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Abstract In this paper, we demonstrate how electroencephalograph (EEG) signals
can be used to analyze people’s mental states while engaging in cognitive processes
during IS decision-making. We design an experiment in which participants are
required to complete several cognitive tasks with various cognitive demands and
under various stress levels. We collect their EEG signals as they perform the tasks
and analyze those signals to infer their mental state (e.g., relaxation level and stress
level) based on their EEG signal power.
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1 Introduction

In this paper, we investigate the properties of EEG signals when people engage in
cognitive processes during Information Systems (IS) decision-making.
Decision-making is fundamental to most human behaviors [1], and can be classified
into four categories: intuitive, empirical, heuristic and rational. Among them,
rational decision-making is more easily defined and explained with cognitive
psychology, and will be the focus of this paper. Rational decision-making is a
method where the brain develops a criterion of functions representing potential
choices and processing available information to find the good choice among others
[1]. The two subcategories for rational decisions are static and dynamic. Static
decisions are made based on statistically viable information such as loss and gain,
cost–benefit, practicality and functionality. Dynamic decisions are based on alter-
natives, present situation and past knowledge of similar situations. In this paper, we
focus on the EEG signals analysis of rational decision-making.

This paper discusses how rational decision-making can be analyzed with help
from EEG (electroencephalogram) signal power variance generated by humans who
are making those decisions. EEG has been traditionally used as a diagnostic
application for diseases such as Epilepsy [2], and more recently has become a
popular tool for NeuroIS studies (e.g., [3, 4]), and decision-making research (e.g.,
[5, 6]). In this paper, we measure and analyze the EEG signals from decision
makers in an experimental setting, and investigate what the EEG signals can tell us
about those decision-makers’ behaviors.

The human brain releases EEG signals in various frequency bands, usually
categorized into five bands: Alpha (8–13 Hz), Beta (14–31 Hz), Delta (4 Hz or
less), Gamma (greater than 32 Hz) and Theta (4–7.5 Hz). Among them, Alpha,
Beta, Delta and Theta are most widely used for EEG signal analysis, especially for
various cognitive functions. These will also be the EEG signals we focus on in this
paper.

Neuroscience literature has established the various and distinct roles for each of
these EEG signal bands in human cognitive functions [7]. It has been shown in
studies that in subjects who are awake, Delta waves can relate to cognitive con-
centration. Several experiments have demonstrated that there is a clear relation
between cognitive concentration and increased activity in the Delta frequency band
[8]. Theta is an indicator of stress. The study presented in [9] shows that EEG
Theta/Beta ratio as a potential biomarker for effects of stress on attention. The study
confirmed a negative relation between Theta/Beta ratio and stress-induced atten-
tional control [9]. Statistical analyses in literature have also shown a positive
relationship between stress and theta power spectrum density value [10]. Beta
waves are associated with cognitive processing. Activity in this frequency band will
increase when there is cognitive challenge and increased demand for a cognitive
task [11]. According to [12], increasing Beta activity has been identified with high
concentration and attention. Alpha waves are well known for their correlation with
a relaxed state. During a resting period, the Alpha frequency band is seen to have
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maximum magnitude. The magnitude of Alpha waves is higher when eyes are
closed compared to when eyes are open [11]. According to [13] decreasing Alpha
activity is consistent with higher cognitive demand in decision making. In addition,
cognitive activity typically suppresses alpha and elevates beta activity [14], and
frontal theta signal may serve as an index for mental effort [14, 15].

We conduct an experiment in which participants are asked to perform tasks of
various levels of cognitive processing (data entry vs. application programming)
under various levels of stress (no time limit for the task vs. with time limit).
Through the analysis of the processed EEG signals from the participants, we
replicate the results that Alpha band signal power is higher when the task requires
lower cognitive demands, and Theta band signal power is higher when the task
involves higher stress. Surprisingly, our data also indicate that when performing a
high-cognitive-demand task, the participants’ Alpha signal power is higher when
the stress level is higher. We look into the experiment design and propose some
possible explanations for this surprising observation.

The rest of the paper is organized as follows: in Sect. 2, we discuss the exper-
iment design and signal processing techniques, followed by data analyses and
discussion in Sect. 3. We conclude in Sect. 4.

