
On Two LZ78-style Grammars: Compression
Bounds and Compressed-Space Computation

Golnaz Badkobeh1, Travis Gagie2, Shunsuke Inenaga3, Tomasz Kociumaka4,
Dmitry Kosolobov5(B), and Simon J. Puglisi5

1 Department of Computer Science, University of Warwick, Coventry, England
g.badkobeh@warwick.ac.uk

2 CeBiB, EIT, Diego Portales University, Santiago, Chile
travis.gagie@mail.udp.cl

3 Department of Informatics, Kyushu University, Fukuoka, Japan
inenaga@inf.kyushu-u.ac.jp

4 Institute of Informatics, University of Warsaw, Warsaw, Poland
kociumaka@mimuw.edu.pl

5 Department of Computer Science, University of Helsinki, Helsinki, Finland
dkosolobov@mail.ru, puglisi@cs.helsinki.fi

Abstract. We investigate two closely related LZ78-based compression
schemes: LZMW (an old scheme by Miller and Wegman) and LZD
(a recent variant by Goto et al.). Both LZD and LZMW naturally pro-
duce a grammar for a string of length n; we show that the size of this
grammar can be larger than the size of the smallest grammar by a fac-

tor Ω(n
1
3) but is always within a factor O((n

logn
)
2
3). In addition, we

show that the standard algorithms using Θ(z) working space to con-
struct the LZD and LZMW parsings, where z is the size of the parsing,

work in Ω(n
5
4) time in the worst case. We then describe a new Las

Vegas LZD/LZMW parsing algorithm that uses O(z log n) space and
O(n + z log2 n) time w.h.p.

Keywords: LZMW · LZD · LZ78 · Compression · Smallest grammar

1 Introduction

The LZ78 parsing [18] is a classic dictionary compression technique, discovered
by Lempel and Ziv in 1978, that gained wide use during the 1990s in, for exam-
ple, the Unix compress tool and the GIF image format. Not written about until
much later was that LZ78 actually produces a representation of the input string
as a context-free grammar. In recent years, grammar compressors have garnered
immense interest, particularly in the context of compressed text indexing: it is now

G. Badkobeh—Supported by the Leverhulme Trust’s Early Career Scheme.
T. Kociumaka—Supported by Polish budget funds for science in 2013–2017 under
the ‘Diamond Grant’ program.
S.J. Puglisi—Supported by the Academy of Finland via grant 294143.

c© Springer International Publishing AG 2017
G. Fici et al. (Eds.): SPIRE 2017, LNCS 10508, pp. 51–67, 2017.
DOI: 10.1007/978-3-319-67428-5 5

52 G. Badkobeh et al.

possible to efficiently execute many operations directly on grammar-compressed
strings, without resorting to full decompression (e.g., see [3,4,6,7,10,16]).

A wide variety of grammar compressors are now known, many of them ana-
lyzed by Charikar et al. [5] in their study of the smallest grammar problem,
which is to compute the smallest context-free grammar that generates the input
string (and only this string). Charikar et al. show that this problem is NP-hard,
and further provide lower bounds on approximation ratios for many grammar
compressors. LZ78 is shown to approximate the smallest grammar particularly
poorly, and can be larger than the smallest grammar by a factor Ω(n

2
3 / log n)

(in [9] this bound was improved to Ω((n
log n)

2
3)), where n is the input length.

Our focus in this paper is on the LZD [8] and LZMW [14] grammar compres-
sion algorithms, two variants of LZ78 that usually outperform LZ78 in practice.
Despite their accepted empirical advantage over LZ78, no formal analysis of the
compression performance of LZD and LZMW in terms of the size of the small-
est grammar exists. This paper addresses that need. Moreover, we show that
the standard algorithms for computing LZD and LZMW have undesirable worst
case performance, and provide an alternative algorithm that runs in log-linear
randomized time. In particular the contributions of this article are as follows:

1. We show that the size of the grammar produced by LZD and LZMW can be
larger than the size of the smallest grammar by a factor Ω(n

1
3) but is always

within a factor O((n
log n)

2
3). To our knowledge these are the first non-trivial

bounds on compression performance known for these algorithms.
2. Space usage during compression is often a concern. For both LZD and LZMW,

parsing algorithms are known that use O(z) space, where z is the size of the
final parsing. We describe strings for which these algorithms require Ω(n

5
4)

time. (The only previous analysis is an O(n2/ log n) upper bound [8].)
3. We describe a Monte-Carlo parsing algorithm for LZD/LZMW that uses

a z-fast trie [2] and an AVL-grammar [15] to achieve O(z log n) space and
O(n + z log2 n) time for inputs over the integer alphabet {0, 1, . . . , nO(1)}.
This algorithm works in the streaming model and computes the parsing with
high probability. Using the Monte-Carlo solution, we obtain a Las Vegas algo-
rithm that, with high probability, works in the same space and time.

In what follows we provide formal definitions and examples of LZD and
LZMW parsings. Section 2 then establishes bounds for the approximation ratios
for the sizes of the LZD/LZMW grammars. In Sect. 3 we consider the time
efficiency of current space-efficient parsing schemes for LZD/LZMW. Section 4
provides an algorithm with significantly better (albeit randomized) performance.
Conclusions and reflections are offered in Sect. 5.

Preliminaries. We consider strings drawn from an alphabet Σ of size σ = |Σ|.
The empty string is denoted by ε. The ith letter of a string s is denoted by s[i]
for i such that 1 ≤ i ≤ |s|, and the substring of s that begins at position i and
ends at position j is denoted by s[i..j] for 1 ≤ i ≤ j ≤ |s|. Let s[i..j] = ε if j < i.
For any i, j, the set {k ∈ Z : i ≤ k ≤ j} (possibly empty) is denoted by [i..j].

On Two LZ78-style Grammars 53

For convenience, we assume that the last letter of the input string s is $,
where $ is a special delimiter letter that does not occur elsewhere in the string.

Definition 1. The LZD (LZ–Double) parsing [8] of a string s of length n is
the parsing s = p1p2 · · · pz such that, for i ∈ [1..z], pi = pi1pi2 where pi1 is
the longest prefix of s[k..n] and pi2 is the longest prefix of s[k + |pi1 |..n] with
pi1 , pi2 ∈ {p1, . . . , pi−1} ∪ Σ where k = |p1 · · · pi−1| + 1. We refer to the set
Σ ∪ ⋃

i∈[1..z]{pi} as the dictionary of LZD.

Definition 2. The LZMW (LZ–Miller–Wegman) parsing [14] of a string s of
length n is the parsing s = p1p2 · · · pz such that, for i ∈ [1..z], pi is the longest
prefix of s[k..n] with pi ∈ {pjpj+1 : 1 ≤ j ≤ i−2}∪Σ where k = |p1 · · · pi−1|+1.
We refer to the set

⋃
i∈[2..z]{pi−1pi} as the dictionary of LZMW.

