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Preface

This volume contains the papers presented at SPIRE 2017, the 24th International
Symposium on String Processing and Information Retrieval, held September 26–28,
2017, in Palermo, Italy. Following the tradition of previous symposia, the focus of
SPIRE this year was on fundamental studies on string processing and information
retrieval, as well as on computational biology.

The call for papers resulted in 71 submissions. Each submitted paper was reviewed
by at least three Program Committee members. Based on the thorough reviews and
discussions by the Program Committee members and additional subreviewers, the
Program Committee decided to accept 26 papers. The main conference featured three
keynote speeches by Flavio Chierichetti (Sapienza Università di Roma), Moshe
Lewenstein (Bar Ilan University), and Stéphane Vialette (CNRS & Université Paris-Est
Marne-la-Vallée), together with presentations by authors of the 26 accepted papers. Just
after the main conference, a satellite workshop was held: the 12th Workshop on
Compression, Text, and Algorithms (WCTA 2017), held on September 29, 2017, in
Palermo. WCTA was coordinated by Simon Gog and Giovanna Rosone. WCTA this
year featured two keynote speeches by Knut Reinert (Freie Universität Berlin) and
Sebastiano Vigna (Università degli Studi di Milano).

We would like to thank the SPIRE Steering Committee for giving us the opportunity
to host this wonderful event. Also, many thanks go to the Program Committee
members and the additional subreviewers for their valuable contribution ensuring the
high quality of this conference. We are grateful to Springer for their professional
publishing work and for sponsoring the Best Paper Award for SPIRE 2017. We finally
thank the Local Organizing Committee for the smooth running of the event.

September 2017 Gabriele Fici
Marinella Sciortino
Rossano Venturini
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Locality Sensitive Hashing,
Similarities, and Distortion

Flavio Chierichetti

Dipartimento di Informatica, Sapienza University of Rome

Abstract. Locality sensitive hashing (LSH) is a key algorithmic tool that lies at
the heart of many information retrieval systems [1, 2, 8]. In a nutshell, LSH
schemes are used to sketch dense objects (e.g., Web pages, fields of flowers,
cells) into small fingerprints; the fingerprints are then used to approximately
reconstruct some similarity relation between the objects.

LSH schemes can significantly improve the computational cost of many
algorithmic primitives — thus, for the last two decades, theoretical researchers
have tried to understand the conditions under which similarities can admit
efficient LSH schemes: such schemes were obtained for many similarities
[1–3, 7–9], while the non-existence of LSH schemes was proved for a number of
other similarities [3].

In this talk, we will first introduce the class of LSH-preserving transforma-
tions [4] (functions that, when applied to a similarity that admits a LSH scheme,
return a similarity that also admits such a scheme). We will give a characteri-
zation of this class of functions: they are precisely the probability generating
functions, up to scaling. We will show how this characterization was used to
construct LSH schemes for a number of well-known similarities.

Then, we will discuss a notion of similarity distortion [6], in order to deal
with similarities which are known to not admit LSH schemes— this notion aims
to determine the minimum distortions that these similarities have to be subject
of, before starting to admit a LSH scheme. We will introduce a number of the-
oretical tools that can be used to determine the optimal distortions of some
important classes of similarities.

Finally, we will analyze the computational problem of checking whether a
similarity admits a LSH scheme [5]. We will show that, unfortunately, this
problem is computationally hard in a very strong sense.

References

1. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in
high dimensions. In: FOCS, pp. 459–468 (2006)

2. Broder, A.Z.: On the resemblance and containment of documents. In: Proceedings of
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Conditional Lower Bounds
for String Problems

Moshe Lewenstein

Bar-Ilan University

Abstract. In recent years, intensive research has been dedicated to proving
conditional lower bounds of algorithmic problems in order to reveal the inner
structure of the class P. These conditional lower bounds are based on many
popular conjectures on well-studied problems. For example, one popular con-
jecture is the celebrated Strong Exponential Time Hypothesis (SETH). Another
is a conjecture of hardness for the well-known 3SUM problem. There are several
other popular conjectures that are widely used.

The field of string matching and indexing is no exception. The celebrated
algorithms for LCS and edit distance algorithms are of quadratic time, up to log
factors. For many years the challenge of obtaining a better running time was a
lofty goal within the stringology community. However, lately, almost matching
conditional lower bounds were shown [1, 4, 6] for these problems.

Likewise, close upper bounds and conditional lower bounds [3, 8, 11] are
shown for histogram indexing [7, 9, 15], for constant-sized alphabets of size
greater than two. The CGL data structure for indexing with errors [10] can be
closely matched, for certain instances, with conditional lower bounds.

These examples are supported by even more conditional lower bounds for
string matching, e.g. [2, 5, 14].

In this talk we will survey the world of conditional lower bounds within the
framework of stringology. Specifically, we will look at some popular conjec-
tures and their implications. We will follow an example of a string-problem
conditional lower bound and its relation to the best-known upper bound. Given
sufficient time, we will speak about new implications of conditional lower
bound time-space tradeoffs [12, 13].

References
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Permutationology: Stringology
for Permutations

Stéphane Vialette

Université Paris-Est, LIGM (UMR 8049), CNRS, UPEM,
ESIEE Paris, ENPC, F-77454, Marne-la-Vallée, France

stephane.vialette@u-pem.fr

Abstract. A permutation s is said to contain the permutation p if there exists a
subsequence of (not necessarily consecutive) entries of s that has the same
relative order as p, and in this case p is said to be a pattern of s, written p� s.
Otherwise, s is said to avoid the permutation p. For example, the permutation
s ¼ 543621 contains the pattern p ¼ 3241, as can be seen in the highlighted
subsequence of s = 543621. However, since the permutation s ¼ 543621
contains no increasing subsequence of length three, s avoids 123. The intro-
duction of the area of permutation patterns is traditionally attributed to D. Knuth
is his first volume of “The Art of Computer Programming”.

The term stringology is a popular nickname for string algorithms. In this talk,
we shall focus on permutationology by revisiting some classical fundamental
string algorithms such as pattern matching, (un-)shuffling and finding longest
common subsequences in the realm of permutation patterns (with a particular
emphasis of pattern avoiding permutations).
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Greedy Shortest Common Superstring
Approximation in Compact Space

Jarno Alanko(B) and Tuukka Norri

Department of Computer Science, University of Helsinki,
Gustaf Hällströmin katu 2b, 00560 Helsinki, Finland

{jarno.alanko,tuukka.norri}@helsinki.fi

Abstract. Given a set of strings, the shortest common superstring prob-
lem is to find the shortest possible string that contains all the input
strings. The problem is NP-hard, but a lot of work has gone into designing
approximation algorithms for solving the problem. We present the first
time and space efficient implementation of the classic greedy heuristic
which merges strings in decreasing order of overlap length. Our imple-
mentation works in O(n log σ) time and bits of space, where n is the
total length of the input strings in characters, and σ is the size of the
alphabet. After index construction, a practical implementation of our
algorithm uses roughly 5n log σ bits of space and reasonable time for a
real dataset that consists of DNA fragments.

Keywords: Greedy · Approximation · Compact · Space-efficient ·
Burrows-Wheeler transform · BWT · Shortest common superstring · SCS

1 Introduction

Given a set of strings, the shortest common superstring is the shortest string
which contains each of the input strings as a substsring. The problem is NP-hard
[4], but efficient approximation algorithms exist. Perhaps the most practical of
the approximation algorithms is the greedy algorithm first analyzed by Tarhio,
Ukkonen [14] and Turner [15]. The algorithm greedily joins together the pairs
of strings with the longest prefix-suffix overlap, until only one string remains.
In case there are equally long overlaps, the algorithm can make an arbitrary
selection among those. The remaining string is an approximation of the shortest
common superstring. The algorithm has been proven to give a superstring with
length at most 3 1

2 times the optimal length [6]. It was originally conjectured by
Ukkonen and Tarhio [14] that the greedy algorithm never outputs a superstring
that is more than twice as long as the optimal, and the conjecture is still open.

Let m be the number of strings, n be the sum of the lengths of all the strings,
and σ the size of the alphabet. In 1990 Ukkonen showed how to implement the
greedy algorithm in O(n) time and O(n log n) bits of space using the Aho-Corasick
automaton [16]. Since then, research on the problem has focused on finding
algorithms with better provable approximation ratios (see e.g. [9] for a summary).
c© Springer International Publishing AG 2017
G. Fici et al. (Eds.): SPIRE 2017, LNCS 10508, pp. 1–13, 2017.
DOI: 10.1007/978-3-319-67428-5 1



2 J. Alanko and T. Norri

Currently, algorithm with the best proven approximation ratio in peer reviewed
literature is the one by Mucha with an approximation ratio of 211

23 [9], and there
is a preprint claiming an algorithm with a ratio of 211

30 [11]. However, we are not
aware of any published algorithm that solves the problem in better than O(n log n)
bits of space. Improving the factor log n to log σ is important in practice. Many of
the largest data sets available come from DNA strings which have an alphabet of
size only 4, while n can be over 109.

We present an algorithm that implements the greedy heuristic in O(n log σ)
time and bits of space. It is based on the FM-index enhanced with a succinct
representation of the topology of the suffix tree. The core of the algorithm is the
iteration of prefix-suffix overlaps of input strings in decreasing order of length
using a technique described in [8,13], combined with Ukkonen’s bookkeeping
[16] to keep track of the paths formed in the overlap graph of the input strings.
The main technical novelty of this work is the implementation of Ukkonen’s
bookkeeping in O(n log σ) space. We also have a working implementation of the
algorithm based on the SDSL-library [5]. For practical reasons the implementa-
tion differs slightly from the algorithm presented in this paper, but the time and
space usage should be similar.

2 Preliminaries

Let there be m strings s1, . . . , sm drawn from the alphabet Σ of size σ such that
the sum of the lengths of the strings is

∑m
i=1 |si| = n. We build a single string

by concatenating the m strings, placing a separator character $ �∈ Σ between
each string. We define that the separator is lexicographically smaller than all
characters in Σ. This gives us the string S = s1$s2$ · · · sm$ of length n + m.
Observe that the set of suffixes that are prefixed by some substring α of S are
adjacent in the lexicographic ordering of the suffixes. We call this interval in the
sorted list of suffixes the lexicographic range of string α. All occurrences of a
substring α can be uniquely represented as a triple (aα, bα, dα), where [aα, bα] is
the lexicographic range of α, and dα is the length of α. A string α is right maximal
in S if and only if there exist two or more distinct characters y, z ∈ Σ ∪{$} such
that the strings αy and αz are substrings of S. Our algorithm needs support for
two operations on substrings: left extensions and suffix links. A left extension of
string α with character x is the map (aα, bα, dα) �→ (axα, bxα, dxα). A suffix link
for the right-maximal string xα is the map (axα, bxα, dxα) �→ (aα, bα, dα).

3 Overview of the Algorithm

We use Ukkonen’s 1990 algorithm [16] as a basis for our algorithm. Conceptually,
we have a complete directed graph where vertices are the input strings, and the
weight of the edge from string si to string sj is the length of the longest suffix of
si which is also a prefix of sj . If there is no such overlap, the weight of the edge
is zero. The algorithm finds a Hamiltonian path over the graph, and merges the
strings in the order given by the path to form the superstring. We define the
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merge of strings si = αβ and sj = βγ, where β is the longest prefix-suffix overlap
of si and sj , as the string αβγ. It is known that the string formed by merging
the strings in the order given by the maximum weight Hamiltonian path gives
a superstring of optimal length [14]. The greedy algorithm tries to heuristically
find a Hamiltonian path with a large total length.

Starting from a graph G where the vertices are the input strings and there
are no edges, the algorithm iterates all prefix-suffix overlaps of pairs of strings
in decreasing order of length. For each pair (si, sj) we add an edge from si to sj

iff the in-degree of sj is zero, the out-degree of si is zero, and adding the edge
would not create a cycle in G. We also consider overlaps of length zero, so every
possible edge is considered and it is easy to see that in the end the added edges
form a Hamiltonian path over G.

4 Algorithm

Observe that if an input string is a proper substring of another input string,
then any valid superstring that contains the longer string also contains the
shorter string, so we can always discard the shorter string. Similarly if there
are strings that occur multiple times, it suffices to keep only one copy of each.
This preprocessing can be easily done in O(n log σ) time and space for example
by backward searching all the input strings using the FM-index.

After the preprocessing, we sort the input strings into lexicographic order,
concatenate them placing dollar symbols in between the strings, and build an
index that supports suffix links and left extensions. The sorting can be done
with merge sort such that string comparisons are done O(log(n)) bits at a time
using machine word level parallelism, as allowed by the RAM model. This works
in O(n log σ) time and space if the sorting is implemented so that it does not
move the strings around, but instead manipulates only pointers to the strings.

For notational convenience, from here on si refers to the string with lexico-
graphic rank i among the input strings.

We iterate in decreasing order of length all the suffixes of the input strings
si that occur at least twice in S and for each check whether the suffix is also a
prefix of some other string sj , and if so, we add an edge from si to sj if possible.
To enumerate the prefix-suffix overlaps, we use the key ideas from the algorithm
for reporting all prefix-suffix overlaps to build an overlap graph described in [8]
and [13], adapted to get the overlaps in decreasing order of length.

We maintain an iterator for each of the input strings. An iterator for the string
si is a quadruple (i, �, r, d), where [�, r] is the lexicographic range of the current
suffix α of si and d is the length of α, i.e. the depth of the iterator. Suffixes of the
input strings which are not right maximal in the concatenation S = s1$ . . . sm$
can never be a prefix of any of the input strings. The reason is that if α is not
right-maximal, then α is always followed by the separator $. This means that if
α is also a prefix of some other string sj , then sj = α, because the only prefix of
sj that is followed by a $ is the whole string sj . But then sj is a substring of si,
which can not happen because all such strings were removed in the preprocessing
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stage. Thus, we can safely disregard any suffix α of si that is not right maximal in
S. Furthermore, if a suffix α of si is not right maximal, then none of the suffixes
βα are right-maximal either, so we can disregard those, too.

We initialize the iterator for each string si by backward searching si using
the FM-index for as long as the current suffix of si is right-maximal. Next we
sort these quadruples in the decreasing order of depth into an array iterators.
When this is done, we start iterating from the iterator with the largest depth,
i.e. the first element of iterators. Suppose the current iterator corresponds to
string i, and the current suffix of string si is α. At each step of the iteration
we check whether α is also a prefix of some string by executing a left extension
with the separator character $. If the lexicographic range [�′, r′] of $α is non-
empty, we know that the suffixes of S in the range [�′, r′] start with a dollar
and are followed by a string that has α as a prefix. We conclude that the input
string with lexicographic rank i among the input strings has a suffix of length
d that matches a prefix of the strings with lexicographic ranks �′, . . . , r′ among
the input strings. This is true because the lexicographic order of the suffixes of
S that start with dollars coincides with the lexicographic ranks of the strings
following the dollars in the concatenation, because the strings are concatenated
in lexicographic order.

Thus, according to the greedy heuristic, we should try to merge si with a
string from the set s�′ , . . . , sr′ , which corresponds to adding an edge from si to
some string from s�′ , . . . , sr′ in the graph G. We describe how we maintain the
graph G in a moment. After updating the graph, we update the current iterator
by decreasing d by one and taking a suffix link of the lexicographic range [�, r].
The iterator with the next largest d can be found in constant time because the
array iterators is initially sorted in descending order of depth. We can maintain
a pointer to the iterator with the largest d. If at some step iterators[k] has
the largest depth, then in the next step either iterators[k +1] or iterators[1]
has the largest depth. The pseudocode for the main iteration loop is shown in
Algorithm 1.

Now we describe how we maintain the graph G. The range [�′, r′] now
represents the lexicographical ranks of the input strings that are prefixed by
α among all input strings. Each string sj in this range is a candidate to
merge to string si, but some bookkeeping is needed to keep track of avail-
able strings. We use essentially the same method as Tarhio and Ukkonen [14].
We have bit vectors leftavailable[1..m] and rightavailable[1..m] such that
leftavailable[k] = 1 if and only if string sk is available to use as the left side
of a merge, and rightavailable[k] = 1 if and only if string sk is available as the
right side of a merge. Equivalently, leftavailable[k] = 1 iff the out-degree of sk

is zero and rightavailable[k] = 1 if the in-degree of sk is zero. Also, to prevent
the formation of a cycle, we need arrays leftend[1..m], where leftend[k] gives the
leftmost string of the chain of merged strings to the left of sk, and rightend[1..m],
where rightend[k] gives the rightmost string of the chain of merged strings to
the right of sk. We initialize leftavailable[k] = rightavailable[k] = 1 and
leftend[k] = rightend[k] = k for all k = 1, . . . , m.
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Algorithm 1. Iterating all prefix-suffix overlaps
k ← 1
while iterators[k].d ≥ 0 do

(i, [�, r], d) ← iterators[k]
[�′, r′] ← leftextend([�, r], $)
if [l′, r′] is non empty then

trymerge([l′, r′], i)
end
iterators[k] ← (i, suffixlink(�, r), d − 1)
if i = m or (iterators[1].d > iterators[i + 1].d) then

k ← 1
else

else k ← k + 1
end

end

When we get the interval [�′, r′] such that leftavailable[j] = 1, we try to
find an index j ∈ [�$α, r$α] such that rightavailable[i] = 1 and leftend[j] �= i.
Luckily we only need to examine at most two indices j and j′ such that
rightavailable[j] = 1 and rightavailable[j′] = 1 because if leftend[j] = i,
then leftend[j′] �= i, and vice versa. This procedure is named trymerge([l′, r′], i)
in Algorithm 1.

The problem is now to find up to two ones in the bit vector rightavailable
in the interval of indices [�$α, r$α]. To do this efficiently, we maintain for each
index k in rightavailable the index of the first one in rightavailable[k +
1..m], denoted with next one(k). If there are two ones in the interval [�$α, r$α],
then they can be found at next one(�$α − 1) and next one(next one(�$α − 1)).
The question now becomes, how do we maintain this information efficiently?
In general, this is the problem of indexing a bit vector for dynamic successor
queries, for which there does not exist a constant time solution using O(n log σ)
space in the literature. However, in our case the vector rightavailable starts
out filled with ones, and once a one is changed to a zero, it will not change back
for the duration of the algorithm, which allows us to have a simpler and more
efficient data structure.

Initially, next one(k) = k + 1 for all k < m. The last index does not
have a successor, but it can easily be handled as a special case. For clarity
and brevity we describe the rest of the process as if the special case did not
exist. When we update rightavailable(k) := 0, then we need to also update
next one[k′] := next one(k) for all k′ < k such that rightavailable[k′ + 1..k]
contains only zeros. To do this efficiently, we store the value of next one only
once for each sequence of consecutive zeros in rightavailable, which allows us
to update the whole range at once. To keep track of the sequences of consecu-
tive zeros, we can use a union-find data structure. A union-find data structure
maintains a partitioning of a set of elements into disjoint groups. It supports the
operations find(x), which returns the representative of the group containing x,
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and union(x, y), which takes two representatives and merges the groups
containing them.

We initialize the union-find structure such that there is an element for every
index in rightavailable, and we also initialize an array next[1..m] such that
next[k] := k+1 for all k = 1, . . . m. When a value at index k is changed to a zero,
we compute q := next[find(k)]. Then we will do union(find(k), find(k − 1))
and if rightavailable[k + 1] = 0, we will do union(find(k), find(k + 1)).
Finally, we update next[find(k)] = q. We can answer queries for next one(k)
with next[find(k)].

Whenever we find a pair of indices i and j such that leftavailable[i] = 1,
rightavailable[j] = 1 and leftend[j] �= i, we add an edge from si to sj by
recording string j as the successor of string i using arrays successor[1..m] and
overlaplength[1..m]. We set successor[j] = i and overlaplength[j] = di,
where di is the length of the overlap of si and sj , and do the updates:

leftavailable[i] := 0
rightavailable[j] := 0

leftend[rightend[j]] := leftend[i]
rightend[leftend[i]] := rightend[j]

Note that the arrays leftend and rightend are only up to date for the end
points of the paths, but this is fine for the algorithm. Finally we update the
next array with the union-find structure using the process described earlier.
We stop iterating when we have done m − 1 merges. At the end, we have a
Hamiltonian path over G, and we form a superstring by merging the strings in
the order specified by the path.

5 Time and Space Analysis

The following space analysis is in terms of number of bits used. We assume that
the strings are binary encoded such that each character takes �log2 σ� bits. A
crucial observation is that we can afford to store a constant number of O(log n)
bit machine words for each distinct input string.

Lemma 1. Let there be m distinct non-empty strings with combined length n
measured in bits from an alphabet of size σ > 1. Then m log n ∈ O(n log σ).

Proof. Suppose m ≤ √
n. Then the Lemma is clearly true, because:

m log n ≤ √
n log n ∈ O(n log σ)

We now consider the remaining case m ≥ √
n, or equivalently log n ≤ 2 log m.

This means m log n ≤ 2m log m, so it suffices to show m log m ∈ O(n log σ).
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First, note that at least half of the strings have length at least log(m)−1 bits.
This is trivially true when log(m) − 1 ≤ 1. When log(m) − 1 ≥ 2, the number of
distinct binary strings of length at most log(m) − 2 bits is

�log(m)−2�∑

i=1

2i ≤ 2log(m)−1 =
1
2
m

Therefore indeed at least half of the strings have length of at least log m − 1 bits.
The total length of the strings is then at least 1

2m(log m−1) bits. Since the binary
representation of all strings combined takes n�log2 σ� bits, we have n�log2 σ� ≥
1
2m(log m − 1), which implies m log m ≤ 2n�log2 σ� + 1 ∈ O(n log σ). �


Next, we describe how to implement the suffix links and left extensions. We
will need to build the following data structures for the concatenation of all input
strings separated by a separator character:

– The Burrows-Wheeler transform, represented as a wavelet tree with support
for rank and select queries.

– The C-array, which has length equal to the number of characters in the con-
catenation, such that C[i] is the number of occurrences of characters with
lexicographic rank strictly less than i.

– The balanced parenthesis representation of the suffix tree topology with sup-
port for queries for leftmost leaf, rightmost leaf and lowest common ancestor.

Note that in the concatenation of the strings, the alphabet size is increased
by one because of the added separator character, and the total length of the data
in characters is increased by m. However this does not affect the asymptotic size
of the data, because

(n + m) log(σ + 1) ≤ 2n(log σ + 1) ∈ Θ(n log σ)

The three data structures can be built and represented in O(n log σ) time and
space [1]. Using these data structures we can implement the left extension for
lexicographic interval [�, r] with the character c by:

([�, r], c) �→ [C[c] + rankBWT (�, c), C[c] + rankBWT (r, c)]

We can implement the suffix link for the right maximal string cα with the lexi-
cographic interval [�, r] by first computing

v = lca(selectBWT (c, � − C[c]), selectBWT (c, r − C[c]))

and then
[�, r] �→ [leftmostleaf(v), rightmostleaf(v)]

This suffix link operation works as required for right-maximal strings by remov-
ing the first character of the string, but the behaviour on non-right-maximal
strings is slightly different. The lexicographic range of a non-right-maximal string
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is the same as the lexicographic range of the shortest right-maximal string that
has it as a prefix. In other words, for a non-right-maximal string cα, the operation
maps the interval [�cα, rcα] to the lexicographic interval of the string αβ, where
β is the shortest right-extension that makes cαβ right-maximal. This behaviour
allows us to check the right-maximality of a substring cα given the lexicographic
ranges [�α, rα] and [�cα, rcα] in the iterator initialization phase of the algorithm
as follows:

Lemma 2. The substring cα is right maximal if and only if the suffix link of
[�cα, rcα] is [�α, rα].

Proof. As discussed above, the suffix link of [�cα, rcα] maps to the lexicographic
interval of the string αβ where β is the shortest right-extension that makes cαβ
right-maximal. Suppose first that cα is right-maximal. Then [�αβ , rαβ ] = [�α, rα],
because β is an empty string. Suppose on the contrary that cα is not right-
maximal. Then [�αβ , rαβ ] �= [�α, rα], because αβ and α are distinct right-maximal
strings. �

Now we are ready to prove the time and space complexity of the whole algorithm.

Theorem 3. The algorithm in Sect. 4 can be implemented in O(n log σ) time
and O(n log σ) bits of space.

Proof. The preprocessing to remove contained and duplicate strings can be done
in O(n log σ) time and space for example by building an FM-index, and backward
searching all input strings.

The algorithm executes O(n) left extensions and suffix links. The time to
take a suffix link is dominated by the time do the select query, which is O(log σ),
and the time to do a left extension is dominated by the time to do a rank-query
which is also O(log σ). For each left extension the algorithm does, it has to
access and modify the union-find structure. Normally this would take amortized
time related to the inverse function of the Ackermann function [2], but in our
case the amortized complexity of the union-find operations can be made linear
using the construction of Gabow and Tarjan [3], because we know that only
elements corresponding to consecutive positions in the array rightavailable
will be joined together. Therefore, the time to do all left extensions, suffix links
and updates to the union-find data structure is O(n log σ).

Let us now turn to consider the space complexity. For each input string,
we have the quadruple (i, �, r, d) of positive integers with value at most n. The
quadruples take space 3m log m + m log n. The union-find structure of Gabow
and Tarjan can be implemented in O(m log m) bits of space [3]. The bit vec-
tors leftavailable and rightavailable take exactly 2m bits, and the arrays
successor, leftend, rightend and next take m log m bits each. The array
overlaplength takes m log n bits of space. Summing up, in addition to the data
structures for the left extensions and contractions, we have only O(m log n) bits
of space, which is O(n log σ) by Lemma 1. �
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6 Implementation

The algorithm was implemented with the SDSL library [5]. A compressed suffix
tree that represents nodes as lexicographic intervals [10] was used to implement
the suffix links and left extensions. Only the required parts of the suffix tree were
built: the FM-index, balanced parentheses support and a bit vector that indi-
cates the leftmost child node of each node. These data structures differ slightly
from the description in Sect. 5, because they were chosen for convenience as they
were readily available in the SDSL library, and they should give very similar
performance compared to those used in the aforementioned Section. In partic-
ular, the leftmost child vector was needed to support suffix links, but we could
manage without it by using the operations on the balanced parenthesis support
described in Sect. 5. Our implementation is available at the URL https://github.
com/tsnorri/compact-superstring

The input strings are first sorted with quicksort. This introduces a log n factor
to the time complexity, but it is fast in practice. The implementation then runs in
two passes. First, exact duplicate strings are removed and the stripped compact

Fig. 1. Memory breakdown of the data structures used by our implementation. The
plot was generated using the SDSL library. Each sector angle represents the portion of
the memory taken by the data structure of the total memory of the inner data structure;
areas have no special meaning. Abbreviations: CST = compressed suffix tree, BWT =
Burrows-Wheeler Transform, BP = balanced parenthesis, FC = first child.

https://github.com/tsnorri/compact-superstring
https://github.com/tsnorri/compact-superstring
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(a) Peak memory (b) Time consumption

Fig. 2. (a) The peak memory usage of our algorithm plotted against a conservative
estimate of 4n log n bits of space needed by Ukkonen’s Aho-Corasick based method.
(b) the time usage of our algorithm for the two phases of the algorithm. The data
points have been fitted with a least-squares linear model, and the grey band shows the
95% confidence interval (large enough to be visible only for the second phase). The
time and memory usage were measured using the /usr/bin/time command and the
RSS value.

suffix tree is built from the remaining strings. The main algorithm is implemented
in the second part. The previously built stripped suffix tree is loaded into memory
and is used to find the longest right-maximal suffix of each string and to iterate
the prefix-suffix overlaps. Simultaneously, strings that are substrings of other
strings are marked for exclusion from building the superstring.

For testing, we took a metagenomic DNA sample from a human gut microbial
gene catalogue project [12], and sampled DNA fragments to create five datasets
with 226+i characters respectively for i = 0, . . . , 4. The alphabet of the sample
was {A,C,G, T,N}. Time and space usage for all generated datasets for both
the index construction phase and the superstring construction phase are plotted
in Fig. 2. The machine used run Ubuntu Linux version 16.04.2 and has 1.5 TB of
RAM and four Intel Xeon CPU E7-4830 v3 processors (48 total cores, 2.10 GHz
each). A breakdown of the memory needed for the largest dataset for the different
structures comprising the index is shown in Fig. 1.

While we don’t have an implementation of Ukkonen’s greedy superstring
algorithm, have a conservative estimate for how much space it would take. The
algorithm needs at least the goto- and failure links for the Aho-Corasick automa-
ton, which take at least 2n log n bits total. The main algorithm uses linked lists
named L and P , which take at least 2n log n bits total. Therefore the space usage
is at the very least 4n log n. This estimate is plotted in Fig. 2.

Figure 3 shows the space usage of our algorithm in the largest test dataset
as a function of time reported by the SDSL library. The peak memory usage
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Fig. 3. Subfigures (a) and (b) show the memory usage as a function of time for index
construction and superstring construction, respectively. The peak in Figure (a) occurs
during suffix array construction, and the peak in Figure (b) occurs during the iteration
of prefix-suffix overlaps.

of the whole algorithm occurs during index construction, and more specifically
during the construction of a compressed suffix array. The SDSL library used this
data structure to build the BWT and the balanced parenthesis representation,
which makes the space usage unnecessarily high. This could be improved by
using more efficient algorithms to build the BWT and the balanced parenthesis
representation of the suffix tree topology [1]. These could be plugged in to bring
down the index construction memory. At the moment index constructions takes
roughly 19 times the size of the input in bits. The peak memory of the part of
the algorithm which constructs the superstring is only approximately 5 times
the size of the input in bits.
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7 Discussion

We have shown a practical way to implement the greedy shortest common super-
string algorithm in O(n log σ) time and bits of space. After index construction,
the algorithm consists of two relatively independent parts: reporting prefix-suffix
overlaps in decreasing order of lengths, and maintaining the overlap graph to
prevent merging a string to one direction more than once and the formation of
cycles. The part which reports the overlaps could also be done in other ways,
such as using compressed suffix trees or arrays, or a succinct representation of
the Aho-Corasick automaton. The only difficult part is to avoid having to hold
Ω(n) integers in memory at any given time. We believe it is possible to engineer
algorithms using these data structures to achieve O(n log σ) space as well.

Regrettably, we could not find any linear time implementations of Ukkonen’s
greedy shortest common superstring algorithm for comparison. There is an inter-
esting implementation by Liu and Sýkora [7], but it is too slow for our purposes
because it involves computing all pairwise overlap lengths of the input strings
to make better choices in resolving ties in the greedy choices. While their exper-
iments indicate that this improves the quality of the approximation, the time
complexity is quadratic in the number of input strings. Zaritsky and Sipper [17]
also have an implementation of the greedy algorithm, but it’s not publicly avail-
able, and the focus of the paper is on approximation quality, not performance.
As future work, it would be interesting to make a careful implementation of
Ukkonen’s greedy algorithm, and compare it to ours experimentally.

Acknowledgements. We would like to thank anonymous reviewers for improving the
presentation of the paper.
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Abstract. It is well known that the longest common factor (LCF) of
two strings over an integer alphabet can be computed in time linear
in the total length of the two strings. Our aim here is to present an
algorithm that preprocesses two strings S and T in order to answer
the following type of queries: Given a position i on S and a letter α,
return an LCF of T and S′, where S′ is the string resulting from S after
substituting S[i] with α. In what follows, we present an algorithm that,
given two strings of length at most n, constructs in O(n log4 n) expected
time a data structure of O(n log3 n) space that answers such queries in
O(log3 n) time per query. After some trivial modifications, our approach
can also support the case of single letter insertions or deletions in S.
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1 Introduction

In this work we consider strings over an integer alphabet. The longest common
factor (LCF), also known as longest common substring, of two strings S and T ,
each of length at most n, can be computed in O(n) time [5,11,12,15]. The LCF
with k-mismatches problem has received much attention recently, in particular
due to its applications in computational molecular biology [13,17]. We refer the
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Our motivation comes mainly from [14]; the author mentions that the solu-
tion to the LCF problem “is not robust and can vary significantly when the
input strings are changed even by one letter”. Somewhat surprisingly, however,
dynamic instances of the LCF problem have not yet been studied thoroughly to
the best of our knowledge. In this paper, we aim at initiating a line of research
on this general version of the problem, by presenting a solution for the restricted
case, where any single edit operation is allowed. In what follows, we focus on the
case of a letter substitution; insertions and deletions can be handled analogously.

Given two strings S and T over an integer alphabet, each of length at most
n, one may ask the following question: How fast can we find an LCF of S and
T after a single letter substitution? For instance, after substituting S[i] with
letter α. The goal is to preprocess S and T so that we do not need Ω(n) time to
compute an LCF for each such query. A näıve solution is to precompute an LCF
for all Θ(σn) possible substitutions in Θ(σn2) time and then be able to answer
any such query in O(1) time per query, where σ is the size of the alphabet.

Hence, for q such queries, computations can be done trivially in either O(qn)
time (directly) or in O(σn2 + q) total time—this includes the O(σn2) time for
preprocessing. We thus aim at an algorithm that will require tp = o(σn2) pre-
processing time and tq = o(n) querying time. We will then be able to answer q
such queries in O(tp + qtq) time, hence being more efficient than the aforemen-
tioned solutions, depending on the number q of queries to be answered.

Our Contribution. We present a data structure for solving the problem of
LCF after a single letter substitution for two strings, each of length at most n,
over an integer alphabet. Specifically, our construction requires tp = O(n log4 n)
expected preprocessing time and O(n log3 n) space. After this preprocessing, the
answer to any subsequent query for i and α is computed in tq = O(log3 n) time.

2 Preliminaries

We begin with basic definitions and notation generally following [6]. Let S =
S[1]S[2] . . . S[n] be a string of length |S| = n over a finite ordered alphabet. We
consider integer alphabets, i.e. Σ of size |Σ| = σ = nO(1). By ε we denote an
empty string. For two positions i and j on S, we denote by S[i . . j] = S[i] . . . S[j]
the factor (sometimes called substring) of S that starts at position i and ends at
position j (it equals ε if j < i). We recall that a prefix of S is a factor that starts
at position 1 (S[1 . . j]) and a suffix is a factor that ends at position n (S[i . . n]).
We denote the reverse string of S by SR, i.e. SR = S[n]S[n − 1] . . . S[1].

Let Y be a string of length m with 0 < m ≤ n. We say that there exists an
occurrence of Y in S, or, more simply, that Y occurs in S, when Y is a factor of
S. Every occurrence of Y can be characterised by a starting position in S. We
thus say that Y occurs at the starting position i in S when Y = S[i . . i+m− 1].

Given two strings S and T , a string Y that occurs in both is a longest
common factor (LCF) of S and T if there is no longer factor of T that is also
a factor of S; note that S and T can have multiple LCFs. We introduce a
natural representation of an LCF of S and T as a triple (m, p, q) such that
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S[p . . p+m− 1] = T [q . . q +m− 1] is an LCF of S and T . The problem in scope
can be formally defined as follows; see also Table 1 for an example.

LCF After One Substitution
Input: Two strings S and T .
Query: LCF(i, α) that represents an LCF of S′ and T , where S′[i] = α and
S′[j] = S[j], for all 1 ≤ j ≤ |S|, j �= i.

Table 1. Answers to all LCF(i, α) queries for S = baccb and T = baacca over alphabet
Σ = {a, b, c}. In each case the corresponding LCF string is shown.

α i

1 2 3 4 5

a (4,1,2) aacc (3,2,3) acc (4,1,1) baac (2,3,5) ca (4,2,3) acca

b (3,2,3) acc (2,3,4) cc (2,1,1) ba (2,2,3) ac (3,2,3) acc

c (3,2,3) acc (2,3,4) cc (3,2,3) acc (3,2,3) acc (3,2,3) acc

Suffix Tree and Suffix Array. The suffix tree T (S) of a non-empty string S
of length n is a compact trie representing all suffixes of S. The branching nodes
of the trie as well as the terminal nodes, that correspond to suffixes of S, become
explicit nodes of the suffix tree, while the other nodes are implicit. Each edge
of the suffix tree can be viewed as an upward maximal path of implicit nodes
starting with an explicit node. Moreover, each node belongs to a unique path of
that kind. Thus, each node of the trie can be represented in the suffix tree by
the edge it belongs to and an index within the corresponding path. We let L(v)
denote the path-label of a node v, i.e., the concatenation of the edge labels along
the path from the root to v. We say that v is path-labelled L(v). Additionally,
D(v) = |L(v)| is used to denote the string-depth of node v. A terminal node
v such that L(v) = S[i . . n] for some 1 ≤ i ≤ n is also labelled with index i.
It should be clear that each factor of S is uniquely represented by either an
explicit or an implicit node of T (S), called its locus. In standard suffix tree
implementations, we assume that each node of the suffix tree is able to access its
parent. Once T (S) is constructed, it can be traversed in a depth-first manner to
compute the string-depth D(v) for each node v. It is known that the suffix tree
of a string of length n, over an integer ordered alphabet, can be computed in
time and space O(n) [7]. In the case of integer alphabets, in order to access the
child of an explicit node by the first letter of its edge label in O(1) time, perfect
hashing [9] can be used.

The suffix array of a non-empty string S of length n, denoted by SA(S), is an
integer array of size n+1 storing the starting positions of all (lexicographically)
sorted suffixes of S, i.e. for all 1 < r ≤ n + 1 we have S[SA(S)[r − 1] . . n] <
S[SA(S)[r] . . n]. Note that we explicitly add the empty suffix to the array. The
suffix array SA(S) corresponds to a pre-order traversal of all terminal nodes
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of the suffix tree T (S). The inverse iSA(S) of the array SA(S) is defined by
iSA(S)[SA(S)[r]] = r, for all 1 ≤ r ≤ n + 1.

Algorithmic Tools for Trees. Let T be a rooted tree with integer weights
on nodes. We require that the weight of the root is zero and the weight of any
other node is strictly greater than the weight of its parent. We say that a node
v is a weighted ancestor of a node u at depth � if v is the highest ancestor of u
with weight of at least �.

Lemma 1 ([2]). After O(n)-time preprocessing, weighted ancestor queries for
nodes of a tree T of size n can be answered in O(log log n) time per query.

The following corollary applies Lemma 1 to the suffix tree.

Corollary 2. The locus of any factor S[i . . j] in T (S) can be computed in
O(log log n) time after O(n)-time preprocessing.

Let us also recall the notion of heavy-path decomposition. Consider a rooted
tree T . For each non-leaf node u of T , the heavy edge (u, v) is an edge for which
the subtree rooted at v has the maximal number of leaves (in case of several such
subtrees, we fix one of them). A heavy path is a maximal path of heavy edges.

Let π be a heavy path and u be its topmost node. Assume that u contains
m leaves in its subtree. We then denote by L(π) the level of the path π, which
is equal to log m1. The crucial property of heavy-path decompositions can be
stated as follows.

Observation 1. For any leaf v of T , the levels of all heavy paths visited on the
path from v to the root of T are distinct.

Range Maxima in 2-d. Assume we are given a collection P of n points in
a 2-d grid with integer weights of magnitude O(n). In a 2-d range maximum
query RMQ(P, [a, b] × [c, d]), given a rectangle [a, b] × [c, d], we are to report the
maximum weight of a point from P in the rectangle. We assume that the point
that attains this maximum is also computed.

Lemma 3 ([1]). Range maximum queries over a set of n weighted points in 2-d
can be answered in O(log n) time with a data structure of size O(n log n) that
can be constructed in O(n log2 n) expected time.

Among orthogonal range searching problems one can also consider the so-
called range emptiness queries, in which we are only to check if any of the n
points is located inside a query rectangle. Such queries are obviously a special
case of 2-d range maximum queries.

1 Throughout the paper we assume that log m denotes the binary logarithm of m
rounded down to the nearest integer.
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3 Two Auxiliary Problems

We assume throughout the paper that both strings S and T are over an integer
alphabet Σ and that each of them has length at most n. We can decompose the
problem in scope into the following two subproblems; we then only need to take
the maximum. See also Tables 2 and 3 for an example.

LCF Avoiding i
Input: Two strings S and T .
Output: An array LCF1 of size |S| such that LCF1[i] represents a longest
factor Y common to S and T such that Y occurs in S at some position p,
where p ≤ i − |Y | or p > i.

Table 2. The LCF1[i] array for S = baccb and T = baacca. The auxiliary arrays that
are used to compute it in Sect. 4 are also presented.

i 1 2 3 4 5

LCF1[i] (3,2,3) acc (2,3,4) cc (2,1,1) ba (2,2,3) ac (3,2,3) acc←−−
LCF1[i] (1,1,1) b (2,1,1) ba (2,2,3) ac (3,2,3) acc−−→
LCF1[i] (3,2,3) acc (2,3,4) cc (1,5,1) b (1,5,1) b

LCF Including S[i]:=α
Input: Two strings S and T .
Query: LCF2(i, α) that represents an LCF Y of S′ and T , where S′[i] = α
and S′[j] = S[j], for all 1 ≤ j ≤ |S|, j �= i, such that Y occurs in S′ at some
position p ∈ {i − |Y | + 1, . . . , i}.

Table 3. Answers to all LCF2(i, α) queries for S = baccb and T = baacca.

α i

1 2 3 4 5

a (4,1,2) aacc (3,2,3) acc (4,1,1) baac (2,3,5) ca (4,2,3) acca

b (2,1,1) ba (1,2,1) b (1,3,1) b (1,4,1) b (1,5,1) b

c (2,1,5) ca (2,2,4) cc (3,2,3) acc (3,2,3) acc (2,4,4) cc

Observation 2. Suppose that we replace S[i] by α. If this gives us a longer
common factor than an LCF of S and T , this has to contain position i of S.

We first build T (X), where X = T#S and # �∈ Σ is a letter that is lexi-
cographically smaller than all the letters of Σ. We then store for every node of
T (X) whether it has descendants from S, T , or both and a starting position
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in each case; we can do this by performing a depth-first traversal. We further
preprocess T (X) in O(n) time so that we can answer lowest common ances-
tor (LCA) queries for any pair of explicit nodes in O(1) time per query [4].
We construct and preprocess in the same manner the suffix tree T (XR), where
XR = SR#TR. There will be more preprocessing that will be described later.

4 LCF Avoiding i

In this section we present an algorithm for determining an LCF of S and T
avoiding position i in S. It is clear that this is the longest between an LCF
of S[1 . . i − 1] and T and an LCF of S[i + 1 . . |S|] and T . Let us denote the
representation of the former by

←−−
LCF1[i − 1] and the representation of the latter

by
−−→
LCF1[i + 1]; see also Table 2 for an example. We will show how to efficiently

compute
−−→
LCF1[i] for all i = |S|, . . . , 2.

We denote the length of the longest common prefix of two strings W and
Y by lcp(W,Y ). Further we will also use the notation lcs(W,Y ) to denote the
length of the longest common suffix of W and Y . Let us make the following
observation.

Observation 3. If for a pair (p, q) with i ≤ p ≤ |S| and 1 ≤ q ≤ |T | we have

m = lcp(S[p . . |S|], T [q . . |T |]) = max
i≤j≤|S|
1≤k≤|T |

{lcp(S[j . . |S|], T [k . . |T |])},

then S[p . . p + m − 1] = T [q . . q + m − 1] is an LCF of S[i . . |S|] and T .

We first traverse T (X) in a depth-first manner in order to store, for every
explicit node u, the maximal length �(u) of the longest common prefix of L(u)
and any suffix of T and a position t(u) of T where the maximum is attained. If
a node u has descendants from T , then clearly �(u) = D(u) and t(u) is already
stored. Whenever we reach a node u that does not have descendants from T , we
set the values �(u) and t(u) equal to these of u’s explicit parent.

To compute the array
−−→
LCF1, we go through the terminal nodes of T (X) that

represent suffixes of S in increasing order with regards to the length of the suffix
they represent. We initialize variables lcf = p = q = 0. When processing node u,
with L(u) = S[i . . |S|], we first check whether �(u) > lcf; if so, we set lcf = �(u),
p = i and q = t(u). Then, based on Observation 3, we set

−−→
LCF1[i] = (lcf, p, q).

The computation of
←−−
LCF1[i] for i = 1, . . . , |S|−1 can be done in a symmetric

way by employing T (XR). Finally, we compare
←−−
LCF1[i− 1] with

−−→
LCF1[i+ 1] and

store the longer one as LCF1[i]. We thus arrive at the following result.

Lemma 4. Problem LCF Avoiding i can be solved in O(n) time and space.
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5 LCF Including S[i]:=α

We first compute two factors, P and Q, of T :

– P is the longest factor of T that is equal to a suffix of S[1 . . i − 1]α;
– Q is the longest factor of T that is equal to a prefix of S[i + 1 . . |S|].

In addition to P and Q, we will also compute the locus p of PR in T (XR) and
the locus q of Q in T (X). Note that q is an explicit node of T (X), however, p
need not be an explicit node of T (XR). We first compute the locus p′ of P in
T (X) (which may be implicit as well).

The locus p′ is computed by performing binary search on S[1 . . i−1]. We first
identify the locus of S[�i/2� . . i−1] in T (X). If it is explicit, we check whether it
has an outgoing edge with label α and if the explicit node we obtain by following
this edge has descendants in T . If it is implicit, we check if the next letter on
the path-label of the edge is α and whether the explicit node to which this edge
points has descendants in T . If the corresponding check succeeds, we look at the
locus of S[�i/4� . . i−1], otherwise we look at the locus of S[�3i/4� . . i−1]; and so
on. The whole binary search works in O(log n log log n) time using Corollary 2.

Recall that for the closest explicit descendant of p′ we store the starting
position of some occurrence of the corresponding factor in X. We can then use
this information to find the locus p of PR in T (XR) in O(log log n) time using
Corollary 2.

Finally, the locus q of Q in T (X) can be analogously computed by binary
search on S[i + 1 . . |S|] in O(log n log log n) time.

Let us note that LCF2(i, α) corresponds to the longest factor of T that is
composed by concatenating a suffix of P with a prefix of Q. We say that a
node u of T (XR) with path-label U and a node v of T (X) with path-label V
are T -attached if and only if URV is a factor of T . We thus aim at finding an
ancestor u of p in T (XR) and an ancestor v of q in T (X) such that u and v are
T -attached and the sum D(u) + D(v) of string-depths is maximal.

5.1 Õ(|P |)-Time Query

In this section we show how to find the desired pair of T -attached nodes (u, v)
in Õ(D(p)) = Õ(|P |) time2. We improve this solution in the next subsection.

Recall that SA(T ) and SA(TR) are the suffix arrays of T and TR, respectively.
Note that SA(T ) (resp. SA(TR)) corresponds to a pre-order traversal of all the
terminal nodes of T (X) (T (XR)) that are loci of suffixes of T concatenated with
#S (loci of suffixes of TR). For each explicit node v of T (X) we precompute a
range rangeT (v) of SA(T ) that corresponds to suffixes of T that start with L(v).
Similarly, for each explicit node u of T (XR) we precompute a range rangeTR(u)
of SA(TR) that corresponds to suffixes of TR that start with L(u). The precom-
putations can be done via bottom-up traversals of T (X) and T (XR) in O(n)
time. For T (X), the range of every explicit node is computed by summing the

2 Throughout the paper Õ notation suppresses logO(1) n factors.
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ranges of its explicit children. Additionally, for a terminal node being a locus of a
suffix T [j . . |T |]#S we extend its range by the element iSA(T )[j]. The computa-
tions for T (XR) are analogous. The ranges of implicit nodes of T (X) and T (XR)
are defined as the corresponding ranges of their closest explicit descendants.

We can use the ranges to state an equivalent condition on when two nodes
are T -attached:

Observation 4. Node u of T (XR) and node v of T (X) are T -attached if
and only if there exist integers i ∈ rangeTR(u) and j ∈ rangeT (v) such that
SA(TR)[i] = |T | + 2 − SA(T )[j].

It turns out that the problem of checking if two nodes are T -attached can
be reduced to a 2-d range emptiness query. Indeed, let us consider a (|T | + 1) ×
(|T | + 1) grid. We create a collection P of |T | + 1 points from the grid; for each
position j in T , j ∈ {1, . . . , |T | + 1}, we select the point:

( iSA(TR)[|T | + 2 − j], iSA(T )[j] ).

Intuitively, the dimensions of the grid correspond to SA(TR) and SA(T ) and the
points that are selected correspond to pairs of suffixes: TR[|T | + 2 − j . . |T |] =
(T [1 . . j − 1])R and T [j . . |T |]. Observation 5 is a reformulation of Observation 4
in terms of range emptiness queries in P.

Observation 5. Node u of T (XR) and node v of T (X) are T -attached if and
only if the rectangle rangeTR(u) × rangeT (v) contains a point from P.

Example 5. Consider the string T = baacca from Tables 1, 2 and 3. Then:

SA(TR) = 7 (ε), 4 (aab), 5 (ab), 1 (accaab), 6 (b), 3 (caab), 2 (ccaab)
SA(T ) = 7 (ε), 6 (a), 2 (aacca), 3 (acca), 1 (baacca), 5 (ca), 4 (cca)

The points from the set P on the 7 × 7 grid are shown on the figure below.

1 2 3 4 5 6 7
1

2

3

4

5

6

7

iSA(TR)[8 − j]

iSA(T )[j]

Consider node u of T (XR) such that L(u) = a and node v of T (X) such that
L(v) = c. Then rangeTR(u) = [2, 4] and rangeT (v) = [6, 7]. The corresponding
rectangle rangeTR(u) × rangeT (v) contains a single point (2, 7) from P which
corresponds to the second suffix in SA(TR), which is Y = aab, and the seventh
suffix in SA(T ), which is Z = cca. Note that, indeed, Y starts with an a, Z
starts with a c and Y RZ = T . Hence, u and v are T -attached.
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From the previous subsection we know that we need to find an ancestor u of
p in T (XR) and an ancestor v of q in T (X) such that u and v are T -attached
and D(u) + D(v) is maximal. To find the desired nodes, we examine each node
u on the path from p to the root of T (XR) and apply binary search to find the
deepest node v on the path from q to the root of T (X) such that u and v are
T -attached. There are |P | binary searches to perform, each of which has O(log n)
steps. In each such step we first locate the required node in O(log log n) time by
Corollary 2 and then check if the two nodes are T -attached via Observation 5
using a range emptiness query which takes O(log n) time by Lemma 3. In total,
we arrive at an O(|P | log2 n)-time computation of LCF2(i, α).

5.2 Õ(1)-Time Query

Main Idea. In order to drop the |P | factor from the complexity, we make use
of the heavy-path decompositions of T (XR) and T (X). For each heavy path,
we store its level. Moreover, each explicit node w of T (XR) and T (X) stores
the topmost node top(w) of its heavy path. For simplicity we first assume that
p is explicit in T (XR) (recall that q is explicit in T (X)); we then discuss how
to tackle the case of p being implicit. By Observation 4, the sought node v is
always explicit and u may be implicit only if p is implicit and u is on the same
edge of T (XR) as p.

The path from p to the root of T (XR) is composed of prefix fragments of at
most log n+1 heavy paths interleaved by single non-heavy (compact) edges. Here a
prefix fragment of a pathπ is a path connecting the topmost node ofπ with any of its
explicit nodes.Wedenote this decompositionbyH(p); note that it canbe computed
in O(log n) time by using the top-pointers of nodes, starting from p. Similarly, we
can decompose the path from q to the root of T (X) into a collection H(q) of at most
log n+1 prefix fragments of heavy paths in O(log n) time. For each of the O(log2 n)
pairs of prefix fragments of heavy paths π′

1 ∈ H(p) and π′
2 ∈ H(q) we will check if

there are any T -attached nodes u ∈ π′
1 and v ∈ π′

2 and, if so, find the maximum
value of D(u) + D(v) among such pairs.

Precomputations. We consider the same 2-d grid as described in the previous
subsection with O(log2 n) collections of points being copies of the collection P;
they are denoted by P(I)

a,b , P(II)
a , P(III)

b , P(IV ) for a, b = 0, . . . , log n. The points
in the respective collections have the following weights:

– (j, k) ∈ P(I)
a,b : D(u)+D(v) where u is the lowest node on a heavy path of level

a in T (XR) such that j ∈ rangeTR(u) and v is the lowest node on a heavy
path of level b in T (X) such that k ∈ rangeT (v);

– (j, k) ∈ P(II)
a : D(u) where u is the lowest node on a heavy path of level a in

T (XR) such that j ∈ rangeTR(u);
– (j, k) ∈ P(III)

b : D(v) where v is the lowest node on a heavy path of level b in
T (X) such that k ∈ rangeT (v);

– each point in P(IV ) has a unit weight.
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By Observation 1, the heavy paths in each case, if they exist, are determined in
a unique way by j and k. If any of the nodes u or v does not exist, we set its
depth D to −∞. Note that each of the nodes u and v, if it exists, is explicit in
T (XR) and T (X), respectively.

The total size of the collections of points is O(n log2 n). We further have:

Lemma 6. Weights of the points from the collections P(I)
a,b , P(II)

a , P(III)
b , P(IV )

for a, b = 0, . . . , log n can be computed in O(n log2 n) time.

Proof. First, for each b = 0, . . . , log n and k = 1, . . . , |T |+1 we compute D[b][k] =
D(v) where v is the lowest node on a heavy path of level b in T (X) such that
k ∈ rangeT (v). For each explicit node w of T (X) we consider its heavy edge (if
exists) that leads to its explicit child w′ and for each k ∈ rangeT (w)\rangeT (w′),
we set D[b][k] = D(w) where b is the level of the heavy path that contains the
node w. This computation works in O(n log n) time.

In the same way we can compute a symmetric array D′[a][j] = D(u) where u
is the lowest node on a heavy path of level a in T (XR) such that j ∈ rangeTR(u).
The two arrays allow us to compute the weights of all points. For example, the
weight of the point (j, k) ∈ P(I)

a,b is D′[a][j] + D[b][k]. 
�

Queries. Let us consider a heavy path π1 of level a in T (XR) and a heavy path
π2 of level b in T (X). Let π′

1 be a prefix fragment of π1 that leads from node
x1 down to node y1 and π′

2 be a prefix fragment of π2 that leads from node x2

down to node y2. Let A1, B1, C1 be intervals such that

rangeTR(y1) = B1 and rangeTR(x1) \ B1 = A1 ∪ C1.

Similarly, we define the intervals A2, B2, C2 so that:

rangeT (y2) = B2 and rangeT (x2) \ B2 = A2 ∪ C2;

see Fig. 1 for an illustration. Then the maximum of D(u) + D(v) over all
T -attached pairs of nodes u ∈ π′

1 and v ∈ π′
2 is the maximum of the follow-

ing nine values:

(1) RMQ(P(I)
a,b , A1 × A2)

(2) RMQ(P(I)
a,b , A1 × C2)

(3) RMQ(P(I)
a,b , C1 × A2)

(4) RMQ(P(I)
a,b , C1 × C2)

(5) RMQ(P(II)
a , A1 × B2) + D(y2)

(6) RMQ(P(II)
a , C1 × B2) + D(y2)

(7) D(y1) + RMQ(P(III)
b , B1 × A2)

(8) D(y1) + RMQ(P(III)
b , B1 × C2)

(9) D(y1) + D(y2) if RMQ(P(IV ), B1 × B2) �= −∞.
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(XR)

x1

y1 π1

A1 B1 C1

π′
1 u

j

(X)

x2

y2

π2

A2 B2 C2

π′
2

v

k

Fig. 1. Illustration of the notations used to handle a pair of prefix fragments π′
1 ∈ H(p)

and π′
2 ∈ H(q). Assume that the sought pair of T -attached nodes u ∈ π′

1 and v ∈ π′
2

are located as shown. Here j ∈ {1, . . . , |T | + 1} is an index for which u is the lowest
node on π1 such that j ∈ rangeTR(u); same holds for k and v ∈ π2. Then D(u) + D(v)

is computed by value (2): RMQ(P(I)
a,b , A1 × C2).

Values (1)–(4) correspond to the situation when the sought nodes u and v are
located strictly above y1 and y2, respectively. Values (5)–(6) assume the case that
v = y2; values (7)–(8) assume the case that u = y1; finally, value (9) assumes
that u = y1 and v = y2.

The maximum of the values of the form (1)–(9) is computed for all pairs of
prefix fragments of heavy paths π′

1 ∈ H(p) and π′
2 ∈ H(q). The global maximum

is the length of an LCF with S[i]:=α. Its example occurrence can be retrieved
from the coordinates (j, k) of the point for which the range maximum is obtained.
Indeed, let r = SA(T )[k]. Then an LCF occurs in S′ and T at positions i − d
and r − 1 − d, respectively, where d = lcs(S[1 . . i − 1], T [1 . . r − 2]). Note that d
can be computed via an LCA query in T (XR) in O(1) time.

The Case of Implicit p. If p is not explicit, we make the above computations
for the nearest explicit ancestor of p. We need to consider separately the case
that u is an implicit node located between p and this ancestor. In this case
rangeTR(u) = rangeTR(p); we denote this interval by F . Hence, we take u = p.
We consider every prefix fragment π′

2 ∈ H(q) of a heavy path with level b,
endpoints x2, y2, and implied intervals A2, B2, C2 and pick the maximum of:

– D(p) + RMQ(P(III)
b , F × A2)

– D(p) + RMQ(P(III)
b , F × C2)

– D(p) + D(y2) if RMQ(P(IV ), F × B2) �= −∞.

Lemma 7. After O(n log4 n) expected time and O(n log3 n) space preprocessing,
LCF Including S[i]:=α queries can be answered in O(log3 n) time.
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Proof. The suffix trees T (XR) and T (X) with heavy-path decompositions and
ranges rangeTR and rangeT , respectively, take O(n) space and O(n) time to
construct. The O(log2 n) weighted collections of points can be constructed in
O(n log2 n) time by Lemma 6. Then the data structures for range maximum
queries in 2-d (Lemma 3) in total take O(n log3 n) space and require O(n log4 n)
expected time to construct.

To compute LCF2(i, α), we perform the following steps. First, we compute
the loci p and q in O(log n log log n) time. Then, in O(log n) time we compute
the collections H(p) and H(q) of prefix fragments of heavy paths. Finally, for
each pair π′

1 ∈ H(p) and π′
2 ∈ H(q), we answer range maximum queries of the

form (1)–(9), each in O(log n) time. This gives O(log3 n) total query time. 
�

Lemmas 4 and 7 lead to the main result of this paper.

Theorem 8. LCF After One Substitution can be computed in O(log3 n)
time, after O(n log4 n) expected time and O(n log3 n) space preprocessing.

Corollary 9. Given two strings S and T over a constant-sized alphabet, the
answers to all Θ(n) possible LCF After One Substitution queries can be
computed in O(n log4 n) expected time and O(n log3 n) space.

6 Conclusions

We have presented an Õ(n)-space data structure that can be constructed in Õ(n)
expected time and supports Õ(1)-time computation of an LCF of two strings
S and T , each of length at most n, over an integer alphabet after one letter
substitution in S. Notably, our algorithm can be easily modified to work if we
also allow for single letter insertions or deletions in S.

An open question is to extend this result to a fully dynamic case; that is, to
propose a data structure that allows for subsequent edit operations in one or in
both strings supporting fast computation of an LCF after each such operation.
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Abstract. A circular word, or a necklace, is an equivalence class under
conjugation of a word. A fundamental question concerning regularities in
standard words is bounding the number of distinct squares in a word of
length n. The famous conjecture attributed to Fraenkel and Simpson is
that there are at most n such distinct squares, yet the best known upper
bound is 1.84n by Deza et al. [Discr. Appl. Math. 180, 52–69 (2015)].
We consider a natural generalization of this question to circular words:
how many distinct squares can there be in all cyclic rotations of a word
of length n? We prove an upper bound of 3.14n. This is complemented
with an infinite family of words implying a lower bound of 1.25n.

Keywords: Squares conjecture · Circular words

1 Introduction

Combinatorics on words is mostly concerned with regularities in words. The most
basic example of such a regularity is a square, that is, a substring of the form
uu. We might either want to create words with no such substrings, called square-
free, or show that there cannot be too many distinct squares for an arbitrary
word of length n. Fraenkel and Simpson proved that 2n is an upper bound
on the number of distinct squares contained in a word of length n, and also
constructed an infinite family of words of length n containing n−Θ(

√
n) distinct

squares [12]. Their upper bound uses a combinatorial lemma of Crochemore and
Rytter [6], called the Three Squares Lemma. Later, Ilie provided a short and
self-contained argument [16]. The Three Squares Lemma is concerned with the
rightmost occurrence of every distinct square, and says that, for any position in
the word, there do not exist three such rightmost occurrences starting at that
position (hence the name of the lemma). It is widely believed that the example
given by Frankel and Simpson is the worst possible, and the right bound is
n instead of 2n. The best known upper bound was 2n − Θ(log n) [17] until
recently Deza, Franek and Thierry improved the upper bound to 11/6n through
a somewhat involved argument [9]. All these bounds are based on the idea of
looking at three rightmost occurrences of squares starting at the same position.
It is known that two such occurrence already imply a certain periodic structure
[2,10,13,18,23], and that it is enough to consider binary words [20].
c© Springer International Publishing AG 2017
G. Fici et al. (Eds.): SPIRE 2017, LNCS 10508, pp. 27–37, 2017.
DOI: 10.1007/978-3-319-67428-5 3
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Regularities are commonly considered in more general contexts than standard
words, such as partial words [1] or trees [5,14]. Another natural generalization
of standard words, motivated by the circular structure of some biological data,
are circular words (also known as necklaces). A circular word (w) is defined as
an equivalence class under conjugation of a word w, that is, it corresponds to
all possible rotations of w. Both algorithmic [3,4,15] and combinatorial aspects
of such words have been studied. The latter are mostly motivated by an old
result of Thue [25], who showed that there is an infinite square-free word over
{0, 1, 2}. This started a long line of research of pattern avoidance. Currie and
Fitzpatrick [8] generalized this to circular words, and then Currie [7] showed
that for any n ≥ 18 there exists a circular square-free word of length n (see
also a later proof by Shur [22]). Recently, Simpson [24] considered bounding the
number of distinct palindromes in a circular word of length n. It is well-known
(and easy to prove) that the number of distinct palindromes in a standard word
of length n is at most n. Interestingly, this increases to 5/3n for circular words.
Also equations on circular words have been studied [21].

We consider the following question: how many distinct squares can there be
in a circular word of length n? Note that due to how we have defined a circular
word, we are interested in squares of length at most n. Recall that the 2n bound
of Fraenkel and Simpson [12] is based on the notion of rightmost occurrences.
The improved 11/6n bound of Deza et al. [9] is also based on this concept. For
a circular word, it is not clear what the rightmost occurrence might mean, and
indeed the proofs seem to completely break. Of course, to bound the number
of distinct squares in a circular word w of length n, one can simply bound
the number of distinct squares in a word ww of length 2n, thus immediately
obtaining an upper bound of 4n (by invoking the simple proof of Ilie [16]) or
3.67n (by invoking the more involved proof of Deza et al. [9]). This, however,
completely disregards the cyclic nature of the problem.

We start with exhibiting an infinite family of circular words of length n
containing 1.25n−Θ(1) distinct squares. Therefore, it appears that the structure
of distinct squares in circular words is more complex than in standard words.
We then continue with a simple and self-contained upper bound of 3.75n on the
number of distinct squares in a circular word of length n. Then, by invoking
some of the machinery used by Deza et al. [9], we improve this to 3.14n.

2 Preliminaries

Let |w| denote the length of a string w, w[i] is the i-th character of w, and
w[i..j] is a shortcut for w[i]w[i + 1] . . . w[j]. A natural number p is a period of w
iff w[i] = w[i+ p] for every i = 1, 2, . . . , |w| − p. The smallest such p is called the
period of w. We say that w is periodic if its period is at most |w|/2, otherwise
w is aperiodic. The well-known periodicity lemma says that if p and q are both
periods of w and furthermore p + q ≤ |w| + gcd(p, q) then gcd(p, q) is also a
period of w [11].

w(i) denotes the cyclic rotation of w by i, that is, w[i..|w|]w[1..(i − 1)]. A
circular word (w) is an equivalence class under conjugation of w, that is, all
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cyclic rotations w(i). A word uu is called a square, and we say that it occurs in
(w) if it occurs in w(i) for some i. We are interested in bounding the number of
distinct squares occurring in a circular word of length n.

3 Lower Bound

We define an infinite family of words fk = a(ba)k+1a(ba)k+2a(ba)k+1a(ba)k+2.
See Fig. 1 for an example. Observe that |fk| = 8k + 16. We claim that cyclic
rotations of fk contain many distinct squares.

Fig. 1. The number of distinct squares in fk, for k = 1, 2, 3, 4, 5.

Lemma 1. For any k ≥ 0, the circular word (fk) contains 10k+16− (k mod 2)
distinct squares.

Proof. To count distinct squares uu occurring in (fk), we consider a few disjoint
cases. We first count uu such that aa occurs at most once inside:

1. Any uu such that aa does not occur inside must be be fully contained in an
occurrence of a(ba)k+2 or a(ba)k+1 in fk. Thus, to count such uu we only
have to find all distinct squares in a(ba)k+2. For any i = 1, 2, . . . , �(k +2)/2�,
(ab)i(ab)i and (ba)i(ba)i appear there, and it can be seen that there are no
other squares. Thus, the number of such uu is exactly 2�(k + 2)/2�.

2. Any uu such that aa occurs exactly once inside must have the property that u
starts and ends with a. It follows that such uu must be be fully contained in an
occurrence of a(ba)k+1a(ba)k+1 in fk. For any i = 0, 1, . . . , k+1, a(ba)ia(ba)i

appears there, and it can be seen that there are no other squares containing
exactly one occurrence of aa, so there are exactly k + 2 such uu.

Then we count uu such that aa occurs exactly twice inside. Then, aa must
occur once in u and furthermore, by analyzing the distances between the occur-
rences of aa in fk, we obtain that |u| = 2k + 5 or |u| = 2k + 3. We analyze these
two possibilities:

1. If |u| = 2k + 3 then uu appears in an occurrence of (ba)kbaa(ba)kbaa(ba)kb
in fk. There are 2k + 2 such uu.

2. If |u| = 2k + 5 then uu appears in an occurrence of a(ba)kbaaba(ba)k

baaba(ba)k in fk. There are 2k + 2 such uu.
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Finally, we count uu such that aa occurs at least three times inside. By
analyzing the distances between the occurrences of aa in fk, we obtain that in
such case |u| = 4k + 8, so |uu| = |fk|. We claim that there are exactly |fk|/2 =
4k + 8 such uu. To prove this, write fk = xkxk with xk = a(ba)k+1a(ba)k+2. xk

cannot be represented as a nontrivial power yp with p ≥ 2, because aa occurs
only once inside xk, so it would mean that y starts and ends with a, but then
p = 2 is not possible due to |a(ba)k+1| �= |a(ba)k+2|, and p ≥ 3 would generate
another occurrence of a. Clearly, every cyclic shift of fk is a square occurring
in (fk), because a cyclic shift of a square is still a square. It remains to count
distinct cyclic shifts of fk. Assume that two of these shifts are equal, that is,
(fk)(i) = (fk)(j) for some 0 ≤ i < j < |fk|, so xk = (xk)(j−i). Then gcd(|xk|, j−i)
is a period of xk. But xk is not a nontrivial power, so j − i = 0 mod |xk|.
Consequently, every i = 0, 1, . . . , |xk| − 1 generates a distinct square.

All in all, the number of distinct squares occurring in (fk) is

k + 2 + 2�(k + 2)/2� + 2(2k + 2) + 4k + 8 = 9k + 16 + 2�k/2�
or, in other words, 10k + 16 − (k mod 2). �	

By Lemma 1, for any n0 there exists a circular word of length n ≥ n0 con-
taining at least 1.25n − Θ(1) distinct squares.

4 Upper Bound

Our goal is to upper bound the number of distinct squares occurring in a circular
word (w) of length n. Each such square occurs in ww, hence clearly there are at
most 4n such distinct squares by plugging in the known bound on the number
of distinct squares. However, we want a stronger bound.

Recall that the bound on the number of distinct squares is based on the
notion of the rightmost occurrence. For every distinct square uu occurring in a
word, we choose its rightmost occurrence. Then, we have the following property.

Lemma 2 ([12]). For any position i, there are at most two rightmost occur-
rences starting at i.

Consider the rightmost occurrences of distinct squares of length up to n in
ww. We first analyze the rightmost occurrences starting at positions 1, 2, . . . , 1

4n.

Lemma 3. If w[14n..12n] is aperiodic then every rightmost occurrence starting
at position i ∈ {1, 2, . . . , 1

4n} is of the same length.

Proof. Assume otherwise, that is, w[14n..12n] is aperiodic, but there are two
rightmost occurrences uu and u′u′ starting at positions i, i′ ∈ {1, 2, . . . , 1

4n},
respectively, in ww such that |u| > |u′|. Then, i + 2|u| > n and i′ + 2|u′| > n,
as otherwise we could have found the same square in the second half of ww.
Because |u|, |u′| ≤ 1

2n, this implies i+ |u| > 1
2n and i′ + |u′| > 1

2n. So w[14n..12n]1

1 Formally, we need to appropriately round both 1
4
n and 1

2
n. We chose not to do so

explicitly as to avoid cluttering the presentation.



Distinct Squares in Circular Words 31

uu =

u′u′ =

ww =

1
4n

1
4n

1
2n

Fig. 2. Two rightmost occurrences of squares uu and u′u′ in ww.

is fully inside the first half of both uu and u′u′. But then it also appears starting
at positions 1

4n + |u| and 1
4n + |u′|, see Fig. 2. The distance between these two

distinct (due to |u| > |u′|) occurrences is

(
1
4
n + |u|) − (

1
4
n + |u′|) = |u| − |u′|

We know that |u| ≤ 1
2n and |u′| > 1

2n − i′ ≥ 1
2n − 1

4n = 3
8n. Thus, the distance

is less than 1
2n − 3

8n = 1
8n and we conclude that the period of w[14n..12n] is at

most 1
8n, which is a contradiction. �	

By Lemm 3, assuming that w[14n..12n] is aperiodic, for every i = 1, 2, . . . , 1
4n

there is at most one rightmost occurrence starting at i. For all the remaining
i, there are at most two rightmost occurrences starting at i, making the total
number of distinct squares at most 1

4n + 2(2n − 1
4n) = 33

4n.
It might be the case that w[14n..12n] is periodic. However, the number of

distinct squares occurring in (w) is the same as the number of distinct squares
occurring in any (w(i)), so we are free to replace w with any of its cyclic shifts.
We claim that if, for any i = 0, 1, . . . , n − 1, w(i)[14n..12n] is periodic, then the
whole w is a nontrivial power yp with p ≥ 8. To show this, we need an auxiliary
lemma that is a special case of Lemma 8.1.2 of [19]. We provide a proof for
completeness.

Lemma 4. For any word w and characters a, b, if both aw and wb are periodic
then their periods are in fact equal.

Proof. We assume that the period of aw is p ≤ |aw|/2 and the period of wb is
q ≤ |wb|/2. Then p and q are both periods of w. By symmetry, we can assume
that p ≥ q. p + q ≤ (|aw| + |wb|)/2 = 1 + |w|, so by the periodicity lemma
gcd(p, q) is a period of w. We claim that gcd(p, q) is also a period of aw. To
prove this, it is enough to show that a = w[gcd(p, q)]. gcd(p, q) is a period of w
and, for n ≥ 2, p ≤ |w|, so this is equivalent to showing that a = w[p]. But this
holds due to p being a period of aw. Hence gcd(p, q) is a period of aw, but p is
the period of aw and p ≥ q, therefore p = q. �	

We observe that the substrings w(i)[14n..12n] correspond to all substrings of
length 1

4n of ww. By Lemma 4, if every substring of length 1
4n of ww is periodic,
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then the periods of all such substrings are the same and equal to d ≤ 1
8n.

Therefore, d is also a period of the whole ww. But then gcd(|w|, d) ≤ d ≤ 1
8 |w| is

also a period of ww. We conclude that gcd(|w|, d) ≤ 1
8 |w| is period of w, hence

w = yp for some p ≥ 8, as claimed.
It remains to analyze the number of distinct squares in a circular word (w),

where w = yp for p ≥ 8. Each such square is a distinct square in yp+1. The
number of distinct squares in yp+1 is at most 2(p+1)|y| = 2p+1

p n ≤ 2.25n, since
p ≥ 8.

Theorem 5. The number of distinct squares in a circular word of length n is
at most 3.75n.

To improve on the above upper bound, we need some of the machinery used
by Deza et al. [9]. Two occurrences of squares uu and UU starting at the same
position such that |u| < |U | are called a double square and denoted (u,U). If
both are the rightmost occurrences, this is an FS-double square. An FS-double
square is identified with the starting position of the two occurrences.

Lemma 6 (see proof of Theorem 32 in [9]). If (u,U) is the leftmost FS-
double square of a string x and |x| ≥ 10, then the number of FS-double squares
in x is at most 5

6 |x| − 1
3 |u|.

We again consider the rightmost occurrence of every distinct square of length
up to n in ww and assume that w[14n..12n] is aperiodic (as otherwise we already
know there are at most 2.25n distinct squares). We need to consider two cases:
either there are no rightmost occurrences starting at i = 1, 2, . . . , 1

4n, or there is
at least one such occurrence.

No Rightmost Occurrences Starting at i = 1, 2, . . . , 1
4n. In this case, it is enough

to bound the number of distinct squares in ŵ = w[(14n + 1)..n]w. Let i be the
starting position of the leftmost FS-double square (u,U) in ŵ. If i > 3

4n then
the total number of distinct squares is at most 3

4n + 2n = 2 3
4n, so we assume

i ≤ 3
4n. Then, the total number of distinct squares can be bounded by applying

Lemma 6 on w[(14n + i)..n]w to show that the number of FS-double squares is
at most

5
6
(
7
4
n − i + 1) − 1

3
|u|

We know that i + 2|u| > 3
4n, as otherwise uu would occur later in w. Therefore,

the maximum number of distinct squares is

7
4
n+

5
6
(
7
4
n− i+1)− 1

3

3
4n − i + 1

2
= (

7
4

+
35
24

− 1
8
)n− (

5
6

− 1
6
)i+

4
6

≤ 3
1
12

n (1)

At Least One Rightmost Occurrence Starting at i ∈ {1, 2, . . . , 1
4n}. We now

move to the more interesting case where there are some rightmost occurrences
starting at i = 1, 2, . . . , 1

4n. We then know by Lemma3 that they all correspond
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to squares of the same length 2�. Let i ∈ {1, 2, . . . , 1
4n} be the starting position

of one of these rightmost occurrences. Then, i + 2� > n as otherwise the square
would occur later in the second w, so � > (n − n

4 )/2 = 3
8n. We also know

that � < 1
2n, as otherwise w = y2 and there are only 3n distinct squares. To

conclude, � ∈ ( 38n, 1
2n). Observe that, due to the square starting at position i,

the aperiodic substring s = w[14n..12n] also occurs at position 1
4n + � in ww.

Therefore, we can rotate w by � and repeat the whole reasoning. We either
obtain that the number of distinct squares is at most 3 1

12n (if, in w(�)w(�), there
are no rightmost occurrences starting at i = 1, 2, . . . , 1

4n), or there is another
occurrence of s at position 1

4n + � + �′ − n in w, where �, �′ ∈ ( 38n, 1
2n). Because

s is aperiodic and �+ �′ > 3
4n, the other occurrence must actually be at position

1
4n−Δ, where Δ ∈ ( 18n, 1

4n). By repeating this enough times (and recalling that
two occurrences of s cannot be too close to each other, as otherwise s is not
aperiodic), we either obtain that there are at most 3 1

12n distinct squares or all
occurrences of s in (w) are at positions 1

4n +
∑i−1

j=1 Δj (recall that (w) denotes
the circular word, so we calculate positions modulo n) for i = 1, 2, . . . , d, where
∑d

j=1 Δj = n and Δj ∈ ( 18n, 1
4n) for every j = 1, 2, . . . , d. That is, the whole (w)

is covered by the occurrences of s, and because s is aperiodic these occurrences
overlap by less than 1

8n. Observe that there cannot be any other occurrences of s
in (w), because the additional occurrence would overlap with one of the already
found occurrences by at least 1

8n, thus contradiction the assumption that s is
aperiodic. By the constraints on Δj , d ∈ {5, 6, 7}. See Fig. 3 for an illustration
with d = 7. We further consider three possible subcases.

d = 5. In such case, we have Δj ≥ 1
5n for some j. By rotating w, we can assume

that j = 1. Recall that then all squares starting at i = 1, 2, . . . , 1
4n have the same

length 2� (and there is at least one such square), so there is another occurrence
of s starting at position 1

4n + �, and then by repeating the reasoning at position
1
4n + � + �′, where � + �′ = n − Δ1 (due to �, �′ ∈ ( 38n, 1

2n)). Combining this
with Δ1 ≥ 1

5n, we obtain that min{�, �′} ≤ 2
5n. By again rotating w, we can

assume that in fact � ≤ 2
5n. Let i ∈ {1, 2, . . . , 1

4n} be the starting position of a
rightmost occurrence of a square of length 2�. Then i + 2� > n as otherwise it
would not be a rightmost occurrence, so i > 1

5n and we obtain that there are
less than 1

4n − 1
5n = 1

20n rightmost occurrences starting at i = 1, 2, . . . , 1
4n. By

the previous calculation (1) the number of remaining rightmost occurrences is
at most 3 1

12n, making the total number of distinct squares at most 3 2
15n.

d = 6. We will show that this is, in fact, not possible. Recall that, for every
i = 1, 2, . . . , 6, after rotating w by r =

∑i−1
j=1 Δj we obtain that there is at

least one rightmost occurrence starting in the prefix of length 1
4n of w(r)w(r),

and in fact, by Lemma3, all such rightmost occurrences correspond to squares
of the same length 2�i, where �i ∈ ( 38n, 1

2n). Thus, for every occurrence of s

starting at position 1
4n+

∑i−1
j=1 Δj , there is another occurrence at position 1

4n+
∑i−1

j=1 Δj + �i in (w) (recall that the positions are taken modulo n). We claim
that �i = Δi + Δi+1 or �i = Δi + Δi+1 + Δi+2, where the indices are taken
modulo 6. Certainly, �i = Δi + Δi+1 + . . . + Δi+k for some k. We cannot have
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Δ1

1n

Δ2

Δ3

Δ4

Δ6

Δ7

Δ5

1
4n

1
2n

Fig. 3. Seven occurrences of an aperiodic s of length 1
4
n inside (w).

k = 0 because �i > 3
8n and Δi < 3

8n. We also cannot have k ≥ 3, because
�i < 1

2n and Δi + Δi+1 + Δi+2 + Δi+3 > 1
2n. So, k = 1 or k = 2. For every

i = 1, 2, . . . , 6, we define succ(i) ∈ {1, 2, . . . , 6} as follows. If �i = Δi +Δi+1 then
we set succ(i) = i + 2, and otherwise (if �i = Δi + Δi+1 + Δi+2) succ(i) = i + 3.
Intuitively, every occurrence of s in (w) points to another such occurrence. Due to
�i ∈ ( 38n, 1

2n) holding for every i = 1, 2, . . . , 6, the difference between the starting
positions of the i-th and the succ(i)-th occurrence of s belongs to (38n, 1

2n), so
the difference between the starting position of the i-th and the succ(succ(i))-th
occurrence of s belongs to (34n, n). In fact, due to s being aperiodic, the latter
difference must belong to (34n, 7

8n). Consequently, there are no other occurrences
of s between the succ(succ(i))-th and the i-th, so succ(succ(i)) = i − 1. Now, we
consider two cases:

1. succ(1) = 3, then succ(3) = 6, so succ(6) = 2, succ(2) = 5 and succ(5) = 1.
2. succ(1) = 4, then succ(4) = 6, so succ(6) = 3, succ(3) = 5, succ(5) = 2,

succ(2) = 4.

In both cases, we obtain that succ(i) = succ(j) for some i �= j. But this is a
contradiction, because then there are two occurrences of s within distance less
than 1

8n, so s is not aperiodic.

d = 7. We define succ(i) for every i = 1, 2, . . . , 7 as in the previous case. Because
succ(i) ∈ {i+2, i+3} and succ(succ(i)) = i−1 still holds, we obtain that in fact
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ww =

1
4n

1
4n

1
2n

Δ1 Δ2 Δ3

u u

U U

Fig. 4. The leftmost FS-square starting at position j ≤ 1
4
n + Δ1.

succ(i) = i + 3 for every i = 1, 2, . . . , 7. This means that �i = Δi + Δi+1 + Δi+2.
Consider all rightmost occurrences starting at i = 1, 2, . . . , 1

4n. We must have
that i + 2�1 > n for each of them, so i > n − 2(Δ1 + Δ2 + Δ3), making the total
number of such occurrences at most min{1

4n, 2(Δ1 + Δ2 + Δ3) − 3
4n}. Because

Δ1 + Δ2 + Δ3 ≤ 1
2n due to Δi > 1

8n holding for every i = 1, 2, . . . , 7 and
∑7

i=1 Δi = n, this number is actually 2(Δ1 + Δ2 + Δ3) − 3
4n.

Now we must account for the remaining distinct squares. Let j be the starting
position of the leftmost FS-double square (u,U) in ww. Note that j > 1

4n because
there is at most one rightmost occurrence starting at i = 1, 2, . . . , 1

4n. We lower
bound j by considering two possible cases:

1. j > 1
4n + Δ1.

2. j ≤ 1
4n+Δ1, then the occurrences of s starting at 1

4n+Δ1 and 1
4n+Δ1+Δ2+

Δ3 are disjoint and both fully inside the first w, because Δ1 +Δ2 +Δ3 ≤ 1
2n.

Thus, both u and U contain s as a substring. See Fig. 4. Then, because all
occurrences of s start at positions of the form 1

4n +
∑i−1

j=1 Δj , we conclude
that |u| = Δ2 + Δ3 and |U | = Δ2 + Δ3 + Δ4. So, j > n − 2(Δ2 + Δ3).

We now know that j > min{ 1
4n + Δ1, n − 2(Δ2 + Δ3)}. Using j + 2|u| > n we

obtain that the number of remaining distinct squares is at most

1
3
4
n +

5
6
(2n − j) − 1

3
|u| ≤ 3

5
12

n − 5
6
j − 1

3
n − j

2
= 3

1
4
n − 2

3
j

so the total number of squares is

≤ 3
1
4
n + 2(Δ1 + Δ2 + Δ3) − 3

4
n − 2

3
j

≤ 2
1
2
n + 2(Δ1 + Δ2 + Δ3) − 2

3
min{1

4
n + Δ1, n − 2(Δ2 + Δ3)}

We rewrite the above in terms of �1 and Δ1:

2
1

2
n + 2�1 − 2

3
min{1

4
n + Δ1, n − 2�1 + 2Δ1} ≤ 2

1

2
n + 2�1 − 2

3
min{3

8
n,

5

4
n − 2�1}
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The above expression is increasing in �1. Because
∑7

i=1 �i =
∑7

i=1(Δi + Δi+1 +
Δi+2) = 3n, after an appropriate rotation we can assume that �1 ≤ 3

7n, and
bound the expression:

2
1
2
n +

6
7
n − 2

3
min{3

8
n,

5
4
n − 6

7
n} = 3

5
14

n − 1
4
n = 3

3
28

n

Wrapping Up. We have obtained that either there is an aperiodic substring of
length 1

4n, and thus there are at most 2.25n distinct squares, or there are no
rightmost occurrences starting at i = 1, 2, . . . , 1

4n and the maximum number of
distinct squares is 3 1

12n, or there is at least at least one rightmost occurrence
starting at i ∈ {1, 2, . . . , 1

4n}. In the last case, either d = 5 and there are at most
3 2
15n distinct squares, or d = 7 and there are at most 3 3

28n distinct squares. The
maximum of these upper bounds is 3 2

15n.

Theorem 7. The number of distinct squares in a circular word of length n is
at most 3.14n.

5 Conclusions

We believe that it should be possible to show an upper bound of 3n, possibly
without using the machinery of Deza et al., but it seems to require some new
combinatorial insights. A computer search seems to suggest that the right answer
is 1.25n, but showing this is probably quite difficult. Another natural direction
for a follow-up work is to consider higher powers in circular words.
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21. Massé, A.B., Brlek, S., Garon, A., Labbé, S.: Equations on palindromes and circular
words. Theor. Comput. Sci. 412(27), 2922–2930 (2011)

22. Shur, A.M.: On ternary square-free circular words. Electron. J. Comb. 17(1), R140
(2010)

23. Simpson, J.: Intersecting periodic words. Theor. Comput. Sci. 374(1–3), 58–65
(2007)

24. Simpson, J.: Palindromes in circular words. Theor. Comput. Sci. 550, 66–78 (2014)
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Abstract. We present the first algorithms that perform the LZ78 com-
pression of a text of length n over alphabet [1..σ], whose output is z
integers, using only O(z lg σ) bits of main memory. The algorithms read
the input text from disk in a single pass, and write the compressed out-
put to disk. The text can also be decompressed within the same main
memory usage, which is unprecedented too. The algorithms are based on
hashing and, under some simplifying assumptions, run in O(n) expected
time. We experimentally verify that our algorithms use 2–9 times less
time and/or space than previously implemented LZ78 compressors.

1 Introduction

The Ziv-Lempel algorithm of 1978 [19] (known as LZ78) is one of the most
famous compression algorithms. Its variants (especially LZW [17]) are used in
software like Unix’s Compress and formats like GIF. Compared to the stronger
LZ77 format [18], LZ78 has a more regular structure, which has made it the
preferred choice for compressed sequence representations supporting optimal-
time access [16] and compressed text indexes for pattern matching [3,7,15] and
document retrieval [5,6].

Compared to LZ77, the LZ78 compressed output is also easier to build. For
example, a simple and classical implementation compresses a text of length n
over an alphabet [1..σ] into z integers, where

√
n ≤ z = O(n/ lgσ n), in O(n lg σ)

deterministic or O(n) randomized time, using O(z lg n) = O(n lg σ) bits of space.
A comparable result for LZ77 was obtained only recently [11] and it required
sophisticated compressed suffix array construction algorithms.
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The time and main memory space required by compression algorithms is
important. Building the compressed file within less main memory allows us com-
pressing larger files without splitting them into chunks, yielding better compres-
sion in general. The fastest deterministic LZ78 compression algorithms require
O(n) time, but O(n lg n) bits of main memory [8]. If the main memory is lim-
ited to O(n lg σ) bits (i.e., proportional to the input text size), then the time
increases to O(n lg lg σ) [11]. Finally, if we limit the main memory to O(z lg n)
bits (i.e., proportional to the compressed text size, like the classic scheme), then
the compression time becomes O(n(1 + lg σ/ lg lg n)) [1], which improves the
classic O(n lg σ) time. If we allow randomization, then the classic scheme yields
O(n) expected time and O(z lg n) bits of space.

In this paper we show that the LZ78 compression can be carried out within
just O(z lg σ) bits of main memory, which is less than any other previous scheme,
and asymptotically less than the size of the compressed file, z(lg z + lg σ) bits.
Ours are randomized and streaming algorithms. They read the text once from
disk, and output the compressed file to disk as well, and therefore they may run
within memory sizes unable to fit even the compressed file. One of our algorithms
requires O(n) expected compression time, but may rewrite the output multiple
times, whereas the other takes O(n lg σ) expected time but writes the output
only once. Both are able to decompress the file in a single O(n)-time pass on
disk and using O(z lg σ) bits of main memory, where previous decompression
algorithms need to store the whole compressed text in main memory.

Our results hold under some simplifying assumptions on randomness. Nev-
ertheless, our experimental results demonstrate that these assumptions do not
affect the practical competitiveness of the new algorithms, which outperform
current alternatives in space and/or time by a factor from 2 to 9.

To obtain the result, we build on a hash-based trie representation [14], which
has the advantage that the addresses of the nodes do not change as we insert new
leaves, and that O(lg σ) bits are sufficient to encode the trie nodes since some
of the information is implicit in their hash addresses. The main challenge is to
design schemes so that the hash tables can grow as the LZ78 parsing progresses,
so as to ensure that they have only O(z) cells without knowing z in advance.

2 LZ78 Compression

The LZ78 compression algorithm [19] parses the text into a sequence of phrases.
Assume we are compressing a text T [1..n] and we have already processed T [1..i−1]
into r phrases B0B1B2 · · · Br−1, where phrase B0 represents the empty string.
Then, to compute Br we find the longest prefix T [i..j −1] (with j −1 < n) that is
equal to some Bq, with q < r. Then we define Br = Bq . T [j], which is represented
as the pair (q, T [j]), and we continue the parsing from T [j + 1].

If we add a unique terminator character to T , then every phrase represents
a different text substring. We call z the final number of phrases generated. It is
known that

√
n ≤ z = O(n/ lgσ n), where σ is the size of the alphabet of T .

