
Intrinsic Redundancy for Reliability and
Beyond

Alberto Goffi, Alessandra Gorla, Andrea Mattavelli, and Mauro Pezzè

Abstract Software redundancy is an essential mechanism in engineering. Different
forms of redundant design are the core technology of well-established reliability
and fault-tolerant mechanisms in traditional engineering as well as in software
engineering. In this chapter, we discuss intrinsic software redundancy, a type of
redundancy that is not added explicitly at design time to improve runtime reliability
but is natively present in modern software system due to independent design and
development decisions.We introduce the concept of intrinsic redundancy, discuss its
diffusion and the reasons for its presence in modern software systems, indicate how
it can be automatically identified, and present some current and future applications
of such form of redundancy to produce more reliable software systems at affordable
costs.

1 Introduction

Reliability, which is the ability of a system or component to perform its required
functions under stated conditions for a specified period of time [28], is a key
property of engineered products and in particular of software artifacts. Safety
critical applications must meet the high reliability standards required for their field
deployment, time- and business-critical applications must obey strong reliability

A. Goffi (�)
USI Università della Svizzera italiana, Lugano, Switzerland
e-mail: alberto.goffi@usi.ch

A. Gorla
IMDEA Software Institute, Madrid, Spain
e-mail: alessandra.gorla@imdea.org

A. Mattavelli
Imperial College London, London, UK
e-mail: a.mattavelli@imperial.ac.uk

M. Pezzè
USI Università della Svizzera italiana, Lugano, Switzerland

University of Milano-Bicocca, Milan, Italy
e-mail: mauro.pezze@usi.ch

© Springer International Publishing AG 2017
M. Mazzara, B. Meyer (eds.), Present and Ulterior Software Engineering,
https://doi.org/10.1007/978-3-319-67425-4_10

153

mailto:alberto.goffi@usi.ch
mailto:alessandra.gorla@imdea.org
mailto:a.mattavelli@imperial.ac.uk
mailto:mauro.pezze@usi.ch
https://doi.org/10.1007/978-3-319-67425-4_10

154 A. Goffi et al.

requirements, and everyday and commodity products should meet less stringent but
still demanding customer requirements.

Reliability exploits runtime mechanisms that prevent or mask failures by relying
on some form of redundancy: redundant implementation that is based on runtime
replicas of the same or similar components to temper the failure of one or more
elements, redundant design that relies on independently designed components with
the same functionality to reduce the impact of faults, and redundant information that
replicates information to compensate for corrupted data.

In classic engineering practice, examples of redundant implementations are the
third engine of the McDonnell Douglas DC-10 and MD-11 aircraft, added in the
late 1960s to tolerate single-engine failures;1 the Boeing 777 control system that is
compiled with three different compilers and runs on three distinct processors [49];
the design of Systems-on-a-Chip (SoC), which relies on redundant Components;2

and the Redundant Array of Independent Disks (RAID) technology that combines
multiple physical disk drive components into a single logical unit [36]. An example
of redundant design in classic engineering is the redundant design practice for
building bridges to prevent localized failures from propagating to the whole bridge
structure [18, 19, 32]. A well-known instance of redundant information is the
Hadoop Distributed File System (HDFS) that improves reliability by replicating
data [41].

In software engineering, redundant design is a basic principle of fault-tolerant
approaches, which explicitly add redundancy to tolerate unavoidable faults [43].
Examples of redundant software design are N-version programming modules [12],
rollback and recovery techniques, error-correcting codes, and recovery blocks [22,
26, 37, 38]. Redundant design relies on elements explicitly added to the system,
which come with extra costs that limit their applicability.

In this chapter, we discuss a form of redundancy that is present in software sys-
tems independently from reliability issues and that can be exploited with negligible
additional costs to improve software reliability.We refer to such form of redundancy
as intrinsic software redundancy. Figure 1 shows a simple example of redundant
methods in class java.util.Stack: the invocations of methods clear(),
removeAllElements(), and setSize(0) produce the same result (an empty
stack) by executing the different code fragments reported in the figure. The different
albeit equivalent3 methods derive from design choices that are independent from
reliability issues, and as such we refer to them as intrinsically redundant methods.

Some recent studies indicate that software systems present many forms of
intrinsic redundancy that is a form of redundancy that derives from design and
implementation decisions that go beyond the explicit choice of adding redundant
elements for the sake of reliability [2, 5, 6, 8–11, 17, 24, 29, 42, 44]. Intrinsic

1https://federalregister.gov/a/07-704.
2http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43464.
3Here and in the whole chapter, we use the term equivalent method to indicate methods that
produce results indistinguishable from an external viewpoint, as discussed in detail in Sect. 2.

https://federalregister.gov/a/07-704
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43464

Intrinsic Redundancy for Reliability and Beyond 155

Fig. 1 Sample redundant
methods from class
java.util.Stack

1 public void clear() {
2 removeAllElements();
3 }

5 public synchronized void removeAllElements() {
6 modCount++;
7 // Let gc do its work
8 for (int i = 0; i < elementCount; i++)
9 elementData[i] = null;
10 elementCount = 0;
11 }

13 public synchronized void setSize(int newSize) {
14 modCount++;
15 if (newSize > elementCount) {
16 ensureCapacityHelper(newSize);
17 } else {
18 for (int i = newSize ; i < elementCount ; i++) {
19 elementData[i] = null;
20 }
21 }
22 elementCount = newSize;
23 }

redundancy has been successfully exploited to improve software reliability [42],
build self-healing systems [2, 6, 8, 10, 44], and generate test oracles [9].

