Lw þ 1ð Þ small image
patches. Eventually, we use these small image patches Pw to train the auto-encoder in
each layer, instead of the entire big image patch Pv. Given the parameters of network
(weight matrix Wl and bias vector bl in each layer), we can compute Lv � Lw þ 1ð Þ �
Lv � Lw þ 1ð Þ activation vectors. Then max pooling [5] is used to shrink the

Fig. 2. The overview of our cascaded CNN of cell segmentation method (top) and the
architecture of CNN (bottom).
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representations by a factor of C in each direction (horizontal or vertical). Specifically,
we compute the representative activation vector among these 4 activation vectors in the
2� 2 neighborhood by choosing the maximum absolute value for each vector element.
Thus, the number of activation vector significantly reduces to Lv�Lw þ 1

C � Lv�Lw þ 1
C . Since

we apply the maximum operation, shrinking the representation with max pooling
allows high-level representation to be invariant to small translations of the input image
patches and reduce the computational burden.

2.2 Cascaded Convolutional Neural Network Using Contextual Features

In Sect. 2.1, we only use the image appearance information to train CNN. Due to low
image contrast, low-level features derived from image intensity are not sufficient to
steer the training of neural networks. Other high-level features are of great necessity to
alleviate the issue of poor image quality. To this end, we resort to context features [9,
10] which can encode spatial relationship of one structure to other structures.

Since the output of CNN includes the probability of cell at each voxel, we construct
patch-wise contextual features based on the tentative cell probability map. It is rea-
sonable to train another CNN using both low-level image appearance and high-level
contextual information. Leveraged by the high-level heuristics, we can enhance the
reliability of the cell probability map and then use the refined contextual features to
train another CNN and so on until the segmentation results converge. Eventually, we
turn the conventional CNN method into a cascaded architecture, as shown in the top of
Fig. 2. Considering the computation cost, we cascade two CNNs in our experiment.

3 Experiment Results

3.1 Experiment Setting

In the training stage, we randomly sampled *165,000 training patches to train the
cascaded CNN, each image patch with the known label (cell, cell edge, and back-
ground) at the patch center. The patch size is set to 61 voxels. Max-pooling of a
2� 2� 2 window are operated to combine the activation vectors from convolutional
filters.

To evaluate the cell segmentation result, we first compare our cascaded CNN cell
segmentation method with classic Otsu’s method, where the threshold of intensity is
optimized to separate cell and background in the whole image domain. We also apply
the enhanced Otsu’s method [11], which consider the issue of image artifacts such as
noise. Since the main challenge of cell segmentation in microscopy image is from
intensity inhomogeneity, we further deploy local Otsu’s method where the intensity
threshold is adaptive to each local region. Furthermore, we show the cell segmentation
results by object detection method [12] using filter convolution technique, which works
in the frequency domain and assumes the cell voxels usually have high response to
certain specifically designed band-pass filters.
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3.2 Results

Advantage of Cascaded CNN Over Single CNN. First, we demonstrate the cell
segmentation with and without cascaded architecture. Figure 3(a) and (b) display the
original mouse microscopy image and after intensity normalization, where the low
illumination in the top-left (red bounding box) makes most of cells in that dark regions
being considered as background. The cell probability map by single CNN (use intensity
information only) and our cascaded CNN are shown in the Fig. 3(c) and (d), respec-
tively. It is observable that (1) learning-based approaches are efficient to alleviate the
issue of local intensity inhomogeneity; and (2) the cell probability map by cascaded
CNN is sharper than single CNN (thus more reliable to binary into cell and background),
indicating the advantage of using contextual features and the cascaded architecture.

Evaluation of Cell Segmentation Accuracy with Comparison to Current
State-of-the-Art Methods. Next, we show the segmentation by classic Otsu’s method
(using global threshold) in Fig. 4(a), enhanced Otsu’s method (using corrected global
threshold) in Fig. 4(b), local Otsu’s method (using region adaptive threshold) in Fig. 4
(c), band-pass convolution filter in Fig. 4(d), and single CNN (using intensity infor-
mation only) in Fig. 4(e), and our proposed cascaded CNN (using both intensity and
contextual features) in Fig. 4(f), respectively. In general, learning-based approaches
outperform the non-learning-based methods via visual inspection. Furthermore, we
calculate the overlap degree between the manual segmentation and the automatic cell
segmentation result by above six approach. The Dice ratios are shown in Table 1. It is
apparent that the improvement by our cascaded CNN is significant in terms of seg-
mentation accuracy.

We test our cell segmentation method on a Dell work station with GPU card
(NVIDIA TITAN X with 12 GB frame buffer and 3584 cores @ 1.5 GHz). Without
specific program optimization, our cascaded CNN method requires 124 s to complete
cell segmentation at a 800� 600 image region, voxel by voxel. Future work for speed

Fig. 3. The advantage of cascaded CNN over single CNN.
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up includes (1) fast screening the background points thus we only apply cascaded CNN
on difficult-to-segmentation image regions; (2) extent current method into
multi-resolution framework; (3) further optimize the current implementation to fully
utilize both CPU and GPU computational resources.

4 Conclusion

In this paper, we propose a novel learning-based nuclear segmentation method for
mouse brain microscopy image. Convolutional neural network is used to learn the
non-linear mapping between local image appearance and the probability of cell at the
center of the underlying patch. In order to address the issues of low image contrast and

Fig. 4. Cell segmentation result by current state-of-the-art methods and our proposed cascade
CNN method.

Table 1. The Dice ratio and computational time by six automatic cell segmentation methods.

Method Otsu Enhanced Otsu Local Otsu Band-pass filter Single CNN Cascaded CNN

Dice 0.421 0.639 0.671 0.576 0.590 0.767
Time(s) 0.303 1.572 3.710 3.756 84.21 124.0
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high intensity inhomogeneity, we further develop the cascaded CNN which utilize both
low-level image appearance and high-level contextual features to segment cells out of
microscopy image. Promising segmentation results have been achieved which indicates
the high potential of our cell segmentation in neuroscience applications like whole
brain tissue cleared samples.
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Abstract. It has been recently demonstrated that the local BOLD signals in
resting-state fMRI (rs-fMRI) can be captured for the white matter (WM) by
functional correlation tensors (FCTs). FCTs provide similar orientation infor-
mation as diffusion tensors (DTs), and also functional information concerning
brain dynamics. However, FCTs are susceptible to noise due to the low
signal-to-noise ratio nature of WM BOLD signals. Here we introduce a robust
FCT estimation method to facilitate individualized diagnosis. First, we develop
a noise-tolerating patch-based approach to measure spatiotemporal correlations
of local BOLD signals. Second, it is also enhanced by DTs predicted from the
input rs-fMRI using a learning-based regression model. We evaluate our trained
regressor using the high-resolution HCP dataset. The regressor is then applied to
estimate the robust FCTs for subjects in the ADNI2 dataset. We demonstrate for
the first time the disease diagnostic value of robust FCTs.

1 Introduction

Resting-state functional magnetic resonance imaging (rs-fMRI) has been widely
applied as the non-invasive imaging technique for studying the human brain functional
organization architecture. It was originally designed to detect the variations and
covariations of the blood-oxygenation-level-dependent (BOLD) signals mostly related
to the spontaneous neural activities [1]. The majority of rs-fMRI studies focus on the
gray matter (GM), while the rs-fMRI signals in white matter (WM) pathways are
treated as noise and artifacts. However, recent studies indicate that WM may also
contain meaningful BOLD signals, which carry potentially valuable information
complementary to GM-based rs-fMRI studies. Nevertheless, utilizing WM BOLD
signals for basic and clinical neuroscience studies is challenging, as WM has blood
vasculature that is much less denser, and also the BOLD signal in WM is significantly
weaker than in GM [2].

Despite the challenges, attempts have been made to investigate WM fMRI. Early
task-based fMRI studies have revealed consistent, reliable task activations in several
corpus callosal WM areas linking activated GM structures [3, 4]. Recently, Ding et al.
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[5] found WM functional anisotropic patterns using local functional connectivity
(FC) using rs-fMRI, which grossly resemble the anisotropic diffusivity reflected by
diffusion tensor imaging (DTI) in several major WM structures. They employed
functional correlation tensor (FCT) to capture such anisotropy, allowing functional
WM tractography based on rs-fMRI data of a small group of healthy subjects. How-
ever, it is challenging when applied to other large cohorts, owing to the limited
signal-to-noise ratio (SNR) of the WM BOLD signals. Moreover, the FCT estimation
method proposed in [5] does not leverage any prior knowledge of DT data that can help
overcome the SNR issue. Thus, a robust and reliable FCT estimation technique is
important for greater utility of WM anisotropy in neuroscience studies and also as
biomarkers for disease diagnosis.

In this paper, we propose a robust FCT estimation technique to address the
aforementioned issues. First, we develop a novel patch-based correlation measurement
strategy to suppress noise. Second, we propose to leverage the underlying WM fiber
orientation information as prior knowledge when calculating the FCT. This is based on
the finding that the dominant direction of the local WM FC anisotropic pattern,
extracted from rs-fMRI, is roughly consistent with that of the diffusion tensors
(DTs) from DTI [5] in major WM fiber structures. Thus, we can improve FCT esti-
mation by increasing weighting along the dominant directions of DTs. Ideally, the DTs
can be obtained from DTI [6]. In the case where DTI is not available, we employ a
learning based method to predict the DTs from the rs-fMRI data. This is achieved by
using random forest regression with cascaded learning strategy [7] to learn the
FC-to-DT mapping [8, 9] with a training dataset containing both rs-fMRI and DTI.
Thus, for a testing rs-fMRI, the learned mapping can be applied to predict DTs. Also
note that to consider between-tissue difference, the tissue probability features of
GM/WM/cerebrospinal fluid (CSF) from T1-weighted MRI are also used to guide the
FC-to-DT mapping process.

2 Materials and Methods

Two datasets are employed in this paper: (1) The Human Connectome Project
(HCP) [10] dataset and (2) the Alzheimer’s Disease Neuroimaging Initiative Phase-II
(ADNI2) dataset [11]. The HCP dataset contains high spatial and temporal resolution
rs-fMRI, multi-shell diffusion MRI data, and T1-weighted MRI for each subject. It is
hence suitable for training the regression model. The ADNI2 dataset focuses on cap-
turing the progression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD) with both rs-fMRI and T1 MRI. It contains data for early MCI patients,
which are used for validation of the improved FCTs in enhancing AD diagnosis.

2.1 Data Preprocessing

HCP Dataset: We randomly select 96 subjects from the dataset, which are all
scanned with a customized Siemens Skyra 3T scanner with the same imaging
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parameters (rs-fMRI: voxel size = 2 � 2 � 2 mm3, 1200 volumes; DTI: voxel
size = 1.25 � 1.25 � 1.25 mm3; T1: 0.7 � 0.7 � 0.7 mm3). Note that the first 30
frames in the rs-fMRI images are discarded for magnetization equilibrium. The first
600 frames (7 min and 12 s) of the remaining data are used to estimate FCTs. The
preprocessing of the rs-fMRI and DTI data is based on the HCP pipeline (https://github.
com/Washington-University/Pipelines), but modified for our requirements as below:

(1) The DTs are computed using dtifit in FSL [12]. An average b0 image is used for
inter-modality registration to rs-fMRI using flirt in FSL.

(2) The tissue probability maps for GM/WM/CSF segmentation are obtained from the
T1 MRI by using fast in FSL, and are linearly warped to each subject’s own
rs-fMRI space using flirt.

(3) FCT computation is performed in the native space of the rs-fMRI per subject. The
DTs are warped to each subject’s own rs-fMRI space.

(4) The minimally preprocessed rs-fMRI (in native space) are further band-pass fil-
tered (0:01� f � 0:08 Hz). No spatial smoothing is applied. All subjects’ head
motion profiles are checked to ensure that they are within an acceptable range.

ADNI2 Dataset: 39 early-stage MCI (eMCI) and 42 age- and gender-matched nor-
mal controls (NC) are included. The rs-fMRI (TR = 3000 ms, 140 frames, voxel
size = 3.3 � 3.3 � 3.3 mm3, eyes open) and T1 MRI (voxel size = 1 � 1 � 1 mm3)
are obtained using 3T Phillips Achieva scanners. Data preprocessing is conducted
based on SPM8 (https://www.fil.ion.ucl.ac.uk/spm/soft-ware/spm8/), REST (http://
www.restfmri.net/forum/REST_V1.8), and DPARSFA (http://rfmri.org/DPARSF) tool
boxes with similar procedures as those used for HCP data. T1 MRI is also segmented
and coregistered to each subject’s native rs-fMRI space. No subject’s head motion
exceeds 2 mm or 2°.

2.2 Regression Forest for FC-to-DT Mapping

We describe here how the DT-like tensors can be estimated from the HCP rs-fMRI
data, and how the learned DT-like tensors can be used to guide FCT estimation using
the ADNI2 rs-fMRI data. In the training stage, we extract features from randomly
selected 3D patches. Using the obtained patch feature vectors, the regression forest
method is trained to predict the corresponding DT at a center voxel of each patch. In the
testing stage, the trained regression model is applied patch-wise to the input image to
estimate DT-like tensors.

The feature vector is composed of two types of features: (1) local FC from rs-fMRI
and (2) tissue probability maps of WM/GM/CSF from T1 MRI. For rs-fMRI, we follow
[5] for computing the local FC as the correlation features. Specifically, we compute the
Pearson’s correlation coefficients between the center voxel and its neighboring voxels.
Note that, unlike [5], we also include voxels beyond the neighboring 26 voxels. For
each of the three probability maps obtained from T1 MRI, we use the 3D Haar-like
operators [9] to compute tissue-probability features. These two types of the features
extracted from the two modalities are then concatenated as a single feature vector.
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The process of training the regression forest generally follows the steps in [8, 9].
The major difference here is in the splitting function that is used to split the patch
samples in the current node into the left and right child nodes. The criterion of the
splitting function is based on one feature selected by exhaustive search within the
feature subset, which can maximize the information gain of the splitted groups of
training patches based on their corresponding target values. Specifically, the target DT
information can be formatted as a 3 � 3 symmetric matrix, which includes six effective
components and can be reshaped as a DT vector; therefore, the splitting function
produces six estimates of the information gain corresponding to the six elements of the
DT target, which are then averaged as an overall information gain to guide the splitting.
In this way, the forest method can gauge all the information in the target vector for
training the regressor. It is worth noting that, by combining tissue probability-based
features, DT-like tensors can be estimated with more accuracy, because the local FC
patterns in the GM and WM could be different, and accordingly the “FC-to-DT”
mapping for GM voxels could also be different from the “FC-to-DT” mapping for WM
voxels. Our experiment has shown that, by adding tissue-specific features, the testing
rs-fMRI data can generate much better DT-like tensor maps.

It is worth noting that we also incorporate the auto-context model [7, 9] as cascade
learning strategy for helping improving the mapping performance. Specifically, we
refine the mapping by cascading multiple stages of regressions. The first-stage
regressor uses only the correlation and tissue-probability features, while, in the sub-
sequent stages, the context features obtained from the DTs predicted in the previous
stage are also considered. Since each DT consist of six elements, the context features
are computed using Haar-like operators for each DT element and then concatenated
together.

2.3 FCT Estimation

We use the ADNI2 data to calculate the FCT with the guidance from the DTs predicted
from the rs-fMRI data with the learned mapping model (using the HCP rs-fMRI data).
For each voxel Vi from the input rs-fMRI data, the FCT Ti is represented using a 3 � 3
symmetric matrix, which is in the same mathematical form as the DT:

Ti ¼
Txx Txy Txz
Txy Tyy Tyz
Txz Tyz Tzz

2
4

3
5: ð1Þ

To estimate it, the first step is to compute the Pearson’s correlation coefficient Cij

between the center voxel Vi and each of its 26 neighboring voxels Vj. To increase the
robustness of such a process to the noise and artifacts in rs-fMRI, we follow a
patch-based strategy to implement the correlation measurement. Denote Qi and Qj as
the two k � k � k patches centered at voxel Vi and Vj, respectively. Here, we set k ¼ 3
which suits the spatial resolution of the mostly-adopted rs-fMRI data such as in the
ADNI dataset. The correlation coefficient Cij is therefore given as
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Cij ¼
Pk

x¼1

Pk
y¼1

Pk
z¼1 b x; y; zð Þfcorr Qi x; y; zð Þ;Qj x; y; zð Þ� �

Pk
x¼1

Pk
y¼1

Pk
z¼1 bðx; y; zÞ

; ð2Þ

where Q x; y; zð Þ is the voxel at location x; y; zð Þ of the patch Q, fcorrðVi;VjÞ is the

Pearson’s correlation comparing the time courses of Vi and Vj, b x; y; zð Þ ¼
exp � x�lð Þ2 þ y�lð Þ2 þ z�lð Þ2

2q2

� �
is the Gaussian kernel used for weighting the correlations,

with l ¼ ðkþ 1Þ=2 and q as a scaling coefficient. In our study, q2 ¼ 1:25 gives the
optimal results.

Next, we compute a unit vector nij ¼ fnij;1; nij;2; nij;3g describing the direction from
the center voxel Vi to each of its neighbors Vj, the dyadic tensor Dij is given as

Dij ¼
nij;1 � nij;1 nij;1 � nij;2 nij;1 � nij;3
nij;2 � nij;1 nij;2 � nij;2 nij;2 � nij;3
nij;3 � nij;1 nij;3 � nij;2 nij;3 � nij;3

0
@

1
A: ð3Þ

Third, the orientation information derived from the DT-like tensors is calculated by
applying an orientation distribution function (ODF) [13] to obtain the weighting

function b nij
� � ¼ 1= 4pZ Bj j12 nTijB

�1nij
� �1

2

� �
, where Z is a normalization constant and

B is the learned DT represented using a 3 � 3 symmetric matrix.
Finally, we compute the robust FCT Ti by summing up all the dyadic tensors Dij

with their respective correlation coefficients Cij and corresponding weighting coeffi-
cients b nij

� �
:

Ti ¼
X

j
CijDij bðnijÞ: ð4Þ

In this way, the dyadic tensors along with the main directions of DT-like tensor
have higher weights in b nij

� �
than those at other directions. The overall framework of

FCT computation is summarized in Fig. 1.

Fig. 1. The overall pipeline for robust FCT computation.
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3 Experimental Results

We demonstrate the validity of our proposed framework by evaluating both the learned
DT-like tensors and the final FCTs. For the HCP dataset that is used to learn the
regression model, we first show the accuracy of the learned DT-like tensors by com-
paring them with the actual DTs derived from DTI. This is done using 4-fold
cross-validation on the HCP dataset. The parameters for training the regression model
are identical in all folds. From each rs-fMRI data, we extract 20000 patches with the
size of 11 � 11 � 11 in voxels. The number of correlation features for each patch is
set to be 1000, and the number of tissue-probability features for each segmented ROI is
also set to be 1000. The trained regression forest has 20 trees, and the minimum sample
number for the leaf node is set as 8. Note that when implementing the cascaded
learning strategy, we connect three regression models. The maximum of the tree depth
is 30 in the first regression model as it is trained without context features, and 33 for
each of the later stages.

We evaluate the similarity between the predicted DTs in different stages of the
cascade and the actual DTs by measuring Pearson’s correlations of their fractional
anisotropy (FA) maps. The overall correlation coefficients without the cascade is 0.877
± 0.015, which is improved to 0.894 ± 0.015 with the cascade. This shows the
validity of the mapping and the effectiveness of the cascade. Furthermore, Fig. 2 shows
the FA maps computed from the predicted DTs using the two different configurations,
as well as the actual FA map from DTI for reference.

In the second experiment, we show the generalizability of the trained regression
model (based on the HCP dataset), by directly applying it to the ADNI2 dataset for
robust FCT estimation. Figure 3 shows the FA maps using the original FCT calculation
method proposed in [5] and using our proposed FCT estimation method. It can be
observed that noise is significantly reduced with our method, and the estimated FA map
is more reasonable, i.e., with high FA values in the major WM structures (such as the
genu and splenium parts of corpus callosum) compared with the FA in the GM regions.

In the third experiment, we further evaluate the validity of our method by applying
the resultant FCTs from both eMCI and NC subjects in ADNI2 as features for early AD

Fig. 2. The FA maps from the DTI-like tensors and actual DTI (used as reference).
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diagnosis. Specifically, given the FA maps computed in the native space from the FCTs
based on rs-fMRI of ADNI2, SPM8 is used to non-rigidly register them to the standard
MNI-152 space. Next, an in-house WM fiber bundle probability template, consisting of
359 major WM segments linking 359 pairs of Automated Anatomical Labeling
(AAL) brain regions and generated based on the DTI data of 500 subjects in HCP, is
applied to each subject’s registered FA map. The fiber-probability-weighted average
FA and the weighted variance of FA values in each of the 359 WM segments are
computed as features for subsequent classification. In this way, each subject has two
359-by-1 feature vectors (corresponding to the weighted mean FA and the weighted FA
variance obtained from FCTs). LASSO-based feature selection [14] is conducted to the
two feature vectors separately. Two support vector machine (SVM) classifiers [15] are
then trained, respectively. The prediction scores from the two classifiers are fused to
give a final classification result. Leave-one-out cross-validation is used to evaluate
classification performance.

