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Abstract. A circular word, or a necklace, is an equivalence class under
conjugation of a word. A fundamental question concerning regularities in
standard words is bounding the number of distinct squares in a word of
length n. The famous conjecture attributed to Fraenkel and Simpson is
that there are at most n such distinct squares, yet the best known upper
bound is 1.84n by Deza et al. [Discr. Appl. Math. 180, 52–69 (2015)].
We consider a natural generalization of this question to circular words:
how many distinct squares can there be in all cyclic rotations of a word
of length n? We prove an upper bound of 3.14n. This is complemented
with an infinite family of words implying a lower bound of 1.25n.
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1 Introduction

Combinatorics on words is mostly concerned with regularities in words. The most
basic example of such a regularity is a square, that is, a substring of the form
uu. We might either want to create words with no such substrings, called square-
free, or show that there cannot be too many distinct squares for an arbitrary
word of length n. Fraenkel and Simpson proved that 2n is an upper bound
on the number of distinct squares contained in a word of length n, and also
constructed an infinite family of words of length n containing n−Θ(

√
n) distinct

squares [12]. Their upper bound uses a combinatorial lemma of Crochemore and
Rytter [6], called the Three Squares Lemma. Later, Ilie provided a short and
self-contained argument [16]. The Three Squares Lemma is concerned with the
rightmost occurrence of every distinct square, and says that, for any position in
the word, there do not exist three such rightmost occurrences starting at that
position (hence the name of the lemma). It is widely believed that the example
given by Frankel and Simpson is the worst possible, and the right bound is
n instead of 2n. The best known upper bound was 2n − Θ(log n) [17] until
recently Deza, Franek and Thierry improved the upper bound to 11/6n through
a somewhat involved argument [9]. All these bounds are based on the idea of
looking at three rightmost occurrences of squares starting at the same position.
It is known that two such occurrence already imply a certain periodic structure
[2,10,13,18,23], and that it is enough to consider binary words [20].
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Regularities are commonly considered in more general contexts than standard
words, such as partial words [1] or trees [5,14]. Another natural generalization
of standard words, motivated by the circular structure of some biological data,
are circular words (also known as necklaces). A circular word (w) is defined as
an equivalence class under conjugation of a word w, that is, it corresponds to
all possible rotations of w. Both algorithmic [3,4,15] and combinatorial aspects
of such words have been studied. The latter are mostly motivated by an old
result of Thue [25], who showed that there is an infinite square-free word over
{0, 1, 2}. This started a long line of research of pattern avoidance. Currie and
Fitzpatrick [8] generalized this to circular words, and then Currie [7] showed
that for any n ≥ 18 there exists a circular square-free word of length n (see
also a later proof by Shur [22]). Recently, Simpson [24] considered bounding the
number of distinct palindromes in a circular word of length n. It is well-known
(and easy to prove) that the number of distinct palindromes in a standard word
of length n is at most n. Interestingly, this increases to 5/3n for circular words.
Also equations on circular words have been studied [21].

We consider the following question: how many distinct squares can there be
in a circular word of length n? Note that due to how we have defined a circular
word, we are interested in squares of length at most n. Recall that the 2n bound
of Fraenkel and Simpson [12] is based on the notion of rightmost occurrences.
The improved 11/6n bound of Deza et al. [9] is also based on this concept. For
a circular word, it is not clear what the rightmost occurrence might mean, and
indeed the proofs seem to completely break. Of course, to bound the number
of distinct squares in a circular word w of length n, one can simply bound
the number of distinct squares in a word ww of length 2n, thus immediately
obtaining an upper bound of 4n (by invoking the simple proof of Ilie [16]) or
3.67n (by invoking the more involved proof of Deza et al. [9]). This, however,
completely disregards the cyclic nature of the problem.

We start with exhibiting an infinite family of circular words of length n
containing 1.25n−Θ(1) distinct squares. Therefore, it appears that the structure
of distinct squares in circular words is more complex than in standard words.
We then continue with a simple and self-contained upper bound of 3.75n on the
number of distinct squares in a circular word of length n. Then, by invoking
some of the machinery used by Deza et al. [9], we improve this to 3.14n.

