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Abstract. We introduce and discuss the concept of symmetrization
methods for aggregation functions. Several symmetrization methods
are exemplified. A particular stress is put on extremal symmetrization
methods.
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1 Introduction

Symmetry of aggregation functions can be seen as a generalization of the com-
mutativity of binary operations x ∗ y = y ∗ x, and it is known also as neutrality
or anonymity. This important property indicates the equal treating of any con-
sidered input to be aggregated. It is crucial in any situation when the order of
considered inputs is not known, for example when the inputs to be aggregated
are evaluations of jury members stored after an anonymous procedure in a vot-
ing box (this example was motivating to call this property as anonymity in the
field of multicriteria decision support). Two distinguished symmetrization meth-
ods, i.e., methods relating to a considered aggregation function some symmetric
aggregation functions, can be found in [4], see also [5]. Namely, considering an
n-ary real function F and an n-ary input vector x = (x1, . . . xn), the function
F+ and F− given by

F+(x) = F (x(1), . . . , x(n)) and F−(x) = F (x(n), . . . , x(1)),

where (.) is a permutation such that x(1) ≤ · · · ≤ x(n), are symmetric. A gener-
alization of these symmetrization methods based on a fixed permutation σ ∈ Pn

(the set of all permutations on {1, . . . , n}) was introduced in [5], proposing a
function F(σ) given by

F(σ) = F (x(σ(1)), . . . , x(σ(n))).

Obviously F(id) = F+ and F(rev) = F−, where id, rev ∈ Pn are the identity
permutation (1, . . . , n) and the reversed permutation (n, . . . , 1), respectively.
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Observe that the permutation (.) depends on the input vector x and it need not
be unique (this happens if there are some ties between the arguments x1, . . . , xn).
However, this possible non-uniqueness does not influence the fact that Fσ is well
defined and symmetric for any permutation σ ∈ Pn (σ is independent of any
considered input vector x).

The aim of this contribution is to introduce and discuss an axiomatic app-
roach to symmetrization of aggregation functions. The paper is organized as fol-
lows. In the next section, the necessary preliminaries are given. Section 3 brings
our axiomatic characterization of symmetrization methods and offers several
examples of symmetrization methods. In particular, two extremal symmetriza-
tion methods are described. In Sect. 4 we apply some of the introduced sym-
metrization methods to some non-symmetric aggregation functions, and espe-
cially to weighted arithmetic means. Some interesting observations are added in
the concluding remarks.

2 Preliminaries

For a fixed n ≥ 1, a mapping A : [0, 1]n → [0, 1] is called an aggregation func-
tion whenever it is increasing in each coordinate and it satisfies the boundary
conditions A(0) = A(0, . . . , 0) = 0 and A(1) = A(1, . . . , 1) = 1. Note that
viewing [0, 1]n and [0, 1] as bounded lattices, aggregation functions are just the
order-homomorphisms.

The class of all n-ary aggregation functions is denoted as An. Equipped with
the partial order of n-ary real functions, An is a bounded lattice with the top
element A� and the bottom element A⊥, given respectively by

A�(x) =

{
0 if x = 0
1 otherwise

and A⊥(x) =

{
1 if x = 1
0 otherwise

.

For more details concerning aggregation functions we recommend monographs
[1,2,5].

An aggregation function A ∈ An is called symmetric whenever

A(x) = A(xσ) for any x ∈ [0, 1]n

and any permutation σ ∈ Pn, where xσ = (xσ(1), . . . , xσ(n)).
Observe that the class Pn can be generated by two permutations, say σ1 and
σ2 (i.e., any σ ∈ Pn can be obtained from σ1 and σ2, applying the composition
operator consecutively), and then the symmetry of an aggregation function A is
characterized by the equality

A(x) = A(xσ1) = A(xσ2) valid for each x ∈ [0, 1]n.

As one example recall σ1 = (2, 1, 3, . . . , n) and σ2 = (2, 3, . . . , n, 1).
The class of all n-ary symmetric aggregation functions is denoted as Ans.

It is evident that Ans is a sublattice of An with the top element A� and the
bottom element A⊥. Both classes An and Ans are closed under composition by
means of B ∈ Ak, i.e.,
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◦ for any k ≥ 2, B ∈ Ak and A1, . . . , Ak ∈ An (A1, . . . , Ak ∈ Ans) also the
composite B(A1, . . . , Ak) ∈ An (B(A1, . . . , Ak) ∈ Ans).

Among several other properties of aggregation functions discussed in [1,2,5],
we recall the idempotency. An aggregation function A ∈ An is called idempotent
(averaging, compensative) whenever

A(c) = A(c, . . . , c) for any constant c ∈ [0, 1].

Equivalently, the idempotency of aggregation functions can be characterized by
the averaging property

min(x1, . . . , xn) ≤ A(x) ≤ max(x1, . . . , xn).