Experiments show that using FCTs from rs-fMRI, even extracted from only several
major WM structures and fed into a simple classifier, the accuracy (ACC) and the
area-under-curve (AUC) for eMCI classification still reach the satisfactory level (i.e.,

Fig. 3. The FA maps of the obtained FCTs using the method of Ding et al. (left) and our
proposed method (right).

Fig. 4. The ROC curve for the eMCI-NC classification using Ding et al.’s method and our
proposed method, respectively.
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72.84% and 73.63%, respectively). On the other hand, if using the original FCT
calculation method [5], the performance is relatively low (i.e., ACC = 67.90% and
AUC = 64.53%). The improvements by our proposed FCT calculation method are also
visualized using ROC curves in Fig. 4.

4 Conclusion

In this work, we have presented a novel framework for robust FCT estimation. First,
based on high-resolution rs-fMRI and DTI data, we employ regression forest for
predicting DTs by using both local temporal correlation features from rs-fMRI and
tissue-probability features from T1 MRI. Then, the predicted DTs are further used as a
prior to improve FCT estimation. In the experiments, we have also demonstrated that
the resulting FCTs can be used as features for diagnosis of eMCI.
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3 University of Bordeaux, LaBRI, UMR 5800, 33400 Talence, France

4 CNRS, LaBRI, UMR 5800, 33400 Talence, France
5 ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain

Abstract. Alzheimer’s disease (AD) is characterized by a progressive
decline in the cognitive functions accompanied by an atrophic process
which can already be observed in the early stages using magnetic res-
onance images (MRI). Individualized prediction of future progression
to AD, when patients are still in the mild cognitive impairment (MCI)
stage, has potential impact for preventive treatment. Atrophy patterns
extracted from longitudinal MRI sequences provide valuable information
to identify MCI patients at higher risk of developing AD in the future. We
present a novel descriptor that uses the similarity between local image
patches to encode local displacements due to atrophy between a pair of
longitudinal MRI scans. Using a conventional logistic regression classifier,
our descriptor achieves 76% accuracy in predicting which MCI patients
will progress to AD up to 3 years before conversion.

Keywords: Early AD prediction · Non-local patch-based label fusion ·
Longitudinal analysis

1 Introduction

Alzheimer’s disease (AD) is characterized by a progressive decline of the cognitive
abilities. Before being diagnosed as probable AD, patients usually go through a
mild cognitive impairment (MCI) stage. The earliest signs of neurodegeneration
can be observed using magnetic resonance images (MRI) already at the MCI
stage [7]. Machine learning techniques have taken advantage of this fact to char-
acterize individuals at different stages of the disease. Cuingnet et al. [6] presented
a comparison of 10 methods for discrimination of healthy controls (HC) and AD
patients with different degrees of neurodegeneration. The most common MRI-
based features used for discrimination include tissue probability maps, cortical
thickness, hippocampal morphometry or a combination of them [14].

c© Springer International Publishing AG 2017
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Among the personalized medicine approaches related to AD, the discrimi-
nation between patients that will remain stable in the MCI stage (i.e., s-MCI)
and the ones that will progress to AD in the future (i.e., p-MCI) is possibly the
one with most potential impact. Successful early identification of p-MCI patients
opens up the possibility for improving clinical trials aimed at assessing preventive
care treatments. Moradi et al. [9] specifically focused on the discrimination of
p-MCI vs. s-MCI patients up to 3 years prior to conversion. Tong et al. [12] also
identified p-MCI subjects depending on their similarity with a pre-defined dic-
tionary containing both HC and AD subjects. This latter work was inspired by
an hippocampal grading method by Coupé et al. [4] (i.e., SNIPE) that assessed
hippocampal abnormality based on local similarities to a pre-defined training
library. The grade produced by SNIPE could discriminate s-MCI vs. p-MCI
with high accuracy.

The structures in the medial temporal lobe (MTL), including the hippocam-
pus, are among the first ones to be atrophied during the early stages of AD [11].
Strictly speaking, atrophy can only be measured using repeated acquisitions
from the same subject over time (rather than using a single MRI, as in the
above methods). Several approaches agree in finding atrophy rates in the MTL
structures following the trend AD > MCI > HC [2,3]. However, these approaches
are not designed for personalized predictions at the individual level and can only
reveal the general trends in the population.

We propose a novel method to describe, with a high level of detail, the atro-
phy patterns across a pair of MRI scans from the same subject at different time
points. The proposed descriptor is suitable for being used by machine learning
techniques for personalized medicine. Inspired by patch-based label fusion in
multi-atlas segmentation [5], our descriptor computes local patch-wise similari-
ties between baseline and follow-up images. Therefore, one-to-many correspon-
dences are used to encode local displacements. For the early prediction of AD, we
feed the proposed high-dimensional descriptors extracted from the hippocampal
region to a conventional logistic regression classifier.

Other learning-based methods use longitudinal data to predict AD in the first
stage of the pathology. Zhu et al. [15] proposed a constrained SVM specifically
designed for longitudinal data. Jie et al. [8] proposed a constrained regression for
the prediction of the evolution of cognitive scores in AD patients. The main dif-
ference between these methods and the proposed one is that the former ones pro-
pose longitudinally-aware classifiers that use conventional MRI images, whereas
we propose longitudinally-specific descriptors that can be used by conventional
classifiers.

2 Method

We present an atrophy descriptor between a pair of baseline Bi and follow-up
Fi images for the i-th patient, aimed at capturing the subtle atrophy patterns
discriminating s-MCI and p-MCI patients. In order to bring the pair of images
into correspondence while still preserving the local differences due to atrophy, we
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affinely register the follow-up image to its baseline. We use the notation F→B
i to

denote that the follow-up image has been registered to its corresponding baseline.
In the case that we have more than one follow-up image per patient, we can
divide the entire sequence into a set of pairs baseline/follow-up and treat them
independently. The proposed method is divided in the following steps: (i) defining
the region-of-interest (ROI), (ii) computing the patch-based similarity maps, (iii)
building the atrophy descriptor and (iv) learning the classifier.

2.1 Region of Interest

We extract the high-dimensional atrophy descriptors from a ROI around the
hippocampus. As shown in the literature, the hippocampus is among the first
regions to be atrophied due to AD [11] and therefore it is a reasonable choice
as ROI for early prediction of AD [5,6]. We propagate the hippocampal ROI,
denoted as Ω, from a template image T onto each baseline Bi using spatial warp-
ings TT→Bi

obtained via non-rigid image registration. The hippocampal ROI in
the template was computed by dilating (with a structuring element of 3× 3× 3)
the hippocampal segmentation obtained through multi-atlas segmentation [5].
Figure 1 shows the hippocampal ROI (in red) overlaid onto the template.

Fig. 1. Hippocampal ROI (in red) overlaid onto a template image. (Color figure online)

Finally, let us denote as
(
Bi (x) , F→B

i (x)
)
, x ∈ Ωi, the pair of voxel intensi-

ties at corresponding location x within the ROI Ωi in the baseline and follow-up
images of a given subject.

2.2 Patch-Based Similarity Maps

We encode the atrophy patterns as one-to-many correspondences between each
point in the baseline x ∈ Ωi and the neighboring points in the follow-up x′ ∈ Nx,
where Nx is a cubic neighborhood of size s3 around point x. This gives high-
dimensional information about local displacements undergone by each point
between the two scans. We use the similarity between image patches to com-
pute the local correspondences, where the patches centered at x and x′ in the
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baseline and follow-up images are defined respectively as PB
i (x) ,PF

i (x′). In our
experiments we use a patch size of 3 × 3 × 3.

For each subject, we compute a set of similarity maps W
(j)
i , j = 1 . . . s3, one

for each offset in the cubic neighborhood Nx, as follows:

W
(j)
i (x) = exp

(
−‖PB

i (x) − PF
i (Nx (j)) ‖22

h2

)
(1)

where Nx (j) is the j-th offset in the cubic neighborhood and we use the exponen-
tial of the negative sum of squared differences as measure of patch similarity with
a normalization constant h =

∑
j ‖PB

i (x)−PF
i (Nx (j)) ‖2. Figure 2 shows exam-

ples of similarity maps across each neighbor offset in a cubic 27-neighborhood.

Fig. 2. Each of the 27 tiles shows the similarity map for a different neighbor, with
red and blue denoting higher and lower similarities, respectively. We have used a cubic
neighborhood of size s3 = 3×3×3 = 27. Tiles in each group of 9 are coherently placed
according to their neighborhood offset within the sagittal plane. The three groups
correspond to neighbors along the sagittal axis.

2.3 Atrophy Descriptors

The proposed atrophy descriptors are built by encapsulating the similarity maps
W

(j)
i into feature vectors according to the following steps:

1. We spatially align to a reference space the similarity maps, denoted as W̃
(j)
i ,

using the inverse non-rigid transformations between template and baselines
T −1
T→Bi

(recall that similarity maps originally lie in the space of their baseline
images).

2. To compensate for moderate registration errors, we smooth the warped sim-
ilarities using a Gaussian kernel of width σ.

3. We build the longitudinal atrophy descriptor for i-th subject, denoted as zi,
by concatenating the similarities across ROI locations and neighbors, i.e.,{

W̃
(j)
i (x) |x ∈ Ω, j = 1 . . . s3

}
(in practice, we subsample the locations with

a step size ρ along each dimension in order to reduce redundancy and decrease
the vector’s length).

The length of the final vector is approximately |Ω| ·s3/ρ3. In our experiments
we set σ = 1.0, s3 = 27 and ρ = 2.
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2.4 Learning

Given the atrophy descriptors computed in the previous section in a population
of training subjects {zi, i = 1 . . . n}, we learn a logistic regression classifier to
predict the future outcome of each patient, denoted as yi = {−1, 1}, for s-MCI
and p-MCI, respectively. Prior to learning, we select the most important features
by training a random forest classifier with 1000 trees on the future outcome of
each patient. As input to the logistic regression classifier, we only use the features
with an importance above 0.5 · μ, where the importance is computed according
how much a feature decreases the average impurity on the forest and μ is the
average importance across features1. After the feature selection step, we train
a logistic regression classifier by minimizing the empirical loss over our training
data subject to some regularization constraint. We define the optimization as:

min
v,b

n∑

i

1
1 + exp (−yi (v�z′

i + b))
+ λ‖v‖1 , (2)

where v and b are the parameters of the logistic regression classifier and z′
i

is the vector of selected features from the i-th subject. The first term penal-
izes the classification errors and the second term, modulated by the scalar λ,
enforces the sparseness of the coefficients-vector v through the L1-norm. The
sparsity regularization is suitable when the number of features is much larger
than the number of training samples, as in our case. Given the atrophy descrip-
tor extracted from a new testing subject z, first we obtain z′ by picking the
most important features as determined during training and then we classify it
as p-MCI or s-MCI according to the output of the function: sign (f (z′;v, b)),
where f (·) is the learned logistic regression classifier.

3 Experiments

We evaluate our method in classification experiments between MCI patients that
remain stable (i.e., s-MCI) and MCI patients that will progress to AD in the
following 3 years (i.e., p-MCI). We use the same subset of ADNI2 as in [9,12],
containing 164 p-MCI and 100 s-MCI subjects3.

We use the first scan (i.e., baseline, Bi) and second scan (i.e., follow-up Fi) of
each subject in order to compute the atrophy descriptors. Images are corrected
for inhomogeneities with the N4 algorithm [13] and their histograms linearly
matched to a reference template [10]. Follow-up images Fi are affinely registered
to their respective baselines Bi with ANTs [1]. Subsequently, also with ANTs,
we compute non-rigid spatial transformations from the MNI152 template to each
of the baselines TT→Bi

.

1 This is implemented in the feature importance attribute of the random forest
classifier in scikit-learn package in Python.

2 http://www.adni-info.org/.
3 More details at: https://sites.google.com/site/machinelearning4mcitoad/.

http://www.adni-info.org/
https://sites.google.com/site/machinelearning4mcitoad/
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For each subject, we build the atrophy descriptors as follows:

1. The hippocampal ROI is propagated from the template to each of the base-
lines Bi, as described in Sect. 2.1.

2. Similarity maps W
(j)
i are computed using baseline and registered follow-up

scans, as described in Sect. 2.2.
3. Atrophy descriptors zi are built after smoothing and subsampling the warped

similarity maps W̃
(j)
i , as described in Sect. 2.3.

Alternatively, we also compute more compact representations by decompos-
ing the similarities at each point through PCA. We took the first 10 components
explaining > 90% of the variance of the data.

Table 1 shows the average classification accuracy obtained by logistic regres-
sion with the proposed atrophy descriptors in 10-fold cross-validation exper-
iments (with and without PCA decomposition) for a range of regularization
strengths λ.

Table 1. Accuracy of the proposed method in 10-fold cross-validation classification
of s-MCI and p-MCI subjects for increasing regularization strenghts. First row corre-
sponds to the original proposed descriptor. Second row corresponds to the proposed
descriptor with an additional PCA decomposition step.

λ = 0.1 λ = 1.0 λ = 10 λ = 50 λ = 100 λ = 200 λ = 300 λ = 500

Original 0.709 0.744 0.745 0.745 0.766 0.757 0.754 0.753

PCA 0.715 0.732 0.742 0.737 0.733 0.737 0.713 0.741

As we can see in Table 1, the additional PCA decomposition step degrades
the discrimination accuracy, thus suggesting that some important information
may be lost after the linear decomposition in the present application. Note that,
even we only sacrifice 10% of the variance of the data in the PCA decomposition,
we may also lose some structure imposed by the normalization of the similarities
(i.e., similarities may not add up to one after the reconstruction).

For comparison, in Table 2 we show the results reported by state-of-the-art
methods in s-MCI vs. p-MCI classification using MRI features (including some
methods using the same dataset as ours).

Table 2. Perfomance in s-MCI vs. p-MCI classification of state-of-the-art methods
using only MRI features. The former 4 methods in the table use only a single baseline
MRI for classification whereas the latter 3 use at least one longitudinal follow-up as
well. See the main text for details about performances reported as an interval. Methods
with an asterisk (*) have been evaluated in the same dataset as the proposed method.

Cross-sectional Longitudinal

Method Moradi [9]∗ Tong [12]∗ Coupé [4] Wolz [14] Zhu [15] Jie [8] Proposed

Perform. 0.747 0.789 0.74 0.68 0.76–0.84 0.757 0.766
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Comparing results in Table 2, we can see that our method achieves state-of-
the-art performance. Our results are directly comparable to [9,12], since we use
the same dataset. It is worth noting that [9,12] use the whole brain whereas we
only use the hippocampal ROI. On the other hand, we use a pair of baseline and
follow-up scans whereas [9,12] only use single baseline scan for classification.
Coupé et al. [4] also focused on the hippocampal ROI (including enthorinal
cortex), suggesting that this area might convey important information for early
AD classification [11]. As another difference, results of [4,14] correspond to early
prediction of up to 4 years before conversion, whereas our results (as well as
those in [9,12]) correspond to prediction up to 3 years before conversion. The
rest of longitudinal methods (i.e., [8,15]) use at least 4 follow-up scans for each
subject, whereas we use only 1 baseline and 1 follow-up scan. Zhu et al. [15]
discriminate between progression to AD at intervals 18, 12, 6 and 0 months with
accuracies 0.76, 0.81, 0.83 and 0.84, respectively, hence the interval 0.76–0.84 in
the table.

4 Conclusions

We have presented a high-dimensional atrophy descriptor for early AD predic-
tion using longitudinal MRI data. We achieve state-of-the-art performance by
feeding our proposed descriptor to a conventional logistic regression classifier.
Results suggest that our descriptor is suitable for capturing subtle atrophic pat-
terns distinguishing s-MCI and p-MCI patients up to 3 years before conversion.
Indeed, the hippocampal ROI is a suitable region for prediction in the early
stages because it is among the first areas revealing atrophy due to AD [11].
Other methods have also focused in this ROI, achieving comparable performance
to methods using the whole brain [4]. Effective ways to reduce the dimensional-
ity should be explored in order to extend the use of the proposed descriptor to
larger areas of the brain. Results in [15] suggest room for improvement in using
the full sequence of follow-up scans (instead of the first 2 ones). Possible lines
of future work include combining our descriptor extracted from full follow-up
sequences with longitudinally-aware classifiers.
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Abstract. Alzheimer’s disease is a neurodegenerative process leading to
irreversible mental dysfunctions. The development of new biomarkers is
crucial to perform an early detection of this disease. Among new biomark-
ers proposed during the last decades, patch-based grading framework
demonstrated state-of-the-art results. In this paper, we study the poten-
tial using texture information based on Gabor filters to improve patch-
based grading method performance, with a focus on the hippocampal
structure. We also propose a novel fusion framework to efficiently com-
bine multiple grading maps derived from a Gabor filters bank. Finally,
we compare our new texture-based grading biomarker with the state-of-
the-art approaches to demonstrate the high potential of the proposed
method.

Keywords: Patch-based grading fusion · Multi-features · Alzheimer’s
disease classification · Mild Cognitive Impairment

1 Introduction

Alzheimer’s disease (AD) is the most prevalent dementia. AD is characterized
by an irreversible neurodegeneration leading to mental dysfunctions. Subjects
with Mild Cognitive Impairment (MCI) present higher risk to develop AD. To
date, diagnosis of AD is established after advanced brain structure alterations
motivating the crucial need to develop new imaging biomarkers able to detect the
early stages of the disease. Furthermore, the early detection of AD can accelerate
the development of new therapies by making easier the design of clinical trials.

Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the inves-
tigators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this report.
A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/
wp-content/uploads/how to apply/ADNI Acknowledgement List.pdf.
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During the last decades, new biomarkers with competitive performances were
developed to detect AD by taking advantage of the improvement of medical
imaging like magnetic resonance imaging (MRI) [1].

Most of the proposed methods have been based on specific regions of inter-
est (ROI). Among structures impacted by AD, previous investigations mainly
focused on medial temporal lobe and especially on hippocampus (HC). Alter-
ations on this structure are usually estimated using volume, shape or cortical
thickness measurements [11]. Besides ROI-based methods, whole brain analyses
performed on structural MRI (s-MRI) have also been proposed to detect areas
impacted by AD. These methods are usually based on voxel-based morphome-
try (VBM) or tensor based morphometry (TBM) frameworks. It is interesting
to note that both VBM and ROI-based studies confirmed that medial temporal
lobe is a key area to detect the first signs of AD [11]. In the medial temporal lobe,
the HC is one of the earliest region altered by AD. Recently, advanced meth-
ods were proposed to capture structural alterations of HC. Those techniques
demonstrated their efficiency to detect the different stages of AD [8]. Among
them, patch-based methods obtained competitive results to detect the earliest
stages of AD [2,7,9]. Therefore, such advanced image analysis methods seem
promising candidates to perform AD tracking. Recently, [4] demonstrated the
efficiency of using edge detection filters to improve of patch-based segmentation.
This result highlights that patches comparison can be improved by estimating
patterns similarity on derivative image features. Moreover, it has been recently
showed that HC texture plays a crucial role for the detection of early stages
of AD [8]. Therefore, we propose to perform patch-based grading on multiple
texture maps obtained with Gabor filters. Gabor filters are designed to detect
salient features at specific resolution and direction. These filters were widely
used for texture classification [13]. Consequently, the proposed strategy enables
at the same time to improve patches comparison and to capture HC texture
modifications occurring at the first stages of the pathology.

Contributions: The first contribution of this work is intended to develop a
new texture-based grading framework to better capture structural alterations
caused by AD. Secondly, in order to combine all the grading maps estimated
on texture maps, we propose an innovate adaptive fusion strategy based on
local confidence criterion. This fusion framework can be applied to any patch-
based processing to combine different features or modalities. Moreover, contrary
to usual grading-based methods, we propose a classification step involving weak
classifiers distribution to better discriminate pathologies stages. Finally, to high-
light the improvement of classification performances provided by our new frame-
work, we compare our new biomarker with the state-of-the-art biomarkers and
demonstrate its efficiency.
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2 Materials and Methods

2.1 Dataset

Data used in this work were obtained from Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset1. ADNI is a North American campaign launched in
2003 with aims to provide MRI, positron emission tomography scans, clinical
neurological measures and other biomarkers. The data used in this study are all
the baseline T1-weighted (T1-w) MRI of the ADNI1 phase. This dataset includes
AD patients, MCI and cognitive normal (CN) subjects. The group of MCI is
composed of subjects who have abnormal memory dysfunctions and embed two
groups, the first one is composed with patients having stable MCI (sMCI) and
the second one is composed with patients with progressive MCI (pMCI). The
information of the dataset used in our work is summarized in Table 1.

Table 1. Description of the dataset used in this work. Data are provided by ADNI.