We discuss the concept of intrinsic redundancy in software systems, argue about
the reasons for its presence, and provide data about the scale of the phenomenon in
Sect. 2. We investigate the problem of automatically uncovering intrinsic software
redundancy and present a search-based approach to automatically identify redun-
dancy intrinsically present at the method call sequence level in Sect. 3. We illustrate
how to exploit the redundancy that is intrinsically present in software systems
for producing self-healing systems in Sect. 4 and for generating semantically
relevant test oracles in Sect. 5. We identify challenging research problems that may
be effectively addressed by exploiting intrinsic software redundancy, focusing in
particular on the areas of performance optimization and security in Sect. 6.

2 Intrinsic Software Redundancy

Two different executions are redundant if they produce indistinguishable functional
results from an external viewpoint. For example methods clear(), remove-
AllElements(), and setSize(0) of class java.util.Stack in Fig. 1
execute different statements and run with different execution time, but produce the
same visible functional result (an empty stack) and are thus redundant. Redundant
executions may differ in the sequence of executed actions as in the case of

156 A. Goffi et al.

1 map.setCenter(new GLatLng(37, 122),15)
2 // is equivalent to
3 setTimeout(``map.setCenter(new GLatLng(37, 122), 15)'', 500)

5 map = new GMap2(document.getElementById(``map''));
6 setTimeout(``map.setCenter(new GLatLng(37, 122), 15)'', 500);
7 map.openInfoWindow(new GLatLng(37.4, 122), ``Hello World!'');

Fig. 2 Sample redundant method calls in JavaScript in the presence of multithread clients

methods clear(), removeAllElements(), and setSize(0), or simply in
the execution order of same shared actions, as in the case of the code of Fig. 2, where
setTimeout does not alter the sequence of executed actions, but may result in a
different order of execution with multithreaded clients.4

Redundancy is present in software systems at all abstraction levels, from single
bits to entire software systems. The Cyclic Redundancy Check (CRC) is an example
of redundancy at the bit level. Methods of the same or different classes that
produce the same results, like methods clear(), removeAllElements(),
and setSize(0), are examples of redundancy at the method call sequence
level. Libraries and services with overlapping functionality, for instance, the log4J5

library and the standard Java class java.util.Logging that largely overlap,
are examples of redundancy at the subsystem and system level.

In this chapter, we discuss intrinsic redundancy of software systems referring to
the method call sequence level:

• We refer to deterministic object-oriented software systems at the method call
level; the interested reader can find a generalization of the concept of intrinsic
redundancy to non-deterministic systems in Mattavelli’s PhD thesis [33].

• We focus on redundancy intrinsically present in the systems due to independent
design or implementation decisions, and not in redundancy explicitly added
at design time as a first-class design choice like in the case of N-version
programming.

• We consider only externally observable functional behavior, ignoring other
aspects of the executions such as differences in the internal state, data structures,
execution time, and performance.

Two methods are redundant if they differ in at least one execution trace and
produce indistinguishable results for all executions. Two execution traces are
different if they differ in at least one event or in their order. Two methods produce
indistinguishable results if their executions compute the same results and lead

4The insertion of a setTimeout is frequently used as workaround for issues in Google Maps.
5http://logging.apache.org/log4j.

http://logging.apache.org/log4j

Intrinsic Redundancy for Reliability and Beyond 157

to equivalent states from an external observer’s viewpoint. More precisely, the
executions of two methodsm1 and m2 of a class C with inputs i1 and i2 that produce
outputs o1 and o2 and reach states s1 and s2, respectively, are equivalent if o1 D o2
and no sequence of calls of methods of class C executed from s1 and s2 produces
different results.

Checking for the diversity of two methods is easy, since we only need to compare
the execution traces and find two different ones; checking for their equivalence is
complex, since it implies demonstrating that all possible executions produce states
that are indistinguishable with any interaction sequence. In Sect. 3, we present
an automatic approach to infer the likely equivalence of method call sequences,
which is based on heuristics, and as such is an imprecise albeit practical and useful
approximation of equivalence.

Intrinsic redundancy may stem from many design and commercial practices,
including but not limited to design for reusability, performance optimization,
backward compatibility, and lack of software reuse. Reusable software systems,
and in particular libraries, provide standard application programming interfaces
(APIs) that emphasize flexibility over conciseness. For instance, the popular JQuery
library6 provides many alternative methods to display elements in a Web page:
show(), animate(), fadeTo(), fadeIn(). Different albeit observationally
equivalent functionalities are often present due to performance optimizations. For
instance the GNU Standard C++ Library implements the basic stable sorting
function using the insertion-sort algorithm for small inputs and merge-sort for the
general case. Many libraries continue to offer legacy code to guarantee backward
compatibility. For instance, the Java 8 Class Library contains dozens of deprecated
classes and hundreds of deprecated methods that overlap with the functionality of
newer classes and methods.7 Time pressure and cost factors reduce the effectiveness
of inter- and intra-project communications and limit the degree of reuse. Often
developers are simply not aware that a functionality is already available in the
system and implement the same functionality multiple times [4, 30].

Intrinsic redundancy is surprisingly widespread in many software systems.
Table 1 summarizes the results of our empirical analysis of the presence of intrinsic
redundancy that derives from good design for reusability practice in a set of open-
source Java libraries at the intra-class method call sequence level. Table 1 indicates
a large amount of redundant methods (column Redundant methods) within the
examined classes (column Classes), which in turn lead to a considerable quantity
of redundant methods within each class (column Avg. per class). Table 1 reports
few summary data, interested readers can find additional details in [6, 8–11].