Example. The LZD parsing of the string s = abbaababaaba$ is p1 = ab,
p2 = ba, p3 = abab, p4 = aab, and p5 = a$. This can be represented by
(a, b), (b, a), (1, 1), (a, 1), (a, $). The LZMW parsing of s is the following: p1 = a,
p2 = b, p3 = b, p4 = a, p5 = ab, p6 = ab, p7 = aab, p8 = a, and p9 = $. This can
be represented by (a, b, b, a, 1, 1, 4, a, $).

Notice that the LZD/LZMW parsing of string s can be seen as a grammar
that only generates s, with production rules of form pi → pjpk (j < i, k < i) or
pi → a (∈ Σ) for each phrase pi, and the start rule S → p1p2 · · · pz. The size of a
grammar is the total number of symbols in the right-hand side of the production
rules. Thus, the size of the LZD (resp., LZMW) grammar is only by a constant
factor larger than the number of phrases in the LZD (resp., LZMW) parsing.

2 Approximating the Smallest Grammar

The following theorem shows that, although LZD and LZMW have good com-
pression performance in practice on high-entropy strings, their performance on
low-entropy strings can be very poor.

Theorem 1. For arbitrarily large n, there are strings s of length n for which
the size of the grammars produced by the LZD and LZMW parsings is larger
than the size of the smallest grammar generating s by a factor Ω(n

1
3).

Proof. Our proof is inspired by [5, Sect. 6, C]. Let k ≥ 4 be an integer that
is a power of 2. We will construct a string s of length n = Θ(k3) that can
be encoded by a grammar of size O(k) = O(n

1
3), but for which the LZMW

parsing produces a grammar of size Ω(k2) = Ω(n
2
3). The input alphabet is

{a, b, c, d}; the letters c and d serve as separators. Denote δi = aibbak−i and
γi = bai a aib c ba ba2 ba3 · · · bai. The string s is as follows:

x = δkδk−1 δkδk−2 δkδk−3 · · · δkδk/2+1 δkak−1,

s = γ0γ1 · · · γk−1δ0dδ1d · · · δkd caa caa2a2 · · · ca2i−1a2i

a2i · · · ca k
2 −1a

k
2 a

k
2 dc x

k
2 .

54 G. Badkobeh et al.

We have |s| = Θ(k3). Consider the prefix γ0γ1 · · · γk−1 δ0dδ1d · · · dδkd, which
will ensure the strings δi are in the LZMW dictionary.

We will show by induction on i that each substring γi of the prefix
γ0γ1 · · · γk−1 is composed of the phrases bai, a, aib, cbaba2 · · · bai in the parsing
of the string s. It is trivial for i = 0. Suppose that i > 0 and the assertion
holds for all γi′ and i′ < i. It follows from the inductive hypothesis that bai is
the longest prefix of γi that is equal to a concatenation of two adjacent phrases
introduced before the starting position of γi. Hence, by the definition of LZMW,
the string γi starts with the phrase bai. In the same way we deduce that the
phrase bai is followed by the phrases a, aib, and cbaba2 · · · bai.

By an analogous inductive argument, one can show that each substring δid
of the substring δ0dδ1d · · · δkdc is composed of the phrases aib, bak−i, d. Since
the phrases aib and bak−i are adjacent, the LZMW dictionary now contains the
strings δi = aibbak−i for all i = 0, 1, . . . , k.

Similarly, the substring caacaa2a2 · · · ca2i−1a2i

a2i · · · ca k
2 −1a

k
2 a

k
2 dc is parsed

as c, a, a, ca, a2, a2, . . . , ca2i−1, a2i

, a2i

, . . . , ca
k
2 −1, a

k
2 , a

k
2 , dc. In what follows we

need only the string ak introduced to the dictionary by the pair of phrases a
k
2 .

Finally, consider the substring x
k
2 . Observe that the first occurrence

of x is parsed in (almost) the way it is written, i.e., it is parsed as
δk, δk−1, δk, δk−2, . . . , δk, δk/2+1, δk. But the last phrase is ak instead of ak−1.
In other words, the parsing of the second occurrence of x starts from the second
position of x and, therefore, the first phrases of this parsing are as follows:

δk−1, δk−2, δk−1, δk−3, . . . , δk−1, δk/2, δk−1.

Again, the last phrase is ak and, hence, the parsing of the third occurrence of x
starts with the third position of x, and so on.

The LZMW parsing of s, therefore, consists of Ω(k2) phrases and the size of
the LZMW grammar is Ω(k2). But there is a grammar of size O(k) producing s:

S → Γ0Γ1 · · · Γk−1Δ0dΔ1d · · · ΔkdcA2cA5cA11 · · · cAk/2+k−1dcXk/2,
A0 → ε, B0 → c, Ai → Ai−1a, Bi → Bi−1bAi for i ∈ [1..2k],
Γi → bA2i+1bBi, Δi → AibbAk−i for i ∈ [0..k],
X → ΔkΔk−1 ΔkΔk−2 · · · ΔkΔk/2+1 ΔkAk−1.

Using similar ideas we can describe a troublesome string for the LZD scheme:

s = (a2 c2 a3 c3 · · · akck)(bb abb a2bb a3 · · · bbak−1bb)(δ0d2δ1d3 · · · δkdk+2)x
k
2 .

As above, the size of the grammar corresponding to the LZD parsing of s
is Ω(k2) whereas the size of the smallest grammar is O(k); hence, the result
follows.

S → A2C2A3C3 · · · AkCkbbA1bbA2 · · · bbAk−1bbΔ0D2Δ1D3 · · · ΔkDk+2X
k/2,

A0 → ε, C0 → ε,D0 → ε, Ai → Ai−1a,Ci → Ci−1c,Di → Di−1d for i ∈ [1..k+2],
Δi → AibbAk−i for i ∈ [0..k], X → ΔkΔk−1 ΔkΔk−2 · · · ΔkΔk/2+1 ΔkAk−1.

The analysis is similar to the above but simpler, so, we omit it. To additionally
verify the correctness of both constructions, we conducted experiments on small
k and, indeed, observed the described behavior; the code can be found in [1]. ��

On Two LZ78-style Grammars 55

We can also show that the upper bound for the approximation ratio of the
LZ78 parsing given in [5] also applies to the LZD and LZMW parsings. For this,
we will use the following known results.

Lemma 2 ([5]). If there is a grammar of size m generating a given string,
then this string contains at most mk distinct substrings of length k.

Lemma 3 ([8]). All phrases in the LZD parsing of a given string are distinct.

Lemma 4. Let p1p2 · · · pz be the LZMW parsing of a given string. Then, for
any i ∈ [2..z] and j ∈ [i+2..z], we have pi−1pi 	= pj−1pj.

Proof. If pi−1pi = pj−1pj for i < j − 1, then, by the definition of LZMW, the
phrase pj−1 either is equal to pi−1pi or contains pi−1pi as a prefix, which is a
contradiction. ��

Now we are ready to show an upper bound on the approximation ratio of the
LZD and LZMW parsings.