Characteristic/group CN sMCI pMCI AD

Number of subjects 226 223 165 186

Ages (years) 76.0 ± 5.0 75.1 ± 7.5 74.5 ± 7.2 75.3 ± 7.4

Sex (M/F) 117/109 150/73 101/64 98/88

MMSE 29.05 ± 0.9 27.1 ± 2.5 26.3 ± 2.0 22.8 ± 2.9

2.2 Preprocessing

All the T1-w images were processed using the volBrain system [12]2. This system
is based on an advanced pipeline providing automatic segmentation of different
brain structures from T1-w MRI. The preprocessing is based on: (a) a denoising
step with an adaptive non-local means filter, (b) an affine registration in the
MNI space, (c) a correction of the image inhomogeneities and (d) an intensity
normalization.

2.3 Methods

Patch-Based Grading: Grading framework uses patch-based techniques to
capture modifications related to anatomical degradations caused by AD [2]. To
date, patch-based grading methods demonstrate state-of-the-art performances
to detect the earliest stages of AD [6,10]. To determine the pathological status
of a subject, grading-based methods estimate at each voxel the state of cerebral
tissues using anatomical patterns extracted from a training library T composed
of two datasets, one with images from CN subjects and one with AD patients.
Then, for each voxel of the considered subject, the patch-based grading method
1 http://adni.loni.ucla.edu.
2 http://volbrain.upv.es.

http://adni.loni.ucla.edu
http://volbrain.upv.es
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produces a weak classifier denoted g. This weak classifier is based on the sim-
ilarity between the patch surrounding the voxel under study xi and a set Ki

of similar patches extracted from T . In this work, we used an approximative
nearest neighbor method to drastically reduce the required computational time
[5]. The grading value g at xi is defined as:

g(xi) =

∑
xj,t∈Ki

w(xi, xj,t)pt
∑

xj,t∈Ki
w(xi, xj,t)

(1)

where xj,t is the voxel j belonging to the training template t ∈ T . w(xi, xj,t) is
the weight assigned to the pathological status pt of t. We estimate w such as:

w(xi, xj,t) = e
1− (d(xi,xj,t))

2

h2+ε (2)

where h = minxj,t
d(xi, xj,t) with ε → 0, d is a distance between two patches sur-

rounding the voxelsxi andxj,t. pt is set to−1 for patches extracted fromADpatient
and to 1 for those extracted from CN subject. The L2-norm is used to estimate the
similarly between patches. Thus, our patch-based grading method provides at each
voxel a score representing an estimation of the alterations caused by AD.

Texture Maps Estimation: The estimation of patch similarities could be
improved by using texture representation instead of using raw intensities. Indeed,
it was demonstrated that the use of edge detectors improves patch-based seg-
mentation accuracy [4]. Moreover, it was also demonstrated that HC textural
information plays an important role in AD detection [8]. Hence, we propose a
new texture-based grading framework that simultaneously captures HC texture
alterations and improves patches similarity estimation. In this work, texture
information is extracted from MRI using a bank of 3D Gabor filters. We used
Gabor filters since they are designed to detect texture patterns at different scales
and directions [13]. In the proposed pipeline (see Fig. 1), the preprocessed MRI
of the subject under study is filtered with a bank of Gabor filters to obtain mul-
tiple texture maps. It has to be noted that all the training library is also filtered
with the same filters bank. Therefore, for each texture map, a texture-based
grading map can be estimated.

Adaptive Fusion: In this work, we propose an novel framework to fuse the
multiple texture-based grading maps obtained from the estimated texture maps.
Our fusion strategy is based on the fact that all the estimated grading maps may
not have the same relevance, but more importantly all local weak classifiers in
these maps do not have the same quality. Hence, at each location, we propose
to combine weak classifiers derived from multiple texture maps according to a
confidence criterion. Therefore, the grading value of a texture-based grading map
m, denoted gm, at voxel xi, is weighted by αm(xi) =

∑
xj,t∈Ki,m

wm(xi, xj,t) that
reflects the confidence of gm. Thus, each texture-based grading map provides
a weak classifier at each voxel that is weighted with its degree of confidence
αm(xi). At the end, the final grading value, denoted gM , resulting from our
adaptive fusion strategy is given by;
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Fig. 1. Proposed adaptive fusion of texture-based grading framework.: from left to
right, the T1-w input data, the texture maps for different directions, the intermediate
texture-based grading maps, the final fused grading map and the histogram-based weak
classifiers aggregation.

gM (xi) =
∑

m∈M αm(xi)gm(xi)
∑

m∈M αm(xi)
. (3)

The proposed fusion framework is spatially adaptive and take advantage of hav-
ing access to a local degree of confidence αm(xi) for each grading map m. Basi-
cally, the confidence αm(xi) gives more weight to a weak classifier estimated
with a well matched set of patches. Our adaptive fusion strategy can applied to
any patch-based processing to combine multiple feature or modalities.

Weak Classifiers Aggregation: First, to prevent bias introduced by structure
alterations related to aging, all the grading values are age corrected with a linear
regression based on the CN group [3]. In previous works on patch-based grading
[2,5], the weak classifier aggregation was performed using a simple averaging.
While using a strategy based on averaging enables to be robust to noise, this may
remove relevant information on weak classifiers distribution. Therefore, in this
paper we propose to approximate weak classifiers distribution using histogram.
Consequently, we classify histogram bins instead of classifying mean grading
value over the segmentation mask. Here, histograms were separately estimated
for right and left hippocampus.

Validation: During our experiments, texture maps were obtained using one
scale and 3 orthogonal directions. The texture-based grading maps were esti-
mated using patches of 5×5×5 voxels. The grading step based on an optimized
PatchMatch [5] was performed using K = 50. The required computational time
was 3 s per texture maps, thus the global grading step required 10 s with our
setup. Our new texture-based grading framework was validated with a leave-
one-out cross validation procedure. A support vector machine (SVM) was used
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to classify each test subject. The results of each experiment were compared in
terms of accuracy (ACC) and area under the ROC curve (AUC). The AUC is
estimated with the a posteriori probabilities provided by the SVM classifier. We
carried out several experiments: CN vs. AD, CN vs. pMCI, AD vs. sMCI and
sMCI vs. pMCI.

3 Results

Firstly, in order to validate the improvement provided by our method, we com-
pare results obtained with our framework using raw intensities (T1-w grading)
and texture maps. T1-w and texture-based grading were estimated using exactly
the same pipeline involving adaptive fusion and histogram-based weak classifiers
aggregation. Table 2 summarizes the results of T1-w grading and our proposed
method. Results are expressed with area under the curve (AUC) measure. As
it is shown, texture-based grading improves classification performances in all
experiments especially MCI classification with 94.2% of AUC in CN vs. AD,
90.9% of AUC in the CN vs. pMCI, 81.3% of AUC in AD vs. sMCI and 75.4%
of AUC in sMCI vs. pMCI comparisons. During our experiments, weak classi-
fiers aggregation based on histogram did not provide improvement in CN vs.
AD comparison. That could be explained by the fact that CN and AD distri-
butions are separated. However, in sMCI vs. pMCI case, the two distributions
are less separable and histogram representation yielded to better classification
performances. The experiments carried out showed that the use of only one scale
is enough. Moreover, using more than 3 directions did not improve the results
while increasing computational time.

Table 3 summarizes the comparison of our proposed method with other grad-
ing methods proposed in the literature. In addition, classification results obtained
with Deep Learning (DL) [14] ensemble are provided for comparison with last
advanced methods. The results on Table 3 are expressed in accuracy (ACC).
First, to compare classification results using the same structure, the proposed
framework is compared with grading methods based on HC (see the upper part
of Table 3). This comparison shows that our method provides the best results
among HC-based grading methods. It reaches 91.3% of ACC for CN vs. AD,
and 71.1% of ACC for sMCI vs. pMCI comparisons. These results demonstrate
that texture maps provide valuable information during the grading process. At
the lower part of Table 3, we compare the performance of our HC-based grading
method with those using the whole brain.

Table 2. Comparison of different features HC-based, all results are expressed in AUC.

Features CN vs. AD
(AUC in %)

CN vs. pMCI
(AUC in %)

AD vs. sMCI
(AUC in %)

sMCI vs. pMCI
(AUC in %)

T1-w grading 93.5 90.0 81.1 73.6

Proposed method 94.2 90.9 81.3 75.4
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First, for AD vs. CN, the proposed method obtained similar or better results
than those using whole brain and requiring non linear registration [7] while our
method only requires affine registration and proposes a fast grading step (i.e.,
10 s). Second, for sMCI vs. pMCI, our method obtained better results than all
the methods involving a simple affine registration [10]. On the other hand, the
best results for sMCI vs. pMCI are produced by whole brain grading [6,10] using
non linear registration. The improvement when using non linear registration is
observed for HC-based and whole brain methods [10]. However, this improve-
ment is obtained at the expense of using non linear registration, which is subject
to failure and requires high computational time. Finally, our method also demon-
strated competitive performances for AD vs. CN classification compared to the
most advanced DL methods using whole brain and non linear registration. In
addition, this comparison shows that patch-based grading methods [6,10] obtain
similar or better results than recent DL methods [14] when applied with similar
settings.

To conclude, according to our comparison, whole brain methods enable a bet-
ter classification of sMCI vs. pMCI. Hence, in further works, we will investigate
the extension of our texture-based grading framework to whole brain analysis.

Table 3. Comparison with state-of-the-art methods, all the results are expressed in
accuracy.

Methods Registration Features CN vs. AD
(ACC in %)

sMCI vs.
pMCI (ACC
in %)

Hippocampus

Original grading [2] Affine Intensity 88.0 71.0

Multiple instance grading [9] Affine Intensity 89.0 70.0

Sparse-based grading [10] Affine Intensity − 66.0

Sparse-based grading [10] Non linear Intensity − 69.0

Proposed method Affine Texture 91.3 71.1

Whole brain

Ensemble grading [6] Non linear GM Map − 75.6

Sparse-based grading [10] Affine Intensity − 66.7

Sparse-based grading [10] Non linear Intensity − 75.0

Sparse ensemble grading [7] Non linear GM Map 90.8 −
Deep ensemble learning [14] Non linear GM Map 91.0 74.8

4 Conclusion

In this work we propose a new texture-based grading framework to better cap-
ture structural alterations caused by AD. Moreover, to combine grading maps
estimated on texture maps, we present a new adaptive fusion scheme. We also
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propose an histogram-based weak classifiers aggregation step to better discrimi-
nate early stages of AD. Finally, we demonstrate the competitive performances of
our new texture-based grading framework compared to several state-of-the-art
biomarkers. In future works, we will investigate the extension of our texture-
based grading framework to whole brain analysis.
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Abstract. Histological images are very important for diagnosis of can-
cer and other diseases. However, during the preparation of the histologi-
cal slides for microscopy, the 3D information of the tissue specimen gets
lost. Therefore, many 3D reconstruction methods for histological images
have been proposed. However, most approaches rely on the histological
2D images alone, which makes 3D reconstruction difficult due to the large
deformations introduced by cutting and preparing the histological slides.
In this work, we propose an image-guided approach to 3D reconstruction
of histological images. Before histological preparation of the slides, the
specimen is imaged using X-ray microtomography (micro CT). We can
then align each histological image back to the micro CT image utilizing
non-rigid registration. Our registration results show that our method can
provide smooth 3D reconstructions with micro CT guidance.

Keywords: Micro CT · Histological image · 3D reconstruction · Feature
matching · Registration

1 Introduction

Histological imaging is important for clinical diagnosis. However, the preparation
of microscopic slides requires the cutting of tissue samples into separate 2D slices
and the 3D information of the tissue specimen gets lost. The deformations intro-
duced by cutting make 3D reconstruction of histological images difficult based
on the histological images alone. Especially, specimens of lung tissue from partial
pneumonectomy are difficult to align because of the large flexibility of the tissue.

In this work, we propose an image-guided approach to 3D reconstruction of
histological images. Before histological preparation of the slides, the specimen is
imaged using X-ray microtomography (μCT). We can then align each histological
image back to its original 3D location using non-rigid image registration.

Various methods have been proposed for correlating histological images with
3D imaging modalities [1–6]. Most of these methods have focused on aligning

c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-67434-6 11
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(a) (b)

Fig. 1. A example slice of micro CT volume and histological image. (a) Original his-
tological image, (b) the matching result of glayscaled histological image and micro CT
volume. Color points indicate matched feature points (color figure online).

brain images, where there is still significant coherence between the main brain tis-
sue types (white matter, gray matter and cerebrospinal fluid) observable within
the histological images. This coherence allows for registration methods that uti-
lize segmentations or histogram matching between the images [1]. Deformable
registration of ex vivo MRI to histology imaging was investigated for prostate
cancer using both segmentation-based and intensity-based approaches [2]. Dense
patch-based methods for correlating tumor histology of rectal cancer and ex vivo
MRI were studied in [3]. Similarly, registration of μCT to histology has been
studied [4]. However, alignment was only performed rigidly and was constrained
to localization of individual 2D histology slices within the 3D μCT volume.

In contrast, we will perform a dense 3D reconstruction of a whole stack of
histological images and at the same time correlate them with μCT.

2 Micro-CT Guided 3D Reconstruction

2.1 Method Overview

As a first step, we align the orientation of the histological images in the stack
itself. This is done using feature point matching between neighboring slides.
Even if there is a deformed slide, the rough overall orientation can be correctly
aligned by affine transformations.

Next, each histology slice In is registered to the μCT volume V . Again feature
point matching is performed between each histological image and each slice of
the μCT volume in order to estimate a rigid transformation from the histological
image to the μCT images. Finally, non-rigid registration is performed in a slice-
by-slice manner between all In and Vn in order to recover the finer deformations
and produce a 3D reconstruction of the histological image stack.

2.2 Histological Image Alignment

Since the orientation of each histological image is initially arbitrary, feature point
matching is performed to align them coherently. However, instead of straight-
forward matching between adjacent slides, we perform matching within a neigh-
borhood of N slides. This allows us to select the transformation matrix with the
most matched feature points within N (Fig. 2).
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Fig. 2. Outline of reconstruction process. First, we align the orientation of the histo-
logical images and register each histological slice to the µCT volume. Finally, non-rigid
registration is performed in a slice-by-slice manner between all histological images and
µCT volume.

In previous studies [5,6] registration is only performed among directly adja-
cent slides and the transformation matrices are combined in order to align each
slide to a common space. This will encourage the propagation of errors through
the slices. Any mistake in registration will be enhanced in subsequent slides and
result in incorrect alignments. This accumulation of errors may cause the last
slice to deviate greatly with respect to the first slide of the stack.

On the other hand, by using the matching result with the preceding N slices
as proposed here, it becomes possible to perform registration while avoiding large
incorrect misalignments of the images. In our experiments, we found N = 10 to
work well.

Feature Matching: For feature point detection and feature description, we
use AKAZE [7] which exploits the nonlinear scale spaces of the images based on
fast explicit diffusion (FED). AKAZE is implemented in a pyramidal framework
and results in a high number of feature points. In comparison to the classical
SIFT feature descriptor, AKAZE has been shown to be faster and more robust
to rotation [7]. An example of feature matches between histology and μCT is
shown in Fig. 1.

First, we detect feature points in all histological images and generate feature
descriptors for each point1. Next, for each slice, feature point matching between
points is performed within all the preceding N slices in a symmetric manner. The
images are then transformed using the resulting affine transformation matrices
Tn,0
H estimated from the pair of images with the most feature matches. That is,

Tn,0
H = T l,0

H ◦ Tn,l
H , (1)

with

l = n − arg max
0<i<N

(MP(In, In−i) + MP(In−i, In)). (2)

Here, MP(Ii, Ij) represents the number of matching feature points of image Ii
from image Ij computed in both directions. When matching, we apply random

1 We utilize the OpenCV 3.1.0 implementation http://docs.opencv.org/3.1.0/d8/d30/
classcv 1 1AKAZE.html.

http://docs.opencv.org/3.1.0/d8/d30/classcv_1_1AKAZE.html
http://docs.opencv.org/3.1.0/d8/d30/classcv_1_1AKAZE.html
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Fig. 3. Feature-based alignment and composition of transformation matrices Tn,0
H in

order to align each image In to the common space of the target image I0.

sample consensus (RANSAC) for robust estimation of the transformation matri-
ces Tn,0

H . The resulting transformation matrices are then composed in order to
align each slice to the common space of the target image I0 as shown in Fig. 3.

2.3 Histology to µCT Initialization

The cutting plane of the specimen is marked on μCT before preparation of the
histological slices by the performing clinician. Hence, we can use this information
to resample the μCT volume V in order to align the histological images In to the
cross sections Vn. For each slice of the histological image, feature point matching
is performed for each slice of the μCT image for initialization. Again, AKAZE is
used for feature point detection and matching as in Sect. 2.2. Using this matched
set of feature points, RANSAC estimates the transformation matrix between the
μCT images and histological images. The parameters estimated here are the scale
in xy-direction sxy, the scale in z-direction sz, the rotation θ around the center
of the z-axis, and the translation in three axes {tx, ty, tz}. Here, the scales in
xy-direction and in z-direction are computed separately in order to adjust for
the different slice thickness of histological images and μCT .

TV =

⎛
⎜⎜⎝

sxy cos θ − sin θ 0 tx
sin θ sxy cos θ 0 ty

0 0 sz tz
0 0 0 1

⎞
⎟⎟⎠ (3)

2.4 Slice-by-Slice Non-rigid Registration

Now, each pair of slices of the initialized histological image In and μCT vol-
ume Vn is aligned using two-dimensional non-rigid registration. For this step we
employ an optimization algorithm that formulates the non-rigid registration task
as a discrete Markov random field (MRF) [8,9]. In our case, a pairwise non-rigid
registration of each 2D slice In, Vn : ∈ Ω ⊂ R

2 is performed in order to find the
transformation T : R2 �→ R

2 that maps In to Vn. We choose In to be the moving
image and Vn the target. In non-rigid image registration, the transformation can
be defined as



Micro-CT Guided 3D Reconstruction of Histological Images 97

T (x) = x + D(x), (4)

where x ∈ Ω is a point in the image domain and D(x) is a two-dimensional dis-
placement field. The problem of this slice-wise registration is to find the optimal
transformation given two images In and Vn:

T̂n
D = arg min

Tn
D

(
E((Tn

D ◦ Tn,0
H )In, (TV V )n)

)
, (5)

where T̂n
D is the optimal transformation at the minimum of the objective function

E [8]. Here, E is composed of a matching term M and a regularizer R. We
utilize normalized cross-correlation (NCC) as the similarity measure M. The
regularization R will be imposed by the MRF formulation itself. In this case,
minimizing the energy of an MRF with unary potentials ḡ = ḡp(·) and pairwise
potentials f̄ = f̄pq(·, ·) amounts to solving the problem

MRF(ḡ, f̄) = minu

∑
p∈V

ḡp(up) +
∑

(p,q)∈V

f̄pq(up, uq), (6)

where each random variable up takes values in a discrete label set L, and V and
E denote, respectively, the vertices and edges of a MRF graph G = (V ,E ). In
practice, the unary potentials ḡp(up) are typically used for encoding the defor-
mation, whereas the pairwise potentials f̄pq(up, uq) typically act as regularizers
and thus play an important role in obtaining high-quality results. In order to
optimize the MRF energy for image registration, the Fast-PD solver is used [9].
The utilized implementation2 considers (free-form deformation) FFDs [10] with
cubic B-spline basis functions and control points uniformly distributed over the
image domain as the non-rigid transformation model. We employ a common
hierarchical coarse-to-fine strategy where the resolution of both the images and
the FFD control grid is subsequently refined during the registration process.
For registration, we use a Gaussian image pyramid with a standard deviation
of 1 and 5 levels. At each level the image dimensions are reduced by a scale
factor of 2. In order to control the maximum amount of deformation imposed by
the registration, we set an initial control point spacing of 9.5 mm. Which each
increasing image resolution in the pyramid, the FFD grid spacing is halved by
inserting new control points. This type of image registration approach allows us
to first capture the larger deformations and then to focus on the smaller, more
subtle details in later iterations as in [8].

3 Results

3.1 Datasets

Two lung specimens were fixed following the Heintzmann method in order to
enable high-resolution imaging by μCT (Shimadzu Co., inspeXio SMX-90CT
2 Drop Version 1.06 http://mrf-registration.net/.

http://mrf-registration.net/
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Plus MICRO FOCUS X-RAY CT SYSTEM). The images were acquired with a
tube voltage of 90 kV and a tube current of 110μA. For microscopic imaging the
specimen is sliced with a 3 μm thickness before standard H&E staining. After
staining a microscopic image is recorded. The original histological image is very
large with around 200, 000 × 100, 000 pixels. Therefore, we shrink the images by
a factor of 100. The imaging specifications of both μCT and histological images
are summarized in Table 1.

Table 1. Specifications

Specifications Size (pixels) Resolution (µm) Number of slices

Case 1 Histological images 1949 × 1115 22 × 22 70

µCT volume 1024 × 1024 49 × 49 × 49 1077

Case 2 Histological images 2097 × 1093 22 × 22 100

µCT volume 1024 × 1024 52 × 52 × 52 545

3.2 Qualitative Evaluation

For visualization, intensity normalization is performed using histogram matching
in order to reduce the difference in density values of each slice. Figure 4 shows
an example of the non-rigid registration result. A volume rendering of the 3D
reconstruction and the corresponding region in the μCT volume is shown in
Fig. 5, in which we can observe vessel-like structures. A more detailed structure
can be observed in the proposed histological 3D reconstruction (Fig. 5a) than in
μCT (Fig. 5b).