6http://jquery.com.
7http://docs.oracle.com/javase/8/docs/api/deprecated-list.html.

http://jquery.com
http://docs.oracle.com/javase/8/docs/api/deprecated-list.html

158 A. Goffi et al.

Table 1 Redundant method call sequences in open-source Java systems

System Classes Redundant methods Avg. per class

Apache Ant 213 804 3:80

Apache Lang3 1 45 45:00

Apache Lucene 160 205 1:28

Apache Primitives 16 216 13:50

Canova 95 345 3:63

CERN Colt 27 380 14:07

Eclipse SWT 252 1494 5:93

Google Guava 116 1715 14:78

GraphStream 9 132 14:67

Oracle JDK 2 85 42:50

Joda-Time 12 135 11:25

Trove4J 54 257 4:76

Total 957 5813 6:07

3 Mining Software Redundancy

Identifying redundant method call sequences by manually inspecting the software
systems is an error-prone and effort-demanding activity. This section suggests that
the intrinsic redundancy of software systems can be automatically identified by
an approach, Search-Based Equivalent Synthesis (SBES), that automatically detects
redundant method call sequences in Java classes [21, 34].

Given a target method of a Java class, SBES synthesizes sequences of method
calls that are redundant to the target method, that is, sequences of method calls
that produce results that are indistinguishable from the results of the target method
while executing different actions. SBES approximates the equivalence of method
call sequences referring to a finite set of execution scenarios. We refer to the method
call sequences that SBES identifies as likely equivalent sequences, since they are
proven equivalent to the target method for the considered finite set of execution
scenarios, but may differ for other unforeseen executions.

Given a method m of a Java class C, SBES incrementally synthesizes candidate
redundant method call sequences to m. For each candidate sequence, SBES then
explores the input space of the candidate sequence, looking for inputs that produce
results different from m. If such inputs are found, SBES discards the candidate
sequence and proceeds with a new candidate. Otherwise, if no input that distin-
guishes the candidate sequence fromm is found before a given timeout, SBES deems
the sequence as a likely redundant method call sequence of m.

We illustrate SBES referring to method pop() of the java.util.Stack
class. SBES starts with an initial scenario that consists of a set of randomly selected
test cases for the target method, for instance, the simple test case test01 at
lines 1–6 in Fig. 3. It then looks for a sequence of method calls that produces
indistinguishable results with respect to the candidate method for the current

Intrinsic Redundancy for Reliability and Beyond 159

1 // Initial execution scenario
2 public void test01() {
3 Stack<Integer> s = new Stack<>();
4 s.push(1);
5 Integer result = s.pop();
6 }

8 // First candidate equivalent method call sequence:
9 // stack.remove(0) candidate equivalent to stack.pop()
10 Stack<Integer> s = new Stack<>();
11 s.push(1);
12 Integer result = s.remove(0);

14 // Counterexample
15 Stack<Integer> s = new Stack<>();
16 s.push(2);
17 s.push(1);
18 Integer result = s.pop();

20 // Second candidate equivalent method call sequence:
21 // stack.remove(stack.size() 1) candidate equivalent to stack.pop()
22 Stack<Integer> s = new Stack<>();
23 int x0 = s.size();
24 int x1 = x0 1;
25 Integer result = s.remove(x1)

Fig. 3 Candidate method call sequences, counterexamples, and execution scenarios for method
pop() of class java.util.Stack

scenario. It does so by exploiting search-based algorithms and, in particular, the
genetic algorithms implemented in EvoSuite [16]. In the example, SBES synthesizes
the candidate sequence of method calls at lines 8–12 in Fig. 3, which produces the
same result of the target method pop() for the initial scenario.

SBES validates the candidate by looking for inputs that distinguish the candidate
method call sequence from the target method, by exploiting again the genetic
algorithms implemented in EvoSuite. In the example, SBES finds the counterex-
ample shown at lines 14–18 in Fig. 3, that is, an input that differentiates the results
produced by the candidate method call sequence and the target method. If SBES
finds a counterexample, as in this case, it discards the current candidate method call
sequence, adds the counterexample to the current execution scenario, and iterates,
looking for a new candidate method call sequence indistinguishable from the target
method for the new scenario. By incrementally adding the counterexamples to
the execution scenarios, SBES restricts the search to a smaller set of potential
candidates, thus improving the likelihood of generating method call sequences that
are redundant with respect to the target method.

In the example, SBES synthesizes the new candidate at line 20–25 in Fig. 3.
The search for inputs that differentiate the candidate method call sequence from
the target method fails in identifying a counterexample with a timeout. Thus SBES
returns the synthesized sequence as likely redundant to the target method. In the
example, the synthesized sequence is indeed redundant, since it produces results
that are indistinguishable from the target method for every possible input. Our
experiments confirm that most sequences that SBES synthesizes as likely redundant

160 A. Goffi et al.

Table 2 Effectiveness of SBES

System Class
Redundant
methods

Redundant methods found
by SBES

Oracle JDK Stack 45 32 (71%)

Graphstream

Path 5 5 (100%)

Edge 20 20 (100%)

SingleNode 12 12 (100%)

MultiNode 12 12 (100%)

Vector2 21 21 (100%)

Vector3 22 22 (100%)

Google Guava

ArrayListMultimap 18 12 (67%)

ConcurrentHashMultiset 16 6 (38%)

HashBasedTable 13 2 (15%)

HashMultimap 13 13 (100%)

HashMultiset 19 19 (100%)

ImmutableListMultimap 20 2 (10%)

ImmutableMultiset 20 3 (15%)

LinkedHashMultimap 13 12 (92%)

LinkedHashMultiset 19 19 (100%)

LinkedListMultimap 17 11 (65%)

Lists 16 15 (94%)

Maps 12 8 (67%)

Sets 25 21 (84%)

TreeBasedTable 17 3 (18%)

TreeMultimap 12 8 (67%)

TreeMultiset 34 34 (100%)

Total 421 312 (74%)

are often redundant indeed. In general, SBES may iterate several times before
finding a likely redundant sequence. SBES may also fail in synthesizing a new
candidate, and in this case we terminate the synthesis process and return the set
of likely redundant method call sequences found.