2 Preliminaries

Let |w| denote the length of a string w, w[i] is the i-th character of w, and
w[i..j] is a shortcut for w[i]w[i + 1] . . . w[j]. A natural number p is a period of w
iff w[i] = w[i+ p] for every i = 1, 2, . . . , |w| − p. The smallest such p is called the
period of w. We say that w is periodic if its period is at most |w|/2, otherwise
w is aperiodic. The well-known periodicity lemma says that if p and q are both
periods of w and furthermore p + q ≤ |w| + gcd(p, q) then gcd(p, q) is also a
period of w [11].

w(i) denotes the cyclic rotation of w by i, that is, w[i..|w|]w[1..(i − 1)]. A
circular word (w) is an equivalence class under conjugation of w, that is, all
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cyclic rotations w(i). A word uu is called a square, and we say that it occurs in
(w) if it occurs in w(i) for some i. We are interested in bounding the number of
distinct squares occurring in a circular word of length n.

3 Lower Bound

We define an infinite family of words fk = a(ba)k+1a(ba)k+2a(ba)k+1a(ba)k+2.
See Fig. 1 for an example. Observe that |fk| = 8k + 16. We claim that cyclic
rotations of fk contain many distinct squares.

Fig. 1. The number of distinct squares in fk, for k = 1, 2, 3, 4, 5.

Lemma 1. For any k ≥ 0, the circular word (fk) contains 10k+16− (k mod 2)
distinct squares.

Proof. To count distinct squares uu occurring in (fk), we consider a few disjoint
cases. We first count uu such that aa occurs at most once inside:

1. Any uu such that aa does not occur inside must be be fully contained in an
occurrence of a(ba)k+2 or a(ba)k+1 in fk. Thus, to count such uu we only
have to find all distinct squares in a(ba)k+2. For any i = 1, 2, . . . , �(k +2)/2�,
(ab)i(ab)i and (ba)i(ba)i appear there, and it can be seen that there are no
other squares. Thus, the number of such uu is exactly 2�(k + 2)/2�.

2. Any uu such that aa occurs exactly once inside must have the property that u
starts and ends with a. It follows that such uu must be be fully contained in an
occurrence of a(ba)k+1a(ba)k+1 in fk. For any i = 0, 1, . . . , k+1, a(ba)ia(ba)i

appears there, and it can be seen that there are no other squares containing
exactly one occurrence of aa, so there are exactly k + 2 such uu.

Then we count uu such that aa occurs exactly twice inside. Then, aa must
occur once in u and furthermore, by analyzing the distances between the occur-
rences of aa in fk, we obtain that |u| = 2k + 5 or |u| = 2k + 3. We analyze these
two possibilities:

1. If |u| = 2k + 3 then uu appears in an occurrence of (ba)kbaa(ba)kbaa(ba)kb
in fk. There are 2k + 2 such uu.

2. If |u| = 2k + 5 then uu appears in an occurrence of a(ba)kbaaba(ba)k

baaba(ba)k in fk. There are 2k + 2 such uu.
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Finally, we count uu such that aa occurs at least three times inside. By
analyzing the distances between the occurrences of aa in fk, we obtain that in
such case |u| = 4k + 8, so |uu| = |fk|. We claim that there are exactly |fk|/2 =
4k + 8 such uu. To prove this, write fk = xkxk with xk = a(ba)k+1a(ba)k+2. xk

cannot be represented as a nontrivial power yp with p ≥ 2, because aa occurs
only once inside xk, so it would mean that y starts and ends with a, but then
p = 2 is not possible due to |a(ba)k+1| �= |a(ba)k+2|, and p ≥ 3 would generate
another occurrence of a. Clearly, every cyclic shift of fk is a square occurring
in (fk), because a cyclic shift of a square is still a square. It remains to count
distinct cyclic shifts of fk. Assume that two of these shifts are equal, that is,
(fk)(i) = (fk)(j) for some 0 ≤ i < j < |fk|, so xk = (xk)(j−i). Then gcd(|xk|, j−i)
is a period of xk. But xk is not a nontrivial power, so j − i = 0 mod |xk|.
Consequently, every i = 0, 1, . . . , |xk| − 1 generates a distinct square.

All in all, the number of distinct squares occurring in (fk) is

k + 2 + 2�(k + 2)/2� + 2(2k + 2) + 4k + 8 = 9k + 16 + 2�k/2�
or, in other words, 10k + 16 − (k mod 2). �	

By Lemma 1, for any n0 there exists a circular word of length n ≥ n0 con-
taining at least 1.25n − Θ(1) distinct squares.