2 Experiment

2.1 Method

We recruited 25 participants to participate in our experiments; 15 were male and the
other 10 were female. All participants were between the ages of 18 and 34 years old
and were graduate or undergraduate students in the Department of Computer
Science and Engineering in University of North Texas. The EEG recordings of 5 of
the participants are incomplete and for this research we used the EEG signals from
the other 20 participants. Participants were asked to perform 6 tasks in total. EEG
signals generated from four of the tasks are used in this study (the other two tasks
are not relevant to our research questions). For Task 1 participants were asked to
perform data entry (login to a database system and update the student records using
the information provided). Task 2 was a similar data entry task (update the same
student information but with twice the number of student records) but with a time
limit. Task 3 was to perform a computer programming exercise (complete a coding
project for designing a calculator, using a language they felt most comfortable with)
and Task 4 was a similar programming exercise (complete the same calculator
application but using a different language) with a time limit. All four tasks are
typical representatives for IS activities that require rational cognitive decision
making in completing those tasks. The experiments were conducted in a dedicated
EEG laboratory, and the room was set up to keep the same environmental condi-
tions for all tasks and all participants. The experiments were conducted for each
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participant separately and at different times during the day. The participants were
seated in a comfortable chair. After the relevant areas on the face and mastoids were
cleaned, the Geodesic Sensor Net (GSN) was positioned on the participant’s head.
The examiner checked for signal impedances, applying additional saline solution
and readjusting sensors as needed to ensure minimal impedance and optimal signal
quality between each electrode and the participant’s scalp. The examiner then
explains the task and what the participant had to do step-by-step using a predefined
script located on the computer desktop. The participants were given five minutes to
read the script before each task and to feel comfortable with the test environment.

The second and fourth tasks were conducted at the end of the work day, so that
the participants would have attended classes, exams or labs during the day prior to
coming to participate in the experiment. And the experiment was time constrained
to induce further stress among the participants.

To measure the participants’ brain activities, we used EGI’s Geodesic EEG
System 400 [16], with a 256-channel HydroCel GSN. We used a sampling rate of
1000 Hz. The device has been widely adopted by the clinical and research com-
munity because of its ease of use, comfort, and ability to produce high-quality and
high-resolution data.

2.2 EEG Recording

EEG recordings from all sensors were used for analysis. Signal analysis was per-
formed in LabVIEW. Recordings were analyzed in 100 s segments. Recordings
were processed to remove artifacts from muscle movements such as eye blinks.
A fast Fourier transform using hamming window with 50% overlap was used.
A digitized version of an analog signal is an approximation of the analog signal.
This signal analysis platform designed in LabVIEW decomposes the signal into the
approximated frequency component of the original signal. However, EEG is not a
stationary signal. During analysis the components change in frequency and
amplitude at every window as transient waveforms appear intermittently. Choosing
short window duration minimizes the effect of being non-stationary and generates a
smoother PSD plot [16]. In this case a window length of 1024 was used. The
overlap in this design is set to 50% which is half the window length. This means
each sample will make equal impact on the spectrum. The design was verified with
simulated EEG to confirm that design input meets design output. For verification
testing, 100 s of simulated EEG recording was used at 1000 Hz sampling rate. For
experimental recordings, signal power in frequency band activity of Delta (0.5–
4 Hz), Theta (4–7.5 Hz), Alpha (8–13 Hz) and Beta (14–26 Hz) were calculated.
Mean signal power of each frequency band for each recording (for each task, for
each participant) was computed. Ratios of these mean signal power values across
tasks were used for data analysis to draw conclusions.
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2.3 Workflow of the Design

Each EEG recording is uploaded into Read Biosignal VI in LabVIEW. The entire
design is placed inside a single while loop. This tool reads bio-signals block by
block. The block sizes are in seconds and they can vary depending on the length of
the EEG recording. In this case, the block size is set to 100 s. The loop stop
condition is wired with the End of File (EOF) terminal of the block. The loop stops
when it reaches the end of the uploaded EEG recording. The signal powers and
percentages are calculated for each loop and saved in the respective arrays for
Alpha, Beta, Theta and Delta. Each additional loop adds a new calculated value to
the array for the subsequent 100 s of recording until the end of the recording. The
mean values are calculated as the loops are iterated and the final mean values reflect
results for the entire recording. EEG FFT Spectrum VI is used to separate the
frequency bands (Alpha, Beta, Delta and Theta) from the raw signal. This VI
computes the single-sided power spectral density (PSD). The time series is then
divided into overlapping subcategories of signal elements. Periodograms of these
subcategories are then averaged to plot the PSD. For this design the VI returns the
PSD values in linear scale. Frequency bands for EEG are defined in the VI to be
extracted accordingly. An unbundling function is used to extract the elements. It
obtains the FFT spectrum as a cluster and creates terminals for respective frequency
bands for the measured value to be used independently. The signal power value
returned is the absolute value of power in each frequency band. The percentage of
each frequency band shows the distribution of power in respective frequency bands.
Signal power and percentage values for each iteration are saved in an n-dimensional
array. Each time the while loop runs and a new value results from EEG FFT
Spectrum VI, this function enters the value into its respective array. The feedback
node attached to its output to input stores data from one iteration to another.
Therefore, at the end of the final loop the array contains values from all iterations.
This array is an input to the Mean VI which then takes the values from all iterations
in consideration in order to compute the final mean value. The signal power mean
values and power distribution percentages are then recorded in a data sheet for all
the frequency bands for further analysis.