The usual way to carry out the parsing efficiently is to use the so-called
LZTrie. This is a trie with one node per phrase, where the root node corresponds
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to B0, and the node of Br = Bq . T [j] is the child of the node of phrase Bq with
the edge labeled by T [j]. Since the set of phrases is prefix-closed, LZTrie has z
nodes. Then, to process T [i..j−1], we traverse LZTrie from the root downwards,
following the characters T [i], T [i + 1] . . . until falling out of the tree at a node
representing phrase Bq. Then we create a new node for Br, which is the child
of Bq labelled by T [j]. Since the trie has z nodes, it requires O(z(lg n + lg σ)) =
O(n lg σ) bits for the parsing, which can be done in O(n lg σ) deterministic time
(using binary search on the children) or O(n) randomized time (using hash tables
to store the children, whose sizes double when needed).

The usual way to represent the LZ78 parsing in the compressed file consists
of two (separate or interlaced) arrays, S[1..z] of z lg σ bits, and A[1..z] of z lg z
bits. If Br = Bq . T [j] is a phrase, then we represent it by storing A[r] = q and
S[r] = T [j]. For decompressing a given phrase Br, we follow the referencing
chain using array A, obtaining the corresponding symbols from array S, until
we read a 0 in A. Thus S[r], S[A[r]], S[A[A[r]], . . . obtains Br in reverse order
in O(|Br|) time, and the complete text is decompressed in O(n) time.

An alternative way to represent the LZ78 parsing [3] uses a succinct encoding
of LZTrie, which uses just 2z + z lg σ + o(z) bits, 2z + o(z) for the topology
and z lg σ for the labels. It also stores an array L[1..z], such that L[r] stores the
preorder number of the LZTrie node corresponding to phrase Br. This array
requires z lg z bits. To extract the text for phrase Br, we start from the node
with preorder L[r] in LZTrie, and obtain the symbols labeling the upward path
up to the root, by going successively to the parent in the trie. Using succinct tree
representations that support going to the parent in constant time, this procedure
also yields O(n) total decompression time.

This second representation is more complex and uses slightly more space
than the former, more precisely, the 2z+o(z) bits for the tree topology. Yet, it is
sometimes preferred because it allows for operations other than just decompress-
ing T . For instance, Sadakane and Grossi [16] show how to obtain any substring
of length � of T in optimal O(�/ lgσ n) time (i.e., in time proportional to the
number of machine words needed to store � symbols). In this work, a differ-
ent representation of LZTrie will allow us carrying out the compression within
O(z lg σ) bits of main memory.

3 Previous Work on LZ78 Construction

A classic pointer-based implementation of LZTrie, with balanced binary trees
to handle the children of each node, carries out the compression in O(n lg σ)
time and O(z lg n) bits of space.

Jansson et al. [10] introduce a particular trie structure to represent LZTrie,
which still uses O(z lg n) bits of space but reduces the construction time to
O

(
n lg σ · (lg lg n)2

lg n lg lg lg n

)
. The algorithm needs two passes on the text, each of

which involves n lg σ bits of I/O if it is stored on disk.
Arroyuelo and Navarro [2] manage to perform a single pass over the text, in

exchange for 2z lg z additional bits of I/O, and a total time of O(n(lg σ+lg lg n)).
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Table 1. Previous and new LZ78 compression algorithms. Times with a star mean
expected time of randomized algorithms. We first list the classic schemes, then the
deterministic methods, from fastest and most space-consuming to slowest and least
space-consuming. At the end, our randomized method uses less space than all the
others, and also matches the fastest ones in expectation.

Reference RAM space in bits Compression time

Classic [19] O(z lg n) O(n lg σ)

O(z lg n) O(n)∗

Fischer et al. [8] (1 + ε)n lg n + O(n) O(n/ε2)

Köppl and Sadakane [11] O(n lg σ) O(n lg lg σ)

Jansson et al. [10] O(z lg n) O
(
n lg σ · (lg lgn)2

lgn lg lg lgn

)

Arroyuelo et al. [1] z(lg n + lg σ + 2) O
(
n lg σ · 1

lg lgn

)

Arroyuelo and Navarro [2] z(lg n + lg σ + 2) O(n lg σ + n lg lg n)

This paper O(z lg σ) O(n)∗

The peak memory usage is z(lg n+lg σ+2) bits. They use the compact LZTrie
representation described in the previous section. An obstacle to further reducing
the space is that they need to build the whole LZTrie before they can build
the array L, because preorder numbers vary as new leaves are inserted. Later
improvements on dynamic tries introduced by Arroyuelo et al. [1] reduce the
time to O

(
n lg σ

lg lg n

)
. Notice that this is O(n) for small alphabets, σ = polylog(n).

However, the peak space usage remains the same.
Fischer et al. [8] finally obtained linear worst-case time. They construct the

LZ78 parsing using (1 + ε)n lg n + O(n) bits of space in O(n/ε2) time.
Recently, Köppl and Sadakane [11] showed how to construct the parsing in

O(n lg lg σ) time, using O(n lg σ) bits of working space; note this is Ω(z lg n).
Table 1 shows all these previous results, and our contribution in context. Our

results hold under some simplifying assumptions that are described in Sect. 8.

4 Dynamic Compact Tries

We will make use of the following data structure to maintain a dynamic trie of
up to t nodes that uses O(t lg σ) bits, while supporting insertion of edges, and
navigation upwards and downwards from nodes, within constant randomized
time [14]. The structure has two components:

1. A closed hash table H[0..M − 1], where M = m/α, m is an upper bound to
the number of nodes, and the constant α < 1 is the load factor to use. Table
H is a simple array that stores information on the nodes of the trie, using
only lg σ + O(1) bits per entry.

2. An array D[0..M − 1] to store information about the collisions (all entries
initialized with value −1).
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Each trie node y is identified with the position where it is stored in H;
sometimes we will write p(y) explicitly to refer to this position. This position
will not change with time. The root is placed at an arbitrary position, say H[0].
Every other node y is represented by a pair (x, c), where x is (the position in H
of) the parent of y and c is the character labeling the edge between x and y.

The hash function used to place y in H is h(y) = ((a ·w(y))mod P )mod M,
where a is an integer chosen at random in [1, P − 1], P is the first prime such
that P > M · σ, and w(y) = p(x) · σ + (c − 1). The value we store in the cell of
H associated with y is v(y) = ((a · w(y))mod P ) div M.

With this mechanism, since P = O(Mσ) [9, p. 343], it holds v(y) = O(σ),
and thus the values stored in H require lg σ + O(1) bits. With this information
we can still reconstruct (a · w(y))mod P = v(y) · M + h(y), and then w(y) =
a−1 · (a · w(y))mod P , where a−1 mod P is easily computed from a and stored
with the index. From w(y) we recover the pair (x, c), which allows us traversing the
trie upwards.

On the other hand, to insert a new child y = (x, c) from the position p(x), we
compute h(y) and try to write v(y) at H[h(y)]. If the cell is free (which we signal
with D[h(y)] = −1), then we write H[h(y)] ← v(y) and D[h(y)] ← 0. If the cell
is not free, we probe consecutive positions H[p] with p = (h(y) + k)mod M , for
k = 1, 2, . . .. The following cases may occur:

1. D[p] = −1, in which case we terminate with H[p] ← v(y) and D[p] ← k, so
that D[p] indicates the number of probes between h(y) and the final position
p where y is finally written. Note that p will become p(y), and from p(y) we
can recover h(y) without knowing y, with h(y) = (p(y) − D[p(y)])mod M .

2. D[p] �= −1, H[p] = v(y), and (p−D[p])mod M = h(y), thus node y is already
stored in H, so we should not insert it.

3. D[p] �= −1, but H[p] �= v(y) or (p − D[p])mod M �= h(y), thus the cell is
occupied by another node and we must continue with the next value of k.

Case 2 also shows how to traverse the trie downwards, from the current node
towards its child labeled by c, to find the node y = (x, c).

Note that the values stored in D are constant in expectation, as they record
the insertion time for each element. Poyias et al. [14] show how D can be rep-
resented with a data structure using O(z) bits and constant amortized-time
operations. We refer the reader to their article for further details.

5 Using a Fixed Hash Table

In this section we show how to do the parsing of T [1..n] within O(n lg σ/ lgσ n)
bits of main memory. This space is already O(z lg σ) on incompressible texts; we
will later achieve it for all texts.

We use a compact dynamic trie to build the LZTrie associated with the
LZ78 parse of T , and to compress T accordingly. We set m to an upper bound on
the number of LZTrie nodes: m is the smallest number with m(lgσ m−3) ≥ n.
Thus m = Θ(n/ lgσ n). Further, we will use an array L[0..z] to store in L[r] the



LZ78 Compression in Low Main Memory Space 43

position in H where the LZTrie node of block Br is stored. Each entry of L
takes �lg M� = lg n + O(1) bits, but the array is generated directly on disk.

To perform the parsing of a new phrase T [i..j], we start from the trie root (say,
x0, with p(x0) = 0), and use the mechanism described in the previous section to
compute x1 = (x0, T [i]), x2 = (x1, T [i+1]), and so on until xj−i+1 = (xj−i, T [j])
does not exist in the trie. At this point we insert xj−i+1 = (xj−i, T [j]), write to
disk the next value L[r] ← p(xj−i+1), and continue with T [j + 1..n].

Overall, compression is carried out within the O(n lg σ/ lgσ n) bits of main
memory used by H and D, in O(n) expected time if H is chosen from a universal
family of hash functions, and T and L are read/written from/to disk in streaming
mode. When we finish the parsing, we write H and D at the end of L in the file,
and add some header information including n, σ, M , P , a, a−1.

Decompression can also be made in streaming mode and using memory space
only for H and D, which is not possible in classical schemes where each phrase
is stored as a pointer to its earlier position in the file. We load the LZTrie
into memory (i.e., tables H and D). Now we read the consecutive entries of
L[1..z] in streaming mode. For each new entry L[r] = p, we start from H[p] and
decode x0 = (x−1, c−1) from it; then we decode x−1 = (x−2, c−2), and so on,
until we reach the root x−s = L[0]. Then we append c−sc−s+1 . . . c−2c−1 to the
decompressed text in streaming mode. The stack may require up to z lg σ bits
in extreme cases, but this is still within our main memory budget. Its use can
also be avoided in standard ways, at the expense of increased I/Os.

Note that this structure permits retrieving the contents of any individual
block Br, by traversing the LZTrie upwards from L[r], just as done for decom-
pression. This can make it useful as a succinct data structure as well.

The obvious disadvantage of this simple scheme is that it uses more than
O(z lg σ) bits of space when T is highly compressible, z = o(n/ lgσ n) (that is,
when it is most interesting to compress T !). A simple workaround is to start
assuming that z = O(

√
n), since

√
n is the smallest possible value for z. If,

during the parsing, this limit is exceeded, we double the value of z and repeat the
whole process. Since we may rerun the process O(lg z) times, the total expected
time is O(n lg z) = O(n lg n) (in LZ78, lg z = Θ(lg n)). In exchange, the main
memory space is now always O(z lg σ) bits. Further, the extra space added to
the compressed file due to the tables H and D is just O(z lg σ). Apart from the
increased time, a problem with this scheme is that it reads T several times from
disk, and thus it is not a streaming algorithm. In the next sections we explore
two faster solutions that in addition scan T only once.

6 Using a Growing Table

We can obtain O(z lg σ) bits of space for any text by letting H and D grow as
more blocks are produced along the parsing. We start with a hash table of size√

n/α2, since
√

n is a lower bound on z. Then, whenever the load factor in H
reaches α, we allocate a new table H ′ (and D′) with size multiplied by 1/α, and
load them with all the current trie nodes. We will read T only once, but we will
still perform multiple rewriting passes on L.
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The main challenge is how to remap all the nodes x from H to H ′, since
their position p(x) in H are their identity, which is mentioned not only in L but
also in their children y = (p(x), c). That is, in order to map y to its new position
p′(y) in H ′, we need to know the mapped position p′(x) of its parent x, that
is, we must map the LZTrie nodes top-down. Yet, we cannot simply perform a
DFS traversal on LZTrie, because we cannot efficiently enumerate the children
of a node x in less than O(σ) time.

We remap the nodes as follows. We traverse L from left to right (on disk), and
traverse upwards from each position L[r] in H up to the root. All the nodes from
the parent of L[r] must already exist in H ′, so we stack the symbols traversed
in the upward path on H and use them to traverse downwards in H ′ from the
root. Then we insert in H ′ (and D′) the new node that corresponds to L[r], and
rewrite L[r] with the new position in H ′. If Br corresponds to T [i..j], then our
retraversal costs O(j−i) time, so the expected time to retraverse T [1..n′] is O(n′).
Since we perform O(lg z) passes, the total cost may reach O(n lg z) = O(n lg n).

We can reduce the time to O(z lgσ n) = O(n) by storing, when we have to
load H ′, O(z/ lgσ n) sampled nodes of H in a (classic) hash table W , which
stores the position in H ′ of each sampled position in H. Table W uses O(z lg σ)
bits, which is within our budget. We will guarantee that every node of LZTrie
whose depth is a multiple of lgσ n and whose height is at least lgσ n will be
sampled. This ensures that O(z/ lgσ n) nodes are sampled and that we traverse
less than 2 lgσ n nodes of H from any cell L[r] before reaching a sampled node,
from which we can descend in H ′ and insert L[r] in time O(lgσ n). Thus we
do the translation in O(|L| lgσ n) time. Since the size of L grows by a factor of
1/α each time we create a larger table, the total work amounts to O(z lgσ n).
To obtain the sampling invariant, we start by sampling the root. Then, every
time we traverse from the node of L[r] upwards, if we traverse lgσ n cells or
more before finding a sampled node, we sample the node we traversed that is at
distance lgσ n from the sampled node we reached.

Once H ′ and D′ are built, we continue with them and discard H and D. The
peak space usage of the tables, when old and new ones are active, is (1/α2 +
1/α)z lg σ +O(z) = O(z lg σ) bits. Note that we can always keep the entries of L
within lg z +O(1) bits, slightly expanding them when we retraverse L to rewrite
the new positions in H ′. At the end, L may need to point to a table H whose
size is z/α2, thus using z lg z + O(z) bits. To store H and D, we first write a
bitvector B of length at most z/α2 indicating which entries are �= −1 in D. This
requires O(z) bits. Only the z filled entries of H and D are then written to the
compressed file. The final compressed file size is then z(lg z + lg σ) + O(z) bits.

Note that the O(z) bits spent in L can be eliminated with a final pass on L
replacing L[r] by rank1(B,L[r]), which is the number of 1s in B up to position
L[r]. This can be computed in O(z) time, and the values can be recovered in O(z)
time at decompression time using the complementary query select1(B,L[r]) [4].
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7 Using Multiple Hash Tables

A way to avoid rebuilding the hash table is to create additional hash tables apart
from the original one, H0 = H. When the load factor of H reaches α, we allocate
a new table H1, with |H1| = 2|H0|, where all the subsequent insertions will take
place. When H1 becomes full enough, we create H2, with |H2| = 2|H1|, and so
on, each time doubling the previously allocated space. Each table Hh has its
own value Mh, prime Ph, and so on.

To properly address the nodes, we need to build a global address that can
point to entries in any table. We regard the tables as their concatenation, that is,
H0H1H2 . . . The addresses within table Hh are built by adding |H0H1 . . . Hh−1|
to the normal address computation within Hh. The prime Ph must then be larger
than (M0+M1+ . . .+Mh) ·σ, so as to store any element (p(x), c) where p(x) is a
global address. This requires only O(1) extra bits per cell to store Ph/Mh ≤ 2σ.

Assume we are at a node x in a table Hg and want to add a child y = (x, c)
in the current table Hh. The entry (p(x), a) will be inserted in Hh, leaving no
indication in Hg of the existence of y. This means that, if we want to descend
from x by c, we must probe tables Hg,Hg+1, . . . , Hh to see if it was inserted in
later tables. Therefore, the cost of traversing towards a child grows to O(lg z), as
we can build that many tables during the parsing. However, since the children
are inserted later than their parents, the current table index does not decrease
as we move down from the root towards the node where we will insert the new
block, and thus we do these O(lg z) probes once per inserted block, for a total
time of O(z lg z) = O(n lg σ).

Instead, the parent x is decoded immediately from y = (p(x), a), since p(x) is
a global address, and this allows decompressing in O(n) time. Finding the table
Hg from p(x) is a matter of dividing p(x) by

√
n and then finding the logarithm

in base 2, which is done in constant time in most architectures (and in theory,
using constant precomputed tables of small size).

This technique has the advantage that it treats T and L in streaming mode,
as it does not have to retraverse them. The values written on L are final (note
that their width grows along the process, each time we start using a new table).
These can be compacted as in the previous section if we are willing to perform
a second pass on L.

8 Simplifying Assumptions

Our expected-case analysis inherits some simplifications from Poyias et al. [14],
when it assumes constant expected time for hashing with linear probing.

A first one is that analyses usually assume that the hash function is chosen
independently of the set of values to hash. In our scheme, however, the values
(p(x), c) to hash depend on the hash function h(x) itself. So, at least in principle,
the typical assumptions to prove 2-independence do not hold, even if we changed
our function to the standard ((a0 + a1 · w(y)) mod M) mod P for randomly
chosen a0 and a1.
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Another issue is that 2-independence may not be sufficient to assume ran-
domness in the case of linear probing. This has only been proved assuming
5-independence [12,13]. To make it 5-independent, the component a ·w(y) of our
hash function should become a0 + a1w(y) + a2w(y)2 + a3w(y)3 + a4w(y)4. We
do not know how to invert such a function in order to find w(y) given h(y) and
v(y).

In the next section we show, however, that those theoretical reservations do
not have a significant impact on the practical performance of the scheme.

9 Experimental Results

In this section we experimentally evaluate our new algorithms with some previous
implemented alternatives. We measure compression and decompression time,
RAM usage and overhead of the final file size compared with the standard LZ78
format. All the experiments were performed on an Intel(R) Core(TM) i7-5500U
CPU at 2.40 GHz. The operating system was Ubuntu 16.04.2 LTS, version 4.4.0-
72-generic Linux kernel. Our compressors were implemented in C++11, using
g++ version 4.8.4.

The texts considered are a highly compressible XML text, an English text,
and a less compressible Protein file, all obtained from the Pizza&Chili Corpus1.
We also used a DNA file generated by extracting a prefix of a human genome2.
Table 2 lists the test files used and their main statistics. For the compression
ratio we assume that each of the z phrases gives the parent phrase number and
the symbol. For the former, the next 2i phrases use i + 1 bits, starting from the
second with i = 0. For the latter, we use �lg σ� bits.

Table 2. Text files used in the experiments.

File name Size n σ Number z Avg. phrase Compr. ratio
(Megabytes) of phrases length (n/z)

XML 282.42 97 16,205,171 18.27 20.50%

English 1,024.00 237 96,986,744 11.07 37.96%

Proteins 1,129.20 27 147,482,019 8.03 48.55%

Human Genome 3,182.00 51 227,419,107 14.67 27.96%

Figure 1 shows the maximum RAM used by each structure during compres-
sion, and the resulting compression time. Our approaches are labeled HLZ (fixed
hash table of maximum size, no rebuilding), MHLZ (multiple hash tables) and
GHLZ (growing hash tables, no sampling). We obtain tradeoffs by using various
load factors for the hash tables, 1/α = 1.05, 1.10, 1.20, 1.40, 1.60.

1 http://pizzachili.dcc.uchile.cl/texts.
2 http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/est.fa.gz.

http://pizzachili.dcc.uchile.cl/texts
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/est.fa.gz
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Fig. 1. Maximum RAM and time used during compression.

As previous work, we include LZ78-Min, the compact representation of
Arroyuelo and Navarro [2], and LZ78-UC, their uncompressed baseline, both
implemented in C.

It can be seen that MHLZ always outperforms GHLZ in space/time, using
1.0–2.2 bits and 0.2–0.3µs per symbol with 1/α = 1.40. For the same space, the
overhead of using multiple tables is lower than that of rebuilding the table, which
implies rereading the L array from disk. In general, the time of MHLZ is very
sensitive to high load factors, without significantly improving the space. With
a sufficiently low load factor, instead, it outperforms all the others in time and
space. It even gets close to the time of HLZ, always below 0.2µs, with much less
space (with the exception of Proteins, where the final-size guess of HLZ is nearly
optimal). The maximum space usage of GHLZ occurs when it has to expand the
table, at which moment it has the old and new tables in RAM. This requires
more space than MHLZ even when the MHLZ tables are emptier on average.
LZ78-Min, instead, requires 2–3 times more space and is up to 4 times slower.
Finally, LZ78-UC requires 6–9 times more space than MHLZ, and is not faster
than HLZ.

Figure 2 shows the RAM used by each structure during decompression. This
time GHLZ always obtains the best time of MHLZ but using slightly less space.
GHLZ uses 0.9–1.8 bits and 0.1–0.2µs per symbol, even outperforming HLZ,
which uses much more space (except on Proteins). GHLZ does not need to make
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the hash tables grow at decompression, thus it is much faster and uses less space
than MHLZ, which has emptier tables. MHLZ is faster than for compression
because it traverses the paths upwards, but it still uses multiple tables, and this
poses some time overhead. LZ78-Min and LZ78-UC are identical for decompres-
sion, requiring 2–3 times more space but being 2–3 times faster than GHLZ.

 0

 0.1

 0.2

 0.3

 0.4

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

m
ic

ro
se

co
nd

s 
pe

r 
ch

ar
ac

te
r

Bits per character

XML

HLZ
MHLZ
GHLZ

LZ78-Min
LZ78-UC

 0

 0.1

 0.2

 0.3

 0.4

 0  1  2  3  4  5  6

m
ic

ro
se

co
nd

s 
pe

r 
ch

ar
ac

te
r

Bits per character

English

HLZ
MHLZ
GHLZ

LZ78-Min
LZ78-UC

 0

 0.1

 0.2

 0.3

 0.4

 0  1  2  3  4  5

m
ic

ro
se

co
nd

s 
pe

r 
ch

ar
ac

te
r

Bits per character

Proteins

HLZ
MHLZ
GHLZ

LZ78-Min
LZ78-UC

 0

 0.1

 0.2

 0.3

 0.4

 0.5  1  1.5  2  2.5  3  3.5

m
ic

ro
se

co
nd

s 
pe

r 
ch

ar
ac

te
r

Bits per character

DNA

HLZ
MHLZ
GHLZ

LZ78-Min
LZ78-UC

Fig. 2. Maximum RAM and time used during decompression.

Finally, Fig. 3 shows the ratio between the actual compressed file size and the
output of a classical LZ78 compressor (see Table 2). We exclude the HLZ baseline
because it does not really compress. While MHLZ poses 30%–40% of overhead,
GHLZ requires 25%–35%. We note that, to reach this overhead, we need to use
1/α = 1.1 or less, that is, almost the slowest. In this case, it is preferable to
use GHLZ, which uses 1–3 bits and 0.5–0.8µs per symbol for compression and
0.1–0.2µs for decompression. If we want to have the fastest MHLZ compression
times, we must accept an overhead of 40%–45%. On the other hand, LZ78-Min
has an overhead of 4%–15%.
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Fig. 3. Maximum RAM used at compression versus ratio of the final file size over the
classical output size.

10 Conclusions

We have presented new LZ78 compression/decompression algorithms based on
hashing, which under some simplifying assumptions use O(z lg σ) bits of main
memory in expectation, while running in O(n lg σ) time for compression and
O(n) time for decompression, where n is the text length, z the number of LZ78
phrases, and σ the alphabet size. Our algorithms read the text once, in streaming
mode, and write the output to disk. There exists no previous algorithm using so
little main memory.

Our experiments show that our new methods use 2–3 times less space for
compression than the most space-efficient implemented compressor in the liter-
ature, while being up to 4 times faster. Compared to a classical baseline, our
compressor uses 6–9 times less space and is only 50% slower. Our decompressor
uses 2–3 times less space than both baselines, but it is 2–3 times slower.

For example, our compressor can use up to 3 bits and 0.8µs per symbol and
our decompressor up to 2 bits and 0.2µs per symbol, posing a space overhead
around 30% over the optimally compressed file.

Our compressors and the competing algorithms are publicly available at
https://github.com/rcanovas/Low-LZ78.

https://github.com/rcanovas/Low-LZ78
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An interesting line of future work is to use these hash-based tries as com-
pressed text representations that retrieve any text substring [16], or for the
compressed-space construction of LZ78-based text indexes [2].
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Abstract. We investigate two closely related LZ78-based compression
schemes: LZMW (an old scheme by Miller and Wegman) and LZD
(a recent variant by Goto et al.). Both LZD and LZMW naturally pro-
duce a grammar for a string of length n; we show that the size of this
grammar can be larger than the size of the smallest grammar by a fac-

tor Ω(n
1
3 ) but is always within a factor O(( n

logn
)
2
3 ). In addition, we

show that the standard algorithms using Θ(z) working space to con-
struct the LZD and LZMW parsings, where z is the size of the parsing,

work in Ω(n
5
4 ) time in the worst case. We then describe a new Las

Vegas LZD/LZMW parsing algorithm that uses O(z log n) space and
O(n + z log2 n) time w.h.p.

Keywords: LZMW · LZD · LZ78 · Compression · Smallest grammar

1 Introduction

The LZ78 parsing [18] is a classic dictionary compression technique, discovered
by Lempel and Ziv in 1978, that gained wide use during the 1990s in, for exam-
ple, the Unix compress tool and the GIF image format. Not written about until
much later was that LZ78 actually produces a representation of the input string
as a context-free grammar. In recent years, grammar compressors have garnered
immense interest, particularly in the context of compressed text indexing: it is now
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possible to efficiently execute many operations directly on grammar-compressed
strings, without resorting to full decompression (e.g., see [3,4,6,7,10,16]).

A wide variety of grammar compressors are now known, many of them ana-
lyzed by Charikar et al. [5] in their study of the smallest grammar problem,
which is to compute the smallest context-free grammar that generates the input
string (and only this string). Charikar et al. show that this problem is NP-hard,
and further provide lower bounds on approximation ratios for many grammar
compressors. LZ78 is shown to approximate the smallest grammar particularly
poorly, and can be larger than the smallest grammar by a factor Ω(n

2
3 / log n)

(in [9] this bound was improved to Ω(( n
log n )

2
3 )), where n is the input length.

Our focus in this paper is on the LZD [8] and LZMW [14] grammar compres-
sion algorithms, two variants of LZ78 that usually outperform LZ78 in practice.
Despite their accepted empirical advantage over LZ78, no formal analysis of the
compression performance of LZD and LZMW in terms of the size of the small-
est grammar exists. This paper addresses that need. Moreover, we show that
the standard algorithms for computing LZD and LZMW have undesirable worst
case performance, and provide an alternative algorithm that runs in log-linear
randomized time. In particular the contributions of this article are as follows:

1. We show that the size of the grammar produced by LZD and LZMW can be
larger than the size of the smallest grammar by a factor Ω(n

1
3 ) but is always

within a factor O(( n
log n )

2
3 ). To our knowledge these are the first non-trivial

bounds on compression performance known for these algorithms.
2. Space usage during compression is often a concern. For both LZD and LZMW,

parsing algorithms are known that use O(z) space, where z is the size of the
final parsing. We describe strings for which these algorithms require Ω(n

5
4 )

time. (The only previous analysis is an O(n2/ log n) upper bound [8].)
3. We describe a Monte-Carlo parsing algorithm for LZD/LZMW that uses

a z-fast trie [2] and an AVL-grammar [15] to achieve O(z log n) space and
O(n + z log2 n) time for inputs over the integer alphabet {0, 1, . . . , nO(1)}.
This algorithm works in the streaming model and computes the parsing with
high probability. Using the Monte-Carlo solution, we obtain a Las Vegas algo-
rithm that, with high probability, works in the same space and time.

In what follows we provide formal definitions and examples of LZD and
LZMW parsings. Section 2 then establishes bounds for the approximation ratios
for the sizes of the LZD/LZMW grammars. In Sect. 3 we consider the time
efficiency of current space-efficient parsing schemes for LZD/LZMW. Section 4
provides an algorithm with significantly better (albeit randomized) performance.
Conclusions and reflections are offered in Sect. 5.

Preliminaries. We consider strings drawn from an alphabet Σ of size σ = |Σ|.
The empty string is denoted by ε. The ith letter of a string s is denoted by s[i]
for i such that 1 ≤ i ≤ |s|, and the substring of s that begins at position i and
ends at position j is denoted by s[i..j] for 1 ≤ i ≤ j ≤ |s|. Let s[i..j] = ε if j < i.
For any i, j, the set {k ∈ Z : i ≤ k ≤ j} (possibly empty) is denoted by [i..j].
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For convenience, we assume that the last letter of the input string s is $,
where $ is a special delimiter letter that does not occur elsewhere in the string.

Definition 1. The LZD (LZ–Double) parsing [8] of a string s of length n is
the parsing s = p1p2 · · · pz such that, for i ∈ [1..z], pi = pi1pi2 where pi1 is
the longest prefix of s[k..n] and pi2 is the longest prefix of s[k + |pi1 |..n] with
pi1 , pi2 ∈ {p1, . . . , pi−1} ∪ Σ where k = |p1 · · · pi−1| + 1. We refer to the set
Σ ∪ ⋃

i∈[1..z]{pi} as the dictionary of LZD.

Definition 2. The LZMW (LZ–Miller–Wegman) parsing [14] of a string s of
length n is the parsing s = p1p2 · · · pz such that, for i ∈ [1..z], pi is the longest
prefix of s[k..n] with pi ∈ {pjpj+1 : 1 ≤ j ≤ i−2}∪Σ where k = |p1 · · · pi−1|+1.
We refer to the set

⋃
i∈[2..z]{pi−1pi} as the dictionary of LZMW.

Example. The LZD parsing of the string s = abbaababaaba$ is p1 = ab,
p2 = ba, p3 = abab, p4 = aab, and p5 = a$. This can be represented by
(a, b), (b, a), (1, 1), (a, 1), (a, $). The LZMW parsing of s is the following: p1 = a,
p2 = b, p3 = b, p4 = a, p5 = ab, p6 = ab, p7 = aab, p8 = a, and p9 = $. This can
be represented by (a, b, b, a, 1, 1, 4, a, $).

Notice that the LZD/LZMW parsing of string s can be seen as a grammar
that only generates s, with production rules of form pi → pjpk (j < i, k < i) or
pi → a (∈ Σ) for each phrase pi, and the start rule S → p1p2 · · · pz. The size of a
grammar is the total number of symbols in the right-hand side of the production
rules. Thus, the size of the LZD (resp., LZMW) grammar is only by a constant
factor larger than the number of phrases in the LZD (resp., LZMW) parsing.

2 Approximating the Smallest Grammar

The following theorem shows that, although LZD and LZMW have good com-
pression performance in practice on high-entropy strings, their performance on
low-entropy strings can be very poor.

Theorem 1. For arbitrarily large n, there are strings s of length n for which
the size of the grammars produced by the LZD and LZMW parsings is larger
than the size of the smallest grammar generating s by a factor Ω(n

1
3 ).

Proof. Our proof is inspired by [5, Sect. 6, C]. Let k ≥ 4 be an integer that
is a power of 2. We will construct a string s of length n = Θ(k3) that can
be encoded by a grammar of size O(k) = O(n

1
3 ), but for which the LZMW

parsing produces a grammar of size Ω(k2) = Ω(n
2
3 ). The input alphabet is

{a, b, c, d}; the letters c and d serve as separators. Denote δi = aibbak−i and
γi = bai a aib c ba ba2 ba3 · · · bai. The string s is as follows:

x = δkδk−1 δkδk−2 δkδk−3 · · · δkδk/2+1 δkak−1,

s = γ0γ1 · · · γk−1δ0dδ1d · · · δkd caa caa2a2 · · · ca2i−1a2i

a2i · · · ca k
2 −1a

k
2 a

k
2 dc x

k
2 .
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We have |s| = Θ(k3). Consider the prefix γ0γ1 · · · γk−1 δ0dδ1d · · · dδkd, which
will ensure the strings δi are in the LZMW dictionary.

We will show by induction on i that each substring γi of the prefix
γ0γ1 · · · γk−1 is composed of the phrases bai, a, aib, cbaba2 · · · bai in the parsing
of the string s. It is trivial for i = 0. Suppose that i > 0 and the assertion
holds for all γi′ and i′ < i. It follows from the inductive hypothesis that bai is
the longest prefix of γi that is equal to a concatenation of two adjacent phrases
introduced before the starting position of γi. Hence, by the definition of LZMW,
the string γi starts with the phrase bai. In the same way we deduce that the
phrase bai is followed by the phrases a, aib, and cbaba2 · · · bai.

By an analogous inductive argument, one can show that each substring δid
of the substring δ0dδ1d · · · δkdc is composed of the phrases aib, bak−i, d. Since
the phrases aib and bak−i are adjacent, the LZMW dictionary now contains the
strings δi = aibbak−i for all i = 0, 1, . . . , k.

Similarly, the substring caacaa2a2 · · · ca2i−1a2i

a2i · · · ca k
2 −1a

k
2 a

k
2 dc is parsed

as c, a, a, ca, a2, a2, . . . , ca2i−1, a2i

, a2i

, . . . , ca
k
2 −1, a

k
2 , a

k
2 , dc. In what follows we

need only the string ak introduced to the dictionary by the pair of phrases a
k
2 .

Finally, consider the substring x
k
2 . Observe that the first occurrence

of x is parsed in (almost) the way it is written, i.e., it is parsed as
δk, δk−1, δk, δk−2, . . . , δk, δk/2+1, δk. But the last phrase is ak instead of ak−1.
In other words, the parsing of the second occurrence of x starts from the second
position of x and, therefore, the first phrases of this parsing are as follows:

δk−1, δk−2, δk−1, δk−3, . . . , δk−1, δk/2, δk−1.

Again, the last phrase is ak and, hence, the parsing of the third occurrence of x
starts with the third position of x, and so on.

The LZMW parsing of s, therefore, consists of Ω(k2) phrases and the size of
the LZMW grammar is Ω(k2). But there is a grammar of size O(k) producing s:

S → Γ0Γ1 · · · Γk−1Δ0dΔ1d · · · ΔkdcA2cA5cA11 · · · cAk/2+k−1dcXk/2,
A0 → ε, B0 → c, Ai → Ai−1a, Bi → Bi−1bAi for i ∈ [1..2k],
Γi → bA2i+1bBi, Δi → AibbAk−i for i ∈ [0..k],
X → ΔkΔk−1 ΔkΔk−2 · · · ΔkΔk/2+1 ΔkAk−1.

Using similar ideas we can describe a troublesome string for the LZD scheme:

s = (a2 c2 a3 c3 · · · akck)(bb abb a2bb a3 · · · bbak−1bb)(δ0d2δ1d3 · · · δkdk+2)x
k
2 .

As above, the size of the grammar corresponding to the LZD parsing of s
is Ω(k2) whereas the size of the smallest grammar is O(k); hence, the result
follows.

S → A2C2A3C3 · · · AkCkbbA1bbA2 · · · bbAk−1bbΔ0D2Δ1D3 · · · ΔkDk+2X
k/2,

A0 → ε, C0 → ε,D0 → ε, Ai → Ai−1a,Ci → Ci−1c,Di → Di−1d for i ∈ [1..k+2],
Δi → AibbAk−i for i ∈ [0..k], X → ΔkΔk−1 ΔkΔk−2 · · · ΔkΔk/2+1 ΔkAk−1.

The analysis is similar to the above but simpler, so, we omit it. To additionally
verify the correctness of both constructions, we conducted experiments on small
k and, indeed, observed the described behavior; the code can be found in [1]. ��
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We can also show that the upper bound for the approximation ratio of the
LZ78 parsing given in [5] also applies to the LZD and LZMW parsings. For this,
we will use the following known results.

Lemma 2 ([5]). If there is a grammar of size m generating a given string,
then this string contains at most mk distinct substrings of length k.

Lemma 3 ([8]). All phrases in the LZD parsing of a given string are distinct.

Lemma 4. Let p1p2 · · · pz be the LZMW parsing of a given string. Then, for
any i ∈ [2..z] and j ∈ [i+2..z], we have pi−1pi 	= pj−1pj.

Proof. If pi−1pi = pj−1pj for i < j − 1, then, by the definition of LZMW, the
phrase pj−1 either is equal to pi−1pi or contains pi−1pi as a prefix, which is a
contradiction. ��

Now we are ready to show an upper bound on the approximation ratio of the
LZD and LZMW parsings.

Theorem 5. For all strings s of length n, the size of the grammar produced by
the LZD/LZMW parsing is larger than the size of the smallest grammar gener-
ating s by at most a factor O((n/ log n)2/3).

Proof. The theorem can be shown by an analogous way as for the upper bound of
the LZ78 parsing against the smallest grammar [5] (which is especially straight-
forward for LZD due to Lemma 3), but we provide a full proof for completeness.

Let us consider LZMW. Suppose that s is a string of length n and m∗ is
the size of the smallest grammar generating s. Let p1, p2, . . . , pz be the LZMW
parsing of s. It suffices to evaluate the number z of phrases since the total size
of the grammar produced by LZMW is only by a constant factor larger than z.

Consider the multiset S = {p1p2, p2p3, . . . , pz−1pz} (recall that a multiset can
contain an element more than one time). Let pi1pi1+1, pi2pi2+1, . . . , piz−1piz−1+1

be a sequence of all strings from S sorted in increasing order of their lengths
(again, some strings may occur more than once in the sequence). We partition
the sequence by grouping the first 2 · m∗ strings, then the next 2 · 2m∗ strings,
the next 2 · 3m∗ strings, and so forth. Let r be the minimal integer satisfying
2(1m∗ + 2m∗ + · · · + rm∗ + (r + 1)m∗) > z. This implies that z = O(r2m∗).

By Lemma 4, any string has at most two occurrences in the multiset S.
Also, it follows from Lemma 2 that s contains at most km∗ distinct substrings
of length k. Thus, for any k ≥ 1, there are at most 2km∗ strings from S that
generate substrings of length k. This implies that each string in the kth group
generates a substring of length at least k. Hence, we have that

2n ≥ |pi1pi1+1|+ |pi2pi2+1|+ · · ·+ |piz−1piz−1+1| ≥ 2(12m∗ +22m∗ + · · ·+ r2m∗),

which implies that r = O((n/m∗)1/3). By plugging this into z = O(r2m∗), we
obtain z = O((n/m∗)2/3m∗) and thus the approximation ratio of the grammar
produced by LZMW is O((n/m∗)2/3). Since m∗ = Ω(log n), we finally get the
desired bound O((n/ log n)2/3).
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Let us sketch the analysis of LZD, which is very similar. In this case, we
consider the set S′ of all phrases p1, p2, . . . , pz (not pairs as in LZMW) of the
LZD parsing. Let pi1 , . . . , piz

be the sequence of all strings from S′ sorted by
the increasing order of lengths. We partition the sequence into groups of size
1m∗, 2m∗, 3m∗, . . . (without the factor 2 as in LZMW). It follows from Lemma 3
that any string occurs in S′ at most once. Therefore, similar to the case of
LZMW, we obtain n = |pi1 | + |pi2 | + · · · + |piz

| ≥ 12m∗ + 22m∗ + · · · + r2m∗,
which implies the result in the same way as above. ��

3 Small-Space Computation

In this section we analyze the time required to compute the LZD and LZMW
parsings using the O(z)-space algorithms described by Goto et al. [8] and Miller
and Wegman [14], where z is the number of phrases. We focus on LZD through-
out, but a very similar algorithm and analysis applies for LZMW. Goto et al.
upperbound the runtime at O(z(m + min(z,m) log σ)), where m is the length
of the longest LZD (or LZMW) phrase and σ is the size of the input alphabet.
Because m = O(n) and z = O(n), the runtime is upper bounded by O(n2). Below
we provide a lower bound of Ω(n5/4) on the worst-case runtime, but before doing
so we provide the reader with a description of Goto et al.’s algorithm [8].1

Näıve Parsing Algorithms. In the compacted trie for a set of strings, each edge
label � is represented as a pair of positions delimiting an occurrence of � in the
set. In this way we can store the trie for s1, . . . , sk in O(k) space. During parsing
Goto et al. [8] maintain the dictionary of LZD phrases in a compacted trie.
The trie is of size O(z), but read-only random access to the input string is also
required in order to determine the actual values of the strings on the edge labels.

Initially the trie is empty, consisting of only the root. At a generic step
during parsing, when we go to compute the phrase pi = pi1pi2 starting at posi-
tion j = |p1p2 . . . pi−1| + 1, the trie contains nodes representing the phrases
p1, p2, . . . , pi−1 and all the distinct symbols occurring in s[1..j −1], and all these
nodes (corresponding to phrases and symbols) are marked. Note that there may
also be some nodes in the trie that do not correspond to any phrase, i.e., branch-
ing nodes. Let s[j..k] be the longest prefix of s[j..n] that can be found by tra-
versing the trie from the root. If s[j..k] cannot be matched even for k = j, then
s[j] is the leftmost occurrence of symbol c = s[j] in s, and we add a child node of
the root labelled with c, mark the node, and set it as the first element of the new
phrase, i.e., pi1 = c. Otherwise, the first element of pi, pi1 , is the string written
on the path connecting the root and the lowest marked node on the path that
spells s[j..k]. The second element, pi2 , of the phrase is computed in a similar
manner, by searching for s[j + |pi1 | + 1..n] in the trie.

After computing pi we modify the trie by a standard procedure so that there
is a marked node representing pi: first, we traverse the trie from the root finding
1 We concern ourselves here with LZD parsing, but it should be easy for the reader to

see that the algorithms are trivially adapted to instead compute LZMW.
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the longest prefix of pi present in the trie, then, possibly, create one or two
new nodes, and, finally, mark the node (which, probably, did not exist before)
corresponding to pi (the details can be found in any stringology textbook).

The time taken to compute a new phrase and update the trie afterwards is
bounded by O(m+min(z,m) log σ), where m = O(n) is the length of the longest
phrase (and therefore an upper bound on the length of the longest path in the
trie), min(z,m) is an upper bound on the number of branching nodes, and log σ
is the time taken to find the appropriate outgoing edge at each branching node
during downward traversal. Over all z phrases the runtime is thus O(z(m +
min(z,m) log σ)).

The LZMW construction algorithm of Miller and Wegman [14] is analogous
but, unlike the LZD algorithm, when we go to compute the phrase pi, the trie con-
tains the strings p1p2, p2p3, . . . , pi−2pi−1 and the nodes corresponding to these
strings are marked. One can easily show that the running time of this algorithm
is O(z(m+min(z,m) log σ)), where z and m are defined analogously as for LZD.

We call both these algorithms näıve.

Worst-Case Time of the Näıve Algorithms. Now let us investigate the worst-case
time complexity of the näıve LZD and LZMW construction algorithms.

Theorem 6. The näıve LZD and LZMW construction algorithms take time
Ω(n

5
4 ) in the worst case.

Proof. Let k ≥ 8 be an integer that is a power of two. We will describe a string
s of length n = Θ(k4) for which the basic LZD construction algorithm (see the
above discussion) spends Θ(n

5
4 ) time to process. The string s is composed of

pairwise distinct letters ai,j , for i, j ∈ [1..k], and “separator” letters, all of which
are denoted 
 and supposed to be distinct. We will first construct a prefix s′

of s that forces the algorithm to fill the dictionary with a set of strings that
are used as building blocks in further constructions. To this end, denote (with
parentheses used only for convenience):

wi = ai,1ai,2 · · · ai,k for i = 1, 2, . . . , k and w = w1w2 · · · wk,
spre,i = wi[1..2]wi[1..3] · · · wi[1..k] for i = 1, 2, . . . , k,
ssuf,i = wi[k−1..k]wi[k−2..k] · · · wi[2..k] for i = 1, 2, . . . , k,
p = (spre,1spre,2 · · · spre,k)(ssuf,1ssuf,2 · · · ssuf,k),
q = (wk−2wk−1)(wk−3wk−2wk−1) · · · (w1w2· · ·wk−1)(w),
s′ = pq · w21w22 · · · wk(wk[2..k]wk)(wk[3..k]wk) · · · (wk[k..k]wk).

Analyzing the prefix p of s′, it is clear that the LZD construction algo-
rithm adds to the dictionary exactly all prefixes and suffixes of the strings
wi for i = 1, 2, . . . , k; parsing the string q, the algorithm adds the strings
wk−2wk−1, wk−3wk−2wk−1, . . . , w1w2 · · · wk−1, and w1w2 · · · wk = w; then,
processing the string w21w22 · · · wk, the algorithm adds w21 , w22 , . . . , wk (we are
interested only in wk); finally, the strings wk[2..k]wk, wk[3..k]wk, . . . , wk[k..k]wk

are added. So, the algorithm adds to the dictionary exactly the following strings:
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– all prefixes and suffixes of wi (including wi itself) for i = 1, 2, . . . , k;
– wk−2wk−1, wk−3wk−2wk−1, . . . , w1w2 · · · wk−1, and w;
– wk along with wk/2, . . . , w22 , w2 (we use only wk in what follows);
– wk[2..k]wk, wk[3..k]wk, . . . , wk[k..k]wk.

It is easy to verify that |w| = k2, |wk| = k3, and |s′| = Θ(k4). (The string
wk[2..k]wkwk[3..k]wk · · · wk[k..k]wk contributes the most to the length.)

We first provide an overview of our construction. The main load on the
running time of the algorithm is concentrated in the following strings zi:

zi = wi[2..k]wi+1 · · · wkwk−2w1 · · · wi for i = 1, 2, . . . , k − 2.

Put s = s′x1z1

x2z2

 · · · xk−2zk−2

, where x1, . . . , xk are auxiliary strings
defined below. Before processing of zi, the algorithm processes xi and adds
the strings wi[j..k]wi+1 · · · wk−1wk[1..j−1] and wk[j..k]w1 · · · wi−1wi[1..j] for j ∈
[2..k] to the dictionary (see below). So, analyzing zi, the algorithm consecutively
“jumps”, for j = 2, 3, . . . , k, from the string wi[j..k]wi+1 · · · wk−1wk[1..j−1] to
wk[j..k]w1 · · · wi−1wi[1..j] and so on. The crucial point is that, while analyzing
the string wk[j..k]w1 · · · wi−1wi[1..j], the algorithm does not know in advance
that the string wk[j..k]wk from the dictionary does not occur at this position
and, since the length of the longest common prefix of the strings wk[j..k]wk

and wk[j..k]wk−jw1 · · · wi

 is Θ(k − j + 1 + |wk−j |), spends Θ(|wk−j |) =
Θ((k − j)k2) time verifying this. Therefore, the analysis of the string s takes
Θ((k − 2)

∑k
j=2(k − j)k2) = Θ(k5) time overall. Since |zi| = O(k3) and, as it is

shown below, |xi| = O(k3), we have n = |s| = Θ(k4) and the processing time is
Θ(n

5
4 ) as required. We now describe this in more detail.

We prove by induction that the following invariant is maintained: when the
algorithm starts the processing of the suffix xizi

 · · · xk−2zk−2

 of the string
s (xi are defined below), the dictionary contains the following set of strings:

– “building blocks” constructed during the processing of s′;
– pairs of separators 

 (recall that all separators are distinct);
– for each i′ ∈ [1..i−1] and j ∈ [2..k]:

– wi′ [j..k]wi′+1 · · · wk−1wk[1..j−1] and wk[j..k]w1 · · · wi′−1wi′ [1..j],
– wi′ [j..k]wi′+1 · · · wk−1 and wk[j..k]w1 · · · wi′−1,
– wi′ [j..k]wi′+1 · · · wkw1 · · · wi′−1wi′ [1..j].

The strings from the last two lines in the above list are not used and appear
as byproducts. (But it is still important to have them in mind to verify that
the algorithm works as expected.) So, assume that, by inductive hypothesis, the
invariant holds for all i′ ∈ [1..i−1] (it is trivial for i = 1).

Define xi as follows (the parentheses are only for visual ease):

u′
i,j = (wk[j..k]w1 · · · wi−1wi[1..j]),

ui,j = (wk[j..k]w1 · · · wi−2wi−1[1..j])(wi−1[j+1..k])u′
i,j ,

vi,j = (wi[j..k]wi+1 · · · wk−1)(wi[j..k]wi+1 · · · wk−1wk[1..j−1]),
x1 = (u′

1,2

u′
1,3

 · · · u′

1,k−1

u′
1,k

)(v1,2

v1,3

 · · · v1,k

),

xi = (ui,2

ui,3

 · · · ui,k−1

u′
i,k

)(vi,2

vi,3

 · · · vi,k

), for i 	= 1.
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Clearly |xi| = O(k3). Using the hypothesis, one can show that the algo-
rithm adds the strings wk[j..k]w1 · · · wi−1 (j 	= k), wk[j..k]w1 · · · wi−1wi[1..j],
wi[j..k]wi+1 · · · wk−1, wi[j..k]wi+1 · · · wk−1wk[1..j−1] for j ∈ [2..k] to the dictio-
nary after the processing of xi (plus several pairs 

). It remains to show that
the algorithm adds exactly the strings wi[j..k]wi+1 · · · wkw1 · · · wi−1wi[1..j], for
j ∈ [2..k], to the dictionary when processing zi.

Observe that, for j ∈ [2..k], wi[j..k]wi+1 · · · wk−1wk[1..j−1] is the longest
string from the dictionary that has prefix wi[j..k], and wk[j..k]w1 · · · wi−1wi[1..j]
is the longest string from the dictionary that has prefix wk[j..k] and does
not coincide with wk[j..k]wk. Hence, the algorithm consecutively “jumps” over
the substrings w of the string zi adding after each such “jump” the string
wi[j..k]wi+1 · · · wkw1 · · · wi−1wi[1..j] to the dictionary (for j = 2, 3, . . . , k). No
other strings are added.

Each time the algorithm processes a substring wk[j..k]w1 · · · wi−1wi[1..j], it
also verifies in Θ(ki + |wk−j |) time whether the string wk[j..k]wk occurs at this
position. Therefore, by the above analysis, processing takes Θ(|s| 5

4 ) time.
An analogous troublesome string for the näıve LZMW construction algorithm

is as follows (again, all separators 
 are assumed to be distinct letters):

wi = ai,1ai,2 · · · ai,k and w = w1w2 · · · wk,
spre,i = wi[1..2]
wi[1..3]
 · · · 
wi[1..k]
,
ssuf,i = wi[k−1..k]
wi[k−2..k]
 · · · 
wi[2..k]
,
p = spre,1spre,2 · · · spre,kssuf,1ssuf,2 · · · ssuf,k,
q = wk−2wk−1
wk−3wk−2wk−1
 · · · 
w1w2· · ·wk−1
w
,

s′ = pqw21
w22
 · · · 
wk
wk[2..k]wk
wk[3..k]wk
 · · · 
wk[k..k]wk
,
yj = wk[j..k]w1
wk[j..k]w1w2[1..j]
,
ti,j = wi−2[j+1..k]wi−1[1..j]
wi−1[j+1..k]wi[1..j],
ui,j = (wk[j..k]w1 · · · wi−3wi−2[1..j])(wi−2[j+1..k]wi−1[1..j]),
vi,j = wi[j..k]wi+1 · · · wk−1
wi[j..k]wi+1 · · · wk−1wk[1..j−1],
xi = ti,2
ti,3
 · · · 
ti,k−1
ui,2
ui,3
 · · · 
ui,k
vi,2
vi,3
 · · · 
vi,k
,
zi = wi[2..k]wi+1 · · · wkwk−2w1 · · · wi
,
s = s′y2y3 · · · ykx4z4x6z6 · · · x2jz2j · · · xk−2zk−2.

Let us explain on a high level why the LZMW algorithm works slowly
on s. While analyzing the prefix s′y2y3 · · · yk, the algorithm adds a number
of “building block” strings into the LZMW dictionary, including the strings
w[j..k]wk for j = 2, 3, . . . , k (recall that, unlike the LZD dictionary con-
taining phrases, the LZMW dictionary contains pairs of adjacent phrases).
Before the processing of zi, the algorithm processes xi and adds the strings
wi[j..k]wi+1 · · · wk−1wk[1..j−1] (from vi,j), wk[j..k]w1 · · · wi−2wi−1[1..j] (from
ui,j), and wi−1[j+1..k]wi[1..j] (from ti,j) to the dictionary. The concatena-
tion of these three strings is wi[j..k]wi+1 · · · wkw1 · · · wi−1wi[1..j], so, analyz-
ing zi, the algorithm consecutively “jumps”, for j = 2, 3, . . . , k, from the
string wi[j..k]wi+1 · · · wk−1wk[1..j−1] to wk[j..k]w1 · · · wi−2wi−1[1..j] and then
to wi−1[j+1..k]wi[1..j], thus producing three new phrases (and then moves on to
j+1). The point is that, while analyzing the string wk[j..k]w1 · · · wi−2wi−1[1..j],
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the algorithm does not know in advance that the string wk[j..k]wk from
the dictionary does not occur at this position and, since the length of the
longest common prefix of the strings wk[j..k]wk and wk[j..k]wk−jw1 · · · wi

 is
Θ(k − j + 1 + |wk−j |), spends Θ(|wk−j |) = Θ((k − j)k2) time verifying this.
Therefore, the analysis of the string s takes Θ((k/2)

∑k
j=2(k − j)k2) = Θ(k5)

time overall. Since n = |s| = Θ(k4), the processing time is Θ(n
5
4 ) as required.

We omit the detailed proof since it is very similar to the LZD case.
To additionally verify the correctness of both constructed examples, we per-

formed the näıve LZD and LZMW algorithms (with some diagnostics to track
their execution) on the examples for small k and, indeed, observed the expected
“bad” behavior in the special positions described above. Our verifying code (it
can be found in [1]) thoroughly checks the correspondence of the behavior of the
parsers in the special positions to the behavior discussed in the above text. Thus,
we hope that the correctness of both our constructions is well supported. ��

We now explain how to decrease the alphabet size in the examples of
Theorem 6. The construction for both parsing schemes relies on the following
reduction.

Lemma 7. Consider the parsing scheme LZD or LZMW and a string s ∈ Σ∗.
There exists a string t ∈ {0, 1}∗ of length Θ(|Σ| log |Σ|) and a morphism φ with
φ(Σ) ⊆ {0, 1}� for � = Θ(log |Σ|) such that the parsing of t · φ(s) consists of the
parsing of t followed by the image with respect to φ of the parsing of s.

Proof. We analyze the two parsing schemes separately. For LZD, we recursively
define AL ⊆ {0, 1}2L

, setting A0 = {0, 1} and AL = {xy : x, y ∈ AL−1 ∧ x ≤ y}
for L > 0. Let (αi)∞

i=1 be the infinite sequence of all elements of AL, for all L ≥
1, with members of each set AL listed in the lexicographic order; e.g., α1, . . . , α12

=00, 01, 11, 0000, 0001, 0011, 0101, 0111, 1111, 00000000, 00000001, 00000011. We
will define t = α1 · · · αm for some m. Let us characterize parsings of such strings.

Claim. For any non-negative integer m and any string w ∈ {0, 1}∗, the first m
phrases of the LZD parsing of the binary string α1 · · · αm · w are α1, . . . , αm.

Proof. We proceed by induction on m; the base case of m = 0 is trivial.
For m > 0, the inductive assumption implies that the first m− 1 phrases are

α1, . . . , αm−1. Our goal is to prove that the mth phrase is αm. Before processing
αm, the LZD dictionary is D = {0, 1, α1, . . . , αm−1}. Suppose that αm = xy ∈
AL with x, y ∈ AL−1. Recall that x ≤ y; consequently, D ∩ (y · {0, 1}∗) = {y}
and

D ∩ (x · {0, 1}∗) = {x} ∪ {xy′ : y′ ∈ AL−1 ∧ x ≤ y′ < y}.

Thus, the longest prefix of αm · w contained in D is x, and the longest prefix of
y · w contained in D is y. This means that the mth phrase is indeed αm = xy. ��

Consider a string s ∈ Σn. We choose the smallest L with |AL| ≥ |Σ| and
define t = α1 · · · αm so that t is shortest possible and the LZD dictionary after
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processing t contains at least |Σ| elements of AL. The morphism φ is then defined
by injectively mapping Σ to these dictionary strings from AL.

Note that |AL−1| ≤ |Σ| and m ≤ |Σ| +
∑L−1

�=1 |A�|, so we have m = Θ(|Σ|),
� = 2L = Θ(log |Σ|), and |t| = Θ(|Σ| log |Σ|), as desired.

We are to prove that the LZD parsing of t · φ(s) is α1, . . . , αm, φ(p1), . . . , φ(pz),
where p1, . . . , pz is the LZD parsing of s. For this, we inductively prove that the
LZD dictionary D after parsing p1 · · · pi is related to the LZD dictionary D̂ after
parsing t ·φ(p1 · · · pi) by the following invariant: D̂∩ (φ(Σ) · {0, 1}∗) = φ(D). The
base case follows from the claim (D̂ ∩ (φ(Σ) · {0, 1}∗) = φ(Σ) = φ(D)), and the
inductive step is straightforward. This completes the proof for the LZD scheme.

The construction for LZMW is more involved, but the idea is the same. We
recursively define BL ⊆ {0, 1}2L

, setting B0 = {0, 1} and BL = {xy : x, y ∈
BL−1 ∧ xy 	= 12

L−1
02

L−1} for L > 0. Let (βi)∞
i=1 be the infinite sequence that

lists all elements of BL consecutively for all L ≥ 0, with members of each BL

listed in the lexicographic order (i.e., (βi)∞
i=1 is defined by analogy with (αi)∞

i=1

for LZD but starting with L = 0). For βm ∈ BL, define b(βm) = βMβm ·
βM+1βm · · · βm−1βm · βm, where βM = 02

L

is the first element of BL in (βi)∞
i=1.

For example, b(β1) · · · b(β6) = 0 · 0 1 1 · 00 · 00 01 01 · 00 11 01 11 11 · 0000.

Claim. For m ≥ 1, consider a binary string b(β1) · · · b(βm) · 0|βm| · w for
w ∈ {0, 1}∗. The LZMW parsing decomposes its fragments b(βi) into phrases of
length |βi|.
Proof. We proceed by induction on m. The base case m = 1 is straightforward:
it suffices to note that the first phrase of 0 · 0 · w is 0. Below, we consider m > 1.

First, suppose that βm = 02
L

, i.e., βm−1 = 12
L−1 ∈ BL−1. Note that

b(βm) starts with 02
L−1

, so the inductive hypothesis yields that the prefix
b(β1) · · · b(βm−1) is parsed as desired. Observe that after parsing this prefix,
the LZMW dictionary is D = {12

�−1
02

�

: 0 < � < L} ∪ ⋃L
�=0 B�. Consequently,

we obtain D ∩ (BL · {0, 1}∗) = BL and, therefore, b(βm) = βm is parsed as
claimed.

Finally, suppose that βm ∈ BL\{02
L}. In this case, βm−1 ∈ BL and βM = 02

L

for some M < m. Since b(βm) starts with βM = 02
L

, the inductive hypothesis
lets us assume that the prefix b(β1) · · · b(βm−1) is parsed as desired. Due to
12

L−1
02

L−1 /∈ BL, after parsing this prefix, the LZMW dictionary D satisfies:

D ∩ (BL · {0, 1}∗) = BL ∪ {βkβk′ : M ≤ k, k′ < m ∧ (k, k′) 	= (m−1,M)}.

Let us consider the parsing of b(βm)02
L

w = βMβm · βM+1βm · · · βm−1βm · βm ·
02

L

w. One can inductively prove that before parsing βkβm · βk+1 · · · , for M ≤
k < m, we have D ∩ (βk · {0, 1}∗) = {βk} ∪ {βkβk′ : M ≤ k′ < m}, so the
subsequent phrase is βk. Next, before parsing βm · βk+1 · · · , for M ≤ k < m,
we have D ∩ (βm · {0, 1}∗) = {βm} ∪ {βmβk′ : M < k′ ≤ k}, so the subsequent
phrase is βm. Finally, before parsing βm · 02

L

w, we have D ∩ (βm · {0, 1}∗) =
{βm} ∪ {βmβk′ : M < k′ < m}, so the last phrase is also βm. Thus, b(βm) is
parsed as claimed. ��
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Consider a string s ∈ Σn. We choose the smallest L with |BL| ≥ |Σ| and define
t = b(β1) · · · b(βm) so that t is shortest possible and the LZMW dictionary after
processing t contains at least |Σ| members of BL (note that βm ∈ BL−1 in
this case). The morphism φ is then defined by injectively mapping Σ to these
dictionary strings from BL. Moreover, we put φ(s[1]) = 02

L

so that the claim is
applicable for t ·φ(s). The remaining proof is analogous to the LZD counterpart.
We only need to observe that the LZMW dictionary additionally contains βm02

L

,
but βm02

L−1
/∈ φ(Σ) and, hence, this does not affect the parsing of t · φ(s). ��

The hard binary examples are now straightforward to derive.

Theorem 8. The näıve LZD and LZMW parsing algorithms take time
Ω(n5/4/ log1/4 n) in the worst case even on a binary alphabet.

Proof. We apply Lemma 7 for a string s ∈ Σ∗ of length n constructed in the
proof of Theorem 6 for the appropriate parsing algorithm, which results in a
binary string ŝ := t · φ(s). Without loss of generality, we may assume |Σ| ≤ n,
so n̂ := |ŝ| = Θ(|Σ| log |Σ| + n log |Σ|) = Θ(n log |Σ|). Recall that the näıve
parsing algorithm traverses at least Ω(n5/4) trie edges while parsing s. Since the
parsing of the suffix φ(s) of ŝ is the φ-image of the parsing of s, this algorithm
traverses at least Ω(n5/4 log |Σ|) trie edges while parsing ŝ. In terms of n̂, the
running time is at least Ω(n̂5/4/ log1/4 |Σ|), which is Ω(n̂5/4/ log1/4 n̂) due to
|Σ| ≤ n < n̂. ��

4 Faster Small-Space Computation

In this section we describe a new parsing algorithm that works in O(n+z log2 n)
time (randomized, in expectation) and uses O(z log n) working space to parse
the input string over the integer alphabet {0, 1, . . . , nO(1)}. Before getting to the
algorithm itself, we review four tools that are essential for it: Karp–Rabin hash-
ing [11], AVL-grammars of Rytter [15], the dynamic z-fast trie of Belazzougui
et al. [2], and the dynamic marked ancestor data structure of Westbrook [17].

Karp–Rabin Hashing. A Karp–Rabin [11] hash function φ has the form
φ(s[1..n]) =

∑n
i=1 s[i]δi−1 mod p, where p is a fixed prime and δ is a randomly

chosen integer from the range [0..p−1] (this is a more popular version of the
original hash proposed in [11]). The value φ(s) is called s’s Karp–Rabin hash.
It is well-known that, for any c > 3, if p > nc, then the probability that two
distinct substrings of the given input string of length n have the same hash is
less than 1

nc−3 .
We extensively use the property that the hash of the concatenation s1s2 of

two strings s1 and s2 can be computed as (φ(s1) + δ|s1|φ(s2)) mod p. Therefore,
if the values φ(s1) and φ(s2) are known and p ≤ nO(1), then φ(s1s2) can be
calculated in O(1) time provided the number (δ|s1| mod p) is known.
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AVL-Grammars. Consider a context-free grammar G that generates a string s
(and only s). Denote by Tree(G) the derivation tree of s. We say that G is an
AVL-grammar (see [15]) if G is in the Chomsky normal form and, for every
internal node v of Tree(G), the heights of the trees rooted at the left and right
children of v differ by at most 1. The following result straightforwardly follows
from the algorithm of Rytter described in [15].

Lemma 9 (see [15, Theorem 2]). Let G be an AVL-grammar generating a
prefix s[1..i−1] of a string s. Suppose that the string s[i..k] occurs in s[1..i−1];
then one can construct an AVL-grammar generating the string s[1..k] in O(log i)
time modifying at most O(log i) rules in G.

Let G be an AVL-grammar generating a string s. It is well-known that, for any
substring s[i..j], one can find in O(log n) time O(log n) non-terminals A1, . . . , Ak

such that s[i..j] is equal to the string generated by A1 · · · Ak. Hence, if each non-
terminal A of G is augmented with the Karp–Rabin hash φ(t) of the string t
generated by A and with the number δ|t| mod p, then we can compute φ(s[i..j])
in O(log n) time. One can show that, during the reconstruction of the AVL-
grammar in Lemma 9, it is easy to maintain the described integers augmenting
the non-terminals (see [15]).

Z-Fast Tries. Let x be a string such that one can compute the Karp–Rabin hash
of any prefix of x in O(tx) time. The z-fast trie [2] is a compacted trie containing
a dynamic set of variable-length strings that supports the following operations:

– we can find (w.h.p.) in O(tx log |x|) time the highest explicit node v such that
the longest prefix of x present in the trie is written on the root-v path;

– we can insert x into the trie in O(|x| + tx log |x|) randomized time.

The space occupied by the z-fast trie is Θ(k), where k is the number of strings
inserted in the trie.

Dynamic Marked Ancestor. Let T be a dynamic compacted trie (or just tree)
with k nodes. The dynamic marked ancestor data structure of [17] supports
the following two operations on T (both in O(log k) time): for a given node v,
(1) mark v, (2) find the nearest marked ancestor of v (if any).

Algorithm. Our faster parsing algorithm computes the LZD phrases from left
to right one by one, spending O(logO(1) n) time on each phrase. We maintain
an AVL-grammar G for the prefix s[1..i−1] of s we have already parsed, and
a z-fast trie T containing the first phrases p1, p2, . . . , pr of the LZD parsing of
s such that s[1..i−1] = p1p2 · · · pr. We augment T with the dynamic marked
ancestor data structure and mark all nodes corresponding to phrases (i.e., all
nodes v such that the string written on the path from the root to v is equal
to t ∈ {p1, . . . , pr}). We augment each non-terminal of G with the Karp–Rabin
hash φ(t) of this non-terminal’s expansion t and with the number δ|t| mod p, so
that the hash of any substring of s[1..i−1] can by calculated in O(log n) time.
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Suppose we are looking for the first part of the next phrase and that, in addi-
tion to having parsed s[1..i−1], we have already read s[i..j−1] without parsing
it—but we have found the endpoints of an occurrence of s[i..j−1] in s[1..i−1].
(Notice s[i..j−1] can be empty, i.e., i = j.) Denote by x the longest prefix of
s[i..j−1] that is also a prefix of some of the phrases p1, . . . , pr. Since we can
compute quickly with G the hash of any prefix of s[i..j−1], we can use the z-fast
search to find in O(log2 n) time a node v of T such that x is written on the path
connecting the root and v. Let s[�v..rv] be a substring of s[1..i−1] corresponding
to v (the numbers �v and rv are stored with the node v). Using hashes and the
binary search, we find the longest common prefix of the strings s[i..j−1] and
s[�v..rv] (with high probability) in O(log2 n) time; this prefix must be x.

If s[i..j−1] 	= x, then we perform a marked-ancestor query on the vertex
corresponding to x (which can be found in O(log2 n) time in the same way as v)
and thus find the longest phrase that is a prefix of s[i..j−1]. We take that phrase
as the first part of the next phrase and start over, looking for the second part,
with the remainder of s[i..j−1] now being what we have read but not parsed (of
which we know an occurrence in s[1..i−1]). On the other hand, if s[i..j−1] = x,
then we read s[j..n] in blocks of length log2 n, stopping when we encounter an
index k such that s[i..k] is not a prefix of a phrase p1, . . . , pr; the details follow.

Suppose that we have read q blocks and the concatenation s[i..j+q log2 n−1]
of s[i..j−1] and the q previous blocks is a prefix of a phrase t ∈ {p1, . . . , pr}.
We compute in O(log2 n) time the hashes of all the prefixes of the block s[j +
q log2 n..j +(q +1) log2 n−1], which allows us to compute the hash of any prefix
of s[i..j +(q +1) log2 n−1] in O(log n) time. Therefore, again using z-fast search
and binary search, we can check in O(log2 n) time if the block s[j + q log2 n..j +
(q + 1) log2 n − 1] contains such a k—and, if so, find it. If k is not found, then
using information from the search, we can find a phrase t′ ∈ {p1, . . . , pr}—which
may or may not be equal to t—such that s[i..j + (q + 1) log2 n − 1] is a prefix of
t′; we then proceed to the (q+2)nd block.

Once we have found such a k, we conceptually undo reading the characters
from s[k] onwards (which causes us to re-read later those O(log2 n) characters),
then perform a search and marked-ancestor query in T , which returns the longest
phrase that is a prefix of s[i..k−1]. We take that longest phrase as the first part
of the next phrase and start over, looking for the second part, with the remainder
of s[i..k−1] now being what we have read but not parsed (of which we know an
occurrence in s[1..i−1]).

Once we have found both the first and second parts of the next phrase—
say, p′

1 and p′
2—we add the next phrase pr+1 = p′

1p
′
2 to G (by Lemma 9) and

to T , which takes O(|pr+1| + log2 n) time. In total, since processing each block
takes O(log2 n) time and the algorithm processes at most z + n

log2 n
blocks, we

parse s in O(n+ z log2 n) time. Our space usage is dominated by G, which takes
O(z log n) space. Finally, we verify in a straightforward manner in O(n) time
whether the constructed parsing indeed encodes the input string. If not (which
can happen with probability 1

nc−3 , where p > nc), we choose a different random
δ ∈ [0..p−1] for the Karp–Rabin hash and execute the whole algorithm again.
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The computation of the LZMW parsing in O(n + z log2 n) expected time
and O(z log n) space is similar: the z-fast trie stores pairs p1p2, p2p3, . . . , pz−1pz

of adjacent phrases in this case and the nodes corresponding to these pairs are
marked. We omit the details as they are straightforward.

5 Concluding Remarks

We believe that our new parsing algorithms can be implemented efficiently, and
we leave this as future work. Perhaps a more interesting question is whether
there exists an LZD/LZMW parsing algorithm with better working space and
the same (or better) runtime. We note that the algorithmic techniques we have
developed here can also be applied to, e.g., develop more space-efficient parsing
algorithms for LZ-End [13], a variant of LZ77 [19] with which each phrase s[i..j]
is the longest prefix of s[i..n] such that an occurrence of s[i..j−1] in s[1..i−1]
ends at a phrase boundary. Kempa and Kosolobov [12] very recently gave an
LZ-End parsing algorithm that runs in O(n log �) expected time and O(z + �)
space, where � is the length of the longest phrase and z is the number of phrases.

To reduce Kempa and Kosolobov’s space bound, we keep an AVL-grammar
(again augmented with the non-terminals’ Karp–Rabin hashes, meaning our
algorithm Monte-Carlo) of the prefix of s we have processed so far; a list of
the endpoints of the phrases so far, in the right-to-left lexicographic order of the
prefixes ending at the phrases’ endpoints; and an undo stack of the phrases so
far. For each character s[k] in turn, for 1 ≤ k ≤ n, in O(logO(1) n) time we use
the grammar and the list to find the longest suffix s[j..k] of s[1..k] such that an
occurrence of s[j..k−1] in s[1..j−1] ends at a phrase boundary. We use the undo
stack to remove from the grammar, the list, and the stack itself, all the complete
phrases lying in the substring s[j..k−1], and then add the phrase consisting of the
concatenation of those removed phrases and s[k]. By [12, Lemma 3], we remove
at most two phrases while processing s[k], so we still use a total of O(logO(1) n)
worst-case time for each character of s. Again, the space bound is dominated
by the grammar, which takes O(z log n) words. We leave the details for the full
version of this paper.

Regarding compression performance, we have shown that like their ances-
tor, LZ78, both LZD and LZMW sometimes approximate the smallest grammar
poorly. This, of course, does not necessarily detract from their usefulness in real
compression tools; now however, practitioners have a much clearer picture of
these algorithms’ possible behavior. The future work includes closing the gap
between the lower bound Ω(n

1
3 ) and the upper bound O((n/ log n)

2
3 ) for the

approximation ratio and designing parsing algorithms with better guarantees.
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D. Kempa, L. Salmela for interesting discussions on LZD at the 2016 StringMasters
and Dagstuhl meetings. Thanks also go to D. Belazzougui for advice about the z-fast
trie and to the anonymous referees.



66 G. Badkobeh et al.

References

1. Supplementary materials for the present paper: C++ code for described experi-
ments. https://bitbucket.org/dkosolobov/lzd-lzmw

2. Belazzougui, D., Boldi, P., Vigna, S.: Dynamic Z-Fast tries. In: Chavez, E., Lonardi,
S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 159–172. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-16321-0 15

3. Belazzougui, D., Cording, P.H., Puglisi, S.J., Tabei, Y.: Access, rank, and
select in grammar-compressed strings. In: Bansal, N., Finocchi, I. (eds.) ESA
2015. LNCS, vol. 9294, pp. 142–154. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48350-3 13

4. Bille, P., Landau, G.M., Raman, R., Sadakane, K., Satti, S.R., Weimann, O.: Ran-
dom access to grammar-compressed strings and trees. SIAM J. Comput. 44(3),
513–539 (2015)

5. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A.,
Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theor. 51(7), 2554–
2576 (2005)

6. Claude, F., Navarro, G.: Self-indexed grammar-based compression. Fundamenta
Informaticae 111(3), 313–337 (2011)

7. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: A
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Abstract. The suffix tree—the compacted trie of all the suffixes of a
string—is the most important and widely-used data structure in string
processing. We consider a natural combinatorial question about suffix
trees: for a string S of length n, how many nodes νS(d) can there be at
(string) depth d in its suffix tree? We prove ν(n, d) = maxS∈Σn νS(d)
is O((n/d) log n), and show that this bound is almost tight, describing
strings for which νS(d) is Ω((n/d) log(n/d)).

1 Introduction

The suffix tree, TS , of a string S of n symbols is a compacted trie containing all
the suffixes of S. Since its discovery by Weiner 44 years ago [6]—as an optimal
solution to the longest common substring problem—the suffix tree has emerged
as perhaps the most important abstraction in string processing [1], and now has
dozens of applications, most notably in bioinformatics [5].

Consequently, combinatorial properties of suffix trees are of great interest,
and have been exploited in various ways to obtain faster construction algo-
rithms, succinct representations, and efficient pattern matching and discovery
algorithms.

Our focus in this article is a natural combinatorial question about suffix
trees: how many nodes νS(d) can there be at (string) depth d in the suffix
tree of a string S? We prove that ν(n, d) = maxS∈Σn νS(d) is O((n/d) log n),
and show that this bound is almost tight, describing strings for which νS(d) is
Ω((n/d) log(n/d)).

In the following section we lay down notation and formally define basic con-
cepts. Sections 3 and 4 deal with the upper bound and lower bound in turn, and
we close with a discussion of the results.
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Fig. 1. The suffix tree of string β4 = aaaabaabbababbbbaaa, the binary de Bruijn
sequence of order 4. The dashed rectangle contains internal nodes at depth 3.

2 Preliminaries

Throughout we consider a string S = S[1..n] = S[1]S[2] . . . S[n] of n symbols
drawn from an ordered alphabet Σ of size σ. For i = 1, . . . , n we write S[i..n] to
denote the suffix of S of length n − i + 1, that is S[i..n] = S[i]S[i + 1] · · · S[n].
For convenience we will frequently refer to suffix S[i..n] simply as “suffix i”.

The suffix tree of S is a compact trie representing all the suffixes of S. Every
suffix tree node either represents a suffix or is a branching node. Each branch-
ing node represents a string that occurs at least twice in S and has at least
two distinct symbols following those occurrences. The string depth—or simply
depth—of a node is the length of the string it represents. Figures 1 and 2 show
examples of suffix trees.

The suffix array of S, denoted SA, is an array SA[1..n] which contains a
permutation of the integers 1..n such that S[SA[1]..n] < S[SA[2]..n] < · · · <
S[SA[n]..n]. In other words, SA[j] = i iff S[i..n] is the jth suffix of S in ascend-
ing lexicographical order. We use SA−1 to denote the inverse permutation. For
convenience, we also define SA[0] = n + 1 to represent the empty suffix.

The lcp array LCP = LCP[1..n] is an array defined by S and SA. Let lcp(i, j)
denote the length of the longest common prefix of suffixes i and j. For every
j ∈ 1..n,

LCP[j] = lcp(SA[j − 1],SA[j]),

that is, LCP contains the length of the longest common prefix for each pair of
lexicographically adjacent suffixes.
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Fig. 2. The suffix tree of string W2,4 = 00000000100000101000100010101010000000.
The dashed rectangle contains internal nodes at depth 6.

The permuted lcp array—PLCP[1..n]—has the same contents as LCP but in
a different order. Specifically, for every j ∈ 1..n,

PLCP[SA[j]] = LCP[j]. (1)

Then PLCP[i] = lcp(i, φ(i)) when we define φ(i) = SA[SA−1[i] − 1].
A binary de Bruijn sequence of order k, denoted by βk, is a binary word of

length 2k +k−1 where each of the 2k words of length k over the binary alphabet
appears as a factor exactly once. As an example, β4 = aaaabaabbababbbbaaa is
a de Bruijn sequence of order 4, see Fig. 1.

3 Upper Bound

We are interested in the quantity ν(n, d), which is the maximum number of
branching nodes at depth d over any string of length n.

A trivial upper bound on ν(n, d)—relevant for shallow levels—is ν(n, d) ≤ σd

for strings over an alphabet of size σ. Another easy upper bound is ν(n, d) ≤
(n − d)/2, since there are n − d suffixes longer than d and each branching node
at depth d must represent a prefix of at least two such suffixes. In particular,
ν(2k + k − 1, k − 1) = 2k−1 since the upper bound is matched by a binary de
Bruijn sequence of order k, as shown in Fig. 1.
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Based on the above, ν(n, d) increases with d up to level d ≈ logσ n and then
starts to go down. The main result of this section is a much tighter upper bound
for larger d showing a quick decrease after level log n.

Our upperbound proof makes use of the concept of irreducible lcp values, first
defined in [3]. We say that PLCP[i] = lcp(i, φ(i)) is reducible if S[i−1] = S[φ(i)−1]
and irreducible otherwise. In particular, it is irreducible if i = 1 or φ(i) = 1.
Reducible values are easy to compute via the next lemma.

Lemma 1 ([3]). If PLCP[i] is reducible, then PLCP[i] = PLCP[i − 1] − 1.

We also need an upper bound on the sum of irreducible lcp values.

Lemma 2 ([2,3]). The sum of all irreducible lcp values is ≤ n log n.

Theorem 3. The number of branching nodes at depth d in the suffix tree for a
string of length n is ≤ (n/d) log n.

Proof. Let S be a string with ν(n, d) branching nodes at depth d in the suffix
tree of S. Every such branching node corresponds to one or more values d in the
lcp array, each of which in turn corresponds to a position in the PLCP array
with value d. In other words, the number of d’s in the PLCP array of S is an
upper bound on νS(d). Let i1, . . . , ir be the positions of irreducible values in the
PCLP array in ascending order, and let ir+1 = n + 1. Since i1 = 1, the intervals
PLCP[ij ..ij+1 − 1], j = 1..n, form a partitioning of the PLCP array. Due to
Lemma 1, for every j = 1..n, PLCP[ij ..ij+1 −1] contains at most one d and only
if PLCP[ij ] ≥ d. Therefore, each occurrence of d can be mapped to a unique
irreducible lcp value ≥ d. Using Lemma 2, dν(n, d) ≤ n log n so the upper bound
follows. ��

4 Lower Bound

This section is devoted to proving the following result.

Theorem 4. For any positive integers j ≥ 1 and k ≥ 3, there exists a string
of length n = j(2k + k − 1) such that its suffix tree has ≥ 1

2

(
n
d − 1

)
log

(
n
d − 1

)

branching nodes at depth d = j(k − 1).

Proof. Our proof is based on a construction of the following string, Wj,k. Let βk

be a binary de Bruijn sequence of order k. Clearly, the suffix tree of βk is full
up to depth k − 1, and has 2k−1 nodes at depth k − 1. Now, let Wj,k = wj(βk)
where morphism wj is the following

{
wj(a) = 0j

wj(b) = 10j−1

It is clear that |Wj,k| = n = j(2k + k − 1). Let m = νWj,k
(j(k − 1)) denote the

number of branching nodes of the suffix tree of string Wj,k at depth d = j(k−1).
We claim that m ≥ 2k−1. If both ya and yb occur in βk for some string y,
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then both x0 and x1 occur in Wi,j for x = wj(y). Thus every branching node
representing y in the suffix tree of βk is uniquely mapped to a branching node
representing x = wj(y) in the suffix tree of Wi,j . Since the suffix tree of βk has
2k−1 branching nodes at depth k − 1, the claim m ≥ 2k−1 follows.

What remains is to show the steps for the calculation of the lower bound.
Since m ≥ 2k−1 and d = j(k − 1) = n(k−1)

(2k+k−1)
, we have n

d = 2k

k−1 + 1 ≤ 2m
k−1 + 1,

which implies

m ≥ 1
2

(n

d
− 1

)
(k − 1) ≥ 1

2

(n

d
− 1

)
log

(
2k

k − 1

)
=

1
2

(n

d
− 1

)
log

(n

d
− 1

)
.

��

5 Discussion

Notice that the lowerbound construction implies d = Ω(log n); thus it does not
contradict the upper bounds for small d discussed in Sect. 3.

The upper and lower bounds of Theorems 3 and 4 are asymptotically equal
when d = O(n1−ε) for any constant ε > 0. We conjecture that the lower bound
is asymptotically tight even for larger d, but proving a matching upper bound
remains an open problem.

Essentially the same bounds hold for all variants and generalizations. We
have counted only branching nodes but including leaves (and unary nodes rep-
resenting suffixes) too would not change much as there can be only one leaf (or
unary node) at each level. Similarly, adding a unique terminator symbol to the
end of the string adds at most one node per level. Considering a suffix tree of
multiple strings (containing all suffixes of all strings) could add more leafs to
a level but no more than n/d leafs at a level d; thus the asymptotic results do
not change. Another variant considers the string to be cyclic—replacing suffixes
with rotations—and even suffix trees for collections of cyclic strings have been
considered [2,4]. All the results hold in this case too: the key result for the upper
bound, Lemma 2, was proved for collections of cyclic strings [2], and de Bruijn
sequences are naturally defined as cyclic strings. Finally, notice that Theorems 3
and 4 hold for any alphabet size.
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Abstract. An elastic-degenerate string is a sequence of n sets of strings
of total length N . It has been introduced to represent a multiple align-
ment of several closely-related sequences (e.g. pan-genome) compactly. In
this representation, substrings of these sequences that match exactly are
collapsed, while in positions where the sequences differ, all possible vari-
ants observed at that location are listed. The natural problem that arises
is finding all matches of a deterministic pattern of length m in an elastic-
degenerate text. There exists an O(nm2+N)-time algorithm to solve this
problem on-line after a pre-processing stage with time and space O(m).
In this paper, we study the same problem under the edit distance model
and present an O(k2mG+kN)-time and O(m)-space algorithm, where G
is the total number of strings in the elastic-degenerate text and k is the
maximum edit distance allowed. We also present a simple O(kmG+kN)-
time and O(m)-space algorithm for Hamming distance.

Keywords: Uncertain sequences · Elastic-degenerate strings · Degen-
erate strings · Pan-genome · Pattern matching

1 Introduction

There is a growing interest in the notion of pan-genome [20]. In the last ten
years, with faster and cheaper sequencing technologies, re-sequencing (that is,
sequencing the genome of yet another individual of a species) became more
and more a common task in modern genome analysis workflows. By now, a huge
amount of genomic variations within the same population has been detected (e.g.
in humans for medical applications, but not only), and this is only the beginning.
With this, new challenges of functional annotation and comparative analysis
have been raised. Traditionally, a single annotated reference genome is used
as a control sequence. The reference genome is a representative example of the
genomic sequence of a species. It serves as a reference text to which, for example,
fragments of newly sequenced genomes of individuals are mapped. Although a
single reference genome provides a good approximation of any individual genome,
c© Springer International Publishing AG 2017
G. Fici et al. (Eds.): SPIRE 2017, LNCS 10508, pp. 74–90, 2017.
DOI: 10.1007/978-3-319-67428-5 7
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in loci with polymorphic variations, mapping and sequence comparison often fail
their purposes. This is where a multiple genome, i.e. a pan-genome, would be a
better reference text [10].

In the literature, many different (compressed) representations and thus algo-
rithms have been considered for pattern matching on a set of similar texts
[3–6,12,16,21]. A natural representation of pan-genomes, or fragments of them,
that we consider here are elastic-degenerate texts [11]. An elastic-degenerate
text is a sequence which compactly represents a multiple alignment of several
closely-related sequences. In this representation, substrings that match exactly
are collapsed, while in positions where the sequences differ (by means of substi-
tutions, insertions, and deletions of substrings), all possible variants observed at
that location are listed. Elastic-degenerate texts correspond to the Variant Call
Format (VCF), that is, the standard for storing gene sequence variations [19].

Consider, for example, the following multiple sequence alignment of three
closely-related sequences:

GAAAGTGAGCA

GAGACAAA-CA

G--A-ACAGCA

These sequences can be compacted into the single elastic-degenerate string:

T̃ = {G} ·

⎧
⎪⎨

⎪⎩

AA

AG

ε

⎫
⎪⎬

⎪⎭
· {A} ·

⎧
⎪⎨

⎪⎩

GTG

CAA

AC

⎫
⎪⎬

⎪⎭
· {A} ·

{
G

ε

}

· {CA}.

The total number of segments is the length of T̃ and the total number of letters
is the size of T̃ . The natural problem that arises is finding all matches of a deter-
ministic pattern P in text T̃ . We call this the Elastic-Degenerate String
Matching (EDSM) problem. The simplest version of this problem assumes that
a degenerate (sometimes called indeterminate) segment can contain only single
letters [9].

Due to the application of cataloguing human genetic variation [19], there has
been ample work in the literature on the off-line (indexing) version of the pat-
tern matching problem [10,14,15,17,18]. The on-line, more fundamental, version
of the EDSM problem has not been studied as much as indexing approaches.
Solutions to the on-line version can be beneficial for a number of reasons:
(a) efficient on-line solutions can be used in combination with partial indexes as
practical trade-offs; (b) efficient on-line solutions for exact pattern matching can
be applied for fast average-case approximate pattern matching similar to stan-
dard strings [2]; (c) on-line solutions can be useful when one wants to search for
a few patterns in many degenerate texts similar to standard strings [1].

Previous Results. Let us denote by m the length of pattern P , by n the
length of T̃ , and by N > m the size of T̃ . A few results exist on the (exact)
EDSM problem. In [11], an algorithm for solving the EDSM problem in time
O(αγmn + N) and space O(N) was presented; where α and γ are parameters,
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respectively representing the maximum number of strings in any degenerate
segment of the text and the maximum number of degenerate segments spanned
by any occurrence of the pattern in the text. In [7], two new algorithms to solve
the same problem in an on-line manner1 were presented: the first one requires
time O(nm2 + N) after a pre-processing stage with time and space O(m); the
second requires time O(N ·�m

w �) after a pre-processing stage with time and space
O(m · �m

w �), where w is the size of the computer word in the RAM model.

Our Contribution. Since genomic sequences are endowed with polymorphisms
and sequencing errors, the existence of an exact occurrence can result into a
strong assumption. The aim of this work is to generalize the studies of [7,11]
for the exact case, allowing some approximation in the occurrences of the input
pattern. We suggest a simple on-line O(kmG + kN)-time and O(m)-space algo-
rithm, G being the total number of strings in T̃ and k > 0 the maximum number
of allowed substitutions in a pattern’s occurrence, that is nonzero Hamming dis-
tance. Our main contribution is an on-line O(k2mG+kN)-time and O(m)-space
algorithm where the type of edit operations allowed is extended to insertions and
deletions as well, that is nonzero edit distance. These results are good in the sense
that for small values of k the algorithms incur (essentially) no increase in time
complexity with respect to the O(nm2 + N)-time and O(m)-space algorithm
presented in [7] for the exact case.

Structure of the Paper. Section 2 provides some preliminary definitions and
facts as well as the formal statements of the problems we address. Section 3
describes our solution under the edit distance model, while Sect. 4 describes the
algorithm under the Hamming distance model.

2 Preliminaries

An alphabet Σ is a non-empty finite set of letters of size |Σ|. We consider the
case of a constant-sized alphabet, i.e. |Σ| = O(1). A string S on an alphabet Σ
is a sequence of elements of Σ. The set of all strings on an alphabet Σ, including
the empty string ε of length 0, is denoted by Σ∗. For any string S, we denote
by S[i . . . j] the substring of S that starts at position i and ends at position j. In
particular, S[0 . . . j] is the prefix of S that ends at position j, and S[i . . . |S| − 1]
is the suffix of S that begins at position i, where |S| denotes the length of S.