(a) (b)

Fig. 4. A slice of non-rigid registration result. Histological image is shown in green and
µCT is shown in red. (a) is before and (b) is after non-rigid registration (Color figure
online).

3.3 Quantitative Evaluation

We manually extracted the bronchial regions from the μCT volumes and histo-
logical images in order evaluate our methods using the following metrics: Dice
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index, Jaccard index, recall, and NCC. Figure 6 shows the extracted region in
histological images and μCT volume before and after the final 3D reconstruction.
The resulting metric scores are shown in Table 2. After the final 3D reconstruc-
tion step, all scores of similarity metrics are increased significantly.

(a) (b)

Fig. 5. Volume rendering of the reconstructed result. (a) is the histological image stack.
(b) is the corresponding region in the µCT volume.

Fig. 6. Bronchial tree in the histological images and µCT volume. Red surface made
from µCT volume, yellow surface extracted after initial alignment, and cyan surface
extracted after non-rigid registration (Color figure online).

Table 2. Similarity comparison after alignment and non-rigid registration

Dice Index Jaccard Index Recall NCC

Case 1 Alignment 0.415 0.262 0.444 0.573

Non-rigid 0.800 0.667 0.873 0.676

Case 2 Alignment 0.354 0.215 0.400 0.398

Non-rigid 0.687 0.523 0.807 0.540

Mean Alignment 0.385 0.239 0.422 0.486

Non-rigid 0.744 0.595 0.840 0.608
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4 Discussion and Conclusion

3D reconstruction from histology is difficult due to the large deformations intro-
duced during the preparation (cutting) of the microscopic slides. In this work we
proposed to first use μCT imaging before preparation of histology slides. Using
the 3D information captured by μCT as guidance allows us to better recover a
quality 3D reconstruction of the histological slides than when using the slides
alone, as shown in our results.

The proposed reconstruction method maintains the 3D structural informa-
tion by utilizing the μCT volumes. We efficiently performed global alignment by
automatically skipping slices with too large deformations, followed by detailed
non-rigid alignment between 2D histology slides and the 3D μCT volume.

In conclusion, a good quality 3D reconstruction of histology and its alignment
with other 3D imaging modalities like μCT might ultimately facilitate the re-
alignment with pre-operative modalities such as clinical CT and MRI imaging.
We hope that this will allow us to build a bridge between microscopic and
macroscopic imaging technologies. Correlating the same anatomy and pathology
could allow further insight into disease progression and patient care.
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3. Hallack, A., Papież, B.W., Wilson, J., Wang, L.M., Maughan, T., Gooding,
M.J., Schnabel, J.A.: Correlating tumour histology and ex vivo MRI using dense
modality-independent patch-based descriptors. In: Wu, G., Coupé, P., Zhan, Y.,
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Abstract. In the last decade, the technological progress of multi-slice CT
imaging has turned CCTA into a valuable tool for coronary assessment in many
low to medium risk patients. Nevertheless, CCTA protocols expose the patient
to high radiation doses, imposed by image quality and multiple cardiac phase
acquisition requirements. Widespread use of CCTA calls for significant reduc-
tion of radiation exposure while maintaining high image quality as required for
coronary assessment. Denoising algorithms have been recently applied to
low-dose CT scans after image reconstruction. In this work, a fast neural
regression framework is proposed for the denoising of low-dose CCTA. For this
purpose, regression networks are trained to synthesize high-SNR patches
directly from low-SNR input patches. In contrast to published methods, the
denoising network is trained on real noise directly learned from noisy CT data
rather than assuming a known parametric noise model. The denoised value for
each pixel is computed as a function of the synthesized patches overlapping the
pixel. The proposed algorithm is compared to state-of-the-art published algo-
rithms for synthetic and real noise. The feature similarity index (FSIM) achieved
by the proposed method is superior in all the comparisons with other methods,
for synthetic radiation dose reductions higher than 90%. The results are further
supported qualitatively, by observing a significant improvement in subsequent
coronary reconstruction performed by commercial software on denoised images.
The fast and high quality denoising capability suggests the proposed algorithm
as a promising method for low-dose CCTA denoising.

1 Introduction

During last decade, progress in multi-slice CT imaging technology has been dramatic.
The leap from 16 to 256 slices (and more) per detector has turned CCTA into a clinical
reality [1]. Although it has not replaced coronary angiography, CCTA is the method of
choice for many indications in low-to-medium risk patients [2]. Nevertheless, CCTA
protocols expose the patient to large effective radiation doses that can reach 10 mSv
[3]. Besides image quality requirements, radiation exposure is also increased by the
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need to acquire several scans, at different phases (multiphase acquisition) of the cardiac
cycle, in order to select the phase with fewer motion artifacts [4].

Denoising of low-dose CT after image reconstruction has been investigated in
several recent papers, with patch-based methods showing the most promising results
[5–7]. Patch-based methods for denoising can be divided into three major approaches,
depending on the source of self-similar patches used for denoising: (1) patches found in
the original noisy image [5], (2) patches provided by an external model [8] or database
[6], and (3) patches synthesized by a neural network [7]. In [5], the well-known BM3D
algorithm was used to denoise low-dose CCTA images, performing initial
noise-variance estimation using wavelet-based methods.

Using an external patch database may prove advantageous for denoising purpose as
its patches may be selected to have a high SNR, not available in self-similar patches
from the original noisy image. In [8], external and internal patch priors are exploited
jointly. A GMM prior is learned on external clean image patches. The GMM prior is
used for the clustering of noisy image patches which is followed by a low-rank
approximation process for the estimation of the image recovery subspace. In [6], an
external database of 2-D patches extracted from high-SNR CT scans is generated
offline. For an input noisy image, all its overlapping 5 � 5 patches are extracted and
associated, by approximate nearest-neighbors (ANN), to a high-SNR patch of the
external database. Each denoised pixel is then computed as a function of the retrieved
high-SNR patches that contain it.

The size of the patch database is a practical limitation even with ANN based
algorithms. Recently, neural networks have been proposed for the image denoising
task. In [7], a 3-layer convolutional neural network (CNN) is trained using sets of clean
and noisy CT patches pairs. The noisy images are obtained by addition of Poisson noise
(in the sinogram domain) to the clean images before patch extraction. Given a noisy
input patch, the network is trained to generate an output patch similar to its corre-
sponding clean patch using the L2 distance metric. Full image denoising is obtained by
feeding the trained network directly with a noisy image instead of patches.

In this work, a fast neural regression framework is proposed for the denoising of
low-dose coronary CT angiography (CCTA). Regression networks are trained to
synthesize high-SNR patches directly from low-SNR input patches. In contrast to
published methods, the denoising network is trained on real noise directly learned from
noisy CCTA, without assuming a known parametric noise model. The high SNR
patches, synthesized by the regression network, are used to compute a denoised value
for each CCTA pixels while preserving local structures. The remainder of this paper is
organized as follows: The proposed algorithm is detailed in Sect. 2 and validated for
synthetic and real noise in Sect. 3. A discussion concludes the paper in Sect. 4.

2 Methods

The proposed method (Fig. 1) is composed of two main steps: offline training of the
neural framework (top) and denoising of the input low-dose CT image (bottom). Both
steps will be detailed in the following subsections.
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2.1 Training of the Neural Framework

In the offline learning step, a neural network is trained to approximate the mapping
between noisy, low-SNR patches to the clean, high-SNR patches. For this multidi-
mensional regression task, the universal approximation property [9] of multi-layer
feed-forward neural networks is particularly advantageous. Learning is performed on
two groups of patches X ¼ xif gNi¼1 and Y ¼ yif gNi¼1 which denote the vectorized
low-SNR patches and their corresponding high-SNR patches, respectively.

In contrast to published neural denoising methods, we propose to learn noise
characteristics from real CCTA data instead of using an explicit noise model. For this
purpose, instead of generating the noisy patches by artificial addition of synthetic noise
to high-SNR patches, we devise the following approach: Let Hdb and Ldb denote two
databases of high and low SNR patches, respectively. The two databases were created
by random sampling of several high-SNR and low-SNR CCTA images, accordingly.
We stress that the selected low-SNR images are intrinsically noisy and not the result of
synthetic noise addition. The high-SNR patch, y 2 Hdb; corresponding to patch
x 2 Ldb, is given by

y ¼ argmin
p2Hdb

p� xk k2 ð1Þ

The mapping between similar low and high-SNR CCTA patches may be efficiently
implemented using an approximate nearest neighbor (ANN) algorithm.

The selected network architecture consists of 5 fully-connected layers including
ni; i ¼ 1::5, neurons in each layer. Each layer performs the following computation:

Fig. 1. The main steps of the proposed method; (top) offline training of the neural framework;
(bottom) denoising of the input low-dose CT image.
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Oi ¼ RELU Wi � Ii þ bið Þ ð2Þ

Here Wi are the weights of layer i, Ii is the output of the previous layer, bi are the
biases of layer i and RELUðxÞ is the commonly used activation function maxð0; xÞ. In
our case, the RELU function is more appropriate than the sigmoid or tanh as these
functions scale the output of each layer to a different range, which is undesirable for a
regression task. Intuitively, the chance of finding good matches between low and
high-SNR patches by ANN, decreases as patch size increases. In this small patch
scenario, fully connected layers are preferable over convolutional ones.

The network parameters are optimized using an Euclidean cost function C X; Y ; hð Þ:

CðX; Y ; hÞ ¼ 1
N

XN
i¼1

Fðxi; hÞ � yik k2 ð3Þ

Here, N is the number of training samples, h represents the network parameters, and
F is the network output. Optimization is computed by batch gradient descent. We note
that no normalization of the patch values is required given the absolute character of the
Hounsfield units.

In order to further enhance the denoising effect, the network described above can be
cascaded into multiple denoising stages as shown in Fig. 1 (top). The networks for all
the denoising stages share the same architecture, but the parameters are learned by
training each denoising stage sequentially as follows: After completion of network
training in the first stage, the whole noisy patches training set is fed through the
network and the resulting output patches are forwarded as low-SNR training patches to
the second denoising stage. Here again, the corresponding high-SNR training patches
are retrieved from the high-SNR patch database Hdb. In the proposed cascade approach,
each denoising stage comprises a network specifically trained to denoise patches
generated by the previous denoising stage. This is conceptually superior to iteratively
denoising the patches with a single network since its training is only optimal for the
first denoising iteration. The advantage will also be confirmed in the experimental
results.

2.2 Denoising of Low Dose (LD) Scans

Given an input low-SNR CT image (Fig. 1, bottom), dense sampling of all the SxS
patches in the image is performed. The extracted patches are then forwarded through
the regression neural network to generate the corresponding high-SNR patches.

At each pixel, a denoised value is computed using the generated high-SNR patches:
as shown in Fig. 2 for S = 3, any given pixel (grey) in the noisy image belongs
simultaneously to S2 overlapping SxS patches. Since a high-SNR patch was associated
to each patch in the original image, a distinct high-SNR value is provided for the given
pixel by each one of the S2 overlapping patches. The denoised pixel value can then be
computed as a weighted sum of these S2 high-SNR values as suggested in [6]. Let

Xj ¼ xj;i
� �S2

i¼1 denote the set of vectorized overlapping patches containing a given noisy
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pixel pj, and X̂j ¼ FðXj; hÞ be the output of the neural network for each of the patches
xj;i. The corresponding denoised value p̂j can be computed by

p̂j ¼ G X̂j
� � ¼

PS2

i¼1 exp � Dðxj;k ;x̂j;iÞ
h2

� �
x̂j;i; x̂PS2

i¼1 exp � Dðxj;k ;x̂j;iÞ
h2

� � ð4Þ

Here, DðP;QÞ is the mean L1 distance between corresponding pixels in partially

overlapping patches P and Q, k ¼ ceil S2
2

� �
is the index for the patch centered in pj and

k̂ is the index of pj in the vectorized patch x̂j;i. The adopted weighting scheme was
chosen as it favors the preservation of local structure: the contribution of the high-SNR
patches to p̂j increases with their similarity to the patch centered in pj [6].

The denoising steps described above constitute a denoising stage. Several denoising
stages may be cascaded (Fig. 1, bottom) to enhance the overall denoising effect. At
each stage, the regression network that was purposely trained (see Subsect. 2.1) is used
to generate the required high-SNR patches. We stress that since a denoised image is
reconstructed after each patch-denoising network (Fig. 1 bottom), the proposed cas-
cade approach is not equivalent to training a single network that appends all the patch
denoising networks defined above.

3 Experiments

For the quantitative validation of the algorithms, 40 low-dose CCTA scans (voxel size
0.29 � 0.29 � 0.8 mm3) were generated by addition of zero-mean white Gaussian
noise (r ¼ 2000) to the sinograms of 40 real high-SNR scans. The scans, acquired
under automatic exposure, were visually inspected to assess image quality. The
equivalent radiation dose reduction is given by [10]:

Rð%Þ ¼ 100 � 1� 1
N2

� 	
ð5Þ

where N is the noise ratio, approximated by a local standard deviations ratio. N is
measured in a single-tissue ROI sampled in both images. In our experiments, the
average dose reduction, R, computed over several single-tissue ROIs, was about 90%.
The patch size S was set to 5 in all the experiments. 40 Neural networks were trained
using a leave-one-out scheme. Each network was tested on a different case (out of the

Fig. 2. A given pixel (gray) in the noisy image belongs to S2 overlapping SxS patches. Here,
S = 3. (Adapted from [6].)
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40), after having been trained on a set of 10 million patches extracted from the
remaining 39 cases. The numbers of neurons are set to n1 ¼ 512; n2 ¼ 128; n3 ¼
100; n4 ¼ 50; and n5 ¼ 25, for the output layer, that corresponds to the size of the
input 5 � 5 patches. Learning rate in network optimization was set to 0.0001, batch
size was set to 128. Two cascaded denoising stages were used. The feature similarity
index (FSIM) [11] was used for quantitative comparison between each original
high-SNR image and the resulting denoised image. The FSIM index relies on ability of
the human visual system to understand images from low-level features.

In Table 1, the performance of the proposed algorithm is compared for different
configurations on a subset of 10 cases: synthetic/real noise in Ldb, number of cascaded
denoising stages (denoted stg), and number of algorithm iterations (denoted it). Since
the two-stage configuration, trained using real noise in Ldb, outperformed the other
configurations, we will use this configuration in all the experiments and denote it
NNRR2.

In Fig. 3, the proposed NNRR2 is compared against four state-of-the-art algo-
rithms: BM3D [5], PGPD [8], LC-NLM [6], and CHEN [7] for the 40 scans synthetic
noise database created above. Implementation codes were openly provided by the
authors, except for [7], that we implemented according to the paper. The average FSIM
for the proposed NNRR2 (0.87) was superior to all the compared methods. Only in 6
out of 40 cases, CHEN [7] performed equally or slightly better than NNRR2. However,
it is important to note that, for fairness, CHEN was trained on the same noise model
and intensity (r) that was applied to generate the synthetic data. In practice, this

Table 1. Averaged FSIM for 10 cardiac CT scans for different configurations of our algorithm

configs #stg = 1,
#it = 1
synthetic
noise

#stg = 1,
#it = 2
synthetic
noise

#stg = 2,
#it = 2
synthetic
noise

#stg = 1,
#it = 1
real noise

#stg = 1,
#it = 2
real noise

#stg = 2,
#it = 2
real noise

Mean 0.871 0.817 0.850 0.848 0.873 0.876
STD 0.015 0.033 0.025 0.009 0.008 0.008

Fig. 3. The FSIM index for the 40 CCTA cases obtained with BM3D (grey), PGPD (yellow),
LC-NLM (green), CHEN (orange) and NNRR2 (blue). (Color figure online)
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optimal situation is infrequent. In Fig. 4, a sample slice is shown before noise addition
(a), after noise addition (b), and following denoising by BM3D (c), PGPD (d),
LC-NLM (e), CHEN (f), and NNRR2 (g). While BM3D (c) and PGPD (d) provide
powerful denoising, the resulting images appear strongly over-smoothed when com-
pared to the original image (a). This is best visualized in the zoomed views (g), where
the capital letters associate them to the corresponding sub-image of Fig. 4. Both
LC-NLM (e,E) and NNRR2 (g,G) have good visual similarity with the original image
(a,A). CHEN (F) performance in the example is relatively similar to NNRR2. However,
In Fig. 5, we can see how CHEN’s performance (c) degrades significantly when the
training noise value (r = 2000) is not adjusted to the actual noise level (r = 3000) in
the image (b). In contrast, NNRR2 (d) still perform superior denoising independently of
the actual noise level in the input image, as no assumption is made about it. The
advantage is best viewed in the zoomed ROIs (e). Overall, NNRR2 demonstrates the
best balance between denoising and similarity to the original image (a,A) as reflected
quantitatively by the FSIM values. The average slice denoising time for NNRR2 was
about 4 s in non-optimized Matlab-Python.

To further validate the proposed method, a real noisy CCTA scan was considered in
Fig. 6. The noisy scan was acquired at a phase equal to 45% of the R-R interval in the
cardiac cycle. A noisy sample slice is shown (top, left) beside the corresponding 3-D
reconstruction of heart and coronaries (center, right) by the Intellispace Portal cardiac

Fig. 4. A sample slice is shown before noise addition (a), after noise addition (b), and following
denoising by BM3D (c), PGPD (d), LC-NLM (e), CHEN (f), and NNRR2 (g), (h) zoomed ROI:
the high-SNR ROI (A) was placed in the middle for easy comparison with other ROIs (B to G).

Fig. 5. (a) High dose; (b) with artificial noise (r = 3000); (c) CHEN; (d) NNRR2; (e) Zoom-in.
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CT software (Philips, Holland). Following denoising by NNRR2 (bottom, left) of the
same scan, we observe that two additional branches of the coronaries (yellow contours)
were successfully reconstructed without human intervention.

4 Conclusions

We presented a novel patch-based method for the denoising of low-dose CT, and
demonstrated its applicability to the denoising of low-dose CCTA. The method relies
on a fast neural regression framework that is trained to generate high-SNR patches
from low-SNR input patches. The high SNR patches, synthesized by the regression
network, are used to compute a denoised value for each CCTA pixel while preserving
local structures in the reconstructed image. In contrast to previous methods, no
assumption is made on the nature or model of the noise which is instead learned
directly from real noisy data. The presented method demonstrated promising results
and outperformed both quantitatively and visually other state-of-the-art algorithms in
CCTA denoising, for synthetic radiation dose reductions above 90%. In ongoing
research, the method will be further validated on larger datasets. Moreover, the data-
base of low-dose patches will be enriched with real low-dose patches extracted from
scans acquired at very low-dose to enhance the denoising power of the method.
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Abstract. Ultrasound elastography is an imaging modality that com-
putes the elasticity of tissue through measuring shear waves from a
mechanical excitation using pulse-echo ultrasound. To better measure
shear waves and reduce acquisition time, elastography would benefit from
a higher framerate, which is limited by conventional focused line-by-line
acquisition. This paper proposes a dictionary learning-based framework
that increases the framerate of steady state elastography. The method
uses patches extracted from images with higher scanline density to train
a dictionary, and uses this dictionary to interpolate images with lower
scanline density collected at a faster framerate. Experiments on a tissue
mimicking phantom showed when the framerate is increased 8 times, the
reconstructed image using the proposed method achieved a 17.6 dB Peak
Signal-to-Noise Ratio. The method was also implemented on a steady
state elastography system, where elasticity measurements similar to con-
ventional methods were obtained with a shorter total acquisition time.

Keywords: Dictionary learning · Fast imaging · Ultrasound
elastography

1 Introduction

Ultrasound (US) elastography, an emerging imaging modality, measures tis-
sues’ mechanical properties, such as elasticity (Young’s Modulus) and viscos-
ity, through calculating their response to external excitation forces using stan-
dard pulse-echo US. Compared to standard acoustic properties that form a
B(brightness)-scan, elasticity is an adjunct at distinguishing pathology and phys-
iological changes in tissues, such as cancer or fibrosis. There are different specific
implementations of US elastography systems [10,13]. In particular, our group
previously developed a system called Shear Wave Absolute Vibro-Elastography
(SWAVE) [5]. SWAVE uses an external mechanical exciter to generate harmonic
vibration between 60 and 200 Hz upon the tissues (akin to magnetic resonance
elastography), a US probe to collect 20 to 40 frames of pre-envelope-detected
radio frequency (RF) US data at each location, and signal processing software
and hardware to perform speckle tracking (or cross-correlation of RF signal
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windows) between subsequent frames of RF data to obtain the motion profile.
The motion profile is fitted with a sinusoidal wave at the excitation frequency.
From the phasor of this shear wave, inversion algorithms [6] compute the elas-
ticity map, also called the “elastogram”. Compared to Acoustic Radiation Force
Impulse-based elastography methods [10], SWAVE has the advantage of using
standard delay-and-sum pulse-echo beamforming, requiring no modification to
US hardware, achieving deeper penetration, and providing results over the full
field of view [8].