4 Upper Bound

Our goal is to upper bound the number of distinct squares occurring in a circular
word (w) of length n. Each such square occurs in ww, hence clearly there are at
most 4n such distinct squares by plugging in the known bound on the number
of distinct squares. However, we want a stronger bound.

Recall that the bound on the number of distinct squares is based on the
notion of the rightmost occurrence. For every distinct square uu occurring in a
word, we choose its rightmost occurrence. Then, we have the following property.

Lemma 2 ([12]). For any position i, there are at most two rightmost occur-
rences starting at i.

Consider the rightmost occurrences of distinct squares of length up to n in
ww. We first analyze the rightmost occurrences starting at positions 1, 2, . . . , 1

4n.

Lemma 3. If w[14n..12n] is aperiodic then every rightmost occurrence starting
at position i ∈ {1, 2, . . . , 1

4n} is of the same length.

Proof. Assume otherwise, that is, w[14n..12n] is aperiodic, but there are two
rightmost occurrences uu and u′u′ starting at positions i, i′ ∈ {1, 2, . . . , 1

4n},
respectively, in ww such that |u| > |u′|. Then, i + 2|u| > n and i′ + 2|u′| > n,
as otherwise we could have found the same square in the second half of ww.
Because |u|, |u′| ≤ 1

2n, this implies i+ |u| > 1
2n and i′ + |u′| > 1

2n. So w[14n..12n]1

1 Formally, we need to appropriately round both 1
4
n and 1

2
n. We chose not to do so

explicitly as to avoid cluttering the presentation.
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uu =

u′u′ =

ww =

1
4n

1
4n

1
2n

Fig. 2. Two rightmost occurrences of squares uu and u′u′ in ww.

is fully inside the first half of both uu and u′u′. But then it also appears starting
at positions 1

4n + |u| and 1
4n + |u′|, see Fig. 2. The distance between these two

distinct (due to |u| > |u′|) occurrences is

(
1
4
n + |u|) − (

1
4
n + |u′|) = |u| − |u′|

We know that |u| ≤ 1
2n and |u′| > 1

2n − i′ ≥ 1
2n − 1

4n = 3
8n. Thus, the distance

is less than 1
2n − 3

8n = 1
8n and we conclude that the period of w[14n..12n] is at

most 1
8n, which is a contradiction. �	

By Lemm 3, assuming that w[14n..12n] is aperiodic, for every i = 1, 2, . . . , 1
4n

there is at most one rightmost occurrence starting at i. For all the remaining
i, there are at most two rightmost occurrences starting at i, making the total
number of distinct squares at most 1

4n + 2(2n − 1
4n) = 33

4n.
It might be the case that w[14n..12n] is periodic. However, the number of

distinct squares occurring in (w) is the same as the number of distinct squares
occurring in any (w(i)), so we are free to replace w with any of its cyclic shifts.
We claim that if, for any i = 0, 1, . . . , n − 1, w(i)[14n..12n] is periodic, then the
whole w is a nontrivial power yp with p ≥ 8. To show this, we need an auxiliary
lemma that is a special case of Lemma 8.1.2 of [19]. We provide a proof for
completeness.

Lemma 4. For any word w and characters a, b, if both aw and wb are periodic
then their periods are in fact equal.

Proof. We assume that the period of aw is p ≤ |aw|/2 and the period of wb is
q ≤ |wb|/2. Then p and q are both periods of w. By symmetry, we can assume
that p ≥ q. p + q ≤ (|aw| + |wb|)/2 = 1 + |w|, so by the periodicity lemma
gcd(p, q) is a period of w. We claim that gcd(p, q) is also a period of aw. To
prove this, it is enough to show that a = w[gcd(p, q)]. gcd(p, q) is a period of w
and, for n ≥ 2, p ≤ |w|, so this is equivalent to showing that a = w[p]. But this
holds due to p being a period of aw. Hence gcd(p, q) is a period of aw, but p is
the period of aw and p ≥ q, therefore p = q. �	

We observe that the substrings w(i)[14n..12n] correspond to all substrings of
length 1

4n of ww. By Lemma 4, if every substring of length 1
4n of ww is periodic,
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then the periods of all such substrings are the same and equal to d ≤ 1
8n.