Definition 1 ([7]). An elastic-degenerate (ED) string T̃ = T̃ [0]T̃ [1] . . . T̃ [n−1]
of length n on alphabet Σ, is a finite sequence of n degenerate letters. Every
degenerate letter T̃ [i] is a finite non-empty set of strings T̃ [i][j] ∈ Σ∗, with
0 ≤ j < |T̃ [i]|. The size N of T̃ is defined as

N =
n−1∑

i=0

|T̃ [i]|−1∑

j=0

|T̃ [i][j]|

assuming (for representation purposes only) that |ε|=1.
1 On-line refers to the fact that the algorithm reads the elastic-degenerate text set-

by-set in a serial manner.
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Definition 2. The total number of strings in T̃ is defined as G =
∑n−1

i=0 |T̃ [i]|.
Notice that n ≤ G ≤ N . A deterministic string is simply a string in Σ∗. The

Hamming distance is defined between two deterministic strings of equal length
as the number of positions at which the two strings have different letters. The
edit distance between two deterministic strings is defined as the minimum total
cost of a sequence of edit operations (that is, substitution, insertion, or deletion
of a letter) required to transform one string into the other. Here we only count
the number of edit operations, considering the cost of each to be 1. In [7] the
authors give a definition of a match between a deterministic string P and an ED
string T̃ ; here we extend their definition to deal with errors.

Definition 3. Given an integer k > 0, we say that a string P ∈ Σm kH -matches
(resp. kE-) an ED string T̃ = T̃ [0]T̃ [1] . . . T̃ [n − 1] of length n > 1 if all of the
following hold:

– there exists a non-empty suffix X of some string S ∈ T̃ [0];
– if n > 2, there exist strings Y1 ∈ T̃ [1],. . . ,Yt ∈ T̃ [t], for 1 ≤ t ≤ n − 2;
– there exists a non-empty prefix Z of some string S ∈ T̃ [n − 1];
– the Hamming (resp. edit) distance between P and XY1 . . . YtZ (note that

Y1 . . . Yt can be ε) is no more than k.

We say that P has a kH-occurrence (resp. kE-) ending at position j in an ED
string T̃ of length n if either there exists a kH -match (resp. kE-) between P and
T̃ [i . . . j] for some 0 ≤ i < j ≤ n − 1 or P is at Hamming (resp. edit) distance of
at most k from a substring of some string S ∈ T̃ [j].

Example 4. Consider P = GAACAA of length m = 6. The following ED string
has n = 7, N = 20, and G = 12. An 1H -occurrence is underlined, and an
1E-occurrences is overlined.

T̃ = {G} ·

⎧
⎪⎨

⎪⎩

AA

AG

ε

⎫
⎪⎬

⎪⎭
· {A} ·

⎧
⎪⎨

⎪⎩

GTG

CAA

AC

⎫
⎪⎬

⎪⎭
· {A} ·

{
G

ε

}

· {CA}

A suffix tree STX for a string X of length m is a tree data structure where
edge-labels of paths from the root to the (terminal) node labelled i spell out
suffix X[i . . . m − 1] of X. STX can be built in time and space O(m). The suffix
tree can be generalized to represent the suffixes of a set of strings {X1, . . . , Xn}
(denoted by GSTX1,...,Xn

) with time and space costs still linear in the length of
the input strings (see [8], for details).

Given two strings X and Y and a pair (i, j), with 0 ≤ i ≤ |X| − 1 and
0 ≤ j ≤ |Y | − 1, the longest common extension at (i, j), denoted by lceX,Y (i, j),
is the length of the longest substring of X starting at position i that matches a
substring of Y starting at position j. For instance, for X = CGCGT and Y = ACG,
we have that lceX,Y (2, 1) = 2, corresponding to the substring CG.
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Fact 1 ([8]). Given a string X and its STX , and a set of strings W =
{Y1, . . . , Yl}, it is possible to build the generalized suffix tree GSTX,W extending
STX , in time O(

∑l
h=1 |Yh|). Moreover, given two strings X and Y of total length

q, for each index pair (i, j), lceX,Y (i, j) queries can be computed in constant time
per query, after a pre-processing of GSTX,Y that takes time and space O(q).

We will denote by GST ∗
X,Y such a pre-processed tree for answering lce queries.

The time is ripe now to formally introduce the two problems considered here.

[kE-EDSM] Elastic-Degenerate String Matching with Edit
Distance:

Input: A deterministic pattern P of length m, an ED text T̃ of length n and
size N ≥ m, and an integer 0 < k < m.

Output: Pairs (i, d), i being a position in T̃ where at least one kE-occurrence
of P ends and d ≤ k being the minimal number of errors (substitutions,
insertions, and deletions) for occurrence i.

[kH-EDSM] Elastic-Degenerate String Matching with Hamming
Distance:

Input: A deterministic pattern P of length m, an ED text T̃ of length n and
size N ≥ m, and an integer 0 < k < m.

Output: Pairs (i, d), i being a position in T̃ where at least one kH -occurrence of
P ends and d ≤ k being the minimal number of substitutions for occurrence i.

3 An Algorithm for kE-EDSM

In [7] the exact EDSM problem (that is, for k = 0) was solved in time O(nm2 +
N). Allowing up to k substitutions, insertions, and deletions in the occurrences
clearly entails a time-cost increase, but the solution proposed here manages
to keep the time-cost growth limited, solving the kE-EDSM problem in time
O(k2mG + kN), G being the total number of strings in the ED text. At a high
level, the kE-EDSM algorithm (pseudocode shown below) works as follows.

Pre-processing phase: the suffix tree for the pattern P is built (line 1 in
pseudocode).

Searching phase: in an on-line manner, the text T̃ is scanned from left to right
and, for each T̃ [i]:

(1) It finds the prefixes of P that are at distance at most k from any suffix of
some S ∈ T̃ [i]; if there exists an S ∈ T̃ [i] that is long enough, it also searches
for kE-occurrences of P that start and end at position i (lines 6 and 16);

(2) It tries to extend at T̃ [i] each partial kE-occurrence of P which has started
earlier in T̃ (lines 23 and 30);

(3) In both previous cases, if a full kE-occurrence of P also ends at T̃ [i], then
it outputs position i; otherwise it stores the prefixes of P extended at T̃ [i]
(lines 7–9, 17–19, 24–26, 31–32).
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kE-EDSM(P ,m,T̃ ,n,k)

1 Build STP ;
2 for j = 0 to m − 1 do Vc[j] ← ∞;
3 Lc ← ∅;
4 Build GST ∗

P,T̃ [0]
;

5 forall S ∈ T̃ [0] do
6 L′ ← ∅; L′ ← kE-borders(P,m, S, |S|, GST ∗

P,T̃ [0]
, k);

7 forall (j, d) ∈ L′ do
8 if j = m − 1 ∧ d < Vc[m − 1] then Vc[m − 1] = d;
9 else insert(Lc,(j, d),Vc);

10 if Vc[m − 1] �= ∞ then report (0, Vc[m − 1]);
11 for i = 1 to n − 1 do
12 Lp ← Lc; Lc ← ∅;
13 Vp ← Vc; for j = 0 to m − 1 do Vc[j] ← ∞;
14 Build GST ∗

P,T̃ [i]
;

15 forall S ∈ T̃ [i] do
16 L′ ← ∅; L′ ← kE-borders(P,m, S, |S|, GST ∗

P,T̃ [i]
, k);

17 forall (j, d) ∈ L′ do
18 if j = m − 1 ∧ d < Vc[m − 1] then Vc[m − 1] = d;
19 else insert(Lc,(j, d),Vc);
20 if |S| < m then
21 forall p ∈ Lp do
22 L′ ← ∅;
23 L′ ← kE-extend(p + 1,P ,m,S,|S|,GST ∗

P,T̃ [i]
,k − Vp[p]);

24 forall (j, d) ∈ L′ do
25 if j = m − 1 ∧ d + Vp[p] < Vc[m − 1] then

Vc[m − 1] = d + Vp[p];
26 else insert(Lc,(j, d + Vp[p]), Vc);
27 if |S| ≥ m then
28 forall p ∈ Lp do
29 L′ ← ∅;
30 L′ ← kE-extend(p + 1,P ,m,S,|S|,GST ∗

P,T̃ [i]
,k − Vp[p]);

31 forall (j, d) ∈ L′ do
32 if j = m − 1 ∧ d + Vp[p] < Vc[m − 1] then

Vc[m − 1] = d + Vp[p];
33 if Vc[m − 1] �= ∞ then report (i, Vc[m − 1]);

Step (1) of algorithm kE-EDSM is implemented by algorithm kE-borders
described in Sect. 3.1. Step (2) is implemented by algorithm kE-extend
described in Sect. 3.2.

The following lemma follows directly from Fact 1.
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Lemma 5. Given P of length m and T̃ of length n and size N , building
GST ∗

P,T̃ [i]
, for all i ∈ [0, n − 1], takes total time O(mn + N).

Besides STP (built once as a pre-processing step) and GST ∗
P,T̃ [i]

(built for all

T̃ [i]’s), the algorithm uses the following data structures:

L′ A list re-initialized to ∅ for each S ∈ T̃ [i]: contains pairs (j, d) storing the
rightmost position j of P such that P [0 . . . j] is at distance d from a suffix of
S. L′ is filled in by kE-borders and kE-extend.

Vc A vector of size |P | re-initialized to Vc[j] = ∞ for each T̃ [i] (c stands for
current) for all j’s: Vc[j] contains the lowest number of errors for a partial
kE-occurrence of P [0 . . . j]. For each pair (j, d) in L′, if Vc[j] < d then Vc[j]
is updated with d by the function insert. Vc[j] = ∞ denotes that a partial
kE-occurrence of P [0 . . . j] has not yet been found.

Lc A list re-initialized to ∅ for each T̃ [i]: contains the rightmost positions of the
prefixes of P found in L′. It is filled in by function insert for each rightmost
position j where Vc[j] turns into a value �= ∞.

Lp A list where at the beginning of each iteration i for T̃ [i], the Lc list for i−1 is
copied. Lp thus stores prefixes of P found in L′ during the previous iteration
(p stands for previous).

Vp Similarly, in Vp the vector Vc of the previous position is copied.

Algorithm kE-EDSM needs to report each position i in T̃ where some kE-
occurrence of P ends with edit distance d ≤ k, d being the minimal such value for
position i. To this aim, the last position of Vc can be updated with the following
criterion: each time an occurrence of P ending at T̃ [i], (m − 1, d), is found, if
Vc[m − 1] > d then we set Vc[m − 1] = d. After all S ∈ T̃ [i] have been examined,
if Vc[m − 1] �= ∞, the algorithm outputs the pair (i, Vc[m − 1]).

3.1 Algorithm kE-borders

For each i and for each S ∈ T̃ [i], Step (1) of the algorithm needs to find the
prefixes of P that are at distance at most k from any suffix of S, as well as
kE-occurrences of P that start and end at position i if S is long enough. To this
end, we use and modify the Landau-Vishkin algorithm [13]. We first recall some
relevant definitions concerning the dynamic programming table [8].

Given an m × q dynamic programming table (m rows, q columns), the main
diagonal consists of cells (h, h) for 0 ≤ h ≤ min {m − 1, q − 1}. The diagonals
above the main diagonal are numbered 1 through (q − 1); the diagonal starting
in cell (0, h) is diagonal h. The diagonals below the main diagonal are numbered
−1 through −(m−1); the diagonal starting in cell (h, 0) is diagonal −h. A d-path
in the dynamic programming table is a path that starts in row zero and specifies
a total of exactly d errors (substitutions, insertions, and deletions). A d-path
is farthest reaching in diagonal h if it is a d-path that ends in diagonal h and
the index of its ending column c is ≥ to the ending column of any other d-path
ending in diagonal h.
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Algorithm kE-borders takes as input a pattern P of length m, a string
S ∈ T̃ [i] of length q, the GST ∗

P,T̃ [i]
and the upper bound k for edit distance; it

outputs pairs (j, d), where j is the rightmost position of the prefix of P that is
at distance d ≤ k from a suffix of S, with the minimal value of d reported for
each j. In order to fulfill this task, at a high level, the algorithm executes the
following steps on a table having P at the rows and S at the columns:

(1a) For each diagonal 0 ≤ h ≤ q − 1 it finds lceP,S(0, h). This specifies the end
column of the farthest reaching 0-path on each diagonal from 0 to q − 1.

(1b) For each 1 ≤ d ≤ k, it finds the farthest reaching d-path on diagonal h,
for each −d ≤ h ≤ q − 1. This path is found from the farthest reaching
(d − 1)-paths on diagonals (h − 1), h and (h + 1).

(1c) If a d-path reaches the last row of the dynamic programming table, then
a kE-occurrence of P with edit distance d that starts and ends at position i
has been found, and the algorithm reports (m− 1, d); if a d-path reaches the
end of S in row r, then the prefix of P ending at P [r] is at distance d from
a suffix of S, and the algorithm reports (r, d).

In Step (1b), the farthest reaching d-path on diagonal h can be found by
computing and comparing the following three particular paths that end on
diagonal h:

R1 Consists of the farthest reaching (d − 1)-path on diagonal h + 1, followed by
a vertical edge to diagonal h, and then by the maximal extension along diag-
onal h that corresponds to identical substrings. Function R1 takes as input
the length |X| of a string X, whose letters spell the rows of the dynamic pro-
gramming table, the length |Y | of a string Y , whose letters spell the columns,
GST ∗

X,Y and the pair row-column (r, c) where the farthest reaching (d − 1)-
path on diagonal h+1 ends. It outputs pair (r1, c1) where path R1 ends. This
path represents a letter insertion in X.

R2 Consists of the dual case of R1 with a horizontal edge representing a letter
deletion in X.

R3 Consists of the farthest reaching (d − 1)-path on diagonal h followed by
a diagonal edge, and then by the maximal extension along diagonal h that
corresponds to identical substrings. Function R3 takes as input the length |X|
of a string X, whose letters spell the rows of the dynamic programming table,
the length |Y | of a string Y , whose letters spell the columns, GST ∗

X,Y and the
pair row-column (r, c) where the farthest reaching (d − 1)-path on diagonal
h ends. It outputs pair (r3, c3) where path R3 ends. This path represents a
letter substitution.

Fact 2 ([8]). The farthest reaching path on diagonal h is the path among R1,
R2 or R3 that extends the farthest along h.
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INSERT(L,(j, d),V )
1 if V [j] > d then
2 if V [j] = ∞ then Insert j in L;
3 V [j] ← d;

R1(|X|, |Y |, GST ∗
X,Y , r, c)

1 if −1 ≤ r ≤ |X| − 1 ∧ −1 ≤ c ≤
|Y | − 1 then

2 l ← lceX,Y (r + 2, c + 1);
3 c1 ← c + l;
4 r1 ← r + 1 + l;
5 return (r1, c1)

6 else return (r, c);

R2(|X|, |Y |, GST ∗
X,Y , r, c)

1 if −1 ≤ r ≤ |X| − 1 ∧ −1 ≤ c ≤
|Y | − 1 then

2 l ← lceX,Y (r + 1, c + 2);
3 c2 ← c + 1 + l;
4 r2 ← r + l;
5 return (r2, c2)

6 else return (r, c);

R3(|X|, |Y |, GST ∗
X,Y , r, c)

1 if −1 ≤ r ≤ |X| − 1 ∧ −1 ≤ c ≤
|Y | − 1 then

2 l ← lceX,Y (r + 2, c + 2);
3 c3 ← c + 1 + l;
4 r3 ← r + 1 + l;
5 return (r3, c3)

6 else return (r, c);

In each one of the iterations in kE-borders, a diagonal is associated with two
variables pFRP and cFRP, storing the column reached by the farthest reaching
path (FRP) in the previous and in the current iteration, respectively. Notice that
at most k + q diagonals need to be taken into account: the algorithm first finds
the lce’s between P [0] and S[j], for all 0 ≤ j ≤ q − 1, and hence it initializes
q diagonals; after this, for each successive step (there are at most k of them),
it widens to the left one diagonal at a time because an initial deletion can be
added; therefore, it will consider at most k + q diagonals.

Lemma 6. Given P of length m, T̃ of length n and size N , the GST ∗
P,T̃ [i]

, for
all i ∈ [0, n − 1], and an integer 0 < k < m, kE-borders finds the minimal edit
distance ≤ k between the prefixes of P and any suffix of S ∈ T̃ [i], as well as the
kE-occurrences of P that start and end at position i, in time O(k2G + kN), G
being the total number of strings in T̃ .

Proof. For a string S ∈ T̃ [i], for each 0 ≤ d ≤ k and each diagonal −k ≤ h ≤
|S| − 1, the kE-borders algorithm must retrieve the end of three (d − 1)-paths
(constant-time operations) and compute the path extension along the diagonal
via a constant-time lce query (Fact 1). It thus takes time O(k2 + k|S|) to find the
prefixes of P that are at distance at most k from any suffix of S; the kE-occurrences
of P that start and end at position i are computed within the same complexity.
The total time is O(k2|T̃ [i]| + k

∑|T̃ [i]|−1
j=0 |S|), for all S ∈ T̃ [i]. Since the size of T̃

is N and the total number of strings in T̃ is G, the result follows. �
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3.2 Algorithm kE-extend

In Step (2), algorithm kE-EDSM tries to extend each partial kE-occurrence that
has started earlier in T̃ . That is, at position i, for each p ∈ Lp and for each
string S ∈ T̃ [i], we try to extend P [0 . . . p] with S. Once again, we modify the
Landau-Vishkin algorithm [13] to our purpose: it suffices to look for the FRPs
starting at the desired position only.

kE-borders(P,m, S, q,GST ∗
P,T̃ [i]

, k)

1 for h = −(k + 1) to −1 do cFRP(h) ← h − 1;
2 for h = 0 to q − 1 do
3 l ← lceP,S(0, h);
4 cFRP(h) ← l − 1 + h;
5 if l + h = q then report (l − 1, 0);
6 else
7 if l = m then report (m − 1, 0);

8 for d = 1 to k do
9 for h = −(k + 1) to q − 1 do pFRP(h) ← cFRP(h);

10 for h = −d to q − 1 do
11 (r1, c1) ← R1(|P |, |S|, GST ∗

P,T̃ [i]
, pFRP(h + 1) − (h + 1), pFRP(h + 1));

12 (r2, c2) ← R2(|P |, |S|, GST ∗
P,T̃ [i]

, pFRP(h − 1) − (h − 1), pFRP(h − 1));

13 (r3, c3) ← R3(|P |, |S|, GST ∗
P,T̃ [i]

, pFRP(h) − h, pFRP(h));

14 cFRP(h) ← max {c1, c2, c3};
15 if max {r1, r2, r3} = m − 1 then report (m − 1, d);
16 if max {c1, c2, c3} = q − 1 then report (q − 1 − h, d);

kE-extend takes as input a pattern P of length m, a string S ∈ T̃ [i] of length
q, the GST ∗

P,T̃ [i]
, the upper bound k for edit distance and the position j in P

where the extension should start; it outputs a list of distinct pairs (h, d), where
h is the index of P where the extension ends, and d is the minimum additional
number of errors introduced by the extension. Algorithm kE-extend performs
a similar task to that of kE-borders: (i) it builds a q×(m−j) DP table (rather
than an m × q table) and (ii) instead of searching for occurrences of P starting
anywhere within S, kE-extend checks whether the whole of S can extend the
prefix P [0 . . . j − 1] detected at the previous text position or whether a prefix of
S matches the suffix of P starting at P [j] (and hence a kE-occurrence of P has
been found). In order to fulfill this task, at a high level, the algorithm executes
the following steps on a table having S at the rows and P [j . . . m − 1] at the
columns:

(2a) It finds lceS,P (0, j) specifying the end column of the farthest reaching 0-
path on diagonal 0 (the table is built for S and P [j . . . m − 1]).

(2b) For each 1 ≤ d ≤ k, it finds the farthest reaching d-path on diagonal h, for
each −d ≤ h ≤ d. This path is found from the farthest reaching (d−1)-paths
on diagonals (h − 1), h and (h + 1).
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kE-extend(j, P,m, S, q,GST ∗
P,T̃ [i]

, k)

1 if S = ε then
2 for d = 0 to k do report (j + d, d);
3 else
4 for h = −(k + 1) to k + 1 do cFRP(h) ← h − k − 1;
5 l ← lceS,P (0, j);
6 cFRP(0) ← l − 1;
7 if l = q then report (l + j − 1, 0);
8 for d = 1 to k do
9 for h = −(k + 1) to d do pFRP(h) ← cFRP(h);

10 for h = −d to d do
11 (r1, c1) ← R1(|S|, m − j, GST ∗

P,T̃ [i]
, pFRP(h + 1) − (h + 1), pFRP(h + 1));

12 (r2, c2) ← R2(|S|, m − j, GST ∗
P,T̃ [i]

, pFRP(h − 1) − (h − 1), pFRP(h − 1));

13 (r3, c3) ← R3(|S|, m − j, GST ∗
P,T̃ [i]

, pFRP(h) − h, pFRP(h));

14 cFRP(h) ← max {c1, c2, c3};
15 if max {r1, r2, r3} = q − 1 then report (cFRP(h) + j, d);
16 if max {c1, c2, c3} = m − j − 1 then report (m − 1, d);

(2c) If a d-path reaches the last row of the dynamic programming table in
column c, then an occurrence of the whole S with edit distance d has been
found, and the algorithm reports (c + j, d), c + j being the position in P
where the occurrence ends; if a d-path reaches the end of P , then a prefix of
S is at distance d from a suffix of P starting at position j, and the algorithm
reports (m − 1, d).

Lemma 7. Given a prefix of P , a string S ∈ T̃ [i], the GST ∗
P,T̃ [i]

, and an integer

0 < k < m, kE-extend extends the prefix of P with S in time O(k2).

Proof. The kE-extend algorithm does k iterations: at iteration d, for each diag-
onal −d ≤ h ≤ d, the end of three paths must be retrieved (constant-time
operations) and the path extension along diagonal h must be computed via
a constant-time lce query (Fact 1). The overall time for the extension is then
bounded by O(1 + 2 + · · · + (2k + 1)) = O(k2). �


The following lemma summarizes the time complexity of kE-EDSM.

Lemma 8. Given P of length m, T̃ of length n and total size N , and an integer
0 < k < m, algorithm kE-EDSM solves the kE-EDSM problem, in an on-line
manner, in time O(k2mG + kN), G being the total number of strings in T̃ .

Proof. At the i-th iteration, algorithm kE-EDSM tries to extend each p ∈ Lp

with each string S ∈ T̃ [i]. By Lemma 5, building GST ∗
P,T̃ [i]

, for all i ∈ [0, n − 1],
requires time O(mn + N). By Lemma 7, extending a single prefix with a string
S costs time O(k2); in Lp there are at most |P | = m prefixes; then to extend
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all of them with a single string S requires time O(mk2). In T̃ [i] there are |T̃ [i]|
strings, so the time cost rises to O(|T̃ [i]|mk2) for each T̃ [i], leading to an overall
time cost of O(k2mG) to perform extensions. By Lemma 6, the prefixes of P
that are at distance at most k from any suffix of S as well as the kE-occurrences
of P that start and end at position i can be found in time O(k2G + kN); the
overall time complexity for the whole kE-EDSM algorithm is then O(mn + N +
k2mG + k2G + kN) = O(k2mG + kN). The algorithm is on-line in the sense
that any occurrence of the pattern ending at position i is reported before reading
T̃ [i + 1]. �

Theorem 9. The kE-EDSM problem can be solved on-line in time O(k2mG +
kN) and space O(m).

Proof. In order to obtain the space bound O(m), it is necessary to modify algo-
rithm kE-EDSM. The proposed method works as follows: each string S ∈ T̃ [i] is
(conceptually) divided into windows of size 2m (except for the last one, whose
length is ≤ m) overlapping by m. Let Wj be the j-th window in S, 1 ≤ j ≤ |S|

m .
Instead of building GST ∗

P,T̃ [i]
for each degenerate letter T̃ [i], the algorithm now

builds GST ∗
P,Wj

for each 1 ≤ j ≤ |S|
m and for each S ∈ T̃ [i]: since the windows

are of size 2m, this can be done in both time and space O(m). Both algorithms
kE-borders and kE-extend require space linear in the size of the string that
spell the columns of the dynamic programming table, that is either P (in exten-
sions) or a window of size 2m (in borders). Each list (Lc, Lp, L′) and each vector
(Vc, Vp) requires space O(m), so the overall required space is actually O(m).

The time bound is not affected by these modifications of the algorithm:
the maximum number of windows in T̃ [i], in fact, is max {|T̃ [i]|, Ni

m }, where

Ni =
∑|T̃ [i]|−1

j=0 |T̃ [i][j]|. This means that it takes time O(m|T̃ [i]|) or O(mNi

m ) =
O(Ni) to build and pre-process every suffix tree for T̃ [i]. Algorithm kE-borders
requires time O(k2 + km) = O(km) (because k < m) for each window: again,
this must be multiplied by the number of windows in T̃ [i], so the time is
max {O(km|T̃ [i]|),O(kNi))} for T̃ [i]. Coming to algorithm kE-extend, noth-
ing changes, as prefixes of P can only be extended by prefixes of S, so it suffices
to consider one window for each S: it still requires time O(k2mG) over the whole
ED text. Summing up all these considerations, it is clear that the overall time is

O(
n−1∑

i=0

[max {m|T̃ [i]|, Ni} + max {km|T̃ [i]|, kNi}] + k2mG)

= O(
n−1∑

i=0

[max {km|T̃ [i]|, kNi}] + k2mG)

which is clearly bounded by O(k2mG + kN). �
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4 An Algorithm for kH-EDSM

The overall structure of algorithm kH -EDSM (pseudocode not shown) is the
same as kE-EDSM. The two algorithms differ in the functions used to perform
Step (1) (kH -borders rather than kE-borders) and Step (2) (kH -extend
rather than kE-extend). The new functions take as input the same parameters
as the old ones and, like them, they both return lists of pairs (j, d) (pseudocode
shown below). Unlike kE-borders and kE-extend, with kH -borders and kH -
extend such pairs now represent partial kH -occurrences of P in T̃ .

kH -borders(P ,m,S,q,GST ∗
P,T̃ [i]

,k)

1 for h = 0 to q − 1 do
2 count ← 0;
3 j ← 0;
4 h′ ← h;
5 while count ≤ k do
6 l ← lceP,S(j, h′);
7 if h′ + l = q then report (q − h − 1, count) ;
8 else
9 if h′ + l + 1 = q ∧ count + 1 ≤ k then report (q − h, count + 1) ;

10 else
11 if j + l = m then report (m − 1, count) ;
12 else
13 if j + l + 1 = m ∧ count + 1 ≤ k then report

(m − 1, count + 1) ;
14 else
15 count ← count + 1;
16 j ← j + l + 1;
17 h′ ← h′ + l + 1;

At the i-th iteration, for each S ∈ T̃ [i] and any position h in S, kH -borders
determines whether a prefix of P is at distance at most k from the suffix of S
starting at position h via executing up to k+1 lce queries in the following manner:
computing l = lceP,S(0, h), it finds out that P [0 . . . l − 1] and S[h . . . h + l − 1]
match exactly and P [l] �= S[h + l]. It can then skip one position in both strings
(the mismatch P [l] �= S[h + l]), increasing the error-counter by 1, and compute
the lceP,S(l+1, h+l+1). This process is performed up to k+1 times, until either
(i) the end of S is reached, and then a prefix of P is at distance at most k from
the suffix of S starting at h (lines 7–12 in pseudocode); or (ii) the end of P is
reached, then a kH -occurrence of P has been found (lines 13–17 in pseudocode).
If the end of S nor the end of P are reached, then more than k substitutions are
required, and the algorithm continues with the next position (that is, h+1) in S.
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The following lemma gives the total cost of all the calls of algorithm kH -
borders in kH -EDSM.

Lemma 10. Given P of length m, T̃ of length n and size N , the GST ∗
P,T̃ [i]

, for
all i ∈ [0, n − 1], and an integer 0 < k < m, kH-borders finds the minimal
Hamming distance ≤ k between the prefixes of P and any suffix of S ∈ T̃ [i], as
well as the kH-occurrences of P that start and end at position i, in time O(kN).

Proof. For any position h in S, the kH -borders algorithm finds the prefix of P
that is at distance at most k from the suffix of S starting at position h in time
O(k) by performing up to k + 1 lce queries (Fact 1). Over all positions of S, the
method therefore requires time O(k|S|). Doing this for all S ∈ T̃ [i] and for all
i ∈ [0, n − 1] leads to the result. �


kH -extend(j,P ,m,S,q,GST ∗
P,T̃ [i]

,k)

1 if S = ε then report (j, 0);
2 else
3 count ← 0;
4 h ← 0;
5 j′ ← j;
6 while count ≤ k do
7 l ← lceP,S(i′, j);
8 if h + l = q then report (j′ + l − 1, count) ;
9 else

10 if h + l + 1 = q ∧ count + 1 ≤ k then report (j′ + l, count + 1) ;
11 else
12 if j′ + l = m then report (m − 1, count) ;
13 else
14 if j′ + l + 1 = m ∧ count + 1 ≤ k then report

(m − 1, count + 1) ;
15 else
16 count ← count + 1;
17 h ← h + l + 1;
18 j′ ← j′ + l + 1;

At the i-th iteration, for each partial kH -occurrence of P started earlier
(represented by p ∈ Lp similar to algorithm kE-EDSM) kH -extend tries to
extend it with a string from the current text position. To this end, for each
string S ∈ T̃ [i], it checks whether some partial kH -occurrence can be extended
with the whole S starting from position j = p + 1 of P , or whether a full kH -
occurrence can be obtained by considering only a prefix of S for the extension.
The algorithm therefore executes up to k + 1 lce queries with the same possible
outcomes and consequences mentioned for kH -borders.
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The following lemma gives the total cost of all the calls of algorithm kH -
extend in kH -EDSM.

Lemma 11. Given P of length m, T̃ of length n and size N , the GST ∗
P,T̃ [i]

, for
all i ∈ [0, n − 1], and an integer 0 < k < m, kH-extend finds all the extensions
of prefixes of P required by kH-EDSM in time O(kmG), G being the total number
of strings in T̃ .

Proof. Algorithm kH -extend determines in time O(k) whether a partial kH -
occurrence of P can be extended by S by performing up to k + 1 constant-
time lce queries (Fact 1); checking whether a full kH -occurrence is obtained by
considering only a prefix of S for the extension can be performed within the
same complexity. Since P has m different prefixes, extending all of them costs
O(km) per each string S. Given that there are G such strings, the overall time
is O(kmG). �

Lemma 12. Given P of length m, T̃ of length n and total size N , and an integer
0 < k < m, algorithm kH-EDSM solves the kH-EDSM problem, in an on-line
manner, in time O(kmG + kN), G being the total number of strings in T̃ .

Proof. At the i-th iteration, algorithm kH -EDSM tries to extend each p ∈ Lp

with each string S ∈ T̃ [i]. By Lemma 5, building GST ∗
P,T̃ [i]

, for all i ∈ [0, n − 1],
requires time O(mn + N). By Lemma 11, extending prefixes of P stored in Lp

with each string S ∈ T̃ [i] has an overall time cost of O(kmG). By Lemma 10,
the prefixes of P that are at distance at most k from any suffix of S as well
as the kH -occurrences of P that start and end at position i can be found in
time O(kN) in total. Summing up, the overall time complexity for the whole
kH -EDSM algorithm is then O(mn + N + kmG + kN) = O(kmG + kN), as
G ≥ n. The algorithm is on-line in the sense that any occurrence of the pattern
ending at position i is reported before reading T̃ [i + 1]. �


The proof of Theorem 9 suggests a way in which algorithm kE-EDSM can
be run on-line in space O(m); it should be straightforward to see that a similar
modification of algorithm kH -EDSM leads to the following result.

Theorem 13. The kH-EDSM problem can be solved on-line in time O(kmG +
kN) and space O(m).
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Abstract. We consider the well-studied partial sums problem in succint
space where one is to maintain an array of n k-bit integers subject to
updates such that partial sums queries can be efficiently answered. We
present two succint versions of the Fenwick Tree – which is known for
its simplicity and practicality. Our results hold in the encoding model
where one is allowed to reuse the space from the input data. Our main
result is the first that only requires nk + o(n) bits of space while still
supporting sum/update in O(logb n) / O(b logb n) time where 2 ≤ b ≤
logO(1) n. The second result shows how optimal time for sum/update
can be achieved while only slightly increasing the space usage to nk +
o(nk) bits. Beyond Fenwick Trees, the results are primarily based on
bit-packing and sampling – making them very practical – and they also
allow for simple optimal parallelization.

Keywords: Partial sums · Fenwick tree · Succinct · Parallel

1 Introduction

Let A be an array of k-bits integers, with |A| = n. The partial sums problem is
to build a data structure maintaining A under the following operations.

– sum(i): return the value
∑i

t=1 A[t].
– search(j): return the smallest i such that sum(i) ≥ j.
– update(i,Δ): set A[i] ← A[i] + Δ, for some Δ such that 0 ≤ A[i] + Δ < 2k.
– access(i): return A[i].

Note that access(i) can implemented as sum(i)− sum(i − 1) and we therefore
often do not mention it explicitly.

The partial sums problem is one of the most well-studied data structure
problems [1–4,6–9]. In this paper, we consider solutions to the partial sums
problem that are succinct, that is, we are interested in data structures that use
space close to the information-theoretic lower bound of nk bits. We distinguish
between encoding data structures and indexing data structures. Indexing data
structures are required to store the input array A verbatim along with additional
information to support the queries, whereas encoding data structures have to
support operations without consulting the input array.
c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-67428-5 8
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In the indexing model Raman et al. [8] gave a data structure that supports
sum, update, and search in O(log n/ log log n) time while using nk+o(nk) bits of
space. This was improved and generalized by Hon et al. [6]. Both of these papers
have the constraint Δ ≤ logO(1) n. The above time complexity is nearly optimal
by a lower bound of Patrascu and Demaine [7] who showed that sum, search,
and update operations take Θ(logw/δ n) time per operation, where w ≥ log n is
the word size and δ is the number of bits needed to represent Δ. In particular,
whenever Δ = logO(1) n this bound matches the O(log n/ log log n) bound of
Raman et al. [8].

Fenwick [2] presented a simple, elegant, and very practical encoding data
structure. The idea is to replace entries in the input array A with partial sums
that cover A in an implicit complete binary tree structure. The operations are
then implemented by accessing at most log n entries in the array. The Fenwick
tree uses nk + n log n bits and supports all operations in O(log n) time. In this
paper we show two succinct b-ary versions of the Fenwick tree. In the first version
we reduce the size of the Fenwick tree while improving the sum and update time.
In the second version we obtain optimal times for sum and update without using
more space than the previous best succinct solutions [6,8]. All results in this
paper are in the RAM model.

Our results. We show two encoding data structures that gives the following
results.

Theorem 1. We can replace A with a succinct Fenwick tree of nk + o(n)
bits supporting sum, update, and search queries in O(logb n), O(b logb n), and
O(log n) time, respectively, for any 2 ≤ b ≤ logO(1) n.

Theorem 2. We can replace A with a succinct Fenwick tree of nk + o(nk) bits
supporting sum and update queries in optimal O(logw/δ n) time and search

queries in O(log n) time.

2 Data Structure

For simplicity, assume that n is a power of 2. The Fenwick tree is an implicit
data structure replacing a word-array A[1, . . . , n] as follows:

Definition 1. Fenwick tree of A [2]. If n = 1, then leave A unchanged. Oth-
erwise, divide A in consecutive non-overlapping blocks of two elements each
and replace the second element A[2i] of each block with A[2i − 1] + A[2i], for
i = 1, . . . , n/2. Then, recurse on the sub-array A[2, 4, . . . , 2i, . . . , n].

To answer sum(i), the idea is to write i in binary as i = 2j1 + 2j2 + · · · + 2jk

for some j1 > j2 > · · · > jk. Then there are k ≤ log n entries in the Fenwick
tree, that can be easily computed from i, whose values added together yield
sum(i). In Sect. 2.1 we describe in detail how to perform such accesses. As per
the above definition, the Fenwick tree is an array with n indices. If represented
compactly, this array can be stored in nk+n log n bits. In this section we present
a generalization of Fenwick trees taking only succinct space.
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2.1 Layered b-ary Structure

We first observe that it is easy to generalize Fenwick trees to be b-ary, for b ≥ 2:
we divide A in blocks of b integers each, replace the first b − 1 elements in each
block with their partial sum, and fill the remaining n/b entries of A by recursing
on the array A′ of size n/b that stores the sums of each block. This generalization
gives an array of n indices supporting sum, update, and search queries on the
original array in O(logb n), O(b logb n), and O(log n) time, respectively. We now
show how to reduce the space of this array.

Let � = logb n. We represent our b-ary Fenwick tree Tb(A) using � + 1 arrays
(layers) T 1

b (A), . . . , T �+1
b (A). For simplicity, we assume that n = be for some

e ≥ 0 (the general case is then straightforward to derive). To improve readability,
we define our layered structure for the special case b = 2, and then sketch how
to extend it to the general case b ≥ 2. Our layered structure is defined as follows.
If n = 1, then T 1

2 (A) = A. Otherwise:

– T �+1
2 (A)[i] = A[(i − 1) · 2 + 1], for all i = 1, . . . , n/2. Note that T �+1

2 (A)
contains n/2 elements.

– Divide A in blocks of 2 elements each, and build an array A′[j] containing
the n/2 sums of each block, i.e. A′[j] = A[(j − 1) · 2 + 1] + A[(j − 1) · 2 + 2],
for j = 1, . . . , n/2. Then, the next layers are recursively defined as T �

2 (A) ←
T �
2 (A′), . . . , T 1

2 (A) ← T 1
2 (A′).

For general b ≥ 2, T �+1
b (A) is an array of n(b−1)

b elements that stores the
b − 1 partial sums of each block of b consecutive elements in A, while A′ is
an array of size n/b containing the complete sums of each block. In Fig. 1 we
report an example of our layered structure with b = 3. It follows that elements
of T i

b (A), for i > 1, take at most k + (� − i + 2) log b bits each. Note that
arrays T 1

b (A), . . . , T �+1
b (A) can easily be packed contiguously in a word array

while preserving constant-time access to each of them. This saves us O(�) words
that would otherwise be needed to store pointers to the arrays. Let Sb(n, k) be
the space (in bits) taken by our layered structure. This function satisfies the
recurrence

Sb(1, k) = k

Sb(n, k) = n(b−1)
b · (k + log b) + Sb(n/b, k + log b)

Which unfolds to Sb(n, k) =
∑logb n+1

i=1
n(b−1)

bi · (k + i log b) . Using the identities∑∞
i=1 1/bi = 1/(b − 1) and

∑∞
i=1 i/bi = b/(b − 1)2, one can easily derive that

Sb(n, k) ≤ nk + 2n log b.
We now show how to obtain the time bounds stated in Theorem 1. In the

next section, we reduce the space of the structure without affecting query times.

Answering sum. Let the notation (x1x2 . . . xt)b, with 0 ≤ xi < b for i = 1, . . . , t,
represent the number

∑t
i=1 bt−ixi in base b. sum(i) queries on our structure are a

generalization (in base b) of sum(i) queries on standard Fenwick trees. Consider
the base-b representation x1x2 . . . x�+1 of i, i.e. i = (x1x2 . . . x�+1)b (note that we
have at most �+1 digits since we enumerate indexes starting from 1). Consider now
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all the positions 1 ≤ i1 < i2 < · · · < it ≤ �+1 such that xj �= 0, for j = i1, . . . , it.
The idea is that each of these positions j = i1, . . . , it can be used to compute an
offset oj in T j

b (A). Then, sum(i) =
∑

j=i1,...,it
T j

b (A)[oj ]. The offset oj relative to
the j-th most significant (nonzero) digit of i is defined as follows. If j = 1, then
oj = x1. Otherwise, oj = (b − 1) · (x1 . . . xj−1)b + xj . Note that we scale by a
factor of b − 1 (and not b) as the first term in this formula as each level T j(A)
stores only b − 1 out of b partial sums (the remaining sums are passed to level
j − 1). Note moreover that each oj can be easily computed in constant time and
independently from the other offsets with the aid of modular arithmetic. It follows
that sum queries are answered in O(logb n) time. See Fig. 1 for a concrete example
of sum.

Answering update. The idea for performing update(i,Δ) is analogous to that of
sum(i). We access all levels that contain a partial sum covering position i and
update at most b − 1 sums per level. Using the same notation as above, for each
j = i1, . . . , it such that xj �= 0, we update T j

b (A)[oj + l] ← T j
b (A)[oj + l] + Δ for

l = 0, . . . , b − xj − 1. This procedure takes O(b logb n) time.

Answering search. To answer search(j) we start from T 1
b (A) and simply perform

a top-down traversal of the implicit B-tree of degree b defined by the layered
structure. At each level, we perform O(log b) steps of binary search to find the
new offset in the next level. There are logb n levels, so search takes overall
O(log n) time.

Fig. 1. Example of our layered structure with n = 27 and b = 3. Horizontal red lines
show the portion of A covered by each element in T j

3 (A), for j = 1, . . . , logb n + 1. To
access the i-th partial sum, we proceed as follows. Let, for example, i = 19 = (0201)3.
The only nonzero digits in i are the 2-nd and 4-th most significant. This gives us
o2 = 2 · (0)3 + 2 = 2 and o4 = 2 · (020)3 + 1 = 13. Then, sum(19) = T 2

3 (A)[2] +
T 4
3 (A)[13] = 89 + 3 = 92. (Color figure online)

2.2 Sampling

Let 0 < d ≤ n be a sample rate, where for simplicity we assume that d divides n.
Given our input array A, we derive an array A′ of n/d elements containing the
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sums of groups of d adjacent elements in A, i.e. A′[i] =
∑d

j=1 A[(i − 1) · d + j],
i = 1, . . . , d. We then compact A by removing A[j · d] for j = 1, . . . , n/d, and by
packing the remaining integers in at most nk(1−1/d) bits. We build our layered
b-ary Fenwick tree Tb(A′) over A′. It is clear that queries on A can be solved
with a query on Tb(A′) followed by at most d accesses on (the compacted) A.
The space of the resulting data structure is nk(1 − 1/d) + Sb(n/d, k + log d) ≤
nk + n log d

d + 2n log b
d bits. In order to retain the same query times of our basic

layered structure, we choose d = (1/ε) logb n for any constant ε > 0 and obtain
a space occupancy of nk + ε

(
n log logb n

logb n + 2n log b
logb n

)
bits. For b ≤ logO(1) n, this

space is nk+o(n) bits. Note that—as opposed to existing succinct solutions—the
low-order term does not depend on k.

3 Optimal-Time sum and update

In this section we show how to obtain optimal running times for sum and update
queries in the RAM model. We can directly apply the word-packing techniques
described in [7] to speed-up queries; here we only sketch this strategy, see [7]
for full details. Let us describe the idea on the structure of Sect. 2.1, and then
plug in sampling to reduce space usage. We divide arrays T j

b (A) in blocks of
b− 1 entries, and store one word (w bits) for each such block. We can pack b− 1
integers of at most w/(b − 1) bits each (for an opportune b, read below) in the
word associated with each block. Since blocks of b − 1 integers fit in a single
word, we can easily answer sum and update queries on them in constant time.
sum queries on our overall structure can be answered as described in Sect. 2.1,
except that now we also need to access one of the packed integers at each level
j to correct the value read from T j

b (A). To answer update queries, the idea is
to perform update operations on the packed blocks of integers in constant time
exploiting bit-parallelism instead of updating at most b − 1 values of T j

b (A). At
each update operation, we transfer one of these integers on T j

b (A) (in a cyclic
fashion) to avoid overflowing and to achieve worst-case performance. Note that
each packed integer is increased by at most Δ for at most b − 1 times before
being transferred to T j

b (A), so we get the constraint (b − 1) log((b − 1)Δ) ≤ w.
We choose (b − 1) = w

log w + δ . Then, it is easy to show that the above constraint
is satisfied. The number of levels becomes logb n = O(logw/δ n). Since we spend
constant time per level, this is also the worst-case time needed to answer sum and
update queries on our structure. To analyze space usage we use the corrected
formula

Sb(1, k) = k

Sb(n, k) = n(b − 1)
b · (k + log b) + nw

b + Sb(n/b, k + log b)

yielding Sb(1, k) ≤ nk + 2n log b + nw
b − 1 . Replacing b − 1 = w

log w + δ we achieve
nk + O(nδ + n log w) bits of space.

We now apply the sampling technique of Sect. 2.2 with a slight variation.
In order to get the claimed space/time bounds, we need to further apply bit-
parallelism techniques on the packed integers stored in A: using techniques
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from [5], we can answer sum, search, and update queries in O(1) time on blocks
of w/k integers. It follows that we can now use sample rate d = w log n

k log(w/δ)

without affecting query times. After sampling A and building the Fenwick
tree above described over the sums of size-d blocks of A, the overall space is
nk(1 − 1/d) + Sb(n/d, k + log d) = nk + n log d

d + O(nδ
d + n log w

d ). Note that d ≤
w2

k log(w/δ) ≤ w2, so log d ∈ O(log w) and space simplifies to nk + O(nδ
d + n log w

d ).

The term nδ
d equals nδk log(w/δ)

w log n . Since δ ≤ w, then δ log(w/δ) ≤ w, and
this term therefore simplifies to nk

log n ∈ o(nk). Finally, the term n log w
d equals

n log w·k log(w/δ)
w log n ≤ nk

(w log n)/(log w)2 ∈ o(nk). The bounds of Theorem 2 follow.

Parallelism. Note that sum and update queries on our succinct Fenwick trees can
be naturally parallelized as all accesses/updates on the levels can be performed
independently from each other. For sum, we need O(log logb n) further time
to perform a parallel sum of the logb n partial results. It is not hard to show
that—on architectures with logb n processors—this reduces sum/update times to
O(log logb n)/O(b) and O(log logw/δ n)/O(1) in Theorems 1 and 2, respectively.
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Abstract. We consider compressing labeled, ordered and rooted trees
using DAG compression and top tree compression. We show that there
exists a family of trees such that the size of the DAG compression is
always a logarithmic factor smaller than the size of the top tree com-
pression (even for an alphabet of size 1). The result settles an open
problem from Bille et al. (Inform. and Comput., 2015).

1 Introduction

Let T be a labeled, ordered, and rooted tree. The overall idea in top tree compres-
sion [3] is to first construct the top tree T for T [1,2], which is a balanced binary
tree representing a hierarchical decomposition of T into overlapping connected
subgraphs of T . The top tree T is then DAG compressed, i.e., converted into the
minimal DAG representation [4], into the top DAG, which we then output as the
final compressed representation of T . Top tree compression has several attrac-
tive properties. For instance, it achieves almost optimal worst-case compression,
supports navigational queries in logarithmic time, and is highly competitive in
practice [3,5].

An interesting open question from Bille et al. [3] is how top tree compression
compares to classical DAG compression. Let nG denote the size (vertices plus
edges) of the graph G. From Bille et al. [3, Thm. 2] we have that for any tree
T , the size of the top DAG T D of T is always at most a factor O(log nT ) larger
than the size of DAG D of T . However, it is not known if this bound is tight
and answering this question is stated as an open problem. Our main result in
this paper is to show that there exists a family of trees such that the DAG is
always a factor Ω(log nT ) smaller than the top DAG and that this bound can
be achieved even for an alphabet of size 1 (i.e. unlabeled trees). This settles this
open question and proves that the O(log nT ) factor is tight.

Due to lack of space we omit a detailed discussion of the related work.

2 Top Trees and Top DAGs

We briefly review top tree compression [3]. Let T be a tree with nT nodes. Let v
be a node in T with children v1, . . . , vk in left-to-right order. Define T (v) to be the
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subtree induced by v and all proper descendants of v and define F (v) to be the
forest induced by all proper descendants of v. For 1 ≤ s ≤ r ≤ k let T (v, vs, vr)
be the tree pattern induced by the nodes {v} ∪ T (vs) ∪ T (vs+1) ∪ · · · ∪ T (vr).

A cluster with top boundary node v is a tree pattern of the form T (v, vs, vr),
1 ≤ s ≤ r ≤ k. A cluster with top boundary node v and bottom boundary node u
is a tree pattern of the form T (v, vs, vr)\F (u), 1 ≤ s ≤ r ≤ k, where u is a node
in T (vs) ∪ · · · ∪ T (vr). Nodes that are not boundary nodes are called internal
nodes. Two edge disjoint clusters A and B whose vertices overlap on a single
boundary node can be merged if their union C = A ∪ B is also a cluster using
various type of merges (see details in Bille et al. [3]).

A top tree T of T is a hierarchical decomposition of T into clusters. It is an
ordered, rooted, labeled, and binary tree defined as follows.

– The nodes of T correspond to clusters of T .
– The root of T corresponds to the cluster T itself.
– The leaves of T correspond to the edges of T . The label of each leaf is the

pair of labels of the endpoints of its corresponding edge (u, v) in T . The two
labels are ordered so that the label of the parent appears before the label of
the child.

– Each internal node of T corresponds to the merged cluster of its two children.
The label of each internal node is the type of merge it represents (out of the
five merging options from [3]). The children are ordered so that the left child
is the child cluster visited first in a preorder traversal of T .

We construct the top tree T of height O(log nT ) for top tree compression
bottom-up in O(log nT ) iterations. At each iteration we maintain an auxiliary
rooted ordered tree ˜T initialized as ˜T := T . The edges of ˜T will correspond to
the nodes of T and to the clusters of T . The internal nodes of ˜T will correspond
to boundary nodes of clusters in T and the leaves of ˜T will correspond to a
subset of the leaves of T . In each iteration, a constant fraction of ˜T ’s edges (i.e.,
clusters of T ) are merged as described below. The precise sequence of merges is
essential for obtaining the compression guarantees of top tree compression and
enabling efficient navigation.

Step 1: Horizontal Merges . For each node v ∈ ˜T with k ≥ 2 children v1, . . . , vk

for i = 1 to �k/2�, merge the edges (v, v2i−1) and (v, v2i) if v2i−1 or v2i is a leaf.
If k is odd and vk is a leaf and both vk−2 and vk−1 are non-leaves then also
merge (v, vk−1) and (v, vk).

Step 2: Vertical Merges . For each maximal path v1, . . . , vp of nodes in ˜T such
that vi+1 is the parent of vi and v2, . . . , vp−1 have a single child: If p is even
merge the following pairs of edges {(v1, v2), (v2, v3)}, . . . , {(vp−2, vp−1)}. If p is
odd merge the following pairs of edges {(v1, v2), (v2, v3)}, . . . , {(vp−3, vp−2)}, and
if (vp−1, vp) was not merged in Step 1 then also merge {(vp−2, vp−1), (vp−1, vp)}.

Since each iteration shrinks the tree by a constant factor the resulting top tree
T has height O(log nT ). The top DAG T D is the minimal DAG representation
of T .
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Fig. 1. An example of the labeled construction with h = 4 and σ = 5. On the right is
the minimal DAG representation of the tree. Only labels different from a are shown.

2.1 Top DAG Properties

We show a few basic properties of top DAGs that we need for our construction.
Let ̂T be a subtree of T . If there are no merges in the first k iterations of the
top tree construction algorithm, which include edges from both ̂T and T\ ̂T , we
define ̂T to be k-local. A path v0, . . . , v� such that v� is a leaf, vi+1 is a child
of vi, and vi has no other children for i > 0, is an isolated path. The following
results follow directly from the top DAG construction.

Lemma 1. Any k-local isolated path of length 2k−1 < j ≤ 2k will be merged into
a single cluster in exactly k iterations of the top tree construction algorithm.

Lemma 2. Any k-local isolated path of length 2k, where all nodes except one
have identical labels is represented by a subgraph in the top DAG of size Θ(k),
where each node is contained in atleast one path of clusters of length k.

Lemma 3. Let ̂T be a k-local subtree of T , which after j > 0 iterations of the
construction algorithm is an isolated path p in ˜T of length 2k−j, where all clusters
except two are identical. The part of T D, which represents ̂T above level j, then
has size Θ(k − j), and each cluster in ˜T is contained in a path of clusters of
length k − j.

3 Bounds for Large Alphabets

As a warm-up we first consider large alphabets and show the following result.

Theorem 4. There exists a family of rooted, ordered, and labeled trees, for
which nT D = Θ(log nT ) · nD for alphabets of size Ω(

√
nT ).

Proof. Given positive integers k,w, and an alphabet Σ = {a, b, c, . . .} of size σ,
construct a tree T as the union of w isolated paths of length h = 2k with a
shared root. The second node of each path has its own unique label, b, c, d, . . ..
All other nodes are labeled a. We have nT = Θ(wh) and nD = Θ(w + h) (see
Fig. 1).
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Fig. 2. Top tree and top DAG of the tree in Fig. 1. The label of the leaves corresponding
to an edge (v, p(v)) in T , where p(v) is the parent of v, is the label of p(v) followed by
the label of v. The labels of the internal nodes are the merge types as defined in [3].

Next consider the top DAG. We show that nT D = Θ(w log h). It is easy to
verify that the paths are k-local. By Lemma 1 the edges of each path p will be
merged into one cluster in the first k iterations. Subsequently these clusters are
merged together. By Lemma 2 each path p is represented in T D by a subgraph
of size Θ(log h), where the second node v1 of p is contained in a path of clusters
of length Θ(log h). These clusters cannot be shared by another path p′, since the
label of v1 is unique. We have w paths, so in total this part of the top DAG has
size Θ(w log h). The merging of the clusters containing the w paths is represented
by Θ(w) clusters in T D. Hence in total nT D = Θ(w log h) (see Fig. 2).

We choose w = Θ(
√

nT ) and h = Θ(
√

nT ). Hence we get nD = Θ(
√

nT ) and
nT D = Θ(

√
nT log nT ), which implies nT D = Θ(log nT ) · nD. We need w + 1

different characters, hence σ = Ω(
√

nT ). 	


4 Bounds for Unlabeled Trees

We now modify the construction from Sect. 3, such that it works for unlabeled
trees, and show the following result.

Theorem 5. There exists a family of rooted, ordered, and unlabeled trees, for
which nT D = Θ(log nT ) · nD.
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Fig. 3. An example of the unlabeled construction with w = 4 and h = 4. On the right
is the minimal DAG representation of the tree.

Fig. 4. The auxiliary tree ˜T of the tree from Fig. 3 after the first 4 iterations:
(a) iteration 1, (b) iteration 2, (c) iteration 3 = kw + 1, (d) iteration 4 = kw + 2.

Proof. Given integers kh > 1 and kw > 0, construct a rooted tree T as the union
of w = 2kw subtrees, T1, . . . , Tw, connected only at the root of T . Each Ti has a
path of length h = 2kh , denoted its main path mi. The second node on mi has
a path on its left side of length i, denoted the identifying path of Ti. All other
nodes on mi have a path on their left side of length 2w, denoted a side path. We
have nT = Θ(w2h) and nD = Θ(w + h) (see Fig. 3).

We now show that nT D = Θ(w log h). By definition w = 2kw , so all of the
side paths have length 2kw+1. They are all isolated and (kw + 1)-local, so by
Lemma 1 each of them will be merged into one cluster in kw + 1 iterations,
and by Lemma 2 they are represented in T D by a subgraph of size Θ(log w).
Consider now a subtree Ti. In iteration kw + 2 each of the clusters containing
the side paths of Ti will be merged with the sibling edge on mi, except for the
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bottom most cluster, which will have nothing to merge with in this iteration.
The identifying path of Ti will be merged into one cluster in j ≤ kw iterations.
In iteration j + 1 this cluster will be merged with the sibling edge on mi, and in
iteration j+2 this cluster will be merged with the top most edge on mi. Nothing
more happens with this cluster until after iteration kw + 2, at which point Ti

has been merged into an isolated path (see Fig. 4).
Each identifying path p is represented in T D by a node with edges to two

clusters, which merged together gives p. It is easy to see that these clusters
already exist in T D in the iteration p is merged into one cluster. Hence all the
identifying paths are represented in total by Θ(w) clusters in T D. When the
identifying paths are merged with the first and second edges from the top of the
main paths, the corresponding parts of T D also have in total size Θ(w).

After kw+2 iterations ˜T will consist of w isolated paths (of clusters) of length
h = 2kh . It is easy to verify that they are (kw + 2 + kh)-local. By Lemma 1 the
clusters of each path p will be merged into one cluster in the next kh iterations.
Subsequently these clusters are merged together. By Lemma 3 each of these
paths, p, is represented in T D above level kw +2 by a subgraph of size Θ(log h),
where the top most cluster C0 of p is contained in a path of clusters in T D of
length Θ(log h). These clusters cannot be shared by another path p′, since C0

is unique. We have w paths, so we get w of these subgraphs. Hence in total
this part of the top DAG has size Θ(w log h). The merging of the subgraphs is
represented by Θ(w) clusters in T D. Hence in total nT D = Θ(w log h).

We choose w = Θ(n1/3) and h = Θ(n1/3). Hence we get nD = Θ(n1/3) and
nT D = Θ(n1/3 log nT ), which implies nT D = Θ(log nT ) · nD. 	
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Abstract. We present a new compressed representation of free trajec-
tories of moving objects. It combines a partial-sums-based structure that
retrieves in constant time the position of the object at any instant, with a
hierarchical minimum-bounding-boxes representation that allows deter-
mining if the object is seen in a certain rectangular area during a time
period. Combined with spatial snapshots at regular intervals, the repre-
sentation is shown to outperform classical ones by orders of magnitude
in space, and also to outperform previous compressed representations in
time performance, when using the same amount of space.

1 Introduction

With the appearance of cheap devices, such as smartphones or GPS trackers,
which record the position of moving objects, the need to efficiently store and
manage information on trajectories has become commonplace. Although storage,
network, and processing capacities are rapidly increasing, the available data
grows faster, and demands reduced-size representations [20]. The first option
is to lose precision and discard points of the acquired trajectories, with more
or less sophisticated procedures. A second choice is to keep all the points of
the trajectories and use differential compression [6,12]. These methods store
for each coordinate (x, y) the difference with the previous point. The problem is
that, to obtain the coordinates of the ith point, we must add up all the preceding
differences. This is a variant of the partial sums problem where the values can
be positive or negative.
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Our new method, called Constant Time Access Compressed Trajectories
(ContaCT), uses an Elias-Fano-based [8,9] representation of the differences that
allows computing the partial sums in constant time while using space compara-
ble to other differential encoding methods. In addition to constant-time access to
the trajectory data, ContaCT provides a hierarchical structure that allows effi-
ciently answering time-interval queries [14] (i.e., determine if an object is seen
inside a rectangular area during a time interval) without the need to follow all
the movements of the object in the queried interval. We use ContaCT to repre-
sent the trajectories of a large set of objects. At regular time instants, ContaCT
includes a spatial snapshot with a structure that supports range queries, which is
useful to bound the objects that must be tracked to answer time-interval queries.

Our experiments on a set of real trajectories of ships shows that, while there
exist techniques based on grammar-compression that use less space than Con-
taCT [3], our index is up to 2.7 times faster when using about the same amount
of space. Our index is also much faster than a baseline differentially compressed
representation, for about the same space. We also compared ContaCT with a
classical MVR-tree, where trajectories are stored as sets of points and time-
interval queries reduce to 3D range queries. It turns out that ContaCT required
1,300 times less space, and it was still faster in time-interval queries spanning
more than 14 instants.

2 Background

A trajectory is a sequence of timestamped geographic positions in the two-
dimensional space. We assume that the recorded timestamps are regularly placed
over time, possibly with periods of time without values. We also assume that
the recorded timestamps are exactly the same for all the objects.

Apart from the basic functionality of returning the whole trajectory of an
object or its position at some time instant, we deal with the following, more
elaborate queries [14]: time-slice returns all the objects in a given query region
at a given timestamp, and time-interval returns all the objects that overlap the
query region at any time instant of an interval.

Bitmaps. A bitmap is a binary sequence B[1, n] that supports the following
operations: (i) access(B, i) returns the bit B[i], (ii) rankb(B, i) returns the num-
ber of occurrences of bit b ∈ 0, 1 in B[1, i], and (iii) selectb(B, j) returns the
position in B of the jth occurrence of bit b ∈ 0, 1. There exist representations
using n + o(n) bits that answer all those queries in constant time [5]. When the
bitmap has m � n 1s, it is possible to use compressed representations that use
m log(n/m) + O(m) bits [8,9]. This representation still performs select1 queries
in constant time, whereas access and rank require time O(log(n/m)) [13].

Partial Sums. Given values 0 < x1 < x2 < . . . < xm ≤ n, we can define the
differences di = xi − xi−1 and d1 = x1, so that xi =

∑i
j=1 di. An Elias-Fano

representation of the partial sums is a bitmap B[1..n] with all B[xi] = 1 and all
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the rest zero, or which is the same, the concatenation of the di values written
in unary. Therefore, we can retrieve xi = select1(B, i) in constant time, and
the space of the representation is log(n/m) + O(m) bits, close to a differential
representation of the di values.

3 Related Work

Reducing the Size of Trajectories. A lossy way to reduce size is to generate
a new trajectory that approximates the original one, by keeping the most rep-
resentative points. The best known method of this type is the Douglas-Peucker
algorithm [7]. Other strategies record speed and direction, discarding points that
can be reasonably predicted with this data [17]. A lossless way to reduce space
is to use differential encodings of the consecutive values x, y, and time [6,12,19].

Spatio-Temporal Indexes. Spatio-temporal indexes can be classified into
three types. The first is a classic multidimensional spatial index, usually the R-
tree, augmented with a temporal dimension. For example, the 3DR-tree [18] uses
three-dimensional Minimum Bounding Boxes (MBBs), where the third dimen-
sion is the time, to index segments of trajectories. A second approach is the
multiversion R-trees, which creates an R-tree for each timestamp and a B-tree
to select the relevant R-trees. The best known index of this family is the MV3R-
tree [16]. The third type of index partitions the space statically, and then a
temporal index is built for each of the spatial partitions [4].

3.1 GraCT

The closest predecessor of our work, GraCT [3], assumes regular timestamps and
stores trajectories using two components. At regular time instants, it represents
the position of all the objects in a structure called snapshot. The positions of
objects between snapshots are represented in a structure called log.

Let us denote Spk the snapshot representing the position of all the objects
at timestamp k. Between two consecutive snapshots Spk and Spk+d, there is a
log for each object, which is denoted Lk,k+d(id), being id the identifier of the
object. The log stores the differences of positions compressed with RePair [11], a
grammar-based compressor. In order to speed up the queries over the resulting
sequence, the nonterminals are enriched with additional information, mainly the
MBB of the trajectory segment encoded by the nonterminal.

Each snapshot is a binary matrix where a cell set to 1 indicates that one or
more objects are placed in that position of the space. To store such a (generally
sparse) matrix, it uses a k2-tree [2]. The k2-tree is a space- and time- efficient
version of a region quadtree [15], and is used to filter the objects that may be
relevant for a time-instant or time-interval query.
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3.2 ScdcCT

ScdcCT was implemented as a classical compressed baseline to compare against
GraCT [3]. It uses the same components, snapshots and logs, but the logs are
compressed with differences and not with grammars. The differences are com-
pressed using (s, c)-Dense Codes [1], a fast-to-decode variable-length code that
has low redundancy over the zero-order empirical entropy of the sequence. This
exploits the fact that short movements to contiguous cells are more frequent
than movements to distant cells.

4 ContaCT

ContaCT uses snapshots and logs, just like GraCT. The main differences are in
the log. As explained, in GraCT the log stores the differences of the consecutive
positions. In order to know the position of an object at a given timestamp i, we
access the closest previous snapshot and add up the differences until reaching
the desired timestamp. GraCT speeds up this traversal by storing the total dif-
ferences represented by nonterminals, so that they can be traversed in constant
time. This makes GraCT faster than a differential representation that needs to
add up all the individual differences, but still it has to traverse a number of sym-
bols that grows proportionally to the distance d between consecutive snapshots.
ContaCT completely avoids that sequential traversal of the log.

4.1 The Log

ContaCT represents each Lk,k+d(id) with components time(id), ΔX(id),
ΔY (id).

Time (id) tells the timestamps for which object id has (x, y) coordinates. It
stores the first and last positions with data in Lk,k+d(id), and a bitmap T (id)
of last−first+1 bits indicating with a 0 that there is data at that time instant.

ΔX(id) stores the differences of the x coordinate using three bitmaps: X(id)t
indicates, for each position having a 0 in T (id), whether the difference is positive
or negative; and X(id)p and X(id)n store the positive and negative differences,
respectively, using Elias-Fano. ΔY (id) is analogous.

Given the log Lk,k+d(id) and a local timestamp i ∈ [1, d − 1], we compute
the x coordinate of the object id at that timestamp as follows (analogous for y):

1. dis = rank1(T (id), i−first+1) returns the number of timestamps for which
we have no data (the object was missing) until position i, counting from the
first timestamp with data.

2. pos = rank1(X(id)t, i−dis−first+1) and neg = i−dis−first−pos+1, are
the number of positive and negative differences until position i, respectively.

3. select1(X(id)p, pos) − pos − (select1(X(id)n, neg) − neg) returns the x coor-
dinate at timestamp i.
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We use the sparse bitmap representation for X(id)p and X(id)n, and the plain
version for X(id)t and T (id). The size of the complete structure is n log N/n +
O(d) bits, where N is the sum of the differences in x, and n ≤ d is the number
of positions where the object has coordinate information.

Fig. 1. The log of ContaCT for a given object id.

Example. The top of Fig. 1 shows the coordinates of a trajectory. There is
no data about the position of the object at timestamps 1, 6, 7, 11, and 12.
Timestamps 0 and 13 are represented with snapshots. Arrays X and Y contain
the absolute coordinates of the trajectory, and ΔX and ΔY the corresponding
differences (the arrays are not stored in this form, they are included for clarity).

Below those arrays, we have the data structure time(id): First and last store
the first and last timestamps of L0,13(id) that have data, and bitmap T (id) has
a bit for each timestamp in between. A bit 1 means no data for its timestamp.

The bottom of the figure shows the three bitmaps that represent ΔX(id).
X(id)t has a bit for each bit set to 0 in T (id), that is, for each position of ΔX(id)
with a value. Each bit of X(id)t indicates whether the corresponding difference
is positive or negative. For each bit of X(id)t set to 1, X(id)p stores that value
in unary. X(id)n stores, in the same way, the negative differences.

Let us extract the x coordinate at timestamp 9. First, we obtain the number
of disappearances until timestamp 9: dis = rank1(T (id), i−first+1) = 2. Next,
we obtain the number of positive and negative differences until timestamp 9:
pos = rank1(X(id)t, i−dis−first+1) = 4 and neg = i−dis−first−pos+1 = 2.
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Finally, the x coordinate is select1(X(id)p, pos)−pos−(select1(Xn, neg)−neg) =
select1(X(id)p, 4)−4− (select1(X(id)n, 2)−2)=16−4− (5−2) = 12−3 = 9. ��

4.2 Indexing the Logs

Our representation yields constant-time extraction of whole trajectories and
direct access to any point. To solve time-slice and time-interval queries, we may
just compute the position or consecutive positions of the object and see if they
fall within the query area. Although we can rapidly know the position of an
object in a given timestamp, if we have to inspect all the timestamps of a given
queried interval, we may spend much time obtaining positions that are outside
the region of interest. In order to accelerate these queries over the logs, ContaCT
stores an index for each Lk,k+d(id).

The index is a perfect binary tree that indexes the timestamps of the interval
[k + 1, k + d − 1] containing data (i.e., after being mapped with T (id)). Let C
indicate the number of timestamps covered by a leaf. Internal nodes cover the
ranges covered by all the leaves in their subtree. Each node stores the MBR of
the positions of the object during their covered interval of timestamps.

To check the positions of the object in the interval [b, e], where 1 ≤ b ≤ e < d,
we first compute b′ = rank0(T (id), b − first) and e′ = rank0(T (id), e − first),
and then check the timestamps of the tree in the range [b′, e′]. The way to use
this tree is described in the next subsection.

Fig. 2. The index of a log.

Example. Figure 2 shows the index for the trajectory of Fig. 1. C is 2, so the
leaves cover at most 2 timestamps. In L0,13(id), there are 7 time instants with
values, at timestamps 2, 3, 4, 5, 8, 9, and 10. Therefore the leftmost leaf of
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the tree covers the positions at timestamps 2 and 3, the next leaf covers the
timestamps 4 and 5, and so on.

The root contains the MBR that encloses all the positions in the interval
covered by L0,13(id). Since there are 7 timestamps with values, we labeled it
R1−7. At the top right, that MBR is drawn as a rectangle with a solid line. The
left child, R1−4, covers the positions of the first 4 timestamps. The right child,
R5−7, covers the timestamps from the 5th to the 7th, and so on. The second-
level MBRs are shown at the top right as rectangles with densely dotted lines,
whereas the third level MBRs are drawn with scattered dotted lines. ��

Observe that each log stores the movements of one object between two snap-
shots, therefore there will be a considerable number of trees. To save space, we
store the perfect trees in heap order, avoiding pointers. Each tree is then stored
as two arrays, nodesX and nodesY, storing the extremes of the MBRs in each
dimension. The children of a node at position p are at 2p and 2p + 1.

Further, the arrays nodesX and nodesY are compressed by storing the values
of the nodes below the root as differences with respect to their parent. For
example, the values at position 2 (corresponding to R1−4) of nodeX are stored
as the values of the parent (2,10) minus the values at position 2 (2,5), that is,
(0,5). As a result, the numbers are smaller, and we use �log m� + 1 bits for each
number, being m the largest difference (the root MBRs are stored separately).

4.3 Queries

To answer a time-slice or a time-interval query, we use the closest previous
snapshot to filter the objects that cannot possibly make it to the query region
within the given time frame, by exploiting the maximum speed at which objects
can move. Let r = [x1, x2] × [y1, y2] be a rectangular region in the two-
dimensional space, and b < e be two timestamps. Let s be the maximum speed,
in our dataset, of any object. We denote ER(r, q), the expanded region of r at
timestamp q, the area that contains the points that must be considered from
the preceding snapshot. If the timestamp of the preceding snapshot is k, then
ER(r, q) = [x1 − s · (q − k), x2 + s · (q − k)] × [y1 − s · (q − k), y2 + s · (q − k)].

Time-Slice. A time-slice query specifies a region r and a timestamp q. Assume
q is between snapshots Spk and Spk+d. We perform a range query on Spk to
retrieve all the objects id in ER(r, q). If q = k, we simply return all those objects
id. Otherwise, we access the log Lk,k+d of each such object id to find, in O(1)
time, its position at (local) time q − k, and report id if the position is within r.

Time-Interval. A time-interval query specifies a region r and an interval [b, e].
It can be solved as a sequence e′ − b′ + 1 time-slice queries (where b′ and e′ are
described previously), but we exploit the tree of MBRs to speed up the query.

Each object that is within ER(r, q) must be tracked along the timestamps b
to e, to determine if it has a position inside r. We compute b′ and e′ as described
previously and use the MBR tree to quickly filter out the elements that do not



110 N.R. Brisaboa et al.

qualify. We start at the tree root, and check if (1) the timestamps of the node
intersect [b′, e′] and (2) the root MBR intersects r. If not, we abandon the search
at that node. Otherwise, we recursively enter its left and right children. When
we reach a leaf, we extract all the positions one by one, looking for the first that
falls within r. We develop specialized procedures to extract the next point faster
than a random access in our Elias-Fano representation.

We further prune the search by continuously considering the maximum speed
of the objects. Assume [b′, e′] is within the right child of a node since the left one
covers only [b′

1, e
′
1]. If the minimum distance between the MBR of the left and r,

along any coordinate, is p > s·(b−e1), then there is no need to examine the right
child. Here e1 is the original timestamp corresponding to e′

1, which is obtained
with select0(T (id), e′

1) + first − 1. The same argument holds symmetrically
with the left child. Finally, as we traverse the positions in a leaf, we verify this
condition continuously to preempt the scan as soon as possible (we use a special
“select-next” method on T (id) to speed up consecutive select queries).

Example. Let us run the time-interval query for the area r = [4, 5] × [4, 10]
and (mapped) time interval [b′, e′] = [2, 4] in the log of Fig. 2. We start at the
root, which covers the time range [1, 7] and has MBR [2, 10]× [4, 10]. Since both
intersect the query, we continue. Since the tree is perfect, we know that the left
subtree covers the timestamps [1, 4] and the right one covers [5, 7]. Since the
right child does not intersect the query time interval, we only descend by the
left one, R1,4. Its MBR is [2, 5] × [4, 7], which intersects r, so we continue. Its
left child, R1,2, covers the time interval [1, 2], which intersects [b′, e′], so we enter
it. However, its MBR is [2, 3] × [4, 6], which does not intersect r and thus we
abandon it. The right child of R1,4, R3,4, also intersects the time interval of the
query. Its MBR is [3, 5] × [5, 7], which intersects r. Finally, since R3,4 is a leaf,
we access the 3rd and 4th positions in the log, finding that the object was in r
at time instant 4. ��

5 Experimental Results

ContaCT was coded in C++ and uses several data strucures of the SDSL library
[10]. As baselines, we include GraCT and ScdcCT [3], also C++ programs, and
the MVR-tree from the spatialindex library (libspatialindex.github.io).
We used a real dataset storing the movements of 3,654 ships on a grid of size
2,723 × 367,775 and 44,642 time instants, whose plain representation requires
395.07 MB; we measure our compression ratios against that size. AppendixA
gives more details on the dataset.

The experiments ran on an Intel R© CoreTM i7-3820 CPU @ 3.60 GHz (4 cores)
with 10 MB of cache and 64 GB of RAM, over Ubuntu 12.04.5 LTS with kernel
3.2.0-115 (64 bits), using gcc 4.6.4 with -O9. We tested six types of queries:

– Object searches for the position of a specific object at a given timestamp.
– Trajectory returns the positions of an object between two timestamps.
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– Slice S and Slice L are time-slice queries for small regions (272 × 367 cells)
and large regions (2723 × 3677 cells), respectively.

– Interval S are time-interval queries specifying a small region on small intervall
(36 timestamps), and Interval L are time-interval queries specifying large
regions on large intervals (90 timestamps).

We measure elapsed times. Each data point averages 20,000 Object queries,
10,000 Trajectory queries, or 1,000 of Slice/Interval queries.

Compressed Representations. We built ContaCT, ScdcCT and GraCT with
different snapshot distances, namely every 120, 240, 360, and 720 timestamps.
ContaCT was also built with different values of C (the number of timestamps
covered by the leaves of the MBR trees), specifically 20, 40, 80, 160, 320, and
640. We used Elias-Fano on the bitmaps T (id), which were sparse, but turned to
plain bitmaps to represent X(id) and Y (id), as they were not sufficiently sparse
after mapping from T (id).

Figure 3(a) shows the size with the different settings. All the structure
sizes decrease as the distances between snapshots increase, and ContaCT also
decreases as C increases. Thanks to its grammar-compression, the densest snap-
shot sampling of GraCT still uses 11% less space than the sparsest sampling of
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ContaCT. In turn, ContaCT is smaller than the other differentially compressed
representation, ScdcCT, for example by 14% in their sparsest configurations.

Figure 3(b) shows the average answer times for Object and Trajectory
queries. ContaCT is especially fast on Object queries, thanks to its constant-
time extraction mechanism. This makes it mostly independent of the snapshot
sampling, and twice as fast as GraCT and three times faster than ScdcCT, even
with their fastest configurations. GraCT is faster than ScdcCT, because it can
traverse nonterminals of the grammar in constant time. For Trajectory queries,
ContaCT is still faster by 20%. The difference decreases because sequential access
to trajectories is not comparatively that slow with the other methods. The rea-
son why some curves actually improve with a sparser snapshot sampling is that
some extra work is needed when the query goes through various snapshots.

Figure 3(c) shows time-slice queries. The snapshot sampling is now crucial,
since it affects the number of candidates that must be considered from the pre-
ceding snapshot (the computation of ER(r, q)). Since ContaCT can access the
desired time instant in constant time, it is considerably faster than the others
for a given snapshot sampling. However, GraCT matches ContaCT (and out-
performs it for more selective queries) for a similar space usage, because GraCT
can use a denser sampling thanks to its better compression of the log. ContaCT,
on the other hand, outperforms ScdcCT by far.

Figure 3(d) shows time-interval queries, with various values of C for Con-
taCT. Even with the nearly smallest-space configuration (snapshot interval 360,
C = 160), ContaCT outpeforms the largest GraCT configuration by a factor of
2, thanks to the MBR trees that index the logs. Using smaller C values does not
significantly improve the time, on the other hand, thanks to our optimized leaf
traversal procedure. Once again, the baseline ScdcCT is much slower.

Comparison with a Spatio-Temporal Index. We compare ContaCT with
MVR-tree, a classic spatio-temporal index. We configured MVR-tree to run in
main memory. To avoid space problems, we had to build the MVR-tree over a
quarter of the input dataset. The size of the MVR-tree on this reduced input
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was 15.41 GB (including the data), while the maximum-space configuration of
ContaCT uses 11.61 MB, three orders of magnitude less.

The MVR-tree can only solve time-slice and time-interval queries. We built
ContaCT with different snapshot samplings and C = 80. Figure 4(a) shows that
our structure is faster on time time-interval queries, but slower on our time-slice
queries. Figure 4(b) studies the turning point, by increasing the time span of
time-interval queries, using the smallest-space configuration of ContaCT (snap-
shot period of 720). Note that MVR-tree times increase linearly whereas Con-
taCT stays essentially constant. ContaCT outperforms MVR-tree on interval
lengths over 8 on large-region queries and over 14 in small-region ones.

6 Conclusions

We have presented ContaCT, a structure to index trajectories of sets of moving
objects in compressed form. ContaCT can efficiently retrieve points or segments
of individual trajectories, and answer spatio-temporal range queries on the set
of objects. ContaCT combines sampled two-dimensional snapshots compressed
with k2-trees, with logs differentially compressed and represented with Elias-
Fano, which gives constant-time access to trajectory points. It also includes
a hierarchical MBR mechanism that, combined with a pruning done on the
snapshots, efficiently answers spatio-temporal queries.

Our experiments show that ContaCT compresses the data by a factor of
almost 10 and outperforms by far, in space and time, a baseline alternative
based on compressing small consecutive differences. ContaCT is also more than
1,000 times smaller than a classical spatio-temporal index, while being faster on
all but very time-narrow queries. Compared with GraCT, the smallest existing
representation based on grammar-compressing the trajectories, ContaCT uses
more space. However, when both indexes are set to use the same amount of
space, ContaCT generally makes better use of it, outperforming GraCT in most
queries, by a factor of up to 3.

Future work involves extending ContaCT to more sophisticated queries, such
as nearest-neighbor spatio-temporal queries.

A Dataset Details

The dataset used in our experimental evaluation corresponds to a real dataset
storing the movements of 3,654 boats sailing in the UTM Zone 10 during one
month of 2014. It was obtained from MarineCadastre.1 Every position emitted
by a ship is discretized into a matrix where the cell size is 50 × 50 meters. With
this data normalization, we obtain a matrix with 1,001,451,325 cells, 2,723 in
the x-axis and 367,775 in the y-axis. As our structure needs the position of
the objects at regular timestamps, we preprocessed the signals every minute,
sampling the time into 44,642 min in one month.

1 http://marinecadastre.gov/ais/.
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To filter out some obvious GPS errors, we set the maximum speed of our
dataset to 55 cells per minute (over 234 km/h) and deleted every movement
faster than this speed. In addition, we observe that most of the boats sent their
positions frequently when they were moving, but not when they were stopped
or moving slowly. This produced logs of boats with many small periods without
signals (absence period). Taking into account that an object cannot move too
far away during a small interval of time, we interpolated the signals when the
absence period was smaller than 15 min, filling the periods of absence with these
interpolated positions.

With these settings the original dataset occupies 974.43 MB in a plain text file
with four columns: object identifier, time instant, coordinate x and coordinate y.
Every value of these columns are stored as a string. However, to obtain a more pre-
cise compression measure, we represent this information in a binary file using two
bytes to represent object identifiers (max value 3,653), two bytes for the instant
column (max value 44,641), two bytes for the x-axis (max value 2,723) and three
bytes for the y-axis (max value 367,775). Therefore, the binary representation of
our dataset occupies 395.07 MB.
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Abstract. Several compressed graph representations were proposed in
the last 15 years. Today, all these representations are highly relevant in
practice since they enable to keep large-scale web and social graphs in
the main memory of a single machine and consequently facilitate fast
random access to nodes and edges.

While much effort was spent on finding space-efficient and fast repre-
sentations, one issue was only partially addressed: developing resource-
efficient construction algorithms. In this paper, we engineer the con-
struction of regular and hybrid k2-trees. We show that algorithms based
on the Z-order sorting reduce the memory footprint significantly and at
the same time are faster than previous approaches. We also engineer
a parallel version, which fully utilizes all CPUs and caches. We show
the practicality of the latter version by constructing partitioned hybrid
k-trees for Web graphs in the scale of a billion nodes and up to 100 billion
edges.

Keywords: Web graphs · Compact data structures · Graph
compression

1 Introduction

Processing large graphs, e.g., social networks or the structure of the World
Wide Web (WWW), is challenging since these structures usually do not fit into
main memory in their traditional representation. As a consequence, algorithms
designed for in-memory computations cannot be executed efficiently. While it is
possible to tackle the problem by designing distributed or external memory data
structures and algorithms (as implemented in Pregel/Giraph [15], GraphX [17],
and Gradoop [13] or GraphChi [14]), it is often better to use a space-efficient rep-
resentation of the graph. Existing algorithms work directly on the space-efficient
data structure without the need of modification and in-memory computing is
often faster and more energy efficient than distributed or external processing.
While there are many proposals for more space-efficient graph representations
c© Springer International Publishing AG 2017
G. Fici et al. (Eds.): SPIRE 2017, LNCS 10508, pp. 116–128, 2017.
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(e.g. in [1,5,8,9,11]), there was less effort on optimizing the construction of these
representations. However, this is of paramount importance in real-world appli-
cations where the static, space-efficient representation is built on-the-fly out of
a graph store. For instance, in SAP HANA, graphs are stored in a relational
format and transformed into other formats more suitable for query execution
during runtime.

An attractive graph representation based on the adjacency matrix was
recently proposed by Brisaboa et al. [8]: the succinct k2-tree. It efficiently sup-
ports three basic operations – test if a link exits (checkLink) and reporting all
outgoing/incoming links of a page (predecessors/successors) – and takes
only little space: typically 1.3–3.0 bits per link for web graphs while checkLink
can be answered in 100 ns and one element of predecessors/successors can
be retrieved in 2–8µs. Brisaboa et al. [8] report that adjacency list-based struc-
tures, such as the WebGraph framework by Boldi and Vigna [5], are typically
one order of magnitude faster on the latter operations and one order of mag-
nitude slower for checkLink, but also require twice the space. In this paper,
we present, implement, and empirically evaluate several optimizations to the
succinct k2-tree structure.

2 Preliminaries

We are given a graph G of n nodes and m directed edges. For web graphs a
page corresponds to a node and a link between two pages is represented as an
edge. Nodes are numbered from 0 to n − 1. One representation of G is a n × n
adjacency matrix A, where each cell ai,j indicates whether an edge runs from
node i to j. Figure 1 depicts an example. To simplify the presentation, we will
assume in the following that n is a power of k, e.g. n = kh. The k2-tree is
recursively defined for A as follows: A node with k2 children is generated. The
r-th child (0 ≤ r < k2) represents the sub-matrix Ar which is formed by all

Fig. 1. Left: Adjacency matrix A of an example graph G. Right: k2-tree of G and
succinct representation with binary vectors T1, T2, and L
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elements ai,j with np ≤ i · k < n(p + 1) and nq ≤ j · k < n(q + 1), where
p = � r

k � and q = r mod k. Each child is marked with a bit indicating whether
the corresponding sub-matrix contains at least one non-zero entry. For those
sub-matrices, the k2-tree is constructed, and appended to the corresponding
child. We call a node marked by a one (resp. zero) also 1-node (resp. 0-node).
Figure 1 illustrates the k2-tree for our running example and k = 2. The tree’s
height is h = logk n. Note that the children are ordered according to the top-left
corner of the corresponding sub-matrix from left to right and top to bottom.
This ordering is known as Z-order or Morton order. The Z-order corresponds
to the lexicographic order of the strings which are generated by concatenating
the binary representations of size �log2 k� of the x- and y-coordinate of the sub-
matrices, with 0 ≤ x, y < k. The Morton number of a link (p, q) is constructed
by concatenating the Z-order strings from the root to the corresponding leaf
in the k2 tree. For example, link (2, 5) lies in quadrant (0, 1) on the first level,
quadrant (1, 0) on the second, and (0, 1) on the last level. The Morton number
is therefore 0110012 = 25. Figure 2 depicts the Morton numbers of all points in
our example graph.

Tree representation. Brisaboa et al. [6] proposed a compact representation for
the k2-tree, which is an adapted version of the LOUDS (Level-Ordered Unary
Degree Sequence) [12] succinct tree structure. It is generated by traversing the
k2-tree level by level and by concatenating the indicator bits of all children of
the visited inner nodes on each level (cf. Fig. 1).

Bit vector T1 and T2 contain the concatenation of the first two levels and L
of the leaf level. It is possible to efficiently navigate in this representation. Let
x be the position of a 1-node v on level �; then the position of the children of
v on level � + 1 can be computed easily as all 1-nodes on level � left of v have
exactly k2 children on level �+1. These children are located left of the first child
of node v. With rank, a fundamental operation of succinct structures, we can
therefore express the operation of finding the position of the j-th child at level
� + 1 as follows: childj(x, Ti) = rank(Ti, x) · k2 + j, where rank(Ti, x) returns
the number of set bits in the prefix Ti[0, x − 1]. The latter operation can be
executed in constant time with an index, which is sublinear in the size of the bit
vector [12].

More complex operations, e.g., checking the existence of a link from page p to
page q, can be implemented by traversing the k2-tree from the root downwards;
see Algorithm 1. On each level the Z-order is calculated (Line 1) and it is tested
if the corresponding child is empty (Line 1). If it is empty, false is returned,
otherwise we recurse into the subtree in Line 1 and return true if we are past
the leaf level. The runtime is in O (h), where h = logk n is the height of the
tree. Related queries, as reporting all outgoing links (successors) or incoming
links (predecessors), can be solved similarly; as we do not focus on those
operations, we refer the interested reader to Brisaboa et al. [8] for details.

Hybrid k2-trees. Motivated by the observation that there are no empty subtrees
close to the root of the k2-tree, Brisaboa et al. [8] suggested to vary k dependent
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Procedure checkLink(p, q, x, �):

if � > h then
return true ;

else

z� ←− (p/kh−�) · k + (q/kh−�) ; /* Z-order on level � */

if T�[x + z�] = 1 then
x′ ←− childz�(x, T�) ; /* succinct op for child position */

return checkLink(p mod kh−�, q mod kh−�, x′, � + 1);

else
return false ;

end

end

end
Algorithm 1. Recursive method to determine whether there is a link from
page p to q. The method is initially called with arguments p, q, x = 0, and
� = 1.

on the level. They specify three k values: k1, k2, and kl. Value k1 is used for the
first ksize

1 levels, where ksize
1 is configurable. Value k2 is used for the remaining

levels up to the second to last and kl is used for the last level. Choosing a k value
is a trade-off between access time and compressed size. A smaller k value leads to
a smaller representation as fewer zeros are stored but also leads to higher access
times as the tree height increases. By varying the k value, it is possible to use
larger k values for the top levels where it is unlikely that a large sub-matrix only
contains zeros. This reduces the tree height and therefore improves the speed of
the access operations. Furthermore, by using a smaller k value for the following
levels where it is more likely that complete sub-matrices are empty it is possible
to reduce the memory needed for the compressed representation. Using a larger
kl value reduces the tree height and improves access times. Brisaboa et al. [8]
also suggest a separate compression for the last level nodes. Instead of storing
fixed k2

l bits for the last level nodes, these k2
l bit wide words are dictionary-

encoded and the dictionary entry is stored. These entries are then compressed
with a variable bit-length encoding scheme allowing for fast, direct access; e.g.,
Direct Accessible Codes (DAC) [7].

Top-level partitioned. k2-trees Another option to lower the height of the tree is
to partition the adjacency matrix into sub-matrices of fixed size S2 = n2/k2

0 and
building separate k2-trees for each tree. While this complicates some operations,
it can be used to reduce the space overhead during construction.

Construction. The most practical construction method for k2-trees described by
Brisaboa et al. [8] is based on counting sort. The graph is given as an array E of
m edges. E is then partitioned into k2 sub-ranges as follows. A queue is initialized
with a state consisting of the tree level �, the upper left corner (x, y) of the matrix,
and the range in E: 〈1, (0, 0), [0,m−1]〉. After extracting a state, the edges in the



120 J. Broß et al.

range are partitioned into k2 ranges as follows. An edge (p, q) belongs to the z�th
sub-range iff z� = �(p−x)/kh−��·k+�(q−y)/kh−��. For each range a 1-bit (resp.
0-bit) is appended to T� if the sub-range is non-empty (resp. empty), and for
every non-empty range [a, b] a new state 〈� + 1, (x + �z�/k�, y + z� mod k), [a, b]〉
is added. On the second-to-last level, the states are not pushed to the queue but
value z� is dictionary-encoded as described before.