Theorem 5. For all strings s of length n, the size of the grammar produced by
the LZD/LZMW parsing is larger than the size of the smallest grammar gener-
ating s by at most a factor O((n/ log n)2/3).

Proof. The theorem can be shown by an analogous way as for the upper bound of
the LZ78 parsing against the smallest grammar [5] (which is especially straight-
forward for LZD due to Lemma 3), but we provide a full proof for completeness.

Let us consider LZMW. Suppose that s is a string of length n and m∗ is
the size of the smallest grammar generating s. Let p1, p2, . . . , pz be the LZMW
parsing of s. It suffices to evaluate the number z of phrases since the total size
of the grammar produced by LZMW is only by a constant factor larger than z.

Consider the multiset S = {p1p2, p2p3, . . . , pz−1pz} (recall that a multiset can
contain an element more than one time). Let pi1pi1+1, pi2pi2+1, . . . , piz−1piz−1+1

be a sequence of all strings from S sorted in increasing order of their lengths
(again, some strings may occur more than once in the sequence). We partition
the sequence by grouping the first 2 · m∗ strings, then the next 2 · 2m∗ strings,
the next 2 · 3m∗ strings, and so forth. Let r be the minimal integer satisfying
2(1m∗ + 2m∗ + · · · + rm∗ + (r + 1)m∗) > z. This implies that z = O(r2m∗).

By Lemma 4, any string has at most two occurrences in the multiset S.
Also, it follows from Lemma 2 that s contains at most km∗ distinct substrings
of length k. Thus, for any k ≥ 1, there are at most 2km∗ strings from S that
generate substrings of length k. This implies that each string in the kth group
generates a substring of length at least k. Hence, we have that

2n ≥ |pi1pi1+1|+ |pi2pi2+1|+ · · ·+ |piz−1piz−1+1| ≥ 2(12m∗ +22m∗ + · · ·+ r2m∗),

which implies that r = O((n/m∗)1/3). By plugging this into z = O(r2m∗), we
obtain z = O((n/m∗)2/3m∗) and thus the approximation ratio of the grammar
produced by LZMW is O((n/m∗)2/3). Since m∗ = Ω(log n), we finally get the
desired bound O((n/ log n)2/3).

56 G. Badkobeh et al.

Let us sketch the analysis of LZD, which is very similar. In this case, we
consider the set S′ of all phrases p1, p2, . . . , pz (not pairs as in LZMW) of the
LZD parsing. Let pi1 , . . . , piz

be the sequence of all strings from S′ sorted by
the increasing order of lengths. We partition the sequence into groups of size
1m∗, 2m∗, 3m∗, . . . (without the factor 2 as in LZMW). It follows from Lemma 3
that any string occurs in S′ at most once. Therefore, similar to the case of
LZMW, we obtain n = |pi1 | + |pi2 | + · · · + |piz

| ≥ 12m∗ + 22m∗ + · · · + r2m∗,
which implies the result in the same way as above. ��

3 Small-Space Computation

In this section we analyze the time required to compute the LZD and LZMW
parsings using the O(z)-space algorithms described by Goto et al. [8] and Miller
and Wegman [14], where z is the number of phrases. We focus on LZD through-
out, but a very similar algorithm and analysis applies for LZMW. Goto et al.
upperbound the runtime at O(z(m + min(z,m) log σ)), where m is the length
of the longest LZD (or LZMW) phrase and σ is the size of the input alphabet.
Because m = O(n) and z = O(n), the runtime is upper bounded by O(n2). Below
we provide a lower bound of Ω(n5/4) on the worst-case runtime, but before doing
so we provide the reader with a description of Goto et al.’s algorithm [8].1

Näıve Parsing Algorithms. In the compacted trie for a set of strings, each edge
label � is represented as a pair of positions delimiting an occurrence of � in the
set. In this way we can store the trie for s1, . . . , sk in O(k) space. During parsing
Goto et al. [8] maintain the dictionary of LZD phrases in a compacted trie.
The trie is of size O(z), but read-only random access to the input string is also
required in order to determine the actual values of the strings on the edge labels.

Initially the trie is empty, consisting of only the root. At a generic step
during parsing, when we go to compute the phrase pi = pi1pi2 starting at posi-
tion j = |p1p2 . . . pi−1| + 1, the trie contains nodes representing the phrases
p1, p2, . . . , pi−1 and all the distinct symbols occurring in s[1..j −1], and all these
nodes (corresponding to phrases and symbols) are marked. Note that there may
also be some nodes in the trie that do not correspond to any phrase, i.e., branch-
ing nodes. Let s[j..k] be the longest prefix of s[j..n] that can be found by tra-
versing the trie from the root. If s[j..k] cannot be matched even for k = j, then
s[j] is the leftmost occurrence of symbol c = s[j] in s, and we add a child node of
the root labelled with c, mark the node, and set it as the first element of the new
phrase, i.e., pi1 = c. Otherwise, the first element of pi, pi1 , is the string written
on the path connecting the root and the lowest marked node on the path that
spells s[j..k]. The second element, pi2 , of the phrase is computed in a similar
manner, by searching for s[j + |pi1 | + 1..n] in the trie.

After computing pi we modify the trie by a standard procedure so that there
is a marked node representing pi: first, we traverse the trie from the root finding
1 We concern ourselves here with LZD parsing, but it should be easy for the reader to

see that the algorithms are trivially adapted to instead compute LZMW.

On Two LZ78-style Grammars 57

the longest prefix of pi present in the trie, then, possibly, create one or two
new nodes, and, finally, mark the node (which, probably, did not exist before)
corresponding to pi (the details can be found in any stringology textbook).

The time taken to compute a new phrase and update the trie afterwards is
bounded by O(m+min(z,m) log σ), where m = O(n) is the length of the longest
phrase (and therefore an upper bound on the length of the longest path in the
trie), min(z,m) is an upper bound on the number of branching nodes, and log σ
is the time taken to find the appropriate outgoing edge at each branching node
during downward traversal. Over all z phrases the runtime is thus O(z(m +
min(z,m) log σ)).

The LZMW construction algorithm of Miller and Wegman [14] is analogous
but, unlike the LZD algorithm, when we go to compute the phrase pi, the trie con-
tains the strings p1p2, p2p3, . . . , pi−2pi−1 and the nodes corresponding to these
strings are marked. One can easily show that the running time of this algorithm
is O(z(m+min(z,m) log σ)), where z and m are defined analogously as for LZD.

We call both these algorithms näıve.

Worst-Case Time of the Näıve Algorithms. Now let us investigate the worst-case
time complexity of the näıve LZD and LZMW construction algorithms.

Theorem 6. The näıve LZD and LZMW construction algorithms take time
Ω(n

5
4) in the worst case.