3 Symmetrization Methods for Aggregation Functions

Any symmetrization method for (n-ary) aggregation functions should assign to
an aggregation function A ∈ An some idempotent aggregation function As ∈
Ans. We expect that any such reasonable symmetrization method

• does not change the symmetric aggregation functions, i.e.,

A = As whenever A ∈ Ans, and

• preserves the ordering of aggregation functions, i.e.,

if A,B ∈ An, A ≤ B, then As ≤ Bs.

Formally, we propose the next axiomatic approach to symmetrization of aggre-
gation functions.

Definition 1. A mapping ϕ : An → Ans is called a symmetrization method (for
n-ary aggregation functions) whenever it is simultaneously

(i) an order homomorphism;
(ii) a projection.

Hence, ϕ : An → Ans is a symmetrization method whenever

A,B ∈ An, A ≤ B, implies ϕ(A) ≤ ϕ(B), and ϕ(A) = A for any A ∈ Ans.

Clearly, then ϕ(ϕ(A)) = ϕ(A). All till now mentioned symmetrization methods
(recall F+, F− and F(σ)) satisfy Definition 1. They are based on the permutation
(.) ∈ Pn which depends on x. This observation allows to split the class of all
symmetrization methods into two subclasses:

• input dependent symmetrization methods;
• input independent symmetrization methods.
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Note that though the input vector x is necessarily considered when processing
ϕ(A)(x) for any symmetrization method ϕ, the above partition indicates whether
the introduction of ϕ requires the determination of x-dependent permutation (.)
or not. The next results allow to introduce a rich variety of symmetrization
methods of both kinds.

Theorem 1. For a fixed k ≥ 1, for any idempotent aggregation function B ∈ Ak

and k-tuple K = (σ1, . . . , σk) ∈ (Pn)k of permutations, the mapping ϕ : An →
Ans given by

ϕ(A) = AB,K = B(A(σ1), . . . , A(σk)), i.e.,
AB,K(x) = B(A(x(σ1)), . . . , A(x(σk)))

is an input dependent symmetrization method.

Proof.

(i) Note that if k = 1 then B(x) = x, x ∈ [0, 1], and K = (σ) ∈ Pn, and thus
AB,K = A(σ).

(ii) For k ≥ 2, the symmetry of ϕ(A) was discussed in Sect. 2. Moreover, if
A ∈ Ans then A(σ) = A for any σ ∈ Pn. Then the idempotency of B ensures
ϕ(A) = B(A(σ1), . . . , A(σk)) = B(A, . . . , A) = A, thus proving that ϕ is a
symmetrization method. Clearly, it is input dependent. �

To illustrate Theorem 1, consider n = 3, k = 2,K = (id, rev) and B ∈ A2 given
by B(x1, x2) = x1+2x2

3 . Then, for any A ∈ A3,

AB,K(x1, x2, x3) =
A(x(1), x(2), x(3)) + 2A(x(3), x(2), x(1))

3
.

Suppose A(x1, x2, x3) = 6
√

x1x2
2x3

3 (i.e., A is a weighted geometric mean). Then

AB,K(x1, x2, x3) = 6
√

x1x2x3

2 6
√

x(1) + 3
√

x(3)

3
6
√

x(2)

= 6
√

x1x2x3
2 3

√
min(x1, x2, x3) + 3

√
max(x1, x2, x3)

3
6
√

med(x1, x2, x3).

The symmetry of AB,K is obvious.

Theorem 2. Let B ∈ An! be an idempotent symmetric aggregation function of
dimension n!. Then the mapping ϕ : An → Ans given by ϕ(A) = AB,

AB(x) = B(A(xσ)|σ ∈ Pn),

where xσ = (xσ(1), . . . , xσ(n)), and AB is the B-aggregation of all n! values
A(xσ), σ ∈ Pn, is an input independent symmetrization method.
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Proof. Evidently, AB is an n-ary aggregation function not dependent on
x-dependent permutation (.). Moreover, due to the facts that for any permu-
tation τ ∈ Pn, it holds

{σ ◦ τ |σ ∈ Pn} = Pn, and (xτ )σ = xσ◦τ ,

we have

AB(xτ ) = B(A(xσ◦τ )|σ ∈ Pn) = B(A(xσ)|σ ∈ Pn) = AB(x).

Hence AB is symmetric. Finally, if A ∈ Ans, the idempotency of B ensures AB =
A. Summarizing, we have shown that ϕ is an input independent symmetrization
method. �

It is evident that that if B1, B2 ∈ An!, B1 ≤ B2, then also AB1 ≤ AB2 for any
A ∈ An.

Recall that the greatest idempotent aggregation function is the max operator,
while the smallest one is the min operator. Moreover, both these functions are
symmetric. These facts indicate the next interesting result.

Theorem 3. Denote ϕ∗(A) = A∗ = Amax and ϕ∗(A) = A∗ = Amin. Then for
any symmetrization method ϕ and any A ∈ An it holds

ϕ∗(A) ≤ ϕ(A) ≤ ϕ∗(A),

i.e., ϕ∗ is the greatest symmetrization method and ϕ∗ is the smallest symmetriza-
tion method.