The construction process takes O (m logk n) time in the worst case and the
queue can use up to O (m) words of space. The latter is potentially much larger
than the output, which can be upper bounded by k2m

(
logk2

n2

m + O (1)
)

bits.
In the following, we present a construction process, which requires less additional
memory, avoids the costly divisions, and can also be parallelized.

3 Basic Optimizations

The practical performance of the described k2-tree operations and construction
can be improved by choosing k as a power of two, e.g. k = 2r. Costly division
(x/2r) and modulo (x mod 2r) operations can be replaced by shifts (x 	 r) and
bitwise AND (x & ((1 
 r) − 1)) operations1. In Algorithm 1 the expression in
Line 1 is simplified to

((p 	 r(h − �)) 
 r)|(q 	 r(h − �))

and the modulo operations in Line 1 are replaced by a bitwise AND with mask
(1 
 r(h − �)) − 1, where 2r(h−�) is the size of the sub-matrix on level �. This
optimization can be adapted for hybrid k2-trees, where the value of k varies
with the level in the tree. Let ki = 2ri be the k-value on level i. Then the size
of the sub-matrix on level � is 2 to the prefix sum R[�] =

∑h
i=�+1 ri and Line 1

in Algorithm 1 is changed to

z� ← ((p 	 R[�])) 
 r�)|(q 	 R[�]) (1)

and Line 1 to a bitwise AND and with mask (1 
 R[�]) − 1), where the logk n
entries of array R are precomputed once for each tree. In Sect. 5 we will observe
that this optimization already halves the time for the counting sort-based con-
struction of hybrid k2-trees. We further improve this in the next section.

4 Z-Order Based Construction

Instead of calculating and sorting according to z� level by level it is also possi-
ble to first generate the Morton numbers of all links, sort those numbers, and
then construct the k2-tree from left to right. The idea of sorting the Morton
numbers originates from Bern et al. [2]. The virtue of this approach is that all
those steps can be done efficiently and also be split up into equal-sized parts for
parallelization.
1 We use the notation and precedence and associativity rules of the C programming

language for shift left “�”, shift right “�”, bitwise AND “&”, and bitwise OR “|”.
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Morton number calculation. For a hybrid k2-tree with k-values 〈2r1 , 2r2 , . . . , 2k�〉
the Morton number of a link (p, q) is generated by splitting the binary rep-
resentation of p and q into blocks of r1, r2, . . . , r� bits and interleaving these
blocks, e.g., given 〈4, 4, 2, 8〉 and a link (152, 43). The binary representation of
p and q is (100110012, 001010112), and the Morton number representation is
10000110110010112. We underlined (resp. overlined) blocks originating from p
(resp. q) for illustration purposes. On modern CPUs calculating the Morton
number can be reduced to a bitwise OR and the Parallel Bit Deposit (PDEP2)
operation. The PDEP operation takes a word of size w and a mask of the same size
with b bits set. The operation spreads the last b bits of w to the positions of the
set bits in the mask. In our example we would use the mask 11001100101110002
for p and 00110011010001112 for q and use a bitwise OR to combine the two PDEP
results.

Serial construction. Dependent on m and the depth of the k2-tree, we either
apply a comparison based or radix sorting algorithm to sort in O (m log m)
or O (m logk n) time. Now, let z(pi, qi) = zi,1zi,2 . . . zi,� be the Morton num-
ber of the i-th smallest link (pi, qi), which consists of � concatenated blocks of
2r1, . . . , 2r� bits. We start building the k2-tree by appending the 2r1,j-bit binary
representation of z1,j to Tj . For all following elements (pi, qi) we first determine
the smallest index s such that zi−1,s �= zi,s. This can be done in constant time
on modern CPUs3. Bit vectors T1, . . . , Ts−1 do not have to be changed, as the
two links share the same path up to level s − 1. On level s, we add the new
child by ORing the last 2rs bits of Ts with zi,s. For all levels j > s, we generate a
new path under the new node at level s by appending zi,j to Tj . The total time
complexity is O (m logk n).

Parallel construction. We note that calculating the Morton number for the
edge array can be implemented embarrassingly parallel. There is no dependency
between the Morton number calculation of different links. By splitting the input
into p parts of size at most �m/p� and using one thread per part the time is
bounded by O (m/p). Parallel sorting can be done by employing multi-way merge
sort [16] in O

(
m log m

p + p log p · log m
p

)
time. Next, we divide the sorted input

into p parts of at most �m/p� elements and calculate p separate k2-trees. Apply-
ing the serial construction to each part results in a running time of O

(
m
p logk n

)
.

Figure 2 depicts an example for p = 3 on our running example. In a final step,
we merge the p trees into a single tree. For each tree, we check which nodes
on the path to the leftmost leaf are shared with the nodes on the path to the
rightmost leaf in the previous tree. Shared nodes are marked with a pentagon
in Fig. 2, while non-shared nodes are marked by a circle. The runtime to deter-
mine this information is O (logk n) per thread. The k2 bits of shared nodes are
subtracted from the length of the L bit vectors on the different levels. In Fig. 2

2 See e.g. http://www.agner.org/optimize/instruction tables.pdf.
3 Via a combination of XOR and count leading zeros (clz).

http://www.agner.org/optimize/instruction_tables.pdf
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Fig. 2. Top left: Z-order curve in the adjacency matrix of our running example.
Bottom left: Links and corresponding Morton numbers. Right: Three separate k2-trees
produced independently by three threads.

we get lengths 4, 8, and 12 for the first tree, 0, 8, and 12 for the second, and
0, 0, and 4 for the third tree. The exclusive prefix sums for each level – in our
example 0, 0, 0 for level one, 0, 8, 20, for level two, and 0, 12, 24 – determine the
offsets where the bit vectors of each thread have to be copied in the final tree.
This can done in O (logk n + p) using p threads. After copying the non-colliding
regions, we merge (using bitwise OR) the colliding nodes one after another and
copy the result into the final representation. This takes O (p · logk n) time. The
total running time of the last steps is therefore O

(
m
p logk n + p logk n

)
and we

can conclude that the initial sort dominates in realistic cases where m > n.

5 Experimental Study

We evaluate our proposals4 in an empirical study and compare them against
two state-of-the-art implementations: the code of Brisaboa et al. [8] and the
well-known WebGraph framework of Boldi and Vigna [3–5]. The WebGraph
project also provides graphs which are used in our experiments (cf. Table 1). For
experiments on a very large graph, we added a web graph originating from the
CommonCrawl project.

Experimental setup. We use two experimental platforms. Machine A is equipped
with 2 Intel Xeon E5–2660 v3 (Haswell) processors and has 128 GB memory
4 The code is available at https://github.com/Jabro/sdsl-lite.

https://github.com/Jabro/sdsl-lite


Fast Construction of Compressed Web Graphs 123

Table 1. Data sets used for the performance evaluation. Graphs are stored as set of
adjacency lists. Each list entry occupies 4 bytes (8 bytes in case of CommonCrawl). We
use the partitioned sizes S of the last column when constructing partitioned k2-trees.
UK-07-05-BFS is the BFS-ordered version of UK-2007-05 provided by Susana Ladra.

Graph (Year) Nodes (n) Edges (m) m/n File size S

EU-2005 (2005) 862 664 19 235 140 22.30 77.0 MB 218

Indochina (2002) 7 414 866 194 109 311 26.18 769.0 MB 220

UK-2002 (2002) 18 520 486 298 113 762 16.10 1.2 GB 222

Arabic (2005) 22 744 080 639 999 458 28.14 2.5 GB 222

UK-07-05-BFS (2007) 105 218 569 3 733 873 648 35.49 14.3 GB 222

UK-2014 (2014) 787 801 471 47 614 527 250 60.44 189.3 GB 226

EU-2015 (2015) 1 070 557 254 91 792 261 600 85.74 363.1 GB 226

CommonCrawl (2012) 3 563 666 998 128 736 914 864 36.12 1033.6 GB 228

attached. Each processor has 10 cores with 2 threads running at 2.6 GHz. The
Haswell architecture provides the PDEP operation, which showed to speed up
the Morton number calculation by about 30%. Machine B is equipped with 4
Intel Xeon E7–4870 processors and has 1 TB of main memory attached. Each
processor has 10 cores running at 2.4 GHz. As the system does not support the
PDEP instruction we use several lookup tables to generate Morton numbers. All
benchmarks for small graphs – up to UK-07-05-BFS– were executed on machine
A while large graphs were processed on machine B. As some of the large graphs
are loaded from a network storage, we exclude I/O times for a fair comparison.
All programs were compiled with GCC 4.9.3 with full optimizations and all
hardware-specific optimizations (-march=native).

K2-tree construction. Figure 3 depicts construction space and time of the
counting sort approach of Brisaboa et al. [8] (BLN), our optimized vari-
ant (COUNT), and the presented serial and parallel Z-order implementation
(SZORD/PZORD). We show results for unpartitioned hybrid k2-trees and par-
titioned ones. For the latter, we split the input into squares of size S2 as denoted
in Table 1. We choose to focus on the results for UK-07-05-BFS as they show the
typical trade-off between the implementations. We observe that COUNT, which
replaced the costly division operations in BLN, takes less than half of the time to
construct the partitioned k2-tree and is also more space-efficient. The excessive
space requirement of BLN prohibits the construction for the unpartitioned k2-
tree. For smaller graphs, we observed that the same improvements of COUNT
also appear for the construction of unpartitioned k2-trees. The Z-order imple-
mentation SZORD uses more space than COUNT as we are not using in-place
sorting algorithm. However, we note that the space usage of COUNT depends
on the space of its state queue, which can be larger for other node orderings of
the graph; for instance the space consumption of COUNT was worse than that
of SZORD on the natural ordering of UK-2007-05. In the following, the space
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4, ksize

1 = 6, k2 = 2, kh = 8 for UK-07-05-BFS. BLN refers to the counting sort
construction of Brisaboa et al. and COUNT to our optimized variant. SZORD and
PZORD are our serial and parallel Z-order sort construction, the latter uses 20 threads.

consumption of the unpartitioned variant is not a concerning issue, as in practice
it is more attractive to build and use the partitioned graph. We also observe that
SZORD, which first calculates the Morton numbers and uses a general-purpose,
comparison-based algorithm, is faster than the specialized counting sort app-
roach COUNT. By using all CPU resources with PZORD, the construction
time is further reduced to an eighth of the initial time of BLN.

Parallel construction. We examine the properties of PZORD in more details in
Fig. 4 on a larger graph, which was constructed on machine B, which has twice
the number of cores of machine A. The black line in the left plot marks the
serial construction time of SZORD. The time is slower than in the previous plot,
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as the machine runs on a lower clock speed and also does not feature the PDEP
instruction. We can observe that the runtime is dominated by the sorting of the
Morton numbers and the construction of the trees. Note that the merge phase
for one thread just consists of copying the bit vectors. While the calculation of
the Morton numbers and the merge phase are cheap compared to sorting and
building the trees, we observe in the right plot that their parallelization does
only scale well up to 10 or 20 threads. For the merge phase this can be explained
by the fact that with a growing amount of threads, the memory bandwidth will
be reached and more conflicts have to be resolved by ORing parts of the vectors.
For the Morton numbers we are inspecting NUMA-effects. The sorting of the
Multi-Core Standard Library (MCSTL) and the tree construction exhibit good
scalability.

Construction time and space for huge graphs. Our implementation allows
processing large-scale graphs. Table 2 shows the results for the construction of
partitioned hybrid k2-trees. We use the same ks as in the first experiment. This
time we also include our parallel DAC compression for the last level and also
report the average time to check a link, and report all outgoing (resp. incoming)
links of a page. Different to the methodology of Brisaboa et al. [8], we bench-
mark the checkLink by querying 5 · 105 existing edges and 5 · 105 randomly
generated edges instead of only querying randomly generated edges. The latter
method results in faster query times as the search in the k2-tree can often be
terminated early for non-existing edges and is therefore much faster compared
to adjacency list-based indices, such as WebGraph.

Table 2. Performance of PZORD with 40 threads on large-scale data sets.

File UK-2014 EU-2015 CommonCrawl

Construction time [min] 13 23 73

DAC compression time [sec] 197 210 1018

Compressed size [bpe] 1.05 0.78 4.1

W.o. DAC compression [bpe] 4.03 2.96 11.8

checkLink [µs] 1.5 1.9 9.8

successors [µs] 1.9 2.4 11.8

predecessors [µs] 1.7 2.5 16.9

Comparison to WebGraph. Following Brisaboa et al. [8], we configure WebGraph
with three choices of window size (w) and maximal number of backward refer-
ences (m) for both directions. We refer to 〈w,m〉 = 〈3, 3〉 as BV(d+r)

a, resp.
BV(d+r)

b and BV(d+r)
c for 〈70, 100〉 and 〈70, 1000〉. Table 3 shows that our new

implementation does not only allow for fast construction but also significantly
reduces query times. We observed a factor of seven for checkLink compared
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Table 3. Comparison of different graph compression techniques on UK-07-05-BFS.
In the parallel version PZORD (20 threads) operations predecessors/successors
are solved by merging the results of multiple partitions. Those results are computed
concurrently.

BV(d+r) BLN New

a b c SZORD PZORD

Construction time [s] 4281 6988 7355 1468 641 220

Construction space [MB] 188 3825 4251 18270 8280 8793

Compressed size [bpe] 4.53 3.66 3.58 1.45 1.49 1.49

checkLink [µs] 2.01 63.04 291.06 6.21 0.86 0.84

successors [µs] 0.06 1.71 5.58 2.45 1.91 1.08

predecessors [µs] 0.05 0.30 0.65 2.31 1.82 0.72
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Fig. 5. Comparison space/time trade-off for successor and predecessor queries with
other compression techniques
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to BLN. We also observed consistent query time improvements on the remain-
ing datasets. Figure 5 shows that the optimizations scale with the graph size.
While the serial construction of WebGraph is space-efficient, we note that we
also implemented an external version of Z-order-based construction using the
STXXL library [10], which enables to build k2-trees on machines with restricted
memory capacity.

6 Conclusion

We proposed a Z-order sorting based construction for partitioned hybrid k2-trees
and its parallel version. We showed that a careful implementation, which lever-
ages new CPU features and/or bit-level optimizations, results in significantly
faster construction and query times.
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Abstract. Understanding the evolution of a set of genes or species is
a fundamental problem in evolutionary biology. The problem we study
here takes as input a set of trees describing possibly discordant evolu-
tionary scenarios for a given set of genes or species, and aims at finding
a single tree that minimizes the leaf-removal distance to the input trees.
This problem is a specific instance of the general consensus/supertree
problem, widely used to combine or summarize discordant evolutionary
trees. The problem we introduce is specifically tailored to address the
case of discrepancies between the input trees due to the misplacement of
individual taxa. Most supertree or consensus tree problems are compu-
tationally intractable, and we show that the problem we introduce is also
NP-hard. We provide tractability results in form of a 2-approximation
algorithm and a parameterized algorithm with respect to the number of
removed leaves. We also introduce a variant that minimizes the max-
imum number d of leaves that are removed from any input tree, and
provide a parameterized algorithm for this problem with parameter d.

Keywords: Computational biology · Phylogenetics · Parameterized
algorithms · Approximation · Consensus trees · Leaf deletion

1 Introduction

In the present paper, we consider a very generic computational biology prob-
lem: given a collection of trees representing, possibly discordant, evolutionary

All missing proofs are provided in [6].
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scenarios for a set of biological entities (genes or species – also called taxa in the
following), we want to compute a single tree that agrees as much as possible with
the input trees. Several questions in computational biology can be phrased in this
generic framework. For example, for a given set of homologous gene sequences
that have been aligned, one can sample evolutionary trees for this gene family
according to a well defined posterior distribution and then ask how this collec-
tion of trees can be combined into a single gene tree, a problem known as tree
amalgamation [16]. In phylogenomics, one aims at inferring a species tree from a
collection of input trees obtained from whole-genome sequence data. A first app-
roach considers gene families and proceeds by computing individual gene trees
from a large set of gene families, and then combining this collection of gene trees
into a unique species tree for the given set of taxa; this requires handling the
discordant signal observed in the gene trees due to evolutionary processes such
as gene duplication and loss [13], lateral gene transfer [17], or incomplete lineage
sorting [15]. Another approach concatenates the sequence data into a single large
multiple sequence alignment, that is then partitioned into overlapping subsets
of taxa for which partial evolutionary trees are computed, and a unique species
tree is then inferred by combining the resulting collection of partial trees [14].

For example, the Maximum Agreement Subtree (MAST) problem considers
a collection of input trees1, all having the same leaf labels and looks for a tree
of maximum size (number of leaves), which agrees with each of the input trees.
This problem is tractable for trees with bounded degree but NP-hard gener-
ally [2]. The MAST problem is a consensus problem, because the input trees
share the same leaf labels set, and the output tree is called a consensus tree.
In the supertree framework, the input trees might not all have identical label
sets, but the output is a tree on the whole label set, called a supertree. For
example, in the Robinson-Foulds (RF) supertree problem, the goal is to find a
supertree that minimizes the sum of the RF-distances to the individual input
trees [18]. One way to compute consensus trees and supertrees that is closely
related to our work is to modify the collection of input trees minimally in such
a way that the resulting modified trees all agree. For example, in the MAST
problem, modifications of the input trees consist in removing a minimum num-
ber of taxa from the whole label set, while in the Agreement Supertree by Edge
Contraction (AST-EC) problem, one is asked to contract a minimum number
of edges of the input trees such that the resulting (possibly non-binary) trees
all agree with at least one supertree [10]; in the case where the input trees are
all triplets (rooted trees on three leaves), this supertree problem is known as
the Minimum Rooted Triplets Inconsistency problem [5]. The SPR Supertree
problem considers a similar problem where the input trees can be modified with
the Subtree-Prune-and-Regraft (SPR) operator [19].

In the present work, we introduce a new consensus problem, called
LR-Consensus. Given a collection of input trees having the same leaf labels
set, we want to remove a minimum number of leaves – an operation called a

1 All trees we consider here are uniquely leaf-labeled, rooted (i.e. are out-trees) and
binary; see next section for formal definitions.
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Leaf-Removal (LR) – from the input trees such that the resulting pruned trees
all agree. Alternatively, this can be stated as finding a consensus tree that min-
imizes the cumulated leaf-removal distance to the collection of input trees. This
problem also applies to tree amalgamation and to species tree inference from
one-to-one orthologous gene families, where the LR operation aims at correcting
the misplacement of a single taxon in an input tree. This may occur particularly
in the case of ‘rogue taxa’ [1], for example when a sequence from a taxon has
mistakenly been put in a gene family where it does not belong.

In the next section, we formally define the problems we consider, and how
they relate to other supertree problems. Next we show that the LR-Consensus
problem is NP-hard and that in some instances, a large number of leaves need
to be removed to lead to a consensus tree. We then provide a 2-approximation
algorithm, and show that the problem is fixed-parameter tractable (FPT) when
parameterized by the total number of LR. However, these FPT algorithms have
impractical time complexity, and thus, to answer the need for practical algo-
rithms, we introduce a variant of the LR-Consensus problem, where we ask if a
consensus tree can be obtained by removing at most d leaves from each input
tree, and describe an FPT algorithm with parameter d.

2 Preliminary Notions and Problem Statements

Trees. All trees in the rest of the document are assumed to be rooted and binary.
If T is a tree, we denote its root by r(T ) and its leaf set by L(T ). Each leaf is
labeled by a distinct element from a label set X , and we denote by X (T ) the set of
labels of the leaves of T . We may sometimes use L(T ) and X (T ) interchangeably.
For some X ⊆ X , we denote by lcaT (X) the least common ancestor of X in T .
The subtree rooted at a node u ∈ V (T ) is denoted Tu and we may write LT (u)
for L(Tu). If T1 and T2 are two trees and e is an edge of T1, grafting T2 on
e consists of subdividing e and letting the resulting degree 2 node become the
parent of r(T2). Grafting T2 above T1 consists of creating a new node r, then
letting r become the parent of r(T1) and r(T2) (note that grafting T2 above T1 is
equivalent to grafting T1 above T2). Grafting T2 on T1 means grafting T2 either
on an edge of T1 or above T1.

The Leaf Removal Operation. For a subset L ⊆ X , we denote by T − L the tree
obtained from T by removing every leaf labeled by L, contracting the resulting
non-root vertices of degree two, and repeatedly deleting the resulting root vertex
while it has degree one. The restriction T |L of T to L is the tree T − (X \L), i.e.
the tree obtained by removing every leaf not in L. A triplet is a rooted tree on
3 leaves. We denote a triplet R with leaf set {a, b, c} by ab|c if c is the leaf that
is a direct child of the root (the parent of a and b being its other child). We say
R = ab|c is a triplet of a tree T if T |{a,b,c} = R. We denote tr(T ) = {ab|c : ab|c
is a triplet of T}.
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We define a distance function dLR between two trees T1 and T2 on the same
label set X consisting in the minimum number of labels to remove from X so
that the two trees are equal. That is,

dLR(T1, T2) = min{|X| : X ⊆ X and T1 − X = T2 − X}

Note that dLR is closely related to the Maximum Agreement Subtree (MAST)
between two trees on the same label set X , which consists in a subset X ′ ⊆ X
of maximum size such that T1|X′ = T2|X′ : dLR(T1, T2) = |X |− |X ′|. The MAST
of two binary trees on the same label set can be computed in time O(n log n),
where n = |X | [8], and so dLR can be found within the same time complexity.

Problem Statements. In this paper, we are interested in finding a tree T on X
minimizing the sum of dLR distances to a given set of input trees.

LR-Consensus
Given: a set of trees T = {T1, . . . , Tt} with X (T1) = . . . = X (Tt) = X .
Find: a tree T on label set X that minimizes

∑
Ti∈T dLR(T, Ti).

We can reformulate the LR-Consensus problem as the problem of removing
a minimum number of leaves from the input trees so that they are compatible.
Although the equivalence between both formulations is obvious, the later for-
mulation will often be more convenient. We need to introduce more definitions
in order to establish this equivalence.

A set of trees T = {T1, . . . , Tt} is called compatible if there is a tree T such
that X (T ) =

⋃
Ti∈T X (Ti) and T |X (Ti) = Ti for every i ∈ [t]. In this case, we say

that T displays T . A list C = (X1, . . . ,Xt) of subsets of X is a leaf-disagreement
for T if {T1 − X1, . . . , Tt − Xt} is compatible. The size of C is

∑
i∈[t] |Xi|. We

denote by ASTLR(T ) the minimum size of a leaf-disagreement for T , and may
sometimes write ASTLR(T1, . . . , Tt) instead of ASTLR(T ). A subset X ′ ⊆ X
of labels is a label-disagreement for T if {T1 − X ′, . . . , Tt − X ′} is compatible.
Note that if T = {T1, T2}, then the minimum size of a leaf-disagreement and
label-disagreement for T are the same, namely dLR(T1, T2). Note however that
this does not hold in general (see Fig. 1 for an example). We may now define the
AST-LR problem.

Agreement Subtrees by Leaf-Removals (AST-LR)
Given: a set of trees T = {T1, . . . , Tt} with X (T1) = . . . = X (Tt) = X .
Find: a leaf-disagreement C for T of minimum size.

Lemma 1. Let T = {T1, . . . , Tt} be a set of trees on the same label set X , with
n = |X |. Given a supertree T such that v :=

∑
Ti∈T dLR(T, Ti), one can compute

in time O(tn log(n)) a leaf-disagreement C of size at most v. Conversely, given
a leaf-disagreement C for T of size v, one can compute in time O(tn log2(tn)) a
supertree T such that

∑
Ti∈T dLR(T, Ti) ≤ v.
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a b c d

T1

a bc d

T2

a bcd

T3

Fig. 1. Example instance T = {T1, T2, T3} of AST-LR with label set X = {a, b, c, d}.
The list (X1 = {d},X2 = {b},X3 = {a}) is a leaf-disagreement for T of size 3. The set
X ′ = {a, b} is a label-disagreement of size 2. Note that there is no leaf-disagreement
for T of size 2.

Proof. In the first direction, for each Ti ∈ T , there is a set Xi ⊆ X of size
dLR(T, Ti) such that Ti − Xi = T − Xi. Moreover, Xi can be found in time
O(n log n). Thus (X1, . . . , Xt) is a leaf-disagreement of the desired size and
can be found in time O(tn log n). Conversely, let C = (X1, . . . , Xt) be a leaf-
disagreement of size v. As T ′ = {T1 − X1, . . . , Tt − Xt} is compatible, there is a
tree T that displays T ′, and it is easy to see that the sum of distances between
T and T ′ is at most the size of C. As for the complexity, it is shown in [9] how
to compute in time O(tn log2(tn)), given a set of trees T ′, a tree T displaying
T ′ if one exists. ��

From Lemma 1, both problems share the same optimality value, the NP-
hardness of one implies the hardness of the other, and approximating one prob-
lem within a factor c implies that the other problem can be approximated within
a factor c. We conclude this subsection with the introduction of a parameterized
variant of the AST-LR problem.

AST-LR-d
Input: a set of trees T = {T1, . . . , Tt} with X (T1) = . . . = X (Tt) = X , and an
integer d.
Question: are there X1, . . . ,Xt ⊆ X such that |Xi| ≤ d for each i ∈ [t], and
{T1 − X1, . . . , Tt − Xt} is compatible?

We call a tree T ∗ a solution to the AST-LR-d instance if dLR(Ti, T
∗) ≤ d for

each i ∈ [t].

Relation to Other Supertree/Consensus Tree Problems. The most widely stud-
ied supertree problem based on modifying the input trees is the SPR Supertree
problem, where arbitrarily large subtrees can be moved in the input trees to
make them all agree (see [19] and references there). The interest of this prob-
lem is that the SPR operation is very general, modelling lateral gene transfer
and introgression. The LR operation we introduce is a limited SPR, where the
displaced subtree is composed of a single leaf. An alternative to the SPR oper-
ation to move subtrees within a tree is the Edge Contraction (EC) operation,
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that contracts an edge of an input tree, thus increasing the degree of the parent
node. This operation allows correcting the local misplacement of a full subtree.
AST-EC is NP-complete but can be solved in O((2t)ptn2) time where p is the
number of required EC operations [10].

Compared to the two problems described above, an LR models a very spe-
cific type of error in evolutionary trees, that is the misplacement of a single
taxon (a single leaf) in one of the input trees. This error occurs frequently in
reconstructing evolutionary trees, and can be caused for example by some evo-
lutionary process specific to the corresponding input tree (recent incomplete
lineage sorting, or recent lateral transfer for example). Conversely, it is not well
adapted to model errors, due for example to ancient evolutionary events that
impact large subtrees. However, an attractive feature of the LR operation is that
computing the LR distance is equivalent to computing the MAST cost and is thus
tractable, unlike the SPR distance which is hard to compute. This suggests that
the LR-Consensus problem might be easier to solve than the SPR Supertree
problem, and we provide indeed several tractability results. Compared to the
AST-EC problem, the AST-LR problem is naturally more adapted to correct sin-
gle taxa misplacements as the EC operation is very local and the number of
EC required to correct a taxon misplacement is linear in the length of the path
to its correct location, while the LR cost of correcting this is unitary. Last,
LR-Consensus is more flexible than the MAST problem as it relies on modifi-
cations of the input trees, while with the way MAST corrects a misplaced leaf
requires to remove this leaf from all input trees. This shows that the problems
AST-LR and AST-LR-d complement well the existing corpus of gene tree correc-
tion models.

3 Hardness and Approximability of AST-LR

In this section, we show that the AST-LR problem is NP-hard, from which the
LR-Consensus hardness follows. We then describe a simple factor 2 approxima-
tion algorithm. The algorithm turns out to be useful for analyzing the worst case
scenario for AST-LR in terms of the required number of leaves to remove, as we
show that there are AST-LR instances that require removing about n−√

n leaves
in each input tree.

NP-Hardness of AST-LR

We assume here that we are considering the decision version of AST-LR, i.e.
deciding whether there is a leaf-disagreement of size at most � for a given �.
We use a reduction from the MinRTI problem: given a set R of rooted triplets,
find a subset R′ ⊂ R of minimum cardinality such that R \ R′ is compatible.
The MinRTI problem is NP-Hard (and furthermore W [2]-hard) [5], and hard to
approximate within a O(2log

1−ε n) factor [7]. Denote by MINRTI(R) the mini-
mum number of triplets to remove from R to attain compatibility. We describe
the reduction here.
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Let R = {R1, . . . , Rt} be an instance of MinRTI, with the label set
L :=

⋃t
i=1 X (Ri). For a given integer m, we construct an AST-LR instance

T = {T1, . . . , Tt} such that MINRTI(R) ≤ m if and only if ASTLR(T ) ≤
t(|L| − 3) + m.

We first construct a tree Z with additional labels which will serve as our main
gadget. Let {Li}1≤i≤t be a collection of t new label sets, each of size (|L|t)10,
all disjoint from each other and all disjoint from L. Each tree in our AST-LR
instance will be on label set X = L ∪ L1 ∪ . . . ∪ Lt. For each i ∈ [t], let Xi be
any tree with label set Li. Obtain Z by taking any tree on t leaves l1, . . . , lt,
then replacing each leaf li by the Xi tree (i.e. li is replaced by r(Xi)). Denote
by rZ(Xi) the root of the Xi subtree in Z.

Then for each i ∈ [t], we construct Ti from Ri as follows. Let L′ = L \ X (Ri)
be the set of labels not appearing in Ri, noting that |L′| = |L| − 3. Let TL′ be
any tree with label set L′, and obtain the tree Zi by grafting TL′ on the edge
between rZ(Xi) and its parent. Finally, Ti is obtained by grafting Ri above Zi.
See Fig. 2 for an example. Note that each tree Ti has label set X as desired. Also,
it is not difficult to see that this reduction can be carried out in polynomial time.
This construction can now be used to show the following.

a b c

X1 X2 X3

TL′

Fig. 2. Construction of the tree T1 for an instance R = {R1, R2, R3} of MinRTI in
which R1 = ab|c.

Theorem 2. The AST-LR and LR-Consensus problems are NP-hard.

The idea of the proof is to show that in the constructed AST-LR instance,
we are “forced” to solve the corresponding MinRTI instance. In more detail, we
show that MINRTI(R) ≤ m if and only if ASTLR(T ) ≤ t(|L| − 3) + m. In one
direction, given a set R′ of size m such that R \ R′ is compatible, one can show
that the following leaf removals from T make it compatible: remove, from each
Ti, the leaves L′ = L\X (Ri) that were inserted into the Z subtree, then for each
Ri ∈ R′, remove a single leaf in X (Ri) from Ti. This sums up to t(|L| − 3) + m
leaf removals. Conversely, it can be shown that there always exists an optimal
solution for T that removes, for each Ti, all the leaves L′ = L \ X (Ri) inserted
in the Z subtree, plus an additional single leaf l from m trees Ti1 , . . . , Tim such
that l ∈ L. The corresponding triplets Ri1 , . . . , Rim can be removed from R so
that it becomes compatible.
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Approximating AST-LR and Bounding Worst-Case Scenarios

Given the above result, it is natural to turn to approximation algorithms in order
to solve AST-LR or LR-Consensus instances. It turns out that there is a simple
factor 2 approximation for LR-Consensus which is achieved by interpreting the
problem as finding a median in a metric space. Indeed, it is not hard to see
that dLR is a metric (over the space of trees on the same label set X ). A direct
consequence, using an argument akin to the one in [12, p. 351], is the following.

Theorem 3. The following is a factor 2 approximation algorithm for
LR-Consensus: return the tree T ∈ T that minimizes

∑
Ti∈T dLR(T, Ti).

Proof. Let T ∗ be an optimal solution for LR-Consensus, i.e. T ∗ is a tree min-
imizing

∑
Ti∈T dLR(Ti, T

∗), and let T be chosen as described in the theorem
statement. Moreover let T ′ be the tree of T minimizing dLR(T ′, T ∗). By the
triangle inequality,

∑

Ti∈T
dLR(T ′, Ti) ≤

∑

Ti∈T
(dLR(T ′, T ∗) + dLR(T ∗, Ti)) ≤ 2

∑

Ti∈T
dLR(T ∗, Ti)

where the last inequality is due to the fact that dLR(T ′, T ∗) ≤ dLR(T ∗, Ti)
for all i, by our choice of T ′. Our choice of T implies

∑
Ti∈T dLR(T, Ti) ≤∑

Ti∈T dLR(T ′, Ti) ≤ 2
∑

Ti∈T dLR(Ti, T
∗). ��

Theorem 3 can be used to lower-bound the ‘worst’ possible instance of
AST-LR. We show that in some cases, we can only keep about

√
|X | leaves per

tree. That is, there are instances for which ASTLR(T ) = Ω(t(n − √
n)), where

t is the number of trees and n = |X |. The argument is based on a probabilistic
argument, for which we will make use of the following result [4, Theorem 4.3.iv].

Theorem 4 ([4]). For any constant c > e/
√

2, there is some n0 such that for
all n ≥ n0, the following holds: if T1 and T2 are two binary trees on n leaves
chosen randomly, uniformly and independently, then E[dLR(T1, T2)] ≥ n − c

√
n.

Corollary 5. There are instances of AST-LR in which Ω(t(n−√
n)) leaves need

to be deleted.

The above is shown by demonstrating that, by picking a set T of t random trees,
the expected optimal sum of distances minT

∑
Ti∈T dLR(T, Ti) is Ω(t(n − √

n).
This is not direct though, since the tree T ∗ that minimizes this sum is not itself
random, and so we cannot apply Theorem 4 directly on T ∗. We can however, show
that the tree T ′ ∈ T obtained using the 2-approximation, which is random, has
expected sum of distances Ω(t(n − √

n)). Since T ∗ requires, at best, half the leaf
deletions of T ′, the result follows. Note that finding a non-trivial upper bound on
ASTLR(T ) is open.
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4 Fixed-Parameter Tractability of AST-LR and AST-LR-d

An alternative way to deal with computational hardness is parameterized com-
plexity. In this section, we first show that AST-LR is fixed-parameter-tractable
with respect to q := ASTLR(T ). More precisely, we show that AST-LR can be
solved in O(12qtn3) time, where n := |X |. We then consider an alternative para-
meter d, and show that finding a tree T ∗, if it exists, such that dLR(Ti, T

∗) ≤ d
for every input tree Ti, can be done in O(cdd3d(n3 + tn log n)) time for some
constant c.

4.1 Parameterization by q

The principle of the algorithm is the following. It is known that a set of trees T =
{T1, . . . , Tt} is compatible if and only if the union of their triplet decomposition
tr(T ) =

⋃
Ti∈T tr(Ti) is compatible [3]. In a step-by-step fashion, we identify

a conflicting set of triplets in tr(T ), each time branching into the (bounded)
possible leaf-removals that can resolve the conflict. We stop when either tr(T ) is
compatible after the performed leaf-removals, or when more than q leaves were
deleted.

We employ a two-phase strategy. In the first phase, we eliminate direct con-
flicts in tr(T ), i.e. if at least two of ab|c, ac|b and bc|a appear in tr(T ), then
we recursively branch into the three ways of choosing one of the 3 triplets, and
remove one leaf in each Ti disagreeing with the chosen triplet (we branch into
the three possible choices, either removing a, b or c). The chosen triplet is locked
in tr(T ) and cannot be changed later.

When the first phase is completed, there are no direct conflicts and tr(T )
consists of a full set of triplets on X . That is, for each distinct a, b, c ∈ X , tr(T )
contains exactly one triplet on label set {a, b, c}. Now, a full set of triplets is
not necessarily compatible, and so in the second phase we modify tr(T ), again
deleting leaves, in order to make it compatible. Only the triplets that have
not been locked previously can be modified. This second phase is analogous to
the FPT algorithm for dense MinRTI presented in [11]. The dense MinRTI is a
variant of the MinRTI problem, introduced in Sect. 3, in which the input is a full
set of triplets and one has to decide whether p triplets can be deleted to attain
compatibility.

Theorem 6 ([11]). A full set of triplets R is compatible if and only if for any
set of four labels {a, b, c, d}, R does not contain the subset {ab|c, cd|b, bd|a} nor
the subset {ab|c, cd|b, ad|b}.

One can check, through an exhaustive enumeration of the possibilities, that
given a conflicting set of triplets R1, R2, R3 where R1 = ab|c,R2 = cd|b,R3 ∈
{bd|a, ad|b}, any tree on a set X containing {a, b, c, d} must have at least one
of the following triplets: (1) bc|a; (2) ac|b; (3) bd|c; (4) ab|d. Note that each of
these conflicts with one of R1, R2, R3. This leads to a O(4pn3) algorithm for
solving dense MinRTI: find a conflicting set of four labels, and branch on the
four possibilities, locking the selected triplet each time.
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For the second phase of AST-LR, we propose a slight variation of this algo-
rithm. Each time a triplet R is chosen and locked, say R = ab|c, the trees
containing ac|b or bc|a must lose a, b or c. We branch into these three possibil-
ities. Thus for each conflicting 4-set, there are four ways of choosing a triplet,
then for each such choice, three possible leaves to delete from a tree. This gives
12 choices to branch into recursively. Algorithm 1 summarises the procedure and
its analysis yields the following.

Theorem 7. AST-LR can be solved in time O(12qtn3).

Data: T is the set of input trees, q is the maximum number of leaves to delete,
F is the set of locked triplets so far.

if q < 0 or F contains conflicting triplets then
return False;

else if there are ab|c ∈ F and Ti ∈ T with ac|b ∈ tr(Ti) or bc|a ∈ tr(Ti) then
Branching: If one of the following calls returns True:
mastrl((T \ {Ti}) ∪ {Ti − {a}}, q − 1, F ) ; /* remove a from Ti */

mastrl((T \ {Ti}) ∪ {Ti − {b}}, q − 1, F ) ; /* remove b from Ti */

mastrl((T \ {Ti}) ∪ {Ti − {c}}, q − 1, F ) ; /* remove c from Ti */

then return True, otherwise return False;

else if there are a, b, c ∈ X such that |{ab|c, ac|b, bc|a} ∩ tr(T )| ≥ 2 then
Branching: If one of the following calls returns True:
mastrl(T , q, F ∪ {ab|c})
mastrl(T , q, F ∪ {ac|b})
mastrl(T , q, F ∪ {bc|a})
then return True, otherwise return False;

else if there is a conflicting set {a, b, c, d} in tr(T ) ∪ F then
Branching: If one of the following calls returns True:
mastrl(T , q, F ∪ {ac|b})
mastrl(T , q, F ∪ {bc|a})
mastrl(T , q, F ∪ {bd|c})
mastrl(T , q, F ∪ {ab|d})
then return True, otherwise return False;

else
return True ; /* There are no conflicts ⇒ tr(T ) ∪ F is compatible

*/
end

Algorithm 1. mastrl(T , q, F ) — Recursive AST-LR FPT algorithm.

Although Theorem 7 is theoretically interesting as it shows that AST-LR is in
FPT with respect to q, the 12q factor might be too high for practical purposes,
motivating the alternative approach below.

4.2 Parameterization by Maximum Distance d

We now describe an algorithm for the AST-LR-d problem, running in time
O(cdd3d(n3 + tn log n)) that, if it exists, finds a solution (where here c is a
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constant not depending on d nor n). We employ a branch-and-bound strategy.
Taking T = T1 as our initial solution, we transform a candidate solution T until
we have dLR(T, Ti) ≤ d for every input tree Ti.

The type of transformations we use are leaf prune-and-regraft (LPR) moves,
which provide another way of characterising the distance function dLR. Infor-
mally speaking, an LPR move prunes a leaf from a tree and then regrafts it
another location. We now give a more formal definition:

Definition 8. Let T be a tree on label set X . An LPR move on T is a pair (�, e)
where � ∈ X and e ∈ {E(T − {�}),⊥}. Applying (�, e) consists of grafting � on
the e edge of T − {�} if e �=⊥, and above T − {�} if e =⊥.

An LPR sequence L = ((�1, e1), . . . , (�k, ek)) is an ordered tuple of LPR
moves, where for each i ∈ [k], (�i, ei) is an LPR move on the tree obtained after
applying the first i − 1 LPR moves of L.

Lemma 9. Given two trees T1 and T2 on label set X , there is a subset X ⊆ X
such that T1 − X = T2 − X if and only if there exists an LPR sequence
((x1, e1), . . . , (xk, ek)) turning T1 into T2 such that X = {x1, . . . , xk}. Fur-
thermore, if such a sequence exists then for each i ∈ [k], there also exists
an LPR sequence L′ = ((x′

1, e
′
1), . . . , (x

′
k, e

′
k)) turning T1 into T2 such that

X = {x′
1, . . . , x

′
k} and x′

1 = xi.

Lemma 9 implies that in order for our algorithm to find a solution, it is
enough to choose the correct LPR move on T at each stage. In order to get the
desired running time, we need to bound the number of possible transformations
to try on T .

This can be done as follows. Given a tree Ti with dLR(T, Ti) > d, let us
call a leaf x interesting if there is a solution T ∗, and minimal sets X ′,Xi ⊆ X
of size at most d, such that (a) T − X ′ = T ∗ − X ′, (b) Ti − Xi = T ∗ − Xi,
(c) x ∈ X ′ \ Xi. (Roughly speaking, x is in the ‘wrong place’ in T but not Ti.)

The following lemma shows that if a solution T ∗ exists, then T ∗ can always
be reached by moving an interesting leaf at each stage.

Lemma 10. Suppose that d < dLR(T1, T2) ≤ d′ + d with d′ ≤ d, and that
there is a tree T ∗ and subsets X1,X2 ⊆ X such that T1 − X1 = T ∗ − X1,
T2 − X2 = T ∗ − X2 and |X1| ≤ d′, |X2| ≤ d. Then, there is a minimal label-
disagreement X for {T1, T2} with |X| ≤ d + d′, and there exists x ∈ X such that
x ∈ X1 \ X2.

Moreover, we can in polynomial time construct a set S of size O(d2) contain-
ing all interesting leaves:

Lemma 11. Suppose that dLR(T1, T2) ≤ d for some integer d. Then, there is
some S ⊆ X such that |S| ≤ 8d2, and for any minimal label-disagreement X for
{T1, T2} with |X| ≤ d, X ⊆ S. Moreover S can be found in time O(n2).

The idea behind the proof of Lemma 11 is as follows: In polynomial time, we
can find a set X ′ ⊆ X for which T1−X ′ = T2−X ′. Letting X1 and X2 be disjoint
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copies of X, it is easy to construct a tree TJ with label set (X \ X ′) ∪ X1 ∪ X2,
such that TJ − X2 = T1 and TJ − X1 = T2. Such a tree therefore represents the
structure of T1 and T2 at the same time. Moreover, by letting T ∗ be the subtree
of TJ spanning X1 ∪ X2, we have that TJ can be derived from T ∗ by grafting
trees (on subsets of X \ X ′) onto edges of TJ . We call these subtrees dangling
clades.

It can be shown that for any dangling clade, any minimal label-disagreement
for {T1, T2} either contains all labels from that clade or contains none of them.
Moreover, if there are multiple dangling clades grafted onto the same edge of
T ∗, then a minimal label-disagreement for {T1, T2} either contains the labels of
every such dangling clade, or every such dangling clade except one, or none of
them.

As a result, we can construct our set S by taking X ′ together with any
combination of clades as described above that has total size at most d. It can be
shown that S in fact has at most 2d labels for each edge of T ∗, and as T ∗ has
O(d) edges, we get the desired bound on |S|.

The last ingredient needed for Theorem 13 is Lemma 12, which shows that
if a leaf x of T1 as described in Lemma 10 has to be moved, then there are not
too many ways to regraft it in order to get closer to T ∗. This gives us a bound of
O(d3) on the number of branches at each step of our search tree, which in turn
implies that there are at most O(cdd3d) steps.

Lemma 12. Suppose that d < dLR(T1, T2) ≤ d′ + d with d′ ≤ d, and that there
are X1,X2 ⊆ X , and a tree T ∗ such that T1 − X1 = T ∗ − X1, T2 − X2 =
T ∗ −X2, |X1| ≤ d′, |X2| ≤ d, and let x ∈ X1 \X2. Then, there is a set P of trees
on label set X that satisfies the following conditions:

– for any tree T ′ such that dLR(T ′, T ∗) < dLR(T1, T
∗) and T ′ can be obtained

from T1 by pruning a leaf x and regrafting it, T ′ ∈ P ;
– |P | ≤ 18(d + d′) + 8;
– P can be found in time O(n(log n + 18(d + d′) + 8)).

The idea behind the proof of Lemma 12 is as follows: by looking at a subtree
common to T1 and T2, we can identify the location that T2 “wants” x to be
positioned. This may not be the correct position for x, but we can show that if x
is moved too far from this position, we will create a large number of conflicting
triplets between T2 and the solution T ∗. As a result, we can create all trees in
P by removing x from T1 and grafting it on one of a limited number of edges.

Putting everything together, we have the procedure outlined in Algorithm 2.
(In this algorithm, the subroutines disagreement-kernel and candidate-
trees refer to the algorithms described in Lemmas 11 and 12, respectively.)
Analysing this algorithm gives the desired running time.

Theorem 13. AST-LR-d can be solved in time O(cdd3d(n3 + tn log n)), where c
is a constant not depending on d or n.
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Data: T is the set of input trees (represented as a sequence to distinguish
T1 from the other trees), d is the maximum number of leaves we
can remove in a tree, d′ is the maximum number of leaves we can
move in T1, which should be initially set to d.

if dLR(T1, Ti) ≤ d for each Ti ∈ T then
return T1;

else if there is some Ti ∈ T such that dLR(T1, Ti) > d′ + d then
return False ; /* handles the d′ ≤ 0 case */

else
/* Here we ‘guess’ a leaf prune-and-regraft move on T1 */
Choose Ti ∈ T such that dLR(T1, Ti) > d;
Set S = disagreement-kernel(d + d′, T1, Ti);
for x ∈ S do

/* We are ‘guessing’ that x should go where Ti wants
it. */

Set P = candidate-trees(T1, Ti, x, d, d′);
T ∗ = False;
for T ∈ P do

T ′ = mastrl−distance((T, T2, . . . , Tt), d, d′ − 1);
If T ′ is not False, let T ∗ := T ′;

end
return T ∗;

end
end

Algorithm 2. mastrl−distance(T = (T1, T2, . . . , Tt), d, d′) — FPT
algorithm for parameter d.

5 Conclusion

To conclude, we introduced a new supertree/consensus problem, based on a
simple combinatorial operator acting on trees, the Leaf-Removal. We showed
that, although this supertree problem is NP-hard, it admits interesting tractabil-
ity results, that compare well with existing algorithms. Future research should
explore if various simple combinatorial operators, that individually define rela-
tively tractable supertree problems (for example LR and EC) can be combined
into a unified supertree problem while maintaining approximability and fixed-
parameter tractability.
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Abstract. An independent set is a set of nodes in a graph such that no
two of them are adjacent. It is maximal if there is no node outside the
independent set that may join it. Listing maximal independent sets in
graphs can be applied, for example, to sample nodes belonging to differ-
ent communities or clusters in network analysis and document clustering.
The problem has a rich history as it is related to maximal cliques, dom-
inance sets, vertex covers and 3-colorings in graphs. We are interested
in reducing the delay, which is the worst-case time between any two
consecutively output solutions, and the memory footprint, which is the
additional working space behind the read-only input graph.

1 Introduction

Given an undirected graph G = (V,E) with |V | = n nodes and |E| = m edges, a
maximal independent set (MIS) I ⊆ V does not contain any two nodes connected
by an edge, and is maximal under inclusion (no other I ′ ⊃ I has this property).
We pose the question whether listing MISs can be achieved efficiently in small
space and bounded delay.

Although this problem originated in graph theory, as MISs are related to
dominance sets, vertex covers and 3-colorings in graphs, we observe that data
is networked in information systems nowadays. The classical problem of looking
at patterns in texts or sequences, or trees, can be translated into graphs.1 Here
the patterns are MISs, which can be seen as a way to build samples that are
independent from each other, thus motivating the question.

One possible field of application is in networks analysis, such as social science,
where a MIS identifies a group of persons from a tightly connected community

Work partially supported by University of Pisa under PRA 2017 44 project on
Advanced Computational Methodologies for the Analysis of Biomedical Data.

1 The algorithmic techniques are different, and even the simple query asking if a path
occurs in a graph is NP-hard. Nevertheless, discovering patterns in sequences and
patterns in graphs are quite similar tasks, and can share techniques in some cases.
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Fig. 1. Structure of the solution space defined by reverse search (left) and the solution
tree defined by a parent function (right).

that are isolated from each other, or can be used as sample for communities,
where each node of the MIS is a person from a different community.

MISs are a powerful tool for clustering: they can be used for clustering docu-
ment collections (where two documents are linked if their content is similar), by
using a MIS as a collection of starting points for the chosen clustering method or
for clustering wireless networks to identify hierarchical structures [2]. Moreover,
they are often used to build efficient indexes for answering shortest path or dis-
tance queries (see for instance [12]). MISs are applied for clustering purposes also
in image segmentation, that aims at grouping image pixels into visually “mean-
ingful” segments. In this case, the goal is to select the segments of an image that
are distinct, and together partition the image area. In a graph where segments
are nodes and edges correspond to the overlap of the segments, all the maximal
independent sets correspond to all the non-overlapping segment partitions. [3]
studied the maximum weighted independent set (MWIS) to get the maximally
distinctive partitions by encoding a distinctiveness scoring of the segments into
the nodes weights. This approach was also extended to clustering aggregation in
general [15]. [21] modeled co-occurrences of words and documents in the web as
a graph, and used MWIS’s in this graph to find sets of important but distinct
(i.e., rarely co-occurring) topics. However, the MWIS problem is NP-hard and
hard to approximate. Listing all the MISs can also provide an exact solution for
the latter problem, eventually testing different distinctiveness scoring systems.

Our Results. In this paper we describe an algorithm that lists all the MISs with
Õ(min{ndΔ2,mn}) delay—the Õ notation ignores polylog factors—and O(s)
additional space, using the following parameters: d is the graph’s degeneracy,
that is, the minimum value d for which any induced subgraph has maximum
node degree at most d; Δ is the maximum node degree; s is the maximum size of
a MIS. We assume that the input graph is read-only, and the space complexity
is the additional working space.

As it can be seen, the additional space is asymptotically minimal, and
the delay can be as low as Õ(n) (if d and Δ are Õ(1)), but never larger
than the baseline of O(nm) (ignoring logarithmic factors) given by Tskuiyama
et al. [23]. We further reduce our time bound by providing a second algorithm
with Õ(min{dΔn,mn}) delay which increases the memory requirement to O(n):
this simultaneously improves both best known bounds for delay and space as dΔ
is a pessimistic upper bound on the cost, which is smaller than m in practice.
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Related Work. Listing MISs is a classical problem in enumeration which dates
back at least to the 70s, with many results such as producing MISs in lexico-
graphical order [16], experimentally or with guarantees [13], achieving O(n3)
delay but using exponential space. Some results have been also proposed for
particular classes of graphs: claw-free graphs [18], interval graphs, circular-arc
graphs and chordal graphs [14,19,20], trees [14], permutation graphs [25].

In general, listing the MISs of a graph G is equivalent to listing the max-
imal cliques of its complement G = (V,E). However improved algorithms for
maximal cliques, such as the space efficient solution that we presented in [9],2

do not translate into improved bounds for listing MISs: the transformation from
MISs to maximal cliques is not effective, especially in sparse graphs which have
a dense complementary graph, but even in dense graphs, since their complemen-
tary graph can be dense too. These techniques mainly fall in the backtracking
approach, as for [4], or in the reverse search paradigm introduced by [1].

In the former case, these approaches are not output sensitive for both cliques
and MISs, in the sense that their guarantee on the running time is not related
to the number of solutions. In the relatively recent work by Eppstein et al. [10]
for cliques, the overall time O(dn3d/3) becomes O(n2 · 3n/3) to list all the MISs,
as the degeneracy d can be Θ(n) in the complementary graph, while the delay
remains exponential, as in the case of the algorithm in [22]. Moreover, the space
usage, without storing the transformed graph, becomes O(ns) for [22] and O(n2)
for [10]. On the other hand, while adapting the reverse search for maximal cliques
to MISs, the algorithms by Chiba and Nishizeki [6], by Makino and Uno [17]
and Chang et al. [5] require O(n2 − m) space: recalling that arboricity, max-
imum degree, and degeneracy of the complementary graph can be linear, the
delay bound becomes O(n(n2 − m)) for [6], and O(n4) for [5,17]. Moreover, as
shown next in Remark 1, the delay bound in [9] becomes Õ(nm), which does
not improve upon Tskuiyama et al. [23].

Also, since MISs can be considered a hereditary property or independence
set system, they can be listed using the framework of Cohen et al. [7] but the
resulting bounds still do not improve over those of [23]. For these reasons ad
hoc algorithms for cliques and MISs have been proposed separately in the lit-
erature, and the best output sensitive bounds for MISs are O(nm) delay with
O(n2) space [23], or O(n2.37) delay with O(n2) space by using matrix multipli-
cation [17], or O(n2.09) delay with O(n4.27) space [8].

Our Approach. The algorithmic challenges addressed here are related to the
reverse search, which is a powerful enumeration technique introduced by Avis
and Fukuda [1]. Consider the graph-like structure shown in Fig. 1 (left), which we
call the solution digraph: each “cloud”, or node, corresponds to a distinct MIS,
and an arrow from MIS Ii to MIS Ij with label v means that Ij can be computed
from Ii through a node v, using a rule that is specific for the algorithm at hand.
As in other techniques, such as divide and conquer, the algorithmic contribution
is the efficient implementation of the generic step, for the problem at hand.

2 This paper has been organized so as to highlight the novelties with respect to [9].
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To list all the MISs, we use the rule to traverse the solution digraph and
output each node/solution once. An easy way to do so is to keep track of all
visited nodes. Even though such methods have been used, e.g. in [13], they are
expensive as they require exponential memory. Reverse search avoids this issue
by choosing a single parent Ii for each MIS Ij , such that Ii < Ij for some given
order (such as the lexicographic one), among all MISs leading to Ij . This way
it induces a directed spanning forest on the solution digraph, as illustrated in
Fig. 1 (right). Some MISs have no parent and are the roots of the spanning forest.
Note that the solution digraph and directed spanning forest are for the purpose
of explanation and never materialized. The roots can be easily identified and are
at most n.

Traversing the solution digraph can be implicitly done by performing a DFS:
each time we explore the possible children solutions and recur in just the ones
whose parent is the current solution, following [17]. This visit can be made
iterative, by avoiding the stack of the recursion. We can restore the state of
the parent when returning from the call to a child. This strategy is particularly
useful if we want to achieve sublinear additional memory, since we avoid using
memory proportional to the height of the recursion tree, where a single bit per
recursion level is too much. Here the techniques in [9] for maximal cliques do not
translate smoothly into improved bounds for MISs, as discussed in Remark 1.

The complexity of the reverse search is dominated by the cost of applying
the rule to the current MIS in the directed spanning forest. Computing the
rule is expensive as the time spent checking not fruitful candidate children is
completely charged on the delay of the algorithm. Thus we introduce a novel
technique that allows us to apply the rule only to the children, rather than to
all the out-neighbors in the solution digraph. We check a necessary condition,
which is lighter to compute than the rule, so that the rule is actually applied to
selected out-neighbors. During this task, we use a small amount of space.

2 Preliminaries

Let G = (V,E) be an undirected and connected graph, represented as adjacency
lists. In this work, we will use the following notation: N(x) is the neighborhood
of node x, and N(x) = V \ (N(x) ∪ {x}) the complementary-neighborhood; for
a set of nodes A, N(A) =

⋂
x∈A N(x) (and we consider N(∅) = V ).

We assume the nodes labeled as v1 < v2 < · · · < vn, in a reversed degeneracy
ordering, i.e., so that vn < vn−1 < · · · < v1 is a degeneracy ordering (see,
e.g. [11]). It is easy to see that this ordering can be obtained with O(1) additional
space if it is not given.

We define V<vi
as {v1, v2, . . . , vi−1}. Given a set of nodes A, we then define

A<vi
as respectively A∩V<vi

; for brevity, let N<vi
(vi) be N<(vi). V>vi

, A>vi
and

N>(vi) are similarly defined. Note that in a degeneracy ordering |N>(v)| ≤ d,
so as we are using a reversed degeneracy ordering, we have |N<(v)| ≤ d.
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Given an independent set I and a vertex v ∈ V \ I, we denote as I ′
v the set

I<v ∩ N(v).
Given any two independent sets Ii and Ij , we say that Ii < Ij if Ii is lexico-

graphically smaller than Ij as node sets, thus inducing a lexicographic order on
the independent sets. Given an independent set I ⊆ V , complete(I) is defined
as the lexicographically smallest MIS that contains I, and can be computed by
iteratively adding the smallest element that can be added to I, obtaining the
following lemma.

Lemma 1. complete(I) can be computed in Õ(m) time.

3 Listing MISs

Given an independent set I and a node v ∈ V \ I such that I<v 	= ∅, formula (1)
generates a new maximal independent set.

F (I, v) = complete(I ′
<v ∪ {v}) (1)

In the solution digraph illustrated in Fig. 1, there is an arrow Ii → Ij labeled
with v if and only if Ij = F (Ii, v). The parent-child relationship, which defines
the directed spanning forest, is as follows.

parent(I) = complete(I<pi(I)) (2)

where pi(I), the parent index of I, is the smallest element v ∈ I for which
complete(I≤v) = I. Note that if Ii = parent(Ij) and v = pi(Ij), then Ii, Ij , v
satisfy formula (1).

The roots, which have no parent, can be found as complete({v}), for any
v ∈ V such that min{complete({v})} = v; the number of roots is at most n.

During the traversal of the solution digraph, in the current MIS Ij we com-
pute its parent Ii and the parent index v, thus restoring the state of the traversal
when returning from the call to Ij . Keeping this in mind, the delay per listed
MIS is bounded by the maximum amount of time spent in the current MIS, say
I, observing that this time is intermixed with the calls to its children.

The delay can be bounded by the cost of (i) computing I from its parent using
formula (1); (ii) checking each candidate child to see if a call with formula (1)
should be applied; finally (iii) if I is not a root, restoring the state to parent of
I using formula (2). Indeed, once we get the costs (i)–(iii), we can employ the
well-known alternative output technique in [24], so that the delay is bounded
by the costs (i)–(iii) times a constant. We recall that in the alternative output
technique, when the level (i.e. the distance from the root) is odd the output is
done before exploring the children, otherwise it is done soon after.
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In the rest of the paper we give the details for our new two algorithms for
listing MISs using the above notions. The first algorithm is presented in Sect. 4
and achieves O(s) additional memory and Õ(min{dΔ2n,mn}) delay. The second
algorithm is presented in Sect. 5 and reduces the delay to Õ(min{dΔn,mn}),
albeit using O(n) space.

One of the core ideas for both algorithms is the efficient computation of the
test in point (ii) above. For the sake of simplicity, this behavior is encapsulated
by the function child-exists, which is executed for each possible candidate.
Our algorithms minimize the space usage by implementing some efficient implicit
iterators that avoid building sets explicitly. For instance, the set I ′

v = I<v ∩N(v)
in formula (1) is never materialized, as its explicit computation is expensive both
in terms of time and space.

Remark 1. Using the above ideas, a listing algorithm for MISs can be immedi-
ately obtained by adapting those for maximal cliques in [9] to MISs, using them
on the complementary graph G explicitly (see Sect. 1) or implicitly by using the
complementary neighborhood N() in place of the neighborhood N() whenever
the latter is needed. We refer to the resulting algorithm to list the MISs using
this simple modification of [9] as base. This is shown in Algorithm 1 and uses
the implementation of function child-exists provided by Algorithm 2.

We further remark that some important optimizations in [9] for cliques are
not useful as they do not bring any benefit for base. Indeed, while in [9] we have
|N>(x)| ≤ d thanks to the degeneracy ordering and |N(x)| ≤ Δ, these bounds
do not hold for complementary neighborhoods. Hence, the improvements done
to check the existence of a child (see Algorithm 2 in [9]) does not improve upon
the basic child conditions of Makino-Uno based approach [17], which is reported
in Algorithm 2 (see also Algorithm 1 in [9]). Indeed, one of the most important
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benefit of [9] was the speed up and the memory improvements of this function
thanks to the definition of BK (see Algorithm 2 in [9]), which can be stored
in a O(d) and allows to discard candidates. In the case of MISs, dealing with
BK can be costly, as its size can be Θ(n) for a generic K in G. For this reason
we need to use a more basic check and the function child-exists is replaced
with the equivalent, more basic check used in Algorithm 1 in [9]. As a result,
unfortunately, base has no benefit as shown next. The size of the cand set
increases to Θ(n), thus the cost per solution, that is the cost of a recursive call, is
bounded by n times the cost of a complete call. As the cost of complete takes
Õ(m) (as shown in Lemma 1), this gives us a total time cost per solution Õ(nm)
which does not improve upon the one by Tsukiyama et al [23] (its additional
space usage is O(n)).

In the following, in order to bound our costs, we will use the lemma below.

Lemma 2. pi(I) and parent(I) can be computed in Õ(m) time.

Proof. Given a MIS I, with x = pi(I), we have parent(I) = complete(I<x).
Furthermore, we know that complete(I<y) is equal to I iff y > x. Thus by
computing complete(I<y) we know whether y is larger than x or not. We can
thus look for x in a binary search-like fashion. We can thus find x by performing
O(log |I|) times a complete call, to then compute complete(I<x). The cost
follows. ��

4 Using Minimal Space O(s)

In this section we present our first algorithm, whose focus is minimizing the
additional memory: the algorithm will only store O(s) information on top of
the input graph while keeping the performance competitive with state of the
art approaches. This algorithm aims at improving the cost of child-exists of
Algorithm 2 using O(s) space. The improvements are due to two factors.

On one hand we identify stricter theoretical conditions to determine whether
child-exists will succeed or not, which are used in place of child-exists;
Lemmas 3 and 4 prove the correctness of these conditions, allowing us to prove
the equivalence of Algorithms 2 and 3 in Lemma 5.

On the other hand, we provide non-trivial techniques which allow us to com-
pute our theoretical conditions quickly and using only O(s) additional space: in
detail, we provide fast implicit iterators for sets which are too costly to compute,
and simulate the behavior of complete, stopping it prematurely when suitable
conditions are met.
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Lemma 3. complete(I ′
v ∪{v})<v = I ′

v is equivalent to min{N(I ′
v ∪{v})} > v.

Proof. Recalling its definition (see Sect. 2), we know that complete (I) adds
nodes to I in increasing order: indeed, at a given step we select the smallest
node x in N(I) and add it to I; in the following step N(I) will shrink because
we added x to I, and its minimum cannot be smaller than (or equal to) x.

Let y be the first node selected by complete(I ′
v ∪ {v}), that is, y =

min{N(I ′
v ∪ {v})}. If y < v, then complete(I ′

v ∪ {v})<v 	= I ′
v as the earlier set

contains y while the latter does not. Otherwise, if y > v all other nodes selected
by the complete function will too be greater than v; since I ′

v = I<v ∩ N(v) we
thus have complete(I ′

v ∪ {v})<v = I ′
v. ��

Lemma 4. If v > pi(I), Algorithm 3 line 7 returns true iff complete(I ′
v) = I.

Proof. Lines 4–7 of Algorithm 3 correspond to simulating complete(I ′
v) until

the node x that is selected to be added to I ′
v is not in I<v. Then two cases are

possible: either x 	∈ I>v or x ∈ I>v. In the first case, complete(I ′
v) 	= I since

x ∈ complete(I ′
v) and x 	∈ I, so Algorithm 3 returns false. Otherwise, if x ∈ I>v

we show that all nodes in I<v that were not in I ′
v have been added to it: since

I is an independent set, whose nodes are not adjacent to each other, any node
in I<v \ I ′

v must be in N(I ′
v). As so far we only added nodes in I<v \ I ′

v (line 6),
any other node in I<v that was in N(I ′

v), and was not added to I ′
v, is still in it.

However, we have that x = min{N(I ′
v)} > v, thus all and only nodes in I<v \ I ′

v

have been added to I ′
v, making the set equal to I<v. As complete(I<v) = I, it

must be that complete(I ′
v) = I thus the algorithm returns true. ��

We show that, as a result of Lemmas 3 and 4, we can conclude the following.

Lemma 5. child-exists-ms in Algorithm 3 can be used in place of child-
exists in base.

Proof. By Lemma 3 we have that child-exists-ms will return false on line 2
iff complete(I ′

v ∪ {v})<v 	= I ′
v. Otherwise, by Lemma 4, child-exists-ms will

return true if complete(I ′
v) = I, and false otherwise. Thus child-exists-ms

will return the same result as child-exists. ��
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Space and Time Cost of Algorithm 3
In the following we provide space and time bounds for Algorithm 3, by firstly

fixing some useful properties in Lemmas 6, 7, and 8.
Notice that I<v \I ′

v = N<(v)∩I<v. Since N(I ′
v ∪{v}) ⊆ N(I ′

v), if there exists
a node x ∈ N(I ′

v ∪ {v}) smaller than v, then x satisfies the properties shown in
Lemma 6. We show that this lemma follows from the definition of parent index
and it is useful to efficiently perform the computation in line 2 in Algorithm 3.

Lemma 6. Let I be a MIS, and v a node s.t. v 	∈ I and v > pi(I). Then
N(I<v)<v = ∅, and for each node x in N(I ′

v)<v we have that either x is in
I ∩ N<(v) or x has a neighbor in I ∩ N<(v).

Proof. Since v 	∈ I and v > pi(I), we have that complete(I<v) = I by definition
of pi. If N(I<v) does contain a node x smaller than v, we could use one of such
nodes to extend I<v and we would have complete(I<v) 	= I, a contradiction.

Consider now N(I ′
v)<v: As I ′

v ⊆ I<v, we have N(I ′
v)<v ⊇ N(I<v)<v. Since

N(I<v)<v = ∅, however, we have ∀x ∈ N(I ′
v)<v, x 	∈ N(I<v), thus either x is in

I<v has a neighbor in it by definition of N(). As x ∈ N(I ′
v)<v, if x is in I<v, it

is actually in I<v \ I ′
v ⊆ N<(v). The statement follows. ��

Hence, we have to verify the conditions of Lemma 6 for the nodes x ∈ N(I ′
v ∪

{v}). However, it is worth noting that the cost of storing N(I ′
v ∪ {v}) is O(n)

which exceeds our memory requirements. To overcome this issue, we show in the
following lemma how to build a heap-based iterator, that iterates over N(I ′

v∪{v})
without computing it.

Lemma 7. Let X ⊆ V be a set of nodes and Y =
⋃

x∈X N(x). We can iter-
ate over every y ∈ Y in increasing order (without explicitly storing Y ) in
Õ(min{|X|Δ,m}) time using O(|X|) additional space.

Proof. Allocate a heap and add to it, for each node x in X, its smallest neighbor
y (saving the x responsible for its addition). We can use this heap to iterate in
order all nodes with a neighbor in X as follows: iteratively remove the minimum
element y of the heap, recover the node x responsible for the addition of y,
and insert in the heap the smallest neighbor of x larger than y. This way the
smallest neighbor that we did not extract yet will always be on top of the heap.
It is possible that the same node is extracted more than once; however we can
trivially ignore duplicates as they appear contiguously, since nodes are extracted
in increasing order. Adding/removing an element to/from the heap costs Õ(1),
so the total cost is bounded by Õ(1) times the sum of all degrees of nodes in X,
that is Õ(min{|X|Δ,m}). ��

By Lemma 6, to answer the check at line 2, we can consider nodes y belonging
to I ∩ N<(v) or N(I ∩ N<(v)). In particular, for each of them, we will have to
check that y 	∈ N(v) and N(y)∩I ′

v 	= ∅. To this aim, we use the following lemma.

Lemma 8. Let I be a MIS, v 	∈ I a node such that v > pi(I), and y any node.
We have N(y) ∩ I ′

v 	= ∅ iff there exists z ∈ N(y) such that z < v and z ∈
I and z 	∈ N<(v).



Listing Maximal Independent Sets with Minimal Space and Bounded Delay 153

Proof. Recall that I ′
v = I<v ∩ N(v) = I<v \ N<(v), so all and only nodes in I ′

v

are smaller than v, in I, and not in N<(v). As N(y) ∩ I ′
v 	= ∅ iff any node in

N(y) is in I ′
v, and z ∈ I ′

v iff (z < v and z ∈ I and z 	∈ N<(v)) the statement
follows. ��

We are now ready to prove the overall cost of Algorithm 3.

Lemma 9. child-exists-ms can be computed in Õ(min{dΔ2,m}) time with
O(s) space.

Proof. Consider line 2: since N(I ′
v ∪{v}) ⊆ N(I ′

v), by Lemma 6, if there exists a
node x ∈ N(I ′

v ∪{v}) smaller than v, then x is a neighbor of a node in I ∩N<(v)
(note that x cannot be in I ∩ N<(v) since it is in N(I ′

v ∪ {v})). Thus, instead of
computing I ′

v and its complementary-neighborhood, we iterate over node y which
has a neighbor in the set X = I ∩N<(v) using Lemma 7. For each y, we have to
check that y 	∈ N(v) and N(y)∩ I ′

v 	= ∅; for this latter check we use Lemma 8. If
any y fails the check, then we return false, otherwise N(I ′

v ∪ {v})<v = ∅ and we
can continue. We have |I∩N<(v)| ≤ d (due to the reversed degeneracy ordering),
thus the neighbors y that we have to test can be at most dΔ. It follows that the
iteration will cost Õ(min{dΔ,m}) time by Lemma 7. Furthermore, testing each
node y as in Lemma 8 takes Õ(|N(y)|) time as we can perform binary searches
on I, thus the total cost of testing is bounded by Õ(min{dΔ2,m}).

Consider now lines 4–7: Again, using Lemma 6 we know that all nodes x ∈
N(I ′

v)<v are either in I ∩ N<(v), or have a neighbor in it. We can rewrite this
condition as: x has a neighbor in X ′ = (I ∩ N<(v)) ∪ {v}.

In order to compute x in line 5, since N(A)<v ⊆ N(I ′
v)<v, we use Lemma 7 to

iterate over all the neighbors of nodes in X ′; this iteration will yield in increasing
order all nodes at any point in N(A)<v. We actually do not store A, but only the
nodes that are added to A during the while, which we will here call A′. Thus to
check that a node x belongs to N(A), we check N(x)∩I ′

v = ∅ and N(x)∩A′ = ∅;
the earlier part can be done with Lemma 8, while the latter in Õ(A′) time by
using binary searches.

Once we found x = min{N(A)<v}, if it passes the check on line 6 we add it
to A and repeat the loop, otherwise we return the result of the check.

Note that, as we are only iterating over N(I ′
v)<v, we will not find among them

any node in I>v. However, this is easily fixed by saving the node min{I>v}: if at
any point we have x > min I>v, or we finish the iteration on X ′, we return true
since in both cases the candidate to be added to A would have been min{I>v}.

As |X ′| ≤ min{d + 1, s}, and the number of nodes with a neighbor in X are
bounded by O(min{dΔ, n}), similarly to above we can bound the cost of the iter-
ation with Õ(min{dΔ,m}), and the total cost of testing with Õ(min{dΔ2,m}).
Furthermore, note that the condition in line 6 can only succeed up to min{d, s}
times, as each time x is in I<v \ I ′

v, and |I<v \ I ′
v| = |I ∩ N<(v)| ≤ min{d, s};

this means that |A′| ≤ min{d, s}.
Thus the total cost of child-exists-ms is Õ(min{dΔ2,m}), using additional

space O(|X| + |X ′| + |A′|) = O(min{d, s}) by Lemma 7. ��
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By using Lemma 9, we are now able to prove the following result.

Theorem 1. There exists an algorithm that enumerates all maximal indepen-
dent sets with Õ(min{ndΔ2,mn}) delay and O(s) additional space.

Proof. By using the structure described in Sect. 3, we can create an algo-
rithm that enumerates all MISs (that is Algorithm 1 where child-exists is
replaced by child-exists-ms), that is complete and correct by Lemma 5.
Its delay is bounded by the costs of (i) the generation function F (I, v) =
complete((I<v∩N(v))∪{v}) (ii) testing each candidate with child-exists-ms,
and (iii) parent-state to return to the parent solution. These costs are
respectively (i) Õ(m) (as shown in Lemma 1), (ii) Õ(n · min{dΔ2,m}) as we
apply Lemma 9 to each of the O(n) candidates, and (iii) Õ(m) (as shown in
Lemma 2). Since m ≤ nΔ, this gives a total cost of Õ(m + min{ndΔ2,mn}) =
Õ(min{ndΔ2,mn}).

As we have no recursion stack, the additional space is simply storing I and v,
and the space required by child-exists-ms, that is O(s). ��

5 Faster Version Using O(n) Additional Memory

In this section, we propose a new algorithm which achieves a smaller time cost
per solution by exploiting properties of the search space and an additional data
structure of size O(n), which mainly stores the amount of neighbors in I<v of each
node in the graph. We use a function child-exists-fast which improves the
time cost of Algorithm 3, by constructing and maintaining this data structure.
This is fundamental to improve the running time since it allows us to reduce the
search space of the nodes considered by child-exists (and the corresponding
iterations), as just nodes with zero neighbors in I<v need to be considered. Since
v varies among all the possible candidates, even the ones not leading to a solution,
this data structure cannot be rebuilt from scratch each time I<v changes, but
needs to be properly updated and restored wherever possible. We will prove that
we can cover these costs.

For the sake of completeness, the final pseudo-code is shown in Algorithm 4.
The functions is-root and parent-state are the same as in base (see Algo-
rithm 1). We will now analyze the difference between base and Algorithm 4, to
show that they are equivalent, and that, hence, Algorithm 4 is correct.

The first difference we can notice is that we use a new function get-next-
cand with respect to the one in base. The new one is faster to compute, since
the sum of the costs of all the calls done with the same I takes just O(n) time
but returns a superset of the one of base. This fact increases the number of
candidate nodes to test but, on the other hand, testing them will be faster here
due to an improved version of child-exists (see Lemma 12).
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Lemma 10. We can use function get-next-cand of Algorithm 5 in place of
get-next-cand in base.

Proof. get-next-cand of Algorithm 5 iterates over (V \I)>v, while get-next-
cand in base iterates over {w ∈ ⋃

u∈I N(u) \ I : w > v}. As the latter is a
subset of the former, Algorithm 5 will iterate over all the candidates that will
lead to a child. Furthermore, nodes in (V \ I)>v are still greater than pi(I), thus
the conditions for child-exists are met, and the nodes that do not lead to a
child will fail the check. ��

Notice that the candidate set size is Θ(n), since a single complementary
neighborhood has size Θ(n). Another difference with respect to base, is that we
use function child-exists-fast instead of child-exists function to improve
its computational time. To this aim, we use an additional data structure ws
(for weights), which we keep suitably updated in order to satisfy the following
invariant.

Lemma 11. When child-exists-fast(I, v,ws) is called in Algorithm 4, for
each node i ∈ V , we have ws[i] = |N(i) ∩ I<v|.
Proof. We first remark that for any A,B s.t. A ∩ B = ∅, if ∀i ∈ V ws[i] =
|N(i)∩A| and we call update(ws, B) we obtain ∀i ∈ V ws[i] = |N(i)∩(A∪B)|.
To prove the lemma, it is thus sufficient to show that just before line 8 is executed,
∀i ∈ V ws[i] = |N(i) ∩ I<prev| (for the value of prev at that point).

Let us consider when ws was last modified when line 8 is executed: If this
is the first time that the while loop in line 7 is executed, then ws was last
modified in either lines 4, 13 or 20 by calling build(ws, I<v). Indeed, we have
∀i ∈ V ws[i] = |N(i) ∩ I<prev| by definition of build, as we set prev = v
in lines 3, 9, and 20 respectively, and prev remained unchanged until line 8.
Otherwise, note that child-exists-fast leaves ws unchanged (the changes at
Line 2 are canceled out by Line 11), thus ws was last modified by the previous
execution of line 8 in the while loop (line 7). We prove this case by induction:
Let us refer to the values of v and prev at line 8 in the j-th iteration of the loop
as vj and prevj . Assume that ∀i ∈ V ws[i] = |N(i) ∩ I<prevj

| was true at line 8
in the j-th iteration. As vj = prevj+1 (see line 9), after the line is executed, by
the remark at the beginning of the proof, we have ∀i ∈ V ws[i] = |N(i)∩I<vj

| =
|N(i) ∩ I<prevj+1 |. Since the condition is true for the first iteration, it is true for
any iteration, thus the statement holds in each case. ��

By Lemma 11, the hypothesis on the ws data structure in the following
lemmas are met, so that we can use the new child-exists-fast instead of
child-exists and child-exists-ms.

Lemma 12. Suppose that ws[x] = |I<v ∩ N(x)| for each x ∈ V . Then child-
exists-fast (I,v,ws) in Algorithm 5 can be used instead of child-exists (I,v)
and child-exists-ms (I,v).



Listing Maximal Independent Sets with Minimal Space and Bounded Delay 157

Proof. Line 5 in Algorithm 5 is the same as line 2 in Algorithm 3. The loop at
line 2 decrements ws[y] once for each neighbor of y in I ∩ N<(v). After the loop
we have that for each x ∈ V , ws[x] = |(I<v \N<(v))∩N(x)| = |I ′

v ∩N(x)|, thus
x ∈ N(I ′

v) iff ws[x] = 0. It follows that C is initialized to exactly N(I ′
v). Thus,

the loop in lines 6–10 will have the same outcome as the corresponding loop in
lines 4–7 of Algorithm 3: when a node c is selected in line 8, C is updated as if
c was added to I ′

v, thus the following iterations will select the same nodes that
would be selected in Algorithm 3, until finally line 10 is executed, which will
give the same outcome as line 7 in Algorithm 3. ��

The function iterative-spawn has been modified only with the addiction of
the function update, which has effect only on the variable ws which is used by
get-next-cand. Thus since the functions get-next-cand and child-exists-
fast used by Algorithm 4 are equivalent to, respectively, get-next-cand and
child-exists of base by Lemmas 10, 11, and 12, then the function spawn too
is equivalent to the one of base, obtaining the following lemma.

Lemma 13. Algorithm 4 correctly computes all maximal independent sets.

Space and Time Cost of Algorithm 4
In the following, we analyze the complexity of Algorithm 4. We have already

discussed the cost of the new get-next-cand function. In particular, we analyze
the cost of maintaining the counters and the cost of child-exists-fast.

Lemma 14. For any set A ⊆ V , update(ws, A) takes O(min{|A|Δ,m}) time.

Proof. We can obtain the cost above by iterating over all nodes in A and for
each node x incrementing by 1 the counter of its neighbors. This is bounded by
O(|A|Δ), and by O(m) too as it is a sum of the degrees of distinct nodes. ��

The cost for build is simply O(n + min{|A|Δ,m}), since we can set to zero
each ws[x] for each x ∈ V and then apply update(ws, A).

Lemma 15. child-exists-fast takes O(dΔ) time and O(n) space.

Proof. Recall from the proof of Lemma 9 that, as v 	∈ I and v > pi(I), we have
min{N(I<v)} > v, thus ∀x ∈ (V<v \ I) we have ws[x] > 0.

Thus we compute C by simply adding to it any node y whose counter ws[y]
is set to 0 during the loop at line 2. This is only guaranteed to add nodes which
are smaller than v, but this will be enough. Recalling the proof of Lemma 12,
we thus have that C = N(I ′

v)<v. This costs us O(min{dΔ,m}) time, as it is the
sum of the degrees of |I ∩N<(v)| ≤ d distinct nodes. Line 5 takes O(Δ). Indeed,
we can compute N(I ′

v ∪ {v})<v as C \ N(v). If this set is not empty, then the
check fails and we return false.

Let us now consider the cost of the loop at line 6. Keeping C in a dynamic
dictionary, lines 7 and 8 take both Õ(1) time and 9 takes Õ(|N(c)|) time. As the
loop is executed a maximum of |I<v \I ′

v|+1 ≤ |N<(v)|+1 ≤ d+1 times and c is
different every time, this takes Õ(min{dΔ,m}) time. As in Lemma 9 we should
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store min{I>v}: since initially C only contains N(I ′
v)<v rather than N(I ′

v), we
return true if C actually becomes empty or if c > min{I>v}, as in both these
cases min{I>v} would have been the candidate actually selected in line 9, that
would result in the algorithm returning true. Finally, before returning the result,
we restore the data structure ws by calling update(ws, I ∩ N<(v)). This takes
O(min{dΔ,m}) time by Lemma 14.

Since the additional space used is O(|C|) = O(min{dΔ, n}), child-exists-
fast can be computed in Õ(min{dΔ,m}) time, using O(n) space. ��

By plugging the results of Lemmas 14 and 15 into the analysis of Theorem 1,
we conclude the following.

Theorem 2. Algorithm 4 lists all the maximal independent sets with a delay of
Õ(min{ndΔ, nm}), and O(n) additional space.

Proof. Using Theorem 1 with the costs of child-exists-fast given by
Lemma 15 we obtain a total cost of Õ(min{ndΔ, nm}). We however need to add
to steps (i) and (iii) the cost of build(ws, I<v) which takes Õ(min{nΔ,m}).
Furthermore, we add to step (ii) the cost of update(ws, (I<v \ I<prev) for each
candidate v. We argue that for any specific I, any node i ∈ I is in I<v\I<prev only
once, since v is never decreasing for I and prev keeps track of the previous value
of v. The total cost is thus the same as update(ws, I), i.e., Õ(min{|I|Δ,m})
by Lemma 14. As |I| ≤ n, neither of these additions affects the total cost of
Õ(min{ndΔ,m}).

Space usage is given by the size of ws and C stored in child-exists-fast,
i.e., O(n). ��

6 Conclusions

In this paper we studied the enumeration of maximal independent sets (MISs)
in graphs, introducing new ideas to check efficiently which neighbors in the
reverse search should be explored, as this task is time- and space-consuming.
For a read-only input graph, our results are the first algorithm with minimal
additional space, proportional to the size of the largest MIS, and an algorithm
which improves both delay and space usage of known approaches. We remark
that a MIS can indeed have linear size: in this case, due to the modular nature of
our algorithms, the execution of the minimal space version can switch on-the-fly
to the faster version which uses O(n) space without increasing the asymptotic
space usage.

References

1. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1–
3), 21–46 (1996)

2. Basagni, S.: Finding a maximal weighted independent set in wireless networks.
Telecommun. Syst. 18(1), 155–168 (2001)



Listing Maximal Independent Sets with Minimal Space and Bounded Delay 159

3. Brendel, W., Todorovic, S.: Segmentation as maximum-weight independent set. In:
Advances in Neural Information Processing Systems, pp. 307–315 (2010)

4. Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph (algorithm 457).
Commun. ACM 16(9), 575–576 (1973)

5. Chang, L., Yu, J.X., Qin, L.: Fast maximal cliques enumeration in sparse graphs.
Algorithmica 66(1), 173–186 (2013)

6. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J.
Comput. 14(1), 210–223 (1985)

7. Cohen, S., Kimelfeld, B., Sagiv, Y.: Generating all maximal induced subgraphs
for hereditary and connected-hereditary graph properties. JCSS 74(7), 1147–1159
(2008)

8. Comin, C., Rizzi, R.: An improved upper bound on maximal clique listing via
rectangular fast matrix multiplication. CoRR, abs/1506.01082 (2015)

9. Conte, A., Grossi, R., Marino, A., Versari, L.: Sublinear-space bounded-delay enu-
meration for massive network analytics: maximal cliques. In: ICALP, vol. 148, pp.
1–15 (2016)
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Abstract. The compact directed acyclic word graph (CDAWG) of a
string T of length n takes space proportional just to the number e of
right extensions of the maximal repeats of T , and it is thus an appeal-
ing index for highly repetitive datasets, like collections of genomes from
similar species, in which e grows significantly more slowly than n. We
reduce from O(m log log n) to O(m) the time needed to count the number
of occurrences of a pattern of length m, using an existing data structure
that takes an amount of space proportional to the size of the CDAWG.
This implies a reduction from O(m log log n+ occ) to O(m+ occ) in the
time needed to locate all the occ occurrences of the pattern. We also
reduce from O(k log log n) to O(k) the time needed to read the k char-
acters of the label of an edge of the suffix tree of T , and we reduce from
O(m log log n) to O(m) the time needed to compute the matching statis-
tics between a query of length m and T , using an existing representation
of the suffix tree based on the CDAWG. All such improvements derive
from extracting the label of a vertex or of an arc of the CDAWG using
a straight-line program induced by the reversed CDAWG.

Keywords: CDAWG · Suffix tree · Maximal repeat · Straight-line pro-
gram · Count query · Locate query · Matching statistics · Minimal absent
words

1 Introduction

Large, highly repetitive datasets of strings are the hallmark of the post-genomic
era, and locating and counting all the exact occurrences of a pattern in such
collections has become a fundamental primitive. Given a string T of length n,
the compressed suffix tree [15,18] and the compressed suffix array can be used
for such purpose, and they achieve an amount of space bounded by the k-th
order empirical entropy of T . However, such measure of redundancy is known
not to be meaningful when T is very repetitive [10]. The space taken by such
compressed data structures also includes an o(n) term which can be a practical
bottleneck when T is very repetitive. Conversely, the size of the compact directed
acyclic word graph (CDAWG) of T is proportional just to the number of maximal
repeats of T and of their right extensions (defined in Sect. 2.2): this is a natural
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measure of redundancy for very repetitive strings, which grows sublinearly with
n in practice [2].

In previous work we described a data structure that takes an amount of space
proportional to the size eT of the CDAWG of T , and that counts all the occ occur-
rences in T of a pattern of length m in O(m log log n) time, and reports all such
occurrences in O(m log log n+occ) time [2]. We also described a representation of
the suffix tree of T that takes space proportional to the CDAWG of T , and that sup-
ports, amongother operations, reading thek characters of the label of an edge of the
suffix tree in O(k log log n) time, and computing the matching statistics between
a pattern of length m and T in O(m log log n) time. In this paper we remove the
dependency of such key operations on the length n of the uncompressed, highly
repetitive string, without increasing the space taken by the corresponding data
structures asymptotically. We achieve this by dropping the run-length-encoded
representation of the Burrows-Wheeler transform of T , used in [2], and by exploit-
ing the fact that the reversed CDAWG induces a context-free grammar that pro-
duces T and only T , as described in [1]. A related grammar, already implicit in
[6], has been concurrently exploited in [21] to achieve similar bounds to ours. Note
that in some strings, for example in the family Ti for i ≥ 0, where T0 = 0 and
Ti = Ti−1iTi−1, the length of the string grows exponentially in the size of the
CDAWG, thus shaving an O(log log n) term is identical to shaving an O(log eT )
term.

This work can be seen as a continuation of the research program, started in
[1,2], of building a fully functional, repetition-aware representation of the suffix
tree based on the CDAWG.

2 Preliminaries

We work in the RAM model with word length at least log n bits, where n is the
length of a string that is implicit from the context. We index strings and arrays
starting from one. We call working space the maximum amount of memory that
an algorithm uses in addition to its input and its output.

2.1 Graphs

We assume the reader to be familiar with the notions of tree and of directed
acyclic graph (DAG). In this paper we only deal with ordered trees and DAGs,
in which there is a total order among the out-neighbors of every node. The i-th
leaf of a tree is its i-th leaf in depth-first order, and to every node v of a tree
we assign the compact integer interval [sp(v)..ep(v)], in depth-first order, of all
leaves that belong to the subtree rooted at v. In this paper we use the expression
DAG also for directed acyclic multigraphs, allowing distinct arcs to have the
same source and destination nodes. In what follows we consider just DAGs with
exactly one source and one sink. We denote by T (G) the tree generated by DAG
G with the following recursive procedure: the tree generated by the sink of G
consists of a single node; the tree generated by a node v of G that is not the
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sink, consists of a node whose children are the roots of the subtrees generated by
the out-neighbors of v in G, taken in order. Note that: (1) every node of T (G)
is generated by exactly one node of G; (2) a node of G different from the sink
generates one or more internal nodes of T (G), and the subtrees of T (G) rooted
at all such nodes are isomorphic; (3) the sink of G can generate one or more
leaves of T (G); (4) there is a bijection, between the set of root-to-leaf paths in
T (G) and the set of source-to-sink paths in G, such that every path v1, . . . , vk

in T (G) is mapped to a path v′
1, . . . , v

′
k in G.