Proof. Let k ≥ 8 be an integer that is a power of two. We will describe a string
s of length n = Θ(k4) for which the basic LZD construction algorithm (see the
above discussion) spends Θ(n

5
4) time to process. The string s is composed of

pairwise distinct letters ai,j , for i, j ∈ [1..k], and “separator” letters, all of which
are denoted
 and supposed to be distinct. We will first construct a prefix s′

of s that forces the algorithm to fill the dictionary with a set of strings that
are used as building blocks in further constructions. To this end, denote (with
parentheses used only for convenience):

wi = ai,1ai,2 · · · ai,k for i = 1, 2, . . . , k and w = w1w2 · · · wk,
spre,i = wi[1..2]wi[1..3] · · · wi[1..k] for i = 1, 2, . . . , k,
ssuf,i = wi[k−1..k]wi[k−2..k] · · · wi[2..k] for i = 1, 2, . . . , k,
p = (spre,1spre,2 · · · spre,k)(ssuf,1ssuf,2 · · · ssuf,k),
q = (wk−2wk−1)(wk−3wk−2wk−1) · · · (w1w2· · ·wk−1)(w),
s′ = pq · w21w22 · · · wk(wk[2..k]wk)(wk[3..k]wk) · · · (wk[k..k]wk).

Analyzing the prefix p of s′, it is clear that the LZD construction algo-
rithm adds to the dictionary exactly all prefixes and suffixes of the strings
wi for i = 1, 2, . . . , k; parsing the string q, the algorithm adds the strings
wk−2wk−1, wk−3wk−2wk−1, . . . , w1w2 · · · wk−1, and w1w2 · · · wk = w; then,
processing the string w21w22 · · · wk, the algorithm adds w21 , w22 , . . . , wk (we are
interested only in wk); finally, the strings wk[2..k]wk, wk[3..k]wk, . . . , wk[k..k]wk

are added. So, the algorithm adds to the dictionary exactly the following strings:

58 G. Badkobeh et al.

– all prefixes and suffixes of wi (including wi itself) for i = 1, 2, . . . , k;
– wk−2wk−1, wk−3wk−2wk−1, . . . , w1w2 · · · wk−1, and w;
– wk along with wk/2, . . . , w22 , w2 (we use only wk in what follows);
– wk[2..k]wk, wk[3..k]wk, . . . , wk[k..k]wk.

It is easy to verify that |w| = k2, |wk| = k3, and |s′| = Θ(k4). (The string
wk[2..k]wkwk[3..k]wk · · · wk[k..k]wk contributes the most to the length.)

We first provide an overview of our construction. The main load on the
running time of the algorithm is concentrated in the following strings zi:

zi = wi[2..k]wi+1 · · · wkwk−2w1 · · · wi for i = 1, 2, . . . , k − 2.

Put s = s′x1z1

x2z2

 · · · xk−2zk−2

, where x1, . . . , xk are auxiliary strings
defined below. Before processing of zi, the algorithm processes xi and adds
the strings wi[j..k]wi+1 · · · wk−1wk[1..j−1] and wk[j..k]w1 · · · wi−1wi[1..j] for j ∈
[2..k] to the dictionary (see below). So, analyzing zi, the algorithm consecutively
“jumps”, for j = 2, 3, . . . , k, from the string wi[j..k]wi+1 · · · wk−1wk[1..j−1] to
wk[j..k]w1 · · · wi−1wi[1..j] and so on. The crucial point is that, while analyzing
the string wk[j..k]w1 · · · wi−1wi[1..j], the algorithm does not know in advance
that the string wk[j..k]wk from the dictionary does not occur at this position
and, since the length of the longest common prefix of the strings wk[j..k]wk

and wk[j..k]wk−jw1 · · · wi

 is Θ(k − j + 1 + |wk−j |), spends Θ(|wk−j |) =
Θ((k − j)k2) time verifying this. Therefore, the analysis of the string s takes
Θ((k − 2)

∑k
j=2(k − j)k2) = Θ(k5) time overall. Since |zi| = O(k3) and, as it is

shown below, |xi| = O(k3), we have n = |s| = Θ(k4) and the processing time is
Θ(n

5
4) as required. We now describe this in more detail.

We prove by induction that the following invariant is maintained: when the
algorithm starts the processing of the suffix xizi

 · · · xk−2zk−2

 of the string
s (xi are defined below), the dictionary contains the following set of strings:

– “building blocks” constructed during the processing of s′;
– pairs of separators

 (recall that all separators are distinct);
– for each i′ ∈ [1..i−1] and j ∈ [2..k]:

– wi′ [j..k]wi′+1 · · · wk−1wk[1..j−1] and wk[j..k]w1 · · · wi′−1wi′ [1..j],
– wi′ [j..k]wi′+1 · · · wk−1 and wk[j..k]w1 · · · wi′−1,
– wi′ [j..k]wi′+1 · · · wkw1 · · · wi′−1wi′ [1..j].

The strings from the last two lines in the above list are not used and appear
as byproducts. (But it is still important to have them in mind to verify that
the algorithm works as expected.) So, assume that, by inductive hypothesis, the
invariant holds for all i′ ∈ [1..i−1] (it is trivial for i = 1).

Define xi as follows (the parentheses are only for visual ease):

u′
i,j = (wk[j..k]w1 · · · wi−1wi[1..j]),

ui,j = (wk[j..k]w1 · · · wi−2wi−1[1..j])(wi−1[j+1..k])u′
i,j ,

vi,j = (wi[j..k]wi+1 · · · wk−1)(wi[j..k]wi+1 · · · wk−1wk[1..j−1]),
x1 = (u′

1,2

u′
1,3

 · · · u′

1,k−1

u′
1,k

)(v1,2

v1,3

 · · · v1,k

),

xi = (ui,2

ui,3

 · · · ui,k−1

u′
i,k

)(vi,2

vi,3

 · · · vi,k

), for i 	= 1.

On Two LZ78-style Grammars 59

Clearly |xi| = O(k3). Using the hypothesis, one can show that the algo-
rithm adds the strings wk[j..k]w1 · · · wi−1 (j 	= k), wk[j..k]w1 · · · wi−1wi[1..j],
wi[j..k]wi+1 · · · wk−1, wi[j..k]wi+1 · · · wk−1wk[1..j−1] for j ∈ [2..k] to the dictio-
nary after the processing of xi (plus several pairs

). It remains to show that
the algorithm adds exactly the strings wi[j..k]wi+1 · · · wkw1 · · · wi−1wi[1..j], for
j ∈ [2..k], to the dictionary when processing zi.

Observe that, for j ∈ [2..k], wi[j..k]wi+1 · · · wk−1wk[1..j−1] is the longest
string from the dictionary that has prefix wi[j..k], and wk[j..k]w1 · · · wi−1wi[1..j]
is the longest string from the dictionary that has prefix wk[j..k] and does
not coincide with wk[j..k]wk. Hence, the algorithm consecutively “jumps” over
the substrings w of the string zi adding after each such “jump” the string
wi[j..k]wi+1 · · · wkw1 · · · wi−1wi[1..j] to the dictionary (for j = 2, 3, . . . , k). No
other strings are added.