Table 2 summarizes the experimental data reported in Goffi et al. [21] and
Mattavelli et al. [34] that confirm the effectiveness of SBES in automatically
identifying redundant method call sequences. The table reports the number of
redundant method call sequences in the considered classes (column Class) as found
by manually inspecting the code (column Redundant Methods) and the amount and
percentage of automatically identified redundant method call sequences (column
Redundant Methods Found by SBES). As reported in the table, SBES can find a large
amount of redundant method sequences with an average of 74% and a median over
88%, and fails in identifying most of the missing redundancies for technological
limitations of the current prototype implementation that does not satisfactorily deal
with the subtle use of some Java constructs.

Intrinsic Redundancy for Reliability and Beyond 161

4 Runtime Failure Recovery

Intrinsic redundancy is exploited in many ways to relieve the effects of faulty
code fragments at different abstraction levels, from single code statements to entire
components. For instance, many approaches exploit redundancy at the service
component level to overcome failures caused by either malfunctioning services or
unforeseen changes in the functionality offered by the current reference implemen-
tation [2, 39, 45]. Other approaches exploit some form of intrinsic redundancy to
automatically patch faulty code at the statement level, for instance, LeGoues et
al. [31] and Arcuri and Yao [1] use genetic programming to automatically fix faults,
while Sidiroglou-Douskos et al. make use of code fragments that are extracted from
“donor” applications [42]. Automatic runtime code repair techniques patch the code
at runtime to mitigate the effect of failures during the software execution.

In this section we illustrate the use of intrinsic software redundancy to recover
from runtime failures by referring to the Automatic Workaround Approach (AWA),
which exploits intrinsic redundancy at the method call sequence level to automati-
cally recover from failures at runtime [6, 8, 10]. A workaround substitutes a faulty
code fragment with a different redundant code fragment that produces the same
intended behavior while executing a different code that avoids the faulty operations.
For example the redundant method call setTimeout(”map.setCenter(new
GLatLng(37,�122),15)“,500) shown in Fig. 2 can be successfully
exploited as a workaround for map.setCenter(new GLatLng(37,
�122),15) to solve the now-closed issue 519 of the Google Maps API.8

In a nutshell, AWA detects a failure, rolls back to a consistent state, substitutes
the faulty code fragment with a redundant code fragment, and executes the new
code. The AWA key ingredients are as follows: (1) a failure detection mechanism
that reveals failures at runtime, (2) a save and restore mechanism that rolls back the
application to a consistent state after a failure, and (3) a healing engine that replaces
the failing code fragment with a redundant fragment.

When dealing with Web applications, AWA focuses on JavaScript libraries and
relies on the stateless nature of classic Web applications to ensure state consistency.
When dealing with Java applications, AWA augments the core healing engine with
mechanisms to detect failures, and save and restore the state. In the next paragraphs,
we briefly summarize the three main AWA ingredients for both Web and Java
applications. The interested readers can refer to [8] and [6, 10] for details on AWA
for Java programs and Web applications, respectively. We illustrate the approach
referring to AWA successfully exploiting the redundant method calls shown in Fig. 2
to heal the now-closed issue 519 of Google Maps API as a running example.

8https://code.google.com/p/gmaps-api-issues/.

https://code.google.com/p/gmaps-api-issues/

162 A. Goffi et al.

4.1 Failure Detection

The AWA failure detectionvmechanism reveals failures and triggers the AWA healing
engine at runtime.When dealing with Web applications, AWA takes advantage of the
interactive nature of the application and relies on users who are given an intuitive
way, for instance, a browser extension, both to signal undesired outputs and to
validate the behavior of the application after a potential workaround is applied.
When dealing with Java applications, AWA relies on implicit failure detectors such
as runtime exceptions and violations of pre-/post-conditions and invariants. In our
experiments with Web applications we provided users with a button to signal
failures.

In the running example, users signal the lack of the expected pop-up window for
additional information about the location on the map through a Fix me button that
we added to Google Chrome [7].

4.2 Save and Restore

The AWA save and restore mechanism incrementally saves intermediate execution
states to roll back to a consistent state, that is, a state before the occurrence
of a failure. When dealing with Web applications, AWA takes advantage of the
stateless nature of the client side, assuming that the JavaScript code executed
on the client side implements stateless components, and simply reloads the page
without worrying about possible side effects on the state of the application. When
dealing with Java applications, the save and restore mechanism periodically saves
the execution states, and must find a good compromise for the frequency. Saving
operations should not be too frequent, to limit the overhead, and not too sporadic
either, since theymay also cover I/O operations that may be difficult or impossible to
restore. AWA identifies code regions that include redundant code—and that can thus
be fixed with automatic workarounds—and saves the state before executing these
regions. In principle, these code regions may extend over sections of the application
at any level of granularity; in practice they usually extend within a method body.

4.3 Healing Engine

The AWA healing engine executes a code that is redundant with respect to the code
fragment likely responsible for the detected failure, aiming to restore a correct
execution. In general, the AWA healing engine iteratively restores the state of the
application to a previously saved checkpoint and executes a code fragment that is
redundant with respect to the code that is a suspect responsible of the failure, until
either the failure does not occur or the available redundant fragments are exhausted.

Intrinsic Redundancy for Reliability and Beyond 163

If the failure does not occur after the healing action, AWA successfully prevents
the failure and the execution of the application proceeds as if no failure occurred.
If the failure persists, AWA cannot prevent the failure and forwards the failure to
the application. In the presence of multiple alternatives, AWA selects the alternative
candidates by relying on heuristics based on the past success of the redundant
alternatives.

When dealing with Web applications, AWA simply extracts the JavaScript code
from the failing page, replaces the suspect code with a redundant code fragment,
and displays the new page to the user, who can either continue interacting with the
application or signal the persistency of a problem. In this latter case, AWA iterates
with a new redundant code fragment.