Therefore, d is also a period of the whole ww. But then gcd(|w|, d) ≤ d ≤ 1
8 |w| is

also a period of ww. We conclude that gcd(|w|, d) ≤ 1
8 |w| is period of w, hence

w = yp for some p ≥ 8, as claimed.
It remains to analyze the number of distinct squares in a circular word (w),

where w = yp for p ≥ 8. Each such square is a distinct square in yp+1. The
number of distinct squares in yp+1 is at most 2(p+1)|y| = 2p+1

p n ≤ 2.25n, since
p ≥ 8.

Theorem 5. The number of distinct squares in a circular word of length n is
at most 3.75n.

To improve on the above upper bound, we need some of the machinery used
by Deza et al. [9]. Two occurrences of squares uu and UU starting at the same
position such that |u| < |U | are called a double square and denoted (u,U). If
both are the rightmost occurrences, this is an FS-double square. An FS-double
square is identified with the starting position of the two occurrences.

Lemma 6 (see proof of Theorem 32 in [9]). If (u,U) is the leftmost FS-
double square of a string x and |x| ≥ 10, then the number of FS-double squares
in x is at most 5

6 |x| − 1
3 |u|.

We again consider the rightmost occurrence of every distinct square of length
up to n in ww and assume that w[14n..12n] is aperiodic (as otherwise we already
know there are at most 2.25n distinct squares). We need to consider two cases:
either there are no rightmost occurrences starting at i = 1, 2, . . . , 1

4n, or there is
at least one such occurrence.

No Rightmost Occurrences Starting at i = 1, 2, . . . , 1
4n. In this case, it is enough

to bound the number of distinct squares in ŵ = w[(14n + 1)..n]w. Let i be the
starting position of the leftmost FS-double square (u,U) in ŵ. If i > 3

4n then
the total number of distinct squares is at most 3

4n + 2n = 2 3
4n, so we assume

i ≤ 3
4n. Then, the total number of distinct squares can be bounded by applying

Lemma 6 on w[(14n + i)..n]w to show that the number of FS-double squares is
at most

5
6
(
7
4
n − i + 1) − 1

3
|u|

We know that i + 2|u| > 3
4n, as otherwise uu would occur later in w. Therefore,

the maximum number of distinct squares is

7
4
n+

5
6
(
7
4
n− i+1)− 1

3

3
4n − i + 1

2
= (

7
4

+
35
24

− 1
8
)n− (

5
6

− 1
6
)i+

4
6

≤ 3
1
12

n (1)

At Least One Rightmost Occurrence Starting at i ∈ {1, 2, . . . , 1
4n}. We now

move to the more interesting case where there are some rightmost occurrences
starting at i = 1, 2, . . . , 1

4n. We then know by Lemma3 that they all correspond
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to squares of the same length 2�. Let i ∈ {1, 2, . . . , 1
4n} be the starting position

of one of these rightmost occurrences. Then, i + 2� > n as otherwise the square
would occur later in the second w, so � > (n − n

4 )/2 = 3
8n. We also know

that � < 1
2n, as otherwise w = y2 and there are only 3n distinct squares. To

conclude, � ∈ ( 38n, 1
2n). Observe that, due to the square starting at position i,

the aperiodic substring s = w[14n..12n] also occurs at position 1
4n + � in ww.

Therefore, we can rotate w by � and repeat the whole reasoning. We either
obtain that the number of distinct squares is at most 3 1

12n (if, in w(�)w(�), there
are no rightmost occurrences starting at i = 1, 2, . . . , 1

4n), or there is another
occurrence of s at position 1

4n + � + �′ − n in w, where �, �′ ∈ ( 38n, 1
2n). Because

s is aperiodic and �+ �′ > 3
4n, the other occurrence must actually be at position

1
4n−Δ, where Δ ∈ ( 18n, 1

4n). By repeating this enough times (and recalling that
two occurrences of s cannot be too close to each other, as otherwise s is not
aperiodic), we either obtain that there are at most 3 1

12n distinct squares or all
occurrences of s in (w) are at positions 1

4n +
∑i−1

j=1 Δj (recall that (w) denotes
the circular word, so we calculate positions modulo n) for i = 1, 2, . . . , d, where
∑d

j=1 Δj = n and Δj ∈ ( 18n, 1
4n) for every j = 1, 2, . . . , d. That is, the whole (w)

is covered by the occurrences of s, and because s is aperiodic these occurrences
overlap by less than 1