2.2 Strings

Let Σ = [1..σ] be an integer alphabet, let # = 0 /∈ Σ be a separator, and let
T = [1..σ]n−1# be a string. Given a string W ∈ [1..σ]k, we call the reverse of W
the string W obtained by reading W from right to left. For a string W ∈ [1..σ]k#
we abuse notation, denoting by W the string W [1..k]#. Given a substring W
of T , let PT (W ) be the set of all starting positions of W in T . A repeat W is
a string that satisfies |PT (W )| > 1. We conventionally assume that the empty
string occurs n + 1 times in T , before the first character of T and after every
character of T , thus it is a repeat. We denote by Σ�

T (W ) the set of left extensions
of W , i.e. the set of characters {a ∈ [0..σ] : |PT (aW )| > 0}. Symmetrically, we
denote by Σr

T (W ) the set of right extensions of W , i.e. the set of characters
{b ∈ [0..σ] : |PT (Wb)| > 0}. A repeat W is right-maximal (respectively, left-
maximal) iff |Σr

T (W )| > 1 (respectively, iff |Σ�
T (W )| > 1). It is well known that

T can have at most n− 1 right-maximal repeats and at most n− 1 left-maximal
repeats. A maximal repeat of T is a repeat that is both left- and right-maximal.
Note that the empty string is a maximal repeat. A near-supermaximal repeat
is a maximal repeat with at least one occurrence that is not contained in an
occurrence of another maximal repeat (see e.g. [13]). A minimal absent word of
T is a string W that does not occur in T , but such that any substring of W
occurs in T . It is well known that a minimal absent word W can be written as
aV b, where a and b are characters and V is a maximal repeat of T [8]. It is also
well known that a maximal repeat W = [1..σ]m of T is the equivalence class
of all the right-maximal strings {W [1..m], . . . ,W [k..m]} such that W [k + 1..m]
is left-maximal, and W [i..m] is not left-maximal for all i ∈ [2..k] (see e.g. [2]).
By matching statistics of a string S with respect to T , we denote the array
MSS,T [1..|S|] such that MSS,T [i] is the length of the longest prefix of S[i..|S|]
that occurs in T .

For reasons of space we assume the reader to be familiar with the notion of suffix
trie of T , as well as with the related notion of suffix tree STT = (V,E) of T , which
we do not define here. We denote by �(γ), or equivalently by �(u, v), the label of
edge γ = (u, v) ∈ E, and we denote by �(v) the string label of node v ∈ V . It is well
known that a substringW ofT is right-maximal iffW = �(v) for some internal node
v of the suffix tree. Note that the label of an edge of STT is itself a right-maximal
substring of T , thus it is also the label of a node of STT . We assume the reader to
be familiar with the notion of suffix link connecting a node v with �(v) = aW for
some a ∈ [0..σ] to a node w with �(w) = W . Here we just recall that inverting
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the direction of all suffix links yields the so-called explicit Weiner links. Given an
internal node v and a symbol a ∈ [0..σ], it might happen that string a�(v) does
occur in T , but that it is not right-maximal, i.e. it is not the label of any internal
node: all such left extensions of internal nodes that end in themiddle of an edge or at
a leaf are called implicit Weiner links. The suffix-link tree is the graph whose edges
are the union of all explicit and implicit Weiner links, and whose nodes are all the
internal nodes ofSTT , aswell as additional nodes corresponding to the destinations
of implicit Weiner links. We call compact suffix-link tree the subgraph of the suffix-
link tree induced by maximal repeats.

We assume the reader to be familiar with the notion and uses of the Burrows-
Wheeler transform of T . In this paper we use BWTT to denote the BWT of T ,
and we use range(W ) = [sp(W )..ep(W )] to denote the lexicographic interval of
a string W in a BWT that is implicit from the context. For a node v (respec-
tively, for an edge e) of STT , we use the shortcut range(v) = [sp(v)..ep(v)]
(respectively, range(e) = [sp(e)..ep(e)]) to denote range(�(v)) (respectively,
range(�(e))). We denote by rT the number of runs in BWTT , and we call run-
length encoded BWT (denoted by RLBWTT ) any representation of BWTT that
takes O(rT ) words of space, and that supports rank and select operations (see
e.g. [16,17,20]).

Finally, in this paper we consider only context-free grammars in which the
right-hand side of every production rule consists either of a single terminal, or
of at least two nonterminals. We denote by π(F ) the sequence of characters
produced by a nonterminal F of a context-free grammar. Every node in the
parse tree of F corresponds to an interval in π(F ). Given a nonterminal F and
an integer interval [i..j] ⊆ [1..|π(F )|], let a node of the parse tree from F be
marked iff its interval is contained in [i..j]. By blanket of [i..j] in F we denote
the set of all marked nodes in the parse tree of F . Clearly the blanket of [i..j] in
F contains O(j − i) nodes and edges.

2.3 CDAWG

The compact directed acyclic word graph of a string T (denoted by CDAWGT in
what follows) is the minimal compact automaton that recognizes all suffixes of
T [5,9]. We denote by eT the number of arcs in CDAWGT , and by hT the length
of a longest path in CDAWGT . We remove subscripts when string T is implicit
from the context. The CDAWG of T can be seen as the minimization of STT , in
which all leaves are merged to the same node (the sink) that represents T itself,
and in which all nodes except the sink are in one-to-one correspondence with the
maximal repeats of T [19]. Every arc of CDAWGT is labeled by a substring of T ,
and the out-neighbors w1, . . . , wk of every node v of CDAWGT are sorted accord-
ing to the lexicographic order of the distinct labels of arcs (v, w1), . . . , (v, wk).
We denote again with �(v) (respectively, with �(γ)) the label of a node v (respec-
tively, of an arc γ) of CDAWGT .

Since there is a bijection between the nodes of CDAWGT and the maximal
repeats of T , and since every maximal repeat of T is the equivalence class of a
set of roots of isomorphic subtrees of STT , it follows that the node v of CDAWGT
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with �(v) = W is the equivalence class of the nodes {v1, . . . , vk} of STT such
that �(vi) = W [i..m] for all i ∈ [1..k], and such that vk, vk−1, . . . , v1 is a maximal
unary path in the suffix-link tree. The subtrees of STT rooted at all such nodes
are isomorphic, and T (CDAWGT ) = STT . It follows that a right-maximal string
can be identified by the maximal repeat W it belongs to, and by the length of
the corresponding suffix of W . Similarly, a suffix of T can be identified by a
length relative to the sink of CDAWGT .

The equivalence class of a maximal repeat is related to the equivalence classes
of its in-neighbors in the CDAWG in a specific way:

Property 1 ([2]). Let w be a node in the CDAWG with �(w) = W ∈ [1..σ]m,
and let Sw = {W [1..m], . . . , W [k..m]} be the right-maximal strings that belong
to the equivalence class of node w. Let {v1, . . . , vt} be the in-neighbors of w in
CDAWGT , and let {V 1, . . . , V t} be their labels. Then, Sw is partitioned into t
disjoint sets S1

w, . . . ,St
w such that Si

w = {W [xi +1..m],W [xi +2..m], . . . ,W [xi +
|Svi |..m]}, and the right-maximal string V i[p..|V i|] labels the parent of the locus
of the right-maximal string W [xi + p..m] in the suffix tree, for all p ∈ [1..|Svi |].

Property 1 partitions every maximal repeat of T into left-maximal factors,
and applied to the sink w of CDAWGT , it partitions T into t left-maximal factors,
where t is the number of in-neighbors of w, or equivalently the number of near-
supermaximal repeats of T . Moreover, by Property 1, it is natural to say that
in-neighbor vi of node w is smaller than in-neighbor vj of node w iff xi < xj ,
or equivalently if the strings in Si

w are longer than the strings in Sj
w. We call

CDAWGT the ordered DAG obtained by applying this order to the reversed
CDAWGT , i.e. to the DAG obtained by inverting the direction of all arcs of
CDAWGT , and by labeling every arc (v, w), where w is the source of CDAWGT ,
with the first character of the string label of arc (w, v) in CDAWGT . Note that
some nodes of CDAWGT can have just one out-neighbor: for brevity we denote by
CDAWGT the graph obtained by collapsing every such node v, i.e. by redirecting
to the out-neighbor of v all the arcs directed to v, propagating to such arcs the
label of the out-neighbor of v, if any.

The source of CDAWGT is the sink of CDAWGT , which is the equivalence
class of all suffixes of T in string order. There is a bijection between the distinct
paths of CDAWGT and the suffixes of T ; thus, the i-th leaf of T (CDAWGT ) in
depth-first order corresponds to the i-th suffix of T in string order. Moreover,
the last arc in the source-to-sink path of CDAWGT that corresponds to suffix
T [i..|T |] is labeled by character T [i]. It follows that:

Property 2 ([1]). CDAWGT is a context-free grammar that generates T and only
T , and T (CDAWGT ) is its parse tree. Let v be a node of CDAWGT with t in-
neighbors, and let �(v) = V W , where W is the longest proper suffix of �(v) that
is a maximal repeat (if any). Then, v corresponds to a nonterminal F of the
grammar such that π(F ) = V = π(F1) · · · π(Ft), and Fi are the nonterminals
that correspond to the in-neighbors of v, for all i ∈ [1..t].

Note that the nonterminals of this grammar correspond to unary paths in
the suffix-link tree of T , i.e. to edges in the suffix tree of T . This parallels the
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grammar implicit in [6] and explicit in [21], whose nonterminals correspond to
unary paths in the suffix trie of T , i.e. to edges in the suffix tree of T .

2.4 Counting and Locating with the CDAWG

CDAWGT can be combined with RLBWTT to build a data structure that takes
O(eT ) words of space, and that counts all the occ occurrences of a pattern
P of length m in O(m log log n) time, and reports all such occurrences in
O(m log log n + occ) time [2].

Specifically, for every node v of the CDAWG, we store |�(v)| in a variable
v.length. Recall that an arc (v, w) in the CDAWG means that maximal repeat
�(w) can be obtained by extending maximal repeat �(v) to the right and to the
left. Thus, for every arc γ = (v, w) of the CDAWG, we store the first character of
�(γ) in a variable γ.char, and we store the length of the right extension implied
by γ in a variable γ.right. The length γ.left of the left extension implied by
γ can be computed by w.length − v.length − γ.right. For every arc of the
CDAWG that connects a maximal repeat W to the sink, we store just γ.char
and the starting position γ.pos of string W · γ.char in T . The total space used
by the CDAWG is O(eT ) words, and the number of runs in BWTT can be shown
to be O(eT ) as well [2].

We use the RLBWT to count the number of occurrences of P in T , in
O(m log log n) time: if this number is not zero, we use the CDAWG to report
all the occ occurrences of P in O(occ) time, using a technique already sketched
in [7]. Specifically, since we know that P occurs in T , we perform a blind search
for P in the CDAWG, as follows. We keep a variable i, initialized to zero, that
stores the length of the prefix of P that we have matched so far, and we keep a
variable j, initialized to one, that stores the starting position of P inside the last
maximal repeat encountered during the search. For every node v in the CDAWG,
we choose the arc γ such that γ.char = P [i + 1] in constant time using hashing,
we increment i by γ.right, and we increment j by γ.left. If the search leads
to the sink by an arc γ, we report γ.pos+ j − 1 and we stop. If the search ends
at a node v that is associated with a maximal repeat W , we determine all the
occurrences of W in T by performing a depth-first traversal of all nodes reach-
able from v in the CDAWG, updating variables i and j as described above, and
reporting γ.pos + j − 1 for every arc γ that leads to the sink. Clearly the total
number of nodes and arcs reachable from v is O(occ).

Note that performing the blind search for a pattern in the CDAWG is anal-
ogous to a descending walk on the suffix tree, thus we can compute the BWT
interval of every node of STT that we meet during the search, by storing in every
arc of the CDAWG a suitable offset between BWT intervals, as described in the
following property:

Property 3 ([2]). Let {W [1..m], . . . ,W [k..m]} be the right-maximal strings that
belong to the equivalence class of maximal repeat W ∈ [1..σ]m of string T , and
let range(W [i..m]) = [pi..qi] for i ∈ [1..k]. Then |qi −pi +1| = |qj −pj +1| for all
i and j in [1..k]. Let c ∈ [0..σ], and let range(W [i..m]c) = [xi..yi] for i ∈ [1..k].
Then, xi = pi + x1 − p1 and yi = pi + y1 − p1.
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Algorithm 1. Reading the first k characters of the string produced by
a nonterminal F of a straight-line program represented as a DAG G. F
corresponds to node u′ of G. Notation follows Lemma 4.
1 S ← empty stack;
2 S.push((u′, 0, 0));
3 extracted ← 0;
4 repeat
5 t ← S.top;
6 if t.lastChild < |t.node.outNeighbors| then
7 t.lastChild ← t.lastChild + 1 ;
8 v′ ← t.node.outNeighbors[t.lastChild];
9 if v′ = G.sink then

10 print(label(t.node, v′));
11 extracted ← extracted + 1;

12 else if t.lastChild = 1 then
13 t.depth ← 1;
14 S.push((levelAncestor(t.node, t.depth), 0, t.depth));

15 else S.push((v′, 0, 0)) ;

16 else
17 S.pop;
18 if S = ∅ then return extracted ;
19 t ← S.top;
20 if t.depth < t.node.depth then t.depth ← t.depth + 1 ;
21 if t.depth < t.node.depth then

S.push((levelAncestor(t.node, t.depth), 1, t.depth)) ;

22 end

23 until extracted = k;
24 return k;

Properties 1 and 3, among others, can be used to implement a number of
suffix tree operations in O(1) or O(log log n) time, using data structures that
take just O(eT ) or O(eT + eT ) words of space [1,2]. Among other information,
such data structures store a pointer, from each node v of the CDAWG, to the
longest proper suffix of �(v) (if any) that is a maximal repeat. Note that such
suffix pointers can be charged to suffix links in STT , thus they take overall O(eT )
words of space.

3 Faster Count and Locate Queries in the CDAWG

In this paper we focus on deciding whether a pattern P occurs in T , a key step
in the blind search of Sect. 2.4. Rather than using the RLBWT for such decision,
we exploit Property 2 and use the grammar induced by CDAWGT .

Our methods will require a data structure, of size linear in the grammar,
that extracts in O(k) time the first k characters of the string produced by a
nonterminal. Previous research described an algorithm that extracts the whole
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string produced by a nonterminal in linear time, using just constant working
space, by manipulating pointers in the grammar [12]. This solution does not
guarantee linear time when just a prefix of the string is extracted. A linear-
size data structure with the stronger guarantee of constant-time extraction per
character has also been described [11], and this solution can be used as a black
box in our methods. However, since we just need amortized linear time, we
describe a significantly simpler alternative that needs just a level ancestor data
structure (an idea already implicit in [14]) and that will be useful in what follows:

Lemma 4. Let G = (V,E) be the DAG representation of a straight-line pro-
gram. There is a data structure that: (1) given an integer k and a nonterminal F ,
allows one to read the first k characters of π(F ) in O(k) time and O(min{k, h})
words of working space, where h is the height of the parse tree of F ; (2) given a
string S and a nonterminal F , allows one to compute the length k of the longest
prefix of S that matches a prefix of π(F ), in O(k) time and O(min{k, h}) words
of working space. Such data structure takes O(|V |) words of space.

Proof. We mark the arc of G that connects each node v′ to its first out-neighbor.
The set of all marked arcs induces a spanning tree τ of G, rooted at the sink
and arbitrarily ordered [11]. In what follows we identify the nodes of τ with the
corresponding nodes of G. We build a data structure that supports level ancestor
queries on τ : given a node v and an integer d, such data structure returns the
ancestor u of v in τ such that the path from the root of τ to u contains exactly
d edges. The level ancestor data structure described in [3,4] takes O(|V |) words
of space and it answers queries in constant time. To read the first k characters of
string π(F ) = W , we explore the blanket of W [1..k] in F recursively, as described
in Algorithm 1. The tuples in the stack used by the algorithm have the following
fields: (node, lastChild, depth), where node is a node of G, u′.outNeighbors
is the sorted list of out-neighbors of node u′ in G, u′.depth is the depth of u′

in τ , and function label(u′, v′) returns the character that labels arc (u′, v′) in
G. Algorithm 1 returns the number of characters read, which might be smaller
than k. A similar procedure can be used for computing the length of the longest
prefix of π(F ) that matches a prefix of a query string. Every type of operation
in Algorithm 1 takes constant time, it can be charged to a distinct character in
the output, and it pushes at most one element on the stack. Thus, the stack
contains O(k) tuples at every step of the algorithm. It is also easy to see that
the stack never contains more elements than the length of the longest path from
the node of G that corresponds to F to the sink. ��

If necessary, Algorithm 1 can be modified to take constant time per character:

Corollary 5. Let G = (V,E) be the DAG representation of a straight-line pro-
gram. There is a data structure that takes O(|V |) words of space and that, given
a nonterminal F , allows one to read the characters of π(F ), from left to right, in
constant time per character and in O(min{k, h}) words of working space, where
h is the height of the parse tree of F .
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Proof. After having printed character i of π(F ), the time Algorithm 1 has
to wait before printing character i + 1 is always bounded by a constant,
except when the procedure repeatedly pops tuples from the stack. This can
be avoided by preventively popping a tuple t for which t.lastChild has reached
|t.node.outNeighbors| after Line 6 is executed, before pushing new tuples on
the stack. ��

Moreover, Lemma 4 can be generalized to weighted DAGs, by storing in each
node of τ the sum of weights of all edges from the node to the root of τ , by saving
sums of weights in the tuples on the stack, and by summing and subtracting the
weights of the arcs of the DAG:

Corollary 6. Let G = (V,E) be an ordered DAG with a single sink and with
weights on the arcs, and let the weight of a path be the sum of weights of all
its arcs. There is a data structure that, given an integer k and a node v, reports
the weights of the first k paths from v to the sink in preorder, in constant time
per path and in O(min{k, h}) words of working space, where h is the length of a
longest path from v to the sink. Such data structure takes O(|V |) words of space.

Lemma 4 is all we need to verify in linear time whether a pattern occurs in
the indexed text:

Theorem 7. Let T ∈ [1..σ]n be a string. There is a data structure that takes
O(eT ) words of space, and that counts (respectively, reports) all the occ occur-
rences of a pattern P ∈ [1..σ]m in O(m) time (respectively, in O(m+occ) time)
and in O(min{m,hT }) words of working space.

Proof. We assume that every node v′ of CDAWGT stores in a variable v′.freq
the number of occurrences of �(v′) in T . Recall that, for a node v′ of CDAWGT ,
�(v′) = π(F1)π(F2) · · · π(Fk) · W , where Fp for p ∈ [1..k] are nonterminals of
the grammar, and W is the maximal repeat that labels the node w′ of CDAWGT

that is reachable from v′ by a suffix pointer. For each arc (u′, v′) of CDAWGT , we
store a pointer to the nonterminal Fp of v′ that corresponds to u′. We perform
a blind search for P in CDAWGT as described in Sect. 2.4: either the search is
unsuccessful, or it returns a node v′ of CDAWGT and an integer interval [i..j]
such that, if P occurs in T , then P = V [i..j] where V = �(v′), and the number of
occurrences of P in T is v′.freq. To decide whether P occurs in T , we reconstruct
the characters in V [i..j] as follows (Fig. 1a). Clearly i belongs to a π(Fp) for some
p, and such Fp can be accessed in constant time using the pointers described
at the beginning of the proof. If i is the first position of π(Fp), we extract all
characters of π(Fp) by performing a linear-time traversal of the parse tree of Fp.
Otherwise, we extract the suffix of π(Fp) in linear time using Lemma4. Note
that j must belong to π(Fq) for some q > p, since the search reaches v′ after
right-extending a suffix of an in-neighbor u′ of v′ that belongs to the equivalence
class of u′ (recall Property 1). We thus proceed symmetrically, traversing the
entire parse tree of Fp+1 . . . Fq−1 and finally extracting either the entire π(Fq)
or a prefix. Finally, j could belong to W , in which case we traverse the entire
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parse tree of Fp+1 . . . Fk and we recur on w′, resetting j to j −
∑k

x=1 |π(Fx)|. If
the verification is successful, we proceed to locate all the occurrences of P in T
as described in Sect. 2.4. ��

Note that the data structure in Theorem 7 takes actually O(min{eT , eT })
words of space, since one could index either T or T for counting and locating.
Lemma 4 can also be used to report the top k occurrences of a pattern P in T ,
according to the popularity of the right-extensions of P in the corpus:

Corollary 8. Let P be a pattern, let P = {p1, p2, . . . , pm} be the set of all its
starting positions in a text T . Let sequence Q = q1, q2, . . . , qm be such that qi ∈ P
for all i ∈ [1..m], qi �= qj for all i �= j, and i < j iff T [qi..|T |] is lexicographically
smaller than T [qj ..|T |]. Let sequence S = s1, s2, . . . , sm be such that si ∈ P for
all i ∈ [1..m], si �= sj for all i �= j, and i < j iff the frequency of T [si..si + x]
in T is not smaller than the frequency of T [sj ..sj + x] in T (with ties broken
lexicographically), where x is the length of the longest common prefix between
T [si..|T |] and T [sj ..|T |]. There is a data structure that allows one to return
the first k elements of sequence Q or S in constant time per element and in
O(min{k, hT }) words of working space. Such data structure takes O(eT ) words
of space.

Proof. Recall that Theorem 7 builds the spanning tree τ of Lemma 4 on the
reversed CDAWG that represents a straight-line program of T . To print Q,
we build τ and the corresponding level-ancestor data structure on CDAWGT ,
connecting each vertex of the CDAWG to its lexicographically smallest out-
neighbor, and storing in each node of τ the sum of lengths of all edges from the
node to the root of τ . Given the locus v′ of P in CDAWGT , we can print the first
k elements of Q in O(k) time and in O(min{k, h}) words of space, where h is the
length of a longest path from v′ to the sink of CDAWGT , by using Corollary 6.
To print S we add to each node of CDAWGT an additional list of children, sorted
by nondecreasing frequency with ties broken lexicographically, and we build the
spanning tree τ by connecting each vertex of CDAWGT to its first out-neighbor
in such new list. ��

Finally, Theorem 7 allows one to reconstruct the label of any arc of the
CDAWG, in linear time in the length k of such label. This improves the
O(k log log n) bound described in [2], where n is the length of the uncompressed
text, and it removes the eT term from the space complexity, since RLBWTT is
not needed.

Theorem 9. There is a data structure that allows one to read the k characters
of the label of an arc (v′, w′) of CDAWGT , in O(k) time and in O(min{k, hT })
words of working space. Such data structure takes O(eT ) words of space.

Proof. Recall that every arc (v′, w′) that does not point to the sink of CDAWGT

is a right-maximal substring of T . If it is also a maximal repeat, then we can
already reconstruct it as described in Theorem 7, storing a pointer to such maxi-
mal repeat, starting extraction from the first nonterminal of the maximal repeat,
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Fig. 1. (a) The verification step of pattern search, implemented with the CDAWG.
Notation follows Theorem 7. (b) Reconstructing the label of an arc of the CDAWG.
Notation follows Theorem 9.

and recurring to the maximal repeat reachable from its suffix pointer. Otherwise,
let W = �(w′) = V U , where U is the maximal repeat that corresponds to the node
u′ reachable from the suffix pointer of w′, and let V = π(F1) · · · π(Fk) where Fp

for p ∈ [1..k] are nonterminals in the grammar. The label of (v′, w′) coincides with
suffix W [i..|W |], and its length is stored in the index.

If i ≤ |V |, let V [i..|V |] = X · π(Fp+1) · · · π(Fk) for some p. To reconstruct U ,
we traverse the whole parse tree of Fk, Fk−1, . . . , Fp+1, and we reconstruct the
suffix of length |X| of π(Fp) using Lemma 4. Otherwise, if i > |V |, we could recur
to U , resetting i to i − |V | (Fig. 1b). Let U = V ′U ′, where U ′ is the maximal
repeat that corresponds to the node reachable from the suffix pointer of u′. Note
that it could still happen that i > |V ′|, thus we might need to follow a sequence
of suffix pointers. During the construction of the index, we store with arc (v′, w′)
a pointer to the first maximal repeat t′, in the sequence of suffix pointers from
w′, such that |�(t′)| ≥ |�(v′, w′)|, and such that the length of the longest proper
suffix of �(t′) that is a maximal repeat is either zero or smaller than |�(v′, w′)|.
To reconstruct �(v′, w′), we just follow such pointer and proceed as described
above.

Reading the label of an arc that is directed to the sink of CDAWGT can be
implemented in a similar way: we leave the details to the reader. ��

We can also read the label of an arc (v′, w′) from right to left, with the
stronger guarantee of taking constant time per character:

Corollary 10. There is a data structure that allows one to read the k characters
of the label of an arc (v′, w′) of CDAWGT , from right to left, in constant time
per character and in O(min{k, hT }) words of working space. Such data structure
takes O(eT ) words of space.

Proof. We proceed as in Theorem 9, but we also keep the tree τ of explicit Weiner
links from every node of CDAWGT , imposing an arbitrary order on the children
of every node t of τ , and we build a data structure that supports level ances-
tor queries on τ . As in Theorem 9, we move to a maximal repeat u′ such that
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|�(u′)| ≥ |�(v′, w′)|, and such that the length of the longest proper suffix of �(u′)
that is a maximal repeat is either zero or smaller than |�(v′, w′)|. Then, we move
to node x′ = levelAncestor(u′, 1), we reconstruct �(x′) from right to left using
Corollary 5, and we use levelAncestor(u′, 2) to follow an explicit Weiner link
from x′. After a sequence of such explicit Weiner links we are back to u′, and we
reconstruct from right to left the prefix of �(v′, w′) that does not belong to the
longest suffix of �(u′) that is a maximal repeat, using again Corollary 5. ��

Since the label of arc (v′, w′) is a suffix of �(w′), and since the label of
every node w′ of the CDAWG can be represented as π(F ) · �(u′), where F is
a nonterminal of the grammar and u′ is the longest suffix of �(w′) that is a
maximal repeat, we could implement Corollary 10 by adding to the grammar
the nonterminals W ′ and U ′ and a new production W ′ → FU ′ for nodes w′

and u′, and by using Corollary 5 for extraction. This does not increase the size
of the grammar asymptotically. Note that the subgraph induced by the new
nonterminals in the modified grammar is the reverse of the compact suffix-link
tree of T .

4 Faster Matching Statistics in the CDAWG

A number of applications, including matching statistics, require reading the label
of an arc from left to right : this is not straightforward using the techniques we
described, since the label of an arc (v′, w′) can start e.g. in the middle of one
of the nonterminals of w′ rather than at the beginning of one such nonterminal
(see Fig. 1b). We circumvent the need for reading the characters of the label of
an arc from left to right in matching statistics, by applying the algorithm in
Theorem 7 to prefixes of the pattern of exponentially increasing length:

Lemma 11. There is a data structure that, given a string S and an arc (v′, w′)
of CDAWGT , allows one to compute the length k of the longest prefix of S that
matches a prefix of the label of (v′, w′), in O(k) time and in O(min{k, hT }) words
of working space. Such data structure takes O(eT ) words of space.

Proof. Let γ = (v′, w′). If �(γ) is a maximal repeat of T , we can already read
its characters from left to right by applying Theorem7. Otherwise, we perform
a doubling search over the prefixes of S, testing iteratively whether S[1..2i]
matches a prefix of �(γ) for increasing integers i, and stopping when S[1..2i]
does not match a prefix of �(γ). We perform a linear amount of work in the
length of each prefix, thus a linear amount of total work in the length of the
longest prefix of S that matches a prefix of �(γ).

We determine whether S[1..2i] is a prefix of �(γ) as follows. Recall that an arc
of CDAWGT (or equivalently of STT ) is a right-maximal substring of T , therefore
it is also a node of STT . We store for each arc γ of CDAWGT the interval range(γ)
of the corresponding string in BWTT . Given S[1..2i], we perform a blind search
on the CDAWG, simulating a blind search on STT and using Property 3 to keep
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the BWT intervals of the corresponding nodes of STT that we meet. We stop at
the node v of the suffix tree at which the blind search fails, or at the first node
whose interval does not contain range(γ) (in which case we reset v to its par-
ent), or at the last node reached by a successful blind search in which the BWT
intervals of all traversed nodes contain range(γ). In the first two cases, we know
that the longest prefix of S that matches �(γ) has length smaller than 2i. Then,
we read (but don’t explicitly store) the label of v in linear time as described
in Theorem 7, finding the position of the leftmost mismatch with S[1..2i],
if any. ��

Lemma 11 is all we need to implement matching statistics with the CDAWG:

Theorem 12. There is a data structure that takes O(eT ) words of space, and
that allows one to compute MSS,T in O(|S|) time and in O(min{μ, hT }) words
of working space, where μ is the largest number in MSS,T .

Proof. We fill array MSS,T from left to right, by implementing with CDAWGT

the classical matching statistics algorithm based on suffix link and child opera-
tions on the suffix tree. Assume that we have computed MSS,T [1..i] for some i.
Let c = S[i + MSS,T [i]] and let U = S[i..i + MSS,T [i] − 1] = V X, where V is
the longest prefix of U that is right-maximal in T , and v is the node of STT with
label V . Assume that we know v and the node v′ of CDAWGT that corresponds
to the equivalence class of v. Let w′ be the node of CDAWGT that corresponds to
the longest suffix of �(v′) that is a maximal repeat of T . If |�(v)| > |�(w′)| + 1,
then MSS,T [i + 1] = MSS,T [i] − 1, since no suffix of U longer than |�(w′)| + |X|
can be followed by character c. Otherwise, we move to w′ in constant time by fol-
lowing the suffix pointer of v′, and we perform a blind search for X from w′. Let
�(w′)X = ZX ′, where Z = �(z) is the longest prefix of �(w′)X that is right-
maximal in T , and let z′ be the node of the CDAWG that corresponds to the
equivalence class of z. If |X ′| > 0, or if no arc from z′ is labeled by c, then again
MSS,T [i + 1] = MSS,T [i] − 1. Otherwise, we use Lemma 11 to compute the length
of the longest prefix of S[i+MSS,T [i]..|S|] that matches a prefix of the arc from z′

labeled by c. The claimed time complexity comes from Lemma 11 and from stan-
dard amortization arguments used in matching statistics. ��

Note that the data structure in Theorem 12 takes actually O(min{eT , eT })
words of space, since one could index either T or T for computing the matching
statistics vector (in the latter case, S is read from right to left).

Another consequence of Property 2 is that we can compute the minimal
absent words of T using an index of size proportional just to the number of
maximal repeats of T and of their extensions:

Lemma 13. There is a data structure that takes O(eT +eT ) words of space, and
that allows one to compute the minimal absent words of T in O(eT + eT + out)
time and in O(λT + min{μT , hT }) words of working space, where out is the size
of the output, λT is the maximum number of left extensions of a maximal repeat
of T , and μT is the length of a longest maximal repeat of T .
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Proof. For every arc γ = (v′, w′) of CDAWGT , we store in a variable γ.order
the order of v′ among the in-neighbors of w′ induced by Property 1 and used in
CDAWGT (see Sect. 2.3), and we store in a variable γ.previousChar the character
a, if any, such that a�(v′)b is a substring of �(w′) and b = γ.char is the first
character of �(γ).

Then, we traverse every node v′ of CDAWGT , and we scan every arc
γ = (v′, w′). If γ.order > 1, then �(v′)b, where b = γ.char, is always pre-
ceded by γ.previousChar in T , thus we print a�(v′)b to the output for all a
that label explicit and implicit Weiner links from v′ and that are different from
γ.previousChar. If γ.order = 1 then �(v′)b is a left-maximal substring of T , so
we subtract the set of all Weiner links of w′ from the set of all Weiner links of
v′ by a linear scan of their sorted lists, and we print a�(v′)b to the output for
all characters a in the resulting list. Note that the same Weiner link of v′ could
be read multiple times, for multiple out-neighbors w′ of v′. However, every such
access can be charged either to the output or to a corresponding Weiner link
from w′, and each w′ takes part in at most one such subtraction. It follows that
the time taken by all list subtractions is O(eT + out).

We reconstruct each �(v′) in linear time as described in Theorem 7. ��
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Abstract. Recently, Holt and McMillan [Bioinformatics 2014, ACM-
BCB 2014] have proposed a simple and elegant algorithm to merge the
Burrows-Wheeler transforms of a collection of strings. In this paper we
show that their algorithm can be improved so that, in addition to the
BWTs, it also merges the Longest Common Prefix (LCP) arrays. Because
of its small memory footprint this new algorithm can be used for the
final merge of BWT and LCP arrays computed by a faster but memory
intensive construction algorithm.

Keywords: Document collections · String indexing · Data compression

1 Introduction and Related Works

The Burrows Wheeler transform (BWT) is a fundamental component of many
compressed indices and it is often complemented by the Longest Common Prefix
(LCP) array and a sampling of the Suffix Array [9,21]. Because of the sheer size
of the data involved, the construction of such data structures is a challenging
problem in itself. Although the final outcome is a compressed index, construction
algorithms can be memory hungry and the necessity of developing lightweight,
i.e. space economical, algorithms was recognized since the very beginning of
the field [4,19,20]. When even lightweight algorithms do not fit in RAM, one
has to resort to external memory construction algorithms (see [5,7,13,17] and
references therein).

Many construction algorithms are designed for the case in which the input
consists of a single sequence; yet in many applications the data to be indexed con-
sist of a collection of distinct items: documents, web pages, NGS reads, proteins,
etc.. One can concatenate such items using (distinct) end-of-file separators and
index the resulting sequence. However, using distinct separators is possible only
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for small collections and from the algorithmic point of view it makes no sense
to “forget” that the input consists of distinct items: this additional information
should be exploited to run faster.

Recently, Holt and McMillan [10,11] have presented a new approach for com-
puting the BWT of a collection of sequences based on the concept of merging:
first the BWTs of the individual sequences are computed (by any single-string
BWT algorithm) and then they are merged, possibly in multiple rounds as in the
standard mergesort algorithm. The idea of BWT-merging is not new [6,23] but
Holt and McMillan’s merging algorithm is simpler than the previous approaches.
For a constant size alphabet their algorithm merges the BWTs of two sequences
t0, t1 in O(n · avelcp01) time where n = |t0| + |t1| and avelcp01 is the average
length of the longest common prefix between suffixes of t0 and t1. The aver-
age length of the longest common prefix is O(n) in the worst case but O(log n)
for random strings and for many real world datasets [14]. Note that even when
avelcp01 = O(log n) the algorithm is not optimal since BWT merging can be
done in linear time if there are no constraints on the space usage.

In this paper we show that the H&M (Holt and McMillan) merging algorithm
can be modified so that, in addition to the BWTs, it merges the LCP arrays as
well. The new algorithm, called Gap because of how it operates, has the same
asymptotic cost as H&M and uses additional space only for storing its additional
output, i.e. the LCP values. In our implementation, the Gap algorithm uses
only ≈ 1.5 bytes per symbol of workspace in addition to the input and the
output, making it interesting when the overall size of the collection is close to
the available RAM.

Our contribution in context. For a collection of documents of total size n
over a constant alphabet, the BWT and LCP arrays, as well as many compressed
indices, can be computed in O(n) time by first computing the Suffix Array (SA)
of the collection. The construction of the suffix array is a well studied problem
and there exist time/space optimal algorithms that work well in practice. The
problem with this approach is that the SA takes n log n bits of space while a
compressed index takes O(n) bits. Hence, going through the SA we can only build
indices much smaller than the available RAM. This implies that, in practice,
either we build multiple “small” indices, which must be queried independently,
or we use a larger machine for the construction of the index. Note that the
construction of compressed indices in linear time and O(n) bits of space is a
challenging and active area of research, see [1] and references therein, but at the
moment it has produced no practical algorithms.

Given this state of affairs, we propose the following practical approach for
the construction of the BWT and LCP arrays of a collection of documents. We
split the input collection into subcollections C1, . . . , Ck of roughly equal size
which are sufficiently small so that we can compute the BWT and LCP arrays
via the SA. Then, we merge all the BWTs and LCPs using the Gap algorithm
described in this paper. Since space is the main bottleneck, to compute the SA
of the subcollections we use the recently proposed gSACA-K algorithm by Louza
et al. [15,16] which runs in linear time, is extremely fast in practice, and uses
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only 2 KB in addition to the space of the input and the output (gSACA-K is
based on the SACA-K algorithm from [22]). As we will see, this approach allows
us to fully exploit all the available RAM and to take advantage of the optimal
and highly engineered gSACA-K algorithm to do most of the job.

Among the construction algorithms proposed in the literature, the one most
similar to our approach is the one described by Sirén in [24] where a compressed
index is maintained in RAM and new collections are incrementally merged to it.
The two approaches share the idea that building index should not require a spe-
cialized machine with a lot of RAM. The approach in [24] is specific for that partic-
ular compressed index (which doesn’t use the LCP array), while ours, providing
the plain BWT and LCP arrays, can be more easily adapted to build different
flavors of compressed indices.

Another related result is the algorithm proposed in [2,3] which computes
(from scratch) the multi-string BWT and LCP in external memory. Given a
collection of m strings of the same length k, the algorithm first computes the
BWT of all length-� suffixes for � = 1, 2, . . . , k and then, using an approach
inspired by the H&M algorithm, merges them to obtain the multi-string BWT
and LCP arrays. The algorithm accesses disk data sequentially and the reported
I/O volume is O(mkmaxlcp) where maxlcp is the maximum of the length of all
common prefixes (for the same input the I/O volume of the algorithm in [5]
is O(mk2)). Although our Gap algorithm is designed only to merge BWTs and
LCPs in internal memory, it also accesses its main data structures sequentially.
This feature suggests that it could be engineered to work in external memory
as well. Compared to [2,3] an external memory version of Gap would have the
advantages of supporting also strings of different lengths, and of exploiting any
available RAM to do some of the work with the highly efficient, indeed optimal,
internal memory algorithm gSACA-K. We plan to pursue this line of research in
a future work.

2 Notation

Let t[1, n] denote a string of length n over an alphabet Σ of size σ. As usual,
we assume t[n] is a symbol not appearing elsewhere in t and lexicographically
smaller than any other symbol. We write t[i, j] to denote the substring t[i]t[i +
1] · · · t[j]. If j ≥ n we assume t[i, j] = t[i, n]. If i > j or i > n then t[i, j] is the
empty string. Given two strings t and s we write t � s (t ≺ s) to denote that t
is lexicographically (strictly) smaller than s. We denote by LCP(t, s) the length
of the longest common prefix between t and s.

The suffix array sa[1, n] associated to t is the permutation of [1, n] giving the
lexicographic order of t’s suffixes, that is, for i = 1, . . . , n−1, t[sa[i], n] ≺ t[sa[i+
1], n]. The longest common prefix array lcp[1, n+1] is defined for i = 2, . . . , n by

lcp[i] = LCP(t[sa[i − 1], n], t[sa[i], n]); (1)

the lcp array stores the length of the longest common prefix between lexicograph-
ically consecutive suffixes. For convenience we define lcp[1] = lcp[n + 1] = −1.
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lcp bwt context
-1 b $
0 c ab$
2 $ abcab$
0 a b$
1 a bcab$
0 b cab$
-1

lcp bwt context
-1 c •
0 • aabcabc•
1 c abc•
3 a abcabc•
0 a bc•
2 a bcabc•
0 b c•
1 b cabc•
-1

id lcp01 bwt01 context
0 -1 b $
1 0 c •
1 0 • aabcabc•
0 1 c ab$
1 2 c abc•
0 3 $ abcab$
1 5 a abcabc•
0 0 a b$
1 1 a bc•
0 2 a bcab$
1 4 a bcabc•
1 0 b c•
0 1 b cab$
1 3 b cabc•

-1

Fig. 1. LCP array and BWT for t0 = abcab$ and t1 = aabcabc•, and multi-string
BWT and corresponding LCP array for the same strings. Column id shows, for each
entry of bwt01 = bc•cc$aaaabbb whether it comes from t0 or t1.

The Burrows-Wheeler transform bwt[1, n] of t is defined by

bwt[i] =

{
t[n] if sa[i] = 1
t[sa[i] − 1] if sa[i] > 1.

bwt[1, n] is the permutation of t in which the position of t[j] coincides with the
lexicographic rank of t[j + 1, n] (or of t[1, n] if j = n) in the suffix array. We call
such string the context of t[j]. See Fig. 1 for an example.

The longest common prefix (LCP) array, and Burrows-Wheeler transform
(BWT) can be generalized to the case of multiple strings [5,18]. Let t0[1, n0] and
t1[1, n1] be such that t0[n0] = $0 and t1[n1] = $1 where $0 < $1 are two symbols
not appearing elsewhere in t0 and t1 and smaller than any other symbol. Let
sa01[1, n0+n1] denote the suffix array of the concatenation t0t1. The multi-string
BWT of t0 and t1, denoted by bwt01[1, n0 + n1], is defined by

bwt01[i] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
t0[n0] if sa01[i] = 1
t0[sa01[i] − 1] if 1 < sa01[i] ≤ n0

t1[n1] if sa01[i] = n0 + 1
t1[sa01[i] − n0 − 1] if n0 + 1 < sa01[i].

In other words, bwt01[i] is the symbol preceding the i-th lexicographically
larger suffix, with the exception that if sa01[i] = 1 then bwt01[i] = $0 and if
sa01[i] = n0 +1 then bwt01[i] = $1. Hence, bwt01[i] always comes from the string
(t0 or t1) containing the i-th largest suffix (see again Fig. 1). The above notion
of multi-string BWT can be immediately generalized to define bwt1···k for a
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family of distinct strings t1, t2, . . . , tk. Essentially bwt1···k is a permutation of
the symbols in t1, . . . , tk such that the position in bwt1···k of ti[j] is given by the
lexicographic rank of its context ti[j + 1, ni] (or ti[1, ni] if j = ni).

Given the concatenation t0t1 and its suffix array sa01[1, n0 +n1], we consider
the corresponding LCP array lcp01[1, n0 + n1 + 1] defined as in (1) (see again
Fig. 1). Note that, for i = 2, . . . , n0 + n1, lcp01[i] gives the length of the longest
common prefix between the contexts of bwt01[i] and bwt01[i − 1]. This definition
can be immediately generalized to a family of k strings to define the LCP array
lcp12···k associated to the multi-string BWT bwt12···k.

3 The H&M Algorithm Revisited

In [11] Holt and McMillan introduced a simple and elegant algorithm, we call it
the H&M algorithm, to merge multi-string BWTs as defined above.

Given bwt1···k and bwtk+1 k+2 ···h the algorithm computes bwt1···h. The com-
putation does not explicitly need t1, . . . , th but only the (multi-string) BWTs
to be merged. For simplicity of notation we describe the algorithm assuming we
are merging two single-string BWTs bwt0 = bwt(t0) and bwt1 = bwt(t1); the
algorithm does not change in the general case where the input are multi-string
BWTs. Note also that the algorithm can be easily adapted to merge more than
two (multi-string) BWTs at the same time.

Computing bwt01 amounts to sorting the symbols of bwt0 and bwt1 according
to the lexicographic order of their contexts, where the context of symbol bwt0[i]
(resp. bwt1[i]) is t0[sa0[i], n0] (resp. t1[sa1[i], n1]). By construction, the symbols
in bwt0 and bwt1 are already sorted by context, hence to compute bwt01 we only
need to merge bwt0 and bwt1 without changing the relative order of the symbols
within the two input sequences.

The H&M algorithm works in successive phases. After the h-th phase the
entries of bwt0 and bwt1 are sorted on the basis of the first h symbols of their
context. More formally, the output of the h-th phase is a binary vector Z(h)

containing n0 = |t0| 0’s and n1 = |t1| 1’s and such that the following property
holds.

Property 1. For i = 1, . . . , n0 and j = 1, . . . n1 the i-th 0 precedes the j-th 1 in
Z(h) if and only if

t0[sa0[i], sa0[i] + h − 1] � t1[sa1[j], sa1[j] + h − 1] (2)

(recall that according to our notation if sa0[i]+h− 1 > n0 then t0[sa0[i], sa0[i]+
h − 1] coincides with t0[sa0[i], n0], and similarly for t1). ��

Following Property 1 we identify the i-th 0 in Z(h) with bwt0[i] and the j-th 1 in
Z(h) with bwt1[j] so that to Z(h) corresponds to a permutation of bwt01. Property 1
is equivalent to state that we can logically partition Z(h) into b(h) + 1 blocks

Z(h)[1, �1], Z(h)[�1 + 1, �2], . . . , Z(h)[�b(h) + 1, n0 + n1] (3)
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such that each block corresponds to a set of bwt01 symbols whose contexts are
prefixed by the same length-h string (the symbols with a context of length less
than h are contained in singleton blocks). Within each block the symbols of bwt0
precede those of bwt1, and the context of any symbol in block Z(h)[�j + 1, �j+1]
is lexicographically smaller than the context of any symbol in block Z(h)[�k +
1, �k+1] with k > j.

The H&M algorithm initially sets Z(0) = 0n01n1 : since the context of every
bwt01 symbol is prefixed by the same length-0 string (the empty string), there is
a single block containing all bwt01 symbols. At phase h the algorithm computes
Z(h+1) from Z(h) using the procedure in Fig. 2. For completeness we report in the
Appendix the proof of the following lemma which is a restatement of Lemma 3.2
in [11] using our notation.

1: Initialize array F [1, σ]
2: k0 1; k1 1 � Init counters for bwt0 and bwt1
3: for k 1 to n0 + n1 do
4: b Z(h−1)[k] � Read bit b from Z(h−1)

5: if b = 0 then � Get symbol from bwt0 or bwt1 according to b
6: c bwt0[k0++]
7: else
8: c bwt1[k1++]
9: end if

10: j F [c]++ � Get destination for b according to symbol c
11: Z(h)[j] b � Copy bit b to Z(h)

12: end for

Fig. 2. Main loop of algorithm H&M for computing Z(h) given Z(h−1). Array F is
initialized so that F [c] contains the number of occurrences of symbols smaller than c
in bwt0 and bwt1 plus one. Hence, the bits stored in Z(h) immediately after reading
symbol c are stored in positions from F [c] to F [c + 1] − 1 of Z(h).

Lemma 2. For h = 0, 1, 2, . . . the bit vector Z(h) satisfies Property 1. ��
We now show that with a simple modification to the H&M algorithm it

is possible to compute, in addition to bwt01 also the LCP array lcp01 defined
in Sect. 2. Our strategy consists in keeping explicit track of the logical blocks
we have defined for Z(h) and represented in (3). We maintain an integer array
B[1, n0 + n1 + 1] such that at the end of phase h it is B[i] 	= 0 if and only if
a block of Z(h) starts at position i. The use of such integer array is shown in
Fig. 3. Note that: (i) initially we set B = 1 0n0+n1−1 1 and once an entry in B
becomes nonzero it is never changed, (ii) during phase h we only write to B
the value h, (iii) because of the test at Line 4 the values written during phase
h influence the algorithm only in subsequent phases. We maintain also an array
Block id[1, σ] such that Block id[c] is the id of the block of Z(h−1) to which the
last seen occurrence of symbol c belonged.
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1: Initialize arrays F [1, σ] and Block id[1, σ]
2: k0 1; k1 1 � Init counters for bwt0 and bwt1
3: for k 1 to n0 + n1 do
4: if B[k] �= 0 and B[k] �= h then
5: id �k A new block of Z(h−1) is starting
6: end if
7: b Z(h−1)[k] � Read bit b from Z(h−1)

8: if b = 0 then � Get symbol from bwt0 or bwt1 according to b
9: c bwt0[k0++]

10: else
11: c bwt1[k1++]
12: end if
13: j F [c]++ � Get destination for b according to symbol c
14: Z(h)[j] b � Copy bit b to Z(h)

15: if Block id[c] �= id then
16: Block id[c] id � Update block id for symbol c
17: if B[j] = 0 then
18: B[j] = �h A new block of Z(h) will start here
19: end if
20: end if
21: end for

Fig. 3. Main loop of the H&M algorithm modified for the computation of the lcp
values. At Line 1 for each symbol c we set Block id[c] = −1 and F [c] as in Fig. 2. At the
beginning of the algorithm we initialize the array B[0, n0 + n1] as B = 1 0n0+n1−1 1.

The following lemma shows that the nonzero values of B at the end of phase h
mark the boundaries of Z(h)’s logical blocks.

Lemma 3. For any h ≥ 0, let �, m be such that 1 ≤ � ≤ m ≤ n0 + n1 and

lcp01[�] < h, min(lcp01[� + 1], . . . , lcp01[m]) ≥ h, lcp01[m + 1] < h. (4)

Then, at the end of phase h the array B is such that

B[�] 	= 0, B[� + 1] = · · · = B[m] = 0, B[m + 1] 	= 0 (5)

and Z(h)[�,m] is one of the blocks in (3). ��
Proof. We prove the result by induction on h. For h = 0, hence before the
execution of the first phase, (4) is only valid for � = 1 and m = n0 + n1 (recall
we defined lcp01[1] = lcp01[n0 + n1 + 1] = −1). Since initially B = 1 0n0+n1−1 1
our claim holds.

Suppose now that (4) holds for some h > 0. Let s = t01[sa01[�], sa01[�]+h−1];
by (4) s is a common prefix of the suffixes starting at positions sa01[�], sa01[�+1],
. . . , sa01[m], and no other suffix of t01 is prefixed by s. By Property 1 the 0s
and 1s in Z(h)[�,m] corresponds to the same set of suffixes That is, if � ≤ v ≤ m
and Z(h)[v] is the ith 0 (resp. jth 1) of Z(h) then the suffix starting at t0[sa0[i]]
(resp. t1[sa1[j]]) is prefixed by s.
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To prove (5) we start by showing that, if � < m, then at the end of phase
h−1 it is B[�+1] = · · · = B[m] = 0. To see this observe that the range sa01[�,m]
is part of a (possibly) larger range sa01[�′,m′] containing all suffixes prefixed by
the length h−1 prefix of s. By inductive hypothesis, at the end of phase h−1 it
is B[�′ + 1] = · · · = B[m′] = 0 which proves our claim since �′ ≤ � and m ≤ m′.

To complete the proof, we need to show that during phase h: (i) we do
not write a nonzero value in B[� + 1,m] and (ii) we write a nonzero to B[�] and
B[m+1] if they do not already contain a nonzero. Let c = s[0] and s′ = s[1, h−1]
so that s = cs′. Consider now the range sa01[e, f ] containing the suffixes prefixed
by s′. By inductive hypothesis at the end of phase h − 1 it is

B[e] 	= 0, B[e + 1] = · · · = B[f ] = 0, B[f + 1] 	= 0. (6)

During iteration h, the bits in Z(h)[�,m] are possibly changed only when we are
scanning the region Z(h−1)[e, f ] and we find an entry b = Z(h−1)[k], e ≤ k ≤ f ,
such that the corresponding value in bwtb is c. Note that by (6) as soon as k
reaches e the variable id changes and becomes different from all values stored in
Block id. Hence, at the first occurrence of symbol c the value h will be stored in
B[�] (Line 18) unless a nonzero is already there. Again, because of (6), during the
scanning of Z(h−1)[e, f ] the variable id does not change so subsequent occurrences
of c will not cause a nonzero value to be written to B[�+1,m]. Finally, as soon as
we leave region Z(h−1)[e, f ] and k reaches f +1, the variable id changes again and
at the next occurrence of c a nonzero value will be stored in B[m+1]. If there are
no more occurrences of c after we leave region Z(h−1)[e, f ] then either sa01[m+1]
is the first suffix array entry prefixed by symbol c + 1 or m + 1 = n0 + n1 + 1.
In the former case B[m + 1] gets a nonzero value at phase 1, in the latter case
B[m + 1] gets a nonzero value when we initialize array B.

This completes the proof. ��
Corollary 4. For i = 2, . . . , n0 + n1, if lcp01[i] = �, then starting from the end
of phase � + 1 it is B[i] = � + 1.

Proof. By Lemma 3 we know that B[i] becomes nonzero only after phase � + 1.
Since at the end of phase � it is still B[i] = 0 during phase � + 1 B[i] gets the
value � + 1 which is never changed in successive phases. ��

The above corollary suggests the following algorithm to compute bwt01 and
lcp01: repeat the procedure of Fig. 3 until the phase h in which all entries in
B become nonzero. At that point Z(h) describes how bwt0 and bwt1 should be
merged to get bwt01 and for i = 2, . . . , n0 + n1 lcp01[i] = B[i] − 1. The above
strategy requires a number of iterations, each one taking O(n0+n1) time, equal to
the maximum of the lcp values, for an overall complexity of O((n0+n1)maxlcp01),
where maxlcp01 = maxi lcp01[i]. In the next section we describe a much faster
algorithm that avoids to re-process the portions of B and Z(h) which are no
longer relevant for the computation of the final result.
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4 The Gap Algorithm

Definition 5. If B[�] 	= 0, B[m+1] 	= 0 and B[�+1] = · · · = B[m] = 0, we say
that block Z(h)[�,m] is monochrome if it contains only 0’s or only 1’s. ��

Since a monochrome block only contains suffixes from either t0 or t1, whose
relative order and LCP’s are known, it does not need to be further modified.
This intuition is formalized by the following lemmas.

Lemma 6. If at the end of phase h bit vector Z(h) contains only monochrome
blocks we can compute bwt01 and lcp01 in O(n0 + n1) time.

Proof. By Property 1, if we identify the i-th 0 in Z(h) with bwt0[i] and the j-th
1 with bwt1[j] the only elements which could be not correctly sorted by context
are those within the same block. However, if the blocks are monochrome all
elements belong to either bwt0 or bwt1 so their relative order is correct.

To compute lcp01 we observe that if B[i] 	= 0 then by (the proof of) Corollary 4
it is lcp01[i] = B[i] − 1. If instead B[i] = 0 we are inside a block hence sa01[i − 1]
and sa01[i] belong to the same string t0 or t1 and their LCP is directly available in
lcp0 or lcp1. ��
Lemma 7. Suppose that, at the end of phase h, Z(h)[�,m] is a monochrome
block. Then (i) for g > h, Z(g)[�,m] = Z(h)[�,m], and (ii) processing Z(h)[�,m]
during phase h + 1 creates a set of monochrome blocks in Z(h+1).

Proof. The first part of the Lemma follows from the observation that subsequent
phases of the algorithm will only reorder the values within a block (and possibly
create new sub-blocks); but if a block is monochrome the reordering will not
change its actual content.

For the second part, we observe that during phase h + 1 as k goes from � to
m the algorithm writes to Z(h+1) the same value which is in Z(h)[�,m]. Hence,
a new monochrome block will be created for each distinct symbol encountered
(in bwt0 or bwt1) as k goes through the range [�,m]. ��

The lemma implies that, if block Z(h)[�,m] is monochrome at the end of phase
h, starting from phase g = h+2 processing the range [�,m] will not change Z(g)

with respect to Z(g−1). Indeed, by the lemma the monochrome blocks created
in phase h + 1 do not change in subsequent phases (in a subsequent phase a
monochrome block can be split in sub-blocks, but the actual content of the
bit vector does not change). The above observation suggests that, after we have
processed block Z(h+1)[�,m] in phase h+1, we can mark it as irrelevant and avoid
to process it again. As the computation goes on, more and more blocks become
irrelevant. Hence, in the generic phase h instead of processing the whole Z(h−1)

we process only the blocks which are still “active” and skip irrelevant blocks.
Adjacent irrelevant blocks are merged so that among two active blocks there is
at most one irrelevant block (the gap that gives the name to the algorithm). The
overall structure of a single phase is shown in Fig. 4. The algorithm terminates
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1: if (next block is irrelevant) then
2: skip it
3: else
4: process block
5: if (processed block is monochrome) then
6: mark it irrelevant
7: end if
8: end if
9: if (last two blocks are irrelevant) then

10: merge them
11: end if

Fig. 4. Main loop of the Gap algorithm. The processing of active blocks at Line 4 is
done as in Lines 7–20 of Fig. 3.

when there are no more active blocks since this implies that all blocks have
become monochrome and by Lemma 6 we are able to compute bwt01 and lcp01.

We point out that at Line 2 of the Gap algorithm we cannot simply skip an
irrelevant block ignoring its content. To keep the algorithm consistent we must
correctly update the global variables of the main loop, i.e. the array F and the
pointers k0 and k1 in Fig. 3. To this end a simple approach is to store for each
irrelevant block the number of occurrences oc of each symbol c ∈ Σ in it and the
pair (r0, r1) providing the number of 0’s and 1’s in the block (recall an irrelevant
block may consist of adjacent monochrome blocks coming from different strings).
When the algorithm reaches an irrelevant block, F , k0, k1 are updated setting
k0 ← k0 + r0, k1 ← k1 + r1 and ∀c F [c] ← F [c] + oc.

The above scheme for handling irrelevant blocks is simple and probably effec-
tive in most cases. However, using O(σ) time to skip an irrelevant block is not
competitive for large alphabets. A better alternative is to build a wavelet tree for
bwt0 and bwt1 at the beginning of the algorithm. Then, for each irrelevant block
we store only the pair (r0, r1). When we reach an irrelevant block we use such
pair to update k0 and k1. The array F is not immediately updated: Instead we
maintain two global arrays L0[1, σ] and L1[1, σ] such that L0[c] and L1[c] store
the value of k0 and k1 at the time the value F [c] was last updated. At the first
occurrence of a symbol c inside an active block we update F [c] adding to it the
number of occurrences of c in bwt0[Lo[c] + 1, k0] and bwt1[L1[c] + 1, k1] that we
compute in O(log σ) time using the wavelet trees. Using this lazy update mecha-
nism, handling irrelevant blocks adds a O(min(�, σ) log σ) additive slowdown to
the cost of processing an active block of length �.

Theorem 8. Given bwt0, lcp0 and bwt1, lcp1 the Gap algorithm computes
bwt01 and lcp01 in O(log(σ)(n0 + n1)avelcp01) time, where avelcp01 =
(
∑

i lcp01[i])/(n0 + n1) is the average LCP of the string t01.

Proof. The correctness follows from the above discussion. For the analysis of the
running time we reason as in [10] and observe that the sum, over all phases, of the
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length of all active blocks is bounded by O(
∑

i lcp01[i]) = O((n0 + n1)avelcp01).
In any phase, using the lazy update mechanism, the cost of processing an active
block of length � is bounded by O(� log(σ)) and the time bound follows. ��

We point out that our Gap algorithm is related to the H&M algorithm as
described in [10, Sect. 2.1]: Indeed, the sorting operations are essentially the same
in the two algorithms. The main difference is that Gap keeps explicit track of
the irrelevant blocks while H&M keeps explicit track of the active blocks (called
buckets in [10]): this difference makes the non-sorting operations completely
different. An advantage of working with irrelevant blocks is that they can be
easily merged, while this is not the case for the active blocks in H&M. Of course,
the main difference is that Gap merges simultaneously BWT and LCP values.

If we are simultaneously merging k BWTs, the only change in the algorithm
is that the arrays Z(h) must now store integers in [1, k]; the overall running time
is still O(n log(σ)avelcp) where n =

∑
i ni is the size of the merged BWT and

avelcp is the average of the values in the merged LCP array.
We now analyze the space usage of Gap when merging k BWTs. Let n denote

the size of the merged BWTs. The arrays bwt1, . . . , bwtk take overall n
log σ�
bits. At the end of the computation, in O(n) time using Z(h) the merged BWT
can be written directly to disk or, using an in-place merging algorithm [8], over-
written to the space used by bwt1, . . . , bwtk. The array B stores lcp values hence
it can be represented in n
log L� bits, where L = maxi ni. Note that B takes
the same space as the final merged LCP array, which indeed, at the end of the
computation, could be overwritten to it using Z(h) (the merged LCP can also
be written directly to the output file). In addition to the space used for BWT
and LCP values, the algorithm uses 2n
log k� bits for the arrays Z(h) (we only
need 2 of them), and O(σ log n) bits for the arrays F and Block id.

The overall space usage so far is therefore n(
log σ� + 
log L� + 2
log k�) +
O(σ log n) bits. The only additional space used by the algorithm is the one used
to keep track of the irrelevant blocks, which unfortunately cannot be estimated
in advance since it depends on the maximum number of such blocks. In the worst
case we can have Θ(n) blocks and the additional space can be Θ(nk log n) bits.
Although this is a rather unlikely possibility, it is important to have some form
of control on this additional space. We use the following simple heuristic: we
choose a threshold s and we keep track of an irrelevant block only if its size is at
least s. This strategy introduces a O(s) time slowdown but ensures that there
are at most n/(s + 1) irrelevant blocks simultaneously. In the next section we
experimentally measure the influence of s on the space and running time of the
algorithm and show that in practice the space used to keep track of irrelevant
blocks is less than 10% of the total.

Note that also in [10] the authors faced the problem of limiting the memory
used to keep track of the active blocks. They suggested the heuristic of keeping
track of active blocks only after the h-th iteration (h = 20 for their dataset).



Lightweight BWT and LCP Merging 187

Table 1. Collections used in our experiments sorted by average LCP. Columns 4
and 5 refer to the lengths of the single documents. Pacbio are NGS reads from a
D.melanogaster dataset. Illumina are NGS reads from Human ERA015743 dataset.
Wiki-it are pages from Italian Wikipedia. Proteins are protein sequences from Uniprot.
Collections and source files are available on https://people.unipmn.it/manzini/gap.

Name Size GB σ Max Len Ave Len Max LCP Ave LCP

Pacbio 6.24 5 40212 9567.43 1055 17.99

Illumina 7.60 6 103 102.00 102 27.53

Wiki-it 4.01 210 553975 4302.84 93537 61.02

Proteins 6.11 26 35991 410.22 25065 100.60

Table 2. For each collection we report the number k of subcollections, the average
running time of gSACA-K+Φ in μsecs per symbol, and the running time (μsecs) and
space usage (bytes) per symbol for Gap for different values of the s parameter.

Name k gSACA-K+Φ s = 50 s = 100 s = 200

time space time space time space

Pacbio 7 0.46 0.41 4.35 0.46 4.18 0.51 4.09

Illumina 4 0.48 0.93 3.31 1.02 3.16 1.09 3.08

Wiki-it 5 0.41 — — — — 3.07 6.55

Proteins 4 0.59 3.90 4.55 5.18 4.29 7.05 4.15

5 Experimental Results

We have implemented the Gap algorithm in C and tested it on a desktop with
32 GB RAM and eight Intel-I7 3.40 GHz CPUs. All tests used a single CPU. We
used the collections shown in Table 1. We represented LCP values using 1 byte for
Illumina, 2 bytes for Pacbio and Proteins, and 4 bytes for Wiki-it. We always used
1 byte for each BWT value. We used n bytes to represent a pair of Z(h) arrays
using 4 bits for each entry so that our implementation can merge simultaneously
up to 16 BWTs. We used the simple strategy for skipping irrelevant blocks, i.e.
we did not use wavelet trees to represent the input BWTs.

Referring to Table 2, we split each collection into k subcollections of size
less than 2 GB and we computed the multi-string SA of each subcollection using
gSACA-K [15]. From the SA we computed the multi-string BWT and LCP arrays
using the Φ algorithm [12] (implemented in gSACA-K). This computation used 13
bytes per input symbol. Then, we merged the subcollections multi-string BWTs
and LCPs using Gap with different values of the parameter s which determines
the size of the smallest irrelevant block we keep track of. Note that for Wiki-it
s has no influence since the algorithm never keeps track of a block smaller than
σ+k. The rationale is that in our implementation skipping a block takes O(σ+k)
time, so there is no advantage in skipping a block smaller than that size.

https://people.unipmn.it/manzini/gap
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From the results in Table 2 we see that Gap running time is indeed roughly
proportional to the average LCP. For example, Pacbio and Illumina collections
both consist of DNA reads but, despite Pacbio reads being longer and having
a larger maximum LCP, Gap is twice as fast on them because of the smaller
average LCP. Similarly, Gap is faster on Wiki-it than on Proteins despite the
latter collection having a smaller alphabet and shorter documents. gSACA-K
running time is not significantly influenced by the average LCP. If we compare
Gap with gSACA-K we see that only in one instance, Pacbio with s = 50, Gap is
faster than gSACA-K in terms of μsecs per input symbol. However, since Gap is
designed to post-process gSACA-K output, the comparison of the running time
is only important to the extent Gap is not a bottleneck in our two-step strategy
to compute the multi-string BWT and LCP arrays: the experiments show this is
not the case. We point out that on our 32 GB machine, gSACA-K cannot compute
the multi-string SA for any of the collections since for inputs larger that 2 GB
it uses 9 bytes per input symbol.

As expected, the parameter s offers a time-space tradeoff for the Gap algo-
rithm. In the space reported in Table 2, the fractional part is the peak space
usage for irrelevant blocks, while the whole value is the space used by the arrays
bwti, B and Z(h). For example, for Wiki-it we use n bytes for the BWTs, 4n
bytes for the LCP values (the B array), n bytes for Z(h), and the remaining
0.55n bytes are mainly used for keeping track of irrelevant blocks. This is a rel-
atively high value since in our current implementation the storage of a block
grows linearly with the alphabet size. For DNA sequences and s = 200 the cost
of storing blocks is less than 3% of the total without a significant slowdown in
the running time.

For completeness, we tested the H&M implementation from [10] on the Pacbio
collection. The running time was 14.57 μsecs per symbol and the space usage
2.28 bytes per symbol. These values are only partially significative for several
reasons: (i) H&M computes the BWT from scratch, hence doing also the work
of gSACA-K, (ii) H&M doesn’t compute the LCP array, hence the lower space
usage, (iii) the algorithm is implemented in Cython which makes it easier to use
in a Python environment but is not as fast and space efficient as C.

Appendix

Proof of Lemma 2: We prove the result by induction. For h = 0, δ = 0, 1
tδ[saδ[i], saδ[i] − 1] is the empty string so (2) is always true and Property 1 is
satisfied by Z(0) = 0n01n1 .

To prove the “if” part, let h > 0 and let 1 ≤ v < w ≤ n0 + n1 denote two
indexes such that Z(h)[v] is the i-th 0 and Z(h)[w] is the j-th 1 in Z(h). We need to
show that under these assumptions inequality (2) on the lexicographic order holds.

Assume first t0[sa0[i]] 	= t1[sa1[j]]. The hypothesis v < w implies t0[sa0[i]] <
t1[sa1[j]] hence (2) certainly holds.

Assume now t0[sa0[i]] = t1[sa1[j]]. We preliminarily observe that it must be
sa0[i] 	= n0 and sa1[i] 	= n1: otherwise we would have t0[sa0[i]] = $0 or t1[sa1[j]] =
$1 which is impossible since these symbols appear only once in t0 and t1.
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Let v′, w′ denote respectively the value of the main loop variable k in the
procedure of Fig. 2 when the entries Z(h)[v] and Z(h)[w] are written (hence,
during the scanning of Z(h−1)). The hypothesis v < w implies v′ < w′. By
construction Z(h−1)[v′] = 0 and Z(h−1)[w′] = 1. Say v′ is the i′-th 0 in Z(h−1)

and w′ is the j′-th 1 in Z(h−1). By the inductive hypothesis on Z(h−1) we have

t0[sa0[i′], sa0[i′] + h − 2] � t1[sa1[j′], sa1[j′] + h − 2], (7)

The fundamental observation is that, being sa0[i] 	= n0 and sa1[i] 	= n1, it is

sa0[i′] = sa0[i] + 1 and sa1[j′] = sa1[j] + 1.

Since

t0[sa0[i], sa0[i] + h − 1] = t0[sa0[i]]t0[sa0[i′], sa0[i′] + h − 2] (8)

t1[sa1[j], sa1[j] + h − 1] = t1[sa1[j]]t1[sa1[j′], sa1[j′] + h − 2] (9)

combining t0[sa0[i]] = t1[sa1[j]] with (7) gives us (2).
For the “only if” part assume (2) holds. We need to prove that in Z(h) the

i-th 0 precedes the j-th 1. If t0[sa0[i]] < t1[sa1[j]] the proof is immediate. If
t0[sa0[i]] = t1[sa1[j]], we must have

t0[sa0[i] + 1, sa0[i] + h − 1] � t1[sa1[j] + 1, sa1[j] + h − 1].

By induction, if sa0[i′] = sa0[i] + 1 and sa1[j′] = sa1[j] + 1 in Z(h−1) the i′-th 0
precedes the j′-th 1. During phase h, the i-th 0 in Z(h) is written when processing
the i′-th 0 of Z(h−1), and the j-th 1 in Z(h) is written when processing the j′-th
1 of Z(h−1). Since in Z(h−1) the i′-th 0 precedes the j′-th 1 and

bwt0[i′] = t0[sa0[i]] = t1[sa1[j]] = bwt1[j′]

in Z(h) their relative order does not change and the i-th 0 precedes the j-th 1
as claimed. ��
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Abstract. We present the first thorough practical study of the Lempel-
Ziv-78 and the Lempel-Ziv-Welch computation based on trie data struc-
tures. With a careful selection of trie representations we can beat well-
tuned popular trie data structures like Judy, m-Bonsai or Cedar.

Keywords: Lempel-Ziv compression · Dynamic tries · Hashing

1 Introduction

The LZ78-compression scheme [41] is an old compression scheme that is still
in use today, e.g., in the Unix compress utility, in the GIF-standard, in string
dictionaries [2], or in text indexes [1]. Its biggest advantage over LZ77 [40] is that
LZ78 allows for an easy construction within compressed space and in near-linear
time, which is (to date) not possible for LZ77. Still, although LZ77 often achieves
marginally better compression rates, the output of LZ78 is usually small enough
to be used in practice, e.g. in the scenarios mentioned above [1,5].

While the construction of LZ77 is well studied both in theory [5,14, e.g.] and
in practice [18,19, e.g.], only recent interest in LZ78 can be observed: just in
2015 Nakashima et al. [31] gave the first (theoretical) linear time algorithm for
LZ78. On the practical side, we are not aware of any systematic study.

We present the first thorough study of LZ78-construction algorithms.
Although we do not present any new theoretical results, this paper shows that
if one is careful with the choices of tries, hash functions, and the handling of
dynamic arrays, one can beat well-tuned out-of-the-box trie data structures like
Judy1, m-Bonsai [34], or the Cedar-trie [39].

Related Work. An LZ78 factorization of size z can be stored in two arrays
with z lg σ and z lg z bits to represent the character (belonging to an alpha-
bet of size σ) and the referred index, respectively, of each factor. This space
bound has not yet been achieved by any efficient trie data structure. Closest
to this bound is the approach of Arroyuelo and Navarro [1, Lemma 8], taking
2z lg z + z lg σ + O(z) bits and O(n(lg σ + lg lg n)) time for the LZ78 factor-
ization. Allowing O(z lg z) bits, O

(
n + z lg2 lg σ

lg lg lg σ

)
time is possible [13]. Another

1 http://judy.sourceforge.net.

c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-67428-5 16
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option is the dynamic trie of Jansson et al. [17] using O(n(lg σ + lg lgσ n)/ lgσ n)
bits of working space and O(

n lg2 lg n/ (lgσ n lg lg lg n)
)

time. All these tries
are favorable for small alphabet sizes (achieving linear or sub-linear time when
lg σ = o

(
lg n lg lg lg n/lg2 lg n

)
). If the alphabet size σ becomes large, the upper

bounds on the time get unattractive. Up to lg σ = o(lg n), we can use a linear
time solution taking O(n lg σ) bits of space [22,30]. Finally, for large σ, there
is a linear time approach taking (1 + ε)n lg n + O(n) bits of space [14]. Further
practical trie implementations are mentioned in Sect. 4.

2 Preliminaries

Let T be a text of length n over an alphabet Σ = {1, . . . . , σ} with |Σ| ≤ nO(1).
Given X,Y,Z ∈ Σ∗ with T = XY Z, then X, Y and Z are called a prefix ,
substring and suffix of T , respectively. We call T [i..] the i-th suffix of T ,
and denote a substring T [i] · · · T [j] with T [i..j]. A factorization of T of size z
partitions T into z substrings (factors) F1 · · · Fz = T . In this article, we are
interested in the LZ78 and LZW factorization. If we stipulate that F0 and Fz+1[1]
are the empty string, we get:

A factorization F1 · · · Fz = T is called the LZ78 factorization [41] of T iff
Fx = Fyc with Fy = argmaxS∈{Fy′ :0≤y′<x} |S| and c ∈ Σ for all 1 ≤ x ≤ z; we
say that y is the referred index of the factor Fx.

A factorization F1 · · · Fz = T is called the LZW factorization [38] of T iff
Fx = FyFy+1[1] with Fy = argmaxS∈{Fy′ :1≤y′<x} |S|, or Fx = c ∈ Σ if no such
Fy exists, for all 1 ≤ x < z. If Fx = FyFy+1[1] for a y with 1 ≤ y < x, we call y
the referred index of the factor Fx. Otherwise, Fx = c for a c ∈ Σ; we set its
referred index to −c < 0.

The factors can be represented in a trie, the so-called LZ trie . Each factor Fx

(except the last factor in LZW) is represented by a trie node v labeled with x
(1 ≤ x ≤ z) such that the parent u of v is labeled with y if y is the referred index
of Fx. The edge (u, v) is then labeled with the last character of the factor Fx (or
the first character of Fx+1 for LZW).

Output. We transform the list of factors to a list of integer values as follows:
We linearly process each factor Fx for 1 ≤ x ≤ z. If Fx’s referred index is not
positive, Fx is equal to a character c that is output (we output −c in case of
LZW). A factor Fx with a referred index y > 0 is processed as follows:

LZ78: If Fx = Fyc for a c ∈ σ, we output the tuple (y, c).
LZW: If Fx = FyFy+1[1] (or Fx = Fy for x = z), we output y.

Algorithm. The folklore algorithm computing LZ78 and LZW uses a dynamic
LZ trie that grows linearly in the number of processed factors. The dynamic LZ
trie supports the creation of a node, the navigation from a node to one of its
children, and the access to the labels.
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Fig. 1. LZ78 trie and LZW trie. Given the text T = aaababaaaba, LZ78 factorizes T

into
1
a | 2

aa | 3
b | 4

ab | 5
aaa | 6

ba , where the vertical bars separate the factors. The LZ78
factorization is output as: a | (1, a) | b | (1, b) | (2, a) | (3, a). This output is represented

by the left trie (a). The LZW factorization of the same text is
1
a | 2

aa | 3
b | 4

a | 5
ba | 6

aab | 7
a.

We output it as −1 | 1 | −2 | −1 | 3 | 2 | −1. This output induces the right trie (b).

Given that z is the number of LZ78 or LZW factors, the algorithm performs
z searches of a prefix of a given suffix of the text. It inserts z times a new leaf
in the LZ trie. It takes n times an edge from a node to one of its children.

3 LZ-Trie Representations

In this section, we show five representations, each providing different trade-offs
for computation speed and memory consumption. All representations have in
common that they work with dynamic arrays.

Resize Hints. The usual strategy for dynamic arrays is to double the size of an
array when it gets full. To reduce the memory consumption, a hint on how large
the number of factors z might get is advantageous to know for a dynamic LZ
trie data structure. We provide such a hint based on the following lemma:

Lemma 1 [4,41]. The number of LZ78 factors z is in the range
√

2n + 1/4 −
1/2 ≤ z ≤ cn/ lgσ n, for a fixed constant c > 0.

At the beginning of the factorization, we let a dynamic trie reserve enough
space to store at least

√
2n elements without resizing. On enlarging a dynamic

trie, we usually double its size. However, if the number of remaining characters r
to parse is below a certain threshold, we try to scale the data structure up to a
value for which we expect that all factors can be stored without resizing the data
structure again. Let z′ be the currently computed number of factors. If r > n/2
we use z′ +3r/ lg r as an estimate (the number 3 is chosen empirically2), derived
from z − z′ = O(r/ lgσ r) based on Lemma 1, otherwise we use z′ + z′r/(n − r)
derived from the expectation that the ratio between z′ and n− r will be roughly
the same as between z and n (interpolation).

2 There are artificial texts like an for which we overestimate the number of factors.
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3.1 Deterministic LZ Tries

index 1 2 3 4 5 6

first child 2 5 6
next sibling 3 4
character a a b b a a

Fig. 2. Array data struc-
tures of binary built on the
example given in Fig. 1

We first recall two trie implementations using arrays
to store the node labeled with x at position x, for
each x with 1 ≤ x ≤ z.

Binary Search Trie. The first-child next-sibling
representation binary maintains its nodes in three
arrays. A node stores a pointer to one of its children,
and a pointer to one of its siblings. It additionally
stores the label (i.e., a character) of the edge to its
parent. The trie binary takes 2z lg z+z lg σ bits when
storing z nodes. We do not sort the nodes in the trie according to the character
on their incoming edge, but store them in the order in which they are inserted.
(We found this faster in our experiments.) Figure 2 gives an example. To nav-
igate from a node v to its child with label c ∈ Σ, we take the first child of v
and then sequentially scan all its next siblings until finding a node storing the
character c.

Ternary Search Trie. The Ternary Search Trie [6] ternary differs from binary in
that a ternary node stores one more pointer to a sibling: A node of ternary stores a
character, a pointer to one of its children, a pointer to one of its smaller siblings,
and a pointer to one of its larger siblings. The trie ternary takes 3z lg z + z lg σ
bits when storing z nodes. Similar to binary, we do not rearrange the nodes. To
navigate from a node v to its child with label c ∈ Σ, we take the pointer to
one of its children and then binary search for the sibling storing the character
c (given that we are at a node storing a character d, we take its smaller sibling
if c < d, otherwise its larger sibling).

3.2 LZ Tries with Hashing

We use a hash table H[0..M −1] for a natural number M , and a hash function h
to store key-value pairs. We determine the position of a pair (k, v) in H by
the initial address h(k) mod M ; we handle collisions with linear probing. We
enlarge H when the maximum number of entries m := αM is reached, where α
is a real number with 0 < α < 1.

A hash table can simulate a trie as follows: Given a trie edge (u, v) with
label c, we use the unique key c + σ� to store v, where � is the label (factor
index) of u (the root is assigned the label 0). This allows us to find and create
nodes in the trie by simulating top-down-traversals. This trie implementation is
called hash in the following.

Table Size. We choose the hash table size M to be a power of two. Having
M = 2k for k ∈ N, we can compute the remainder of the division of a hash
value by the hash table size with a bitwise-AND operation, i.e., h(x) mod 2k =
h(x)&(2k − 1), which is practically faster3.

3 http://blog.teamleadnet.com/2012/07/faster-division-and-modulo-operation.html.

http://blog.teamleadnet.com/2012/07/faster-division-and-modulo-operation.html
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If the aforementioned resize hint suggests that the next power of two is suf-
ficient for storing all factors, we set α = 0.95 before enlarging the size (if neces-
sary). We also implemented a hash table variant that will change its size to fit
the provided hint. This variant then cannot use the fast bit mask to simulate
the operation mod M . Instead, it uses a practical alternative that scales the
hash value by M and divides this value by the largest possible hash value 4, i.e.,
Mh(k)/(maxk′ h(k′)). We mark those hash table variants with a plus sign, e.g.,
hash+ is the respective variant of hash.

Reasons for Linear Probing. Linear probing inserts a tuple with key k at the
first free entry, starting at the initial address. It is cache-efficient if the keys have
a small bit length (i.e., fitting in a computer word). Using large hash tables and
small keys, the cache-efficiency can compensate the chance of higher collisions
[3,16]. Linear probing excels if the load ratio is below 50%, and it is still compet-
itive up to a load ratio of 80% [7,27]. Nevertheless, its main drawback is cluster-
ing : Linear probing creates runs, i.e., entries whose hash values are equal. With
a sufficient high load, it is likely that runs can merge such that long sequence of
entries with different hash values emerge. When trying to look up a key k, we
have to search the sequence of succeeding elements starting at the initial address
until finding a tuple whose key is k, or ending at an empty entry. Fortunately, the
expected time of a search is rather promising for an α not too close to one: Given
that the used hash function h distributes the keys independently and uniformly,
we get O(

1/(1 − α)2
)

expected time for a search [21]. In practice, even weak
hash functions (like we use in this article) tend to behave as truly independent
hash functions [9]. These properties convinced us that linear probing is a good
candidate for our representations of the LZ trie using a hash table.

Compact Hashing. In terms of memory, hash is at a disadvantage compared to
binary, because the key-value pairs consist of two factor indices and a character;
for an α < 1, hash will always take more space than binary. To reduce the size
of the stored keys, we introduce the representation cht using compact hashing.

The idea of compact hashing [12,21] is to use a bijective hash function such
that when storing a tuple with key k in H, we only store the value and the
quotient �h(k)/M� in the hash table. The original key of an entry of H can
be restored by knowing the initial address h(k) mod M and the stored quo-
tient �h(k)/M�. To address collisions and therefore the displacement of a stored
entry due to linear probing, Cleary [10] adds two bit vectors with which the
initial address can be restored. (One bit vector marks the initial addresses of
all stored elements, and the other marks the boundaries of groups of elements
having the same initial address.)

For the bijective hash function h, we consider two classes:

The class of linear congruential generators (LCGs). The class of LCGs [8]
contains all functions lcga,b,p : [0..p − 1] → [0..p − 1], x �→ (ax + b) mod p

4 http://www.idryman.org/blog/2017/05/03/writing-a-damn-fast-hash-table-with-
tiny-memory-footprints/.

http://www.idryman.org/blog/2017/05/03/writing-a-damn-fast-hash-table-with-tiny-memory-footprints/
http://www.idryman.org/blog/2017/05/03/writing-a-damn-fast-hash-table-with-tiny-memory-footprints/
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with p ∈ N, 0 < a < p, 0 ≤ b < p. If p and a are relative prime, then there
exists a unique inverse a−1 ∈ [1..p − 1] of a such that aa−1 mod p = 1. Then
lcg−1

a,b,p : y �→ (y − b)a−1 mod p is the inverse of lcga,b,p. If p is prime, then
a−1 = ap−2 mod p due to Fermat’s little theorem.

The class of xorshift functions. The xorshift hash function class [28] contains
functions that use shift- and exclusive or (xor) operations. Let ⊕ denote the
binary xor-operator and w the number of bits of the input integer. For an integer
j < − �w/2� or j > �w/2�, the xorshift operation sxorw,j : [0..2w − 1] → [0..2w −
1], x �→ (

x ⊕ (
⌊
2jx

⌋
mod 2w)

)
mod 2w is inverse to itself: sxorw,j ◦sxorw,j = id.

It is possible to create a bijective function that is a concatenation of functions
of both families5.

A compact hash table can use less space than a traditional hash table if the
size of the keys is large: If the largest integer key is u, then all keys can be stored
in �lg u� bits, whereas all quotients can be stored in �lg(maxu h(u)/M)� bits. By
choosing a hash function h with M ≤ maxu h(u) ≤ cM for a constant c > 1, it
is possible to store the quotients in a number of bits independent of the number
of the keys.

Enlarging the hash table. On enlarging the hash table, we choose a new hash
function, and rebuild the entire table with the new size and a newly chosen hash
function. We first choose a hash function h out of the aforementioned bijective
hash classes and adjust h’s parameters such that h maps from [0..2mσ − 1] to
[0..2mσ − 1] (m has already its new size). This means that

– we select a function lcga,b,p with a prime mσ < p < 2mσ (such a prime
exists [37] and can be precomputed for all M = 2k, 1 ≤ k ≤ lg n) and
0 < a, b ≤ p randomly chosen, or that

– we select a function sxorw,j with lg(mσ) ≤ w ≤ lg(2mσ) and j arbitrary.

Note that although the domain of h is [0..2mσ − 1], we apply h only to keys
belonging to [0..mσ − 1].

The hash table always stores trie nodes with labels that are at most m; this
is an invariant due to the following fact: before inserting a node with label m + 1
we enlarge the hash table and hence update m. Therefore, the key of a node can
be represented by a �lg(mσ)�-bit integer (we map the key to a single integer with
[0..m − 1] × [0..σ − 1] → [0..mσ − 1], (y, c) �→ σy + c). Since h is a bijection, the
function [0..mσ−1] → [0..M−1]×[0.. �(2mσ − 1)/M�], i �→ (h1(i), h2(i)) := (h(i)
mod M, �h(i)/M�) is injective. We use h1 to find the locations of the entries in our
hash table H. When we want to store a node with label x and key yσ + c in the
hash table, we put x and h2(σy + c) in an entry of the hash table. The entry is
determined by h1, the linear probing strategy, and a re-arrangement with the bit
vectors. It stores x using lg m bits and h2(σy + c) using lg(2ασ) bits. In total, we

5 Popular hash functions like MurmurHash 3 (https://github.com/aappleby/
smhasher) use a post-processing step that applies multiple LCGs lcga,0,264 with a as
a predefined odd constant, and some xorshift-operations.

https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
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Trie Space Best Case (bits) Space Worst Case (bits)

binary 3z(lg(z2σ) − 2/3)/2 3z(lg(z2σ) + 4/3)
ternary 3z(lg(z3σ) − 1)/2 3z(lg(z3σ) + 2)
hash 3z(lg(z2σ) − 2/3)/2α 6z(lg(z2σ) + 4/3)/α
cht 3z(lg(αzσ) + 8/3)/2α 3z(lg(αzσ) + 11/3)/α
rolling 3z(w + lg(zσ) − 1/3)/2α 6z(w + lg(zσ) + 2/3)/α

Fig. 3. Upper and lower bound of the maximum memory used during an LZ78/LZW
factorization with z factors. The size of a fingerprint is w bits.

need M (lg(2ασ) + lg m)+2M bits to store m elements in a compact hash table of
sizeM . Sincem ≤ 2z−1, there is a power of two such thatM = 2�lg(z/α)�+1 ≤ (2z−
1)/α. On termination, the compact hash table takes at most M(2 + lg(2ασm)) ≤
(2z − 1)(3 + lg(ασz))/α bits. The memory peak is reached when we have to copy
the data from the penultimate table to the final hash table with the above size. The
memory peak is at most M(3 + lg(mασ)) + M/2(2 + lg(mασ)) ≤ (2z − 1)(11 +
3 lg(zασ))/2α.

If we compare this peak with the approach using a classic hash table (where
we need to store the full key), we get a size of M(lg m + lg m + lg σ) +
M/2(lg(m/2) + lg(m/2) + lg σ) ≤ 3(2z − 1)(4/3 + lg(σz2))/α bits.

This gives the following theorem:

Theorem 2. We can compute the LZ78 and LZW factorization online using
linear time with high probability and at most z(3 lg(zσα)+11)/α bits of working
space, for a fixed α with 0 < α < 1.

For the evaluation, we use a preliminary version of the implementation of
Poyias et al. [33] that is based on [10] with the difference that Cleary uses
bidirectional probing ([33] uses linear probing).

Rolling Hashing. Here, we present an alternative trie representation with
hashing, called rolling. The idea is to maintain the Karp-Rabin fingerprints [20]
of all computed factors in a hash table such that the navigation in the trie
is simulated by matching the fingerprint of a substring of the text with the
fingerprints in the hash table. Given that the fingerprint of the substring T [i..i+
� − 1] matches the fingerprint of a node u, we can compute the fingerprint
of T [i..i + �] to find the child of u that is connected to u by an edge with
label T [i+ �]. To compute the fingerprints, we choose one of the two rolling hash
function families:

– a function of the randomized Karp-Rabin ID37 family [24]6, and

6 https://github.com/lemire/rollinghashcpp. The function is ID37(T ) =
∑|T |

i=1 h(T [i])37|T |−i mod 2w, where w is the word size and h is a hash func-

tion that maps the alphabet uniformly to the range [0..232 − 1].

https://github.com/lemire/rollinghashcpp
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Table 1. Properties of the text collections and their factorizations. Each column
|output| shows the size of the respective (compressed) output. The sizes z �lg(zσ)� ≤
z �lg z�+z �lg σ� bits, z �lg(z + σ)� bits and 2z lg n bits are the output size of the LZ78,
LZW and LZ77 factorization for the respective number of factors z when storing the
output in arrays of fixed width.

Collection σ LZ78 LZW LZ77

z z 	lg(zσ)
 |output| z z 	lg(z + σ)
 |output| z 2z lg n

pc-english 226 21.4M 83.8MiB 80.2MiB 23.5M 70.1MiB 66.1MiB 14.0M 93.3MiB

pcr-cere 6 15.8M 50.0MiB 58.2MiB 17.1M 50.9MiB 46.9MiB 1.4M 9.7MiB

pc-dna 17 16.4M 54.8MiB 60.5MiB 17.8M 52.9MiB 48.9MiB 13.9M 92.1MiB

hashtag 179 18.9M 73.4MiB 70.6MiB 21.1M 62.9MiB 58.9MiB 13.7M 90.4MiB
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Fig. 4. Evaluation of LZ78 (left) and LZW (right) on pc-english.

– the function fermat(T ) =
∑|T |

i=1(T [i] − 1)(σ + 1)|T |−i mod 2w, where the
modulo by the word size w surrogates the integer overflow, and T [i] − 1 is in
the range [0..σ − 1]. In the case of a byte alphabet, σ + 1 = 28 + 1 = 257 is a
Fermat prime [35]. We compute fermat(T ) with Horner’s rule.