In the running example, the failing page contains several statements with known
redundant method call sequences. After two failed attempts, where AWA substitutes
a statement in the page with a redundant one without solving the failure and trigger-
ing new user’s Fix me requests, AWA substitutes statement map.setCenter(new
GLatLng(37, �122), 15)with the candidate workaround shown in Fig. 2 and
reloads the page successfully, healing the failure [10].

AWA assumes the availability of the set of redundant alternatives present in
the target application, which can be automatically identified with the search-
based approach presented in Sect. 3, and pre-processes the application off-line to
enable the online healing mechanism. It analyzes the application off-line to locate
code fragments with redundant alternatives, pre-compiles all the redundant code
fragments, and instruments the application with the necessary code to select those
alternative redundant fragments at runtime in response to a failure. At runtime, AWA
saves the state of the application at the identified checkpoints and reacts to failures
by executing workarounds.

The experimental data reported in [6, 8, 10] and collected on three popular
Web libraries (Google Maps, JQuery, and YouTube)9 and four Java applications
(Fb2pdf, Caliper, Carrot2, and Closure compiler)10 that use two popular Java
libraries (Google Guava and JodaTime)11 indicate that AWA is indeed effective:
It automatically applies workarounds for 100 out of 146 known faults for the
considered Web applications, and for a percentage that varies between 19% and
48% of the failure-inducing faults in the considered Java applications.

9Google Maps (http://code.google.com/apis/maps), JQuery (http://jquery.com), YouTube (http://
code.google.com/apis/youtube).
10Caliper (https://github.com/google/caliper), Carrot2 (http://project.carrot2.org), Closure Com-
piler (https://github.com/google/closure-compiler), Fb2pdf (http://fb2pdf.com).
11Guava (https://github.com/google/guava), JodaTime (https://github.com/JodaOrg/joda-time).

http://code.google.com/apis/maps
http://jquery.com
http://code.google.com/apis/youtube
http://code.google.com/apis/youtube
https://github.com/google/caliper
http://project.carrot2.org
https://github.com/google/closure-compiler
http://fb2pdf.com
https://github.com/google/guava
https://github.com/JodaOrg/joda-time

164 A. Goffi et al.

5 Automated Oracles

Software testing and in particular automatic generation of test oracles is another
important area where redundancy finds interesting applications. Test oracles check
the results of the code execution and signal discrepancies between actual and
expected behavior [3]. Their efficacy and cost play a key role in cost-effective test
automation approaches. Manual test case generation produces effective oracles, but
is very expensive and strongly impacts on the cost of testing. Generating useful test
oracles automatically is extremely valuable, but is generally difficult and in some
cases may not be practical or even possible [47].

In her seminal work, Weyuker proposes pseudo-oracles that exploit explicit
redundancy given in the form of multiple versions of a system to check program
results [47]. Doong and Frankl define the ASTOOT approach that relies on
redundancy that transpires from algebraic specifications to automatically generate
test inputs and oracles [15]. The metamorphic testing approach introduced by Chen
et al. almost a decade later exploits a form of redundant information given as
metamorphic relations to automatically generate test oracles [13].

In this section, we illustrate the role of intrinsic redundancy in auto-
mated software testing by means of cross-checking oracles, which exploit
the intrinsic redundancy at the method call sequence level to automat-
ically generate application specific oracles [9]. Figure 4 illustrates the
cross-checking oracle approach by referring to the invocation of method
containsValue(value) of the class ArrayListMultimap. Once mined
the redundancy between methods (methods map.containsValue(value)
and map.values().contains(value) in the example), cross-checking
oracles complement each invocation of a method for which we know that there exists
some redundancy (map.containsValue(value)) with a parallel invocation
of the redundant method (map.values().contains(value)) followed by a
comparison of the produced results and reached states (equivalence check in
the figure). The oracle signals a problem if two redundant methods invoked in the

map.values().contains(1);

1 void testCase() {
2 Map map = ArrayListMultimap.create();
3
4
5
6 map.containsValue(1);

7
8
9 }

equivalence check

Fig. 4 A visual representation of a cross-checking oracle [20]

Intrinsic Redundancy for Reliability and Beyond 165

same context either produce different results or reach states that are distinct from an
external observer viewpoint.

Cross-checking oracles can be generated and executed automatically given a
set of redundant code elements and provide a way of checking for faults that
depend on the semantics of the program. They are automatically deployed into
test suites through binary instrumentation and rely on a deep-clone mechanism
to ensure a reasonable level of isolation between the executions of redundant
methods, with a limited execution overhead. Cross-checking oracles implement a
finite approximation of equivalence that checks the equality of both the externally
visible results and the states reached after executing the redundantmethods, through
the concatenation of a finite sequence of method invocations.

The experimental results reported in [9] indicate that cross-checking oracles
substantially improve the effectiveness of automatically generated test suites that
rely on implicit oracles, and in some cases can also improve specific oracles written
by the developers.

6 Beyond Functional Intrinsic Redundancy

In the previous sections, we illustrated the application of intrinsic software redun-
dancy in the context of software reliability, and in particular for the design of
mechanisms for runtime failure recovery and automated oracles, focusing on
functional properties. The notion of intrinsic software redundancy can be extended
to nonfunctional properties, and find many new applications. In this section we
identify future research directions toward applications of nonfunctional software
redundancy in new contexts, namely, performance optimization and security.

6.1 Performance Optimization

Redundant code fragments execute different sequences of actions that may lead to
notable differences in runtime behavior and resource usage. Such differences can be
exploited to alleviate performance and resource consumption problems, depending
on the operative conditions. For example, mobile devices offer several connectivity
options that span frommobile protocols,WiFi connectivity, Bluetooth access points,
and so on. The optimal choice of connectivity depends on the operational conditions
and on trade-off between performance, urgency, battery consumption, privacy, and
security that cannot be predicted and efficiently wired in a design time.