8n. Observe that there cannot be any other occurrences of s
in (w), because the additional occurrence would overlap with one of the already
found occurrences by at least 1

8n, thus contradiction the assumption that s is
aperiodic. By the constraints on Δj , d ∈ {5, 6, 7}. See Fig. 3 for an illustration
with d = 7. We further consider three possible subcases.

d = 5. In such case, we have Δj ≥ 1
5n for some j. By rotating w, we can assume

that j = 1. Recall that then all squares starting at i = 1, 2, . . . , 1
4n have the same

length 2� (and there is at least one such square), so there is another occurrence
of s starting at position 1

4n + �, and then by repeating the reasoning at position
1
4n + � + �′, where � + �′ = n − Δ1 (due to �, �′ ∈ ( 38n, 1

2n)). Combining this
with Δ1 ≥ 1

5n, we obtain that min{�, �′} ≤ 2
5n. By again rotating w, we can

assume that in fact � ≤ 2
5n. Let i ∈ {1, 2, . . . , 1

4n} be the starting position of a
rightmost occurrence of a square of length 2�. Then i + 2� > n as otherwise it
would not be a rightmost occurrence, so i > 1

5n and we obtain that there are
less than 1

4n − 1
5n = 1

20n rightmost occurrences starting at i = 1, 2, . . . , 1
4n. By

the previous calculation (1) the number of remaining rightmost occurrences is
at most 3 1

12n, making the total number of distinct squares at most 3 2
15n.

d = 6. We will show that this is, in fact, not possible. Recall that, for every
i = 1, 2, . . . , 6, after rotating w by r =

∑i−1
j=1 Δj we obtain that there is at

least one rightmost occurrence starting in the prefix of length 1
4n of w(r)w(r),

and in fact, by Lemma3, all such rightmost occurrences correspond to squares
of the same length 2�i, where �i ∈ ( 38n, 1

2n). Thus, for every occurrence of s

starting at position 1
4n+

∑i−1
j=1 Δj , there is another occurrence at position 1

4n+
∑i−1

j=1 Δj + �i in (w) (recall that the positions are taken modulo n). We claim
that �i = Δi + Δi+1 or �i = Δi + Δi+1 + Δi+2, where the indices are taken
modulo 6. Certainly, �i = Δi + Δi+1 + . . . + Δi+k for some k. We cannot have
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Δ1

1n

Δ2

Δ3

Δ4

Δ6

Δ7

Δ5

1
4n

1
2n

Fig. 3. Seven occurrences of an aperiodic s of length 1
4
n inside (w).

k = 0 because �i > 3
8n and Δi < 3

8n. We also cannot have k ≥ 3, because
�i < 1

2n and Δi + Δi+1 + Δi+2 + Δi+3 > 1
2n. So, k = 1 or k = 2. For every

i = 1, 2, . . . , 6, we define succ(i) ∈ {1, 2, . . . , 6} as follows. If �i = Δi +Δi+1 then
we set succ(i) = i + 2, and otherwise (if �i = Δi + Δi+1 + Δi+2) succ(i) = i + 3.
Intuitively, every occurrence of s in (w) points to another such occurrence. Due to
�i ∈ ( 38n, 1

2n) holding for every i = 1, 2, . . . , 6, the difference between the starting
positions of the i-th and the succ(i)-th occurrence of s belongs to (38n, 1

2n), so
the difference between the starting position of the i-th and the succ(succ(i))-th
occurrence of s belongs to (34n, n). In fact, due to s being aperiodic, the latter
difference must belong to (34n, 7

8n). Consequently, there are no other occurrences
of s between the succ(succ(i))-th and the i-th, so succ(succ(i)) = i − 1. Now, we
consider two cases:

1. succ(1) = 3, then succ(3) = 6, so succ(6) = 2, succ(2) = 5 and succ(5) = 1.
2. succ(1) = 4, then succ(4) = 6, so succ(6) = 3, succ(3) = 5, succ(5) = 2,

succ(2) = 4.