3 Results and Analyses

3.1 The Impact of Cognitive Demand and Stress Level

To investigate the impact of the tasks’ cognitive demand on brain signal power, we
calculate the Alpha/Beta ratio generated from the four tasks. We then perform a
paired t-test comparing the ratio for the data entry task vis-à-vis the ratio for the
application programming task. When the tasks are performed without a time limit,
the Alpha/Beta ratio is shown to be significantly higher for the data entry task than
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for the application programming task (see Pair 1a in Table 1). When the tasks are
performed with time limit, the ratio difference is not significant between the two
tasks (see Pair 1b in Table 1).

These results are aligned with the literature that Alpha signals are positively
related to relaxation. While engaging in a more cognitive demanding task, people
tend to be less relaxed, thus generating lower levels of Alpha signals. The lack of
statistical significance in the results from the time-constrained tasks seems to
suggest that the relaxation state is quite vulnerable to stress level.

To investigate the impact of stress level on the brain signal power, we calculate
the Theta/Beta ratio generated from the four tasks. We then perform a paired t-test
between the ratio when performing low stress tasks (in this case, the tasks with no
time constraint) vis-à-vis the ratio when performing high stress tasks (in this case,
the tasks with time limit). When the participants perform the application pro-
gramming task, their Theta/Beta ratio is shown to be significantly higher under time
constraint compared to without time constraint (see Pair 2a in Table 2). When they
perform the data entry task, the ratio difference is not significant (see Pair 2b in
Table 2).

These results are aligned with the literature that Theta signals are positively
related to stress level. While engaging in cognitive tasks with time constraints when
the participants are mentally/physically tired, they tend to experience higher stress
levels compared to engaging in tasks with no time constraints and when they are
relatively fresh, thus the participants generate higher levels of Theta signals. The
lack of statistical significance in the results from the data entry tasks seems to

Table 1 The paired t-test result for Alpha/Beta ratio between data entry and programming tasks
without time constraints and with time constraint

Pair 1a Mean Std.
Dev.

t df Sig.

A/B: data entry—programming (without time
limit)

0.24520 0.41985 2.612 19 0.017

Pair 1b Mean Std.
Dev.

t df Sig.

A/B: data entry—programming (with time
limit)

−0.15576 0.63030 −1.119 19 0.277

Table 2 The paired t-test result for Theta/Beta ratio between tasks without time constraint versus
with time constraint

Pair 2a Mean Std.
Dev.

t df Sig.

T/B: no time limit—time limit (programming
task)

−1.49532 2.63847 −2.535 19 0.020

Pair 2b Mean Std. Dev. t df Sig.

T/B: no time limit—time limit (data entry task) 0.36237 1.98533 0.816 19 0.424
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suggest that the low cognitive demand of the task may override the impacts from
the stress level induced by the time constraints.

One surprising result we obtain while comparing the Alpha/Beta ratio is that
when performing the programming task, the participants show significantly higher
Alpha/Beta ratio when there is a time constraint versus when there is no time
constraint (see Table 3).

This seems to suggest that for the programming task, the participants are more
relaxed (higher Alpha/Beta ratio) when there is a time constraint than when there is
no time constraint. One possible explanation to this counter-intuitive result is that in
our experiment, all participants are computer science students, who may be well
versed in creating applications in various programming languages. Thus the
required task (creating a calculator application) is an easy task for the participants.
Therefore, the time constraint did not impede their relaxation level. In addition, in
our experiment design, their time-constrained task is after their no-time-constrained
task, and they are the same task except that they need to use another programming
language in the time-constrained task, thus they are already familiar with the task
requirements, and as a result, they show a higher relaxation level for the second
implementation (the time-constrained task), perhaps their familiarity with the task
overrides the impact of their lower familiarity with the programming language.

4 Conclusion

In this paper, we demonstrate how EEG signals can be used to analyze people’s
mental states while engaging in cognitive processes during decision making. We
design an experiment in which participants are required to complete several cog-
nitive tasks with various cognitive demands and under various stress levels. We
collect their EEG signals during their task performance and analyze the signal to
infer their mental state such as relaxation level and stress level based on their EEG
signal power. We find that when people engage in decision-making cognitive
process, higher cognitive demand from the decision-making processes results in
lower Alpha/Beta signal ratio, which indicates a lower level of relaxation; and
higher stress level usually results in a higher Theta/Beta ratio. For future work, we
plan to refine our experiment and conduct cross-factor analyses of the impacts of
various factors that influence brain signals during decision-making cognitive
processes.

Table 3 The paired t-test result for Alpha/Beta ratio between programming tasks without time
constraint versus with time constraint

Pair 3 Mean Std.
Dev.

t df Sig.

A/B: no time limit—time limit
(programming task)

−0.33655 0.64671 −2.327 19 0.031
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