166 A. Goffi et al.

Recent work has investigated the use of various forms of redundancy for improv-
ing nonfunctional properties. The GISMOE approach exploits genetic programming
to generate program variants to address different nonfunctional objectives [23].
The competitive parallel execution (CPE) approach increases the overall system
performance by executing multiple variants of the same program in parallel [46].
Self-adaptive containers minimize the runtime costs by monitoring the runtime
performance of the application and automatically selecting the best internal data
structures [27]. Misailovic et al. propose a new profiler to identify computations that
can be replaced with alternative—and potentially less accurate—computations that
provide better performance [35]. The applicability and effectiveness of the different
approaches is bounded by the techniques used to identify and exploit redundancy
and the kind of redundancy that they infer and exploit.

The redundancy intrinsically present in software systems offers new opportuni-
ties for automatically improving performance and resource consumption at runtime.
The key idea is to devise a “profile” of the redundant code that captures non-
functional differences among the alternatives, for instance, in terms of timing,
memory or battery consumption, or network utilization. This nonfunctional profile
can be updated and exploited at runtime, while efficiently monitoring the system
execution, to adapt the behavior to meet, or improve, performance and resource
utilization requirements.

For example, the nonfunctional differences of redundant video streaming algo-
rithms, such as runtime performance, battery consumption, and network utilization,
can be exploited to face performance problems due to unpredictable environment
changes.

Figure 5 illustrates the approach with a pair of redundant tokenize methods,
which explicitly offer different runtime performances. The two methods perform
differently depending on operational conditions, like the frequency of invocations
on the same or similar arrays, the dimension and the content of the arrays and so
on, and coexist in the Apache Ant library to offer different design opportunities.
They can be mutually exchanged based on the monitored operational profile and
the discrepancies between actual and expected performance. The nonfunctional
profile shall capture the various performance profiles of the two methods, identify

1 /
2 Breaks a path up into a Vector of path elements, tokenizing on File.separator.
3 @param path Path to tokenize. Must not be null.
4 @return a Vector of path elements from the tokenized path
5 /
6 public static Vector tokenizePath(String path) {...}

8 /
9 Same as tokenizePath but faster.
10 /
11 public static String[] tokenizePathAsArray(String path) {...}

Fig. 5 Documentation of the tokenizePath and tokenizePathAsArray methods in Apache Ant

Intrinsic Redundancy for Reliability and Beyond 167

the situations that may impact on performance differences, and in general the non-
functional differences that may suggest the use of one of the two methods depending
on the runtime conditions.

6.2 Security

Redundant code fragments may provide different security levels that can also be
exploited to tackle security issues and overcome runtime problems. Recent work
has investigated the possibility of exploiting some form of explicit redundancy
to mitigate security issues. N-variant systems increase application security by
executing different synthesized variants of the same program in parallel [14].
Orchestra tackles security issues by creating multiple variants of the same program
based on various compiler optimizations [40]. Replicated browsers tackles security
problems by executing different browsers in parallel [48].

Redundant code fragments offer a promising alternative to implement new
security mechanisms by defining a security profile of redundant code fragments
and by efficiently executing the various alternatives to identify divergences in their
runtime behavior, for instance, with a multi-version execution framework [25].

Figure 6 shows an example of redundant code fragments that can be exploited to
improve security. Both methods gets and scanf can be successfully exploited by
attackers through buffer overflows when invoked with not well-terminated strings.
Method fgets provides the same functionality of gets and scanf but prevents
buffer overflows. The information about the redundancy of these three methods
provides the necessary knowledge to develop mechanisms to prevent security
threats.

1 // Reads characters from the standard input (stdin) and stores them as a C string
2 // into str until a newline character or the end of file is reached.
3 char gets (char str);

5 // Reads data from stdin and stores them according to the parameter format into
6 // the locations pointed by the additional arguments.
7 int scanf (const char format, ...);

9 // Reads characters from stream and stores them as a C string into str until
10 // (num 1) characters have been read or either a newline or the end of file is
11 // reached, whichever happens first.
12 char fgets (char str, int num, FILE stream);

Fig. 6 Documentation of the gets, fgets and scanf methods of the C standard library

168 A. Goffi et al.

7 Conclusions

Redundancy is a traditional ingredient of many mechanisms for improving reliabil-
ity and fault tolerance at runtime. Classic engineering approaches rely on different
forms of redundancy explicitly added at design time, and suitably exploited at
runtime. Such form of redundancy may be expensive to produce, and may be
relegated to systems whose reliability requirements balance the extra costs of adding
redundancy explicitly, as in the case of N-version programming for safety critical
applications.

Recent studies have identified a different form of redundancy that is not explicitly
added at design time for improving reliability, but is present for independent design
and development decisions, and that we refer to as intrinsic software redundancy.

In this chapter, we summarize the recent advances in the study and exploitation
of intrinsic software redundancy, and we indicate promising research directions. We
define intrinsic software redundancy informally, discuss the source of such kind of
redundancy, and show its presence in relevant software applications. We present an
approach to automatically identify intrinsic software redundancy at the method call
sequence level, thus providing evidence of the limited costs of gathering information
about redundant code elements at a convenient abstraction level.

We report some applications of intrinsic software redundancy to improve reli-
ability at runtime, by proposing the automatic generation of runtime workarounds
and program specific oracles. We conclude by indicating new relevant domains that
can benefit from the presence of intrinsic redundancy in software systems.

Acknowledgements This work was supported in part by the Swiss National Science Foundation
with projects SHADE (grant n. 200021-138006), ReSpec (grant n. 200021-146607), WASH
(grant n. 200020-124918), and SHADE (grant n. 200021-138006), by the European Union FP7-
PEOPLE-COFUND project AMAROUT II (grant n. 291803), by the Spanish Ministry of Economy
project DEDETIS, and by the Madrid Regional Government project N-Greens Software (grant n.
S2013/ICE-2731).