Both rolling hash functions discard the classic modulo operation with a prime
number in favor of integer overflows due to performance reasons; this trick was
already suggested in [15]. The LZ78/LZW computation using rolling is a Monte
Carlo algorithm, since the computation can produce a wrong factorization if
the computed fingerprints of two different strings are the same (because the
fingerprints are the hash table keys).

Summary. We summarize the description of the trie data structures in this and
the previous section by Fig. 3 showing the maximum space consumption of each
described trie. The maximum memory consumption is due to the peak at the
last enlargement of the dynamic trie data structure, i.e., when the trie enlarges
its space such that z ≤ m ≤ 2z − 1 (where m is the number of elements it can
maintain).
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4 Experiments and Conclusion

We implemented the LZ tries in the tudocomp framework [11]7. The framework
provides the implementation of an LZ78 and an LZW compressor. Both compres-
sors are parameterized by an LZ trie and a coder. The coder is a function that takes
the output of the factorization and generates the final binary output. We selected
the coder bit that stores the referred index y (with y > 0) of a factor Fx in �lg x�
bits. That is because the factor Fx can have a referred index y only with y < x. We
can restore the coded referred index on decompression since we know the index of
the factor that we currently process and hence the number of bits used to store its
referred index (if we coded it)8. This yields

∑z
i=1 �lg i� = z �lg z�−(lg e)z+O(lg z)

bits for storing the (positive) referred indices.
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Fig. 5. Evaluation of LZ78 (left) and LZW (right) on pcr-cere.
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Fig. 6. Evaluation of LZ78 (left) and LZW (right) on pc-dna.

7 The source code of our implementations is freely available at https://github.com/
tudocomp, except for cht and bonsai due to copyright restrictions.

8 This approach is similar to http://www.cplusplus.com/articles/iL18T05o.

https://github.com/tudocomp
https://github.com/tudocomp
http://www.cplusplus.com/articles/iL18T05o
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Fig. 7. Evaluation of LZ78 (left) and LZW (right) on hashtag.

For LZW, we have to cope with the negative integer values: We add the
value σ to all output values such that its output consists of non-negative
integers. Now the x-th factor costs �lg(x + σ)� bits. By splitting up the sum∑z

i=1 �lg(i + σ)� =
∑z+σ

i=1 �lg i� − ∑σ
i=1 �lg i� we get the total number of bits of

the LZW output by the previous formula. For LZ78, the additional characters
are output naively as �lg σ�-bit integers.

The LZ78 and LZW compressor are independent of the LZ trie implemen-
tation, i.e., all trie data structures described in the previous sections can be
plugged into the LZW or LZ78 compressor easily. We additionally incorporated
the following trie data structures into tudocomp:

cedar: the Cedar trie [39], representing a trie using two arrays.
judy: the Judy array, advertised to be optimized for avoiding CPU cache misses

(cf. [26] for an evaluation).
bonsai: the m-Bonsai (γ) trie [34] representing a trie whose nodes are not labeled.

It uses a compact hash table, but unlike our approach, the key consists
of the position of the parent in the hash table (instead of the label of
the parent) and the character. Due to this fact, we need to traverse the
complete trie for enlarging the trie. We store the labels of the trie nodes
in an extra array.

The data structures are realized as C++ classes. We added a lightweight wrapper
around each class providing the same interface for all tries.

Online Feature. Given an input stream with known length, we evaluate the
online computation of the LZ78 and LZW compression for different LZ trie
representations. We assume that Σ is a byte alphabet, i.e., σ = 28. On computing
a factor, we encode it and output it instantaneously. This makes our compression
program a filter [29], i.e., it processes the input stream and generates an output
stream, buffering neither the input nor the output.

Implementation Details. The keys stored by hash are 40-bit integers, the fin-
gerprints of rolling are 64-bit integers, and the values stored by hash, rolling and
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bonsai are 32-bit integers. For all variants working with hash tables, we initially
set α to 0.3.

Hash Function. We use cht with a hash function of the LCG family. Our hash
table for hash uses a xorshift hash function9 derived from [36]. It is slower than
simple multiplicative functions, but more resilient against clustering. Alterna-
tives are sophisticated hash functions like CLHash [25] or Zobrist hashing [23,42].
These are even more resilient against clustering, but have practical higher com-
putation times in our experiments.

Setup. The experiments were conducted on a machine with 32 GB of RAM, an
Intel Xeon CPU E3-1271 v3 and a Samsung SSD 850 EVO 250GB. The oper-
ating system was a 64-bit version of Ubuntu Linux 14.04 with the kernel ver-
sion 3.13. We used a single execution thread for the experiments. The source
code was compiled using the GNU compiler g++ 6.2.0 with the compile flags
-O3 -march=native -DNDEBUG.

Datasets. We evaluated the combinations of the aforementioned tries with the
LZW and LZ78 algorithms on the 200MiB text collections provided by tudo-
comp. We assume that the input alphabet is the byte alphabet (σ = 28). The
indices of the factors are represented with 32-bit integers. We chose four text
collections:

– pc-english: an English text,
– pcr-cere: a highly-repetitive DNA sequence with small alphabet size,
– pc-dna: a non-highly-repetitive DNA sequence with small alphabet size,
– hashtag: a tab-spaced-version data dump with integer keys and hash tags.

Table 1 shows the number of factors produced by LZ78, LZW and LZ77 (we used
the variant with overlapping) on each text collection. We plotted the memory
consumption against the time (in logarithmic scale) for all datasets in Figs. 4, 5,
6 and 7. To avoid clutter, we selected one hash function per rolling hash table:
We chose fermat with rolling and ID37 with rolling+ for the plots.

Overall Evaluation. The evaluation shows that the fastest option is rolling. The
size of its fingerprints is a trade-off between space and the probability of a correct
output. When space is an issue, rolling with 64-bit fingerprints is no match for
more space saving trie data structures. hash is the second fastest LZ trie in the
experiments. With 40-bit keys it uses less memory than rolling, but is slightly
slower. Depending on the quality of the resize hint, the variants hash+ and
rolling+ take 50% up to 100% of the size of hash and rolling, respectively. hash+
and rolling+ are always slower than their respective standard variants, sometimes
slower than the deterministic data structures ternary and binary. binary’s speed
excels at texts with very small alphabets, while ternary usually outperforms
binary. Only cht can compete with binary in terms of space, but is magnitudes
slower than most alternatives. The third party data structures cedar, bonsai and
judy could not make it to the Pareto front.

9 http://xorshift.di.unimi.it/splitmix64.c.

http://xorshift.di.unimi.it/splitmix64.c
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Table 2. Detailed evaluation of the tries using hashing. We evaluated the number of
collisions and the final table size M for the LZ78 factorization of 200 MiB pc-english.
An entry in rolling costs 64 + 32 bits, an entry in hash 40 + 32 bits.

Trie #Collisions M Memory Time

rolling with

- ID37 36 M 33.6 M 576.0 MiB 11.6 s

- fermat 137M 33.6 M 576.0 MiB 11.4 s

- fermat⊕ 36 M 33.6 M 576.0 MiB 11.8 s

rolling+ with

- ID37 140M 24.0 M 466.9 MiB 14.7 s

- fermat 938M 24.0 M 466.9 MiB 21.0 s

- fermat⊕ 142M 24.0 M 466.9 MiB 15.8 s

hash 36 M 33.6 M 432.0 MiB 15.3 s

hash+ 137M 24.0 M 350.2 MiB 19.1 s

Evaluation of rolling. The hash table with the rolling hash function fermat is
slightly faster than with a function of the ID37 family, but the hash table with
fermat tends to have more collisions (cf. Table 2). It is magnitudes slower at less
compressible texts like pc-proteins due to the high occurrence of collisions. The
number of collisions can drop if we post-process the output of fermat with a hash
function that is more collision resistant. Applying an evenly distributing hash
function on fermat speeds up the computation only if the number of collisions
is sufficiently high (e.g., rolling+ with fermat in Table 2). In the experiments, we
apply the xorshift hash function used by hash (see Footnote 9) to the output of
fermat for determining the initial address. We denote this variant with a ⊕ as
suffix of either fermat⊕ or rolling⊕.

According to the birthday paradox, the likelihood that the fingerprints of
two different substrings match is anti-correlated to the number of bits used for
storing the fingerprint if we assume that the used rolling hash function distrib-
utes uniformly. This means that the domain of the Karp-Rabin fingerprints can
be made large enough to be robust against collisions when hashing large texts.
In our case, we used 64-bit fingerprints because, unlike 32-bit and 40-bit finger-
prints, the factorization produced by rolling are correct for all test instances and
all tested rolling hash functions. Nevertheless, this bit length can be considered
as too weak for processing massive datasets: Given that the used rolling hash
function is uniform, the probability of a collision is 1/264. Although this number
is very small, processing 109 datasets, each 200 MiB large, would give a collision
probability of roughly 1%. This probability can be reduced by enlarging the bit
length, and hence improving the correctness probability by sacrificing working
space. We reran our experiments with 64-bit and 128-bit fingerprints, and mea-
sured time and space usage in Table 3. There, we can see that switching to a
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higher bit length slightly degrades the running time, but severely degrades the
space usage.

Another option to sustain a correct computation is to check the output fac-
torization. This check can be done by reconstructing the text with the output
and the built LZ trie. However, a compression with rolling combined with a
decompression step takes more time than other approaches like hash or binary.
Hence, a Las Vegas algorithm based on rolling is practically not interesting.

Variations of Hash Tables. The trie representation hash can be generalized
to be used with any associative container. The easiest implementation is to
use the balanced binary tree std::map or the hash table std::unordered map
provided by the standard library of C++11. std::unordered map is conform to
the interface of the C++ standard library, but therefore sacrifices performance.
It uses separate chaining that tends to use a lot of small memory allocations
affecting the overall running time (see Table 4). Another pitfall is to use the

Table 3. Performance comparison of 64-bit and 128-bit fingerprints generated by
fermat.

LZ78 LZW

64 bit 128 bit 64 bit 128 bit

Time Space Time Space Time Space Time Space

pc-english (see also Fig. 4)

rolling 11.4 s 576.0 MiB 12.1 s 960.0 MiB 11.8 s 576.0 MiB 12.7 s 960.0 MiB

rolling⊕ 11.9 s 576.0 MiB 13.7 s 960.0 MiB 12.3 s 576.0 MiB 14.1 s 960.0 MiB

rolling+ 21.0 s 466.9 MiB 24.1 s 778.1 MiB 68.8 s 565.1 MiB 52.6 s 984.6 MiB

rolling+⊕ 15.8 s 466.9 MiB 18.3 s 778.1 MiB 24.9 s 565.1 MiB 22.5 s 984.6 MiB

pcr-cere (see also Fig. 5)

rolling 9.0 s 576.0 MiB 9.5 s 960.0 MiB 9.2 s 576.0 MiB 9.8 s 960.0 MiB

rolling⊕ 9.5 s 576.0 MiB 10.8 s 960.0 MiB 9.6 s 576.0 MiB 11.2 s 960.0 MiB

rolling+ 11.1 s 443.9 MiB 12.6 s 739.7 MiB 11.4 s 450.9 MiB 13.8 s 751.6 MiB

rolling+⊕ 11.2 s 443.9 MiB 13.9 s 739.7 MiB 11.7 s 450.9 MiB 15.0 s 751.6 MiB

pc-dna (see also Fig. 6)

rolling 9.4 s 576.0 MiB 10.0 s 960.0 MiB 9.5 s 576.0 MiB 10.2 s 960.0 MiB

rolling⊕ 9.8 s 576.0 MiB 11.5 s 960.0 MiB 10.0 s 576.0 MiB 11.6 s 960.0 MiB

rolling+ 11.6 s 509.3 MiB 13.5 s 745.3 MiB 12.0 s 518.4 MiB 14.5 s 756.7 MiB

rolling+⊕ 11.7 s 509.3 MiB 14.7 s 745.3 MiB 12.2 s 518.4 MiB 15.6 s 756.7 MiB

hashtag (see also Fig. 7)

rolling 13.4 s 576.0 MiB 15.6 s 960.0 MiB 19.8 s 576.0 MiB 25.3 s 960.0 MiB

rolling⊕ 10.8 s 576.0 MiB 12.6 s 960.0 MiB 11.1 s 576.0 MiB 12.9 s 960.0 MiB

rolling+ 15.4 s 530.9 MiB 18.0 s 766.3 MiB 21.8 s 549.7 MiB 25.6 s 779.6 MiB

rolling+⊕ 14.1 s 530.9 MiB 17.2 s 766.3 MiB 15.8 s 549.7 MiB 18.9 s 779.6 MiB
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standard C++11 hash function for integers that is just the identity function.
Although this is the fastest available hash function, it performs poorly in the
experiments. There are two reasons. The first is that k �→ k mod M badly
distributes the tuples if M is not a prime. The second is that the input data
is not independent: In the case of LZ78 and LZW, the composed key c + �σ
of a node v connected to its parent with label � by an edge with label c holds
information about the trie topology: all nodes whose keys are �σ +d for a d ∈ Σ
are the siblings of v. Since � is smaller than the label of v (� is the referred
index of the factor corresponding to v), larger keys depend on the existence
of some keys with smaller values. Both problems can be tackled by using a
hash function with an avalanche effect property, i.e., flipping a single bit of the
input changes roughly half of the bits of the output. In Table 4 we evaluated the
identity and the xorshift hash function (see Footnote 9) as hash functions for the
hash table flathash, which seems to be very sensitive for hash collisions. We
selected the LZ trie of the LZ-index [32] as an external competitor in Table 4: We
terminated the execution of the LZ-index algorithm after producing the LZ trie of
the LZ78 factorization. We did not integrate this data structure into tudocomp.
The only interesting configuration is hash with the hash table sparsehash, since
it takes 4.1MB less space than binary while still being faster than cht, at the
LZ78-factorization of pcr-cere.

Outlook
An interesting option is to switch from the linear probing scheme to a more
sophisticated scheme whose running time is stable for high loads, too [27]. This
could be especially beneficent if the resize hint provides a more accurate bounds
on the number of factors.

Table 4. hash with different hash tables, and the LZ-index.

Trie pc-english pcr-cere

LZ78 LZW LZ78 LZW

Time Space Time Space Time Space Time Space

hash with hash table

std::unordered map 51.0 s 856.6MiB 54.0 s 937.9MiB 42.3 s 703.2MiB 44.1 s 760.8MiB

std::map 161.2 s 980.2MiB 167.2 s 1.1GiB 98.8 s 722.5MiB 104.6 s 781.6MiB

rigtorpa 14.9 s 960.0MiB 15.2 s 960.0MiB 12.0 s 960.0MiB 12.3 s 960.0MiB

flathashb 33.5 s 24GiB 24.5 s 24GiB 18.5 s 6GiB 19.2 s 6GiB

flathashc 15.1 s 1.3GiB 15.7 s 1.3GiB 12.4 s 1.3GiB 13.0 s 1.3GiB

densehashd 23.0 s 576.0MiB 24.4 s 576.0MiB 29.4 s 576.0MiB 30.8 s 576.0MiB

sparsehashd 49.1 s 255.7MiB 52.2 s 280.0MiB 68.6 s 191.3MiB 72.4 s 206.1MiB

LZ-index [32] 24.6 s 1047MiB 14.5 s 817.3MiB
a https://github.com/rigtorp/HashMap, α = 0.5 hard coded
b https://probablydance.com/2017/02/26/i-wrote-the-fastest-hashtable/, it uses the identity as a

hash function and doubles its size when experiencing too much collisions
c See Footnote b, but with the xorshift hash function (see Footnote 9)
d https://github.com/sparsehash/sparsehash

https://github.com/rigtorp/HashMap
https://probablydance.com/2017/02/26/i-wrote-the-fastest-hashtable/
https://github.com/sparsehash/sparsehash
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Speaking of novel hash tables, we could combine the compact hash table [10]
with the memory management of Google’s sparse hash table10 leading to an even
more memory friendly trie representation.

Acknowledgments. We are grateful to Marvin Löbel for providing the basement of
the LZ78/LZW framework in tudocomp. Further, we thank Andreas Poyias for sharing
the source code of the m-Bonsai trie [34] and the compact hash table [33].
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37. Tchebychev, P.: Mémoire sur les nombres premiers. J. de mathématiques pures et
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Abstract. Two strings are considered Abelian equivalent if one is a
permutation of the other. We deal with two problems from Abelian
stringology: computing regular Abelian periods of a given string and com-
puting the longest common Abelian factor (LCAF) of two given strings.
For the former problem our solution works in O(n log m) time, where m is
the length of the run-length encoded string, which improves the O(nm)-
time result from [5]. For LCAF we propose two solutions, one working in
O(n + m4) time and O(n) space, the other requiring O(n3/2σ

√
m log n)

time and O(nσ) space (for m = O(n/ log n)).

1 Introduction

Abelian stringology has received considerable attention in theoretical computer
science in the last decade, see, e.g., [1] and references therein. Two strings S1

and S2 are Abelian equivalent if S1 is a permutation of S2.
In this work we consider two problems, of finding all regular Abelian periods of

a given string and of computing longest common Abelian factors (LCAF) of two
given strings, with one presented algorithm for the former and two algorithms
for the latter problem. Following [5], our algorithms make use of run-length
compressibility of the input string(s). We simply assume that string S of length
n can be decomposed into m, m ≤ n, substrings Si, 1 ≤ i ≤ m, such that the
number of distinct symbols in each Si is one and the number of distinct symbols
in every concatenation SiSi+1 is two. The symbols of S are over an integer
alphabet Σ = {1, 2, . . . , σ}, where we can safely assume that σ ≤ m. Indeed,
were it not the case, we could initially remap the distinct symbols from S into
(at most) {1, 2, . . . ,m}, using a balanced binary search tree in O(n + m log m)
time. All algorithms proposed in this work need Ω(n + m log m) time and thus
are not dominated by this (optional) preprocessing step. As creating the RLE
representation of the given input takes O(n) time, all our results contain such
an additive term.

If a string w can be factorized into a sequence v1, . . . , vs, s > 1, such that
v1, . . . , vs−1 are all Abelian equivalent and vs is Abelian equivalent to some
subsequence of v1, then we say w has a regular Abelian period p. In general
terms, the best algorithm for the problem of finding all regular Abelian peri-
ods of a string of length n was given by Kociumaka et al. [4] and it works in

c© Springer International Publishing AG 2017
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O(n(log log n+log σ)), where σ is the alphabet size. Recently, Sugimoto et al. [5]
presented an O(nm)-time algorithm.

The LCAF problem is defined for two input strings, u and w. The goal is to
find two Abelian equivalent substrings, one from u and the other from w, such
that their length is maximized. When linear space is required, the problem can
be solved either in O(n2σ) [2] or O(nm2) time [5]. If we can sacrifice O(n log2 n)
space, an O(n2 log2 n log∗ n)-time algorithm [2] is known.

We use standard notation. Let S = S[1 . . . n] be a string of length n over an
integer alphabet Σ of size σ = |Σ|. S[i] denotes the ith symbol of S, and S[i . . . j] =
S[i]S[i + 1] . . . S[j] the contiguous sequence of symbols (or factor or substring) of
length j − i + 1. We will use the same notation for arrays. The Parikh vector for
string S, denoted as PS [1 . . . σ], is defined as a vector (array) of size σ storing the
number of occurrences of each alphabet symbol in S. The two Parikh vectors are
equal, i.e., PS = PT , when PS [c] = PT [c] for all symbols c.

All our algorithms are deterministic and work in the word-RAM model.

2 Computing All Regular Abelian Periods

There exist two prior algorithms for this problem. Kociumaka et al. [4] achieved
O(n(log log n + log σ)) time. Sugimoto et al. [5] gave an O(nm)-time solution,
where m is the length of the run-length encoded input. We combine both solu-
tions to obtain O(n log m) time.

To this end, we first note that thanks to a rather sophisticated O(n log σ) deter-
ministic time preprocessing technique from [4, Lemma 12] we can tell in constant
time if two substrings of S, S[1 . . . j] and S[1 + kj . . . (k + 1)j], for arbitrary valid
j and k, are Abelian equivalent1. We divide all possible period lengths into those
not greater than some K (whose value will be settled later) and those that exceed
this value. For simplicity, we will refer to the corresponding candidate periods as
short and long. Sugimoto et al. consider each candidate period value separately;
handling such a candidate takes O(m) time in their algorithm. We apply their
technique for short candidate periods. For long candidate periods we ignore the
RLE representation and check if all �n/p� corresponding factors of length p are
Abelian equivalent, each factor checked inO(1) timedue to the aforementionedpre-
processing technique. (Note that handling the suffixes of S of length n mod p, takes
O(n) time in total, see [4, Lemma 10].) Testing long candidate periods takes thus
O(n

∑n
i=K+1 1/i) = O(n log(n/K)) time, as it is well known that partial sums of

the harmonic series have logarithmic growth. Now, testing all short candidate peri-
ods clearly takes O(Km) time and in total, including the preprocessing, we have
O(n log σ + Km + n(log(n/K))) time. By setting K = (n/m) log m we obtain

1 More precisely, their lemma allows to check in constant time if two prefixes of the given
string w have proportional Parikh vectors, assuming that both prefixes contain all sym-
bols from the alphabet for w. In our setting, in O(n log σ) time we can compute the
maximum q over the first positions of each alphabet symbol in S, and if j < q, then j
cannot be a period of S and is immediately discarded.
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O(n(log m + log σ)) time. Recall that if the assumption that σ ≤ m is not ful-
filled, we can remap the alphabet in O(n+m log m) time, which is absorbed in our
main formula. Taking all these into account, we obtain O(n log m) time for com-
puting all regular Abelian periods. This significantly improves the result of Sugi-
moto et al. and dominates over the Kociumaka et al. algorithm (whose time com-
plexity can be written as O(n(log log n + log(min(σ,m)))) in our setting) when
log m = o(log log n).

3 Computing Longest Common Abelian Factors of Two
Strings

We solve the following problem: for two given strings, S of lengths n1 and
m1 in standard and RLE form, respectively, and T of lengths n2 and m2 in
standard and RLE form, respectively, compute the length maxlen = max{d ∈
[1 . . . min(n1, n2)]|∃i : 1 ≤ i ≤ n1,∃j : 1 ≤ j ≤ n2 s.t. PS [i . . . i + d − 1] =
PT [j . . . j + d − 1]} of the longest common Abelian factors of S and T , together
with a pair (i, j) satisfying this condition. To facilitate notation, we set n =
n1 + n2 and m = m1 + m2.

In the following subsections we present two algorithms for this problem.

3.1 LCAF in O(n + m4) Time and O(n) Space

Let S (respectively T ) be decomposed into the concatenation s1s2 . . . sm1

(respectively t1t2 . . . tm2), where each si (respectively ti) is a run of equal sym-
bols obtained from the RLE compression.

Let startpos(S) be an array of size m1 such that startpos(S)[i] = 1 +
∑i−1

j=1 |sj |. For instance, if S = abbbcbbaaa, then startpos = [1, 2, 5, 6, 8]. Simi-
larly we define startpos(T ).

Our algorithm basically consists of four nested loops, with m2
1m

2
2 = O(m4)

iterations, where the innermost loop iteration is performed in constant time. The
variables of the first two outer loops are associated with the first and the last run
of currently inspected intervals from S; similarly the two inner loops are related
to the boundaries of the current intervals from T .

The algorithm is listed in Fig. 1. The indexes i and k (line 4 and 11) are
‘rough’ boundaries of the current interval in S, and j and l (lines 20 and 24)
have a similar function with respect to T . More precisely, the left boundary
of the current interval in S is one of the symbols in the run si and the right
boundary is one of the symbols in the run sk−1. In other words, the cur-
rent interval in S is nested in the half-open (left-closed, right-open) interval
[startpos(S)[i] . . . startpos(S)[k]). (We skip an analogous explanation for T .)

Apart from the Parikh vectors for S and T (PS and PT ), we maintain two
more structures. The vector D of differences between the two Parikh vectors is
initialized to all zeros (line 10) and increases one of its slots whenever the current
span of S is extended on the right with a run (line 15), and similarly decreases
one slot value when the current span of T is extended (line 28).
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Fig. 1. Finding the length of an LCAF (the algorithm from Sect. 3.1)
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NE (line 2), whose name stands for Non-Equal, is a doubly-linked list of
symbols for which PS and PT differ. New elements will always be appended
to this list (line 17), but we must also efficiently remove from it elements at
arbitrary positions. This is made possible due to array R (line 8) of pointers to
elements on list NE. Every time a symbol is appended to NE, the corresponding
slot of R is written (line 17), and whenever we want to remove an element from
NE, the pointer to it is read from R, which allows to update the list, and then
the corresponding slot of R is set to NIL (line 19).

The key operations are in lines 33–34: if the current Parikh vectors differ for
at most four symbols, we check if the boundary runs of the current spans of S
and T can be truncated in such a way that the corresponding Parikh vectors
will be equal; if there is more than one way to do it, the one which maximizes
the intervals (that is, common Abelian factors) is chosen. All this can be done
in O(1) time, making use of the NE list and simple arithmetics. Note that
for clarity the algorithm in Fig. 1 returns only the length of a longest common
Abelian factor, without the start positions of the two matching factors. Adding
the start positions is trivial, without compromising the time complexity.

The presented algorithm works in O(n + m log m + m4) = O(n + m4) time.
It is also very simple to find all longest common Abelian factors. We first

run the code from Fig. 1, to find maxlen, and then basically run the procedure
again, but now maintaining a list of common Abelian factors of length maxlen.
In this way the time becomes O(n + m4 + occ), where occ is the output size.
Since however occ ≤ n, the actual time complexity is unchanged.

3.2 LCAF in (Essentially) O(n3/2σ
√

m logn) Time and O(nσ)
Space

The starting point for the algorithm from the current subsection is a simple
technique from [2] with O(σn2) time and O(σn) space. It is based on a gener-
alized suffix tree (GST), capable to find the LCF for a pair of strings of length
n in O(n) time [3]. In [2, Sect. 3] this algorithm was used n times, for each fac-
tor length �, replacing each �-length factor by its Parikh vector followed with
a unique terminator, to prevent matches longer than σ. If there exists an LCF
of length exactly σ, it must correspond to a pair of factors, one from S and
one from T , of length �. This takes O(σn) time for one value of �, and requires
O(σn) space, hence the promised overall time and space complexities (we build
and discard the generalized suffix trees one at a time).

Let us now refine this technique for RLE-compressible strings. We use a
parameter k, whose value will be settled later. We are going to process sampled
values of �, namely, � = 1, 1+k, 1+2k, 1+3k, . . .. For a given �, all lengths from
[� . . . � + k − 1] will be handled.

To this end, in a pass, we consider all factors from S#T of length �, but in
the leaves of the resulting GST, which are terminators, we also store extra data
telling if the corresponding factor is followed by at least k identical symbols (and
if so, this symbol is also stored). Assume now that the answer is positive. If the
GST can find an LCF (in the Parikh vector domain) of length exactly σ and
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both respective strings (one from S, the other from T ) are followed by a run of
at least k copies of some symbol c, then we have a match of length � + k. All
this takes (for one particular value of �) O(nσ) time and O(nσ) space.

If this is not the case, however, we must somehow handle the factors which
are not followed by a run of at least k identical symbols. Clearly, there are at
most km such factors (for a given �). First we notice that we can compute their
Parikh vectors in O(σ) time each after an O(nσ) time and space preprocessing
(this is done once for all values of �). To this end, we calculate (in an incre-
mental manner) the Parikh vectors for all the prefixes of S#T . Then, for a
given factor of S#T , we subtract two Parikh vectors element-wise. Now, we find
the LCAF among the candidates. We sort the (at most) km Parikh vectors, in
O(σkm log(km)) time, e.g. via heap sort. Then, in O(σkm) time we check if
there is at least one pair of equal Parikh vectors and if so, we have a candidate
for the LCAF. We repeat the same procedure k times, each time appending one
symbol to all considered factors, i.e., updating the corresponding Parikh vectors.
All this takes O(k2σm log(km)) time.

Let us now estimate the overall time, for all n/k values of �. The time is
O(nσ + (n/k)(nσ + k2σm log(km))) = O(nσ + n2σ/k + knσm log(km)). This
is minimized for k =

√
n/(m log n), provided that m = O(n/ log n). For the

case of m = ω(n/ log n) we set k to 1. This gives O(n3/2σ
√

m log n) time for
m = O(n/ log n) and O(nσm log m) time for m = ω(n/ log n). The required
space is O(nσ).

Let us compare this result to existing ones. For example, for m =
Ω(n0.4286+ε) and m = O(n1−ε), for any 0 < ε < 0.5714, and the alphabet
size polylogarithmic in n, this algorithm dominates over the solution from [5,
Sect. 5] and the algorithm from the previous subsection, not to say about Ω(n2)-
time algorithms not working in terms of m, the size of the run-length encoding
of the input strings.
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Abstract. Some of the most efficient algorithms for computing the
length of a longest common subsequence (LLCS) between two strings
are based on so-called “bit-parallelism”. They achieve O(�m/w�n) time,
where m and n are the string lengths and w is the computer word size.
The first such algorithm was presented by Allison and Dix [3] and per-
forms 6 bit-vector operations per step. The number of operations per
step has later been improved to 5 by Crochemore et al. [5] and to 4 by
Hyyrö [6]. In this short paper we explore whether further improvement
is possible. We find that under fairly reasonable assumptions, the LLCS
problem requires at least 4 bit-vector operations per step. As a byproduct
we also present five new 4-operation bit-parallel LLCS algorithms.

1 Introduction

Let A and B be input strings of lengths m and n. Finding LLCS(A, B), the
length of a longest common subsequence (LCS) between the strings A and B, is
a classic and much studied problem in computer science. A fundamental O(mn)
dynamic programming solution was given by Wagner and Fischer [9], and this
quadratic worst-case complexity cannot be improved by any algorithm that uses
individual equal/nonequal comparisons between characters [2]. Furthermore a
recent conjecture [1] claims that the LLCS problem requires at least O(n2−λ)
time for two strings of equal length m = n, for any choice of a constant λ > 0.

Numerous further LLCS algorithms have been proposed over the last few
decades. Breaking the quadratic complexity bound has proven elusive, but sig-
nificant practical improvements have been achieved. A comprehensive survey of
LLCS algorithms by Bergroth et al. [4] found the algorithms of Kuo and Cross
(KC) [7], Rick [8] and Wu et al. (WMMM) [10] to be the fastest in practice. This
survey, however, did not include the already existing so-called “bit-parallel” algo-
rithm of Allison and Dix [3]. The bit-parallel approach has been later found to
be very practical. For example Hyyrö [6] reported that his improved bit-parallel
algorithm (Hyy) dominates over KC. In order to explore this further, we per-
formed a comparison between Hyy, KC, WMMM and basic dynamic programming
(DP)1. We tested first with random strings of lengths m = n = 50 and then
with random strings of lengths m = n = 2000. The alphabet size varied from

1 The algorithm of Rick, as recommended in [4], was omitted as it was not competitive
in our experiments. This was probably due to its high O(σm) preprocessing cost.
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Fig. 1. LLCS algorithm tests with m = n = 50 (left) and m = n = 2000 (right).

2 to 256. The methods were implemented in C and compiled with GNU gcc using
the -O3 switch. The test computer had 64-bit Ubuntu Linux 16.04, 16 GB RAM
and a 2.3 GHz Intel i7-3651QM CPU. The results are shown in Fig. 1 and seem
to confirm the very good performance of the bit-parallel approach.

The first bit-parallel LLCS algorithm by Allison and Dix performs 6 bit-
vector operations per each character of B. Later Crochemore et al. [5] improved
this to 5 and finally Hyyrö [6] to 4 operations per character, the latter being
the most efficient currently known bit-parallel LLCS algorithm. In this paper we
explore whether a bit-parallel algorithm that requires only 3 operations exists.

2 Preliminaries

We assume that strings consist of characters from an alphabet Σ with alphabet
size σ. Si denotes the ith character of S and Si..j denotes the substring of S
that starts at the ith character and ends at the jth character. A string C is a
subsequence of a string A if and only if A can be transformed into C by removing
zero or more characters from A. C is a longest common subsequence (LCS) of
strings A and B if it is both a subsequence of A and a subsequence of B, and no
longer string with this property exists. We denote the unique length of an LCS
between A and B by LLCS(A,B). For example LLCS("chart", "chatter") =
4, and both "chat" and "char" are corresponding LCSs of length 4.

The fundamental dynamic programming solution for LLCS computation uses
Recurrence 1 to fill an (m + 1) × (n + 1) dynamic programming matrix L with
values L[i, j] = LLCS(A1..i, B1..j). The following Observations 1 and 2 are well-
known and easy to derive from Recurrence 1.

Recurrence 1. When 0 ≤ i ≤ m and 0 ≤ j ≤ n:

L[i, 0] = 0, L[0, j] = 0, and L[i, j] =
{

L[i − 1, j − 1] + 1, if Ai = Bj .
max(L[i − 1, j], L[i, j − 1]), otherwise.

Observation 1. L[i, j] ∈ {L[i − 1, j], L[i − 1, j] + 1}.
Observation 2. The values in a column j of L may be described by recording
all rows i ∈ 1, . . . , m where L[i, j] = L[i − 1, j] + 1.
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L c h a t t e r

0 0 0 0 0 0 0 0

c 0 1 1 1 1 1 1 1

h 0 1 2 2 2 2 2 2

a 0 1 2 3 3 3 3 3

r 0 1 2 3 3 3 3 4

t 0 1 2 3 4 4 4 4

V0 V1 V2 V3 V4 V5 V6 V7

0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 0

Fig. 2. The dynamic programming table L and corresponding column vectors Vj .

We use the following notation with bit-vectors: ‘&’ denotes bitwise “and”, ‘|’
denotes bitwise “or”, ‘∧’ denotes bitwise “xor”, ‘∼’ denotes bit complementation,
and ‘<<’ and ‘>>’ denote shifting the bit-vector left and right, respectively,
using zero padding at both ends. The ith bit of the bit vector V is V [i] and
bit positions grow from right to left. For example the bits values of a bit-vector
V = 1011001 are V [1] = V [4] = V [5] = V [7] = 1 and V [2] = V [3] = V [6] = 0.

Bit-parallel algorithms take advantage of the fact that digital computers
perform operations on chunks of w bits, where w is the computer word size (in
most recent computers w = 64). In case of LLCS computation, Observations 1
and 2 permit us to represent the m row values of column j of L by a length-m
bit-vector Vj whose ith bit is 1 if and only if L[i, j] = L[i−1, j]+1. Now the actual
value L[m, j] is given by the sum

∑m
k=1 Vj [k], and Vj fits into �m/w� computer

words. Figure 2 shows an example of a dynamic programming table L and its
representation by Vj vectors. Clearly also other bit encodings are possible: we
may e.g. define a complemented variant V ′

j = ∼Vj , where the ith bit of V ′
j is 0

if and only if L[i, j] = L[i − 1, j] + 1. Note that the overall value LLCS(A, B) =
L[m,n] is given by the number of 1-bits in Vn (or the number of 0-bits in V ′

n).
The column vector Vj (or V ′

j ) can be computed from the previous column vector
Vj−1 (or V ′

j−1) by a constant number of bit-vector operations. The computation
requires knowledge of all rows i that have a match between the current column
character B[j] and the row character A[i]. This is facilitated by precomputing
for each different character c a length-m match bit-vector M [c] whose ith bit is
1 if and only if A[i] = c.

The 6-operation bit-parallel LLCS algorithm of Allison and Dix encodes the
columns of L by Vj , and the 5-operation algorithm of Crochemore et al. and
the 4-operation algorithm of Hyyrö use the complemented vectors V ′

j . These
three algorithms, together with the preprocessing of the match vectors M [c], are
described in Fig. 3. See the original articles [3,5,6] for details about the algo-
rithms’ logic. The algorithms run in O(�m/w�n) time, as a bit-vector operation
on length-m bit-vectors can be done in O(�m/w�) time.
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Fig. 3. The bit-parallel LLCS algorithms of Allison and Dix (AD), Crochemore et al.
(CIPR) and Hyyrö (Hyy). Also preprocessing of the M -vectors is shown.

3 A Lower Bound for the Bit-Vector Operations

Given the progress from 6 to 4 bit-vector operations, a natural question is
whether further improvement to 3 operations is possible. In order to make this
problem approachable, we make the following four fairly reasonable assumptions:

1. Generality: the algorithm must work with all bit-vector lengths w.
2. Input: a length-m bit-vector representing the increment positions in column

j − 1 and a length-m bit vector representing the matching rows for Bj .
3. One-to-one correspondence between rows and bit-positions: each bit position

in the bit-vectors corresponds to a certain row i.
4 Universality: the algorithm uses only commonly available operations.

These assumptions seem fairly reasonable as we in practice can afford to use
only 1 bit per row: a scheme that uses k bits per row needs km/w computer
words per column, and hence the number of operations should be less than 4/k
in order to improve on the best current bit-parallel algorithm.

We tackled the problem by enumerating and testing all possible 3-operation
bit-parallel algorithms that fulfill the preceding assumptions. This was feasible
as the number of operations is so small. The enumeration proceeded roughly as
follows and more or less corresponds to a 10-level deep nested for/while-loop:

1. Enumerate over all ways to select operands for 3 operations. Below the values
C1 and C2 are constants (more than two would be redundant) and Ri refers
to the result of the ith operation. Each operation selects operands as follows:

– The 1st operation selects 2 operands from {Vj−1, C1, C2,M [c]}.
– The 2nd operation selects 2 operands from {Vj−1, C1, C2,M [c], R1}.
– The 3rd operation selects 2 operands from {Vj−1, C1, C2,M [c], R1, R2}.
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2. Under step 1, iterate over all permutations of 1, . . . , w, where each defines one
possible mapping from bits to rows in the column and match vectors: which
bit position corresponds to which row.

3. Under step 2, iterate over all 2w length-w bit vectors, where each defines one
possible set of bit roles for the column vectors: the ith bit defines whether an
increment L[i, j] = L[i − 1, j] + 1 is recorded as a 1 or 0 bit.

4. Under step 3, iterate over all 2w length-w bit vectors, where each defines one
possible set of bit roles for the match vectors: the ith bit defines whether a
match A[i] = c is recorded into M [c] as a 1 or 0 bit.

5. Under step 4, iterate over all possible constant values (i.e. all 2w possible
values for C1 and C2, independent of each other).

6. Under step 5, iterate over all possible ways to select 3 operations out of the
set of permitted operations.
(a) For each selection of 3 operations, check whether the formula is correct by

checking if the formula produces correct result (into R3) with all inputs
(combinations of previous column vector and current match vector).
i. The result is verified by comparing R3 with the result of basic dynamic

programming (permuting the row positions and inverting bit values
where necessary).

Although this exceeds the typical assumptions of bit-parallel algorithms, the
search allowed each operation to be (1) any of the 16 possible binary logical
operations, (2) an arithmetic operator +, −, * or /, or (3) a left or right shift
that uses either 1-bits or the left/rightmost bit for padding (allowed shift lengths
are 1, . . . , w−1). Note that 0-padding shifts are expressed by multiplication and
division (with one of the constants, such as C1, specifying the multiplier).

We ran the exhaustive search using a fixed small length w = 4. The computa-
tion took roughly 50 min and was unable to find a working 3-operation formula.
This provides support for a claim that the existing 4-operation bit-parallel LLCS
algorithm is optimal within the constraints described before. In order to gain con-
fidence in the correctness of the procedure, we modified the implementation to
do an exhaustive search over all 4-operation combinations. As this would have
otherwise taken too much time, the 4-operation test was restricted to consider
only two linear mappings from bits to rows: the basic order, where the ith bit
corresponds to row i, and a reverse order, where the ith bit corresponds to the
row m − i + 1. The other parts of the implementations were left intact. The
4-operation run took roughly 1 h and found dozens of correct 4-operation algo-
rithms. Many of these used non-standard logical bit-vector operations, but a
total of 6 essentially different algorithms used only the universally supported
C-style arithmetic and logical operations. One of these was the algorithm Hyy of
Hyyrö [6] and the rest were new. We note that the search also found the CIPR
algorithm of Crochemore et al. [5], as that algorithm makes only 4 operations
when the non-standard logical “X and not Y”-operation counts as one opera-
tion. Finding these formulas provides some further confidence that the search
procedure works correctly.

Figure 4 shows the five new 4-operation bit-parallel LLCS algorithms. All
use the natural top-down mapping between bits and rows, where the ith bit
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corresponds to row i, and uniform bit roles (the meaning of 0 and 1 bits is the
same in all rows of the same vector). Some use complemented match vectors:
we define M ′[c] as a match vector whose ith bit is 0 if and only if A[i] = c.
The names 11a, 11b, 10, 00a and 00b reflect the bit roles. The first letter is 1
if the algorithm uses M and 0 if it uses the complemented M ′ match vectors,
respectively. The second letter is 1 if the algorithm uses the Vj and 0 if it uses the
complemented V ′

j column vectors. According to our preliminary experiments, all
these 4-operation variants have virtually identical practical performance.

Fig. 4. The five new 4-operation bit-parallel LLCS algorithms found by our exhaustive
search. Also preprocessing the complemented M ′-vectors is shown.
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Abstract. A keyword dictionary is an associative array with string keys.
Although it is a classical data structure, recent applications require the
management of massive string data using the keyword dictionary in main
memory. Therefore, its space-efficient implementation is very important.
If limited to static applications, there are a number of very compact
dictionary implementations; however, existing dynamic implementations
consume much larger space than static ones. In this paper, we propose a
new practical implementation of space-efficient dynamic keyword dictio-
naries. Our implementation uses path decomposition, which is proposed
for constructing cache-friendly trie structures, for dynamic construction
in compact space with a different approach. Using experiments on real-
world datasets, we show that our implementation can construct keyword
dictionaries in spaces up to 2.8x smaller than the most compact existing
dynamic implementation.

Keywords: Keyword dictionaries · Compact data structures · Tries ·
Path decomposition

1 Introduction

In modern computer science, managing massive string data in main memory is
a fundamental problem. Many researchers have investigated space-efficient data
structures for string processing. In this paper, we focus on the practical imple-
mentation of keyword dictionaries that are an associative array with string keys.
Although the keyword dictionary is a classical data structure used in natural
language processing and information retrieval, many recent applications require
space-efficient implementations to store large string datasets, as reported in [16].
For example, Mavlyutov et al. [17] considered URIs of 14 GB for RDF data man-
agement systems.

As for static keyword dictionaries, very compact implementations have
been proposed recently. For example, Mart́ınez-Prieto et al. [16] proposed and
practically evaluated compact implementations using some techniques. Grossi
and Ottaviano [8] proposed a cache-friendly compact implementation using an
c© Springer International Publishing AG 2017
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ordered labeled tree structure known as a trie [14]. For the implementations,
Kanda et al. [13] empirically evaluated some compression strategies. Also, Kanda
et al. [12] proposed a fast and compact implementation using an improved
double-array trie. While those implementations can store large datasets in com-
pact space, their applications are limited because key insertion and deletion are
not supported.

As for dynamic keyword dictionaries, there are some space-efficient imple-
mentations such as the HAT-trie [1], adaptive radix tree (ART) [15], Judy [3],
and Cedar [22]. While those implementations attempt to improve the space effi-
ciency by reducing pointer overheads, they still consume much larger space than
the static implementations. For example, to store a geographic name dataset,
the HAT-trie uses space 7.2x larger than the static implementation by Grossi
and Ottaviano [8], from the experimental results in this paper and [12]. On the
other hand, a number of practical compact dynamic trie representations have
been presented. Darragh et al. [5] proposed the Bonsai tree, which is a com-
pact hash-based trie representation. Recently, Poyias and Raman [19] improved
the Bonsai tree, namely, m-Bonsai. The m-Bonsai tree can represent a trie in
asymptotically information-theoretically optimal space while supporting basic
tree operations in constant expected time. Takagi et al. [20] also proposed an
efficient data structure for online string processing. However, there has been no
discussion or evaluation about keyword dictionary implementation. Therefore,
we must address the engineering of more space-efficient implementations.

In this paper, we propose a new implementation of space-efficient dynamic
keyword dictionaries. Our implementation is based on a trie formed by path
decomposition [6], which is a trie transformation technique. The path decom-
position was proposed for constructing cache-friendly trie structures and was
utilized in static applications [8,11]; however, we use it for dynamic dictionary
construction with a different approach. We implement space-efficient dictionar-
ies by applying the m-Bonsai representation to this approach. From experiments
using read-world datasets considering various applications, we show that our
implementation is much more compact than existing dynamic implementations.

2 Preliminaries

2.1 Basic Notations and Definitions

A sequence A with n entries, A[0]A[1] . . . A[n − 1], is denoted by A[0, n). For a
sequence A[0, n), |A| denotes the length n. A keyword is a byte character string
that always has a special terminator drawn by $, that is, $ �∈ w[0, n − 1) and
w[n − 1] = $ for a keyword w[0, n). The base of the logarithm is 2 throughout
this paper.

2.2 Path Decomposition

A trie [14] is an ordered labeled tree to store a set of strings, and is constructed by
merging common prefixes. Path decomposition [6] is a technique that transforms
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the trie as follows. It first chooses a root-to-leaf path in the original trie, and
then associates the path with a root of the new trie. Children of the new root
are recursively defined as the roots of new subtries corresponding to original
subtries hanging off the path.

The existing purpose of path decomposition is to reduce the number of node-
to-node traversals by lowering the height of the resulting tree. Although the
height depends on a strategy of choosing a path, any strategy can guarantee
that the height is not greater than that of the Patricia tree [18]; therefore, some
improvement in cache efficiency can be expected for all strategies. The following
fact is important for our data structure:

Fact 1. Each node of a path-decomposed trie corresponds to some node-to-leaf
path of the original trie; therefore, the number of path-decomposed trie nodes is
the same as that of registered keywords because the original trie has the same
number of leaf nodes owing to the special keyword terminator.

2.3 m-Bonsai

The m-Bonsai tree [19] is a compact dynamic trie representation that defines
nodes on hash table Q with m slots using open addressing. Let n denote the
number of trie nodes. We refer to α = n/m (0 ≤ α ≤ 1) as a load factor. We
assume that n and m are pre-given. As each node is located at some slot, we
denote node IDs using slot addresses. That is, a node with ID v (or node v) is
located on Q[v]. Defining a new child from node v with symbol c is implemented
in three steps, assuming that the alphabet size of symbols is σ. The first step
creates a hash key 〈v, c〉 of the child. The second step obtains an initial address
of the child, u = h(〈v, c〉), where h is a hush function such that h : {0, . . . , m ·
σ − 1} → {0, . . . , m − 1}. The third step locates the child on Q[u′], where u′ is
the first empty slot address from the initial address u using linear probing. In
other words, the new child ID is defined as u′.

If we simply store the hash key 〈v, c〉 in Q[u′] to check for membership, each
slot uses large space of �log(m · σ)	 bits. To reduce this space to �log σ	 bits,
m-Bonsai uses the quotienting technique [14, Exercise 6.13], while additionally
introducing displacement array D such that D[u′] stores the distance of u′ and
u, that is, the number of collisions. The displacement array D can be represented
in compact space since the average value is small from [19, Proposition 1].

Practical Implementation. Although Poyias and Raman [19] proposed two types
of displacement array representation, we adopt a simply modified version of the
practical one. In our representation, we first try to store values of D in an array
D0 with each entry using Δ0 bits. If D[i] < 2Δ0 − 1, we set D0[i] = D[i].
Otherwise, we set D0[i] = 2Δ0 − 1 and store D[i] to an auxiliary associative
array implemented using a standard data structure. The original representation
uses a small hash table based on the original Bonsai method as an additional
second data structure; however, our version omits the hash table because it
is difficult to estimate the predefined length of the table when adopted for our
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implementation. From preliminary experiments, we obtained the best parameter
Δ0 = 6 for α = 0.8. We provide the details and source code at https://github.
com/kamp78/bonsais.

3 New Implementation

This section presents a new dynamic keyword dictionary implementation through
path decomposition, namely, the dynamic path-decomposed trie (DynPDT).

3.1 Basic Idea: Incremental Path Decomposition

We present a basic idea called incremental path decomposition. This idea con-
structs a path-decomposed trie by incrementally defining nodes corresponding
to each keyword in insertion order. We show the data structure of the path-
decomposed trie while describing the insertion procedure for a keyword w as
follows:

– If the dictionary is empty, a root labeled with w is defined. In this paper, we
denote such a label on node v by Lv.

– If the dictionary is not empty, a keyword search is started from the root
with two steps by setting v to the root ID. The first step compares w with
Lv. If w = Lv, the procedure terminates because the keyword is already
registered; otherwise, the second step finds a child with symbol 〈i, w[i]〉 such
that w[i] �= Lv[i] and w[0, i) = Lv[0, i). If not found, the keyword is inserted
by adding a new edge labeled with the symbol 〈i, w[i]〉 and a new child labeled
with the remaining suffix w[i + 1, |w|). If found, the procedure returns to the
first step after updating v to the child ID and w to the remaining suffix.

That is to say, the path-decomposed trie has node labels representing some
suffixes of keywords. Additionally, it has edge labels composed of a node label
position and a byte character. A keyword search is also performed by that pro-
cedure. The feature of the incremental path decomposition is to locate nodes
corresponding to early inserted keywords near the root. In other words, the
search cost for such keywords is low. However, Sect. 4 evaluates the performance
of DynPDT for random-ordered keywords without considering the feature.

3.2 Implementation with m-Bonsai

To obtain high space efficiency, DynPDT represents the path-decomposed trie
using m-Bonsai; however, this representation has the following problem. As the
edge label is a pair 〈i, c〉 composed of node label position i and byte character c,
the edge labels are drawn from an alphabet of size σ = 256 · Λ, where Λ denotes
the maximum length of the node labels. The m-Bonsai representation requires
the fixing of the σ parameter to predefine the allocation size of each Q slot
and the hash function, but Λ, or σ, is an unfixed parameter in dynamic appli-
cations registering unknown keywords.

https://github.com/kamp78/bonsais
https://github.com/kamp78/bonsais


Practical Implementation of Space-Effecient Dynamic Keyword Dictionaries 225

Fig. 1. Example of DynPDT when λ = 8.

To solve this problem, we forcibly fix the alphabet size as σ = 256 · λ by
introducing a new parameter λ. If position i on Lv is greater than or equal to λ,
we create virtual nodes called step nodes with a special symbol φ by repeating
to add child u from node v with symbol φ, to set v to u, and to decrement i by λ,
until i < λ. This solution creates additional step nodes depending on λ. When λ
is too small, many step nodes are created. When λ is too large, the space usage
of Q becomes large because each slot uses �log(256 · λ)	 bits. Therefore, it is
necessary to define a proper λ. Section 4.1 shows such parameters obtained from
experiments using read-world datasets.

Examples. Fig. 1 shows an example of DynPDT constructed by insert-
ing keywords technology$, technics$, technique$, technically$, and
technological$ in this order, setting λ = 8. The nodes are defined in order
of v1, v2, . . . , v6. We show how to search technically$ using the example. First,
we set w to the query keyword and compare w with Lv1 . As w[0, 5) = Lv1 [0, 5) =
techn, we move to v2 using symbol 〈5, w[5]〉 = 〈5, i〉 and update w to the remain-
ing suffix cally$. Next, we compare w with Lv2 . As w[0, 1) = Lv2 [0, 1) = c, we
move to v4 using symbol 〈1, w[1]〉 = 〈1, a〉 and update w to the remaining suffix
lly$. Finally, we can see that the query keyword is registered from w = Lv4 .

We also show how to search technological$. In the same manner as above,
we set w to the query keyword and compare w with Lv1 . The result is w[0, 9) =
Lv1 [0, 9) = technolog, but we cannot create symbol 〈9, i〉 because this symbol
exceeds the alphabet size from λ ≤ 9. Therefore, we move to step node v5 using
symbol φ. From 9 − λ < λ, i.e., 1 < λ, we can create symbol 〈1, i〉 and move
to node v6 using the symbol. Finally, we can see that the query keyword is
registered because the remaining suffix cal$ is the same as Lv6 .

Implementation Remarks. Arbitrary values associated with each keyword can be
maintained using the space of each node label. Keyword deletion can be simply
implemented by introducing flags for each node (i.e., for each keyword) in a
manner similar to open address hashing.

To use the m-Bonsai representation, it is necessary to predefine the number of
Q slots depending on the number of nodes and the load factor. In other words, it
is necessary to estimate the number of nodes expected for a dataset. Fortunately,



226 S. Kanda et al.

Fig. 2. Examples of node label management for DynPDT in Fig. 1.

we can roughly estimate the number of nodes of DynPDT easier than a plain
trie because this is the same as the number of keywords (from Fact 1) and some
step nodes depending on a proper λ.

3.3 Node Label Management

The node labels are stored separately from the m-Bonsai structure (i.e., the
hash table and the displacement array) because these labels are variable-length
strings. The plainest implementation uses pointer array P of length m such
that P [i] stores a pointer to Li. This implementation can perform to access and
append a node label in constant time, but it uses large space with m pointers.
We call this implementation plain management. Figure 2a shows an example of
plain management.

We present an alternative compact implementation that reduces the pointer
overhead in a manner similar to sparsetable of Google Sparse Hash at https://
github.com/sparsehash/sparsehash. This implementation divides node labels
into groups of � labels over the IDs. That is, the first group consists of L0 . . . L�−1,
the second group consists of L� . . . L2�−1, and so on. Moreover, we introduce
bitmap B such that B[i] = 1 if Li exists. The implementation concatenates
node labels Li such that B[i] = 1 in each group, while keeping the ID order. The
length of P becomes �m/�	 by maintaining pointers to the concatenated label
strings for each group. We call this implementation bitmap management.

Using array P and bitmap B, accessing Li is performed as follows. If B[i] = 0,
Li does not exist; otherwise, we obtain the target concatenated label string from
P [g], where g = 
i/��. We also obtain bit chunk Bg = B[g · �, (g +1) · �) over the
target group. Let j be the number of occurrences of 1s in Bg[0, i mod � + 1). Li

is the j-th node label of the concatenated label string. As � is constant, counting
the bit occurrences in chunk Bg is supported in constant time using the popcount
operation [7]. Therefore, the access time is the same as the time of scanning the
concatenated label string until the j-th node label.

By simply concatenating node labels (e.g., the second group in Fig. 2a is
cal$ue$ in � = 4), the scan is performed by sequentially counting terminators in
O(� · Λ) time, where Λ again denotes the maximum length of the node labels. We
shorten the scan time using the skipping technique used in array hashing [2]. This
technique puts its length in front of each node label using VByte encoding [21].

https://github.com/sparsehash/sparsehash
https://github.com/sparsehash/sparsehash
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Note that we can omit the terminators of each node label. The skipping technique
allows us to jump ahead to the start of the next node label; therefore, the scan is
supported in O(�) time. Figure 2b shows an example of the bitmap management
with the skipping technique.

Comparison of Space Usage. We compare plain and bitmap management in
terms of space usage, assuming a 64-bit memory address architecture. In plain
management, the pointer array P uses 64m bits. The space usage of storing
node labels is 8N bits, where N denotes the total length, i.e., N =

∑
i<m |Li|.

In bitmap management, the pointer array P uses 64�m/�	 bits, and the bitmap
B uses m bits. The total length of the node labels using VByte encoding becomes
equal to N if all node labels are shorter than 128 because such a code length is
1 byte. Fortunately, almost 100% of the node labels were shorter than 128 in all
datasets in Sect. 4. Therefore, the VByte encoding does not become a significant
overhead.

For simplicity, we assume that there are no overheads related to the VByte
encoding and memory allocation. The overall space usage of plain manage-
ment is 64m + 8N bits. The overall space usage of bitmap management is
64�m/�	 + m + 8N bits. That is, in roughly � > 1.02, the space usage of bitmap
management is smaller than that of plain management. Moreover, bitmap man-
agement works more efficiently when N is small because the pointer overhead of
64m bits becomes relatively large over 8N bits in plain management.

4 Experimental Evaluation

This section analyzes the practical performance of DynPDT. The source code of
our implementation is available at https://github.com/kamp78/dynpdt.

4.1 Settings

We carried out experiments on an Intel Xeon E5540 @2.53 GHz with 32 GB
of RAM (L2 cache: 1 MB, L3 cache: 8 MB), running Ubuntu Server 16.04 LTS.
The data structures were implemented in C++ and compiled using g++ (version
5.4.0) with optimization -O9. We used /proc/<PID>/statm to measure the res-
ident set size. We used std::chrono::duration cast to measure the runtimes
of operations.

Datasets. We selected six real-world datasets:

Geonames is composed of geographic names in the asciiname column of
the GeoNames dump, available at http://download.geonames.org/export/
dump/.

Wiki is page titles of English Wikipedia in February 2015, available at https://
dumps.wikimedia.org/enwiki/.

UK is URLs obtained from a 2005 crawl of the .uk domain performed by Ubi-
Crawler [4], available at http://law.di.unimi.it/webdata/uk-2005/.

https://github.com/kamp78/dynpdt
http://download.geonames.org/export/dump/
http://download.geonames.org/export/dump/
https://dumps.wikimedia.org/enwiki/
https://dumps.wikimedia.org/enwiki/
http://law.di.unimi.it/webdata/uk-2005/
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Table 1. Information concerning datasets.

Dataset Size Keywords Nodes NPK BPK BPNL

Geonames 101.2 6,784,722 48,240,884 7.1 15.6 10.1

Wiki 227.2 11,519,354 110,962,030 9.6 20.7 12.6

UK 2,723.3 39,459,925 748,571,709 19.0 72.4 22.0

WebBase 6,782.1 118,142,155 1,426,314,849 12.1 60.2 15.1

LUBM 3,194.1 52,616,588 247,740,552 4.7 63.7 7.7

DNA 189.3 15,265,943 36,223,473 2.4 13.0 5.4

WebBase is URLs of a 2001 crawl performed by the WebBase crawler [10],
available at http://law.di.unimi.it/webdata/webbase-2001/.

LUBM is URIs extracted from the dataset generated by the Lehigh University
Benchmark [9] for 1,600 universities, from DS5 available at https://exascale.
info/projects/web-of-data-uri/.

DNA is substrings of 12 characters found in the DNA dataset from Pizza&Chili
corpus, available at http://pizzachili.dcc.uchile.cl/texts/dna/.

Table 1 summarizes relevant statistics for each dataset, where Size is the total
length of keywords in MiB, Keywords is the number of distinct keywords, Nodes
is the number of nodes in a plain trie, NPK is the average number of plain
trie nodes per keyword, BPK is the average number of bytes per keyword, and
BPNL is the average number of bytes per node label in DynPDT.

Dictionary Data Structures. We compared the performance of DynPDT with that
of m-Bonsai. For DynPDT, we tested plain and bitmap management denoted by
Plain and Bitmap-�, respectively. For Bitmap-�, we considered that � is 8, 16, 32,
and 64. We set the int data type to associated values in DynPDT. We tested
m-Bonsai based on a plain trie without maintaining associated values. For both
DynPDT and m-Bonsai, we implemented the auxiliary associative array using
std::map.

We also compared some existing dynamic dictionary implementations. We
selected five space-efficient ones as follows: Sparsehash is Google Sparse Hash
that is an associative array with keys and values of arbitrary data types, Judy
is a trie implementation developed at Hewlett-Packard Research Labs [3], HAT-
trie is a keyword dictionary implementation with the combination of a trie and
a cache-conscious hash table [1], ART is a trie implementation designed for
efficient main-memory database systems [15], and Cedar is a state-of-the-art
double-array prefix trie implementation [22]. In common with DynPDT, we set
the int data type to associated values. For HAT-trie and ART, we used the
implementations available at https://github.com/dcjones/hat-trie and https://
github.com/armon/libart, respectively. As Cedar uses 32-bit integers to repre-
sent trie nodes, we could not run the test on WebBase.

http://law.di.unimi.it/webdata/webbase-2001/
https://exascale.info/projects/web-of-data-uri/
https://exascale.info/projects/web-of-data-uri/
http://pizzachili.dcc.uchile.cl/texts/dna/
https://github.com/dcjones/hat-trie
https://github.com/armon/libart
https://github.com/armon/libart
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Fig. 3. Result of parameter test for λ on Wiki.

Fig. 4. Result of parameter test for λ on LUBM.

Parameters. Both DynPDT and m-Bonsai have two parameters α and Δ0. We
set α = 0.8 in common with previous settings [5,19]. We set the number of Q
slots to that of keywords divided by 0.8 in DynPDT. Note that the resulting
load factor α′ in DynPDT is increased from α, depending on the number of
step nodes. In m-Bonsai, we set the number of Q slots to that of plain trie
nodes divided by 0.8. Note that the difference of the number of Q slots between
DynPDT and m-Bonsai closes with decreasing NPK. We set Δ0 = 6 from the
preliminary experiments in Sect. 2.3.

DynPDT also has parameter λ, which involves α′ and the space usage of
hash table Q and the auxiliary associative array. When λ is large, the allocation
size of Q becomes large. When λ is small, the number of step nodes, or α′,
is increased. The latter poses slow operations and a large auxiliary associative
array because the average value of D is increased. To search a proper λ, we
pretested λ = 2x in 2 ≤ x ≤ 7 for each dataset. Figures 3 and 4 show the results
on Wiki and LUBM, respectively. The figures show the sum space usage of Q,
D, and the auxiliary std::map. The parameter α′ is also shown. We could not
construct the dictionary for λ = 2 on Wiki because α′ became too large. From the
results, α′ closes 0.8, and the space usage is moderately increased from some λ.
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Table 2. Results of space usage in bytes per keyword.

Data structure Geonames Wiki UK WebBase LUBM DNA

Plain 46.0 46.6 54.4 47.5 45.0 44.8

Bitmap-8 18.7 21.2 31.3 24.0 15.5 13.0

Bitmap-16 16.8 18.8 28.2 21.0 13.8 11.0

Bitmap-32 15.0 17.4 27.1 19.8 12.1 9.8

Bitmap-64 14.5 16.9 26.4 19.2 11.5 9.0

m-Bonsai 17.7 23.6 46.1 29.3 11.4 5.9

Sparsehash 62.3 71.1 131.0 119.0 122.0 43.4

Judy 47.6 50.5 60.3 53.5 33.9 24.3

HAT-trie 35.4 40.2 82.3 68.9 64.7 28.9

ART 87.1 93.1 140.9 126.9 118.9 71.1

Cedar 30.5 41.1 58.4 – 29.7 22.1

The same tendency appeared for the other datasets.1 In the experiments, we
chose the smallest λ such that α′ ≤ 0.81 for each dataset. We set λ to 16, 16, 64,
32, 16, and 4 on Geonames, Wiki, UK, WebBase, LUBM, and DNA, respectively.

4.2 Results

We constructed the dictionaries by inserting keywords in random order. We
measured the resident set size required for the construction. We measured the
insertion and search runtimes without I/O overheads. The insertion time was
averaged on 3 runs. To measure the search time, we chose 1 million random
keywords from each dataset. The search time was averaged on 10 runs.

Space Usage. Table 2 shows the results. It is obvious that bitmap management
can reduce the pointer overhead of plain management. Bitmap-64 is up to 5x
smaller than Plain on DNA. When BPNL is small, the compression rate is high
based on the comparison analysis in Sect. 3.3. Compared with m-Bonsai, Bitmap-
64 is 1.2–1.7x smaller except for LUBM and DNA. Bitmap-64 is 1.5x larger on
DNA because the difference of the Q lengths is small from NPK. Note that
m-Bonsai did not maintain associated values of the int type. If m-Bonsai main-
tained those values ideally without any overhead, 4 bytes (i.e., sizeof(int))
are added per keyword. That is, Bitmap-64 becomes smaller than m-Bonsai on
all the datasets. In the existing dictionaries, Cedar is basically small although
32-bit integers are used to represent node pointers. In Wiki and WebBase, HAT-
trie and Judy are the smallest. Compared with the smallest existing dictionaries,
Bitmap-64 is 2.1–2.8x smaller. On UK and WebBase whose BPNL is large, Plain
is also smaller than the existing dictionaries because the pointer overhead is rel-
atively small over the overall space usage.
1 All the results are provided at https://github.com/kamp78/dynpdt/wiki.

https://github.com/kamp78/dynpdt/wiki
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Table 3. Results of insertion time in microseconds per keyword.

Data structure Geonames Wiki UK WebBase LUBM DNA

Plain 1.00 1.14 1.65 2.37 1.65 1.35

Bitmap-8 1.25 1.38 1.99 2.64 1.91 1.58

Bitmap-16 1.37 1.57 2.29 2.93 1.99 1.66

Bitmap-32 1.69 1.93 2.91 3.47 2.29 1.91

Bitmap-64 2.13 2.65 4.12 4.60 2.87 2.30

m-Bonsai 1.62 2.22 7.13 7.69 4.80 1.03

Sparsehash 4.31 5.15 9.13 11.32 8.72 1.99

Judy 0.93 1.06 2.15 2.94 1.53 0.90

HAT-trie 0.96 1.13 1.63 1.75 2.58 0.84

ART 1.07 1.19 2.20 2.98 1.44 0.87

Cedar 1.05 1.07 2.56 – 2.50 0.90

Table 4. Results of search time in microseconds per keyword.

Data structure Geonames Wiki UK WebBase LUBM DNA

Plain 1.01 1.13 1.53 2.20 1.12 1.08

Bitmap-8 1.22 1.38 2.15 2.40 1.26 1.26

Bitmap-16 1.38 1.61 2.47 2.74 1.43 1.38

Bitmap-32 1.71 2.06 3.25 3.72 1.61 1.83

Bitmap-64 2.31 3.01 4.88 5.29 2.16 2.18

m-Bonsai 1.47 2.06 6.69 8.30 3.08 0.86

Sparsehash 0.34 0.44 0.67 0.80 0.67 0.29

Judy 0.70 0.88 2.02 2.42 0.79 0.44

HAT-trie 0.31 0.35 0.61 0.80 0.51 0.22

ART 0.81 1.03 1.84 2.68 0.67 0.63

Cedar 0.42 0.69 2.51 – 0.69 0.22

Insertion Time. Table 3 shows the results. In DynPDT, Plain is the fastest and
Bitmap-64 is the slowest essentially, but Bitmap-8 is not much slower than Plain.
We compare Bitmap-8 for the following. Compared with m-Bonsai, Bitmap-8
is faster except for DNA. In particular, the difference is very large on datasets
whose BPK is large owing to the path decomposition. Bitmap-8 is 3.6x, 2.9x and
2.5x faster than m-Bonsai on UK, WebBase, and LUBM, respectively. Bitmap-8
is 1.5x slower than m-Bonsai on DNA. Compared with the existing dictionaries,
Bitmap-8 is not the fastest but is very competitive on UK, WebBase, and LUBM;
however, Bitmap-8 is the slowest on the other datasets except for Sparsehash.
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Search Time. Table 4 shows the results. Like the insertion time results, Plain is
the fastest in DynPDT, and Bitmap-8 is faster than m-Bonsai except for DNA.
On the other hand, DynPDT is basically slower compared with the existing
dictionaries. Bitmap-8 is up to 5.7x slower than the fastest HAT-trie. On UK
and WebBase, Bitmap-8 is close to Judy, ART, and Cedar.

5 Conclusion and Future Work

In this paper, we presented DynPDT, which is a new practical implementation of
space-efficient dynamic keyword dictionaries through incremental path decompo-
sition. Our experimental results showed that DynPDT uses much smaller space
than existing keyword dictionary implementations, but its time performance is
not very high. The main cause is that the node-to-node traversal using m-Bonsai
is slow compared with pointer-based representations. Another disadvantage is
that the hash table cannot be easily resized owing to open addressing. There-
fore, we will improve upon those disadvantages by engineering an alternative
trie representation in the future. Moreover, we will address more compression
because DynPDT still consumes a larger space compared with existing static
compact implementations. For example, the static data structure by Grossi and
Ottaviano [8] can implement a dictionary in space 2.9x smaller than DynPDT
for the geographic name dataset.

We have discussed dictionary structures supporting only search operations
for a given keyword as a basic associative array. On the other hand, dictionary
structures supporting invertible mapping between strings and unique IDs, known
as string dictionaries, are also important in many applications [16]. In principle,
DynPDT can provide such invertible mapping because m-Bonsai supports leaf-
to-root traversal operations. Therefore, we will propose and evaluate DynPDT
structures adapting to the string dictionaries.
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Abstract. This paper presents faster practical encoding and decoding
procedures for block compression that underlies both static and dynamic
compressed rank/select bitmaps based on the RRR (Raman, Raman,
and Rao) scheme. Our procedures use a novel combination of universal
tables for chunkwise processing. Experimental results showed that our
procedures were faster than existing ones on 64-bit blocks.

Keywords: Compact data structures · Rank/select queries · Compres-
sion

1 Introduction

Many compact data structures for strings [3,9], trees [2,7], graphs [4,7], full-
text indexes [9,11], inverted indexes [3,11], etc. are built on top of rank/select
queries on bitmaps. Because the performance of the queries can have a significant
impact on the data structures, practical rank/select queries have been extensively
studied [3–6,8,12,14].

Block compression [1] is a technique used by static compressed rank/select
bitmaps [13] (known as RRR) and dynamic compressed ones [4]. This technique
represents an input block B of t bits as a pair (c, o) of integers: the class c (stored
in

⌈
log(t+1)

⌉
bits1) is the number of 1’s in B and the offset o (stored in

⌈
log

(
t
c

)⌉

bits) is the lexicographical rank of B among all blocks of class c. There are two
practical approaches to implement block compression: Claude and Navarro [3]
implemented O(1)-time block compression using universal tables of O(2tt) bits.
Although this approach is quite fast, it suffers from a considerable space overhead
because the tables limit use of large blocks. To reduce the overhead, Navarro and
Providel [12] proposed bitwise block compression using precomputed binomial
coefficients of O(t3) bits. This works very well on sparse bitmaps whose blocks
are likely to contain a few 1’s or 0’s because such blocks can be encoded and
decoded immediately. However, its O(t) worst-case time is not preferable espe-
cially for dynamic bitmaps because their density is difficult to know in advance.
This can cause unexpected performance degradation due to unexpected dense

1 The base of the logarithm is 2 throughout this paper.
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blocks. Even worse, practical dynamic compressed bitmaps, recently proposed
by Cordova and Navarro [4], can require more blocks to be encoded and decoded
than static ones. Thus, efficient block compression is critical in dynamic settings.

In this paper, we present faster implementation of block compression. For
any integer 1 ≤ s ≤ t, our encoding and decoding procedures run in O(t/s) and
O((t/s) log s) time, respectively, using O(t3 + 2ss) bits of space. The key is a
novel combination of universal tables for chunkwise processing. Table 1 shows the
time and space of existing and our methods: blockwise [3], bitwise [12], and our
chunkwise. Our method generalizes the existing ones [3,12]: ours with s = t and
s = 1 derives blockwise [3] and bitwise [12], respectively. Interestingly, our idea
can also derive O(t)-time block compression using O(t3/s + 2ss) bits of space.
This reduces the space of bitwise [12] with, for example, s = log t by sampling
precomputed binomial coefficients.

Table 1. The encoding time, decoding time, and space (in bits) of three block com-
pression methods for the block length t and a time-space trade-off parameter s ∈ [1, t].

Method Encoding time Decoding time Space (in bits)

blockwise [3] O(1) O(1) O(2tt)

bitwise [12] O(t) O(t) O(t3)

chunkwise (this work) O(t/s) O((t/s) log s) O(t3 + 2ss)

Related Work. Rank/Select queries have been extensively studied both in the-
ory and practice. Jacobson [7] showed that rank queries on bitmaps of length n
can be supported in constant time using o(n) bits of extra space. Clark [2] and
Munro [10] proved that select queries can also be supported in the same time and
space. Raman et al. [13] presented a compressed representation of bitmaps, called
RRR, supporting both rank and select queries in constant time using o(n) bits
of extra space. Gonźalez et al. [6] presented practical rank/select bitmaps based
on theoretical solutions [2,7,10]. Vigna [14] introduced broadword computation
for practical rank/select queries. Claude and Navarro [3] implemented RRR [13]
based on tabulation. Navarro and Providel [12] significantly improved the com-
pression ratio of RRR in practice by introducing bitwise implementation of block
compression. This was further improved by Gog and Petri [5] with practical
optimization. Very recently, Klitzke and Nicholson [8] experimentally evaluated
dynamic rank/select bitmaps. Following the work, Cordova and Navarro [4] pro-
posed another practical implementation of dynamic compressed bitmaps based
on theoretical work [9]. This stores blocks of bits in the leaves of an AVL tree
using block compression. We refer the reader to [11] for a more comprehensive
list of references on both static and dynamic rank/select bitmaps.

2 Faster Block Compression

This section presents our encoding and decoding procedures for block compres-
sion. The idea is to split an input block of length t into smaller chunks of length
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s ∈ [1, t] and to process it in a chunkwise manner, instead of blockwise or bitwise
as in [3,12]. Our main theorem is stated as follows:

Theorem 1. Block encoding and decoding can be implemented in O(t/s) and
O((t/s) log s) time, respectively, using O(t3+2ss) bits of space after O(t2+2ss)-
time preprocessing, where t is the block length and s is any integer with s ≤ t.

For simplicity, we assume that s divides t. Let m = t/s be the number of
chunks in a block. Let Σ = {0, 1}s be the set of all chunks. We view blocks
B ∈ Σm as strings of length m over Σ. B[i] ∈ Σ denotes the i-th chunk of
B. For i ≤ j, B[i, j] denotes B[i] · · · B[j]. For any block or chunk x, lex(x),
class(x), and offset(x) denote its standard lexicographical rank, class and offset,
respectively. For any chunk x, we assume that offset(x) is induced by lex(x).

For our chunkwise block compression, we define an ordering of chunks x
and y given by x ≺ y iff (1) class(x) < class(y) or (2) class(x) = class(y) ∧
offset(x) < offset(y). For blocks B, we define offset(B) as the lexicographical rank
induced by ≺ instead of the standard one. The first three columns of Table 2 show
blocks of class 2, their standard lexicographical ranks, and their ranks induced
by ≺ for t = 6 and s = 3. For i ∈ [0,m], c ∈ [0, t], and c′ ∈ [0, s], we define
binom(i, c) =

(
s×i
c

)
to return the number of strings of i chunks with c 1’s and

count(i, c, c′) =
∑

k∈[0,c′) binom(1, k) × binom(i − 1, c − k) to returns the number
of strings of i chunks with c 1’s in total and less than c′ 1’s in the first chunk.

The functions binom(i, c) and count(i, c, c′) can be computed in O(1) time
using universal tables of O(t3/s) and O(t3) bits, respectively, because their values
are bounded by 2t and thus t bits are sufficient to store each entry. For any
chunk x, class(x) and offset(x) can also be computed in O(1) time using universal
tables of O(2ss) bits of space as in [3]. In what follows, we explain how to compute
class(B) and offset(B) from class(B[i]) and offset(B[i]) and vice versa.

Block Encoding. Given block B = B[1] · · · B[m] as input, our encoding pro-
cedure first computes class(B) and then offset(B) both in O(t/s) time. During
encoding, we maintain a pair (ci, oi) of integers, where ci stores the number of
1’s in the i-th prefix of B and oi stores the number of blocks B′ ∈ Σm satis-
fying B′[1, i] ≺ B[1, i]. Note that class(B) = cm and offset(B) = om hold. The
class is easy to compute in a chunkwise manner: we start with c0 = 0 and then
recursively update ci by ci = class(B[i]) + ci−1 for i = 1, . . . , m. The offset can
also be computed in a similar manner: we start with o0 = 0 and then recursively
update oi by

oi = count(m − i + 1, class(B) − ci−1, class(B[i]))
+ offset(B[i]) × binom(m − i, class(B) − ci) + oi−1.

Note that the first and second terms correspond to (1) and (2) in our defi-
nition of ordering ≺. They add the number of blocks B′ with B′[1, i] ≺ B[1, i].
Each update of ci and oi takes O(1) time using the universal tables. Thus, our
encoding takes in O(t/s) time in total.
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For example, B = 010 100 in Table 2 can be encoded as follows: we first
compute class(B) by class(B[1]) + class(B[2]) = 1 + 1 = 2 and then offset(B)
by (count(2, 2, 1) + offset(B[1]) × binom(1, 1)) + (count(1, 1, 1) + offset(B[2]) ×
binom(0, 0)) = (3+1× 3)+ (0+2× 1) = 8. Note that count(2, 2, 1) = 3 adds the
number of blocks prefixed by the chunk 000 of class less than class(B[1]) = 1,
and offset(B[1]) × binom(1, 1)) adds the number of blocks prefixed by the chunk
001 of class equal to class(B[1]) and offset less than offset(B[1]) = 1.

Block Decoding. Given class(B) and offset(B) of block B, our decoding
procedure first computes class(B[i]) and offset(B[i]) and then restores B[i]
for i ∈ [1,m]. During encoding, we maintain the same pair (ci, oi) of integers as
encoding. We start with c0 = 0 and o0 = 0. For i ∈ [1,m], we first determine
class(B[i]) from ci−1 and oi−1 as follows:

class(B[i]) = min
{
c′
∣∣∣count(m − i + 1, class(B) − ci−1, c

′ + 1) ≥ offset(B) − oi−1

}

Table 2. The standard lexicographical rank lex(B) and our offset offset(B) of blocks B
with class(B) = 2 for t = 6 and s = 3. The table also includes class(B[i]) and offset(B[i])
of possible chunks B[i] for i ∈ {1, 2}. The bold numbers indicate the differences between
lex(B) and offset(B) of blocks. The solid and dashed horizontal lines show the boarders
of class(B[i]) and offset(B[i]) of chunks, respectively.

B = B[1]B[2] lex(B) offset(B) class(B[1]) offset(B[1]) class(B[2]) offset(B[2])

000 011 0 0 0 0 2 0

000 101 1 1 0 0 2 1

000 110 2 2 0 0 2 2

001 001 3 3 1 0 1 0

001 010 4 4 1 0 1 1

001 100 5 5 1 0 1 2

010 001 6 6 1 1 1 0

010 010 7 7 1 1 1 1

010 100 8 8 1 1 1 2

100 001 10 9 1 2 1 0

100 010 11 10 1 2 1 1

100 100 12 11 1 2 1 2

011 000 9 12 2 0 0 0

101 000 13 13 2 1 0 0

110 000 14 14 2 2 0 0
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Fig. 1. The average elapsed times (in microseconds) for encoding (top) and decoding
(bottom) of bitwise [3] (left), our chunkwise-8 (middle), and our chunkwise-16 (right).

Because the left-hand side of the above in equation is monotonically increas-
ing for c′ ∈ [0, s), we can find class(B[i]) in O(log s) time. We then compute
offset(B[i]) as follow:

offset(B[i])=
⌊

offset(B) − (oi−1 + count(m − i + 1, class(B) − ci−1, class(B[i]))
binom(m − i, class(B) − ci))

⌋

The numerator represents the number of blocks B′ with B′[1, i− 1] = B[1, i− 1]
and class(B′[i]) = class(B[i]). Note that there are binom(m − i, class(B) − ci)
blocks per such B′[i]. Thus, our decoding takes O((t/s) log s) time in total.

For example, B = 010 100 in Table 2 can be decoded from its class(B) =
2 and offset(B) = 8 as follows: we first compute class(B[1]) by min{c′ |
count(2, 2, c′ + 1) ≥ 8} = 1 and then offset(B[1]) by �(8 − (0 + 3))/3� =
1, because count(2, 2, 1) = 3 and count(2, 2, 2) = 12. Finally, we compute
class(B[2]) by min{c′ | count(1, 1, c′ + 1) ≥ 2} = 1 and then offset(B[2]) by
�(8 − (6 + 0))/1� = 2, because count(1, 1, 1) = 0 and count(1, 1, 2) = 3.

3 Experiments

This section presents experimental results that compare bitwise [12], which is
most commonly used in practice, with our chunkwise methods. First, we mea-
sured their time and space for encoding and decoding. Then, we evaluated their
performance in compressed rank/select queries. All the methods were imple-
mented in C++ and compiled with g++ 7.1.0 using -Ofast and -march=native
options. All our experiments were run on MacBook Pro with 2.5 GHz Intel Core
i7 and 16 GB memory. We denote by chunkwise-8, chunkwise-16, and bitwise our
method with s = 8, our method with s = 16, and one by [12], respectively. The
block length t was fixed to 64 throughout our experiments.

Block Compression. For each class c ∈ [0, t], we generated one million of
(possibly duplicated) random blocks of class c and then measured the average
encoding and decoding times over them. Figure 1 shows the measured times
(that do not include that for precomputing the universal tables). Compared
to bitwise, our chunkwise-16 was up to 23 and 4 times faster in encoding and
decoding, respectively. Even for sparse blocks (with c ∈ [0, 8], for example), our
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chunkwise-16 was up to 9 and 2 times faster in encoding and decoding, respec-
tively. Furthermore, our methods were less dependent on c than bitwise. Our
chunkwise-8 and chunkwise-16 used 37 KB and 362 KB, respectively, for univer-
sal tables, while bitwise used 34 KB. Finally, chunkwise-16 is about 2 times faster
than chunkwise-8, as expected from their construction.

Rank/Select Queries. To evaluate how our chunkwise block compression
improves the overall performance of compressed rank/select bitmaps, we imple-
mented three variants of RRR [13], each of which uses bitwise [12], our chunkwise-
8, or our chunkwise-16 for block compression. In addition to rank1 and select1,
our RRR supported appending a bit (denoted by append) using a 64-bit buffer.
We used superblocks of 64 and 128 blocks for rank1 and select1, respectively. As
input, we randomly generated bitmaps of length 228 with densities 5%, 10%, and
20%. We measured the average time over one million of random queries. Table 3
shows the average times. Although our improvement over bitwise was smaller
than that in our first experiment, our chunkwise-8 and chunkwise-16 improved
the performance of compressed rank/select bitmaps.

Table 3. The elapsed time (in microseconds) for each combination of methods and
operations, and densities on an input bitmap of length 228.

Density 5% 10% 20%

Operation rank1 select1 append rank1 select1 append rank1 select1 append

bitwise [12] 0.226 0.276 0.004 0.288 0.310 0.005 0.375 0.417 0.006

chunkwise8 0.212 0.288 0.003 0.270 0.312 0.003 0.297 0.321 0.003

chunkwise16 0.187 0.250 0.003 0.219 0.254 0.003 0.235 0.265 0.003

4 Conclusion

This paper has presented a practical implementation of block compression, which
offers a more flexible time-space trade-off for compressed rank/select bitmaps in
practice. Experiments with dynamic bitmaps and more comprehensive configu-
rations of block and chunk lengths on real datasets are important future work.

Acknowledgments. The author would like to thank anonymous reviewers and Shirou
Maruyama for their valuable comments that greatly improved this paper.
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Abstract. A skeleton Huffman tree is a Huffman tree from which all
complete subtrees of depth h ≥ 1 have been pruned. Skeleton Huffman
trees are used to save storage and enhance processing time in several
applications such as decoding, compressed pattern matching and Wavelet
trees for random access. However, the straightforward way of basing the
construction of a skeleton tree on a canonical Huffman tree does not nec-
essarily yield the least number of nodes. The notion of optimal skeleton
trees is introduced, and an algorithm for achieving such trees is investi-
gated. The resulting more compact trees can be used to further enhance
the time and space complexities of the corresponding algorithms.

1 Introduction

One of the most popular static data compression methods is still Huffman coding
[8], even more than sixty years after its invention. A Huffman code is a minimum
redundancy code, subject to the constraint that each codeword is composed of an
integral number of bits. Given is an alphabet Σ = {a1, . . . , an} and a probability
distribution P = {p1, . . . , pn} for the occurrences of its characters. Huffman’s
algorithm assigns lengths {�1, . . . , �n} to the codewords, so that the average
codeword length

∑n
i=1 pi�i is minimized. The algorithm for the construction of

the code repeatedly combines the two smallest probabilities and may be imple-
mented in time O(n log n). A useful way to represent the code is by means of
a binary tree called a Huffman Tree. The leaves of the tree are associated with
the elements of the alphabet. Edges in the tree pointing to the left or right
child are labeled by 0 or 1, respectively, and the concatenation of the labels on
the path from the root to a given leaf yields the corresponding codeword. In
a more general setting, integer frequencies or even arbitrary positive numbers
called weights W = {w1, . . . , wn} are used instead of probabilities, and it is the
weighted average

∑n
i=1 wi�i that is minimized. The algorithm remains the same.

A tree minimizing this sum is called optimal ; Huffman’s method produces opti-
mal trees, but not all optimal trees can be obtained directly by the Huffman
algorithm.

A new data structure, called a Skeleton tree, or sk-tree for short, has been
introduced in [10], which is especially suited for fast decoding of Huffman
encoded texts. The storage requirements of sk-trees are much lower than those
c© Springer International Publishing AG 2017
G. Fici et al. (Eds.): SPIRE 2017, LNCS 10508, pp. 241–253, 2017.
DOI: 10.1007/978-3-319-67428-5 21
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of traditional Huffman trees. The latter have 2n − 1 nodes, whereas the former
need only O(log2 n) nodes for trees of depth O(log n). The idea is to process the
compressed file, one bit at a time, until a leaf of the sk-tree is reached, where
the length of the current codeword w is already determined. This will often be
the case before having read all the bits of w. Then several bits, from the one
following the current position to the end of the codeword w, are processed in a
single operation. Decoding may be faster since a part of the bit-comparisons and
manipulations necessary for the conventional Huffman decoding may be saved.
Empirical results on large real-life distributions show an average reduction of
up to half and more in the number of bit operations [10].

There are several applications for which Huffman trees may be replaced by
sk-trees in order to speed up processing time and/or save space, for example to
accelerate compressed pattern matching, as shown in [16]. Another application
for which sk-trees are used to improve the time and space complexities is Wavelet
Trees. A Wavelet tree (WT), suggested by Grossi et al. [7], is a data structure
which reorders the bits of the compressed file into an alternative form, thereby
enabling direct access, as well as other efficient operations. WTs can be defined
for any prefix code, and the tree structure associated with this code is inherited
by the WT.

The internal nodes of the WT are annotated with bitmaps. The root of the
WT holds the bitmap obtained by concatenating the first bit of each of the
sequence of codewords in the order they appear in the compressed text. The
left and right children of the root hold, respectively, the bitmaps obtained by
concatenating, again in the given order, the second bit of each of the codewords
starting with 0 and with 1, respectively. This process is repeated similarly on
the next levels: the grand-children of the root hold the bitmaps obtained by
concatenating the third bit of the sequence of codewords starting, respectively,
with 00, 01, 10 or 11, if they exist at all, etc.

Various manipulations on the bitmaps of the WT are based on fast imple-
mentations of operations known as rank and select. These are defined for any bit
b ∈ {0, 1} as

rankb(B, i) – number of occurrences of b in B up to and including position i;
and

selectb(B, i) – position of the ith occurrence of b in B.

Efficient implementations for rank and select are due to Jacobson [9], Raman
et al. [14], Okanohara and Sadakane [13], Barbay et al. [1] and Navarro and
Providel [12], to list only a few. WTs can be seen as extensions of rank and select
operations to a general alphabet.

Recently, Baruch et al. [2] suggested to replace a Huffman shaped WT by
a skeleton tree shaped WT in order to support faster random access and save
storage, at the price of less effective rank and select operations. The general
idea is to apply some pruning strategy on the internal nodes of the WTs, so
that the overhead of the additional storage, used by the data structures for
processing the stored bitmaps, is reduced. Moreover, the average path lengths
corresponding to the codewords is also decreased, and so is also the average
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time spent for traversing the paths from the root to the desired leaf, which is
the basic processing component used to evaluate random access. The suggestion
of [2], combining Wavelet with skeleton trees has been extended in [4], where it
was empirically shown that reordering the sk-tree may enhance the direct access
via WTs.

The current paper is organized as follows. We recall the details of sk-trees in
Sect. 2. In Sect. 3, we develop our method for designing enhanced sk-trees with
a minimal number of nodes, and prove its optimality. Finally, Sect. 4 presents
preliminary experimental results.

2 Skeleton Trees

A full tree is a tree all of whose leaves are on the same level, as in Fig. 3(a).
A complete tree is a (binary) tree in which every internal node has exactly two
children, a left and a right one. The trees in Fig. 1 are complete, but not full.
A compact way to describe a complete tree is by means of its quantized source
〈n1, n2, . . . , nk〉 or q-source for short, as defined in [5], where ni is the number
of codewords of length i, for 1 ≤ i ≤ k, and k is the longest codeword length.
Note that

∑k
i=1 ni = n. The q-source does not uniquely identify a given tree, for

example, the q-source of both trees in Fig. 1 is 〈0, 2, 4〉, as for both there are no
codewords of length 1, two codewords of length 2, and four codewords of length
3. Nevertheless, it is convenient to use the q-source for Huffman trees, since their
shape is generally of no matter, and all trees belonging to same q-source share
the same codeword lengths.