However, since there is a need to capture the fast moving tissue under fast
excitations (e.g. 200 Hz) in steady state harmonic elastography, a high US fram-
erate is required to accurately measure the motion phasor and hence the elas-
ticity. Imaging at the framerate required for SWAVE, namely the Nyquist rate
of two times the excitation frequency or higher, is impossible using conventional
US machines, which currently typically have the framerate of <100 Hz. To cir-
cumvent this problem, sector-based sampling [5], which estimates the elasticity
in multiple sub-sectors, and bandpass-sampling [1], which uses multiple cycles
of high frequency motion to estimate the motion phasor have previously been
proposed. However, both of these methods do not reduce the overall acquisi-
tion time, and the sector-based method requires multiple steps of compensation,
which leads to discontinuities in the presence of cardiac and breathing motion
artifacts. A more fundamental solution is to improve the inherent framerate of
the US imaging system, where recent research [7,12,14] explored designing more
powerful hardware, such as larger memory card and the ability to perform paral-
lel computations, in order to conduct multiline beamforming methods. However,
all of these methods are subject to increased cost required for the corresponding
hardware upgrade. Given the proliferation of low-cost US systems with stan-
dard delay-and-sum beamformers, there is a need to find a solution to the speed
problem with existing beamformers.

In this work, we propose a software-based approach that improves the fram-
erate of the US system with standard beamformers and retains the ability
to interleave B-mode US imaging with SWAVE scanning. To achieve this, we
obtain images at a faster framerate by only taking a subset of the scanlines
during SWAVE, and reconstruct images with denser scanlines using examples
from the patches of training data obtained from the interleaved full-density
B-mode US scans. In the computer vision community, the problem of interpolat-
ing high-resolution images from low-resolution images is generally referred to as
image super-resolution (SR). We use this term although we are not attempting
sub-wavelength imaging here. Previous research has explored solutions based
on multi-atlas patch matching [2], dictionary learning [4], and more recently,
Deep Learning [11]. Successful SR implementations have been demonstrated on
the three-dimensional magnetic resonance cardiac images [4]. As a first step to
speed up SWAVE using SR, we adopt a dictionary learning-based method and
reconstruct the high-resolution images using sparsity-based assumptions.



A Dictionary Learning-Based Fast Imaging Method 113

2 Methods

The overview of the methods and the algorithms proposed in this paper are
shown in Fig. 1. The three aspects of our algorithm, namely (a) modifications to
conventional US transmission sequence, (b) patch extraction and pre-processing,
and (c) the proposed patch-based dictionary learning and sparsity-based recon-
struction algorithms, will be discussed in detail in this section.
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Fig. 1. Overview of the proposed methods, namely (a) modifications to conventional US
transmission sequence, (b) patch extraction and pre-processing, and (c) the proposed
patch-based dictionary learning and sparsity-based reconstruction algorithms. (Color
figure online)

US Transmission Sequencing: Figure 1(a1) shows the conventional US trans-
mission sequence that generates an 8-line image, where 1, 2, 3, ... 8 represent the
8 lines. The time it takes to form one of these lines depends on the speed of sound
propagation in the medium and the depth of the image. Suppose it takes time
T to form one line, then generating such an image takes 8T overall. To improve
the imaging speed, in Fig. 1(a2), only every other lateral position is imaged, and
the total imaging time is reduced from 8T to 4T , hence a 2-fold speed-up is
achieved. However, since fewer lines are acquired, the imaging lateral resolution
is worse compared to the conventional images.

To improve the worsened imaging quality of the fast images, we design a
learning-based approach that uses the conventional denser images as training
examples to train a dictionary on-the-fly, and uses the trained dictionary to
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interpolate the fast images to have denser lines. To achieve this, we design a
combined sequence that acquires Q conventional frames as training frames and
L fast image frames subsequently. A combined sequence with Q = 3 and L = 3
is demonstrated in Fig. 1(a3). In the actual implementation, we re-arrange the
transmission sequence within each conventional frame to facilitate the recon-
struction step. If we denote the speed-up ratio of the fast image by P and assume
that a conventional image has 128 lines, then the total acquisition time of such
a sequence is 128Q · T + 128L/P · T , compared to 128T · L for the conventional
US. So the overall reduction in total acquisition time is L

Q+L/P .

Overall Workflow and Pre-processing: Following methods from image SR
literature [15], we use a patch-based approach to perform the learning-based
interpolation. Square patches with the size m × m are extracted. A patch with
m = 4 is highlighted using a red square in Fig. 1(a1). The extracted versions of
the training patches and input patches are also demonstrated in Fig. 1(a4) and
1(a5). We re-arrange lateral lines in the training patch, so that the positions
sampled by the fast images (highlighted using violet color) are put in front of
the other lines.

Each patch is vectorized and the training patches and testing patches are
concatenated horizontally respectively. Let us use Y ∈ R

m2×Q to denote the
vectorized training patches, and Xs ∈ R

mn×L to denote the vectorized input
patches, where n represents the number of lateral lines that are sampled in the
fast image (n = 2 in Fig. 1(a4)).

The temporal average of the training patches Y are first stored and removed,
since subsequent patches are typically similar, and we are more interested in
studying the minute inter-frame changes due to tissue motion. The average-
removed training patches, denoted by Y , are then used to train a dictionary
D ∈ R

m2×K with K atoms, using Algorithm 1. The workflow of obtaining the
dictionary from training patches is described in Fig. 1(b1), using orange arrows.

Similarly, we subtract the average of the training patches from the input
patches Xs. The average removed input patches Xs are then interpolated using
a subsequent sparsity-based reconstruction algorithm (Algorithm 2). We denote
the output of Algorithm 2 as X ∈ R

m2×L. After adding back the average of
the training patches and re-arranging the lateral lines, patches with the same
number of lateral lines as the training patches are obtained. The workflow of
sparsity-based reconstruction using patches from the fast images is described in
Fig. 1(b2), using green arrows.

Algorithm 1: Patch-Based Dictionary Learning: Given a series of train-
ing patches Y = [y1,y2, . . . ,yQ], a dictionary learning algorithm aims to find a
dictionary D = [d1,d2, . . . ,dK ], such that each training patch yq can be rep-
resented as a linear combination with the fewest possible elements dk’s. Mathe-
matically, this can be expressed as

D = arg min
D,Φ

‖Y − DΦ‖22 + λ‖Φ‖1, (1)
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where Φ = [φ1,φ2, . . . ,φQ] and φq ∈ R
K represent the sparse code for training

patch q. The dictionary learning algorithm is shown in Fig. 1(c1). There are many
efficient implementations of dictionary learning algorithms in the literature. In
this paper, we picked a computationally efficient toolbox [9].

Algorithm 2: Sparsity-Based Reconstruction: Our proposed sparsity-
based reconstruction algorithm takes a patch xsl ∈ R

mn from a fast image as
input, and reconstructs the higher resolution patch xl ∈ R

m2
. Two constraints

we use are: (1) the recovered xl has a sparse representation al using dictionary
D; (2) the first mn elements of xl, which correspond to the sampled positions
in the fast image, are similar to xsl. If we denote the first mn rows of D as Ds,
these two constraints can be expressed mathematically as

minimize
al

‖al‖1

subject to ‖Ds · al − xsl‖22 ≤ σ2,
(2)

which is a Basis Pursuit Denoising setup, with σ representing the margin of
error allowed, and can be solved efficiently by many compressed sensing solvers,
such as SPGL-1 [3]. After the sparse codes corresponding to all the fast imaging
patches are found, the reconstructed patches can be found by X = DA, where
A = [a1,a2, . . . ,al]. This procedure is illustrated in Fig. 1(c2).

3 Experiments

In this section, we introduce two experiments we designed to test the accuracy
of the proposed combination of dictionary-learning and reconstruction meth-
ods and their applicability to SWAVE. For both experiments, we used a Sonix-
Touch (Analogic Corp., Richmond, CA) machine and a custom made mechanical
exciter. The phantom being imaged was a standard CIRS (Norfolk, VA) elastic-
ity phantom. In-house motor control box and sequencers were used for 3D sweep
imaging and accurate line-triggering.

For the first experiment, the mechanical excitation frequency was set to
200 Hz and the US framerate was set to 72 Hz. First we measured the error
caused by noise and triggering error: Since for an excitation frequency fe and
US framerate fframe, a finite set of phase locations

k =
lcm(fe, fframe)

fe
, (3)

were sampled by the US machine, where lcm stands for the least common multi-
ple, we may find that only 9 distinct locations of the excitation phases are sam-
pled using this combination. Therefore, the frames collected should be identical
every 10 frames, in the absence of measurement noise and inaccuracy of trigger-
ing. We recorded the average Peak Signal-to-Noise Ratio (PSNR) between pairs
of frames that are 10 frames apart. This PSNR is measured as 13.9 dB, and will
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be referred to as “Error Due to Noise” and provides a bronze standard for evalu-
ating our methods’ performance. We inject a half-frame time delay before taking
the fast frames, to ensure the training frames and input frames measure differ-
ent phases of the motion. For each experimental setting, we collected 23 frames
before injecting the delay and 4 frames after injecting the delay.

For the second experiment, we implemented the proposed method to achieve
a faster SWAVE system. 15 frames of a 128-line transmission sequence were
used as training images and 40 frames of a 16-line transmission sequence were
used as fast images. Hence, a speed-up ratio of 8 was achieved. The total image
acquisition time decreases from 40 · 128T to (15 + 40/8) · 128T = 20 · 128T , i.e.,
an overall reduction in imaging time of 50% was achieved. The elastograms were
derived using Local Frequency Estimation [6].
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Fig. 2. (a) Reconstruction accuracy using the DCT, Bicubic interpolation, and our
proposed method at different speed-up ratios. (b) Reconstruction accuracy using the
DCT and our proposed method at using different patch sizes. The “Error Due to Noise”
measurement is denoted by the dashed line.

In Fig. 2(a), we compare the reconstruction accuracy using our proposed dic-
tionary learning algorithm with that using a Discrete Cosine Transform (DCT)
and a Bicubic interpolation. We plot the reconstruction PSNR at different accel-
eration speed, compared to the previously reported “Error Due to Noise” mea-
surement. The reconstructions using the proposed method are more accurate
compared to the “Error Due to Noise” measurement. At the speed-up ratio at 2,
4, and 8, our reconstruction method out-performs the DCT and Bicubic interpo-
lation approach. We observe that the reconstruction accuracy stays reasonable
as the speed-up ratio is increased to up to 16 times. Apart from the speed-up
ratio, the reconstruction accuracy is also dependent on the patch size chosen for
reconstruction. In Fig. 2(b), we compare the reconstruction PSNR using patch
sizes 8, 16, 32, and 64. We observe that the proposed algorithm out-performs
the interpolation and DCT-based methods. In Fig. 3, we compare the elasticity
measurement results obtained using the original system and the proposed fast
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Fig. 3. (a)(c) Phasor diagram [µm] and elastogram [kPa] obtained using the conven-
tional approach at the framerate of 72Hz. (b)(d) Phasor diagram and elastogram
obtained using the proposed method at a framerate of 576Hz. The hard inclusion
is enclosed using a dashed circle.

imaging method. The elasticity phantom has a circular hard inclusion within
the field of view, which is delineated using a dashed circle. Figure 3(a) and (b)
display the motion phasors gathered using the conventional method and the
proposed method. We observed that good quality phasors were derived in both
cases. Figure 3(c) and (d) display the elastograms gathered using the two meth-
ods. We observe similar elastograms in both cases, with a circular hard inclusion
in the field of view (60.2±5.8 kPa for conventional imaging and 62.4±5.3 kPa for
our proposed fast imaging method). Hence, the reconstruction PSNR achieved
by the proposed method is accurate enough for elasticity measurements.

4 Discussion and Conclusion

In this paper, we proposed a fast US imaging method based on patch-based
dictionary learning and sparsity-based reconstruction. In particular, this method
can be used to increase the imaging speed of steady state elastography systems.
We performed phantom studies and proved that when the framerate is increased
8 times, the reconstructed image using the proposed method achieved a 17.6 dB
PSNR, which is higher than the 13.9 dB PSNR between two frames imaging an
identical scene. We also implemented the algorithm on SWAVE, and proved that
the reconstruction is accurate enough for elasticity measurements.

Our proposed method has the potential to benefit SWAVE, or other steady
state elastography methods such as [13], in two aspects, the improvement in
temporal sampling frequency and the reduction in total acquisition time. To test
the clinical improvement in performance due to the improvement of temporal
sampling rate, we will design experiments that measure elastograms of real tissue
in vivo. Currently, in a liver elasticity exam, using a steady state elastography
system, hundreds of US frames are required to generate one elastogram, during
which the patient is required to perform a breath hold to avoid motion artifact.
From implementing our method onto the SWAVE system, we proved that the
proposed method can reduce the total acquisition time of an elastography exam,
hence can reduce the potential of error from body motions.
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Abstract. Detecting tumor regions in breast ultrasound images has
always been an interesting topic. Due to the complex structure of breasts
and the existence of noise in the ultrasound images, traditional handcraft
feature based methods usually cannot achieve satisfactory results. With
the recent advance of deep learning, the performance of object detec-
tion has been boosted to a great extent, especially for general object
detection. In this paper, we aim to systematically evaluate the perfor-
mance of several existing state-of-the-art object detection methods for
breast tumor detection. To achieve that, we have collected a new dataset
consisting of 579 benign and 464 malignant lesion cases with the cor-
responding ultrasound images manually annotated by experienced clini-
cians. Comprehensive experimental results clearly show that the recently
proposed convolutional neural network based method, Single Shot Multi-
Box Detector (SSD), outperforms other methods in terms of both preci-
sion and recall.

Keywords: Deep learning · Breast tumor detection

1 Introduction

Breast cancer is the second leading cause of female death. Early diagnosis is the
key for breast cancer control, as it can reduce mortality dramatically (40% or
more) [1]. Previously, mammography is the main modality for detecting of breast
cancer. However, mammography not only causes health risks for patients, but
also leads to unnecessary (65–85%) biopsy operation due to low specificity [1].
As a much better option, ultrasound imaging can increase the overall cancer
detection by 17% and reduce unnecessary biopsies by 40% [1]. Currently, using
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ultrasound techniques for tumor detection relies on doctor’s experience, espe-
cially for the marks and measurements of tumors. Specifically, a doctor usually
uses ultrasound instruments for tumor detection by first finding a good angle to
wake the tumor clearly shown on the screen, and then keeping probe fixed for a
long time using one hand, with another hand to mark and measure the tumor on
the screen. It is a difficult task, because the slight shaking of hand holding the
probe will cause big impact on the quality of breast ultrasound images; Based
on this, computer aided automatic detection technology is highly demanded for
locating regions of interest (ROIs), i.e., tumors, in breast ultrasound images.

Several previous methods discussed on how to automatically locate ROIs of
breast tumors. In [2], A self-organizing map neural network was used for the
detection of the breast tumor. The ROIs can be extracted automatically by
employing local textures and a local gray level co-occurrence matrix which is a
joint probability density function of two positions. Compared with the basic tex-
ture feature, the gray level co-occurrence matrix can reflect the comprehensive
information about the direction, the interval and the amplitude of the image.
In [3], Shan et al. developed an automatic ROI generation method which con-
sisted of two parts: automatic seed point selection and region growing. However,
the method depends on textural features, and these features are not effective
for breast ultrasound images when there exists a fat region close to the tumor
area or contrast is low [4]. In [5], a supervises learning method was proposed to
categorize breast tissues into different classes by using a trained texture classi-
fier, where background knowledge rules were used to select the final ROIs for
the tissues. However, due to the inflexibility of the introduced constraints in
the proposed method, its robustness was reduced. In [4], the authors improved
the method in [5] by proposing a fully automatic and adaptive ROI generation
method with flexible constraints. In their work, the ROI seed can be generated
with high accuracy, and can also well distinguish the dataset tumor regions from
normal regions. However, as shown in the experiments, the recall is still unsatis-
factory, that average recall rate was low that benign was 27.69%, malignant was
30.91%, total was 29.29%.

Recently, deep learning techniques have attracted a lot of attention from
researchers, because of the good data interpretability as well as the high dis-
criminability power. Noticeably, deep convolutional neural networks (CNNs)
have substantially improved the performance not only for image classification,
but also for general object detection [6–9]. In order to take advantage of the
recent developement of CNNs, in this work we employ the state-of-the-art CNN
based detection methods to locate tumor regions in breast ultrasound images,
and systematically evaluate them on our newly collected dataset consisting of
both benign and malignant breast tumor images. So far in the literature, people
have employed CNN based methods to handle detection tasks for other image
modalities, such as mammograms [10]. To the best of our knowledge, there is
little work that has comprehensively evaluated the performance of different CNN
based detection methods for detecting tumors in breast ultrasound images. To
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this end, in this work we establish benchmarks for our newly collected dataset,
and our study can potentially benefit other researchers working in the same area.

2 Related Work

2.1 Traditional Object Detection

The traditional object detection framework normally consists of three parts: (1)
feature extraction; (2) proposal regions generation (including sliding window [11],
Selective Search [12] and Objectness [13]); (3) proposal classification.

In the past, researchers usually studied hand-crafted features within the tra-
ditional detection framework. For example, Dalalet and Triggs [14] used SVM
with histogram of oriented gradients (HOG) features for the pedestrian detec-
tion task. Felzenszwalb et al. [15] proposed a Deformable Part-based Model
(DPM) using latent SVM, which achieved the best performance in the 2006
PASCAL person detection challenge. In [16], the authors used the K-SVD dic-
tionary learning method to obtain a sparse expression of an image, which was
called Histograms of Sparse Codes (HSC). HSC was used to replace HOG for
classifier training and target detection. Although the performance has been con-
siderably improved, the detection speed is quite slow. In [17], the author pro-
posed an object detector based on co-occurrence features, which was three kinds
of local co-occurrence features constructed by the traditional Haar, LBP, and
HOG respectively. In addition, the author proposed a generalization and effi-
ciency balanced framework for boosting training, where both high accuracy and
good efficiency were achieved. Although the traditional detection method devel-
oped for many years, in recent years, it is generally acknowledged that progress
has been slow.

2.2 CNN Based Object Detection

The remarkable progress of deep learning techniques, especially CNN, have
largely promoted the research of visual object detection. In the following, we
briefly review some state-of-the-art CNN based detection methods.

In 2014, Girshick et al. [18] proposed Region-based Convolutional Neural
Networks (R-CNN), which combined the heuristic region proposal method and
CNN. However, R-CNN has notable drawbacks: (1) the training phase is time-
consuming; and (2) the detection phase is slow due to the repetitive feature
extraction. In order to improve the speed of R-CNN, He et al. [19] introduced
Spatial Pyramid Pooling Net (SPP-Net). Compared to R-CNN, SPP-Net does
not require to resize proposed regions to a fixed size. Since the convolution
process is done only once by caching the values, SPP-Net largely accelerates the
detection time. However, two major issues still exist: (1) the training phase is
quite complex; and (2) the fine-tuning stage could not update the convolutional
layers, which somehow restricts SPP-Net to achieve better performance. To over-
come those drawbacks, also inspired by SPP-net [19], Girshick [6] improved R-
CNN by proposing Fast R-CNN which adds a ROI pooling layer to the last
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convolution layer as well as performs classification and bounding box regression
simultaneously. However, as selective search is used for region proposals, the
detection time is not very fast. To avoid the standalone step to generate regions,
Ren et al. [7] proposed to integrate a so-called Region Proposal Network (RPN)
into Fast R-CNN. Since the convolutional features of regions are shared, the
region proposal step is almost cost free, making the detection phase of Faster
R-CNN almost real-time. But the small scale objects cannot be well detected,
due to the loss of detail information in the corresponding deep features.

Recently, researchers also investigated possible ways to avoid proposing
regions at the very beginning for detection. For instance, You Only Look Once
(YOLO) [8] employed a single convolutional neural network to predict the bound-
ing boxes and class labels of detected regions. Since the YOLO limits the num-
ber of bounding boxes, it avoids repetitive detection of the same object and
thus greatly improves the detection speed, making YOLO suitable for real-world
applications. However, like Faster R-CNN, YOLO also has problems in detecting
small scale objects. To deal with the issues as in YOLO, Liu et al. [9] proposed
Single Shot MultiBox Detector (SSD) by generating bounding boxes of multi-
ple sizes and aspect ratios from feature maps of different levels. However, these
CNN-based methods only focus on general object detection. In this paper, we
apply them to detecting tumors in our newly collected breast ultrasound dataset.