References

1. Arcuri, A., Yao, X.: A novel co-evolutionary approach to automatic software bug fixing. In:
Proceedings of IEEE Congress on Evolutionary Computation, CEC’08, pp. 162–168. IEEE
Computer Society, Washington (2008)

2. Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL processes with dynamo and the JBoss
rule engine. In: International Workshop on Engineering of Software Services for Pervasive
Environments, ESSPE’07, pp. 11–20 (2007)

3. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem in software
testing: a survey. IEEE Trans. Softw. Eng. 41(5), 507–525 (2015)

4. Bauer, V., Eckhardt, J., Hauptmann, B., Klimek, M.: An exploratory study on reuse at google.
In: Proceedings of the 1st International Workshop on Software Engineering Research and
Industrial Practices, SER & IPs 2014, pp. 14–23. ACM, New York (2014)

Intrinsic Redundancy for Reliability and Beyond 169

5. Carzaniga, A., Gorla, A., Pezzè, M.: Fault handling with software redundancy. In: de Lemos,
R., Fabre, J., Gacek, C., Gadducci, F., ter Beek, M. (eds.) Architecting Dependable Systems
VI, pp. 148–171. Springer, Berlin (2009)

6. Carzaniga, A., Gorla, A., Perino, N., Pezzè, M.: Automatic workarounds for web applications.
In: Proceedings of the ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE’10, pp. 237–246. ACM, New York (2010)

7. Carzaniga, A., Gorla, A., Perino, N., Pezzè, M.: RAW: runtime automatic workarounds.
In: ICSE’10: Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering (Tool Demo), pp. 321–322. ACM, New York (2010)

8. Carzaniga, A., Gorla, A., Mattavelli, A., Pezzè, M., Perino, N.: Automatic recovery from
runtime failures. In: Proceedings of the International Conference on Software Engineering,
ICSE’13, pp. 782–791. IEEE Computer Society, Washington (2013)

9. Carzaniga, A., Goffi, A., Gorla, A., Mattavelli, A., Pezzè, M.: Cross-checking oracles from
intrinsic software redundancy. In: Proceedings of the International Conference on Software
Engineering, ICSE’14, pp. 931–942. ACM, New York (2014)

10. Carzaniga, A., Gorla, A., Perino, N., Pezzè, M.: Automatic workarounds: exploiting the
intrinsic redundancy of web applications. ACM Trans. Softw. Eng. Methodol. 24(3), 16 (2015)

11. Carzaniga, A., Mattavelli, A., Pezzè, M.: Measuring software redundancy. In: Proceedings
of the 37th International Conference on Software Engineering, ICSE’15, pp. 156–166. IEEE
Computer Society, Washington (2015)

12. Chen, L., Avizienis, A.: N-version programming: a fault-tolerance approach to reliability
of software operation. In: International Symposium on Fault-Tolerant Computing, FTCS’78,
pp. 113–119 (1978)

13. Chen, T.Y., Cheung, S.C., Yiu, S.M.: Metamorphic testing: a new approach for generating next
test cases. Tech. rep., Department of Computer Science, Hong Kong University of Science and
Technology (1998)

14. Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu, W., Davidson, J., Knight, J., Nguyen-
Tuong, A., Hiser, J.: N-variant systems: a secretless framework for security through diversity.
In: Proceedings of the Conference on USENIX Security Symposium, SEC’06. USENIX
Association, Berkeley (2006)

15. Doong, R.K., Frankl, P.G.: The ASTOOT approach to testing object-oriented programs. ACM
Trans. Softw. Eng. Methodol. 3(2), 101–130 (1994)

16. Fraser, G., Arcuri, A.: Evosuite: automatic test suite generation for object-oriented software.
In: Proceedings of the European Software Engineering Conference held jointly with the ACM
SIGSOFT International Symposium on Foundations of Software Engineering, ESEC/FSE’11,
pp. 416–419. ACM, New York (2011)

17. Gabel, M., Su, Z.: A study of the uniqueness of source code. In: Proceedings of the
ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE’10,
pp. 147–156. ACM, New York (2010)

18. Ghosn, M., Moses, F.: NCHRP report 406: redundancy in highway bridge superstructures.
Tech. rep., National Cooperative Highway Research Program (NCHRP), Transportation
Research Board (1998). http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_406.pdf

19. Ghosn, M., Yang, J.: NCHRP report 776: bridge system safety and redundancy. Tech. rep.,
National Cooperative Highway Research Program (NCHRP), Transportation Research Board
(2014). http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_776.pdf

20. Goffi, A.: Automatic generation of cost-effective test oracles. In: ICSE’14: Proceedings of the
36th International Conference on Software Engineering, pp. 678–681. ACM, New York (2014)

21. Goffi, A., Gorla, A., Mattavelli, A., Pezzè, M., Tonella, P.: Search-based synthesis of equivalent
method sequences. In: Proceedings of the ACM SIGSOFT International Symposium on the
Foundations of Software Engineering, FSE’14, pp. 366–376. ACM, New York (2014)

22. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160
(1950)

http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_406.pdf
http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_776.pdf

170 A. Goffi et al.

23. Harman, M., Langdon, W.B., Jia, Y., White, D.R., Arcuri, A., Clark, J.A.: The gismoe
challenge: constructing the pareto program surface using genetic programming to find better
programs (keynote paper). In: Proceedings of the International Conference on Automated
Software Engineering, ASE’12, pp. 1–14. ACM, New York (2012)

24. Hindle, A., Barr, E.T., Su, Z., Gabel, M., Devanbu, P.: On the naturalness of software. In:
Proceedings of the International Conference on Software Engineering, ICSE’12, pp. 837–847.
ACM, New York (2012)