A well-known property of complete trees is that they satisfy the Kraft equal-
ity , see, e.g., [11, Chap. 4]: if �1, �2, . . . , �n are the lengths of the codewords, or
equivalently, the depths of the leaves in the tree, then

n∑

j=1

2−�j =
k∑

i=1

ni2−i = 1. (1)

In fact, the Kraft equality is often used as a characteristic of a complete code,
in the sense that if a sequence of numbers �1, �2, . . . , �n satisfies Eq. (1), then a
complete tree can be constructed whose leaves are at the given depths.

Given a complete binary tree T , pruning a subtree T ′ of T is a process that
can be applied if T ′ is a full subtree. It consists of eliminating all the nodes of
T ′ except its root. For example, in Fig. 1(b), the rightmost subtree of depth 2
could be pruned, leaving only its root (labeled 9) in the tree.

Lemma 1: Pruning a subtree from a complete binary tree results in a complete
binary tree itself.

Proof: Actually, an even stronger property could be claimed, namely, that
the replacement by its root of any subtree of a complete tree, not just for full
subtrees, does not change the fact that all internal nodes still have two children.
Thus the resulting tree is also complete. ��
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We may thus repeatedly prune subtrees from a given Huffman tree, and
this will not affect the completeness the remaining tree. Our goal is to prune
several subtrees from optimal trees for some given weight distribution, so that
the number of nodes remaining in the tree is minimal. An sk-tree is what remains
after having pruned all the possible subtrees of a complete binary tree. The size
and shape of an sk-tree does, however, depend on the shape of the complete tree
we started from. The trees in Fig. 1 show different sk-trees derived from trees with
different shapes, yet both optimal. As mentioned, Huffman trees are optimal,
however, not all optimal trees can be attained directly via Huffman’s algorithm.
Consider for example the sequence of frequencies {7, 5, 3, 3, 2, 2}, yielding the
Huffman tree in Fig. 1(a). The tree in Fig. 1(b) is still optimal as the codeword
lengths remain the same as the ones in Fig. 1(a), but it is not a Huffman tree:
Huffman’s algorithm would not combine the weights 6 and 4, since there is a
weight 5 between them, and the algorithm adds the two smallest weights in each
iteration.

(a)   Huffman tree. (b)   Optimal non-Huffman tree.

2 233

467 5

13 9

22

2 2

45 7

13

7

9

22

33

60 1 0 1

1 2

Fig. 1. Optimal trees for weights {7, 5, 3, 3, 2, 2}.

For a given set of weights, there may be many equivalent Huffman trees, as
it is possible to build up to 2n−1 different Huffman trees by interchanging the
left and right subtrees of some internal node. The number of different Huffman
trees can be even larger in case the set of weights W contains ties, or even when
the sequence of weight sums, that are considered during Huffman’s algorithm,
contains ties.

A tree is called canonical [15] if, when scanning its leaves from left to
right, they appear in non-decreasing order of their depth. Thus the tree in
Fig. 1(b) is canonical, but that in Fig. 1(a) is not. An equivalent way for defining
canonicity is that when the codewords are sorted by the frequencies of their cor-
responding symbols, they are ordered lexicographically. To build a canonical tree,
Huffman’s algorithm is only used for generating the optimal lengths �i of the code-
words, and then the i-th codeword is defined as the first �i bits immediately to
the right of the “binary point” in the infinite binary expansion of

∑i−1
j=1 2−�j , for

1 ≤ i ≤ n [6]. Turpin and Moffat [17] use canonical codes, with a symmetrically
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equivalent definition, to enhance decoding in Huffman encoded texts, so that more
than a single bit can be processed in one machine operation.

Canonical trees gather all codewords of the same length consecutively, moti-
vating the idea of pruning such trees. Although canonical trees reduce the num-
ber of different Huffman trees dramatically, there are still weight distributions
for which even the canonical tree is not unique. For example, consider the fre-
quencies {2, 1, 1, 1}, yielding the Huffman trees in Fig. 2. Huffman’s algorithm
does not impose any strict order on the nodes in each level, nor any preference
on connections between equal values and specific nodes. In the penultimate step
of the construction of the Huffman tree for our example, the tree has 3 leaves,
with weights 1, 2 and 2. The value 2 thus appears both on level 1 (the level of
the root being defined as 0) and on level 2. The last step of the construction
is then to create two new nodes with weight 1 each, and define them as being
the children of one of the leaves with weight 2. Choosing the leaf on the lowest
level yields the tree in Fig. 2(a), choosing the leaf on level 1 yields the tree in
Fig. 2(b). Both choices give the weighted sum 2 + 2 + 3 + 3 = 2 + 2 + 2 + 4 = 10,
so both trees are Huffman trees and thus optimal.

2

21

1 1

3

5

2

1 1 1 2

3

5

(a) (b)

Fig. 2. Different optimal canonical trees for the frequencies {2, 1, 1, 1}.

Figure 3 generalizes this example to show that weight distributions giving
more than a single canonical Huffman tree may be found for every alphabet
size. Consider the set of n = 2h frequencies {2, 1, . . . , 1}, for h ≥ 2. As in the
previous example, there are two choices for splitting a node with weight 2 in the

1 1 11

2 2

1 1 1

2

2

3

. . .

(a) (b)

1 1

2 2

1 1 1

2 3

. . .

1 1

2

Fig. 3. Canonical trees are not unique.
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last step of the construction. While Fig. 3(a) chooses to locate this node on level
h − 1 of the tree, Fig. 3(b) selects the only node with value 2 on level h.

The original definition of the skeleton tree in [10] uses an underlying canonical
Huffman tree, which here and below, refers to a canonical tree built for optimal
codeword lengths for a given probability distribution, even if the specific canoni-
cal layout can not be obtained directly by Huffman’s algorithm, as, for example,
the tree in Fig. 1(b). Formally, an sk-tree is a canonical Huffman tree from which
all full subtrees of depth h ≥ 1 have been pruned. Thus, a path from the root
to a leaf of an sk-tree may correspond to a prefix of several codewords of the
original Huffman tree. The prefix is the shortest necessary in order to identify
the length of the current codeword. A leaf, v, of the sk-tree contains the height,
h(v), of the subtree that has been pruned (h(v) = 0 for leaves that were also
leaves in the original Huffman tree), as well as a list of symbols belonging to that
subtree. In the examples in Fig. 1, as well as in the subsequent ones, we shall
follow the convention that the nodes of the sk-trees appear in gray. The values
h(v) appear in boldface to the right of the leaves of the sk-trees in Fig. 1.

Figure 3 shows that different canonical trees constructed for the same set of
weights may result in different sk-trees, as can be seen by inspecting the nodes
highlighted in gray. Moreover, the example also shows that the difference in
the number of nodes of different sk-trees for the same set of weights may not
be bounded by a constant: the number of nodes in the sk-tree of Fig. 3(b) is
2 +

∑h−1
i=0 2i = 2h + 1 = n + 1, whereas it is just 1 in the sk-tree of Fig. 3(a), as

the entire tree, except the root, may be pruned.
Since one of the goals of using sk-trees is saving space, it makes sense not to

restrict the trees to be pruned only to those generated by Huffman’s algorithm,
but to consider the larger set of optimal trees for a given weight distribution.
Figure 1(b) is an example that such a strategy may reduce the number of nodes
in the sk-tree, from 7 to 3 in this example. Intuitively, canonical Huffman trees
seem then to be a good choice in order to achieve smaller sk-trees, because the
canonical structure collects all the leaves appearing on the same level together.
However, we show in the following section that this intuition may be misleading.

3 Optimal Pruned Trees

The challenge is to find a way to produce the most compact pruned tree pos-
sible. An optimal sk-tree is defined as an sk-tree having the minimum number
of nodes among all sk-trees obtained by pruning an optimal tree for a given
weight distribution. If the canonical tree in Fig. 4(a) is optimal for some given
distribution, then so is the non-canonical tree in Fig. 4(b); yet the sk-tree of the
latter is smaller, by 2 nodes, than that of the former.

For a general example of a non optimal sk-tree based on a canonical tree,
consider the canonical Huffman tree for n = 2h codewords given in Fig. 5, with
h ≥ 3. This tree is of height h + 1, has its two rightmost leaves on level h + 1,
a single leftmost leaf on level h − 1 and the remaining n − 3 leaves on level h.
Figure 4(a) is the particular case h = 3. As a result, every node (except the
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(a)  sk-tree from canonical tree. (b)  better sk-tree from non-canonical tree.

Fig. 4. Optimal pruned tree.

two lowest) on the rightmost path, that from the root to the rightmost leaf,
is the root of an asymmetric subtree which is not full: its right subtree is one
level deeper than its left one. Similarly, the same is true also for the nodes of
the leftmost path. In particular, the roots of the two largest full subtrees, which
appear in the center of the figure, are not children of the same node. The number
of nodes in the corresponding sk-tree is 4h − 3: four nodes on each level, except
for that of the root (with a single node), and the first and lowest level having
two nodes each.

... ...

Fig. 5. A non optimal sk-tree for n ≥ 8 codewords.

On the other hand, the tree given in Fig. 6 has the same codeword lengths
as that in Fig. 5, but the locations of the nodes are different, resulting in a non
canonical tree. Nevertheless, there are fewer nodes in the corresponding pruned
tree. There are now two nodes on each level, except that of the root, which has
only one node, for a total of 1 + 2(h − 1) nodes. The difference between the
number of nodes in the two sk-trees is thus 2(h − 1), therefore this example
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...

Fig. 6. Optimal pruned tree for the tree of Fig. 5.

shows that sk-trees of canonical Huffman trees might produce Ω(log n) extra
nodes as compared to pruning some non-canonical optimal tree. Therefore, not
only does a canonical tree fail to provide the best possible sk-tree for n leaves,
but moreover, the difference in the number of nodes between an sk-tree based
on pruning a canonical tree and the best possible sk-tree might not even be
bounded by a constant.

Our search for an optimal sk-tree will be guided by the following reflexions.
Since there might be no obvious connection between the shape of the optimal
tree to start with and the fact that the corresponding sk-tree has a minimal
number of nodes, as we have seen in the examples above, we shall circumvent
the problem of finding the best possible optimal tree to be pruned by generating
directly the requested sk-tree. This can be done by working with the q-source
N = 〈n1, n2, . . . , nk〉 of an optimal code for the given weight distribution, rather
than with one of its many possible corresponding optimal trees. Starting with
N , we shall produce the q-source M = 〈m1,m2, . . . ,mk′〉 of the optimal sk-tree,
where k′ ≤ k. Any complete binary tree having M as q-source will be an optimal
sk-tree, and we could, for example, choose the canonical tree as representative.
We shall also indicate how to get from the optimal sk-tree to the optimal tree
for the original n weights.

Lemma 2: Subtrees having their leaves on different levels can be pruned inde-
pendently.

Proof: Full subtrees involve only leaves appearing on the same level. In other
words, if a subtree has leaves on different levels, it cannot possibly be a full
subtree and is therefore not a candidate for being pruned. Any pruning may
thus be applied to the leaves of a given level, without taking leaves on other
levels into consideration. ��
Consider level i and suppose there are ni leaves on this level. The largest possible
savings for this level can obviously be attained when ni is a power of 2, say,
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ni = 2h, in which case, an entire full subtree of height h, having its leaves
on level i, may be pruned. That is, it seems at first sight that an additional
constraint has to be fulfilled, namely that the 2h leaves all belong to the same
subtree of height h, or in other words, they should all be adjacent. Referring to
Fig. 1(a), there are n3 = 4 = 22 leaves on level 3, but they do not belong to a
single subtree of height 2. Nevertheless, we show that the additional constraint
is not needed.

Lemma 3: If the number ni of leaves on level i is a power of 2, say, ni = 2h for
some h ≥ 1, then an entire subtree of height h may be pruned.

Proof: Consider the Kraft sum
∑k

j=1 nj2−j . According to Lemma 1, removing
the ni leaves on level i and adding a leaf on level i − h yields a new q-source
that also satisfies the Kraft equality. The new q-source thus corresponds to a
complete binary tree R. One can therefore choose any leaf on level i − h of R
and turn it to the root of a subtree of height h. The resulting tree has ni leaves
on level i belonging all to the same subtree. ��
It follows from Lemma 3 that even though the 2h do not always belong to the
same subtree, as in Fig. 1(a), it is still true that there exists an optimal tree for
which these nodes are clumped together, as in the example of Fig. 1(b).

If ni is not a power of 2, the best we can expect is to prune a subtree with 2k

leaves, where 2k is the largest power of 2 still smaller than ni, that is, k = 	log2 ni
.
As in the case treated in Lemma 3, one can show that such a pruning is always
possible. For example, the tree in Fig. 4(a) has n3 = 5, but does not allow the
pruning of a subtree of height 2; but there exists an equivalent tree with leaves on
the same levels, e.g., the tree in Fig. 4(b), for which four of the leaves on level 3 are
consecutive and part of the same subtree rooted at level 1.

The effect of the pruning on the q-source is materialized by updating the
value of ni to ni − 2h and incrementing ni−h by 1, reflecting the fact that
2h leaves have been removed from the tree and a new leaf has been added.
According to Lemma 1, the current q-source is again one of a complete tree, so
the same argument as above can be repeated for the new value of ni. Ultimately,
what one gets is a decomposition of ni into a sum of powers of 2, that is, the
standard binary representation of ni. For example, if ni = 47, one could prune
consecutively subtrees with 32, 8, 4 and 2 leaves on level i, after which, a single
leaf will remain on this level.

While the different levels can be treated independently, the order by which to
process them should not be arbitrary. Care has to be taken that only original leaves
are considered when looking for a subtree to prune, and not newly added leaves
resulting from a previous pruning action. This suggests to consider the levels top
down, from level 1 to level k. Since when treating level i, nodes are only added at
levels i − h, for h ≥ 1, the additional nodes are inserted at levels that have been
treated in previous iterations and will thus not be processed any more.

Summarizing, we propose a greedy algorithm that considers, in order for
every 1 ≤ i ≤ k, the ni leaves corresponding to each codeword length i individu-
ally, and repeatedly prunes full trees having their number of leaves equal to 2h,
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for the largest possible h ≥ 1. The construction in [4] is similar, but presented
as a heuristic improving the use of Wavelet trees.

Algorithm 1 gets as input parameter the q-source 〈n1, n2, . . . , nk〉 of an opti-
mal code for a given weight distribution and constructs a corresponding optimal
sk-tree after having generated its q-source 〈m1,m2, . . . ,mk′〉. We have chosen
here the canonical form for this optimal sk-tree, but any other form could be
used. The algorithm maintains a list L in which the pairs (i, h) are inserted,
each identifying a pruned subtree T , with i being the index of the level of the
leaves of T , and h being its height, implying that the number of its leaves is 2h.
Once the optimal sk-tree is constructed, the elements in L are used to assign
the correct values h(v) to its leaves v. The list L can be implemented as queue
or stack or any other way, as long as it permits to process all of its elements in
some order.

Algorithm 1. Optimal Pruning Algorithm

OptimalPruning(〈n1, n2, . . . , nk〉)
for i ← 1 to k do

mi ← ni

while mi ≥ 2 do
h ← �log2 mi�
mi ← mi − 2h

mi−h ← mi−h + 1
add the pair (i, h) to the list L

k′ ← max{i | 1 ≤ i ≤ k, mi > 0}
build canonical tree for 〈m1, m2, . . . , mk′〉 and set h(v) ← 0 to all its leaves v
for each pair (i, h) ∈ L do

choose a leaf v on level i − h for which h(v) = 0
h(v) ← h

The algorithm can also be adapted to produce an optimal tree for the given
weight distribution, whose corresponding sk-tree is optimal. All one needs to do
is to replace the last line by

replace the leaf v by the root of a full subtree of heighth

Theorem: The sk-tree constructed by Algorithm 1 is optimal.

Proof: The claim follows from the above discussion. Lemma 1 implies that
the structure of a complete tree may be maintained after each pruning action.
Lemma 2 justifies that each level is treated separately and Lemma 3 suggests
the greedy approach. Since at each step, the number of eliminated nodes is
the largest possible, the size of the remaining tree at the end of the process is
minimal. ��
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Applying Algorithm 1 on the q-source 〈0, 1, 5, 2〉 results in the q-source
〈1, 1, 2〉; a possible optimal tree yielding this optimal sk-tree is the one in Fig. 4.
Applying Algorithm 1 on the h-tuple q-source 〈0, . . . , 0, 1, n−3, 2〉 corresponding
to Fig. 5 results in the (h−1)-tuple q-source 〈1, . . . , 1, 2〉; a possible optimal tree
yielding this optimal sk-tree is the one in Fig. 6.

4 Experimental Results

We considered four texts of different languages and alphabet sizes. ebib is the
Bible (King James version) in English, in which the text was stripped of all
punctuation signs; ftxt is the French version of the European Union’s JOC cor-
pus, a collection of pairs of questions and answers on various topics used in
the arcade evaluation project [18]; sources is formed by C/Java source codes
obtained by concatenating all the .c, .h and .java files of the linux-2.6.11.6 dis-
tributions; and English is the concatenation of English text files selected from
etext02 to etext05 collections of the Gutenberg Project, from which the headers
related to the project were deleted so as to leave just the real text.

Table 1 presents some information on the data files involved. The second and
third columns present the original file sizes in MB and millions of words, and
the fourth column gives the size of the encoded alphabet, |Σ |.

Table 1. Information about the used datasets.

File Size (MB) # of words (in millions) |Σ |
ebib 3.5 0.6 53

ftxt 7.6 1.2 127

sources 200.0 25.8 208

English 200.0 37.0 217

The experimental results are summarized in Table 2. Columns 2, 3 and 4
list, respectively, the number of nodes in a Huffman tree, in an sk-tree based on
pruning a canonical Huffman tree, as advocated in [10], and in an optimal sk-
tree, according to Algorithm 1. There is a gain of 12–23% for the given example
files. The last three columns of the table give the average number of necessary bit
comparisons for the decoding of a single codeword. This is the average codeword
length for a Huffman tree, and for the two skeleton trees, these numbers are
smaller since no additional bit comparisons are needed once the codeword length
is known, that is, a leaf of the sk-tree has been reached. Since decoding time
should be roughly proportional to the number of processed bits, these averages
can be seen as estimates for the average decoding times. The improvement in the
average number of bit comparisons of the optimal over the canonical sk-tree is,
for our examples, of about 4–11%. We see that in spite of the already significant
savings in both time and space of the canonical sk-tree versus Huffman trees,
passing to the non-intuitive optimal sk-trees may still yield some additional gain.
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Table 2. Comparing tree sizes and average codeword lengths.

File Number of nodes Average codeword length

Huffman Canonical Optimal Huffman Canonical Optimal

ebib 105 57 47 4.22 3.35 2.97

ftxt 253 89 77 4.59 3.14 3.02

English 433 129 113 4.48 3.22 3.00

sources 415 93 71 5.55 3.42 3.17

5 Conclusion

Skeleton trees have been introduced as a data structure improving both the
space and time complexities of the decoding of texts encoded by optimal prefix
codes such as Huffman’s. The construction of skeleton trees is based on canonical
Huffman trees, clustering leaves on each level together, according to the assump-
tion that this should increase the number of nodes in the pruned subtrees. This
paper shows, however, that this intuition is misleading, as pruning a canonical
tree does not always yield a tree with a minimal number of nodes. An algorithm
for creating such an optimal skeleton tree is presented.

Note that sk-trees are just one of the possibilities to enhance decoding: while
some prefix of each codeword is processed bit by bit, several bits forming its
suffix may be dealt with as a single unit. Alternatively, other methods use lookup
tables prepared in a preprocessing stage, to decode prefixes or other substrings
of codewords, or even several codewords together, as a bulk [3].
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4. Dubé, D.: Leaner skeleton trees for direct-access compressed files. In: Proceedings
of IEEE International Symposium on Information Theory and its Applications
(ISITA), Monterey, pp. 122–130 (2016)

5. Ferguson, T.J., Rabinowitz, J.H.: Self-synchronizing Huffman codes. IEEE Trans.
Inf. Theory 30(4), 687–693 (1984)

6. Gilbert, E.N., Moore, E.F.: Variable-length binary encodings. Bell Syst. Tech. J.
38, 933–968 (1959)

7. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In:
Proceedings of the 14th Annual SIAM/ACM Symposium on Discrete Algorithms
(SODA), pp. 841–850 (2003)

http://dx.doi.org/10.1007/978-3-642-17514-5_27
http://dx.doi.org/10.1007/978-3-642-17514-5_27


Optimal Skeleton Huffman Trees 253

8. Huffman, D.: A method for the construction of minimum redundancy codes. In:
Proceedings of the IRE, pp. 1098–1101 (1952)

9. Jacobson, G.: Space efficient static trees and graphs. In: Proceedings of Foundations
of Computer Science (FOCS), pp. 549–554 (1989)

10. Klein, S.T.: Skeleton trees for the efficient decoding of Huffman encoded texts.
J. Inf. Retrieval 3, 7–23 (2000). Special issue on Compression and Efficiency in
Information Retrieval of the Kluwer

11. Klein, S.T.: Basic Concepts in Data Structures. Cambridge University Press,
Cambridge (2016)

12. Navarro, G., Providel, E.: Fast, small, simple rank/select on bitmaps. In: Klasing,
R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 295–306. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-30850-5 26

13. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary.
In: Proceedings of ALENEX. SIAM (2007)

14. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms
3(4), 43 (2007)

15. Schwartz, E.S., Kallick, B.: Generating a canonical prefix encoding. Commun.
ACM 7, 166–169 (1964)

16. Shapira, D., Daptardar, A.: Adapting the Knuth-Morris-Pratt algorithm for pat-
tern matching in Huffman encoded texts. Inf. Process. Manag. 42(2), 429–439
(2006)

17. Turpin, A., Moffat, A.: Fast file search using text compression. In: Australian
Computer Science Conference, pp. 1–8 (1997)
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Abstract. Given a pattern p = s1x1s2x2 · · · sr−1xr−1sr such that
x1, x2, . . . , xr−1 ∈ {x, ←

x}, where x is a variable and
←
x its reversal, and

s1, s2, . . . , sr are strings that contain no variables, we describe an algo-
rithm that constructs in O(rn) time a compact representation of all P
instances of p in an input string of length n over a polynomially bounded
integer alphabet, so that one can report those instances in O(P ) time.

Keywords: Patterns with variables · Matching · Repetitions · Pseudo-
repetitions

1 Introduction

A pattern is a string consisting of variables (e.g., x, y, z) and terminal letters
(e. g., a, b, c). The terminal letters are treated as constants, while the variables
are letters to be uniformly replaced by strings over the set of terminals (i. e.,
all occurrences of the same variable are replaced by the same string); by such a
replacement, a pattern is mapped to a terminal string. Patterns with variables
appeared in various areas of computer science, e.g., stringology and pattern
matching [1], combinatorics on words [20], language and learning theory [2], or
regular expressions with back references [10,24], used in programming languages
like Perl, Java, Python. In such applications, patterns are used to express string
searching questions such as testing whether a string contains regularities.

Here, we consider the so-called one-variable patterns p = s1x1 · · · sr−1xr−1sr

such that, for all z, xz ∈ {x,
←
x}, where x is a variable and ←

x its reversal, and sz

is a string over a set Σ of terminals. An instance of p in a text t is a substring
s1w1 · · · sr−1wrsr of t, with wz = w if xz = x and wz = ←

w if xz = ←
x, for a non-

empty w ∈ Σ∗ called substitution of x. We address the problem of efficiently
finding instances of such patterns in texts.

For example, let p = axabxbc
←
x. An instance of this pattern, if the alpha-

bet of terminals is {a, b, c}, is a abc ab abc bc cba, where x is substituted by abc
(and, consequently, ←

x by cba). Another instance is a aaabbb ab aaabbb bc bbbaaa
if x is substituted by aaabbb. Both these instances occur in the text t =
aabcababcbccbaaaabbbabaaabbbbcbbbaaa: the former instance starts at position 1
and the later starts at position 14. These two instances overlap at position 14.
c© Springer International Publishing AG 2017
G. Fici et al. (Eds.): SPIRE 2017, LNCS 10508, pp. 254–270, 2017.
DOI: 10.1007/978-3-319-67428-5 22
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Our motivation for studying such patterns is two-fold. Firstly, the efficient
matching of several classes of restricted patterns was analyzed in [9] and con-
nected to algorithmic learning theory [8]. Generally, matching patterns with
variables to strings is NP-complete [7], so it seemed an interesting problem to
find structurally restricted classes of patterns for which the matching problem
is tractable. As such, finding all occurrences of a one-variable pattern in a word
occurred as basic component in the matching algorithms proposed in [9] for pat-
terns with a constant number of repeated variables or for non-cross patterns
(patterns that do not have the form ..x..y..x..).

Secondly, our work extends the study of pseudo-repetitions (patterns from
{x,

←
x}∗). The concept of pseudo-repetitions (introduced in [6], studied from both

combinatorial [22] and algorithmic [13,25] points of view) draws its original moti-
vations from important biological concepts: tandem repeat, i.e., a consecutive
repetition of the same sequence of nucleotides; inverted repeat, i.e., a sequence of
nucleotides whose reversed image occurred already in the longer DNA sequence
we analyze, both occurrences (original and reversed one) encoding, essentially,
the same genetic information; or, hairpin structures in the DNA sequences, which
can be modeled by patterns of the form s1xs2

←
xs3. More interesting to us, from

a mathematical point of view, pseudo-repetitions generalize both the notions
of repetition and of palindrome, central to combinatorics on words and appli-
cations. The one-variable pattern model we analyze generalizes naturally the
mathematical model of pseudo-repetition by allowing the repeated occurrences
of the variable to be separated by some constant factors.

Thus, we consider the next problem, aiming to improve the detection of
pseudo-repetition [13], as well as a step towards faster detection of occurrences
of restricted patterns [8,9].

Problem 1. Given a string t ∈ Σ∗ of length n and a pattern p =
s1x1 · · · sr−1xr−1sr such that, for 1 ≤ z ≤ r − 1, xz ∈ {x,

←
x} where x /∈ Σ

is a variable and ←
x its reversal, and sz ∈ Σ∗ for 1 ≤ z ≤ r, report all P instances

of p in t (in a form allowing their retrieval in O(P ) time).

We assume that t and all strings sz, for z = 1, . . . , r, are over an integer alphabet
Σ = {0, 1, . . . , nO(1)}, and that we use the word RAM model with Θ(log n)-bit
machine words1 (w.l.o.g., assume that log n is an integer). In this setting, we
propose an algorithm that reports in O(rn) time all instances of p in t in a
compactly encoded form, which indeed allows us to retrieve them in O(P ) time.
Our approach is based on a series of deep combinatorics on words observations,
e.g., regarding the repetitive structure of the text, and on the usage of efficient
string-processing data structures, combining and extending in novel and non-
trivial ways the ideas from [9,13,17].

If the pattern contains only a constant number of variables (e.g., generalized
squares or cubes with terminals between the variables), our algorithm is asymptot-
ically as efficient as the algorithms detecting fixed exponent (pseudo-)repetitions.
For arbitrary patterns, our solution generalizes and improves the results of [13],

1 Hereafter, log denotes the logarithm with base 2.
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where an O(r2n)-time solution to the problem of finding one occurrence of a one-
variable pattern with reversals (without terminals) was given. Here, compared
to [13], we work with patterns that contain both variables and terminals and we
detect, even faster, all their instances. Also, we improve the results of [9] in sev-
eral directions: as said, we find all instances of a one-variable pattern (in [9] such a
problem was solved as a subroutine in the algorithm detecting non-cross patterns,
and only some instances of the patterns were found), our algorithm is faster by a
log n factor, and our patterns also contain reversed variables.

In this paper, we omit most of the technicalities of the solution to Problem 1
from the main part, and prefer to keep the presentation at an intuitive level; the
full proofs are available in the full version of this paper [18].

2 Preliminaries

Let w be a string of length n. Denote |w| = n. The empty string is denoted
by ε. We write w[i] for the ith letter of w and w[i..j] for w[i]w[i+1] · · · w[j].
A string u is a substring of w if u = w[i..j] for some i ≤ j. The pair (i, j) is not
necessarily unique; we say that i specifies an occurrence of u in w. A substring
w[1..j] (resp., w[i..n]) is a prefix (resp. suffix ) of w. The reversal of w is the
string ←

w = w[n] · · · w[2]w[1]; w is a palindrome if w = ←
w. For any i, j ∈ R,

denote [i..j] = {k ∈ Z : i ≤ k ≤ j}, (i..j] = [i..j] \ {i}, [i..j) = [i..j] \ {j},
(i..j) = [i..j) ∩ (i..j]. Our notation for arrays is similar to that for strings, e.g.,
a[i..j] denotes an array indexed by the numbers [i..j]: a[i], a[i+1], . . . , a[j].

In Problem 1 we are given an input string (called text) t of length n and
a pattern p = s1x1s2x2 · · · sr−1xr−1sr such that, for z ∈ [1..r), xz ∈ {x,

←
x}

and s1, s2, . . . , sr are strings that contain no x nor ←
x. For the simplicity of

exposure, we can assume x1 = x. An instance of p in the text t is a substring
t[i..j] = s1w1s2w2 · · · sr−1wr−1sr such that, for z ∈ [1..r), wz = w if xz = x, and
wz = ←

w if xz = ←
x, where w is a string called a substitution of x; ←

w is called a
substitution of ←

x. We want to find all instances of p occurring in t.
An integer d > 0 is a period of a string w if w[i] = w[i+d] for all i ∈ [1..|w|−d];

w is periodic if it has a period ≤ |w|
2 . For a string w, denote by pred(w) and

sufd(w), respectively, the longest prefix and suffix of w with period d. A run of
a string w is a periodic substring w[i..j] such that both substrings w[i−1..j] and
w[i..j+1], if defined, have strictly greater minimal periods than w[i..j]. A string
w is primitive if w �= vk for any string v and any integer k > 1.

Lemma 2 (see [5]). A primitive string v occurs exactly twice in the string vv.

Lemma 3. Let R be the set of all runs of t, whose period is at least three times
smaller than the length of the run (such runs are called cubic). Then

∑
s∈R |s| ∈

O(n log n).

Proof. Consider a run t[i..j] ∈ R with the minimal period p. Since a primitively
rooted square of length 2p occurs at any position k ∈ [i..j−2p+1], the sum∑

s∈R |s| is upper bounded by three times the number of primitively rooted
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squares occurring in t. At each position of t, at most 2�log n� primitively rooted
squares may occur (see, e.g., [5]), so the result follows. �	

In solving Problem1, we use a series of preprocessing steps. First, we find all
runs in t in O(n) time using the algorithm of [3] and, using radix sort, construct
lists Rd, for d = 1, 2, . . . , n, such that Rd contains the starting positions of
all runs with the minimal period d in increasing order. We produce from Rd

two sublists R′
d and R′′

d containing only the runs with the lengths ≥ log n and
≥ log log n, respectively (so that R′

d is a sublist of R′′
d). The following lemma

provides us fast access to the lists Rd, R
′
d, R

′′
d from periodic substrings of t.

Lemma 4 ([15, Lemma 6.6]). With O(n) time preprocessing, we can decide
in O(1) time for any substring t[i..j] of t whether it is periodic and, if so, compute
its minimal period d and find in Rd, R′

d, or R′′
d the run containing t[i..j].

For i, j ∈ [1..n], let lcp(i, j) and
←−
lcp(i, j) be the lengths of the longest common

prefixes of the strings t[i..n], t[j..n] and
←−−−
t[1..i],

←−−−
t[1..j], respectively. In O(n) time

we build for the string t
←
t the longest common prefix data structure (for short,

called the lcp structure) that allows us retrieving the values lcp(i, j) and
←−
lcp(i, j)

for any i, j ∈ [1..n] in O(1) time (see [5,14]). Thus, to check if the substrings of
length � starting (resp., ending) at positions i and j in the string t are equal, we
just check whether lcp(i, j) ≥ � (resp.,

←−
lcp(i, j) ≥ �). As a side note, we essentially

use that we can compare the reversed image of two substrings of t using the lcp

structure built for t
←
t .

With the lcp structure, it is easy to solve Problem 1 in O(rn2) time: we first
apply any linear pattern matching algorithm to find in O(rn) time all occurrences
of the strings s1, s2, . . . , sr in t and then, for every position i ∈ [1..n] of t and
every � ∈ [0..n], we check in O(r) time whether an instance s1w1 · · · sr−1wr−1sr

of the pattern p, with � = |w1| = · · · = |wr−1|, occurs at position i.

General Strategy. For each z ∈ [1..r], using a pattern matching algorithm (see [5]),
we fill in O(n) time a bit array Dz[1..n] where, for i ∈ [1..n], Dz[i] = 1 iff sz occurs
at position i. Assume that p contains at least two occurrences of the variable, i.e.,
p /∈ {s1xs2} (in the case p = s1xs2 each instance of p is given by an occurrence of
s1, stored in D1, followed by an occurrence of s2, stored in D2).

Let α = 4
3 . For each k ∈ [0.. logα n], our algorithm finds all instances of p that

are obtained by the substitution of x with strings of lengths from (32αk..2αk].
Clearly, the intervals (32αk..2αk] do not intersect and their union covers the
interval [2..n]. In this manner, our algorithm obtains all instances of p with
substitutions of x of length at least two. The remaining instances, when the
string substituting x has length one or zero, can be easily found in O(rn) time
using the arrays {Dz}r

z=1.
So, let us fix k ∈ [0.. logα n] and explain our strategy for this case. Suppose

that, for i, j ∈ [1..n], t[i..j] = s1w1s2w2 · · · sr−1wr−1sr is an instance of p and
3
2αk < |w1| = · · · = |wr−1| ≤ 2αk; then w1 contains a substring v of length
�αk� starting, within t, either at position q1 = h�αk� + 1 or at position q1 =
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h�αk� + � �αk�
2 
 for some integer h ≥ 0. Based on this observation, we consider

all choices of a substring v of t, with length �αk�, starting at positions h�αk�+1
and h�αk� + � �αk�

2 
 for h ≥ 0. Such a string v acts as a sort of anchor: it
restricts (in a strong way, because of its rather large length with respect to |w1|)
the positions where w1 may occur in t, and copies of either v or ←

v should also
occur in all w2, . . . , wr−1, thus restricting the positions where these strings may
occur in t, as well. Based on a series of combinatorial observations regarding
the way such substrings v occur in t, and using efficient data structures to store
and manipulate these occurrences, we find all corresponding instances of p that
contain v in the substitution of x1 in O(r + r|v|

log n ) time plus O( log n
log log n ) time if

log n
16 log log n ≤ |v| ≤ log n. We discuss two cases: v is non-periodic or periodic.

In the first case, distinct occurrences of v (or ←
v ) in t do not have large

overlaps, so we can detect them rather fast, as described in Lemma 6: for λ = |s2|,
we preprocess a data structure that allows us to efficiently find all occurrences of
v or ←

v at the distance λ to the right of v and these occurrences serve as additional
anchors inside the substitution w2; note that the case of very short v requires
a separate discussion. Hence, the distinct instances of p where the substitution
of x contains a certain non-periodic v also do not have large overlaps (which
means, as well, that they are not too many), and they can be identified (and
stored, as described in Lemma 7) by trying to align occurrences of the strings
s1, . . . , sr in a correct manner around the found v’s.

Then we consider the case when v is periodic. Then, the occurrences of v or ←
v

corresponding to different instances of p might have large overlaps and form runs,
so we analyze the runs structure of t. Consider, for the simplicity of exposure,
a typical example: t = (abc)m contains Θ(|t|2) instances of p = xcxcabcxcxcxca
with substitutions x = ab(cab)k, for different k. The point in this example is that
almost all substitutions are periodic and are contained in one run with the same
minimal period. We can encode these instances by an arithmetic progression:
for all 0 ≤ h ≤ m − 7, 0 ≤ k ≤ m − h − 7, there is an instance of p starting at
position 1+3h of t with substitution of length 2 + 3k. It turns out, as described in
Lemmas 13 and 15, that, for any pattern p, all instances of p whose substitutions
are periodic substrings of one run with the same minimal period can be encoded
by similar arithmetic progressions.

Consider now another relevant example: t = (abc)�d(abc)m contains Θ(|t|)
instances of p = xxdxabcxx with substitutions x = (abc)k. All these instances
can be encoded as follows: for all k = 0, 1, . . . ,min{�,m}, there is an instance
of p starting at position 1 + 3� − 3k with substitution of length 3k. So, the
letter d “separates” the image of p into two runs, breaking the period of the
first run. As shown in Lemmas 11 and 12, there might exist only a constant
number of such “separators” in a general p and all instances of p, with the
image x periodic, and which lie in two runs with the same minimal period,
split by a given “separator”, can be encoded by similar arithmetic progressions
(the analysis of this case is similar to the analysis of in-a-run instances, so, it is
moved in the full version [18]).
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If the substitutions in an instance of p lie in three or more runs (so, also there
are more points where the period breaks inside each instance of p), then we can
find the possible occurrences of v (which are periodic, so they must avoid period-
breaking points that separate the runs contained in p) and, consequently, find the
instances of p. The combinatorics of such instances of the pattern is discussed in
Lemmas 8 and 9: the essential idea is that the occurrences of v and ←

v in p and the
substrings connecting them form runs, separated by substrings which break the
periodicity; these substrings should correspond to substrings that interrupt runs
in t. The actual algorithm identifying and storing these instances of the pattern
follows from Lemmas 10, 11 and 12 (and the comments connecting them).

Finally, since there are O( n
αk ) such substrings v and at most O(n/ log n

log log n )
of them (for all k = 0, 1, . . . in total) are such that log n

16 log log n ≤ |v| ≤ log n, the

overall time is O(
∑logα n

k=0
n
αk (r + rαk

log n ) + (n/ log n
log log n ) log n

log log n ) = O(rn).
The details of all the cases considered in our approach are given in Sects. 3

and 4, following the general strategy described above. Summing up, we get:

Theorem 5. Problem 1 can be solved in O(rn) time.

3 Non-periodic Anchor Substring v

As described in the General Strategy paragraph, we first choose an anchor
string v occurring in w1 and then try to construct an instance of the pattern p
around this v. So, let v be a substring of t of length �αk� starting at position
q1 = h|v| + 1 for some integer h ≥ 0 (the case of position h|v| + � |v|

2 
 is similar).
As explained before, we will iterate through all possible values of h, which allows
us to identify all instances of the pattern. For a fixed v, using Lemma 4, we check
whether it is periodic. In this section, we suppose that v is not periodic; the case
of periodic v is considered in Sect. 4.

Our aim is to find all instances t[i..j] = s1w1s2w2 · · · sr−1wr−1sr of p in
which w1 contains v and has length close to |v|, i.e., i and j must be such that
i + |s1| ≤ q1 < q1 + |v| ≤ i + |s1w1| and 3

2 |v| < |w1| = · · · = |wr−1| ≤ 2|v|.
Let t[i..j] be such a substring. It follows from the inequality 3

2 |v| < |w1| ≤ 2|v|
that we can compute a relatively small interval of t where the v (or ←

v ) corre-
sponding to w2 may occur. More precisely, if w1 = w2 (resp., w1 = ←

w2), then
the string v (resp., ←

v ) has an occurrence starting at a position from the interval
[q1 + |vs2|..q1 + |vvs2v|]. Since v is not periodic, the length of the overlap between
any two distinct occurrences of v is less than |v|

2 . Hence, there are at most four
occurrences of v (resp., ←

v ) starting in [q1+ |vs2|..q1+ |vvs2v|]. To find these occur-
rences, our algorithm applies the following general lemma for λ = |s2|.
Lemma 6. Let λ ≥ 0 be an integer. We can preprocess the text t of length n
in O(n) time to produce data structures allowing us to retrieve, for any given
non-periodic substring v = t[q..q′−1], all occurrences of v and ←

v starting in the
substring t[q′ + λ..q′ + λ + 2|v|] in:

– O( |v|
log n ) time if |v| > log n,
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– O( log n
log log n ) time if log n

16 log log n ≤ |v| ≤ log n, and
– O(1) time otherwise.

Proof. For i ∈ [1..n], let ti = t[i..i+ log n − 1] be the substring of length log n
starting at position i in t. Let S be the set of all distinct strings ti. Using the
suffix array of t, its lcp structure, and radix sort, we construct in O(n) time the
set of arrays {As}s∈S such that, for any s ∈ S, As contains the starting positions
of all occurrences of s in t in ascending order. Essentially, for each s ∈ S, we
locate an occurrence of s in t and then produce a “cluster” of the suffix array
of t with the suffixes starting with s, then we radix sort (simultaneously) the
positions in these “clusters” (all numbers between 1 and n, keeping track of
the “cluster” from where each position came), to obtain the arrays As. Further,
using the suffix array of the string t

←
t , its lcp structure, and radix sort, we build

in O(n) time arrays of pointers B[1..n] and
←
B[1..n] such that, for i ∈ [1..n], B[i]

(resp.,
←
B[i]) points to the element of Ati

(resp., A←
ti

) storing the leftmost position

j with j ≥ i + λ and ti = tj (resp.,
←
ti = tj); B[i] (resp.,

←
B[i]) is undefined if

there is no such j.
The case |v| > log n. In this case, to find all required occurrences of v, we

note that v = t[q..q′ − 1] starts with tq. Thus, we first find all occurrences of
tq starting within the segment [q + λ..q′ + λ + 2|v|]. The sequence of all such
occurrences forms a contiguous subarray in Atq

and B[q] points to the beginning
of this subarray.

In a first case, suppose that the distance between any two consecutive
positions stored in this subarray is greater than |tq|

2 . Then there are at most
O( |v|

|tq| ) = O( |v|
log n ) such occurrences of tq. Some of these occurrences may be

extended to form an occurrence of v, and they must be identified. To check in
constant time whether v occurs indeed at a given position � of the subarray we
use the lcp structure and verify whether lcp(�, q) ≥ |v|.

The case of the string ←
v is analogous but involves

←
tq and

←
B instead of tq

and B. Hence, we find all required occurrences of v and ←
v in O( |v|

log n ) time.
Suppose that the aforementioned subarray of Atq

(resp., A←
tq

), containing

the positions of tq (resp.,
←
tq) in the desired range, contains two consecutive

occurrences of tq (resp.,
←
tq) whose starting positions differ by at most |tq|

2 . Then
tq is periodic. Using Lemma 4, we compute the minimal period d of tq and find,
in O(1) time, the run t[i′..j′] (in the list R′

d) containing tq. Recall now that v
is not periodic, so we must have that t[q..j′] is pred(v), the maximal d-periodic
prefix of v, and |pred(v)| < |v|. We now focus on finding the occurrences of tq in
the range [q′ +λ..q′ +λ+2|v|]. Since R′

d contains only runs of length ≥ log n and
any two runs with period d cannot overlap on more than d−1 letters, there are at
most O( |v|

log n ) runs in R′
d that overlap with the segment [q+λ..q′+λ+2|v|]. These

runs can be all found in O( |v|
log n ) time. Some of them may end with pred(v) and

may be extended to the right to obtain an occurrence of v (resp., ←
v ). If t[i′′..j′′]
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is one of the runs we found, then there might be an occurrence of v starting at
position j′′ − j′ + q or an occurrence of ←

v ending at position i′′ + j′ − q. So,
using the lcp structure, in a similar way as before, we find all required occurrence
of v (resp., ←

v ) in O( |v|
log n ) time.

It remains to consider how to find all occurrences of v = t[q..q′ − 1] (resp., ←
v )

starting in the segment [q′+λ..q′+λ+2|v|] in the case log n
16 log log n ≤ |v| ≤ log n and

|v| < log n
16 log log n .

The case log n
16 log log n ≤ |v| ≤ log n. This case is similar to the case |v| > log n.

For i ∈ [1..n − �log log n
], define t′i = t[i..i+�log log n
]. Let S′ be the set of all
distinct strings t′i. In the same way as in the case |v| > log n, using the suffix
array of t, its lcp structure, and radix sort, we construct in O(n) time the set of
arrays {A′

s′}s′∈S′ such that, for any s′ ∈ S′, A′
s′ contains the starting positions

of all occurrences of s′ in t in ascending order. Further, using the suffix array of
the string t

←
t , its lcp structure, and radix sort, we build in O(n) time arrays of

pointers B′[1..n] and
←
B′[1..n] such that, for i ∈ [1..n], B′[i] (resp.,

←
B′[i]) points

to the element of A′
t′
i

(resp., A′
←
t′
i

) storing the leftmost position j with j ≥ i + λ

and t′i = t′j (resp.,
←
t′i = t′j); B′[i] (resp.,

←
B′[i]]) is undefined if there is no such j.

Now we proceed like in the case |v| > log n but use t′q instead of tq, the arrays

A′
t′
q
, B′,

←
B′ instead of Atq

, B,
←
B, and the list R′′

d instead of R′
d. The processing

takes O( |v|
log log n ) = O( log n

log log n ) time.
The case |v| < log n

16 log log n . Using radix sort, we can reduce the alphabet of
t to [0..n) in O(n) time; let $ be a new letter. For h ∈ [0.. n

log n ), let eh =
t[h log n+1..h log n+2 log n] and fh = t[h log n+λ..h log n+λ+5 log n] assuming
$ = t[n+1] = t[n+2] = . . ., so that eh and fh are well defined. Note that v is a
substring of eh for h = � q − 1

log n
 and, if there is an occurrence of v (resp., ←
v ) starting

in the segment [q′ + λ..q′ + λ + 2|v|], then this occurrence is a substring of fh.
For each h ∈ [0.. n

log n ), our algorithm constructs a string gh = eh$fh and
reduces the alphabet of gh to [1..|gh|] as follows. Let E[0..n] be an array of
integers filled with zeros. While processing gh, we maintain a counter c; initially,
c = 0. For i = 1, 2, . . . , |gh|, we check whether E[gh[i]] = 0 and, if so, assign c ←
c+1 and E[gh[i]] ← c. Regardless of the result of this check, we perform gh[i] ←
E[gh[i]]. Once the alphabet of gh is reduced, we clear all modified elements of
E using an unmodified copy of gh and move on to gh+1. Thus, the reductions of
the alphabets of all gh take O(n +

∑�n/ log n	
h=0 |gh|) = O(n) overall time.

Each letter in a string gh fits in �log(|gh| + 1)� ≤ 2�log log n� bits. Hence,
the substrings of gh corresponding to the substrings v = t[q..q′ − 1] and t[q′ +
λ..q′ + λ + 3|v|] together fit in 8|v|�log log n� ≤ log n

2 bits. Thus, we can perform
the searching of v (resp., ←

v ) in t[q′ + λ..q′ + λ + 3|v|] in O(1) time using a
precomputed table of size O(2

log n
2 ) = O(

√
n). �	

Recall that q1 was the starting point of v (for simplicity, assume that
v = t[h1..h2], where h1 is an alias of q1 that is only used for the uniformity
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of the notation). Let q2 ∈ [q1 + |vs2|..q1 + |vs2vv|] be the starting position of an
occurrence of v (or ←

v ) found by Lemma 6. We now want to see whether there
exists an instance of the pattern that has the anchor v from w1 occurring at
position q1 and the corresponding v (resp., ←

v ) from w2 occurring at q2.
If x1 = x2 (and, consequently, w1 = w2), then β = q2 − q1 − |s2| is the

length of substitution w1 of x that could produce the occurrence of v at position
q2. Once the length β is computed, we get that w1 can start somewhere between
h2 − β − |s1| and q1 − |s1| = h1 − |s1|, so all corresponding instances of p will
start in the interval [h2 − β − |s1|+1..h1 − |s1|]. These instances (determined by
h1 = q1, |v|, and β) can be found by the following lemma (see the case x1 �= x2

in [18]).
For a given β, let Lp(β) = |s1s2 · · · sr| + (r − 1)β, that is, the length of the

image of the pattern p when x is substituted by a variable of length β.

Lemma 7. Given a substring t[h1..h2] = v and an integer β ≥ |v|, we can
compute a bit array occ[h2 − β − |s1|+1..h1 − |s1|] such that, for any i, we
have occ[i] = 1 iff the string t[i..i+Lp(β) − 1] is an instance of p containing v
in its substring that corresponds to w1 (i.e., i + |s1| ≤ h1 < h2 < i + |s1| + β).
This computation takes O(r+ rβ

log n ) time, to which we add O( log n
log log n ) time when

log n
16 log log n ≤ |v| ≤ log n.

Proof. The general idea of the proof is as follows. Knowing where v (which
anchors w1, which substitutes x) starts and knowing the length |w1|, we know,
if x1 = · · · = xr−1, where the corresponding occurrences of v from w2, . . . , wr−1

should be positioned (the case when xi �= xj , for some i �= j, is analyzed using
more complicated ideas, e.g., from [4]; see the full version [18]). We check, in O(r)
time, if they indeed occur at those positions. Suppose this checking succeeds.
These v’s might correspond to more instances of p as in Fig. 1. We further check
where the wz’s corresponding to occurrences of x in p may occur.

Fig. 1. Two instances of the pattern p = bxabxx.

To this end, we measure how much can we extend simultaneously, with the
same string to the left (respectively, to the right), the occurrences of v corre-
sponding to these wi’s. This will give us ranges of the same length, around each
of the v’s, that contain all possible wi’s. We follow a similar strategy for the
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wj ’s corresponding to ←
x in p (see the details below). Now, all it remains is to

see whether we can glue together some occurrences of w1, w2, . . . , wr from the
respective ranges, by identifying between them exactly the strings s1, s2, . . . , sr.
This is be done efficiently using the arrays storing the occurrences of the si’s,
and standard bitwise operations. Let us formalize this explanation.

For z ∈ [1..r), denote qz = h1 + |s2s3 · · · sz| + (z−1)β. Denote by Z (resp.,
←
Z)

the set of all z ∈ [1..r) such that xz = x (resp., xz = ←
x). If there is an instance

t[i..j] = s1w1s2w2 · · · sr−1wr−1sr of p such that |w1| = · · · = |wr−1| = β and
i + |s1| ≤ h1 < h2 < i + |s1w1|, then, for any z, z′ ∈ Z (resp., z, z′ ∈ ←

Z),
t[qz..qz+|v|−1] = t[qz′ ..qz′+|v|−1]. We check these equalities in O(r) time using
the lcp structure. Suppose this checking succeeds. There might exist many corre-
sponding instances of p as in Fig. 1.

We can immediately calculate the numbers b� = min{←−
lcp(qz−1, qz′−1) :

(z, z′) ∈ (Z × Z) ∪ (
←
Z × ←

Z)} and br = min{lcp(qz+|v|, qz′+|v|) : (z, z′) ∈
(Z×Z)∪(

←
Z×←

Z)} in O(r) time. Assume that t[i..j] = s1w1s2w2 · · · sr−1wr−1sr is
an instance of p with |w1| = · · · = |wr−1| = β and i+ |s1| ≤ h1 < h2 < i+ |s1w1|.
By the definition of b� and br, we then necessarily have qz − δ ≥ qz − b� and
qz − δ + β ≤ qz + |v| + br for all z ∈ [1..r), where δ = h1 − (i + |s1|).

Thus, the next segments are non-empty (see Fig. 1):

Sz = [qz − |sz| − b� .. qz−1 + |v| + br] ∩ [qz−1 + |v| .. qz − |sz|] for z ∈ (1..r),
S1 = [q1 − |s1| − b� .. q1 − |s1|] ∩ [q1 + |v| − |s1| − β .. q1 − |s1|],
Sr = [qr−1 + |v| .. qr−1 + |v| + br] ∩ [qr−1 + |v| .. qr−1 + β].

Further, if such instance t[i..j] exists, then there is a sequence of positions
{iz}r

z=1 such that iz ∈ Sz, Dz[iz] = 1 for z ∈ [1..r] and iz+1 − iz = |sz| + β
for z ∈ [1..r) (namely, i1 = i). If x1 = · · · = xr−1, then the converse is also
true: if a sequence {iz}r

z=1 satisfies all these conditions, then t[i1..ir+|sr|−1] =
s1ws2w · · · sr−1wsr, where |w| = β and i + |s1| ≤ h1 < h2 < i + |s1| + β. The
bit arrays {Dz}r

z=1 help us to find all such sequences.
Let D′

1=D1[q1+|v|−|s1|−β..q1−|s1|], D′
r=Dr[qr−1+|v|..qr−1+β] and D′

z =
Dz[qz−1+|v|..qz−|sz|] for z ∈ (1..r). For each z ∈ [1..r], we clear in the array
D′

z all bits corresponding to the regions that are not covered by the segment Sz

and then perform the bitwise “and” of D′
1, . . . , D

′
r; thus, we obtain a bit array

D[0..β−|v|] (see Fig. 1). If x1 = · · · = xr−1, then, for any i ∈ [0..β−|v|], we have
D[i] = 1 iff there is a string s1ws2w · · · sr−1wsr starting at i′ = h2−β−|s1|+i+1
such that |w| = β and i′ + |s1| ≤ h1 < h2 < i′ + |s1w|. Obviously, one can put
occ[h2−β−|s1|+1..h1−|s1|] = D[0..β−|v|]. Since the length of each of the arrays
D′

1, . . . , D
′
r does not exceed β, all these calculations can be done in O(r+ rβ

log n )
time by standard bitwise operations on the Θ(log n)-bit machine words.

If p contains both x and ←
x, it is not clear how to check whether the substitu-

tions of x and ←
x corresponding to a given D[i] = 1 respect each other. The case

when p contains both x and ←
x turns out to be much more difficult; see [18]. �	
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4 Periodic Anchor Substring v

In this section we suppose v is periodic. Recall that v starts at q1 and we also
know its length. By Lemma 4, we find in O(1) time the minimal period d of v
and a run t[i′..j′] with period d containing v (i.e., i′ ≤ q1 < q1 + |v| − 1 ≤ j′).

Just like before, we are searching for instances t[i..j] = s1w1 · · · sr−1wr−1sr

of p such that 3
2 |v| < |w1| ≤ 2|v| and v occurs in w1, so at least |s1| symbols

away from i (in other words, i+ |s1| ≤ q1 < q1 + |v| ≤ i+ |s1w1|). Let us assume
that t[i..j] is such an instance. Then, either w1 has period d or one of the strings
v′ = t[q1..j′+1] or v′′ = t[i′−1..q1+|v|−1] is a substring of w1 (that is, the run
containing v ends or, respectively, starts strictly inside w1).

Suppose first that w1 contains v′ as a substring (the case of v′′ is similar);
note that v′ is the suffix of the run t[i′..j′] starting at position q1, to which a
letter that breaks the period was added. One can show that, since the minimal
period of t[q1..j′] is d, 2d ≤ j′ − q1 + 1, and t[j′+1] �= t[j′+1−d], the string v′ is
not periodic. Hence, v′ can be processed in the same way as v in Sect. 3, and get
the instances of p that occur around it. A similar conclusion is reached when w1

contains v′′, so we assume in the following that w1 is periodic.
Suppose that w1 has period d. Periodic substitutions of x (such as w1) can

produce a lot of instances of p: e.g., an contains Θ(n2) instances of xx. However,
it turns out that when such multiple instances really occur, they have a uniform
structure that can be compactly encoded and appear only when all substitutions
of x and ←

x lie either within one or two runs. Before the discussion of this case,
let us first consider the case when three or more runs contain w1, . . . , wr−1. Due
to space constraints, some proofs are moved to the full version [18].

Three and More Runs. Let t[i..j] be an instance of p with a substitution of
x1 = x denoted by w1 = w and such that w has period d. Moreover, for our
chosen v starting at position q1, we still have 3

2 |v| < |w| ≤ 2|v| and v occurs
inside w1 (i.e., i + |s1| ≤ q1 < q1 + |v| ≤ i + |s1w|). Since |v| ≥ 2d, we have
|w| ≥ 3

2 |v| ≥ 3d. Clearly, each substitution of x or ←
x in t[i..j] is contained in

some run with period d (some of these runs may coincide). It turns out that if
all substitutions of x and ←

x in t[i..j] are contained in at least three distinct runs
with period d, then there are only constantly many possibilities to choose the
length |w|, and these possibilities can be efficiently found and then processed by
Lemma 7 to find the instances of the pattern. To begin with, let us introduce
several lemmas; in their statements w and s are strings (extensions for reversals
are given in [18]).

Lemma 8. Let ws be a substring of t such that w has period d, |w| ≥ 3d, and ws
does not have period d. Let t[i..j] be a run with period d containing w and let h be
the starting position of s. Then, either h = j−|pred(s)|+1 or h ∈ (j+1−d..j+1].

Proof. Suppose that h ≤ j + 1 − d. Then, |pred(s)| ≥ j − h + 1 ≥ d. Thus,
since t[j+1] �= t[j+1−d], |pred(s)| must be equal to j − h + 1 and hence h =
j − |pred(s)| + 1. �	
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Lemma 9. Let wsw (resp., ←
wsw) be a substring of t such that w has period d,

|w| ≥ 3d, and wsw (resp., ←
wsw) does not have period d. Let t[i..j] be a run with

period d containing the first occurrence of w (resp., ←
w) in wsw (resp., ←

wsw).
Denote by h the starting position of s. Then, we have h = j − |pred(s)| + 1 or
h ∈ (j+1−d..j+1] or h ∈ (j−|s|−d..j−|s|].
Proof. If h + |s| > j, then, by Lemma 8, either h = j − |pred(s)| + 1 or h ∈
(j+1−d..j+1]. Suppose that h + |s| ≤ j. Let t[i′..j′] be a run with period d
containing the last occurrence of w in wsw (resp., ←

wsw). Clearly, i′ ≤ h + |s|.
Hence, since t[i..j] and t[i′..j′] cannot overlap on d letters, we obtain j − d+1 <
h + |s|. Therefore, h ∈ (j−|s|−d..j−|s|]. �	

As the string w is periodic, but the whole image of p is not (it extends over
three or more runs), some of the strings sz must break the period induced by w.
If we can identify the sz’s which break the period, Lemmas 8 and 9 allow us to
locate their occurrences which, together with the v we considered, might lead to
finding corresponding instances of p. The next lemma formalizes these ideas (its
proof, especially for the patterns containing both x and ←

x, is rather non-trivial
and uses results from [11,12,19,21,23]; see the full version [18]).

Lemma 10. Let v = t[h1..h2] be a string with the minimal period d ≤ |v|
2 .

Given z, z′ such that 1 < z < z′ < r, we can find all instances t[i..j] =
s1w1s2w2 · · · sr−1wr−1sr of p such that 3

2 |v| < |w1| ≤ 2|v|, v is contained in
w1, w1s2w2 · · · sz−1wz−1 and wzsz+1wz+1 · · · sz′−1wz′−1 both have period d, and
wz−1szwz and wz′−1sz′wz′ both do not have period d, in O(r + r|v|

log n ) time. To
this we add O( log n

log log n ) time if log n
16 log log n ≤ |v| ≤ log n.

It remains to explain how to identify the sz’s that break the period inside the
instances of p, and show that their number is O(1). Let Z (resp., Z ′, Z ′′) be the
set of all numbers z ∈ (1..r) such that xz−1 = xz (resp., ←

xz−1 = xz = ←
x, xz−1 =

←
xz = ←

x). By Lemma 2, as wz ∈ {w,
←
w} for z ∈ [1..r], the next lemma follows:

Lemma 11. For any numbers z1, z2 ∈ Z (resp., Z ′, Z ′′), if the strings
wz1−1sz1wz1 and wz2−1sz2wz2 both have period d, then the next properties hold:

|sz1 | ≡ |sz2 | (mod d), sz1 and sz2 both have period d,
one of sz1 and sz2 (sz1 and

←
s z2 if xz1 �= xz2 )is a prefix of another.

(1)

In the following sense, the converse is also true: if |sz1 | ≥ d, wz1−1sz1wz1 has
period d, and z1 and z2 satisfy (1), then wz2−1sz2wz2 necessarily has period d.

We call a pair of numbers (z, z′) such that z ≤ z′ and z, z′ ∈ Z a separation
in Z if all numbers z1, z2 ∈ ((1..z) ∪ (z..z′)) ∩ Z satisfy (1) and all numbers z1 ∈
((1..z)∪(z..z′))∩ Z and z2 ∈ {z, z′} either do not satisfy (1) or satisfy |sz1 | < d ≤
|sz2 |; separations in Z ′ and Z ′′ are defined analogously. Informally, a pair (z, z′) is
a separation in Z (resp., Z ′, Z ′′) if w1s2 · · · sz−1wz−1 and wzsz+1 · · · sz′−1wz′−1

both have period d, and wz−1szwz and wz′−1sz′wz′ both do not have period d.
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In other words, such a pair indicates exactly the first two sz’s where the
period breaks in an instance of p. Accordingly, if we will apply Lemma 10 for
all pairs (z, z′) such that z and z′ occur in some separations in Z or Z ′ or
Z ′′, then we will find all instances t[i..j] = s1w1s2w2 · · · wr−1sr of p such that
w1, . . . , wr−1 lie in at least three distinct runs with period d, 3

2 |v| < |w1| ≤ 2|v|,
and v occurs in w1. So, it suffices to show that there are at most O(1) possible
separations in Z (resp., Z ′, Z ′′) and, to reach the complexity announced in the
General Strategy section, all such separations can be found in O(r) time.

We describe how to find all separations in Z (the cases of Z ′, Z ′′ are similar).
Clearly, if (z, z′) is a separation, then (z, z) is also a (degenerate) separation. We
find all separations (z, z) ∈ Z applying the following general lemma with Z0 = Z.

Lemma 12. For any subset Z0 ⊆ Z (resp., Z0 ⊆ Z ′, Z0 ⊆ Z ′′), there are at
most three numbers z ∈ Z0 satisfying the following property (2):

any z1, z2 ∈ (1..z) ∩ Z0 satisfy (1),
any z1 ∈ (1..z) ∩ Z0, z2 = z either do not satisfy (1) or |sz1 | < d ≤ |sz2 |. (2)

All such z can be found in O(r) time.

Proof. Let z′ = min Z0. Clearly, z = z′ satisfies (2). Using the lcp structure on
the string p

←
p , we find in O(r) time the smallest number z′′ ∈ Z0 such that any

z1, z2 ∈ [z′..z′′) ∩ Z0 satisfy (1) and some z1, z2 ∈ [z′..z′′] ∩ Z0 do not satisfy (1);
assume z′′ = +∞ if there is no such z′′. Obviously, if z′′ �= +∞, then z = z′′

satisfies (2). Any z ∈ (z′′..+∞) ∩ Z0 does not satisfy (2) because in this case
z′′ �= +∞ and some z1, z2 ∈ [z′..z′′] ∩ Z0 do not satisfy (1). In O(r) time we find
the minimal z′′′ ∈ [z′..z′′) ∩ Z0 such that |sz′′′ | ≥ d; assume z′′′ = z′′ if there
is no such z′′′. By the definition, we have sz1 = sz2 and |sz1 | = |sz2 | < d for
any z1, z2 ∈ [z′..z′′′) ∩ Z0. Therefore, any z ∈ (z′..z′′′) ∩ Z0 does not satisfy (2).
Further, any z ∈ (z′′′..z′′)∩Z0 does not satisfy (2) since in this case z1 = z′′′ and
z2 = z satisfy (1) and |sz1 | ≥ d, which contradicts to (2). Finally, if z′′′ �= +∞,
then z = z′′′ obviously satisfies (2). So, z′, z′′, z′′′ are the only possible numbers
in Z0 that can satisfy (2). �	

Finally, for each separation (z, z) ∈ Z we have found, we apply Lemma 12
with Z0 = Z \ {z} and obtain all separations in Z of the form (z, z′) for z′ > z.
Employing Lemma 12 at most three times, we obtain at most 9 new separations
in total, in O(r) total time, and, besides the at most three (z, z) separations we
initially had, no other separations exist. So, there are at most 12 separations
in Z and they can be found in O(r) time. Lemma 10 can be now employed to
conclude the identification of the instances of p extending over at least three
runs.
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In-a-run instances of p. This case requires a different approach. More precisely,
we process each run t[i′..j′] (only once) with period d in order to find all instances
t[i..j] of p satisfying the following properties (denoted altogether as (3)):

t[i..j] is an instance of p with substitutions of x and ←
x of length ≥3d,

t[i + |s1|..j − |sr|] is a substring of t[i′..j′]. (3)

So, in this case, we no longer try to extend the string v that anchors the occur-
rence of w1, but have a more global approach to finding the instances of the
pattern.

To begin with, since t[i′..j′] has period d, we obtain the following lemma.

Lemma 13. Let t[i..j] be a string satisfying (3) such that i′ ≤ i. Then t[i +
(r − 1)d..j] is an instance of p and, if i − (r − 1)d ≥ i′, t[i − (r − 1)d..j] is also an
instance of p.

Let t[i..j] satisfy (3) and w be a substitution of x in t[i..j]. Recall that x1 = x
and r ≥ 3. We try to get some information on |w|, the length of the substitution
of x. Suppose that p �= s1xs2

←
xs3 (the case p = s1xs2

←
xs3 is considered in the

full version [18]). Then, either there is z ∈ (1..r) such that xz−1 = xz or there
are z′, z′′ ∈ (1..r) such that xz′−1sz′xz′ = ←

xsz′x and xz′′−1sz′′xz′′ = xsz′′
←
x.

Accordingly, we can compute the number |w| mod d as follows.

Lemma 14. Let t[i..j] satisfy (3) and w be a substitution of x in t[i..j]. If,
for some z ∈ (1..r), xz−1 = xz, then |w| ≡ −|sz| (mod d); if, for some
z′, z′′ ∈ (1..r), xz′−1sz′xz′ = ←

xsz′x and xz′′−1sz′′xz′′ = xsz′′
←
x, then either

|w| ≡ d−|sz′′ |−|sz′ |
2 (mod d) or |w| ≡ −|sz′′ |−|sz′ |

2 (mod d).

Proof. Suppose that xz−1 = xz. Since, by Lemma 2, the distance between any
two occurrences of w (or ←

w) in t[i′..j′] is a multiple of d, we have |w| ≡ −|sz|
(mod d).

Suppose that xz′−1sz′xz′ = ←
xsz′x and xz′′−1sz′′xz′′ = xsz′′

←
x. Since w and ←

w
both are substrings of t[i′..j′] and |w| ≥ 3d, it can be shown (see [18, Lemma 19])
that there are palindromes u and v such that |uv| = d, v �= ε, and ←

w is a prefix of
the infinite string (vu)∞. Since wsz′′

←
w is a substring of t[i′..j′] and the strings vu

and uv are primitive, it follows from Lemma 2 that sz′′ = u(vu)k′
for an integer k′

and hence |u| = |sz′′ | mod d, |v| = d−|u|. Similarly, since ←
wsz′w is a substring of

t[i′..j′], we have ←
wsz′w = (vu)k′

v for an integer k′ and therefore 2|w| ≡ |v|−|sz′ |
(mod d). Thus, either |w| ≡ |v|−|sz′ |

2 (mod d) or |w| ≡ d+|v|−|sz′ |
2 (mod d). Since

|v| = (−|sz′′ |) mod d, we obtain either |w| ≡ d − |sz′′ |−|sz′ |
2 (mod d) or |w| ≡

−|sz′′ | − |sz′ |
2 (mod d). �	

We now fix the possible ends of the instances t[i..j] of the pattern p,
with respect to t[i′..j′]. Consider the segments {(j′+1−bd..j′+1−(b−1)d]}f

b=1,
where f is the maximal integer such that j′+1−fd ≥ i′ (i.e., f is expo-
nent of the period in the run t[i′..j′]). For each b ∈ [1..f ], we can find in
O(r + rd

log n ) time, using Lemma 15, all strings t[i..j] satisfying (3) such that
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j−|sr|+1 ∈ (j′+1−bd..j′+1−(b−1)d] (so with s1w1 . . . sr−1wr−1 ending in the
respective segment); the parameter δ in this lemma is chosen according to
Lemma 14 (see below). Adding all up, this enables us to find all instances of
p satisfying (3) in O(r( j′−i′+1

d + j′−i′+1
log n )) time. Since j′ − i′ + 1 ≥ 3d, it follows

from [16] and Lemma 3 that the sum of the values j′−i′+1
d + j′−i′+1

log n over all such
runs t[i′..j′] is O(n); hence the total time needed to find these instances of the
pattern is O(rn).

Technically, our strategy is given in the following lemma (which does not
cover the case p = s1xs2

←
xs3, which is present in the full version [18]). In this

lemma, δ ∈ [0..d) is one of the possible values of |w| mod d, as obtained in
Lemma 14: if xz−1 = xz for some z ∈ (1..r), we use only one value δ = −|sz| mod
d; otherwise, we use two values of δ described in Lemma 15 (the special case
p = s1xs2

←
xs3 is considered separately in [18]). For each thus computed δ, we

process each segment [b1..b2] = (j′+1−bd..j′+1−(b−1)d] and get a compact
representation (in the bit arrays E, F ) of the instances s1w1 . . . sr−1wr−1sr of p
such that s1w1 . . . sr−1wr−1 ends in the respective segment and δ = |w| mod d.
The proof of Lemma 15 is moved to the full version [18].

Lemma 15. Let p �= s1xs2
←
xs3, r ≥ 3, and δ ≤ d. Given a run t[i′..j′]

with period d and a segment [b1..b2] ⊂ [i′..j′ + 1] of length d, we can com-
pute in O(r+ rd

log n ) time the numbers d′, d′′, h′, h′′, a′, a′′ and bit arrays E[b1..b2],
F [b1..b2] such that:

1. for any h ∈ [b1..h′] (resp., h ∈ (h′..b2]), we have E[h] = 1 iff the strings
t[h − |s1s2 · · · sr−1| − (r − 1)(δ + cd)..h + |sr| − 1] for all c ∈ [0..d′] (resp., for
all c ∈ [0..d′′]) are instances of p and h − |s1s2 · · · sr−1| − (r − 1)(δ + cd) ≥ i′;

2. for any h ∈ [b1..h′′] (resp., h ∈ (h′′..b2]), we have F [h] = 1 iff the string
t[h−|s1s2 · · · sr−1|−(r−1)(δ+ad)..h+ |sr|−1], where a = a′ (resp., a = a′′),
is an instance of p and h − |s2s3 · · · sr−1| − (r − 1)(δ + ad) ≥ i′.

In addition, we find at most one instance t[i0..j0] = s1w1s2w2 · · · wr−1sr of p
satisfying (3) and such that j0 − |sr| + 1 ∈ [b1..b2], |w1| ≡ δ (mod d), and it is
guaranteed that if a string t[i..j] = s1w1s2w2 · · · wr−1sr satisfies (3), j−|sr|+1 ∈
[b1..b2], and |w1| ≡ δ (mod d), then either t[i..j] is encoded in one of the arrays
E, F or i = i0 and j = j0.

The only case left is of in-two-runs instances of p. To solve this case we
combine (in a rather technical way) the ideas of the previous cases. Instances of
p extending over two runs are determined by separators (as the period breaks
once inside these instances), but the prefix and suffix of each instance, occurring
before, resp. after, the separator can be extended just as in the case of instances
occurring inside a single run, discussed above. The details are given in [18].
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14. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM 53, 918–936 (2006)

15. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Internal pattern matching
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2014. LNCS, vol. 8634, pp. 402–413. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44522-8 34

23. Rubinchik, M., Shur, A.M.: EERTREE: an efficient data structure for processing
palindromes in strings. In: Lipták, Z., Smyth, W.F. (eds.) IWOCA 2015. LNCS,
vol. 9538, pp. 321–333. Springer, Cham (2016). doi:10.1007/978-3-319-29516-9 27

24. Schmid, M.L.: Characterising REGEX languages by regular languages equipped
with factor-referencing. Inf. Comput. 249, 1–17 (2016)

25. Xu, Z.: A minimal periods algorithm with applications. In: Amir, A., Parida, L.
(eds.) CPM 2010. LNCS, vol. 6129, pp. 51–62. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-13509-5 6

http://dx.doi.org/10.1007/978-3-662-44522-8_34
http://dx.doi.org/10.1007/978-3-662-44522-8_34
http://dx.doi.org/10.1007/978-3-319-29516-9_27
http://dx.doi.org/10.1007/978-3-642-13509-5_6
http://dx.doi.org/10.1007/978-3-642-13509-5_6


Order Preserving Pattern Matching
on Trees and DAGs

Temma Nakamura(B), Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda

Department of Informatics, Kyushu University, Fukuoka, Japan
{temma.nakamura,inenaga,bannai,takeda}@inf.kyushu-u.ac.jp

Abstract. The order preserving pattern matching (OPPM ) problem is,
given a pattern string p and a text string t, find all substrings of t which
have the same relative orders as p. In this paper, we consider two variants
of the OPPM problem where a set of text strings is given as a tree or a
DAG. We show that the OPPM problem for a single pattern p of length
m and a text tree T of size N can be solved in O(m+N) time with O(m)
working space if the characters of p are drawn from an integer alphabet
of polynomial size. The time complexity becomes O(m logm+N) if the
pattern p is over a general ordered alphabet. We then show that the
OPPM problem for a single pattern and a text DAG is NP-complete.

1 Introduction

The order preserving pattern matching (OPPM ) problem is, given a pat-
tern string p and a text string t, find all substrings of t which have the
same relative orders as p. For instance, let p = (22, 41, 35, 37) and t =
(63, 18, 48, 29, 42, 56, 25, 51). The relative orders of the characters in p is 1, 4, 2, 3.
A substring t[2..5] = (18, 48, 29, 42) have the same relative orders 1, 4, 2, 3 as p,
and hence the occurrence of this substring is reported. OPPM captures struc-
tural isomorphism of strings, and thus has potential applications in the analy-
sis of times series such as stock prices, and in melody matching of musical
sequences [7,10].

Let m and n be the lengths of the pattern string p and the text string t,
respectively. Kim et al. [10] proposed an O(m log m + n)-time algorithm for the
OPPM problem. Independently, Kubica et al. [11] proposed an O(sort(p) + n)-
time algorithm, where sort(p) denotes the time complexity to sort the elements
in p; sort(p) = O(m log m) for general ordered alphabets and sort(p) = O(m) for
integer alphabets of size mO(1). These algorithms are based on the Morris-Pratt
algorithm [12]. Kubica et al.’s algorithm works when the input strings do not
contain same characters. Cho et al. [7] showed how Kubica et al.’s algorithm
can be modified when there are same characters in the input strings, retaining
the same efficiency. Other types of algorithms for the OPPM problem have also
been proposed (e.g., see [6,7,9,10]).

This paper considers two natural extensions to the OPPM problem, where
a set of text strings is given as a tree or a DAG. We show that the OPPM

c© Springer International Publishing AG 2017
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problem for a single pattern p and a text tree T of size N can be solved in
O(sort(p)+N) time. Our method uses a Morris-Pratt type of (non-deterministic)
pattern matching automaton, and generalizes the existing results for the OPPM
problem on a single text string. We then show that the OPPM problem for a
single pattern and a text DAG is NP-complete.

Related work. The exact pattern matching problem on a single pattern string
and a tree was first considered by Dubiner et al. [8]. Their algorithm is based on
a (non-deterministic) Morris-Pratt automaton.

Amir and Navarro [3] considered the parameterized pattern matching (PPM )
problem on trees. Let σ be the alphabet size. They showed that the PPM problem
on trees can be solved in O(N log(min{σ,m})) time, provided that the determin-
istic version of a Morris-Pratt type automaton is available. However, the size of
the deterministic version of such an automaton can be as large as O(m2). Hence,
their algorithm takes O(m2 + N(min{σ,m})) time in the worst case1.

Recall that the running time per text character of a non-deterministic Morris-
Pratt automaton depends on the number of failure transitions used per text char-
acter. The key analysis of a total linear running time of this method on a single
text string is that this number is amortized constant. The same amortization
argument holds for its OPPM and PPM variants on a single text string.

The difficulty in using a non-deterministic Morris-Pratt automaton for a tree
text is that if we simply run the automaton on the tree as is, then the above
amortization argument does not hold. It seems that this point was overlooked
even in the exact pattern matching problem on trees (see the proof of Lemma
2.2 of the work by Dubiner et al. [8]).

Still, we will show that a small trick permits us to bound the number of
failure transitions per character to amortized constant, achieving our result for
the OPPM problem on trees. We here emphasize that the same trick can be
employed in any variant of a non-deterministic Morris-Pratt type automaton.
This implies that it is actually possible to solve the exact pattern matching
problem on trees in O(m + N) time using the Morris-Pratt automaton, and the
PPM problem on trees in O((m+N) log(min{σ,m})) time. Both of these results
are optimal; the former is clear, and the latter matches the lower bound of the
PPM problem in the comparison model [3].

Several results for the exact pattern matching problem with a single pattern
string and a labeled graph are known (e.g. [1,13]). See a survey [2] for other
schemes of pattern matching on graph texts.

Amir and Navarro [3] showed the PPM problem on DAGs is NP-complete.
Coupled with their afore-mentioned results on trees, we can observe that the
PPM and OPPM problems have similar complexities on trees and DAGs.

1 Simon [14] proposed an O(m)-space Morris-Pratt automaton for exact pattern
matching, however, it is unclear if this can be extended to PPM or OPPM.
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2 Preliminaries

Let Σ be a totally ordered alphabet. An element of Σ∗ is called a string. The
length of a string w is denoted by |w|. The empty string ε is a string of length 0.
For a string w = xyz, x, y and z are called a prefix, substring, and suffix of w,
respectively. The length of a string w is denoted by |w|. The i-th character of a
string w is denoted by w[i] for each 1 ≤ i ≤ |w|. For a string w and two integers
1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w that begins at position i
and ends at position j. For convenience, let w[i..j] = ε when i > j.

Any strings x, y ∈ Σ∗ of equal length m are said to be order-isomorphic [11]
if the relative orders of the characters of x and y are the same, i.e., x[i] ≤
x[j] ⇐⇒ y[i] ≤ y[j] for any 1 ≤ i, j ≤ m. A non-empty pattern string p is said
to order-preserving match (op-match in short) a non-empty text string t iff there
is a position i in t such that p ≈ t[i − |p| + 1..i]. The order-preserving pattern
matching (OPPM ) problem is to find all such text positions.

For any string x of length m, an integer i (1 ≤ i < m) is said to be an
order-preserving border of x if x[1..i] ≈ x[m − i + 1..m].

We consider the following two variants of the OPPM problem: Assume that
the set of text strings is given as a tree T or a DAG G where each edge is labeled
by a character from Σ. A pattern string p of length m is said to op-match a tree
T (resp. a DAG G) if p op-matches the label of a path in T (resp. G). In this
paper, we consider the locating version of the OPPM on trees and the decision
version of the OPPM on DAGs, which are respectively defined as follows.

Problem 1 (The OPPM problem on trees). Given a pattern string p and an
edge-labeled tree T , report the final node of every path in T that p op-matches.

Problem 2 (The OPPM problem on DAGs). Given a pattern string p and an
edge-labeled DAG G, determine whether p op-matches G or not.

3 Order Preserving Pattern Matching on Trees

Our algorithm for order preserving pattern matching on a text tree is inspired
by the algorithms for order preserving pattern matching on a text string [7,11].
We will utilize the following tools in our algorithm.

For any string x let LMaxx be an array of length |x| such that LMaxx[i] = j
if x[j] = max{x[k] | 1 ≤ k < i, x[k] ≤ x[i]}. Similarly, let LMinx be an array of
length |x| such that LMinx[i] = j if x[j] = min{x[k] | 1 ≤ k < i, x[k] ≥ x[i]}.
If there is no such j, then let LMaxx[i] = 0 and LMinx[i] = 0, respectively. If
there are several such j’s, then we select the rightmost one among them.

Lemma 1 ([11]). Given a string x, we can compute the LMaxx and LMinx

arrays in O(sort(x)) time, where sort(x) is the time to sort the elements of x.

Lemma 2 ([7]). For strings x and y, assume x[1..i] ≈ y[1..i] for 1 ≤ i <
min{|x|, |y|}. Let a = LMaxx[i+1] and b = LMinx[i+1]. Let α be the condition
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Fig. 1. The MP-style automaton Ap for pattern string p = (9, 4, 18, 2, 21, 30). The solid
arcs denote the goto transitions, and the broken arcs do the failure transitions.

that y[a] < y[i+1] and β be the condition that y[i+1] < y[b]. Then, x[1..i+1] ≈
y[1..i + 1] ⇐⇒ (α ∧ β) ∨ (¬α ∧ ¬β). In case a or b is equal to 0, we assume the
respective condition α or β is true.

Let p be a pattern string of length m. We compute the order-preserving border
array Bp of length m such that Bp[1] = 0 and Bp[i] = max{j | j < i, p[1..j] ≈
p[i − j + 1..i]} for 2 ≤ i ≤ m. Namely, Bp[i] stores the largest order-preserving
border of the prefix p[1..i]. Suppose that LMinp and LMaxp have already been
computed using Lemma 1. Kubica et al. [11] showed that using a variant of
the Morris-Pratt (MP) algorithm [12] based on Lemma 2, the Bp array can be
computed in O(m) time. Then, given a text string t of length n, all positions i
in t where p ≈ t[i − m + 1..i] can be computed in O(n) time.

We will extend the above algorithm to the case where the text strings are
given as a tree T of size N . It is convenient to consider an MP-style automaton
Ap based on the op border array Bp such that the set of states is {s0, . . . , sm};
the initial state is s0; the only accepting state is sm; for each 1 ≤ i ≤ m there is
a goto transition from si−1 to si with character c = p[i]; and there is a failure
transition from si to sj iff Bp[i] = j. See Fig. 1 for a concrete example of Ap. We
run Ap over the text tree T in depth first manner. Let v be any node in T . For
any 1 ≤ i ≤ m, let vi denote the ith ancestor of v (if it exists), and path(vi, v) the
path label from vi to v. At each node v visited during the DFS, we compute the
length �(v) of the longest path v�(v), . . . , v such that p[1..�(v)] ≈ path(v�(v), v).
We report every node v with �(v) = m. If �(v) < m, then we store a pointer
to state s�(v) at node v, and otherwise we store a pointer to state s′ at node v,
where s′ is the state pointed by the failure transition of s�(v).

Suppose we have just visited node v. Initially, let � ← �(v). Let u be any
child of v and let c be the edge label from v to u. We proceed to node u and
find �(u). We test if the characters path(v�, u)[a] and path(v�, u)[b] satisfy one of
the conditions in Lemma 2, where a = LMaxp[� + 1] and b = LMinp[� + 1]. If
they do, then we let �(u) = � + 1 and proceed with the DFS. Otherwise, then
let � ← Bp[�], and repeat the above procedure until we find the largest � with
which one of the conditions in Lemma 2 is satisfied. For each candidate � above,
accessing the character path(v�, u)[a] from the currently visited node u means
accessing the (� − a + 1)th ancestor of u. Let L be the length of the longest
path in T . During the DFS, we store the edge labels of the current path from
the root into an array of length L. Using this array we can access path(v�, u)[a]
(and path(v�, u)[b]) in O(1) time. It is easy to update this array during the DFS,
in total O(N) time. When we come back to node v after a back track, then we
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resume pattern matching from state s�(v) of Ap using a pointer stored at v, and
proceed to the next child of v. This pointer is used after a back track.

One delicacy remains. For a single text string the number of candidate �’s,
which is the same as the number of failure transitions used per text character, can
be amortized constant. This amortization argument is based on the fact that the
total number of times the failure transitions are used for the whole text cannot
exceed the total number of times the goto transitions are used in the automaton
Ap, which is bounded by the length of the single text string. However, in our tree
case, this amortization argument does not hold if we carelessly continue the DFS
at branching nodes that are close to leaves, leading to O(mN) worst case time.
To avoid this, at each node u of the tree T we store the distance Du between u
and a furthest leaf in the subtree rooted at u. Namely, Du is the length of the
longest path from u and a leaf below u. Suppose that we are currently visiting
a node u during the DFS with Du ≥ m − �, and that the respective state of
the automaton Ap is s� (Notice that if Du < m − �, then clearly the pattern p
does not op-match any path ending in the subtree under u, and thus we need
not search the subtree under u in this case). Let v be any child of u. If at least
one of the conditions of Lemma 2 is satisfied, then we let � ← �+1 and the DFS
proceeds to v. Otherwise, we let � ← Bp[�] and check if Du ≥ m − � holds each
time the value of � gets updated. We stop updating � as soon as we encounter �
for which Du < m − �, and the DFS immediately starts a back track from this
child v. This permits us to charge the cost for amortization to the length Du of
this longest path under u. Thus, this method correctly finds all locations in the
tree T where p op-matches. We can easily precompute Du for all nodes u in T
in O(N) total time by a standard traversal on T .

Theorem 1. Given a pattern p of length m and a text tree T of size N , the
OPPM problem on trees (Problem 1) can be solved in O(sort(p) + N) time.

sort(p) is respectively O(m log m), O(m), and O(m + N) for general ordered
alphabets, integer alphabets of size mO(1), and integer alphabets of size NO(1).

4 Order Preserving Pattern Matching on DAGs

A string x is said to be a subsequence of another string t if there exists an
increasing sequence of positions 1 ≤ i1 < · · · < i|x| ≤ |t| of t such that x =
t[i1] · · · t[i|x|]. Intuitively, x is a subsequence of t if x can be obtained by removing
zero or more characters from t.

The order-preserving subsequence matching problem (OPSM in short) is,
given a pattern string p and a text string t, to determine whether there is a
subsequence s of t such that p ≈ s. This problem is known to be NP-complete [5].

Theorem 2. The OPPM problem on DAGs (Problem 2) is NP-complete.

Proof. It is clear that the OPPM problem on DAGs is in NP. The proof for NP-
completeness is via the above OPSM problem. Suppose p is a given pattern string
and t is a given text string for the OPSM problem. Consider the directed acyclic
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Fig. 2. The DASG Gt of string t = (5, 2, 1, 4, 3, 6). At each node, every in-coming edge
is labeled with the same character.

subsequence graph (DASG in short) [4] Gt = (V,E) such that V = {v0, . . . , v|t|}
and E = {(vi, c, vj) | c = t[j] and t[k] �= c for i < ∀k < j}. The DASG Gt

represents all subsequences of t, i.e., s is a subsequence of t if and only if there is
a path in Gt of which label coincides with s (see Fig. 2 for an example). Hence,
if we can solve the op-matching problem for the given pattern string p and the
DASG Gt, then we can immediately solve the OPSM problem. The size of DASG
Gt is clearly polynomial in the length of the given text t and Gt can be easily
constructed in polynomial time. This completes the proof. 
�
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Abstract. The Block Tree is a recently proposed data structure that
reaches compression close to Lempel-Ziv while supporting efficient direct
access to text substrings. In this paper we show how a self-index can be
built on top of a Block Tree so that it provides efficient pattern searches
while using space proportional to that of the original data structure.
More precisely, if a Lempel-Ziv parse cuts a text of length n into z non-
overlapping phrases, then our index uses O(z lg(n/z)) words and finds
the occ occurrences of a pattern of length m in time O(m2 lg n+occ lgε n)
for any constant ε > 0.

1 Introduction

The Block Tree (BT) [1] is a novel data structure for representing a sequence,
which reaches a space close to its LZ77-compressed [25] space. Given a string
S[1..n] over alphabet [1..σ], on which the LZ77 parser produces z phrases (and
thus an LZ77 compressor uses z lg n + O(z lg σ) bits, where lg denotes the log-
arithm in base 2), the BT on S uses O(z lg(n/z) lg n) bits (also said to be
O(z lg(n/z)) space). This is also the best asymptotic space obtained with gram-
mar compressors [4,14,15,23,24]. In exchange for using more space than LZ77
compression, the BT offers fast extraction of substrings: a substring of length �
can be extracted in time O((1 + �/ lgσ n) lg(n/z)). In this paper we consider the
LZ77 variant where sources and phrases do not overlap, thus z = Ω(lg n).

Kreft and Navarro [17] introduced a self-index based on LZ77 compression,
which proved to be extremely space-efficient on highly repetitive text collections
[6]. A self-index on S is a data structure that offers direct access to any substring
of S (and thus it replaces S), and at the same time offers indexed searches. Their
self-index uses 3z lg n + O(z lg σ) + o(n) bits (that is, about 3 times the size of
the compressed text) and finds all the occ occurrences of a pattern of length m
in time O(m2h + (m + occ) lg z), where h ≤ n is the maximum number of times
a symbol is successively copied along the LZ77 parsing. A string of length � is
extracted in O(h�) time.

Experiments on repetitive text collections [6,17] show that this LZ77-index
is smaller than any other alternative and is competitive when searching for pat-
terns, especially on the short ones where the term m2h is small and occ is large,
so that the low time to report each occurrence dominates. On longer patterns,
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however, the index is significantly slower. The term h can reach the hundreds
on repetitive collections, and thus it poses a significant penalty (and a poor
worst-case bound).