Each time the algorithm processes a substring wk[j..k]w1 · · · wi−1wi[1..j], it
also verifies in Θ(ki + |wk−j |) time whether the string wk[j..k]wk occurs at this
position. Therefore, by the above analysis, processing takes Θ(|s| 5

4) time.
An analogous troublesome string for the näıve LZMW construction algorithm

is as follows (again, all separators
 are assumed to be distinct letters):

wi = ai,1ai,2 · · · ai,k and w = w1w2 · · · wk,
spre,i = wi[1..2]
wi[1..3]
 · · ·
wi[1..k]
,
ssuf,i = wi[k−1..k]
wi[k−2..k]
 · · ·
wi[2..k]
,
p = spre,1spre,2 · · · spre,kssuf,1ssuf,2 · · · ssuf,k,
q = wk−2wk−1
wk−3wk−2wk−1
 · · ·
w1w2· · ·wk−1
w
,

s′ = pqw21
w22
 · · ·
wk
wk[2..k]wk
wk[3..k]wk
 · · ·
wk[k..k]wk
,
yj = wk[j..k]w1
wk[j..k]w1w2[1..j]
,
ti,j = wi−2[j+1..k]wi−1[1..j]
wi−1[j+1..k]wi[1..j],
ui,j = (wk[j..k]w1 · · · wi−3wi−2[1..j])(wi−2[j+1..k]wi−1[1..j]),
vi,j = wi[j..k]wi+1 · · · wk−1
wi[j..k]wi+1 · · · wk−1wk[1..j−1],
xi = ti,2
ti,3
 · · ·
ti,k−1
ui,2
ui,3
 · · ·
ui,k
vi,2
vi,3
 · · ·
vi,k
,
zi = wi[2..k]wi+1 · · · wkwk−2w1 · · · wi
,
s = s′y2y3 · · · ykx4z4x6z6 · · · x2jz2j · · · xk−2zk−2.

Let us explain on a high level why the LZMW algorithm works slowly
on s. While analyzing the prefix s′y2y3 · · · yk, the algorithm adds a number
of “building block” strings into the LZMW dictionary, including the strings
w[j..k]wk for j = 2, 3, . . . , k (recall that, unlike the LZD dictionary con-
taining phrases, the LZMW dictionary contains pairs of adjacent phrases).
Before the processing of zi, the algorithm processes xi and adds the strings
wi[j..k]wi+1 · · · wk−1wk[1..j−1] (from vi,j), wk[j..k]w1 · · · wi−2wi−1[1..j] (from
ui,j), and wi−1[j+1..k]wi[1..j] (from ti,j) to the dictionary. The concatena-
tion of these three strings is wi[j..k]wi+1 · · · wkw1 · · · wi−1wi[1..j], so, analyz-
ing zi, the algorithm consecutively “jumps”, for j = 2, 3, . . . , k, from the
string wi[j..k]wi+1 · · · wk−1wk[1..j−1] to wk[j..k]w1 · · · wi−2wi−1[1..j] and then
to wi−1[j+1..k]wi[1..j], thus producing three new phrases (and then moves on to
j+1). The point is that, while analyzing the string wk[j..k]w1 · · · wi−2wi−1[1..j],

60 G. Badkobeh et al.

the algorithm does not know in advance that the string wk[j..k]wk from
the dictionary does not occur at this position and, since the length of the
longest common prefix of the strings wk[j..k]wk and wk[j..k]wk−jw1 · · · wi

 is
Θ(k − j + 1 + |wk−j |), spends Θ(|wk−j |) = Θ((k − j)k2) time verifying this.
Therefore, the analysis of the string s takes Θ((k/2)

∑k
j=2(k − j)k2) = Θ(k5)

time overall. Since n = |s| = Θ(k4), the processing time is Θ(n
5
4) as required.

We omit the detailed proof since it is very similar to the LZD case.
To additionally verify the correctness of both constructed examples, we per-

formed the näıve LZD and LZMW algorithms (with some diagnostics to track
their execution) on the examples for small k and, indeed, observed the expected
“bad” behavior in the special positions described above. Our verifying code (it
can be found in [1]) thoroughly checks the correspondence of the behavior of the
parsers in the special positions to the behavior discussed in the above text. Thus,
we hope that the correctness of both our constructions is well supported. ��

We now explain how to decrease the alphabet size in the examples of
Theorem 6. The construction for both parsing schemes relies on the following
reduction.

Lemma 7. Consider the parsing scheme LZD or LZMW and a string s ∈ Σ∗.
There exists a string t ∈ {0, 1}∗ of length Θ(|Σ| log |Σ|) and a morphism φ with
φ(Σ) ⊆ {0, 1}� for � = Θ(log |Σ|) such that the parsing of t · φ(s) consists of the
parsing of t followed by the image with respect to φ of the parsing of s.

Proof. We analyze the two parsing schemes separately. For LZD, we recursively
define AL ⊆ {0, 1}2L

, setting A0 = {0, 1} and AL = {xy : x, y ∈ AL−1 ∧ x ≤ y}
for L > 0. Let (αi)∞

i=1 be the infinite sequence of all elements of AL, for all L ≥
1, with members of each set AL listed in the lexicographic order; e.g., α1, . . . , α12

=00, 01, 11, 0000, 0001, 0011, 0101, 0111, 1111, 00000000, 00000001, 00000011. We
will define t = α1 · · · αm for some m. Let us characterize parsings of such strings.

Claim. For any non-negative integer m and any string w ∈ {0, 1}∗, the first m
phrases of the LZD parsing of the binary string α1 · · · αm · w are α1, . . . , αm.

Proof. We proceed by induction on m; the base case of m = 0 is trivial.
For m > 0, the inductive assumption implies that the first m− 1 phrases are

α1, . . . , αm−1. Our goal is to prove that the mth phrase is αm. Before processing
αm, the LZD dictionary is D = {0, 1, α1, . . . , αm−1}. Suppose that αm = xy ∈
AL with x, y ∈ AL−1. Recall that x ≤ y; consequently, D ∩ (y · {0, 1}∗) = {y}
and

D ∩ (x · {0, 1}∗) = {x} ∪ {xy′ : y′ ∈ AL−1 ∧ x ≤ y′ < y}.

Thus, the longest prefix of αm · w contained in D is x, and the longest prefix of
y · w contained in D is y. This means that the mth phrase is indeed αm = xy. ��

Consider a string s ∈ Σn. We choose the smallest L with |AL| ≥ |Σ| and
define t = α1 · · · αm so that t is shortest possible and the LZD dictionary after

On Two LZ78-style Grammars 61

processing t contains at least |Σ| elements of AL. The morphism φ is then defined
by injectively mapping Σ to these dictionary strings from AL.

Note that |AL−1| ≤ |Σ| and m ≤ |Σ| +
∑L−1

�=1 |A�|, so we have m = Θ(|Σ|),
� = 2L = Θ(log |Σ|), and |t| = Θ(|Σ| log |Σ|), as desired.