3 Dataset

Collecting a well defined dataset for breast ultrasound images is key to the
research on breast tumor detection/classification. For that, we have been collab-
orating with Sichuan Provincial People’s Hospital to have experienced clinicians
annotate breast ultrasound images obtained from breast lesions patients. Specif-
ically, the patients were told to get scanned by LOGIQ E9 (GE) and IU-Elite
(PHILIPS) to generate those ultrasound images. Each ultrasound image was
later reviewed and diagnosed by two or three clinicians. Based on the ratings
obtained from the BI-RADS system [22], each diagnosed image was then grouped
into 7 categories indexed from 0 to 6, where 0 means more information is needed,
1 negative, 2 benign finding, 3 probably benign (less than 2% likelihood of can-
cer), 4 suspicious abnormality, 5 highly suggestive of malignancy, and 6 proven
malignancy. According to [22], some medical specialists proposed to further par-
tition the fourth category (suspicious abnormality) into three sub-category, i.e.,
4A (low suspicion for malignancy), 4B (intermediate suspicion of malignancy)
and 4C (moderate concern, but not obvious for malignancy). For that, by fol-
lowing the professional instructions from our clinicians, we divide our dataset
into two classes: benign and malignant. The benign class is constructed by the
images grouped into categories 2, 3 and 4A, while the malignant class consists
of the images from categories 4B, 4C, 5 and 6.

By working with the clinicians, we have collected 579 benign and 464 malig-
nant cases from patients. Moreover, the tumor in each image has also been
marked out by those experienced clinicians. Figure 1 showcases four ultrasound
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(a) Benign: ground-truth (b) Benign: prediction

(c) Malignant: ground-truth (d) Malignant: prediction

Fig. 1. Ground-truth annotations and predicted bounding boxes of different methods,
for four tumor cases from different patients.

images containing either benign or malignant tumors. To the best of our knowl-
edge, there is no such a publicly available ultrasound image dataset as ours for
breast tumors.

4 Experiments

4.1 Experimental Setup

In the experiments, we evaluate the performance of several state-of-the-art detec-
tion methods, i.e., Fast R-CNN [6], Faster R-CNN [7], YOLO [8], and SSD [9].
We also combine each CNN based detection method with different existing neural
networks, e.g., VGG16 [20], ZFNet [21].
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For evaluation metric, we employ average precision rate (APR) and average
recall rate (ARR) over all test images [4] as well as the F1 score for each method:

APR =
1

N

N∑

i=1

∣∣∣Rgt
i ∩ Rpred

i

∣∣∣
∣∣∣Rpred

i

∣∣∣
, ARR =

1

N

N∑

i=1

∣∣∣Rgt
i ∩ Rpred

i

∣∣∣
∣∣Rgt

i

∣∣ , F1 =
2 × APR × ARR

APR + ARR
,

where N is the number of images, Rgt
i is the grount-truth tumor region, and

Rpred
i is the predicted bounding box. A higher APR shows the higher overlapped

rate between the ROI and the true tumor region, while a higher ARR indicates
that ROI generated by the proposed method could be subject to the removal of
additional non-tumor regions.

In the experiments, we prepare our data as follows. For the benign class, 285
cases are randomly selected as the training set, 191 cases as the validation set
and 103 cases as the test set. For the malignant class, we sample 230 cases as
training set, 154 cases as the validation set and 80 cases as test set. In total,
we have 515 training cases, 345 validation cases and 183 test cases. It’s worth
noting that all experimental protocols were approved by Sichuan Academy of
Medical Sciences and Sichuan Provincial People’s Hospital.

4.2 Results

In this paper, we compared the results of the different methods (the method
in [4], Fast R-CNN, Faster R-CNN, YOLO, SSD) on the locating tumor ROIs in
breast ultrasound images. For the deep architecture, we employ a medium-sized
network VGG16 [20] and a small network ZFNet [21] for Fast R-CNN, Faster
R-CNN and SSD. YOLO uses its original Darknet model [8].

The comparison of these baseline is listed in Table 1, where the APRs, ARRs
and F1 scores of different methods are compared on three settings, i.e., benign

Table 1. Average precision rates (APR), average recall rates (ARR) and F1 scores of
different methods under three settings.

Method Benign Malignant Benign+Malignant

APR ARR F1 APR ARR F1 APR ARR F1

Fully auto ROI [4] 66.95 14.16 23.38 78.22 19.23 30.87 71.86 16.36 26.65

Fast R-CNN+ZFNet 87.25 65.47 74.81 89.02 53.54 66.86 91.11 62.60 74.21

Fast R-CNN+VGG16 90.17 66.39 76.47 71.00 40.83 51.84 88.70 61.97 72.96

Faster R-CNN+ZFNet 93.14 66.25 77.43 86.37 46.83 60.73 92.42 62.23 74.38

Faster R-CNN+VGG16 93.01 67.08 77.95 90.36 52.05 66.05 92.37 62.54 74.58

YOLO 95.59 68.85 80.05 96.46 57.73 72.23 96.81 65.83 78.37

SSD300+ZFNet 97.20 70.56 81.76 96.44 54.91 69.97 96.89 67.23 79.38

SSD300+VGG16 96.03 69.76 80.82 97.56 58.96 73.50 96.42 66.70 78.85

SSD500+ZFNet 95.98 70.04 80.98 94.22 54.90 69.38 95.09 65.06 77.26

SSD500+VGG16 94.58 69.57 80.17 94.67 55.82 70.23 96.42 66.70 78.85
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images only, malignant images only and both benign + malignant images. We
can clearly observe that the CNN based methods perform much better than the
method in [4]. Also, SSD300 in general achieves good results than other CNN
based methods, which shows SSD300 is more suitable for the tumor detection
task in this work. It is worth noting that SSD300 is better than SSD500 in
all three settings by using either ZFNet or VGG16. The reason is as follows.
SSD300 resizes images into 300×300, while SSD500 makes the size as 500×500.
The region candidates in SSD300 cover a relatively larger area than those in
SSD500. Since the tumor region takes a good portion in an image, SSD300
is able to better capture the region, which thus leads to better performance.
Furthermore, SSD300+ZFNet is better than SSD300+VGG16 under the benign
setting, but worse under the malignant setting. This interesting observation can
be explained based on the model complexity of ZFNet and VGG16. Specifically,
although ZFNet is a small neural network, it can well handle the easier case
(i.e., benign), but is a bit underfitting for the harder case (i.e., malignant). In
contrast, the larger VGG16 model is good at dealing with malignant tumors,
while getting overfitting for the benign ones.

We also plot the resultant bounding boxes predicted by different methods for
four tumor cases in Fig. 1.

5 Conclusion and Future Work

In this paper, we have mainly studied the existing state-of-the-art CNN based
methods for tumor detection in breast ultrasound images. Due to the lack of
publicly available dataset, we have collected a new one consisting of both benign
and malignant cases, which are carefully annotated by experienced clinicians.
Through comprehensive experiments, we find that SSD300 achieves the best
performance in terms of APR, ARR and F1 score.

Currently in our work, we only detected the tumor regions by using bounding
boxes. In the future, we will conduct further investigation on the automatic
segmentation of tumor areas.
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Abstract. Automatic detection of liver lesions in CT images poses a
great challenge for researchers. In this work we present a deep learn-
ing approach that models explicitly the variability within the non-
lesion class, based on prior knowledge of the data, to support an auto-
mated lesion detection system. A multi-class convolutional neural net-
work (CNN) is proposed to categorize input image patches into sub-
categories of boundary and interior patches, the decisions of which are
fused to reach a binary lesion vs non-lesion decision. For validation of our
system, we use CT images of 132 livers and 498 lesions. Our approach
shows highly improved detection results that outperform the state-of-
the-art fully convolutional network. Automated computerized tools, as
shown in this work, have the potential in the future to support the radi-
ologists towards improved detection.

Keywords: Liver lesion · Detection · Convolutional neural network ·
Patch-based system · Computer-aided detection

1 Introduction

Liver cancer is one of the predominant cancer types, accounting for more than
600,000 deaths each year. The number of liver tumors diagnosed throughout the
world is increasing at an alarming rate. Early diagnosis and treatment is the
most useful way to reduce cancer deaths. Computed tomography (CT) images
are widely used for the detection and diagnosis of liver lesions. Manual detection
is a time-consuming task which requires the radiologist to search through a 3D
CT scan. Thus, there is an interest and need for automated analysis tools to
assist clinicians in the detection of liver metastases in CT examinations.
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Automatic liver lesion detection is a very challenging, clinically relevant task
due to the substantial lesion appearance variation within and between patients
(in size, shape, texture, contrast enhancement). In detection, both small and
large lesions are weighed similarly. This is in contrast with a segmentation task
that can miss small lesions and still get a high score.

This research problem has attracted much attention in recent years. The
MICCAI 2008 Grand Challenge [3] provided a good overview of possible
approaches mainly for segmentation. The winner of the challenge [6] used the
AdaBoost classifier to separate liver lesions from normal liver tissue based on
several local image features. In more recent works, deep learning [4,5,7] was
applied for liver lesion detection using fully convolutional networks (FCN) [1,2].
The FCN system presented in [1] showed high detection results with TPR of
88% and 0.74 FP per liver.

(a) (b)

Fig. 1. (a) Liver patch examples: lesion (blue), normal-interior (red) and normal-
boundary (yellow); (b) Patch size 20 × 20 [I] and patch size 50 × 50 [II]. Top row:
lesion boundary patch examples; Bottom row: liver boundary patch examples. (Color
figure online)

A deep learning approach provides a highly non-linear data representation
of a given feature x, denoted by h(x). However, at the final softmax layer, the
decision is a linear function of h (it is exactly a logistic regression classifier).
Thus, even in the most sophisticated neural network, the normal or lesion binary
decision is performed by a linear classifier that is applied to h(x). In many cases
the data associated with each label is not homogeneous and is organized in
clusters which have different characteristics and appearance. For example, the
non-lesion patches might look different given that they either located in the liver
interior or in the liver boundary. In such cases a linear decision provided by the
soft-max layer is not capable to handle the complex class structure.

The novelty of this study is to model the solution to the task and divide
the data to sub-categories correctly with specific medical task expertise. We
demonstrate this idea by modeling the intra-class variability of the non-lesion
category using a Multi-class patch-based CNN system that allocates several net-
work classes for a single medical decision. This small modification of the standard
network architecture, provides a mean for modeling the within-class variability,
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yields a significant improvement over state-of-the-art results. Comparisons were
done with state-of-the-art patch-based CNN as well as FCN. A description of
the proposed architecture is presented in Sect. 2. Experiments and results are
shown in Sect. 3, followed by concluding remarks in Sect. 4.

2 Multi-class Patch-Based CNN System

We propose a system for lesion detection, which is based on localized patch
classification into lesion vs non-lesion categories. Patches are an important rep-
resentation to address the data limitation challenge, critical for modeling small
and rare events such as lesions. Figure 1a shows examples of lesion patches,
including lesion-boundary patches (shown blue zoomed-in), as well as patches
from the non-lesion category, which include both normal-interior patches (red)
and normal-boundary patches (yellow). As can be seen in Fig. 1b[I], liver bound-
ary and lesion boundary areas may look alike and are difficult to distinguish
when using small patches. When using a larger size window, a clearer distinc-
tion between the two categories is possible, as seen in Fig. 1b[II]. This motivated
us to use two different scales (patch-sizes) within the proposed system to capture
both the local fine details and the more global spatial information.

We note that the normal-interior patches and the normal-boundary patches
have a distinct appearance, yet both comprise the non-lesion category. We there-
fore propose a solution that is aware of this intra-class variability and allocates a
different label (with different soft-max parameters) for the interior and boundary
patches. Since eventually we are only interested in lesion/non-lesion decision, at
test time we merge the non-lesion classes by summing-up their probabilities into
a single probability of a non-lesion.

2.1 Patch Extraction

Patches are extracted from 2D liver CT scans with an expert marking for the
lesions. The liver area can be segmented automatically or by an expert. The
patches are labeled with their corresponding class k∈ {lesion, normal-interior,
normal-boundary}, automatically, according to their relative position to the
boundary. The patches are extracted around each pixel in two fields-of-view
(FOV) of size 20 × 20 pixels and 50 × 50 pixels. The patches contain localized
information as well as spatial context. All patches are resized to 32 × 32 pixels
to fit the input image size of our multi-class CNN architecture.

The amount of patches in the normal-interior class is much larger than the
number of patches in other classes. Therefore, the patches are sampled ran-
domly to balance the training set. Data augmentation is applied to enrich the
lesion class by flipping {right,left} and rotating in [5, 130, 300] angles. Patches
are sampled with overlap using a 2-pixel step size between patch centers.

All patches are normalized as follows: during training, the mean liver inten-
sity was calculated on the training set: Imean = 1

N

∑
j p(xj , yj) where N is the

number of pixels in the liver area. During the testing phase, in order to obtain
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uniform mean liver intensity in all livers, we shifted the patches intensities such
that each test liver will have a mean intensity value equal Imean (mean liver
intensity of training set).

2.2 System Architecture

We propose a multi-class patch-based CNN, as shown in Fig. 2. The architecture
of the network consists of 4 convolutional (conv.) layers and 3 pooling layers
(one max-pooling and two avg-pooling). Each conv. layer is followed by a ReLU
activation function. The network has approx. 0.15 million parameters.

Fig. 2. The Parallel multi-class CNN architecture: combining multi-class (to handle
within class variability) and multi-scale (to handle inter-class similarity).

Our system receives input patches in two FOVs around each pixel. The scaled
patches are analyzed in parallel using two different networks that are late fused in
the last fully-connected layer. The last layer is a softmax classifier that calculates
the probabilities of the patch (which correspond to the probabilities of the center
pixel) for each class. The probabilities are retrieved using multinomial logistic
regression:

p(y = k|x) =
exp(Sk)∑
j exp(Sj)

(1)

where k is the class label, Sk = wT
k h(x) + bk is the score or the unnormalized

log probability of class k given the non-linear representation h(x).
At the testing stage, the lesion detection map is generated for the interior

area of the liver by replacing each pixel with its corresponding patch probability
for the lesion category. All normal sub-category probabilities are summarized
into one non-lesion class probability:

pnon-lesion = pnormal-boundary + pnormal-interior (2)
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We threshold the lesion detection probability map to obtain a binary detection
map. Herein, we term the network described above as the Parallel multi-class
CNN.

We also implemented another multi-class approach which is based on hierar-
chical binary-class CNNs. It is implemented by splitting the three category classi-
fication task into two steps. The first step generates a map of lesion candidates by
using binary classification of lesion and non-lesion areas (‘lesion detector’). The
second step performs false-positive reduction using a binary-class CNN which
is trained to classify between lesion and non-lesion using only normal patches
located at the liver boundary and lesion patches located anywhere in the liver.
This CNN is applied to the lesion candidates which were obtained from the out-
put of the first step. We implemented the lesion detector using a binary-class
CNN.

2.3 Training Protocol

In order to train our multi-class CNN we minimize the cross-entropy loss:

Li = − log p(yi|xi) = −(S(yi) − log
∑

j

exp(Sj)), L =
1
N

N∑

i=1

Li (3)

where yi is the ground truth label of input xi and S(yi) is its corresponding
score. The CNN was trained using 140,000 patches for each class. The networks
were trained on a NVIDIA GeForce GTX 980 Ti GPU and implemented using
MatConvNet deep learning framework [8]. We tried two initialization scenarios
for the parameters of the conv. layers: one using random Gaussian distribu-
tions (“trained from scratch”) and one using transfer learning from the Cifar-10
dataset (“fine-tuned” system). When performing transfer learning, initialization
of each channel is pretrained on Cifar-10 dataset separately and the joint fully-
connected layers are initialized randomly. For random initialization (training
from scratch) we use learning rate of 0.0001 for the first 30 epochs and decreas-
ing by 1/10 each 10 epochs with total of 50 epochs. Weights are initialized
randomly and updated using mini-batches of 128 examples and stochastic gra-
dient descent optimization. Weight decay was chosen to be 0.0001 with momen-
tum of 0.9. When using transfer learning, convolution layers are initialized with
Cifar-10 pre-trained network and learning rate is set to zero. The two last joint
fully-connected layers are initialized randomly with learning rate of 1.

3 Experiments and Results

We evaluated our multi-class CNN system on a liver metastases dataset from
Sheba Medical Center. Cases were acquired between 2009 and 2014 using differ-
ent CT scanners with 0.71–1.17 mm pixel spacing and 1.25–5.0 mm slice thick-
ness. Cases were collected with approval of the institutions Institutional Review
Board. The dataset includes 132 2D liver CT scans with overall of 498 metastases
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in various shapes, contrast and sizes (5.0–121.0 mm) where each liver contains
one or multiple (1–10) lesions. Cases were selected and marked by an expert
radiologist. Images were resized to a fixed pixel spacing of 0.71 mm.

3.1 Comparison to State-of-the-Art

We first evaluated our proposed approach on the relatively small dataset which
was used in [1] for comparison purposes. This dataset includes 20 patients and
contains 43 CT liver scans with overall of 68 metastases, where each liver contains
1–3 lesions. Evaluation was performed with 3-fold cross-validation with case
separation at the patient level.

Table 1 shows detection performance comparison of our multi-class system
to alternative architectures. We compared our system to the classical detection
approach which uses only two classes, lesion and normal tissue, implemented with
a binary-class CNN. Results show that our Multi-class approach achieves higher
detection performance than using a binary-class CNN. Moreover, our proposed
system improves over the state-of-the-art FCN system (which was presented
in MICCAI 2016 Workshop [1]). Note that the 3-slice FCN includes also two
neighboring slices which we did not use in our implementation.

Table 1. Lesion detection performance evaluation: 43 liver dataset; comparison to
state-of-the-art [1].

Method TPR FPC

Parallel multi-class CNN 98.4% 1.0

Hierarchical multi-class CNN 98.4% 0.9

Binary-class CNN 95.2% 1.0

FCN (3 slices) [1] 88.0% 0.74

FCN [1] 85.0% 1.1

We note that we obtained comparable results for the hierarchical and parallel
multi-class CNNs. The advantage of the parallel scheme is that there is only a
single network we need to train.

Detection results can be seen in Fig. 3. The information retained from the sub-
categories improves the detection performance and the robustness of the system
as compared to the binary-class implementation. It reduces the false-positives in
the normal tissue mainly at the liver boundary but also in the interior area of
the liver.
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Fig. 3. Examples of lesion detection results. First row: Parallel multi-class CNN. Sec-
ond row: Binary-class CNN. TP marked in green, FP in red and FN in blue. (Color
figure online)

3.2 Detection Performance Evaluation

We next evaluated the proposed method on a larger dataset that extended the
first to include additional variability overall, from (institution name withheld).
Evaluation was performed on the 132 livers with 2-fold cross-validation. Table 2
shows comparison results of our proposed method to other CNN-based systems.
Detection results are shown for the entire dataset, as well as for a subset of
the larger lesions >10 mm, which are the ones mostly recorded by the radiolo-
gists and require immediate care. When applied to all lesion sizes, our proposed
method resulted in 85.9% TPR and 1.9 FP per liver (FPC) while the binary-class
CNN resulted in 80% TPR with 2.8 FPC.

Table 2. Lesion detection performance evaluation: 132 liver dataset.

Method All lesion sizes lesions >10mm

TPR FPC TPR FPC

Parallel multi-class CNN 85.9% 1.9 93.0% 1.5

Hierarchical multi-class CNN 86.8% 1.9 91.8% 1.5

Binary-class CNN 80.0% 2.8 70.0% 1.9

Our multi-class hierarchical approach resulted in similar performance of
86.8% TPR with 1.9 FPC. Using transfer learning for this task (see Sect. 2.2)
was not as successful as training from scratch (obtaining 82.8% TPR with 2.54
FPC when applied on all lesion sizes). The detection performance is higher when
excluding small lesions (<10 mm), with 93.0% TPR and 1.5 FPC using our par-
allel multi-class system and 91.8% TPR with 1.56 FPC using our Hierarchical
approach. Figure 4 shows detection examples, demonstrating the ability of our
system to detect a variety of lesion sizes. We emphasize that the only difference
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Fig. 4. Examples of lesion detection results showing the variability in lesions size,
location and shape. TP marked in green, FP in red and FN in blue. (Color figure
online)

between the binary-class and the multi-class networks shown in Table 2 is the
multi-class description of the non-lesion patches at the final softmax layer of the
multi-class network. As can be seen from Table 2, this small network architecture
difference yields a huge performance difference.

4 Conclusions

We presented a multi-class patch-based CNN architecture for liver lesion detec-
tion in CT images. Our method takes into account the variability of the normal
liver tissue and the spatial information retrieved using different scales of view.
We showed that separating the inhomogeneous normal class to sub-categories
improves detection performance as compared to a binary-class implementation.
Our approach outperformed the state-of-the-art method which is based on a
fully convolutional network. In future work we plan to focus on the lesion class
and explore its separation into a dual category: lesion interior and lesion bound-
ary classes, towards improved lesion segmentation. Our approach may generalize
to additional medical detection applications. Automated computerized tools, as
shown in this work, have the potential in the future to support the radiologists
towards improved detection.
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Abstract. This paper adapts the joint label fusion (JLF) multi-atlas
image segmentation algorithm to the problem of multiple sclerosis (MS)
lesion segmentation in multi-modal MRI. Conventionally, JLF requires
a set of atlas images to be co-registered to the target image using
deformable registration. However, given the variable spatial distribution
of lesions in the brain, whole-brain deformable registration is unlikely to
line up lesions between atlases and the target image. As a solution, we
propose to first pre-segment the target image using an intensity regres-
sion based technique, yielding a set of “candidate” lesions. Each “candi-
date” lesion is then matched to a set of similar lesions in the atlas based
on location and size; and deformable registration and JLF are applied
at the level of the “candidate” lesion. The approach is evaluated on a
dataset of 74 subjects with MS and shown to improve Dice similarity
coefficient with reference manual segmentation by 12% over intensity
regression technique.