25. Hosek, P., Cadar, C.: Varan the unbelievable: an efficient n-version execution framework.
In: Proceedings of the International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS’15, pp. 339–353. ACM, New York (2015)

26. Huang, Y., Kintala, C.M.R.: Software implemented fault tolerance technologies and expe-
rience. In: Proceedings of the 23rd Annual International Symposium on Fault-Tolerant
Computing, FTSC’93, pp. 2–9. IEEE Computer Society, Washington (1993)

27. Huang, W.C., Knottenbelt, W.J.: Self-adaptive containers: building resource-efficient appli-
cations with low programmer overhead. In: Proceedings of the International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS’13, pp. 123–132.
IEEE Computer Society, Washington (2013)

28. IEEE Recommended Practice on Software Reliability (2008)
29. Jiang, L., Su, Z.: Automatic mining of functionally equivalent code fragments via random

testing. In: Proceedings of the International Symposium on Software Testing and Analysis,
ISSTA’09, pp. 81–92. ACM, New York (2009)

30. Kawrykow, D., Robillard, M.P.: Improving API usage through automatic detection of
redundant code. In: Proceedings of the International Conference on Automated Software
Engineering, ASE’09, pp. 111–122. IEEE Computer Society, Washington (2009)

31. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: Genprog: a generic method for automatic
software repair. IEEE Trans. Softw. Eng. 38, 54–72 (2012)

32. Liu, W.D., Ghosn, M., Moses, F.: NCHRP report 458: redundancy in highway bridge substruc-
tures. Tech. rep., National Cooperative Highway Research Program (NCHRP), Transportation
Research Board (2001). http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_458-a.pdf

33. Mattavelli, A.: Software redundancy: what, where, how. Ph.D. thesis, Università della Svizzera
italiana (USI) (2016)

34. Mattavelli, A., Goffi, A., Gorla, A.: Synthesis of equivalent method calls in Guava. In:
Proceedings of the 7th International Symposium on Search-Based Software Engineering,
SSBSE’15, pp. 248–254. Springer, Berlin (2015)

35. Misailovic, S., Sidiroglou, S., Hoffmann, H., Rinard, M.: Quality of service profiling. In:
Proceedings of the International Conference on Software Engineering, ICSE’10, pp. 25–34.
ACM, New York (2010)

36. Patterson, D.A., Gibson, G., Katz, R.H.: A case for redundant arrays of inexpensive disks
(RAID). SIGMOD Record 17(3), 109–116 (1988)

37. Randell, B.: System structure for software fault tolerance. SIGPLAN Notes 10(6), 437–449
(1975)

38. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math.
8(2), 300–304 (1960)

39. Sadjadi, S.M., McKinley, P.K.: Using transparent shaping and Web services to support
self-management of composite systems. In: Proceedings of the International Conference on
Autonomic Computing, ICAC’05, pp. 76–87. IEEE Computer Society, Washington (2005)

40. Salamat, B., Jackson, T., Gal, A., Franz, M.: Orchestra: intrusion detection using parallel
execution and monitoring of program variants in user-space. In: Proceedings of the ACM
SIGOPS EuroSys European Conference on Computer Systems, EuroSys’09, pp. 33–46. ACM,
New York (2009)

41. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In:
Proceedings of the 2010 IEEE Symposium on Mass Storage Systems and Technologies,
MSST’10, pp. 1–10. IEEE Computer Society, Washington (2010)

http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_458-a.pdf

Intrinsic Redundancy for Reliability and Beyond 171

42. Sidiroglou-Douskos, S., Lahtinen, E., Long, F., Rinard, M.: Automatic error elimination by
horizontal code transfer across multiple applications. In: Proceedings of the Conference on
Programming Language Design and Implementation, PLDI’15, pp. 43–54. ACM, New York
(2015)

43. Somani, A.K., Vaidya, N.H.: Understanding fault tolerance and reliability. IEEE Comput.
30(4), 45–50 (1997)

44. Subramanian, S., Thiran, P., Narendra, N.C., Mostefaoui, G.K., Maamar, Z.: On the enhance-
ment of BPEL engines for self-healing composite web services. In: Proceedings of the
International Symposium on Applications and the Internet, SAINT’08, pp. 33–39. IEEE
Computer Society, Washington (2008)

45. Taher, Y., Benslimane, D., Fauvet, M.C., Maamar, Z.: Towards an approach for Web services
substitution. In: Proceedings of the International Database Engineering and Applications
Symposium, IDEAS’06, pp. 166–173. IEEE Computer Society, Washington (2006)

46. Trachsel, O., Gross, T.R.: Variant-based competitive parallel execution of sequential programs.
In: Proceedings of the ACM International Conference on Computing Frontiers, CF’10,
pp. 197–206. ACM, New York (2010)

47. Weyuker, E.J.: On testing non-testable programs. Comput. J. 25(4), 465–470 (1982)
48. Xue, H., Dautenhahn, N., King, S.T.: Using replicated execution for a more secure and

reliable web browser. In: Proceedings of the Annual Network and Distributed System Security
Symposium, NDSS’12. The Internet Society, Reston (2012)

49. Yeh, Y.C.: Triple-triple redundant 777 primary flight computer. In: Proceedings of the IEEE
Aerospace Applications Conference, vol. 1, pp. 293–307 (1996)

	Intrinsic Redundancy for Reliability and Beyond
	1 Introduction
	2 Intrinsic Software Redundancy
	3 Mining Software Redundancy
	4 Runtime Failure Recovery
	4.1 Failure Detection
	4.2 Save and Restore
	4.3 Healing Engine

	5 Automated Oracles
	6 Beyond Functional Intrinsic Redundancy
	6.1 Performance Optimization
	6.2 Security

	7 Conclusions
	References