We are to prove that the LZD parsing of t · φ(s) is α1, . . . , αm, φ(p1), . . . , φ(pz),
where p1, . . . , pz is the LZD parsing of s. For this, we inductively prove that the
LZD dictionary D after parsing p1 · · · pi is related to the LZD dictionary D̂ after
parsing t ·φ(p1 · · · pi) by the following invariant: D̂∩ (φ(Σ) · {0, 1}∗) = φ(D). The
base case follows from the claim (D̂ ∩ (φ(Σ) · {0, 1}∗) = φ(Σ) = φ(D)), and the
inductive step is straightforward. This completes the proof for the LZD scheme.

The construction for LZMW is more involved, but the idea is the same. We
recursively define BL ⊆ {0, 1}2L

, setting B0 = {0, 1} and BL = {xy : x, y ∈
BL−1 ∧ xy 	= 12

L−1
02

L−1} for L > 0. Let (βi)∞
i=1 be the infinite sequence that

lists all elements of BL consecutively for all L ≥ 0, with members of each BL

listed in the lexicographic order (i.e., (βi)∞
i=1 is defined by analogy with (αi)∞

i=1

for LZD but starting with L = 0). For βm ∈ BL, define b(βm) = βMβm ·
βM+1βm · · · βm−1βm · βm, where βM = 02

L

is the first element of BL in (βi)∞
i=1.

For example, b(β1) · · · b(β6) = 0 · 0 1 1 · 00 · 00 01 01 · 00 11 01 11 11 · 0000.

Claim. For m ≥ 1, consider a binary string b(β1) · · · b(βm) · 0|βm| · w for
w ∈ {0, 1}∗. The LZMW parsing decomposes its fragments b(βi) into phrases of
length |βi|.
Proof. We proceed by induction on m. The base case m = 1 is straightforward:
it suffices to note that the first phrase of 0 · 0 · w is 0. Below, we consider m > 1.

First, suppose that βm = 02
L

, i.e., βm−1 = 12
L−1 ∈ BL−1. Note that

b(βm) starts with 02
L−1

, so the inductive hypothesis yields that the prefix
b(β1) · · · b(βm−1) is parsed as desired. Observe that after parsing this prefix,
the LZMW dictionary is D = {12

�−1
02

�

: 0 < � < L} ∪ ⋃L
�=0 B�. Consequently,

we obtain D ∩ (BL · {0, 1}∗) = BL and, therefore, b(βm) = βm is parsed as
claimed.

Finally, suppose that βm ∈ BL\{02
L}. In this case, βm−1 ∈ BL and βM = 02

L

for some M < m. Since b(βm) starts with βM = 02
L

, the inductive hypothesis
lets us assume that the prefix b(β1) · · · b(βm−1) is parsed as desired. Due to
12

L−1
02

L−1 /∈ BL, after parsing this prefix, the LZMW dictionary D satisfies:

D ∩ (BL · {0, 1}∗) = BL ∪ {βkβk′ : M ≤ k, k′ < m ∧ (k, k′) 	= (m−1,M)}.

Let us consider the parsing of b(βm)02
L

w = βMβm · βM+1βm · · · βm−1βm · βm ·
02

L

w. One can inductively prove that before parsing βkβm · βk+1 · · · , for M ≤
k < m, we have D ∩ (βk · {0, 1}∗) = {βk} ∪ {βkβk′ : M ≤ k′ < m}, so the
subsequent phrase is βk. Next, before parsing βm · βk+1 · · · , for M ≤ k < m,
we have D ∩ (βm · {0, 1}∗) = {βm} ∪ {βmβk′ : M < k′ ≤ k}, so the subsequent
phrase is βm. Finally, before parsing βm · 02

L

w, we have D ∩ (βm · {0, 1}∗) =
{βm} ∪ {βmβk′ : M < k′ < m}, so the last phrase is also βm. Thus, b(βm) is
parsed as claimed. ��

62 G. Badkobeh et al.

Consider a string s ∈ Σn. We choose the smallest L with |BL| ≥ |Σ| and define
t = b(β1) · · · b(βm) so that t is shortest possible and the LZMW dictionary after
processing t contains at least |Σ| members of BL (note that βm ∈ BL−1 in
this case). The morphism φ is then defined by injectively mapping Σ to these
dictionary strings from BL. Moreover, we put φ(s[1]) = 02

L

so that the claim is
applicable for t ·φ(s). The remaining proof is analogous to the LZD counterpart.
We only need to observe that the LZMW dictionary additionally contains βm02

L

,
but βm02

L−1
/∈ φ(Σ) and, hence, this does not affect the parsing of t · φ(s). ��

The hard binary examples are now straightforward to derive.

Theorem 8. The näıve LZD and LZMW parsing algorithms take time
Ω(n5/4/ log1/4 n) in the worst case even on a binary alphabet.

Proof. We apply Lemma 7 for a string s ∈ Σ∗ of length n constructed in the
proof of Theorem 6 for the appropriate parsing algorithm, which results in a
binary string ŝ := t · φ(s). Without loss of generality, we may assume |Σ| ≤ n,
so n̂ := |ŝ| = Θ(|Σ| log |Σ| + n log |Σ|) = Θ(n log |Σ|). Recall that the näıve
parsing algorithm traverses at least Ω(n5/4) trie edges while parsing s. Since the
parsing of the suffix φ(s) of ŝ is the φ-image of the parsing of s, this algorithm
traverses at least Ω(n5/4 log |Σ|) trie edges while parsing ŝ. In terms of n̂, the
running time is at least Ω(n̂5/4/ log1/4 |Σ|), which is Ω(n̂5/4/ log1/4 n̂) due to
|Σ| ≤ n < n̂. ��

4 Faster Small-Space Computation

In this section we describe a new parsing algorithm that works in O(n+z log2 n)
time (randomized, in expectation) and uses O(z log n) working space to parse
the input string over the integer alphabet {0, 1, . . . , nO(1)}. Before getting to the
algorithm itself, we review four tools that are essential for it: Karp–Rabin hash-
ing [11], AVL-grammars of Rytter [15], the dynamic z-fast trie of Belazzougui
et al. [2], and the dynamic marked ancestor data structure of Westbrook [17].

Karp–Rabin Hashing. A Karp–Rabin [11] hash function φ has the form
φ(s[1..n]) =

∑n
i=1 s[i]δi−1 mod p, where p is a fixed prime and δ is a randomly

chosen integer from the range [0..p−1] (this is a more popular version of the
original hash proposed in [11]). The value φ(s) is called s’s Karp–Rabin hash.
It is well-known that, for any c > 3, if p > nc, then the probability that two
distinct substrings of the given input string of length n have the same hash is
less than 1

nc−3 .
We extensively use the property that the hash of the concatenation s1s2 of

two strings s1 and s2 can be computed as (φ(s1) + δ|s1|φ(s2)) mod p. Therefore,
if the values φ(s1) and φ(s2) are known and p ≤ nO(1), then φ(s1s2) can be
calculated in O(1) time provided the number (δ|s1| mod p) is known.