1 Introduction

Multiple sclerosis (MS) is a degenerative disease of the central nervous system
in which the axonal myelin sheath is damaged due to an autoimmune reaction.
There is no cure for MS; however, early detection and tracking of the lesions
play a vital part in the clinical management of the disease. The burden of the
disease (volume of lesions) and the number of lesions in the brain are important
metrics in tracking disease and the efficacy of therap.

Manual segmentation of MS lesions is costly and suffers from low reliability
due to differences between experts [6]. Consequently, automatic segmentation of
lesions using multiple MRI modalities is the preferred approach to quantifying
lesion burden. Automatic segmentation of lesions is complicated by variability
in the shape, size and position of MS lesions and the differences in the apparent
extent of lesions across different MRI modalities. Many techniques for automatic
MS lesion segmentation have been proposed and evaluated, as reviewed in [8].
c© Springer International Publishing AG 2017
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The largest class of techniques performs statistical inference on image inten-
sity using unsupervised or supervised approaches, and frequently incorporating
spatial priors such as Markov random fields; examples include [4,6,11–14].

Recently, patch-based multi-atlas segmentation techniques have been applied
to MS lesion segmentation with considerable success [5,9,10]. These methods use
large libraries of patches extracted from expert-annotated atlases to match can-
didate patches in the target image. The advantage of this approach is that it
incorporates anatomical context into the segmentation decision: the decision to
assign a voxel a label of lesion or non-lesion is based not only on voxel inten-
sity characteristics but on the intensity and texture of the surrounding region.
However, a limitation is that they are restrictive in terms of the transformations
that atlas patches may undergo when matching the target image. For example,
the atlas and the target image may contain a periventricular lesion of similar
appearance, but if the ventricle is thin in the atlas and enlarged in the target,
the patch similarity metric may be low. Allowing atlas patches to deform, as is
proposed in this paper, may improve the segmentation of the target lesion.

Multi-atlas label fusion (MALF) is an approach that a set of expert-labeled
atlas images are matched to the target image – typically using non-linear regis-
tration – and segmentations from deformed atlas images are fused into a consen-
sus segmentation of the target image [7]. Effective label fusion techniques weigh
atlases based on local intensity similarity to the target image [7]. In particular,
joint label fusion (JLF) assigns spatially varying atlas weights in a way that
accounts for error correlations between pairs of atlases, achieving excellent per-
formance in brain structure segmentation [15]. However, conventional MALF is
ill-suited for MS lesion segmentation since whole-brain registration is unlikely to
match MS lesions between individuals due to variability in lesion location and
extent. In this paper, we adapt JLF to MS lesion segmentation by performing
non-linear registration on a regional, rather than whole-brain level. The approach
consists of three components:

1. Pre-segmentation of the target image into “candidate” lesions using the
OASIS intensity-based technique [13]. For each “candidate” lesion, a region
of interest (ROI) is extracted from the MRI. Very large candidate lesions are
broken up into smaller overlapping ROIs.

2. Selection of a subset of anatomically similar atlas ROIs for each target “can-
didate” lesion ROI.

3. Non-linear registration of atlas ROIs to the target ROI and JLF-based seg-
mentation of the target ROI.

These components are detailed below and an evaluation of the proposed app-
roach is carried out in a set of 74 multicontrast MRI scans of patients with MS.
The results indicate that regional JLF segmentation improves accuracy relative
to manual segmentation over intensity-based segmentation alone. To our knowl-
edge, this is the first application of MALF with deformable registration to the
problem of MS lesion segmentation.
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2 Materials and Methods

2.1 Imaging Data

Analysis is carried out in a cross-sectional dataset of 3 tesla T1-weighted and
FLAIR MRI acquired in 94 MS patients. The generation of OASIS also uses T2-
weighted and PD-weighted. MS lesions were segmented manually in all images by
a trained expert with 10+ years of experience. MRI volumes were skull stripped
via the algorithm SPECTRE and then bias field corrected using the N3 algo-
rithm. FLAIR volumes were rigidly aligned to the T1-weighted MRI. Figure 1
shows an example of the image data.

Fig. 1. T1-weighted and FLAIR MRI (axial plane) for one subject, with expert seg-
mentation superimposed in the bottom row.

2.2 Lesion Pre-segmentation

The goal of pre-segmentation is to produce a pool of “candidate” lesions that
includes most of the “true” lesions in the target image but may also include false
positives. In subsequent steps, MALF is used to refine this segmentation, with the
goal of refining lesion boundaries and removing false positives. Pre-segmentation
is produced using the OASIS approach, which fits a logistic regression model to
the normalized T1 and FLAIR MRI intensity of lesion and non-lesion voxels in
the training set [13]. Thresholding this probability map at a given level ρ gives
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a binary segmentation of the lesions. Sweeney et al. report the sensitivity and
specificity of OASIS for different levels of ρ [13]. OASIS was trained on 20 of the
94 subjects’ data and applied to the remaining 74 subjects. Based on previous
experience with the OASIS method and visual inspection of the data in the
training set, we adopted a threshold of ρ = 0.25. The 20-subject OASIS training
data was not used in subsequent experiments.

Candidate lesions are obtained by splitting the binary OASIS output into
connected components. Components smaller than 3 voxels were discarded. Addi-
tionally, we broke up large components into separate sub-components, because
in some subjects periventricular lesions yield a single connected component and
in others they yield several connected components, and the matching strategy
discussed below is based on global morphological features (size, location) that
match up poorly between contiguous and split candidate periventricular lesions.
To split connected components we use the SLIC supervoxel algorithm [1] with
the approximate supervoxel size of 1

10 of the image dimensions. Each candidate
lesion (or sub-lesion) was then padded by 10 voxels on each side, yielding a set
of rectilinear ROIs. Corresponding ROIs were extracted from the FLAIR and
T1-weighted images. We refer to these as “lesion ROIs”.

2.3 MALF Approach and Cross-Validation Overview

The dataset of 74 subjects processed by OASIS was randomly split into five
training/testing folds with 59 training image and 15 test images (the fifth fold
had 60 training and 14 testing images). All subsequent analysis was repeated
independently for each fold. Each candidate lesion ROI in each training image
of each fold was processed in parallel. For each such “target” lesion ROI, we first
select a set of 50 suitable lesion ROIs from the training subset (Atlas Selection)
and then perform MALF segmentation using these 50 lesion ROIs as atlases.
These steps are described below.

2.4 Atlas Selection

Atlas selection is necessary because the total number of lesion ROIs in the train-
ing subset is too large (order of 1000) and most lesion ROIs are contextually
different from a given target lesion. To perform atlas selection, we compare
each OASIS-extracted candidate lesion in the training subset to target candi-
date lesion based on three factors: (1) lesion size (after splitting by SLIC algo-
rithm); (2) distance from the lesion center to the lateral ventricles; (3) location
of the closest point on the lateral ventricles. To compute (2) and (3), we register
each subject’s T1-weighted MRI to a whole-brain template, and warp a surface
mesh representation of the ventricles defined in template space into the subject’s
space. For each lesion i, we then find a vertex on the ventricle surface xi

v that is
closest to the lesion center xi

c. Given two lesions i and j, we compute the triple
of similarity metrics,



142 M. Dong et al.

⎧
⎨

⎩

∣
∣
∣
∣log

(
Vi

Vj

)∣
∣
∣
∣ ,

∣
∣
∣
∣
∣
∣

∣
∣xi

v − xi
c

∣
∣

3
√

V TB
i − V LV

i

−
∣
∣xj

v − xj
c

∣
∣

3

√
V TB
j − V LV

j

∣
∣
∣
∣
∣
∣
, dv(xi

v,x
j
v)

⎫
⎬

⎭
,

where Vi is the volume of the lesion i, V TB
i is the total brain volume, V LV
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v) is the geodesic distance between ven-

tricle mesh vertices corresponding to xi
v and xj

v in template space. Lesions are
considered contextually similar if the three metrics are low. Since the metrics
have different units, for a given target lesion i, we rank all training lesions sepa-
rately on each metric, resulting in a triple of rank values. The 50 training lesions
with the smallest mean rank value are “atlases” for segmenting the target lesion.

The above atlas selection strategy is motivated by the importance of the
ventricles in providing context for MS lesion segmentation. Many MS lesions are
adjacent to the ventricles (periventricular) and the shape, size and appearance
is likely to be similar at the same location relative to the ventricles. The ranking
strategy may select atlases that not very similar to the target ROI, but the JLF
method will weight less on them.

2.5 Joint Label Fusion

Given a target lesion ROI and a set of 50 training lesion ROIs obtained by
atlas selection, the standard JLF approach is employed. Each atlas lesion ROI
is registered to the target ROI using a greedy diffeomorphic registration method
[3]. Registration is initialized by matching the centers of mass of the candidate
lesions between the atlas and target ROIs. Deformable registration maximizes
the local cross-correlation metric with a 9× 9× 9 voxel window and is regularized
by Gaussian smoothing of the deformation field at each iteration, as in [2]. The
T1-weighted and FLAIR images contribute equally to the metric computation.

After registration, the atlas FLAIR and T1-weighted ROIs are resliced into
the target image space. The corresponding expert segmentation is also warped
to target image space (although some atlas ROIs may be false positives and
contain empty expert segmentations). The warped images and segmentations
are input to the JLF algorithm [15], which produces a spatially varying voting
weight map wi(x) for each atlas i. To compute the weights {wi} at a voxel x, the
total expected segmentation error is minimized with respect to {wi}. The total
segmentation error is expressed as pairwise expected joint segmentation errors
for all pairs of atlases {i, j}. The latter is approximated by considering patch
similarities between atlases i and j and the target image, as described in [15].

3 Results

Segmentation was run on a multi-CPU cluster with 30 parallel processes each
using two cores. For 15-image test set, segmentation required about an hour,
with most time spent in deformable registration and JLF computation.

Figure 2 shows an example of the segmentation by the proposed method,
compared with segmentation by OASIS alone and expert manual segmentation.
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Fig. 2. An example dataset with segmentations produced by OASIS, the proposed
method (OASIS+JLF) and manually.

Table 1 reports, for each cross-validation fold, the mean Dice similarity coefficient
between the expert segmentation and the automatic segmentations obtained by
OASIS alone and the proposed method, with OASIS threshold ρ = 0.25. The
mean Dice coefficient across all five folds was 0.52 ± 0.22 for OASIS and 0.59 ±
0.19 for the proposed method, corresponding to roughly 12% improvement. The
95% confidence interval on the improvement in Dice coefficient is (0.04, 0.09),
i.e., the improvement is highly significant.

Table 1. The Dice similarity coefficients of the five-fold cross-validation for JLF against
the expert segmentations and the corresponding OASIS values on each fold with OASIS
threshold ρ = 0.25.

Technique Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

OASIS 0.5160 0.5479 0.5147 0.4855 0.5467 0.5218

JLF 0.5827 0.6221 0.5770 0.5433 0.6062 0.5860

We also observed that segmentation performance varies by the total lesion
burden in each subject (i.e., total volume of all expert-segmented lesions).
Figure 3 shows a scatter plot of OASIS vs. JLF Dice coefficient for different
testing subjects, with the total lesion burden indicated for each subject. Overall,
Dice coefficient is higher in subjects with greater lesion burden. The improve-
ment from JLF is more notable in subjects with lesser lesion burden, suggesting
that JLF improves the segmentation of small lesions more than large lesions.

Modulating the OASIS threshold ρ can increase the number and size of can-
didate lesions. Values of ρ below 0.25 should result in over-segmentation of the
lesions, on average; and it is possible that by removing false positives, JLF would
perform better for smaller values of ρ than the optimal OASIS threshold. Figure 4
plots the Dice coefficient for OASIS and JLF for different values of ρ between 0.2
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Fig. 3. Comparison of JLF vs OASIS
segmentation accuracy by total lesion
burden.

Fig. 4. Comparison of Dice similarity
coefficients for OASIS and JLF meth-
ods using different OASIS thresholds ρ.
Average Dice coefficient across all five
folds is plotted.

and 0.3. However, surprisingly, there is no apparent advantage to using smaller
threshold values for JLF accuracy.

4 Conclusion

We proposed an approach for MS lesion segmentation that behaves as a wrap-
per around an intensity-based lesion segmentation technique (OASIS) and per-
forms multi-atlas segmentation separately for each candidate lesion ROI iden-
tified by the intensity-based technique. The approach is the first application of
the joint label fusion algorithm to MS lesion segmentation. The addition of the
JLF improves MS lesion segmentation performance by 12% over OASIS, which
is considered a state of the art technique. Future work will focus on using other
approaches to generate candidate lesions, comparisons on grand challenge data,
and extensions to 4D lesion modeling.
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8. Lladó, X., Oliver, A., Cabezas, M., Freixenet, J., Vilanova, J.C., Quiles, A., Valls,
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M., Ilg, R., Schmid, V.J., Zimmer, C., Hemmer, B., Mühlau, M.: An automated
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Abstract. The current gold standard for interpreting patient tissue
samples is the visual inspection of whole–slide histopathology images
(WSIs) by pathologists. They generate a pathology report describing the
main findings relevant for diagnosis and treatment planning. Searching
for similar cases through repositories for differential diagnosis is often
not done due to a lack of efficient strategies for medical case–based
retrieval. A patch–based multimodal retrieval strategy that retrieves sim-
ilar pathology cases from a large data set fusing both visual and text
information is explained in this paper. By fine–tuning a deep convo-
lutional neural network an automatic representation is obtained for the
visual content of weakly annotated WSIs (using only a global cancer score
and no manual annotations). The pathology text report is embedded
into a category vector of the pathology terms also in a non–supervised
approach. A publicly available data set of 267 prostate adenocarcinoma
cases with their WSIs and corresponding pathology reports was used to
train and evaluate each modality of the retrieval method. A MAP (Mean
Average Precision) of 0.54 was obtained with the multimodal method in
a previously unseen test set. The proposed retrieval system can help in
differential diagnosis of tissue samples and during the training of pathol-
ogists, exploiting the large amount of pathology data already existing
digital hospital repositories.

1 Introduction

Health professionals often take decisions based on previously acquired textbook
knowledge and their personal experience but rarely search for past cases to
reinforce their medical assessment. Retrieval systems are developed to better
exploit the large amount of digital medical data contained in hospital repositories
for clinical decision support [1]. In retrieval systems, a query can be performed
using text information, images or both (multimodal), resulting in a list of relevant
cases ranked according to their similarity with the query case [2]. The integration
of these systems into the clinical workflow remains a challenge [3].

In [4], a multimodal radiology case–based retrieval benchmark was reviewed.
The cases included radiologic RadLex terms automatically extracted from radi-
ology reports and 3D patient scans. Image retrieval systems have also been pro-
posed in the growing field of digital pathology [5–7]. Nevertheless, multimodal
c© Springer International Publishing AG 2017
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case–based retrieval strategies for histopathology are rare, even though they
could be a helpful tool for pathologists during training and to perform differ-
ential diagnosis. To our knowledge, only one multimodal retrieval system fusing
histopathology image patches and semantics exists [5]. However, this method did
not explore full pathology reports (since it was based on manual data annota-
tions) and included only isolated image patches.

Whole Slide Image (WSI) scanning started to be applied at a large scale only
recently, and a full digitization of pathology departments in hospitals will result
in large scale digital WSI repositories [8]. Pathologists usually select candidate
regions of interest (ROIs) in the WSIs at a low resolution and proceed to evaluate
the selected regions in high–power fields. Currently available retrieval systems
for histopathology are designed with either small tissue arrays, ROIs from WSIs
or individual patches as visual input. To the best of our knowledge, there are no
methods in literature proposed for WSI retrieval.

Hand–crafted visual features, such as texture and architecture features, are
commonly used to represent images in retrieval systems [9]. In the past few
years, deep learning (DL) methods have obtained a better performance for visual
content description in comparison with traditional hand–crafted features in this
regard [10–12]. In this paper, we propose a content–based retrieval system that
uses the output features from a fine–tuned DL model, trained to classify cancer
gradings in histopathology images, to represent the visual features from WSIs.
An unsupervised analysis of the pathology report content was used to train the
DL model and not time–consuming manual annotations from pathologists in
the WSIs. This enables the reuse of already existing pathology cases for a more
integral comparison of new cases to previously assessed ones. A search can in
this case be a full case with WSIs and a report or only one of the two, giving
several options for browsing.

2 Methods

2.1 Data Set

The Cancer Genome Atlas (TCGA) contains a large collection of digital pathol-
ogy WSIs and their corresponding pathology reports [13]1. Cases with prostate
adenocarcinoma (PRAD), the second most common cancer in men, are avail-
able [14]. The Gleason grading is the standard evaluation of histopathologi-
cal samples from prostate cancer patients [15]. 267 cases (WSIs and pathology
reports) from prostatectomies of patients with prostate adenocarcinoma (PRAD)
were included in this work, aiming at having balanced Gleason scores. The Glea-
son score (6–10) given to each WSI was manually obtained from the reports. The
number of cases for each Gleason score were: G6 35, G7 87, G8 53, G9 83, G10
9. The cases were randomly divided as follows: 162 WSIs for training, 54 WSIs
for validation and 51 WSIs for testing (approx. 60%–20%–20%). The pathology

1 http://cancergenome.nih.gov/, as of 11 June 2017.

http://cancergenome.nih.gov/
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report length and content varied depending on the pathology center that gen-
erated them and the patient case. The hematoxylin and eosin stained WSIs do
not contain any manual annotations (Fig. 1).

Gleason score 10 
whole-slide image patches 

Gleason score 6 
whole-slide image patches 

benign malignant 

Fig. 1. Sample prostatectomy whole–slide images and patches. Far right: WSI and
patches corresponding to the lowest Gleason score, G6. Far left: WSI and patches with
the highest Gleason score, G10.

2.2 Whole–Slide Image Representation

A Convolutional Neural Network (CNN) is a specialized type of neural network
that can learn abstract and complex representations of visual data using a large
number of training samples [16]. Manually annotating WSIs in order to obtain
exclusively tumor patches from the WSIs, is a time–consuming and challenging
task. In [17], it was shown that a CNN can be successfully trained to classify
WSIs for prostate cancer grading with a fully automatic sampling of weakly
labeled patches i.e. only using the global Gleason score. A subset of 5000 random
patches were initially sampled per WSI. The number of cells in tissue increases
in the presence of tumors, which results in dark blue areas in the WSI due to
the eosin staining of cell nuclei. The sampled patches were subsequently ranked
according to the energy of the blue–ratio (BR), which is a feature that can be
closely related to cell density. Only the top 2000 patches from each WSI are
considered for characterizing the tissue samples.

To encode the visual features of every WSI, the CNN features generated from
the fine–tuned deep CNN network for prostate Gleason grading classification
were extracted from the patches. The network architecture for pathology images
presented in [17] was fine–tuned to classify five Gleason scores (6–10) instead of
high vs. low cancer grading. In the end, 1024 dimensional feature vectors from
the layer previous to the class probability output were extracted from each patch
with the trained network.

Let Sa, Sb be the sets of selected RGB patches from two WSI at 40× reso-
lution, in our setup |Sa| = |Sb| = 2000. Let f(p) ∈ R

1024 be the function that
takes a patch as input and computes the forward pass through the deep learning
network up to the previous–to–last layer. For two patches pk ∈ Sa, pl ∈ Sb we
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have vk = f(pk) and vl = f(pl), as the two CNN patch codes (or embeddings).
The similarity between two patches is computed using the cosine similarity:

simCNN (vk, vl) =
∑1024

i=1 vk
i vl

i√∑1024
i=1 vk

i

√∑1024
i=1 vl

i

The visual similarity between the two slides is calculated adding all the similar-
ities of the individual patches from each WSI:

simV(Sa, Sb) =
2000∑

k=1

2000∑

l=1

simCNN (vk, vl)

The cosine similarity is then computed between the vectors of a test query image
and the vectors corresponding to each of the training WSIs. This results in a
2000 × 2000 similarity matrix for each pair of cases, which is added up to obtain
a final visual similarity score.

2.3 Pathology Report Representation

Pathology reports contain information not only from the tissue samples but also
from the surgical procedure performed to remove the tissue. This means that
information not present in the histopathology images, such as tumor invasion
to other body parts, is reported as well. Five criteria of diagnostic relevance
for PRAD cases selected by a pathologist in addition to the Gleason score were
extracted manually from the pathology reports. The selected criteria include the
TNM classification of malignant tumors, with T (0–4) corresponding to the size
of the tumor and invasion to nearby tissue and N (0–1) was marked as positive
if lymph nodes were involved. Additionally, if the case showed angiolymphatic
invasion of the tumor, perineural invasion or if the seminal vesicles were involved
then each of these criteria was represented as 1, or 0 if absent. In cases with
missing data, the lowest score was given to the corresponding criteria as their
absence from the report could have signaled that it was not present during the
interpretation. In the experiments, the Gleason score was excluded from the
input criteria for the retrieval system.