Proof. Recall that A(xid) = A(x) and thus A∗ ≤ A ≤ A∗. Due to the preserva-
tion of order of any symmetrization method ϕ it holds

ϕ∗(A) = A∗ = ϕ(A∗) ≤ ϕ(A) ≤ ϕ(A∗) = A∗ = ϕ∗(A). �

Note that extremal symmetrizations A∗ and A∗ were introduced and discussed
in our recent paper [6].

As an interesting input independent symmetrization method we recall that
the arithmetic mean AM satisfies all constraints of Theorem 3, and then

AAM(x) =
1
n!

∑
σ∈Pn

A(xσ).

4 Examples

As a prototypical aggregation function which is not symmetric we recall the
weighted arithmetic mean Ww : [0, 1]n → [0, 1] given by

Ww(x) =
n∑

i=1

wixi,
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where the weighting vector w ∈ [0, 1]n satisfies
n∑

i=1

wi = 1 and w 	= (
1
n , . . . , 1

n

)
(obviously, if w =

(
1
n , . . . , 1

n

)
then Ww = AM is the arithmetic mean which

is a symmetric aggregation function). Then, applying different symmetrization
methods, it holds:

• (Ww)AM = AM;
• (Ww)∗ = OWAw∗ is the OWA operator [7], where w∗ = (w[1], . . . , w[n]),

[.] ∈ Pn being a permutation such that w[1] ≤ w[2] ≤ · · · ≤ w[n], and then

(Ww)∗ (x) =
n∑

i=1

w[i]x(i);

note that vectors w∗ and (x(1), . . . , x(n)) are increasing, i.e., we multiply the
smallest weight w[1] and the smallest input x(1), and so one, till the product
of the greatest weight w[n] and the greatest input x(n);

• (Ww)∗ = OWAw∗ , where w∗ = (w[n], . . . , w[1]), and hence

(Ww)∗ (x) =
n∑

i=1

w[n−i+1]x(i);

here the greatest weight w[n] multiplies the smallest input x(1), etc.
• considering the input dependent symmetrization method AB,K introduced in

the previous section for B(x1, x2) = x1+2x2
3 and K = (id, rev), we have

(Ww)B,K (x) =
1
3

(
n∑

i=1

wix(i) + 2
n∑

i=1

wix(n−i+1)

)
=

n∑
i=1

vix(i) = OWAv,

where, for i = 1, . . . , n, the weight vi is given by vi = 1
3 (wi + 2wn−i+1).

For n = 3, let w = (0.5, 0.3, 0.2) and x = (0.4, 0.8, 0.6). Then

Ww(x) = 0.56,

(Ww)AM(x) = 0.6,

(Ww)∗ (x) = OWA(0.2,0.3,0.5)(0.4, 0.8, 0.6) = 0.66,

(Ww)∗ (x) = OWA(0.5,0.3,0.2)(0.4, 0.8, 0.6) = 0.54,

(Ww)B,K (x) =
1
3

(Ww(0.4, 0.6, 0.8) + 2Ww(0.8, 0.6, 0.4))

= OWA(0.3,0.3,0.4)(0.4, 0.8, 0.6) = 0.62.

As another example, consider the weighted geometric mean

G(w1,1−w1)(x1, x2) = x1
w1x2

1−w1 ,

which is not symmetric whenever w1 	= 1
2 . Note that now n = n! = 2. Let

Bp ∈ A2 be a power-root operator given by

Bp(x1, x2) =
(

x1
p + x2

p

2

) 1
p

,
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where p ∈ R\{0}, and B0 = G is the geometric mean. Then, following Theorem 3,
we have

(
G(w1,1−w1)

)
Bp

(x1, x2) =
(

(x1
w1x2

1−w1)p + (x1
1−w1x2

w1)p

2

) 1
p

= (x1x2)αBp(x1
1−2α, x2

1−2α),

where α = min(w1, 1 − w1).

5 Concluding Remarks

We have introduced an axiomatic approach to symmetrization methods for
aggregation functions. These methods belong either to input dependent methods
(where the x-dependent permutation (.) ∈ Pn is considered) or to input inde-
pendent methods. We have also shown two extremal symmetrization methods.
Proposed approaches were illustrated by some examples, with a particular stress
on the symmetrization of the weighted arithmetic means. Note that the extremal
symmetrized weighted arithmetic means W ∗ and W∗ can be seen as solutions
of optimization methods and they can be related to the Hungarian algorithm
[3] known from the area of linear optimization. For more details see [6]. Note
also that one can further extend the problem of symmetrization of aggregation
functions related to weighting vectors, where the symmetrization is related to
both input vector x and the weighting vector w. This approach was initiated in
[6] and we expect its deeper study in the near future.
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