On Two LZ78-style Grammars 63

AVL-Grammars. Consider a context-free grammar G that generates a string s
(and only s). Denote by Tree(G) the derivation tree of s. We say that G is an
AVL-grammar (see [15]) if G is in the Chomsky normal form and, for every
internal node v of Tree(G), the heights of the trees rooted at the left and right
children of v differ by at most 1. The following result straightforwardly follows
from the algorithm of Rytter described in [15].

Lemma 9 (see [15, Theorem 2]). Let G be an AVL-grammar generating a
prefix s[1..i−1] of a string s. Suppose that the string s[i..k] occurs in s[1..i−1];
then one can construct an AVL-grammar generating the string s[1..k] in O(log i)
time modifying at most O(log i) rules in G.

Let G be an AVL-grammar generating a string s. It is well-known that, for any
substring s[i..j], one can find in O(log n) time O(log n) non-terminals A1, . . . , Ak

such that s[i..j] is equal to the string generated by A1 · · · Ak. Hence, if each non-
terminal A of G is augmented with the Karp–Rabin hash φ(t) of the string t
generated by A and with the number δ|t| mod p, then we can compute φ(s[i..j])
in O(log n) time. One can show that, during the reconstruction of the AVL-
grammar in Lemma 9, it is easy to maintain the described integers augmenting
the non-terminals (see [15]).

Z-Fast Tries. Let x be a string such that one can compute the Karp–Rabin hash
of any prefix of x in O(tx) time. The z-fast trie [2] is a compacted trie containing
a dynamic set of variable-length strings that supports the following operations:

– we can find (w.h.p.) in O(tx log |x|) time the highest explicit node v such that
the longest prefix of x present in the trie is written on the root-v path;

– we can insert x into the trie in O(|x| + tx log |x|) randomized time.

The space occupied by the z-fast trie is Θ(k), where k is the number of strings
inserted in the trie.

Dynamic Marked Ancestor. Let T be a dynamic compacted trie (or just tree)
with k nodes. The dynamic marked ancestor data structure of [17] supports
the following two operations on T (both in O(log k) time): for a given node v,
(1) mark v, (2) find the nearest marked ancestor of v (if any).

Algorithm. Our faster parsing algorithm computes the LZD phrases from left
to right one by one, spending O(logO(1) n) time on each phrase. We maintain
an AVL-grammar G for the prefix s[1..i−1] of s we have already parsed, and
a z-fast trie T containing the first phrases p1, p2, . . . , pr of the LZD parsing of
s such that s[1..i−1] = p1p2 · · · pr. We augment T with the dynamic marked
ancestor data structure and mark all nodes corresponding to phrases (i.e., all
nodes v such that the string written on the path from the root to v is equal
to t ∈ {p1, . . . , pr}). We augment each non-terminal of G with the Karp–Rabin
hash φ(t) of this non-terminal’s expansion t and with the number δ|t| mod p, so
that the hash of any substring of s[1..i−1] can by calculated in O(log n) time.

64 G. Badkobeh et al.

Suppose we are looking for the first part of the next phrase and that, in addi-
tion to having parsed s[1..i−1], we have already read s[i..j−1] without parsing
it—but we have found the endpoints of an occurrence of s[i..j−1] in s[1..i−1].
(Notice s[i..j−1] can be empty, i.e., i = j.) Denote by x the longest prefix of
s[i..j−1] that is also a prefix of some of the phrases p1, . . . , pr. Since we can
compute quickly with G the hash of any prefix of s[i..j−1], we can use the z-fast
search to find in O(log2 n) time a node v of T such that x is written on the path
connecting the root and v. Let s[�v..rv] be a substring of s[1..i−1] corresponding
to v (the numbers �v and rv are stored with the node v). Using hashes and the
binary search, we find the longest common prefix of the strings s[i..j−1] and
s[�v..rv] (with high probability) in O(log2 n) time; this prefix must be x.

If s[i..j−1] 	= x, then we perform a marked-ancestor query on the vertex
corresponding to x (which can be found in O(log2 n) time in the same way as v)
and thus find the longest phrase that is a prefix of s[i..j−1]. We take that phrase
as the first part of the next phrase and start over, looking for the second part,
with the remainder of s[i..j−1] now being what we have read but not parsed (of
which we know an occurrence in s[1..i−1]). On the other hand, if s[i..j−1] = x,
then we read s[j..n] in blocks of length log2 n, stopping when we encounter an
index k such that s[i..k] is not a prefix of a phrase p1, . . . , pr; the details follow.

Suppose that we have read q blocks and the concatenation s[i..j+q log2 n−1]
of s[i..j−1] and the q previous blocks is a prefix of a phrase t ∈ {p1, . . . , pr}.
We compute in O(log2 n) time the hashes of all the prefixes of the block s[j +
q log2 n..j +(q +1) log2 n−1], which allows us to compute the hash of any prefix
of s[i..j +(q +1) log2 n−1] in O(log n) time. Therefore, again using z-fast search
and binary search, we can check in O(log2 n) time if the block s[j + q log2 n..j +
(q + 1) log2 n − 1] contains such a k—and, if so, find it. If k is not found, then
using information from the search, we can find a phrase t′ ∈ {p1, . . . , pr}—which
may or may not be equal to t—such that s[i..j + (q + 1) log2 n − 1] is a prefix of
t′; we then proceed to the (q+2)nd block.

Once we have found such a k, we conceptually undo reading the characters
from s[k] onwards (which causes us to re-read later those O(log2 n) characters),
then perform a search and marked-ancestor query in T , which returns the longest
phrase that is a prefix of s[i..k−1]. We take that longest phrase as the first part
of the next phrase and start over, looking for the second part, with the remainder
of s[i..k−1] now being what we have read but not parsed (of which we know an
occurrence in s[1..i−1]).

Once we have found both the first and second parts of the next phrase—
say, p′

1 and p′
2—we add the next phrase pr+1 = p′

1p
′
2 to G (by Lemma 9) and

to T , which takes O(|pr+1| + log2 n) time. In total, since processing each block
takes O(log2 n) time and the algorithm processes at most z + n

log2 n
blocks, we

parse s in O(n+ z log2 n) time. Our space usage is dominated by G, which takes
O(z log n) space. Finally, we verify in a straightforward manner in O(n) time
whether the constructed parsing indeed encodes the input string. If not (which
can happen with probability 1

nc−3 , where p > nc), we choose a different random
δ ∈ [0..p−1] for the Karp–Rabin hash and execute the whole algorithm again.

On Two LZ78-style Grammars 65

The computation of the LZMW parsing in O(n + z log2 n) expected time
and O(z log n) space is similar: the z-fast trie stores pairs p1p2, p2p3, . . . , pz−1pz

of adjacent phrases in this case and the nodes corresponding to these pairs are
marked. We omit the details as they are straightforward.