In this paper we design the BT-index, a self-index that builds on top of BTs
instead of on LZ77 compression. Given a BT of w = O(z lg(n/z)) leaves (which
can be represented in w lg n + O(w) bits), the BT-index uses 3w lg n + O(w)
bits, and it searches for a pattern of length m in time O((m2 lg(n/z) lg lg z +
m lg z lg lg z + occ(lg(n/z) lg lg n + lg z)), which is in general a better theoretical
bound than that of the LZ77-index. If we allow the space to be any O(w) =
O(z lg(n/z)) words, then the time can be reduced to O(m2 lg(n/z) + m lgε z +
occ(lg lg n+lgε z)) for any constant ε > 0. In regular texts, the O(lg(n/z)) factor
is around 3–4, and it raises to 8–10 on highly repetitive texts; both are much
lower than the typical values of h. Thus we expect the BT-index to be faster than
the LZ77-index especially for longer patterns, where the O(m2) factor dominates.

The self-indexes that build on grammar compression [7,8] can use the same
asymptotic space of our BT-index, and their best search time is O(m2 lg lg n +
m lg z + occ lg z). Belazzougui et al. [1], however, show that in practice BTs are
faster to access S than grammar-compressed representations, and use about the
same space if the text is highly repetitive. Thus we expect that our self-index will
be better in practice than those based on grammar compression, again especially
when the pattern is long and there are no too many occurrences to report.

There are various other indexes in the literature using O(z lg(n/z)) bits [2,11]
or slightly more [2,10,21] that offer better time complexities. However, they have
not been implemented as far as we know, and it is difficult to predict how will
they behave in practice.

2 Block Trees

Given a string S[1..n] over an alphabet [1..σ], whose LZ77 parse produces z
phrases, a Block Tree (BT) is defined as follows. At the top level, numbered
l = 0, we split S into z blocks of length b0 = n/z. Each block is then recursively
split into two, so that if bl is the length of the blocks at level l it holds bl+1 = bl/2,
until reaching blocks of one symbol after lg(n/z) levels. At each level, every
pair of consecutive blocks S[i..j] that does not appear earlier as a substring of
S[1..i − 1] is marked. Blocks that are not marked are replaced by a pointer ptr
to their first occurrence in S (which, by definition, must be a marked block or
overlap a pair of marked blocks). For every level l ≥ 0, a bitvector Dl with one
bit per block sets to 1 the positions of marked blocks. In level l + 1 we consider
and subdivide only the blocks that were marked in level l. In this paper, this
subdivision is carried out up to the last level, where the marked blocks store
their corresponding symbol.

We can regard the BT as a binary tree (with the first lg z levels chopped out),
where the internal nodes are the marked nodes and have two children, and the
leaves are the unmarked nodes. Thus we store one pointer ptr per leaf. We also
spend one bit per node in the bitvectors Dl. If we call w the number of unmarked
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blocks (leaves), then the BT has w − z marked blocks (internal nodes), and it
uses w lg n + O(w) bits.

To extract a single symbol S[i], we see if i is in a marked block at level 0,
that is, if D0[�i/b0�] = 1. If so, we map i to a position in the next level, which
only contains the marked blocks of this level:

i ← (rank1(D0, �i/b0�) − 1) · b0 + ((i − 1) mod b0) + 1.

Function rankc(D, p) counts the number of occurrences of bit c in D[1..p]. A
bitvector D can be represented in |D|+o(|D|) bits so that rankc can be computed
in constant time [5]. Therefore, if i falls in a marked block, we translate the
problem to the next level in constant time. If, instead, i is not in a marked
block, we take the pointer ptr stored for that block, and replace i ← i − ptr,
assuming ptr stores the distance towards the first occurrence of the unmarked
block. Now i is again on a marked block, and we can move on to the next level
as described. The total time to extract a symbol is then O(lg(n/z)).

3 A Self-index

Our self-index structure is made up of two main components: the first finds all
the pattern positions that cross block boundaries, whereas the second finds the
positions that are copied onto unmarked blocks. The main property that we
exploit is the following. We will say that a block is explicit in level l if all the
blocks containing it in lower levels are marked. Note that the explicit blocks in
level l are either marked or unmarked, and the descendants of those unmarked
are not explicit in higher levels.

Lemma 1. The occurrences of a given string P of length at least 2 in S either
overlap two explicit blocks at some level, or are completely inside an unmarked
block at some level.

Proof. We proceed by induction on the BT block size. Consider the level l = 0,
where all the blocks are explicit. If the occurrence overlaps two blocks or it is
completely inside an unmarked block, we are done. If, instead, it is completely
inside a marked block, then this block is split into two blocks that are explicit in
the next level. Consider that we concatenate all the explicit blocks of the next
level. Then we have a new sequence where the occurrence appears, and we use a
smaller block size, so by the inductive hypothesis, the property holds. The base
case is the leaf level, where the blocks are of length 1. ��

We exploit the lemma in the following way. We will define an occurrence
of P as primary if it overlaps two consecutive blocks at some level. The occur-
rences that are completely contained in an unmarked block are secondary (this
idea is a variant of the classical one used in all the LZ-based indexes [16]). Sec-
ondary occurrences are found by detecting primary or other secondary occur-
rences within the area from where an unmarked block is copied. We will use a
data structure to find the primary occurrences and another to detect the copies.
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Lemma 2. The described method correctly identifies all the occurrences of a
string P in S.

Proof. We proceed again by induction on the block length. Consider level l = 0.
If a given occurrence overlaps two explicit blocks at this level, then it is primary
and will be found. Otherwise, if it is inside a marked block at this level, then it
also appears at the next level and it will be found by the inductive hypothesis.
Finally, if it is inside an unmarked block, then it points to a marked block at the
same level and will be detected as a copy of the occurrence already found in the
source. The base case is the last level, where all the blocks are of length 1. ��

3.1 The Data Strucures

We describe the data structures used by our index. Overall, they require 3w lg n+
O(w) bits, and replace the pointers ptr used by the original structure. We also
retain the bitvectors Dl, which add up to O(w) bits.

Primary Occurrences. Our structure to find the primary occurrences is a two-
dimensional discrete grid G storing points (x, y) as follows. Let Bi · Bi+1 be
two explicit (marked or unmarked) blocks at some level l, corresponding to the
substrings S[j − bl..j − 1] · S[j..j + bl − 1]. Then we collect the reverse block
Brev

i = S[j − 1] · S[j − 2] · · · S[j − bl] in the multiset Y and the suffix S[j..n] in
the multiset X. If the same suffix S[j..n] turns out to be paired with different
preceding blocks (from different levels), we choose only the longest of those
preceding blocks (they are all suffixes of one another).

We lexicographically sort X and Y , to obtain the strings X1,X2, . . . and
Y1, Y2, . . .. The grid then has a point at (x, y) for each Xx Yy such that Yy is
some reversed block Brev

i and Xx is the suffix of S starting with Bi+1.
To see that there are only w points in the grid, notice that a suffix S[j..n] is

stored only once, even if it starts blocks at different levels of the BT. Therefore,
it can be charged to the lowest common ancestor v of the nodes that represent
S[j −bl..j −1] and S[j..j +bl −1]. Since the tree is binary and the second child of
v starts at position j, the only pairs of blocks that charge v are those associated
with the suffix S[j..n]. Therefore, v is charged only once. If such node v exists, it
is an internal node (of which there are w − z), otherwise the suffix S[j..n] starts
a block of level l = 0 (of which there are z). We then have w different suffixes in
the grid G, which is of size w × w.

We represent G using a wavelet tree [12,13,20], so that it takes w lg w+o(w)
bits and can report all the y-coordinates of the p points lying inside any rectangle
of the grid in time O((p+1) lg w). We spend other w lg n bits in an array T [1..w]
that gives the position j in S corresponding to each point (x, y), sorted by
y-coordinate.

Secondary Occurrences. Let Sl[1..nl] be the subsequence of S formed by the
explicit blocks at level l. If an unmarked block Bi[1..bl] at level l points to its
first occurrence at Sl[k..k + bl − 1], we say that [k..k + bl − 1] is the source of Bi.
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Algorithm 1. Extracting symbols from our encoded BT.
1 Proc Extract(i)
2 l ← 0
3 b ← n/z
4 while b > 1 do
5 j ← �i/b�
6 if Dl[j] = 0 then
7 r ← rank0(Dl, j)
8 p ← select1(Fl, πl(r))
9 s ← (j − 1) · b + 1

10 i ← (p − πl(r)) + (i − s)
11 j ← �i/b�
12 i ← (rank1(Dl, j) − 1) · b + ((i − 1) mod b) + 1
13 l ← l + 1
14 b ← b/2

15 Return the symbol stored at position i in the last level

For each level l with wl unmarked blocks, we store two structures to find the
secondary occurrences. The first is a bitvector Fl[1..nl + wl] built as follows: We
traverse from Sl[1] to Sl[nl]. For each Sl[k], we add a 0 to Fl, and then as many
1s as sources start at position k. The second structure is a permutation πl on
[wl] where πl(i) = j iff the source of the ith unmarked block of level l is signaled
by the jth 1 in Fl.

Each bitvector Fl can be represented in wl lg(nl/wl) + O(wl) bits so that
operation select1(Fl, r) can be computed in constant time [22]. This operation
finds the position of the rth 1 in Fl. On the other hand, we represent πl using a
structure [19] that uses wl lg wl +O(wl) bits and computes any πl(i) in constant
time and any π−1

l (j) in time O(lg wl). Added over all the levels, since
∑

l wl = w,
these structures use w lg n + O(w) bits.

3.2 Extraction

Let us describe how we extract a symbol S[i] = S0[i] using our representation.
We first compute the block j ← �i/b0� where i falls. If D0[j] = 1, we are already
done on this level. If, instead, D0[j] = 0, then the block j is not marked. Its rank
among the unmarked blocks of this level is r0 = rank0(D0, j). The position of
the 1 in F0 corresponding to its source is p0 = select1(F0, π0(r0)). This means
that the source of the block j starts at S0[p0 − π0(r0)]. Since block j starts at
position s0 = (j − 1) · b0 + 1, we set i ← (p0 − π0(r0)) + (i − s0) and recompute
j ← �i/b0�, knowing that the new symbol S0[i] is the same as the original one.

Now that i is inside a marked block j, we move to the next level. To compute
the position of i in the next level, we do i ← (rank1(D0, j) − 1) · b0 + ((i − 1)
mod b0)+1, and continue in the same way to extract S1[i]. In the last level we find
the symbol stored explicitly. The total time to extract a symbol is O(lg(n/z)).
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Algorithm 2. General search procedure.
1 Proc Search(P, m)
2 if m = 1 then
3 m ← 2
4 P = P [1]∗
5 for k = 1 to m − 1 do
6 [x1, x2] ← binary search for P [k + 1..m] in X1, . . . , Xw

(or [1, w] if P [k + 1..m] = ∗)
7 [y1, y2] ← binary search for P [1..k]rev in Y1, . . . , Yw

8 for (x, y) ∈ G ∩ [x1, x2] × [y1, y2] do
9 Primary(T [y] − k, m)

Algorithm 1 gives the pseudocode.

3.3 Queries

Primary Occurrences. To search for a pattern P [1..m], we first find its primary
occurrences using G as follows. For each partition P< = P [1..k] and P> =
P [k + 1..m], for 1 ≤ k < m, we binary search Y for P rev

< and X for P>. To
compare P rev

< with a string Yi, since Yi is not stored, we extract the consecutive
symbols of S[T [i]− 1], S[T [i]− 2], and so on, until the lexicographic comparison
can be decided. Thus each comparison requires O(m lg(n/z)) time. To compare
P> with a string Xi, since Xi is also not stored, we extract the only point of the
range [i, i] × [1, w] (or, in terms of the wavelet tree, we extract the y-coordinate
of the ith element in the root sequence), in time O(lg w). This yields the point
Yj . Then we compare P> with the successive symbols of S[T [j]], S[T [j]+1], and
so on. Such a comparison then costs O(lg w+m lg(n/z)). The m binary searches
require m lg w binary search steps, for a total cost of O(m2 lg w lg(n/z)+m lg2 w).

Each couple of binary searches identifies ranges [x1, x2]×[y1, y2], inside which
we extract every point. The m range searches cost O(m lg w) time. Further,
each point (x, y) extracted costs O(lg w) and it identifies a primary occurrence
at S[T [y] − k..T [y] − k + m − 1]. Therefore the total cost with occp primary
occurrences is O(m2 lg w lg(n/z) + m lg2 w + occp lg w).

Algorithm 2 gives the general search procedure, using procedure Primary to
report the primary occurrences and all their associated secondary ones.

Patterns P of length m = 1 can be handled as P [1]∗, where ∗ stands for any
character. Thus we take [x1, x2] = [1, w] and carry out the search as a normal
pattern of length m = 2. To make this work also for the last position in S, we
assume as usual that S is terminated by a special character $.

To speed up the binary searches, we can sample one out of lg w strings from
Y and insert them into a Patricia tree [18], which would use O(w) extra space.
The up to σ children in each node are stored in perfect hash functions, so that in
O(m) time we can find the Patricia tree node v representing the pattern prefix or
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suffix sought. Then the range [y1, y2] includes all the sampled leaves descending
from v, and up to lg w strings preceding and following the range. The search
is then completed with binary searches in O(lg lg w) steps. In case the pattern
prefix or suffix is not found in the Patricia tree, we end up in a node v that does
not have the desired child and we have to find the consecutive pair of children v1
and v2 that surround the nonexistent child. A predecessor search structure per
node finds these children in time O(lg lg σ) = O(lg lg z) = O(lg lg w). Then we
finish with a binary search between the rightmost leaf of v1 and the leftmost leaf
of v2, also in O(lg lg w) steps. Each binary search step takes O(m lg(n/z)) time to
read the desired substring from S. At the end of the Patricia search, we must also
read one string and verify that the range is correct, but this cost is absorbed
in the binary searches. Overall, the search for each cut of the pattern costs
O(m lg(n/z) lg lg w). We proceed similarly with X, where there is an additional
cost of O(lg w lg lg w) to find the position where to extract each string from. The
total cost over all the m − 1 searches is then O(m(m lg(n/z) + lg w) lg lg w).

Secondary Occurrences. Let S[i..i + m − 1] be a primary occurrence. This is
already a range [i0..i0 + m − 1] = [i..i + m − 1] at level l = 0. We track the
range down to positions [il..il + m − 1] at all the levels l > 0, using the position
tracking mechanism described in Sect. 3.2 for the case of marked nodes:

il+1 = (rank1(Dl, �il/bl�) − 1) · bl + ((il − 1) mod bl) + 1.

Note that we only need to consider levels l where the block length is bl ≥ m, as
with shorter blocks there cannot be secondary occurrences. So we only consider
the levels l = 0 to l = lg(n/z)− lg m. Further, we should ensure that the block or
the two blocks where [il..il + m − 1] lies are marked before projecting the range
to the next level, that is, Dl[�il/bl�] = Dl[�(il + m − 1)/bl�] = 1. Still, note that
we can ignore this test, because there cannot be sources spanning concatenated
blocks that were not contiguous in the previous levels.

For each valid range [il..il + m − 1], we determine the sources that contain
the range, as their target will contain a secondary occurrence. Those sources
must start between positions k = il + m − bl and k′ = il. We find the positions
p = select0(Fl, k) and p′ = select0(Fl, k

′ + 1), thus the blocks of interest are
π−1

l (t), from t = p − k + 1 to t = p′ − k′ − 1. Since Fl is represented as a
sparse bitvector [22], operation select0 is solved with binary search on select1,
in time O(lg wl) = O(lg w). This can be accelerated to O(lg lg nl) by sampling
one out of lg nl 1s in Fl, building a predecessor structure on the samples, and
then completing the binary search within two samples. The extra space of the
predecessor structures adds up to O(w) bits.

To report the occurrence inside each such block q = π−1
l (t), we first find its

position in the corresponding unmarked block in its level. The block starts at
Sl[(select0(Dl, q)−1) · bl +1], and the offset of the occurrence inside the block is
il−(select1(Fl, t)−t) (operation selectc on Dl is answered in constant time using
o(|Dl|) further bits [5]). Therefore, the copied occurrence is at Sl[i′l..i

′
l + m − 1],

where

i′l = ((select0(Dl, q) − 1) · bl + 1) + (il − (select1(Fl, t) − t)).
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Algorithm 3. Reporting primary and secondary occurrences.
1 Proc Primary(i, m)
2 l ← 0
3 b ← n/z
4 while b/2 ≥ m and Dl[�i/b�] = Dl[�(i + m − 1)/b�] = 1 do
5 i ← (rank1(Dl, �i/b�) − 1) · b + ((i − 1) mod b) + 1
6 l ← l + 1
7 b ← b/2

8 Secondary(l, i, m)

9 Proc Secondary(l, i, m)

10 b ← (n/z)/2l

11 while l ≥ 0 do
12 k ← i + m − b
13 k′ ← i
14 p ← select0(Fl, k)
15 p′ ← select0(Fl, k

′)
16 for t ← p − k + 1 to p′ − k′ − 1 do
17 q ← π−1

l (t)
18 i′ ← ((select0(Dl, q) − 1) · b + 1) + (i − (select1(Fl, t) − t))
19 Secondary(l, i′, m)

20 b ← 2 · b
21 l ← l − 1
22 if l ≥ 0 then
23 j ← �i/b�
24 i ← (select1(Dl, j) − 1) · b + ((i − 1) mod b) + 1

25 Report occurrence at position i

We then project the position i′l upwards until reaching the level l = 0, where
the positions correspond to those in S. To project Sl[i′l] to Sl−1, we compute the
block number j = �i′l/bl−1�, and set

i′l−1 ← (select1(Dl−1, j) − 1) · bl−1 + ((i′l − 1) mod bl−1) + 1.

Each new secondary occurrence we report at S[i..i + m − 1] must be also
processed to find further secondary occurrences at unmarked blocks copying it
at any level. This can be done during the upward tracking to find its position in
S, as we traverse all the relevant ranges [i′l..i

′
l + m − 1].

Algorithm 3 describes the procedure to report the primary occurrence S[i..i+
m − 1] and all its associated secondary occurrences.

Considering the time to compute π−1
l at its source, the upward tracking to

find its position in S, and the tests to find further secondary occurrences at
each level of the upward tracking, each secondary occurrence is reported in time
O(lg(n/z) lg lg n). Each primary occurrence, in turn, is obtained in time O(lg w)
and then we spend O(lg(n/z) lg lg n) time to track it down to all the levels to
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find possible secondary occurrences. Therefore, the occ primary and secondary
occurrences are reported in time O(occ(lg(n/z) lg lg n + lg w)).

Total Query Cost. As described, the total query cost to report the occ occur-
rences is O(m2 lg(n/z) lg lg w + m lg w lg lg w + occ(lg(n/z) lg lg n + lg w)). Since
w = O(z lg(n/z)) and z = Ω(lg n), it holds lg w = Θ(lg z). A simplified formula
is O(m2 lg n lg lg z + occ lg n lg lg n). The space is 3w lg n + O(w) bits.

Theorem 3. Given a string S[1..n] that can be parsed into z non-overlapping
Lempel-Ziv phrases and represented with a BT of w = O(z lg(n/z)) pointers,
there exists a data structure using 3w lg n + O(w) bits that so that any sub-
string of length � can be extracted in time O(� lg(n/z)) and the occ occur-
rences of a pattern P [1..m] can be obtained in time O(m2 lg(n/z) lg lg z +
m lg z lg lg z+occ(lg(n/z) lg lg n+lg z)). This can be written as O(m2 lg n lg lg z+
occ lg n lg lg n).

If we are interested in a finer space result, we can see that the space is actually
2w lg n + w lg w + O(w) bits. This can be reduced to w lg n + 2w lg w + O(w) by
storing the array T [1..w] in w lg w + O(w) bits as follows. We have shown that
each such position is either the start of a block at level l = 0 or the middle
of a marked block. If we store the bitvectors D0 to Dlg(n/z) concatenated into
D = 1zD0 · · · Dlg(n/z), then the first z 1s represent the blocks at level l = 0 and
the other 1 s represent the marked blocks of each level. We can therefore store
T [k] = p to refer to the pth 1 in D, so that T uses w lg w bits. From the position
select1(D, p) in D, we can determine in constant time if it is among the first z,
which corresponds to a level-0 block, or that it corresponds to some Dl[i] (by
using rank on another bitvector of O(w) bits that marks the lg(n/z) starting
positions of the bitvectors Dl in D, or with a small fusion tree storing those
positions). If T [k] points to Dl[i], we know that the suffix starts at Sl[il], for
il = (i− 1/2) · bl +1. We then project this position up to S. Thus we obtain any
position of T in time O(lg(n/z)), which does not affect the complexities.

4 Using Linear Space

If we do not care about the constant multiplying the space, we can have a BT-
index using O(w lg n) bits and speed up searches in various ways. First, we can
build the Patricia trees over all the strings in X and Y , so that the search time
is not O(m lg(n/z) lg lg w) but just O(m lg(n/z)). To obtain this time we also
explicitly store the array of positions T associated with the set X, instead of
obtaining it through the wavelet tree.

Third, we can use faster two-dimensional range search data structures that
still require linear space [3] to report the p points in time O((p + 1) lgε w)
for any constant ε > 0 [3]. This reduces the cost per primary occurrence to
O(lg(n/z) lg lg n + lgε w).

Finally, we can replace the predecessor searches that implement select0 on the
bitvectors Fl by a completely different mechanism. Note that all those searches
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we perform in our upward or downward path refer to the same occurrence posi-
tion S[i..i + m − 1], because we do not find unmarked blocks in the path. Thus,
instead of looking for sources covering the occurrence at every step in the path,
we use a single structure where all the sources from all the levels l are mapped to
S. Such sources [j..j + bl − 1] are sorted by their starting positions j in an array
R[1..w]. We create a range maximum query data structure [9] on R, able to find
in constant time the maximum endpoint j + bl − 1 of the blocks in any range of
R. A predecessor search structure on the j values gives us the rightmost position
R[r] where the blocks start at i or to its left. A range maximum query on R[1..r]
then finds the block R[k] with the rightmost endpoint in R[1..r]. If even R[k]
does not cover the position j + bl − 1, then no source covers the occurrence.
If it does, we process it as a secondary occurrence and recurse on the ranges
R[1..k − 1] and R[k +1..r]. It is easy to see that each valid secondary occurrence
is identified in O(1) time.

Note that, if we store the starting position j′ of the target of source [j..j +
bl − 1], then we directly have the position of the secondary occurrence in S,
S[i′..i′ + m − 1] with i′ = j′ + (i − j). Thus we do not even need to traverse
paths upwards or downwards, since the primary occurrences already give us
positions in S. The support for inverse permutations π−1

l becomes unnecessary.
Then the cost per secondary occurrence is reduced to a predecessor search. A
similar procedure is described for the LZ77-index [17].

The total time then becomes O(m2 lg(n/z) + m lgε z + occ(lg lg n + lgε z)).

Theorem 4. A string S[1..n] where the LZ77 parse produces z non-overlapping
phrases can be represented in O(z lg(n/z)) space so that any substring of length
� can be extracted in time O(� lg(n/z)) and the occ occurrences of a pattern
P [1..m] can be obtained in time O(m2 lg(n/z)+m lgε z + occ(lg lg n+lgε z)), for
any constant ε > 0. This can be written as O(m2 lg n + (m + occ) lgε n).

5 Conclusions

We have proposed a way to build a self-index on the Block Tree (BT) [1] data
structure, which we call BT-index. The BT obtains a compression related to the
LZ77-parse of the string. If the parse uses z non-overlapping phrases, then the BT
uses O(z lg(n/z)) space, whereas an LZ77-compressor uses O(z) space. Our BT-
index, within the same asymptotic space of a BT, finds all the occ occurrences of
a pattern P [1..m] in time O(m2 lg n + occ lgε n) for any constant ε > 0.

The next step is to implement the BT-index, or a sensible simplification
of it, and determine how efficient it is compared to current implementations
[6–8,17]. As discussed in the Introduction, there are good reasons to be optimistic
about the practical performance of this self-index, especially when searching for
relatively long patterns.

Acknowledgements. Many thanks to Simon Puglisi and an anonymous reviewer for
pointing out several fatal typos in the formulas.
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Abstract. We propose a data structure and an online algorithm to
report the number of distinct palindromes in any substring of an input
string. Assume that the string S of length n arrives symbol-by-symbol
and every symbol is followed by zero or more queries of the form “report
the number of distinct palindromes in S[i..j]”. We use O(n log n) total
time to process the string plus O(log n) time per query. The required
space is O(n log n) in general and O(n) in a natural particular case. As
a simple application, we describe an algorithm reporting all palindromic
rich substrings of an input string in O(n log n) time and O(n) space.

Keywords: Palindrome · Counting palindromes · Eertree · String algo-
rithm · Online algorithm

1 Introduction

Palindromes are one of the most important repetitive structures in strings.
During the last decades they were actively studied in formal language theory,
combinatorics on words and stringology. Recall that a palindrome is any string
S = a1a2 · · · an equal to its reversal

←
S = an · · · a2a1.

Active studies on palindrome algorithmics began with the problem of online
recognition of palindromes by (multi-tape) Turing machines. Slisenko in a huge
paper [20] presented a 6-tape machine recognizing palindromes in real time;
using Slisenko’s ideas, Galil described a much simpler construction [9]. In the
more powerful RAM model, a big variety of fast algorithms was developed for
palindrome-related problems since then. Manacher [18] came up with a linear-
time algorithm capturing all palindromic substrings of a string. The problem of
counting distinct palindromes in a string was solved offline in [12] and online
in [16]. Knuth, Morris, and Pratt [15] gave a linear-time algorithm for checking
whether a string is a product of even-length palindromes. Galil and Seiferas [10]
asked for such an algorithm for the k-factorization problem: decide whether or
not a given string can be factored into exactly k non-empty palindromes, where
k is an arbitrary constant. They presented an online algorithm for k = 1, 2 and
an offline one for k = 3, 4. An O(kn) time online algorithm for the length n
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string and any k was designed in [17]. Close to the k-factorization problem is
the problem of finding the palindromic length of a string, which is the minimal k
in its k-factorization. This problem was solved by Fici et al. and independently
by Tomohiro et al. in O(n log n) time [7,14]. Simpler algorithms with the same
asymptotics for counting and factorization problems were proposed in [19] on
the base of a new data structure called “eertree”. Note that hard palindromic-
related problems also exist: thus, it is NP-complete to check whether a string
can be factorized into distinct palindromes [1].

In this paper we study a generalization of the palindrome counting problem:
in a string arriving online, report at any moment the number of distinct palin-
dromes in any given substring. Thus, if for S = aabcac · · · a request for S[2..6]
comes, the algorithm should quickly report “4”(a, b, c, cac, the empty string does
not count) no matter of whether the request comes after the 6th or the 1006th
letter of S. Clearly, an algorithm precomputing the answers to all requests has
at least quadratic complexity. As usual in the online setting, we seek for an
algorithm working in O(n polylog(n)) time. Our main result is the algorithm
processing the length n input string in O(n log n) time and space into a data
structure which returns the number of distinct palindromes in any substring in
O(log n) time.

We also consider a restricted version of the above counting problem, in which
the requested substring must be a suffix of the current input. In this case the
processing and query time remain the same, while the linear space suffices.
Finally, we apply the obtained solutions to the offline version of the count-
ing problem: given a string and a set of pairs of indices, output the number of
distinct palindromes in each substring specified by such a pair.

A length n string contains at most n distinct palindromes [5]. The “rich”
strings with the maximum number of palindromes are studied in many papers,
see, e.g., [2,11,13]. We apply our technique to the problem of finding all rich
substrings of an input string and solve it in O(n log n) time and O(n) space.

The main theorem, construction and data structure are presented in Sect. 2.
Section 3 contains the proof of the main theorem. In Sect. 4, we consider the
offline counting problem and the problem on rich substrings.

1.1 Definitions and Notation

We study finite strings, viewing them as arrays of symbols: S = S[1..n]. The
notation σ stands for the number of distinct symbols of the processed string.
We write ε for the empty string, |S| for the length of a string S, and S[i..j]
for S[i]S[i+1] . . . S[j], where S[i..i−1] = ε for any i. The same [i..j] notation is
used for ranges in arrays and integers. A period of a string S = S[1..n] is any p,
0 < p ≤ n such that S[1..n−p] = S[p+1..n]. The minimal period of S is denoted
by per(S). A string T is a substring of S (or contained in S) if T = S[i..j] for
some i and j; we say that T occurs in S at position i and order the occurrences
of T in S by their position (e.g., “last” occurrence is the one with maximum j).
A substring S[1..j] (resp., S[i..n]) is a prefix (resp. suffix ) of S. If a substring
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(prefix, suffix) of S is a palindrome, it is called a subpalindrome (resp. prefix-
palindrome, suffix-palindrome). The number of distinct subpalindromes of S is
denoted by #Pal(S). A subpalindrome S[l..r] has center (l+r)/2. Throughout
the paper we do not count ε as a palindrome.

Fact 1 ([5]). For a string S and a symbol b, the string Sb (resp., bS) contains at
most one palindrome which is not contained in S; this palindrome is the longest
suffix-palindrome of Sb (resp., the longest prefix-palindrome of bS).

Problem SUB-PCOUNT
Input : a sequence of queries append(b) (b is a symbol) and return(i, j) (i ≤ j are
integers such that j is at most the number of append’s in the preceding input).
Processing/output (online): let S be the current string (initially S = ε). For
each append(b) query, assign Sb to S, output nothing; for each return(i, j) query,
output #Pal(S[i..j]).

In the Restricted SUB-PCOUNT, j in the input is always equal to the current
length of S; thus, all requests are about the suffixes of the current string.

2 Main Result, Construction, and Data Structure

Theorem 1. For an input sequence consisting of n append queries and some
return queries,

(1) SUB-PCOUNTcan be solved in O(n log n) time for all append queries plus
O(log n) time per return query using O(n log n) space;
(2) restricted SUB-PCOUNTcan be solved in the same time using O(n) space.

For a string S = S[1..n] consider the difference array An = An[1..n] such
that An[k] = #Pal(S[k..n]) − #Pal(S[k+1..n]). By Fact 1, An[k] ∈ {0, 1}. Note
that #Pal(S[k..n]) =

∑n
i=k An[k]. So if we can efficiently

– build the difference arrays Aj for the prefixes S[1..j] of S online
– retrieve the sums of bits from Aj ,

we obtain a solution to the restricted SUB-PCOUNT. If we further show how to
store all arrays Aj simultaneously in a compact form, we solve SUB-PCOUNT.
We store and update difference arrays using some versions of segment trees.

2.1 Segment Tree

Segment tree is a data structure of probably folklore origin, which is popular in
the ACM-ICPC community and allows fast computation of different symmetric
functions (sums, minima, etc.) on all ranges of an integer array (see e.g., http://
wcipeg.com/wiki/Segment tree)1. Segment tree is an alternative to Fenwick’s
tree [6] and admits both lazy and persistent versions. Below we describe the
version for sums which allows the upgrade to a persistent structure.
1 Unfortunately, there is one more data structure with this name, see, e.g., Wikipedia.

http://wcipeg.com/wiki/Segment_tree
http://wcipeg.com/wiki/Segment_tree
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R = null
E = 6
B = 5

Fig. 1. Example of an ordinary seg-
ment tree. Numbers in vertices are
weights. Some parameters of the
blue vertex are shown. (Color figure
online)

I. For an ordinary segment tree storing an
array of length n, where 2d−1 < n ≤ 2d,
take a fully balanced binary tree with 2d

leaves and delete the 2d − n rightmost leaves
together with all internal vertices having no
remaining leaves in their subtrees; see Fig. 1.
Each vertex has weight; the weight of ith
(from the left) leaf is the ith element of the
array, and the weight of an internal vertex is
the sum of weights of its children (and thus,
the total weight of all leaves in its subtree).

For each vertex v we store its children
L[v], R[v] (L[v] = null for leaves only; internal
vertices may have R[v] = null), the bound-
aries B[v], E[v] of the range spanned by the
leaves in its subtree, and the weight W [v]. We
want to perform three types of queries to the stored array A, each in O(log n)
time:

1) add(i,Δ): adds Δ to the element A[i];
2) sum(i, j): requests the sum of all elements of the subarray A[i..j];
3) push: extends A to the right by a zero element.

To adjust weights, we descend from the root to the leaf i, adding Δ to the
weight of each vertex. To push a new (nth) element, we descend from the root
following the binary expansion of n, setting E[v] = n for existing vertices and
creating new vertices of zero weight on the way; if n is a power of 2, we start
with creating a new root and making the existing tree its left subtree. For sums,
the recursive function SUM(i, j, v) is used:

1: if [i..j] ∩ [B[v]..E[v]] = ∅ then return 0
2: if [B[v]..E[v]] ⊆ [i..j] then return W [v]
3: else return SUM(i, j, L[v]) + SUM(i, j, R[v])

The query sum(i, j) is answered by SUM(i, j, root).
For add and push the O(log n) time bound is obvious. For sum the bound

follows from the observation that at most 4 vertices on each level are touched
by the recursive procedure.

II. Lazy segment tree supports an extended form add(i, j,Δ) of the update query:
adding Δ to all A[k] such that i ≤ k ≤ j. To perform such queries in O(log n)
time, a new parameter δ is assigned to each vertex. For any v, the sum of the
elements of A[B[v]..E[v]] is W [v]+(E[v]−B[v]+1)·∑u∈pred[v]δ[u], where pred[v]
is the set of all predecessors of v including v itself. For an add query, the recursive
operation ADD(i, j,Δ, v) is used:

1: if [i..j] ∩ [B[v]..E[v]] = ∅ then stop
2: if [B[v]..E[v]] ⊆ [i..j] then δ[v] ← δ[v] + Δ; stop
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3: else W [v] ← W [v] + Δ · #([i..j] ∩ [B[v]..E[v]])
4: ADD(i, j, Δ, L[v]); ADD(i, j, Δ, R[v]); stop

The update query add(i, j,Δ) is performed by ADD(i, j,Δ, root).
Pushing a new element is similar to the ordinary version. Now consider the

recursive function SUM(i, j, η, v), where η accumulates δ’s from pred[v]:

1: if [i..j] ∩ [B[v]..E[v]] = ∅ then return 0
2: η ← η + δ[v]
3: if [B[v]..E[v]] ⊆ [i..j] then return W [v] + η · (E[v] − B[v] + 1)
4: else return SUM(i, j, η, L[v]) + SUM(i, j, η, R[v])

The query sum(i, j) is answered by SUM(i, j, 0, root). Clearly, both add and
sum queries take the same time as the sum query in the ordinary version. Note
that both ordinary and lazy versions use linear (in the size of A) space.

Maintaining the current difference array in either ordinary or lazy version of
the segment tree suits as a part of solution of restricted SUB-PCOUNT. Indeed,
each request return(i, j) to the difference array Aj is answered by the sum of the
range Aj [i..j] in O(log n) time, while the segment tree itself requires O(n) space.
However, to solve SUB-PCOUNT we need access to all arrays Aj simultaneously.
Storing them in a naive way would mean an Ω(n2) lower bound on the space
and time used; to avoid this, we define a persistent segment tree. (For the basics
on persistent structures see [4].)

III. Persistent segment tree stores a lazy segment tree with all its previous ver-
sions and answers the same queries as the lazy segment tree, but addressed to
any version. In a persistent tree, we never change the parameters of an existing
vertex; a clone of this vertex is created each time a change is needed, and the
change is performed in the clone. Note that if we clone a vertex, all its prede-
cessors must be cloned: they now have a new vertex as a child. In particular, a
root is cloned on each change in the tree. Thus, the version of the tree is uniqely
identified by the root; the array of pointers to the roots can be stored explicitly.

Consider the modification of the ADD procedure (pushing is done in a similar
way, while SUM does not change the tree). Now ADD(i, j,Δ, v) returns a vertex
instead of just stopping; in line 1 this is vertex v, and in remaining lines this
is a clone v′ of v, created if the condition in line 1 fails. In line 4 the results of
recursive calls are assigned to L[v′] and R[v′].

Every update affects O(log n) vertices, so the memory used is O((a+n) log n)
(for a add’s and n push’es). For difference arrays, a push followed by a group of
add’s updates Aj to Aj+1; after this, a group of sum queries come. Thus, there
is no need to store links to all versions of the tree; n links to the versions after
each group of add’s is enough, reducing the memory cost to O(n log n).

3 Combinatorics of Difference Arrays

In this section we describe how to process append queries, updating the difference
array (stored as a segment tree) and auxiliary data structures. By “iteration”
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we mean processing of one query (changing the input string from S[1..j] to
S[1..j+1]). Let T, b, A[1..|T |] be a string, a symbol, and an integer array. Consider
the function UPDATE(Tb,A) which uses queries to the segment tree of A:2

1: push; t ← number of suffix-palindromes of Tb
2: for (i = 1; i ≤ t; i++) do
3: ui ← ith longest suffix-palindrome of Tb
4: ki ← position of the suffix ui in Tb
5: li ← position of last occurrence of ui in T
6: add(ki, 1); add(li, −1)
7: return A

Lemma 2. Let Aj , Aj+1 be the difference arrays of the prefixes S[1..j] and
S[1..j+1] of a string S. Then Aj+1 = UPDATE(S[1..j+1], Aj).

Proof. First note that for each i = 1, . . . , t one has Aj+1[ki] = 1 (S[ki..j+1] is
a palindrome not contained in S[ki+1..j+1]) and Aj [li] = 1 (the palindrome ui

is contained in S[li..j] but not in S[li+1..j]). Now we check that Aj+1[k] was
computed correctly in all cases.

– Aj [k] = Aj+1[k] = 0: k /∈ {ki, li} for any i, so there was no add(k,Δ) query.
– Aj [k] = 0, Aj+1[k] = 1: k �= li for any i, so there was no add(k,−1) query.

By definition of a difference array, all prefix-palindromes of S[k..j] have other
occurrences in S[k..j], while some prefix-palindrome of S[k..j+1] has not;
hence S[k..j+1] is a palindrome (say, ui), k = ki, and thus add(k, 1) was
performed.

– Aj [k] = 1, Aj+1[k] = 0: k �= ki for any i, no add(k, 1) query. Further, some
prefix-palindrome u of S[k..j] has no other occurrences in S[k..j] but occurs
in S[k..j+1]; hence u is a suffix-palindrome of S[1..j+1] (say, ui), k = li, and
thus add(k,−1) was performed.

– Aj [k] = 1, Aj+1[k] = 1: let u (resp., v) be the prefix-palindrome of S[k..j]
(resp., S[k..j+1]) having no other occurences in this substring. Then either
v = u or v = S[k..j+1]. In the latter case, k ∈ {k1, . . . , kt}. Since v is a
palindrome, its prefix-palindrome u is its suffix-palindrome; so u is a suffix-
palindrome of S[1..j+1] and k ∈ {l1, . . . , lt}. Hence both queries add(k, 1)
and add(k,−1) were performed. In the former case, S[k..j+1] is not a palin-
drome (otherwise v would occur as its suffix), so k /∈ {k1, . . . , kt}. Further,
a palindrome at position k either is not a suffix of S[1..j+1] or has a later
occurrence in S[k..j] as a suffix of v, so k /∈ {l1, . . . , lt}. Hence there was no
add(k,Δ) query.

Thus we proved that UPDATE(S[1..j+1], Aj) correctly computes the num-
ber Aj+1[k] for k = 1, . . . , j. Finally, kt = j+1, so add(kt, 1) sets the correct
value Aj+1[j+1] = 1. ��

Due to Lemma 2, to update Aj to Aj+1 one can iterate through suffix-
palindromes of S[1..j+1] preparing the lists {ki}t1 and {li}t1 for add queries.
2 By Fact 1, only l1 can be undefined; if so, we assume that add(l1, −1) is ignored.
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To optimize this process, we rule out some of the positions which appear in two
lists simultaneously. We need some special notions.

Let u1, . . . , ut be all non-empty suffix-palindromes of a string S in the order
of decreasing length. Since uj is a suffix of ui for any i < j, the sequence of
minimal periods of u1, . . . , ut is non-increasing. The sets of suffix-palindromes
with the same minimal period are series of palindromes (for S):

u1, . . . , ui1︸ ︷︷ ︸
p1

, ui1+1, . . . , ui2︸ ︷︷ ︸
p2

, . . . , uir−1+1, . . . , ut
︸ ︷︷ ︸

pr

.

We refer to the longest and the shortest palindrome in a series as its head
and baby respectively (they coincide in the case of a 1-element series). A crucial
observation [7,14,17] is that the length of a head is multiplicatively smaller than
the length of the baby from the previous series, and thus every string of length
n has O(log n) series. The following lemma on the structure of series is easily
implied by [17, Lemmas 2,3,7].

Lemma 3. Let U be a series of palindromes with period p for a string S. There
exist k ≥ 1 and unique palindromes u, v with |uv| = p, v �= ε such that U equals
one of the following sets:

(1) U = {(uv)k+1u, (uv)ku, . . . , (uv)2u} and the next series’ head is uvu,
(2) U = {(uv)ku, (uv)k−1u, . . . , uvu} and the next series’ head is u,
(3) U = {vk, vk−1, . . . , v}, p = 1, |v| = 1, u = ε, and U is the last series for S.

We need some further properties.

Lemma 4.

(1) If v is a baby in some series of palindromes, then it is a baby of any series
containing v (in any string).

(2) If a palindrome v satisfies per(v) > |v|/2, then v is a baby.
(3) Let subpalindromes u, v of S share the same center. If |u| = |v| − 2, u is a

baby and v is not, then per(u) = per(v).

Proof. Let v′ be the longest suffix-palindrome of a palindrome v.

(1) “v is a baby” is equivalent to per(v) > per(v′) and thus depends on v only.
(2) We have per(v′) ≤ |v′| = |v| − per(v) < per(v), so v is a baby.
(3) Assume per(u) < per(v). By statement 2, per(v) ≤ |v|/2. Then per(u) +
per(v) ≤ |u| + 1. Since both per(u), per(v) are periods of u, by the Fine–Wilf
theorem [8] u has the period gcd(per(u), per(v)). Since per(u) is the minimal
period of u, it divides per(v). Lemma 3 implies u = xyxyx, per(u) = |xy|,
per(v) = |xyxy|. Then v = y[1]·xyxyx·y[1], implying that per(u) is a period
of v. This contradiction proves statement 3. ��

Now return to difference arrays.
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Lemma 5. Let u1, . . . , ur (r > 1) be a series of suffix-palindromes of S[1..j+1]
occurring at positions k1 < . . . < kr, respectively. Then for any i = 1, . . . , r − 1
the function UPDATE(S[1..j+1], Aj) performs both add(ki, 1) and add(ki,−1).

Proof. The suffix-palindrome ui occurs at position ki, so add(ki, 1) is performed
when processing ui. Note that ui+1 occurs in S[1..j+1] at position ki+1 as a
suffix and also at position ki as a prefix of ui; by definition of a series, |ui+1| =
|ui| − p > p, where p is the period of the series. Hence these two occurrences of
ui+1 overlap. Then ui+1 cannot occur at position l such that ki < l < ki+1 (the
occurrences of ui+1 at positions l and ki+1 would overlap, implying that S[l..j+1]
is a palindrome; but this is impossible, since ui has no suffix-palindromes which
are longer than ui+1). Hence ki is the position of the last occurrence of ui+1 in
S[1..j], and add(ki,−1) is performed when processing ui+1. ��

According to Lemma 5, the statement of Lemma 2 remains true if we replace
UPDATE with the following function UPDATE′(Tb,A):

1: push
2: Inc ← list of positions of babies in all series for Tb
3: Dec ← list of positions of last occurrences in T of heads in all series for Tb
4: for each k ∈ Inc do add(k, 1)
5: for each l ∈ Dec do add(l, −1)
6: return A

Lists Inc and Dec have length equal to the number of series, which is O(log n).
Moreover, the following lemma holds.

Lemma 6. The lists Inc and Dec can be built in O(log n) time.

-1ε

a b

aba

babab

abababa

bab

ababa

Fig. 2. Eertree for S = abababa
(with black edges, blue suffix links
and orange series links; edge labels
are omitted). No edges from ε
means no even-length palindromes
(Color figure online)

We store the information about palin-
dromes in S in the eertree data structure
[19]. Below we briefly describe the version of
eertree used here.

Eertree is a tree-like data structure con-
sisting of vertices, labeled edges, and two
types of suffix links. Each vertex is identi-
fied with a unique subpalindrome of S; two
special vertices correspond to ε and to “imag-
inary” palindrome −1. An edge with a label
a leads from a vertex v to ava (from −1
to a). The suffix link link[v] points to the
longest suffix-palindrome of v; the series link
serieslink[v] points to the baby of the series
to which v belongs; see Fig. 2 for an example.
(In [19] the related version of eertree used
series links to the head of the next series; the
described version is built in almost the same
way. We use it because it is convenient to
store additional information in the babies.) Each vertex v contains: the length
len[v] of the palindrome; the list go[v] of children (as a binary search tree); the
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links link[v] and serieslink[v]. The eertree requires O(n) space and can be built
online in O(n log σ) time with at most O(log n) time per symbol appended to
the string. Each iteration either finds or creates the vertex corresponding to the
longest suffix-palindrome maxPal of the updated string, so we have free access
to maxPal. Note that we also have an O(1) access to the smallest period of
any palindrome v: per(v) = len[v] − len[link[v]], and to the position of v as a
suffix-palindrome: pos(v) = |S| − len[v] + 1.

Proof (of Lemma 6). Given the eertree of S[1..j+1], it is easy to build the list Inc
in O(log n) time. Starting from maxPal, we visit all babies in the order of decreas-
ing length (the longest baby is v = serieslink[maxPal], the next is serieslink[link[v]],
and so on) and append their positions to Inc.

For Dec, first recall that a palindrome v is a baby iff per(v) > per(link[v]);
we refer to any series with the baby v as v-series. Creating a vertex v in the
eertree, we will check whether v is a baby; if yes, we will create a new stack
for the occurrences of all v-series and point to this stack from v. An element of
a stack is a pair (U.card, U.pos) consisting of the cardinality of the v-series U
and the position of its head. The maintenance of stacks and the array Dec is as
follows (top2 is the second element of a stack, the function pop2 pops it):

1: u ← head of the current series; v ← serieslink[u]
2: if u �= v then top.card ← top.card + 1 else push(1, pos(u))
3: if top2 �= null then add (top2.pos + (top2.card − top.card) · per(v)) to Dec
4: if top.card = top2.card then pop2
5: u ← link[v] � proceed to the next series

Example 7. Let us follow the evolution of the stack of the baby aba:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
S = a b a b a b a c a b a d a b a b a b a · · ·

↓ ↓ ↓ ↓ ↓ ↓ ↓
1,1 2,1 3,1 1,9 1,13 2,13 3,13

3,1 3,1 3,1

The stack is created when processing S[1..3]; for S[1..5], the head of the aba-
series is ababa �= aba, so we increase top.card; the same applies to S[1..7]. For
S[1..11] aba is the head, so we push a new element to the stack; then we add the
position of the last occurrence of aba in S[1..10], which is 5 = 1 + (3 − 1) · 2, to
Dec. Processing S[1..15], we push a new series, add 9 to Dec, and pop the series
(1, 9). For S[1..17] we increase top.card and add the position 3 = 1 + (3 − 2) · 2
of the occurrence of ababa to Dec. Finally, for S[1..19] we increase top.card, add
1 to Dec and pop the series (3, 1).

Consider a baby v = xyx with per(v) = p = |xy| (for a baby of the form
xyxyx the same argument works). If v ends in S at position j, its next occurrence
ends at position j+p or later; otherwise, v would have a smaller period. If it ends
at j+p, the occurence ending at j extends to xyxyx and all palindromes from
this v-series also extend. Hence at j+p we also have a v-series; compared to
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the v-series at j, it has one more element and the same position of the head. If
the next occurrence of v ends at some j′ > j+p, it becomes a new v-series of
length 1. Thus, the line 2 correctly maintains the last v-series.

The if in line 4 ensures that the lengths of the stored v-series are in strictly
decreasing order and the previous occurrence of the head of the top v-series
is in the series contained in top2. Since in a k-element v-series the head has
the length |v| + (k−1)p, the if in line 3 correctly identifies the position of this
previous occurrence. Overall, each head is processed in O(1) time, so the time
to build Dec is O(log n). ��
Remark 8. All series stored simultaneously in stacks have different heads. Hence
all stacks together contain O(n) elements (which is the number of distinct palin-
dromes in S).

Storing difference arrays in a standard segment tree, we update it O(n log n)
times while processing the whole string S. Thus, we can solve the restricted
SUB-PCOUNT in O(n log2 n) time and linear space. To improve working time,
we use the lazy segment tree and update its segments in a lazy manner also.
Note that in the proof of Lemma6 we process suffix-palindromes in the order of
decreasing length; so both lists Inc and Dec are sorted in increasing order.

We use two lists of “postponed” updates, iInc and iDec; their elements are
pairs of the form (l, r), 1 ≤ l ≤ r ≤ n, sorted by the first coordinate in increasing
order. After building Inc and Dec, we do not update the segment tree immedi-
ately; instead, we add new updates to iInc/iDec and perform some of the earlier
postponed updates. We store all postponed increments in iInc. On each iteration,
after building Inc we “merge” iInc and Inc: for each k ∈ Inc, if iInc contains a
pair of the form (k+1, r), we replace it with (k, r); if no such pair exists, we add
the pair (k, k) to iInc; all pairs which were not changed, are deleted; deleting
a pair (l, r) from iInc, we apply add(l, r, 1) to the lazy segment tree. Note that
after merging the size of iInc equals the size of Inc (and hence is O(log n)). Since
both lists are sorted, the merging takes O(log n) time. The lists iDec and Dec
are processed in the same way. Thus we have

Lemma 9. On each iteration, the lists iInc and iDec are updated in O(log n)
time.

To retrieve the sum of a range [i..j] of Aj , we request the sum of [i..j] from the
segment tree and correct it checking the intersections of [i..j] with all intervals
stored in iInc and iDec. Note that even if some leaves of the segment tree contain
integers different from 0,1 (the order of updates may be violated due to laziness),
the sum is computed correctly. Since these lists are of logarithmic size, we get

Lemma 10. A lazily updated lazy segment tree returns the sum of any range of
the stored array in O(log n) time.

Now we prove the property which is key for our time bound.

Lemma 11. The total number of pairs deleted from the lists iInc and iDec during
n iterations is O(n).
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Proof. Assume that a pair (l, r) is deleted from iInc at (j+1)th iteration. This
means that l is in Inc after jth iteration and l−1 is not in Inc after (j+1)th
iteration; so we need to estimate the number of pairs (l, j) with this property.
The same applies to the lists iDec and Dec.

We begin with the study of Inc. By definition, u = S[l..j] is a baby palin-
drome, while v=S[l−1..j+1] is not. The center of u is c = (j−l)/2. There are
two cases for v.

Case Inc.1: v is not a palindrome. Then S[1..j+1] and all longer prefixes of S
have no suffix-palindrome with the center c, while S[1..j] has; we say that the
center c dies at (j+1)th iteration. Clearly, each center dies at most once and the
centers of suffix-palindromes of the same string are different, so the number of
pairs (l, j) falling into this case is bounded by the number of possible centers,
which is 2n.

Case Inc.2: v is a palindrome, but not a baby. By Lemma4(3), per(v) = per(u).
For the case |u| = 1, there are at most n pairs of the form (j, j), so we assume
|u| > 1 below. Let u′ = link[u] = S[l′..j], v′ = link[v]. Since |v′| = |v| − per[v] =
|u| + 2 − per[u] = |u′| + 2, we have v′ = S[l′−1..j+1]. Then u′ and v′ share
the center c′ = (j−l′)/2. In addition, per(u′) < per(u) and per(v′) = per(v)
since u is a baby and v is not. Hence |link[u′]| = |u′| − per(u′) and |link[v′]| =
|v′| − per(v) < |u′| − per(u′) + 2. Thus, the center c′′ of link[u′] dies at (j+1)th
iteration. Different suffix-palindromes u points to different centers c′′ (including
the case u′ = S[j], u′′ = S[j+1..j] = ε; the center c′′ = j+1/2 also dies at the
(j+1)th iteration), so the number of pairs (l, j) falling into this case is at most
2n, as in the previous paragraph. Overall, the number of pairs (l, j) for all the
lists Inc is O(n).

Consider the array Dec. The pair (l, j) is such that (a) for some i, k, u one
has u = S[l..i] = S[k..j], u is the head of some series at jth iteration, and S[l..i]
is the last occurrence of u in S[1..j−1]; (b) the property (a) fails for the pair
(l−1, j+1). Consider v = S[k−1..j+1] and w = S[l−1..i+1]. If v is a palindrome
and per(v) = per(u), then v is the head of some series at (j+1)th iteration.
Indeed, if v is not a head, then S[k−1−per[v]..j+1] is a palindrome from the
same series as v; hence S[k−per(v)..j] is a palindrome from the same series as
u, so u is not a head, contradicting (a). Further, if v = w, then S[l−1..i+1] is
the last occurrence of w in S[1..j]; hence the pair (l−1, j+1) satisfies (a), thus
contradicting (b). Therefore, either v is not a palindrome, or per(v) > per(u), or
w is not a palindrome, or per(w) > per(u). Below we prove a linear upper bound
on the number of pairs (l, j) falling into each case.

Case Dec.1: v is not a palindrome. Same as Case Inc.1.

Case Dec.2: v is a palindrome, per(v) > per(u). This is a simplified version of
Case Inc.2: the center c′ of u′ = link[u] = S[k′..j] dies at the (j+1)th iteration
(including the case u′ = ε), and we have the number 2n of centers as the upper
bound.

Case Dec.3: w is not a palindrome. This means death of the center d = (i − l)/2
at the (i+1)th iteration. At each iteration, starting with the (j+1)th, building
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Dec one does not refer to palindromes with the center d because they have later
occurrences inside the suffix u of S[1..j]. Thus, no other pair falling into this
case can be related to d; again the number 2n of centers is the upper bound.

Case Dec.4: w is a palindrome, per(w) > per(u). Similar to Case Dec.2, the
center d′ of u′ = link[u] = S[l′..i] dies at the (i+1)th iteration. As in Case Dec.3,
subsequent iterations do not refer to palindromes with the center d, because they
occur later inside the suffix u of S[1..j]. So the 2n upper bound works here as
well. Thus, we get O(n) pairs (l, j) for all lists Dec. ��
Proof (of Theorem 1). Let us process each query append(b) as follows:

1: push � into a lazy segment tree
2: update eertree(S) to eertree(Sb)
3: if a vertex v is created and v is a baby then create a stack for v-series
4: build Inc; update stacks; build Dec � using eertree(Sb); see Lemma 6
5: merge Inc and iInc; for each deleted pair (l, r) do add(l, r, 1)
6: merge Dec and iDec; for each deleted pair (l, r) do add(l, r, −1)

The segment tree (by definition), the eertree (see [19]), and auxiliary stacks
(Remark 8) require O(n) space; other data uses less space. The working time is:
O(n log σ) for eertree [19]; O(log n) per iteration for the Inc/Dec lists (Lemma 6)
and for the iInc/iDec lists (Lemma 9); O(log n) per add query (Sect. 2.1). Since
the number of add queries is O(n) (Lemma 11), we spend O(n log n) time for n
append’s, as required.

The answer to return(i, j) is

sum(i, j) +
∑

(l,r)∈iInc

#([i..j] ∩ [l..r]) −
∑

(l,r)∈iDec

#([i..j] ∩ [l..r]).

This query for restricted SUB-PCOUNT is answered in O(log n) time by
Lemma 10. For SUB-PCOUNT, this query is answered within the same time
bound using the versions of the segment tree and the lists iInc, iDec after append-
ing of S[j]. All versions of the segment tree are available from the persistent seg-
ment tree (which uses O(n log n) space); all versions of iInc/iDec can be stored
explicitly, in O(n log n) space as well. Thus, both statements of the theorem are
proved. ��

4 Some Applications

First we describe all rich substrings of a given string. Since substrings of rich
strings are rich, it is enough to list all maximal (not extendable) rich substrings.

Theorem 12. All maximal rich substrings of a length n string S can be found
in O(n log n) time and O(n) space.

Proof. The substring S[i..j] is the longest rich suffix of the prefix S[1..j] of S iff
the difference array Aj contains 1’s in all positions from [i..j] and 0 in position



302 M. Rubinchik and A.M. Shur

i−1 (if i > 1). Let S[i..j] and S[i′..j+1] be the longest rich suffixes of S[1..j] and
S[1..j+1] respectively; then S[i..j] is a maximal rich substring of S iff i′ > i.

We process S online using the eertree and build the lists Inc and Dec on
each iteration. To keep track of the longest rich suffixes, we do not need to
store difference arrays. The procedure is as follows. After the first iteration, the
longest rich suffix is S[1..1]. Assume that S[i..j] is such a suffix after the jth
iteration. On the (j+1)th iteration we compare the new lists Inc and Dec to
find the maximum k which belongs to Dec but not to Inc; then Aj+1[k] = 0
and Aj+1[l] = 1 for all l > max{i, k}. So if k ≥ i, the new longest rich suffix is
S[k+1..j+1] and S[i..j] is reported as a maximal rich substring; otherwise, the
longest rich suffix is S[i..j+1] and nothing is reported.

Since Inc and Dec have O(log n) length and are ordered, k can be found in
O(log n) time (e.g., during the mergesort of Inc and Dec). By Lemma 6, the lists
are built in O(log n) time also. So the whole string is processed in O(n log n)
time. The space usage is dominated by the linear space for the eertree. ��

Now consider the offline analog of SUB-PCOUNT: given a string S[1..n] and
a set of intervals from [1..n], report the number of distinct palindromes in each
interval. Using Theorem 1, we suggest the following solution.

– If the total length L of intervals is O(n log n), build an eertree for each interval
separately and obtain the number of distinct palindromes from the size of the
eertree; an eertree can be built offline in linear time [19, Proposition 11]. So
we need O(L) time and O(l) space, where l is the maximum length of an
interval.

– If the number k of intervals is O(n log n), we sort them by the right end in O(k)
time and solve the problem as restricted SUB-PCOUNT in O((n+k) log n)
time and O(n) space.

– If k is not O(n log n), we solve the problem as SUB-PCOUNT in O(k log n)
time and O(n log n) space.

Finally, an interesting open question is the optimality of the solutions pre-
sented in this paper. As was pointed by one of the referees, since we compute
sums only for suffixes of difference arrays, we might use Dietz’s construction [3]
to report such sums in O(log n/ log log n) time. However, this works only if we
update individual elements of arrays, so we should spend Ω(n log2 n/ log log n)
time processing Ω(n log n) updates. So it remains open whether one can improve
the time bounds of Theorem 1.
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Abstract. In this paper, we propose a novel approach to combine
compact directed acyclic word graphs (CDAWGs) and grammar-based
compression. This leads us to an efficient self-index, called Linear-size
CDAWGs (L-CDAWGs), which can be represented with O(ẽT log n) bits
of space allowing for O(log n)-time random and O(1)-time sequential
accesses to edge labels, and O(m log σ + occ)-time pattern matching.
Here, ẽT is the number of all extensions of maximal repeats in T , n
and m are respectively the lengths of the text T and a given pattern,
σ is the alphabet size, and occ is the number of occurrences of the pat-
tern in T . The repetitiveness measure ẽT is known to be much smaller
than the text length n for highly repetitive text. For constant alpha-
bets, our L-CDAWGs achieve O(m + occ) pattern matching time with
O(erT log n) bits of space, which improves the pattern matching time of
Belazzougui et al.’s run-length BWT-CDAWGs by a factor of log log n,
with the same space complexity. Here, erT is the number of right exten-
sions of maximal repeats in T . As a byproduct, our result gives a way
of constructing a straight-line program (SLP) of size O(ẽT ) for a given
text T in O(n + ẽT log σ) time.

1 Introduction

Background: Text indexing is a fundamental problem in theoretical com-
puter science, where the task is to preprocess a given text so that subsequent
pattern matching queries can be answered quickly. It has wide applications
such as information retrieval, bioinformatics, and big data analytics [10,14].
There have been a lot of recent research on compressed text indexes [1,4,9–
11,13,14,16] that store a text T supporting extract and find operations in
space significantly smaller than the total size n of texts. Operation extract
returns any substring T [i..j] of the text. Operation find returns the list of
all occ occurrences of a given pattern P in T . For instance, Grossi, Gupta,
and Vitter [9] gave a compressed text index based on compressed suffix arrays,
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which takes s = nHk + O(n log log n log σ/ log n) bits of space and supporting
O(m log σ +polylog(n)) pattern match time, where Hk is the k-th order entropy
of T and m is the length of the pattern P .

Compression measures for highly repetitive text: Recently, there has been
an increasing interest in indexed searches for highly repetitive text collections.
Typically, the compression size of such a text can be described in terms of
some measure of repetition. The followings are examples of such repetitiveness
measures for T :

• the number gT of rules in a grammar (SLP) representing T ,
• the number zT of phrases in the LZ77 parsing of T ,
• the number rT of runs in the Burrows-Wheeler transform of T , and
• the number ẽT = er

T + e�
T of right- and left-extensions of maximal repeats

of T .

Belazzougui et al. [1] observed close relationship among these measures. Specifi-
cally, the authors empirically observed that all of them showed similar logarith-
mic growth behavior in |T | on a real biological sequence, and also theoretically
showed that both zT and rT are upper bounded by ẽT . These repetitive texts
are formed from many repeated fragments nearly identical. Therefore, one can
expect that compressed index based on these measures such as gT , zT , rT , and
ẽT can effectively capture the redundancy inherent to these highly repetitive
texts than conventional entropy-based compressed indexes [14].

Repetition-aware indexes: There has been extensive research on a family
of repetition-aware indexes [1,4,10,11] since the seminal work by Claude and
Navarro [4]. They proposed the first compressed self-index based on grammars,
which takes s = g log n + O(g log g) bits supporting O((m2 + h(m + occ)) log g)
pattern match time, where g = gT and h are respectively the size and height of
a grammar. Kreft and Navarro [10] gave the first compressed self-index based on
LZ77, which takes s = 3z log n+5n log σ +O(z)+o(n) bits supporting O(m2d+
(m + occ) log z) pattern match time. Here, d is the height of the LZ parsing.
Makinen, Navarro, Siren, and Valimaki [11] gave a compressed index based on
RLBWT, which takes s = r log σ log(2n/r)(1+o(1))+O(r log σ log log(2n/r))+
O(σ log n) bits supporting O(mf(r log σ, n log σ)) pattern match time, where
f(b, u) is the time for a binary searchable dictionary which is O((log b)0.5) and
o((log log u)2) for example [11].

Previous approaches: Considering the above results, we notice that in com-
pression ratio, all indexes above achieve good performance depending on the
repetitive measures, while in terms of operation time, most of them except the
RLBWT-based one [11] have quadratic dependency in pattern size m. Hence, a
challenge here is to develop repetition-aware text indexes to achieve good com-
pression ratio for highly repetitive texts in terms of repetition measures, while
supporting faster extract and find operations. Belazzougui et al. [1] proposed
a repetition-aware index which combines CDAWGs [3,7] and the run-length
encoded BWT [11], to which we refer as RLBWT-CDAWGs. For a given text T
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of the length n and a pattern P of the length m, their index uses O(er
T log n)

bits of space and supports find operation in O(m log log n + occ) time.

Main results: In this paper, we propose a new repetition-aware index based on
combination of CDAWGs and grammar-based compression, called the Linear-
size CDAWG (L-CDAWG, for short). The L-CDAWG of a text T of length
n is a self-index for T which can be stored in O(ẽT log n) bits of space, and
support O(log n)-time random access to the text, O(1)-time sequential character
access from the beginning of each edge label, and O(m log σ + occ)-time pattern
matching. For constant alphabets, our L-CDAWGs use O(er

T log n) bits of space
and support pattern matching in O(m+ occ) time, hence improving the pattern
matching time of Belazzougui et al.’s RLBWT-CDAWGs by a factor of log log n.
We note that RLBWT-CDAWGs use hashing to retrieve the first character of a
given edge label, and hence RLBWT-CDAWGs seem to require O(m log log n +
occ) time for pattern matching even for constant alphabets.

From the context of studies on suffix indices, our L-CDAWGs can be seen as
a successor of the linear-size suffix trie (LSTries) by Crochemore et al. [5]. The
LSTrie is a variant of the suffix tree [6], which need not keep the original text T
by elegant scheme of linear time decoding using suffix links and a set of auxil-
iary nodes. However, it is a challenge to generalize their result for the CDAWG
because the paths between a given pair of endpoints are not unique. By combin-
ing the idea of LSTries, an SLP-based compression with direct access [2,8], we
successfully devise a text index of O(ẽT log n) bits by improving functionalities
of LSTries. As a byproduct, our result gives a way of constructing an SLP of
size O(ẽT log ẽT ) bits of space for a text T . Moreover, since the L-CDAWG of T
retains the topology of the original CDAWG for T , the L-CDAWG is a compact
representation of all maximal repeats [15] that appear in T .

2 Preliminaries

In this section, we give some notations and definitions to be used in the following
sections. In addition, we recall string data structures such as suffix tries, suffix
trees, CDAWGs, linear-size suffix tries and straight-line programs, which are the
data structures to be considered in this paper.

2.1 Basic Definitions and Notations

Strings: Let Σ be a general ordered alphabet of size σ ≥ 2. An element T =
t1 · · · tn of Σ∗ is called a string, where |T | = n denotes its length. We denote
the empty string by ε which is the string of length 0, namely, |ε| = 0. Let
Σ+ = Σ∗ \ {ε}. If T = XY Z, then X, Y , and Z are called a prefix, a substring,
and a suffix of T , respectively. Let T = t1 · · · tn ∈ Σn be any string of length
n. For any 1 ≤ i ≤ j ≤ n, let T [i..j] = ti · · · tj denote the substring of T
that begins and ends at positions i and j in T , and let T [i] = ti denote the
ith character of T . For any string T , we denote by T the reversed string of T ,
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Fig. 1. Illustration of STrie(T ), STree(T ), and CDAWG(T ) with T = ababaac. The
solid arrows and broken arrows represent the edges and the suffix links of each data
structure, respectively.

i.e., T = T [n] · · · T [1]. Let Suffix (T ) denote the set of suffixes of T . For a string
x, the number of occurrences of x in T means the number of positions where x
is a substring in T .

Maximal repeats and other measures of repetition: A substring w
of T is called a repeat if the number of occurrences of w in T more
than one. A right extension (resp. a left extension) of w of T is any
substring of T with the form wa (resp. aw) for some letter a ∈ Σ.
A repeat w of T is a maximal repeat if both left- and right-extensions of w
occur strictly fewer times in T than w. In what follows, we denote by μT , er

T ,
e�
T , and ẽT = er

T + e�
T the numbers of maximal repeats, right-extensions, left-

extensions, and all extensions of maximal repeats appearing in T , respectively.
Recently, it has been shown in [1] that the number ẽT is an upper bound on the
number rT of runs in the Burrows-Wheeler transform for T and the number zT

of factors in the Lempel-Ziv parsing of T . It is also known that ẽT ≤ 4n − 4 and
μT < n, where n = |T | [3,15].

Notations on graphical indexes: All index structures dealt with in this
paper, such as suffix tries, suffix trees, CDAWGs, linear-size suffix tries (LSTries),
and linear-size CDAWGs (L-CDAWGs), are graphical indexes in the sense that
an index is a pointer-based structure built on an underlying DAG GL =
(V (L), E(L)) with a root r ∈ V (L) and mapping lab : E(L) → Σ+ that
assign a label lab(e) to each edge e ∈ E(L). For an edge e = (u, v) ∈ E(L),
we denote its end points by e.hi := u and e.lo := v, respectively. The label
string of e is lab(e) ∈ Σ+. The string length of e is slen(e) := |lab(e)| ≥ 1.
An edge is called atomic if slen(e) = 1, and thus, lab(e) ∈ Σ. For a path
p = (e1, . . . , ek) of length k ≥ 1, we extend its end points, label string, and string
length by p.hi := e1.hi, p.lo := ek.lo, lab(p) := lab(e1) . . . lab(ek) ∈ Σ+, and
slen(p) := slen(e1) + · · · + slen(ek) ≥ 1, respectively.

2.2 Suffix Tries and Suffix Trees

The suffix trie [6] for a text T of length n, denoted STrie(T ), is a trie which
represents Suffix (T ). The size of STrie(T ) is O(n2). The path label of a node v
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is the string str(v) := lab(πv) formed by concatenating the edge labels on the
unique path πv from the root to v. If x = str(v), we denote v by [x]. We may
identify v = [x] with its label x if it is clear from context. A substring x of T
is said to be branching if there exists two distinct characters a, b ∈ Σ such that
both xa and xb are substrings of T . For any a ∈ Σ, x ∈ Σ∗, we define the suffix
link of node [ax] by slink([ax]) = [x] if [ax] is defined.

The suffix tree [6,17] for a text T , denoted STree(T ), is a compacted trie
which also represents Suffix (T ). STree(T ) can be obtained by compacting every
path of STrie(T ) which consists of non-branching internal nodes (see Fig. 1).
Since every internal node of STree(T ) is branching, and since there are at most
n leaves in STree(T ), the numbers of edges and nodes are O(n). The edges of
STree(T ) are labeled by non-empty substrings of T . By representing each edge
label α with a pair (i, j) of integers such that T [i..j] = α, STree(T ) can be stored
in O(n log n) bits of space.

2.3 CDAWGs

The compact directed acyclic word graph [3,6] for a text T , denoted CDAWG(T ),
is the minimal compact automaton which represents Suffix (T ). CDAWG(T ) can
be obtained from STree(T$) by merging isomorphic subtrees and deleting associ-
ated endmarker $ �∈ Σ. Since CDAWG(T ) is an edge-labeled DAG, we represent
a directed edge from node u to v with label string x ∈ Σ+ by a triple f = (u, x, v).
For any node u, the label strings of out-going edges from u start with mutually
distinct characters.

Formally, CDAWG(T ) is defined as follows. For any strings x, y, we denote
x ≡L y (resp. x ≡R y) iff the beginning positions (resp. ending positions) of x
and y in T are equal. Let [x]L (resp. [x]R) denote the equivalence class of strings
w.r.t. ≡L (resp. ≡R). All strings that are not substrings of T form a single
equivalence class, and in the sequel we will consider only the substrings of T .
Let −→x (resp. ←−x ) denote the longest member of the equivalence class [x]L (resp.
[x]R). Notice that each member of [x]L (resp. [x]R) is a prefix of −→x (resp. a suffix
of ←−x ). Let ←→x =

←−−
(−→x ) =

−−→
(←−x ). We denote x ≡ y iff ←→x = ←→y , and let [x] denote

the equivalence class w.r.t. ≡. The longest member of [x] is ←→x and we will also
denote it by value([x]). We define CDAWG(T ) as an edge-labeled DAG (V,E)
such that V = {[−→x ]R | x is a substring of T} and E = {([−→x ]R, α, [−→x α]R) | α ∈
Σ+,−→x �≡ −→x α}. The −→· operator corresponds to compacting non-branching edges
(like conversion from STrie(T ) to STree(T )) and the [·]R operator corresponds
to merging isomorphic subtrees of STree(T ). For simplicity, we abuse notation
so that when we refer to a node of CDAWG(T ) as [x], this implies x = −→x and
[x] = [−→x ]R.

Let [x] be any node of CDAWG(T ) and consider the suffixes of value([x])
which correspond to the suffix tree nodes that are merged when transformed
into the CDAWG. We define the suffix link of node [x] by slink([x]) = [y], iff y
is the longest suffix of value([x]) that does not belong to [x].
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Fig. 2. Illustration of LSTrie(T ) and our index structure L-CDAWG(T ) with SLP
for text T = abcdbcda$. Solid and broken arrows represent the edges and suffix links,
respectively. Underlined and shaded characters attached to each edge are the first (real)
and the following (virtual) characters of the original edge label . The expression Xi at
the edge indicates the i-th variable of the SLP for T .

It is shownthat all nodes of CDAWG(T ) except the sink correspond to the
maximal repeats of T . Actually, value([x]) is a maximal repeat in T [15]. Follow-
ing this fact, one can easily see that the numbers of edges of CDAWG(T ) and
CDAWG(T ) coincide with the numbers er

T and e�
T of right- and left- extensions

of maximal repeats of T , respectively [1,15].
By representing each edge label α with pairs (i, j) of integers such that

T [i..j] = α, CDAWG(T ) can be stored in O(er
T log n + n log σ) bits of space.

2.4 LSTrie

Recently, Crochemore et al. [5] proposed a compact variant of a suffix trie, called
linear-size suffix trie (or LSTrie, for short), denoted LSTrie(T ). It is a compacted
tree with the topology and the size similar to STree(T ), but has no indirect
references to a text T (See Fig. 2). LSTrie(T ) is obtained from STree(T ) by
adding all nodes v such that their suffix links slink(v) appear also in STree(T ).
Unlike STree(T ), each edge (u, v) of LSTrie(T ) stores the first character and the
length of the corresponding suffix tree edge label (see Fig. 2). Using auxiliary
links called the jump pointers the following theorem is proved.

Proposition 1 (Crochemore et al. [5]). For a text T of length n, the linear-
size suffix trie LSTrie(T ) for T can be stored in O(n log n) bits of space support-
ing reconstruction of the label of a given edge in O(�) time, where � is the length
of the edge label.

Crochemore et al.’s method [5] does not regard the order of decoding char-
acters on an edge label. This implies that LSTrie(T ) needs O(�) worst case time
to read any prefix of an edge label of length �. This may cause troubles in some
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applications including pattern matching. In particular, it does not seem straight-
forward to match a pattern P against a prefix of the label of an edge e in O(|P |)
time when |P | < |lab(e)|. We will solve these problems in Sect. 3 later.

2.5 Straight-Line Programs

A straight-line program (SLP) is a context-free grammar (CFG) in the Chom-
sky normal form generating a single string. SLPs are often used in grammar
compression algorithms [14].

Consider an SLP R with n variables. Each production rule is either of form
X → a with a ∈ Σ or X → Y Z without loops. Thus an SLP produces a single
string. The phrase of each Xi, denoted F(Xi),is the string that Xi produces.
The string defined by SLP R is F(Xn). We will use the following results.

Proposition 2 (Gasieniec et al. [8]). For an SLP R of size g for a text of
length n, there exist a data structure of O(g log n) bits of space which supports
expansion of a prefix of F(Xi) for any variable Xi in O(1) time per character,
and can be constructed in O(g) time.

Proposition 3 (Bille et al. [2]). For an SLP R of size g representing a text of
length n, there exists a data structure of O(g log n) bits of space which supports to
access consecutive m characters at arbitrary position of F(Xi) for any variable
Xi in O(m + log n) time, and can be constructed in O(g) time.

3 The Proposed Data Structure: L-CDAWG

In this section, we present the Linear-size CDAWG (L-CDAWG, for short).
The L-CDAWG can support CDAWG operations in the same time complexity
without holding the original input text and can reduce the space complexity from
O(er

T log n+n log σ) bits of space to O(ẽT log n) bits of space, where ẽT = er
T +e�

T

is the number of extensions of maximal repeats. From now on, we assume that
an input text T terminates with a unique character $ which appears nowhere
else in T .

3.1 Outline

The Linear-size CDAWG for a text T of length n, denoted L-CDAWG(T ), is
a DAG whose edges are labeled with single characters. L-CDAWG(T ) can be
obtained from CDAWG(T ) by the following modifications. From now on, we
refer to the original nodes appearing in CDAWG(T ) as type-1 nodes, which are
always branching except the sink.

1. First, we add new non-branching nodes, called type-2 nodes to CDAWG(T ).
Let u = value([x]) for any type-1 node [x] of CDAWG(T ). If au is a substring
of T but the path spelling out au ends in the middle of an edge, then we
introduce a type-2 node v representing au. We add the suffix link u = slink(v)
as well. Adding type-2 nodes splits an edge into shorter ones. Note that more
than one type-2 nodes can be inserted into an edge of CDAWG(T ).
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2. Let (u, x, v) be any edge after all the type-2 nodes are inserted, where x ∈
Σ+. We represent this edge by e = (u, c, v) where c is the first character
c = x[1] ∈ Σ of the original label. We also store the original label length
slen(e) = |x|.

3. We will augment L-CDAWG(T ) with a set of SLP production rules whose
nonterminals correspond to edges of L-CDAWG(T ). The definition and con-
struction of this SLP will be described later in Sect. 3.3.

If non-branching type-2 nodes are ignored, then the topology of
L-CDAWG(T ) is the same as that of CDAWG(T ). For ease of explanation, we
denote by lab(e) the original label of edge e. Namely, for any edge e = (u, c, v),
lab(e) = x iff (u, x, v) is the original edge for e.

The following lemma gives an upper bound of the numbers of nodes and
edges in L-CDAWG(T ). Recall that μT is the number of maximal repeats in T ,
e�
T and er

T are respectively the number of left- and right-extensions of maximal
repeats in T , and ẽT = e�

T + er
T .

Lemma 1. For any string T , let L-CDAWG(T ) = (V,E), then |V | = O(μT +
e�
T ) and |E| = O(ẽT ).

Proof. Let CDAWG(T ) = (V0, E0) and CDAWG(T ) = (V0, E0). It is known
that |V0| = |V0| = μT , |E0| = er

T and |E0| = e�
T (see [3] and [15]). Let V1 and

V2 be the set of type-1 and type-2 nodes in L-CDAWG(T ), respectively. Clearly,
V1∩V2 = ∅, V = V1∪V2, and V1 = V0. Let [x] ∈ V1 and u = value([x]). Note that
u is a maximal repeat of T . For any character a ∈ Σ such that au is a substring
of T , clearly au is a left-extension of u. By the definition of L-CDAWG(T ), it
always has a (type-1 or type-2) node which corresponds to au. Hence |V2| ≤ e�

T .
This implies |V | = |V1| + |V2| = O(μT + e�

T ). Since each type-2 node is non-
branching, clearly |E| = O(er

T + e�
T ) = O(ẽT ). �


Corollary 1. For any string of T over a constant alphabet, |V | = O(μT + er
T )

and |E| = O(er
T ), where L-CDAWG(T ) = (V,E).

Proof. It clearly holds that μT ≥ e�
T /σ and er

T ≥ μT . Thus we have e�
T ≤ σer

T .
The corollary follows from Lemma 1 when σ = O(1). �


3.2 Constructing Type-2 Nodes and Edge Suffix Links

Lemma 2. Given CDAWG(T ) for a text T , we can compute all type-2 nodes
of L-CDAWG(T ) in O(ẽT log σ) time.

Proof. We create a copy G of CDAWG(T ). For each edge (u, x, v) of
CDAWG(T ), we compute node u′ = slink(u) and the path Q that spells out
x from u′. The number of type-1 nodes in this path Q is equal to the number
of type-2 nodes that need to be inserted on edge (u, x, v), and hence we insert
these nodes to G. After the above operation is done for all edges, G contains all
type-2 nodes of L-CDAWG(T ). Since there always exists such a path Q, to find
Q it suffices to check the first characters of out-going edges. Hence we need only
O(log σ) time for each node in Q. Overall, it takes O(ẽT log σ) time. �
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The above lemma also indicates the notion of the following edge suffix links
in L-CDAWG(T ) which are virtual links, and will not be actually created in the
construction.

Definition 1 (Edge suffix links). For any edge e with slen(e) ≥ 2, e-suf (e) =
(e1, . . . , ek) is the path, namely a list of edges, from e1.hi = slink(e.hi) to ek.lo
that can be reachable from e1.hi by scanning lab(e).

Edge suffix links have the following properties.

Lemma 3. For any edge e such that slen(e) ≥ 2 and its edge suffix link
e-suf (e) = (e1, . . . , ek), (1) both e1.hi and ek.lo are type-1 nodes, and (2) all
nodes in the path e1.lo = e2.hi, . . . , ek−1.lo = ek.hi are type-2 nodes.

Proof. From the definition of edge suffix links, we have e1.hi = slink(e.hi) and
the path from e1.hi to ek.lo spells out lab(e). (1) By the definitions of type-2
nodes and edge suffix links, e1.hi is always of type-1. Hence it suffices to show
that ek.lo is of type-1. There are two cases: (a) If e.lo is a type-2 node, then
by the definition of type-2 nodes, ek.lo must be the node pointed by slink(e.lo).
Therefore, ek.lo is a type-1 node. (b) If e.lo is a type-1 node, then let ax be
the shortest string represented by e.hi with a ∈ Σ and x ∈ Σ∗. Then, string
x · lab(e) is spelled out by a path from the source to e1.hi, . . . , ek.lo, where either
ek.lo = e.lo or ek.lo = slink(e.lo). Since e.lo is of type-1, slink(e.lo) is also of
type-1. (2) If there is a type-1 node u in the path e2.hi, . . . , ek−1.lo, then there
has to be a (type-1 or type-2) node v between e.hi and e.lo, a contradiction. �


Lemma 3 says that the label of any edge e = (u, c, v) with slen(e) ≥ 2 can
be represented by a path p = (e1, . . . , ek) = e-suf (e). In addition, since the path
p includes type-1 nodes only at the end points and since type-2 nodes are non-
branching, p is uniquely determined by a pair of (slink(u), c). We can compute
all edges ei ∈ p for 1 ≤ i ≤ k in O(k + log σ) per query, as follows. Firstly, we
compute p.hi = slink(u) and then select the out-going edge e1 starting with the
character c in O(log σ) time. Next, we blindly scan the downward path from e1
while the lower end of the current edge ei has type-2. This scanning terminates
when we reach an edge ek such that ek.lo is of type-1.

3.3 Construction of the SLP for L-CDAWG

We give an SLP of size O(ẽT ) which represents T and all edge labels of L =
L-CDAWG(T ) based on the jump links.

Jumping from an edge to a path: First, we define jump links, by which we
can jump from a given edge e with slen(e) ≥ 2 to the path consisting of at least
two edges, and having the same string label. Although our jump link is based on



Linear-Size CDAWG: New Repetition-Aware Indexing 313

that of LSTries [5], we need a new definition since a path in CDAWG(T ) (and
hence in L-CDAWG(T )) cannot be uniquely determined by a pair of nodes,
unlike STree(T ) (or LSTrie(T )).

Definition 2 (Jump links). For an edge e with slen(e) ≥ 2 and e-suf (e) =
(e1, . . . , ek), jump(e) is recursively defined as follows:

1. jump(e) := jump(e1) if k = 1 (thus e-suf (e) = (e1)), and
2. jump(e) := (e1, . . . , ek) if k ≥ 2.

Note that lab(e) equals lab(e1) · · · lab(ek) for jump(e) = (e1, . . . , ek).

Lemma 4. For any edge e with slen(e) ≥ 2, jump(e) consists of at least two
edges.

Proof. Assume on the contrary that jump(e) = e′ for some edge e′. This implies
slen(e′) ≥ 2. By definition, e′.hi is a proper suffix of e.hi, namely, there exists an
integer k ≥ 1 such that slinkk(e.hi) = e′.hi. For any character c which appears
in T , there is a (type-1 or type-2) node which represents c as a child of the source
of L-CDAWG(T ). This implies that there is an out-going edge e′′ of length 1
from the source representing the first character of e.hi. This contradicts that
jump(e) only contains a single edge e′ with slen(e′) ≥ 2. �


Theorem 1. For a given L-CDAWG(T ), there is an algorithm that computes
all jump links in O(ẽT log σ) time.

Proof. We explain how to obtain jump(e) for an edge e with slen(e) ≥ 2. For
all edge e with slen(e) ≥ 2, we manage a pointer to the first edge e′ of jump(e)
by P [e] = e′. We initially set P [e] = ε for all e. For all nodes e with slen(e) ≥ 2,
let u be an outgoing edge of slink(e.hi) with the same label character of e. We
check whether P [e] = ε and, if so, we recursively compute P [u], and then set
P [e] = P [u]. In this way all P [e] can be computed in O(ẽT log σ) time in total,
where the log σ is needed for selecting the out going edge. From Lemma 3, since
there does not exist branching edge on each jump link, jump(e) can be easily
obtained from P [e] by traversing the path until encountered a type-1 node. �


An SLP for the L-CDAWG: We build an SLP which represents all edge labels
in L-CDAWG(T ) = (V,E) based on jump links. For each edge e, let X(e) denote
the variable which generates the string label lab(e). Let E = {e1, . . . , es}. For any
ei ∈ E with slen(ei) = 1, we construct a production X(ei) → c where c ∈ Σ is
the label. For any ei ∈ E with slen(ei) ≥ 2, let jump(ei) = (e′

1, . . . , e
′
k). We con-

struct productions X(ei) → X(e′
1)Y1, Y1 → X(e′

2)Y2, . . . , Yk−3 → X(e′
k−2)Yk−2,

and Yk−2 → X(e′
k−1)X(e′

k). We call a production whose left-hand size is Yi

an intermediate production. It is clear that X(ei) generates lab(e) and we
introduced k − 1 productions. If there is another edge ej (i �= j) such that
jump(ej) = (e′

1, . . . , e
′
k), then we construct a new production X(ej) → X(e′

1)Y1

and reuse the other productions. Let p be the path that spells out the text T .
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We create productions which generates T using the same technique as above
for this path p. Overall, the total number of intermediate productions is lin-
ear in the number of type-2 nodes in L-CDAWG(T ). Since there are O(|E|)
non-intermediate productions, this SLP consists of O(ẽT ) productions.

Now, we have the main result of this subsection.

Theorem 2. For a given L-CDAWG(T ), there is an algorithm that constructs
an SLP which represents all edge labels in O(ẽT log σ) time.

Proof. By the above algorithm, if jump links are computed, we can obtain an
SLP which represents all edge labels in O(ẽT ) time. From Theorem 1, we can
compute all jump links in O(ẽT log σ) times. Overall, the total time of this algo-
rithm is O(ẽT log σ). �

Fig. 2 shows LSTrie(T ) and L-CDAWG(T ) enhanced with the SLP for string
T = abcdbcda$.

We associate to each edge label the corresponding variable of the SLP. By
applying algorithms of Gasieniec et al. [8] (in Proposition 2) and Bille et al. [2]
(in Proposition 3), we can show the following theorems.

Theorem 3. For a text T , L-CDAWG(T ) can support pattern matching for a
pattern P of length m in O(m log σ + occ) time.

Proof. From Proposition 2, any consecutive m characters from the beginning of
an edge in L-CDAWG(T ) can be sequentially read in O(m) time. CDAWG(T )
can support pattern matching by traversing the path from the source with
P in O(m log σ + occ) time [3]. Since L-CDAWG(T ) contains the topology of
CDAWG(T ), it can also support pattern matching in O(m log σ + occ) time. �

Theorem 4. For a text T of length n, L-CDAWG(T ) has an SLP that derives
T . In addition, we can read any substring T [i..i+m] can be read in O(m+log n)
time.

Proof. The text T of L-CDAWG(T ) is represented by the longest path p from
the source to the sink. Remembering p makes it possible to read any position of
T by using the Proposition 3. �


3.4 The Main Result

It is known that for a given string T of length n over an integer alphabet of size
nO(1), CDAWG(T ) can be constructed in O(n) time [12]. Combining this with
the preceding discussions, we obtain the main result of this paper.

Theorem 5. For a text T of length n, L-CDAWG(T ) supports pattern matching
in O(m log σ + occ) time for a given pattern of length m and substring extrac-
tion in O(m + log n) time for any substring of length m, and can be stored in
O(ẽT log n) bits of space (or O(ẽT ) words of space). If CDAWG(T ) is already
constructed, then L-CDAWG(T ) can be constructed in O(ẽT log σ) total time. If
T is given as input, then L-CDAWG(T ) can be constructed in O(n + ẽT log σ)
total time for integer alphabets of size nO(1). After L-CDAWG(T ) has been con-
structed, the input string T can be discarded.



Linear-Size CDAWG: New Repetition-Aware Indexing 315

4 Conclusions and Further Work

In this paper, we presented a new repetition-aware data structure called Linear-
size CDAWGs. L-CDAWG(T ) takes linear space in the number of the left- and
right-extensions of the maximal repeats in T , which is known to be small for
highly repetitive strings. The key idea is to introduce type-2 nodes following
LSTries proposed by Crochemore et al. [5]. Using a small SLP induced from
edge-suffix links that is enhanced with random access and prefix extraction data
structures, our L-CDAWG(T ) supports efficient pattern matching and substring
extraction. This SLP is repetition-aware, i.e., its size is linear in the number of
left- and right-extensions of the maximal repeats in T . We also showed how to
efficiently construct L-CDAWG(T ).

Our future work includes implementation of L-CDAWG(T ) and evaluation
of its practical efficiency, when compared with previous compressed indexes for
repetitive texts. An interesting open question is whether we can efficiently con-
struct L-CDAWG(T ) in an on-line manner for growing text.
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