Extracting the data from the reports automatically is not straightforward,
as many regular expressions need to be formulated. For example, it is common
to encounter the same grading written as Gleason Score: 9, Primary pattern:
5, Secondary pattern: 4, score= 5+4, ... This restricts the use of bag of words
models because the pathology reports are not standardized. A more general
approach was implemented to make use of unsupervised distributed models for
embedding text content. We propose the representation of the text content from
each report, embeddeding an n–dimensional space using an unsupervised distri-
bution to a paragraph vector model of doc2vec [18]. Doc2vec is a suitable model
for variable–length documents, as is the case of the pathology reports in the
data set that were embedded into a 100 dimensional space. The text similarity
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was computed with the cosine similarity between the case embeddings and the
similarity to the query cases was ranked according to this score. The proposed
strategy can also be used for different types of tissue and different pathologies.

2.4 Multimodal Fusion

Let Rv, Rt, be the ranking for each query case, sorting the visual and text sim-
ilarities. The generated late multimodal fusion rank R ranks the most relevant
cases for the query by weighting the visual and textual similarities:

R = (1 − α)Rv + αRt

In Fig. 2 a flowchart of the full approach is shown.

Fig. 2. Flowchart of the full multimodal approach. The pathology reports are embed-
ded using doc2vec. The WSIs are represented as CNN–based features from automat-
ically selected patches. A late fusion is performed between the similarity scores from
both queries, obtaining the final multimodal ranking.

3 Experimental Results

The four retrieval methods for pathology cases presented in this paper were
tested and compared. A retrieved case was considered relevant if the Gleason
score from the case matched the query. To evalute the results, retrieval metrics
from the NIST (US National Institute of Standards and Technology) evaluation
procedures used in the Text Retrieval Conference (TREC) [19] were consid-
ered. The following five evaluation metrics were selected: mean average preci-
sion (MAP), geometric mean average precision (GM-MAP), binary preference
(bpref), precision after 10 cases retrieved (P10) and precision after 30 cases
retrieved (P30). The performance of each method is shown in Fig. 3.
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The method WS CNN Codes used only visual features obtained from a fine–
tuned CNN for Gleason grading classification, with 2000 selected patches at a
40× resolution per WSI. The model was trained using the Caffe framework and
took 15 h to train with 2 NVIDIA Tesla K80 GPUs.

For text representation we tested two approaches, the first (RepCateg) com-
puted a ranking based on the similarity of the report categories manually
extracted from the pathologist reports, without including the Gleason score.
The second text approach (Rep2Vec) was based on the unsupervised distrib-
uted representation of doc2vec [18]. Including or exculding information from the
report regarding the Gleason grading was unsupervised. The gensim library was
used with the default parameters and a total vocabulary of 3730 words, obtain-
ing 100 dimensional vectors for each report. The ranking was generated using
the cosine similarity between the doc2vec report representation.

The proposed multimodal approach (Multimodal) retrieved similar
histopathology cases fusing the ranking generated by the deep CNN represen-
tation of the WSIs and the ranking from the embedded pathology report text
using doc2vec. 10 values of α were explored in the range of [0, 1]. The best scores
were obtained by the multimodal approach with α = 0.3.

(a) Evaluation results of four tested case–based re-
trieval approaches.
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Fig. 3. Results from the text, visual and multimodal retrieval approaches.

4 Discussions

A multimodal case–based retrieval approach for histopathology cases based on
visual features obtained with deep learning is presented in this paper with an
automatic description of pathology reports. The main contributions are:

– This is the first multimodal histopathology strategy fusing visual features
from WSIs and text embeddings of pathology reports, resulting in a novel
case–based retrieval system.

– The method uses visual deep learning features for retrieval, representing
WSIs, generated with a CNN trained to classify cancer gradings.

– The visual CNN model was trained with weakly annotated data (global
Gleason scores from WSIs, without any manual annotations), and the free–
form text embeddings obtained with an unsupervised approach.
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The retrieval methods were trained, evaluated and compared on a publicly avail-
able test set. The visual–only approach (WS CNN codes) had better scores than
both of the two text–only approaches: RepCateg, using 5 report criteria man-
ually extracted and Rep2Vec, an unsupervised report to vector representation.
This could be the result of training the visual representation of the cases with
the 5 Gleason scores classes used to evaluate the relevance of the retrieved cases.
Moreover, there is an intensive similarity computation among the CNN featires
of the query case versus the remaining cases in the data set. When comparing
both text–only approaches, embedding full–text reports to a vector, Rep2Vec,
resulted in higher retrieval scores than RepCateg. Rep2Vec was able to better
mimic the defined relevance of the retrieved cases, mainly because the selected
criteria by a pathologist in the reports are only indirectly linked to the Glea-
son score. These criteria are focused on the surrounding organs and metastasic
events which can be considered for another relevance measure of the cases.

The methods were trained and tested with images from several scanners
and with no staining normalization. Adding such a normalization can improve
performance. The TCGA data and the manual categories extracted from the
reports are available for a fully reproducible setup of the proposed strategy. The
multimodal fusion tested in this paper is simple as this is the very first example of
retrieval fusing real medical reports and WSIs. More advanced fusion techniques
can be implemented in a straightforward manner.

Most of the computations can be performed offline and a full case query can
be performed in less than 8 s once the patches are extracted. The unsupervised
retrieval system strategy was successful in obtaining cases with the same cancer
grading even if these scores were not explicitly used in the text representations.
The proposed retrieval system could be implemented, with minor modifications,
for other organs and diseases. The task of assigning cancer gradings is strongly
subjective. The cases retrieved could be better exploited to harmonize pathology
case assessment and as a valuable resource for pathologists in training without
depending on expensive and time consuming manual annotations.
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Abstract. In this work we introduce sparse representation techniques
for classification of high-dimensional imaging patterns into healthy and
diseased states. We also propose a spatial block decomposition method-
ology that is used for training an ensemble of classifiers to address irreg-
ularities of the approximation problem. We first apply this framework
to classification of bone radiography images for osteoporosis diagnosis.
The second application domain is separation of breast lesions into benign
and malignant. These are challenging classification problems because the
imaging patterns are typically characterized by high Bayes error rate
in the original space. To evaluate the classification performance we use
cross-validation techniques. We also compare our sparse-based classifi-
cation with state-of-the-art texture-based classification techniques. Our
results indicate that decomposition into patches addresses difficulties
caused by ill-posedness and improves original sparse classification.

1 Introduction

In the recent years, the development of accurate and reproducible computer-
aided methods for timely diagnosis and prognosis of diseases has gained signif-
icant interest [2,10]. These techniques have the potential to have a significant
impact on public health [7]. Early prediction can reduce the mortality rate from
lethal diseases. In this paper, we introduce a system to separate healthy from
diseased subjects using a block-based technique for sparse representation and
classification. We test the predictive capability of our system for osteoporosis
diagnosis and breast lesion characterization.

Osteoporosis is an age-related systemic bone skeletal disorder characterized
by low bone mass and bone structure deterioration that results in increased
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bone fragility and higher fracture risk [2]. Therefore, early diagnosis can effec-
tively predict fracture risk and prevent the disease. Furthermore, breast cancer
is one of the leading causes of death among women [7]. If the breast cancer
can be diagnosed early, when it is small and has not spread, it can be treated
successfully. Hence early detection and characterization of breast lesions is very
important for preventing deaths. Mammograms can help to detect and diagnose
breast cancer at an early stage. Automated diagnosis in both applications is very
challenging since scans of healthy and diseased subjects show little or no visual
differences, and their density histograms have significant overlap.

Sparse representation methods have been applied to a wide range of fields
including coding, feature extraction and classification, superresolution, and reg-
ularization of inverse problems [8,11–13]. In addition, sparse representation may
provide insight into significant patterns that form object category prototypes.
Sparse representation techniques describe a vector sample by sparse linear com-
binations of atoms from an overcomplete dictionary of prototypes. If these rep-
resentations are sparse enough, then the representations reveal characteristic
imaging patterns of disease and can be used for object recognition and clas-
sification. The authors in [11] proposed the sparse representation classification
(SRC) method to recognize 2,414 frontal-face images of 38 individuals of Yale B
Database and over 4,000 frontal images for 126 individuals of AR Database. The
recognition rates were above 90% for both databases. The SRC approach with
dictionary learning has also been applied to classification of pulmonary patterns
of diffuse lung diseases [13]. 1161 volumes of interest were used for classification
and this method yielded high class separation. Other approaches such as WGSR
and Modular SRC methods [12] propose to partition the image into blocks to
address the occurrence of occlusions in face recognition.

In this work, we introduce our block decomposition-based classification
method that uses sparse representations of imaging patterns. This technique
helps to overcome numerical optimization difficulties such as convergence to
infeasible solutions. In addition, the introduction of a classifier ensemble app-
roach aims to improve classification accuracy. We validated the proposed tech-
nique for separation of healthy from osteoporotic subjects femur bone radi-
ographs with an accuracy of 96.6% and separation of benign from malignant
lesions in mammograms with accuracy of 82.2%. We also performed comparisons
with the traditional SRC technique and observed improvements of 12.1% in bone
characterization and 17.8% in breast lesion characterization. Additional cross-
validation experiments indicate that our patch-based sparse analysis method
outperforms texture-based state-of-the-art classifiers. Therefore, this technique
may be applicable to computer-aided diagnosis.

2 Methods

2.1 Sparse Representation and Classification

Sparse Representation techniques construct a dictionary from labeled training
samples to calculate a linear representation of a test sample. This representation
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can be used to make a decision for the class of the test sample. Assuming that
a dataset has k distinct classes, s samples, and for the ith class there are si

samples, so that s =
∑

i si, we define a dictionary matrix M from the training
set as M = [v1,1, v1,2, ..., vk,sk

], where M ∈ R
l×s, and vi,h is a column vector

for the hth sample from ith class. In image classification applications, a p × q
grayscale image forms a vector v ∈ R

l, l = p × q using lexicographical ordering.
A new test sample y ∈ R

l, can be represented by a linear combination of
samples y =

∑k
i=1 βi,1vi,1 + βi,2vi,2 + · · · + βi,si

vi,si
, where βi,h ∈ R are scalar

coefficients. Hence, the test sample y can be rewritten as:

y = Mx0 ∈ R
l. (1)

where x0 is a sparse solution. If there are sufficient training samples, the com-
ponents of x0 are equal to zero except for the components corresponding to the
ith class. Then x0 = [0, 0, ..., βi,1, βi,2, ..., βi,si

, 0, 0, ..., 0]T ∈ R
s.

In [6], it was proved that whenever y = Mx for some x, if there are less than
l/2 nonzero entries in x, x is the unique sparse solution: x̂0 = x. Finding the
sparse solution of an underdetermined system of linear equations is an NP-hard
problem [1]. The authors in [3–5] supported that if the solution x0 is sparse
enough, it is equal to the solution x̂ of the l1-minimization problem:

(l1) : x̂ = arg min ||x||1 s.t. Mx = y. (2)

In sparse representation classification we define a characteristic function δi :
R

s → R
s that has nonzero entries, only if x is associated with class i. Then

the function ŷi = Mδi(x̂), represents the given sample y using components from
class i only. To classify y, we minimize the residual between y and ŷi [11]: ωi =
arg mini ri(y) .= arg mini ||y − Mδi(x̂)||2.

We utilize the interior point solver method to solve the problem in (2), formu-
lated as a linear programming (LP) problem. An LP problem is a constrained
optimization problem that seeks the minimizer of a linear objective function
subject to linear constraints [9].

2.2 Block-Based Sparse Representation for Classification

Spatial Decomposition into Blocks. The images that we use for lesion char-
acterization are subject to intra-class variability, that cause the samples to depart
from the true class prototype. Furthermore, the high dimensionality of the fea-
ture space complicates the optimization procedure and may lead to infeasible
solutions. We propose a block-based sparse representation classifier to overcome
these problems.

Figure 1 outlines the main steps of our approach. We partition each training
image into non-overlapping blocks with size m×n each. Therefore, each image is
represented as I = [B1, B2, ..., BNB ], where NB is the number of image blocks.
The dictionary Dj , where j = 1, 2, ..., NB is corresponding to the same position
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of the patch for each image. The dictionary Dj for the block Bj can be written
as follows for all s images:

Dj = [bvj
1,1, bv

j
1,2, . . . , bv

j
k,sk

], (3)

where bvj
i,h is column block vector for the hth sample, ith class, jth block Bj .

Fig. 1. Main stages of the block-based sparse representation-based classifier.

Block-Based Classification. We propose to solve an ensemble of sparse rep-
resentation classification problems to classify each test sample. Given a test
sample yj obtained from the jth block, we approximate the solution xj by linear
programming:

x̂j = arg min ||xj ||1, subject to, Djx = yj , (4)

where j = 1, 2, ..., NB. We then assign the test sample yj to the class that
produces the minimum approximation error as in SRC. So yj is classified into
ωj

i , where i = 1, . . . , k is the class index.

Voting Decision Function. The class decision for each image is completed
by voting over the ensemble of NB block-based classifiers. The predicted class
label ω̂ is given by

ω̂ = arg max
i

pr(ωi|x̂), (5)

where x̂ is the composite extracted feature from the test sample given by the
solution of (4), and pr(ωi|x̂) =

∑NB
j nωj

i
/NB is the likelihood for classifying x̂

into class ωi, and nωj
i

is an indicator function such that nωj
i

= 1, only if the j-th
classifier made the decision ωi, otherwise it is 0.
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3 Results and Discussion

Here we describe the main experiments that we performed to validate the clas-
sification performance of our system. The application domain is computer-aided
disease diagnosis. We concentrate on bone characterization and breast lesion
characterization. In both applications there is significant overlap between the
intensity distributions of healthy and diseased subjects.

We measured the classification performance of our block-based sparse rep-
resentation approach by calculating the true positive rate (TPR), true nega-
tive rate (TNR), classification accuracy (ACC), and area under the ROC curve
(AUC) in leave-one-out cross-validation experiments. We also performed the
same classification experiments for the conventional SRC. Finally, we employed
the texture-based classification techniques described in [14] for further com-
parisons. We computed texture features based on wavelet decomposition, dis-
crete Fourier and Cosine transforms, fractal dimension, statistical co-occurrence
indices, and structural texture descriptors. Next, we employed feature selection
methods (FSM) using a correlation-based functional criterion optimized using
a best-first search strategy (CFS-BF), or genetic algorithm optimization (CFS-
GA). In the classification stage we employed Naive Bayes (NB), Bayes Network
(BN), Random Forests (RF), and Bagging models for diagnosis.

In our first experiment we aimed to separate healthy from osteoporotic sub-
jects. We used the TCB challenge dataset, which includes annotated images of
58 healthy and 58 osteoporotic subjects that display a region of interest with
size 400 × 400 pixels in the trabecular bone. The TCB challenge data is publicly
available online from http://www.univ-orleans.fr/i3mto/data. We employed the
SRC method to classify the whole ROIs after undersampling by variable fac-
tors to reduce the occurrence of numerical difficulties such as infeasible solutions
mainly caused by linearly dependent vectors that yielded different classes. In the
first two rows in Table 1 we display results from the top performing experiments
yielding a classification accuracy of 84.5% for resampling of 1/20 corresponding
to a dimensionality of 400 in the feature domain. Higher degree of downsampling
produces shorter and more numerically tractable feature dimensionality, but it
also diffuses the textural information.

Next, we validated the performance of the proposed approach that operates
on image patches. We varied the block sizes from 100 × 100 pixels to 5 × 5
pixels to investigate the effect of this variable on classification performance. We
display our cross-validation results in Table 1. The best performing classification
of 96.6% was achieved for a block size of 8 × 8 pixels that resulted in 2500
classifiers. This implies a 12.1% improvement over the traditional SRC approach.
These results suggest that the block-based approach finds more sparse solutions
and improves the classifier performance.

The TCB data set is very difficult to classify therefore the solution obtained
by the original SRC technique may not always be sparse. To obtain a sparse solu-
tion we need to construct dictionary matrices with linearly independent vectors
and to reduce the number of unknowns. The block-based analysis aims to render

http://www.univ-orleans.fr/i3mto/data
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Table 1. Classification performance for bone characterization using sparse represen-
tation. The block size in first two rows implies no block decomposition (as in original
SRC).

Size of block TPR (%) TNR (%) ACC (%) AUC (%)

400 × 400 (undersamp. 1/4) 84.5 67.2 75.9 74.6

400 × 400 (undersamp. 1/20) 87.9 81.0 84.5 81.9

100 × 100 46.6 100 73.3 71.2

50 × 50 51.7 100 75.9 74.3

25 × 25 69.0 100 85.0 80.7

20 × 20 72.4 100 86.2 83.7

10 × 10 87.9 100 94.0 93.3

8 × 8 93.1 100 96.6 96.9

5 × 5 100 82.8 91.4 92.8

this inverse problem more numerically tractable by reducing the dimensionality
of samples and by introducing an ensemble meta-algorithm for decision making.

In Table 2 we report the classification rates produced by texture-based clas-
sifiers in leave-one-out cross-validation experiments. We note that the top per-
formance is achieved when using CFS-BF followed by classification by a Bayes
network BN. The classification accuracy is 79.3% and the area under the curve is
81%. Both rates are lower than those produced by the proposed method. In our
second experiment we validated the classification of suspicious breast lesions into
benign and malignant classes. We obtained data from the public Mammographic
Image Analysis Society (MIAS) database to test our method. The mammograms
have a resolution of 200 micron pixel edge and have been clipped/padded so that

Table 2. Classification performance for bone characterization using texture-based clas-
sification techniques.

FSM CL TPR (%) TNR (%) ACC (%) AUC (%) Dimension

CFS-GA NB 50.0 62.1 56.0 57.6 137

BN 77.6 67.2 72.4 76.7

RF 65.5 60.3 62.9 65.0

Bagging 53.4 63.8 58.6 62.5

CFS-BF NB 72.4 60.3 66.4 71.6 6 (29, 129,
166, 561,
599, 636)

BN 82.8 75.9 79.3 81.0

RF 74.1 69.0 71.6 76.2

Bagging 69.0 72.4 70.7 76.0
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every image is 1024 pixels × 1024 pixels. In this experiment we used the centroid
and radius information for each lesion to determine a square ROI of the same
size for each scan.

We then applied our block-based classification system and cross-validated its
performance as in our first experiment. In Table 3 we report the results produced
by use of ROI size equal to 64 × 64 pixels that resulted in 36 benign and 37
malignant lesions that contain the ROI. In this table the first row corresponds
to the use of a single block that is equivalent to the traditional SRC method.
Our system achieved a classification accuracy of 82.2% for block size of 16 × 16.
We note an improvement of 17.8 % over the conventional SRC method indi-
cating that the block decomposition yields more accurate representation of the
test samples than SRC. The voting decision function contributes to reduction
of potential prediction variance. Furthermore, in Table 4 we report the perfor-
mance of texture-based classifiers. The highest classification accuracy of 76.6%
is achieved using CFS-BF and Bayes Network. CFS-BF and RF classification
yielded the top area under ROC curve at 79.2%. CFS-BF combined with RF
or Bagging techniques produced the same TPR, TNR and ACC measurements.
Overall, the proposed block-based sparse classifier outperforms texture-based
classification.

Table 3. Classification performance for breast lesion characterization using sparse
representation (ROI size: 64 × 64). The block size in first row implies no block decom-
position (as in original SRC).

Size of block TPR (%) TNR (%) ACC (%) AUC (%)

64 × 64 56.8 72.2 64.4 64.0

32 × 32 56.8 88.9 72.6 73.5

16 × 16 70.3 94.4 82.2 82.9

8 × 8 62.2 94.4 78.1 76.3

4 × 4 67.6 55.6 61.6 58.9

Table 4. Classification performance for breast lesion characterization using texture-
based classification techniques (ROI size: 60 × 60).

FSM CL TPR (%) TNR (%) ACC (%) AUC (%) Dimension

CFS-GA NB 67.5 35.1 51.9 55.8 54

BN 77.5 64.9 71.4 59.9

RF 70.0 59.5 64.9 63.9

Bagging 60.0 56.8 58.4 65.0

CFS-BF NB 77.5 45.9 62.3 70.6 4 (119, 143,
322, 397)

BN 77.5 75.7 76.6 71.0

RF 75.0 73.0 74.0 79.2

Bagging 75.0 73.0 74.0 77.1
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4 Conclusion

We proposed a block-based sparse representation and classification approach. We
validated the classification performance for two disease diagnostics applications;
bone characterization in digital radiographs and breast lesion characterization
in mammograms. We compared our results with the performance of the con-
ventional SRC method and with various texture-based non-sparse classification
techniques. The proposed method produced classification rates of 96.6% for bone
characterization and 82.2% for breast lesion characterization. Our results indi-
cate that the introduction of patch analysis yields more accurate solutions than
the compared methods. The proposed system has the potential to contribute to
identification of individuals with higher risk of disease and for early intervention.
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