5 Concluding Remarks

We believe that our new parsing algorithms can be implemented efficiently, and
we leave this as future work. Perhaps a more interesting question is whether
there exists an LZD/LZMW parsing algorithm with better working space and
the same (or better) runtime. We note that the algorithmic techniques we have
developed here can also be applied to, e.g., develop more space-efficient parsing
algorithms for LZ-End [13], a variant of LZ77 [19] with which each phrase s[i..j]
is the longest prefix of s[i..n] such that an occurrence of s[i..j−1] in s[1..i−1]
ends at a phrase boundary. Kempa and Kosolobov [12] very recently gave an
LZ-End parsing algorithm that runs in O(n log �) expected time and O(z + �)
space, where � is the length of the longest phrase and z is the number of phrases.

To reduce Kempa and Kosolobov’s space bound, we keep an AVL-grammar
(again augmented with the non-terminals’ Karp–Rabin hashes, meaning our
algorithm Monte-Carlo) of the prefix of s we have processed so far; a list of
the endpoints of the phrases so far, in the right-to-left lexicographic order of the
prefixes ending at the phrases’ endpoints; and an undo stack of the phrases so
far. For each character s[k] in turn, for 1 ≤ k ≤ n, in O(logO(1) n) time we use
the grammar and the list to find the longest suffix s[j..k] of s[1..k] such that an
occurrence of s[j..k−1] in s[1..j−1] ends at a phrase boundary. We use the undo
stack to remove from the grammar, the list, and the stack itself, all the complete
phrases lying in the substring s[j..k−1], and then add the phrase consisting of the
concatenation of those removed phrases and s[k]. By [12, Lemma 3], we remove
at most two phrases while processing s[k], so we still use a total of O(logO(1) n)
worst-case time for each character of s. Again, the space bound is dominated
by the grammar, which takes O(z log n) words. We leave the details for the full
version of this paper.

Regarding compression performance, we have shown that like their ances-
tor, LZ78, both LZD and LZMW sometimes approximate the smallest grammar
poorly. This, of course, does not necessarily detract from their usefulness in real
compression tools; now however, practitioners have a much clearer picture of
these algorithms’ possible behavior. The future work includes closing the gap
between the lower bound Ω(n

1
3) and the upper bound O((n/ log n)

2
3) for the

approximation ratio and designing parsing algorithms with better guarantees.

Acknowledgements. We thank H. Bannai, P. Cording, K. Dabrowski, D. Hücke,
D. Kempa, L. Salmela for interesting discussions on LZD at the 2016 StringMasters
and Dagstuhl meetings. Thanks also go to D. Belazzougui for advice about the z-fast
trie and to the anonymous referees.

66 G. Badkobeh et al.

References

1. Supplementary materials for the present paper: C++ code for described experi-
ments. https://bitbucket.org/dkosolobov/lzd-lzmw

2. Belazzougui, D., Boldi, P., Vigna, S.: Dynamic Z-Fast tries. In: Chavez, E., Lonardi,
S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 159–172. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-16321-0 15

3. Belazzougui, D., Cording, P.H., Puglisi, S.J., Tabei, Y.: Access, rank, and
select in grammar-compressed strings. In: Bansal, N., Finocchi, I. (eds.) ESA
2015. LNCS, vol. 9294, pp. 142–154. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48350-3 13

4. Bille, P., Landau, G.M., Raman, R., Sadakane, K., Satti, S.R., Weimann, O.: Ran-
dom access to grammar-compressed strings and trees. SIAM J. Comput. 44(3),
513–539 (2015)

5. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A.,
Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theor. 51(7), 2554–
2576 (2005)

6. Claude, F., Navarro, G.: Self-indexed grammar-based compression. Fundamenta
Informaticae 111(3), 313–337 (2011)

7. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: A
faster grammar-based self-index. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA
2012. LNCS, vol. 7183, pp. 240–251. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28332-1 21

8. Goto, K., Bannai, H., Inenaga, S., Takeda, M.: LZD Factorization: simple and prac-
tical online grammar compression with variable-to-fixed encoding. In: Cicalese, F.,
Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 219–230. Springer,
Cham (2015). doi:10.1007/978-3-319-19929-0 19

9. Hucke, D., Lohrey, M., Reh, C.P.: The smallest grammar problem revisited. In:
Inenaga, S., Sadakane, K., Sakai, T. (eds.) SPIRE 2016. LNCS, vol. 9954, pp.
35–49. Springer, Cham (2016). doi:10.1007/978-3-319-46049-9 4

10. I, T., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Efficient Lyndon fac-
torization of grammar compressed text. In: Fischer, J., Sanders, P. (eds.) CPM
2013. LNCS, vol. 7922, pp. 153–164. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38905-4 16

11. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Devel. 31(2), 249–260 (1987)

12. Kempa, D., Kosolobov, D.: LZ-End parsing in compressed space. In: Proceedings
of Data Compression Conference (DCC), pp. 350–359. IEEE (2017)

13. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theoret.
Comput. Sci. 483, 115–133 (2013)

14. Miller, V.S., Wegman, M.N.: Variations on a theme by Ziv and Lempel. In: Apos-
tolico, A., Galil, Z. (eds.) Proceedings of NATO Advanced Research Workshop on
Combinatorial Algorithms on Words, NATO ASI, vol. 12, pp. 131–140. Springer,
Heidelberg (1985)

15. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theoret. Comput. Sci. 302(1–3), 211–222 (2003)

16. Tanaka, T., I, T., Inenaga, S., Bannai, H., Takeda, M.: Computing convolution
on grammar-compressed text. In: Proceedings of Data Compression Conference
(DCC), pp. 451–460. IEEE (2013)

https://bitbucket.org/dkosolobov/lzd-lzmw
http://dx.doi.org/10.1007/978-3-642-16321-0_15
http://dx.doi.org/10.1007/978-3-662-48350-3_13
http://dx.doi.org/10.1007/978-3-662-48350-3_13
http://dx.doi.org/10.1007/978-3-642-28332-1_21
http://dx.doi.org/10.1007/978-3-642-28332-1_21
http://dx.doi.org/10.1007/978-3-319-19929-0_19
http://dx.doi.org/10.1007/978-3-319-46049-9_4
http://dx.doi.org/10.1007/978-3-642-38905-4_16
http://dx.doi.org/10.1007/978-3-642-38905-4_16

On Two LZ78-style Grammars 67

17. Westbrook, J.: Fast incremental planarity testing. In: Kuich, W. (ed.) ICALP
1992. LNCS, vol. 623, pp. 342–353. Springer, Heidelberg (1992). doi:10.1007/
3-540-55719-9 86

18. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theor. 24(5), 530–536 (1978)

19. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theor. 23(3), 337–343 (1977)

http://dx.doi.org/10.1007/3-540-55719-9_86
http://dx.doi.org/10.1007/3-540-55719-9_86

	On Two LZ78-style Grammars: Compression Bounds and Compressed-Space Computation
	1 Introduction
	2 Approximating the Smallest Grammar
	3 Small-Space Computation
	4 Faster Small-Space Computation
	5 Concluding Remarks
	References