In both cases, we obtain that succ(i) = succ(j) for some i �= j. But this is a
contradiction, because then there are two occurrences of s within distance less
than 1

8n, so s is not aperiodic.

d = 7. We define succ(i) for every i = 1, 2, . . . , 7 as in the previous case. Because
succ(i) ∈ {i+2, i+3} and succ(succ(i)) = i−1 still holds, we obtain that in fact
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ww =

1
4n

1
4n

1
2n

Δ1 Δ2 Δ3

u u

U U

Fig. 4. The leftmost FS-square starting at position j ≤ 1
4
n + Δ1.

succ(i) = i + 3 for every i = 1, 2, . . . , 7. This means that �i = Δi + Δi+1 + Δi+2.
Consider all rightmost occurrences starting at i = 1, 2, . . . , 1

4n. We must have
that i + 2�1 > n for each of them, so i > n − 2(Δ1 + Δ2 + Δ3), making the total
number of such occurrences at most min{1

4n, 2(Δ1 + Δ2 + Δ3) − 3
4n}. Because

Δ1 + Δ2 + Δ3 ≤ 1
2n due to Δi > 1

8n holding for every i = 1, 2, . . . , 7 and
∑7

i=1 Δi = n, this number is actually 2(Δ1 + Δ2 + Δ3) − 3
4n.

Now we must account for the remaining distinct squares. Let j be the starting
position of the leftmost FS-double square (u,U) in ww. Note that j > 1

4n because
there is at most one rightmost occurrence starting at i = 1, 2, . . . , 1

4n. We lower
bound j by considering two possible cases:

1. j > 1
4n + Δ1.

2. j ≤ 1
4n+Δ1, then the occurrences of s starting at 1

4n+Δ1 and 1
4n+Δ1+Δ2+

Δ3 are disjoint and both fully inside the first w, because Δ1 +Δ2 +Δ3 ≤ 1
2n.

Thus, both u and U contain s as a substring. See Fig. 4. Then, because all
occurrences of s start at positions of the form 1

4n +
∑i−1

j=1 Δj , we conclude
that |u| = Δ2 + Δ3 and |U | = Δ2 + Δ3 + Δ4. So, j > n − 2(Δ2 + Δ3).

We now know that j > min{ 1
4n + Δ1, n − 2(Δ2 + Δ3)}. Using j + 2|u| > n we

obtain that the number of remaining distinct squares is at most

1
3
4
n +

5
6
(2n − j) − 1

3
|u| ≤ 3

5
12

n − 5
6
j − 1

3
n − j

2
= 3

1
4
n − 2

3
j

so the total number of squares is

≤ 3
1
4
n + 2(Δ1 + Δ2 + Δ3) − 3

4
n − 2

3
j

≤ 2
1
2
n + 2(Δ1 + Δ2 + Δ3) − 2

3
min{1

4
n + Δ1, n − 2(Δ2 + Δ3)}

We rewrite the above in terms of �1 and Δ1:

2
1

2
n + 2�1 − 2

3
min{1

4
n + Δ1, n − 2�1 + 2Δ1} ≤ 2

1

2
n + 2�1 − 2

3
min{3

8
n,

5

4
n − 2�1}
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The above expression is increasing in �1. Because
∑7

i=1 �i =
∑7

i=1(Δi + Δi+1 +
Δi+2) = 3n, after an appropriate rotation we can assume that �1 ≤ 3

7n, and
bound the expression:

2
1
2
n +

6
7
n − 2

3
min{3

8
n,

5
4
n − 6

7
n} = 3

5
14

n − 1
4
n = 3

3
28

n

Wrapping Up. We have obtained that either there is an aperiodic substring of
length 1

4n, and thus there are at most 2.25n distinct squares, or there are no
rightmost occurrences starting at i = 1, 2, . . . , 1

4n and the maximum number of
distinct squares is 3 1

12n, or there is at least at least one rightmost occurrence
starting at i ∈ {1, 2, . . . , 1

4n}. In the last case, either d = 5 and there are at most
3 2
15n distinct squares, or d = 7 and there are at most 3 3

28n distinct squares. The
maximum of these upper bounds is 3 2

15n.

Theorem 7. The number of distinct squares in a circular word of length n is
at most 3.14n.

5 Conclusions

We believe that it should be possible to show an upper bound of 3n, possibly
without using the machinery of Deza et al., but it seems to require some new
combinatorial insights. A computer search seems to suggest that the right answer
is 1.25n, but showing this is probably quite difficult. Another natural direction
for a follow-up work is to consider higher powers in circular words.
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