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Abstract. Weighted quasi-arithmetic means on two-dimensional
regions are demonstrated, and risk averse conditions are discussed by
the corresponding utility functions. For two utility functions on two-
dimensional regions, we introduce a concept that decision making with
one utility is more risk averse than decision making with the other util-
ity. A necessary condition and a sufficient condition for the concept are
demonstrated by their utility functions. Several examples are given to
explain them.

1 Introduction

Weighted quasi-arithmetic means are important concept for mathematical the-
ory such as the mean value theorems, and it is a fundamental tool for subjective
estimation regarding information in management science, artificial intelligence
and so on. Weighted quasi-arithmetic means of an interval are given mathemat-
ically by aggregation operations (Kolmogorov [4], Nagumo [6] and Aczél [1]).
Bustince et al. [2] discussed aggregation operations on two-dimensional OWA
operators, and Labreuche and Grabisch [5] demonstrated Choquet integral for
aggregation in multicriteria decision making, and Torra and Godo [7] studied
continuous WOWA operators for defuzzification. In micro-economics, subjec-
tive estimations with preference relations are formulated as utility functions
(Fishburn [3]). From the view point of utility functions, Yoshida [8,9] have stud-
ied the relations between weighted quasi-arithmetic means on an interval and
decision maker’s behavior regarding risks. In one-dimensional cases, for twice
continuously differentiable strictly increasing functions ϕ,ψ : [a, b] �→ R as deci-
sion makers’ utility functions and a continuous function ω : [a, b] �→ (0,∞) as a
weighting function, weighted quasi-arithmetic means μ and ν on a closed interval
[a, b] are real numbers satisfying

ϕ(μ)
∫ b

a

ω(x) dx =
∫ b

a

ϕ(x)ω(x) dx, (1.1)

ψ(ν)
∫ b

a

ω(x) dx =
∫ b

a

ψ(x)ω(x) dx (1.2)
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in the mean value theorem for integration. Then it is said that decision making
with utility function ϕ is more risk averse than decision making with utility
function ψ if μ ≤ ν for all closed intervals [a, b]. Its equivalent condition is

ϕ′′

ϕ′ ≤ ψ′′

ψ′ (1.3)

on R (Yoshida [10,11]).
Yoshida [12] introduced weighted quasi-arithmetic means on two-dimensional

regions, which are related to multi-object decision making. In this paper, using
decision makers’ utility functions we discuss relations between risk averse/risk
neutral/risk loving conditions and the corresponding weighted quasi-arithmetic
means on two-dimensional regions. In this paper we compare two decision mak-
ers’ behaviors regarding risks by the weighted quasi-arithmetic means on two-
dimensional regions and we give a characterization by their utility functions.

In Sect. 2 we introduce weighted quasi-arithmetic means on two-dimensional
regions and we discuss their risk averse conditions. For two utility functions f
and g on two-dimensional regions, we introduce a concept that decision making
with utility f is more risk averse than decision making with utility g. Further
we derive a necessary condition where decision making with utility f is more
risk averse than decision making with utility g on two-dimensional regions, and
we investigate the condition by several examples. In Sect. 3 we give sufficient
conditions for the results in Sect. 2 when utility functions are quadratic.

2 Weighted Quasi-arithmetic Means on Two-Dimensional
Regions

Let R = (−∞,∞) and let a domain D be a non-empty open convex subset of
R

2, and let R(D) be a family of closed convex subsets of D. Denote by L a
family of twice continuously differentiable functions f : D �→ R which is strictly
increasing, i.e. fx > 0 and fy > 0 on D, and denote by W a family of continuous
functions w : D �→ (0,∞). For a closed convex set R ∈ R(D), weighted quasi-
arithmetic means on region R with utility f ∈ L and weighting w ∈ W are given
by a subset Mf

w(R) of region R as follows.

Mf
w(R) =

{
(x̃, ỹ) ∈ R | f(x̃, ỹ)

∫∫
R

w(x, y) dx dy =
∫∫

R

f(x, y)w(x, y) dx dy

}
.

(2.1)

Then we have Mf
w(R) �= ∅ since f is continuous on R and

min
(x̃,ỹ)∈R

f(x̃, ỹ) ≤
∫∫

R

f(x, y)w(x, y) dx dy

/ ∫∫
R

w(x, y) dx dy ≤ max
(x̃,ỹ)∈R

f(x̃, ỹ).

We introduce the following natural ordering on R
2.
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Definition 2.1 (A partial order 	 on R
2).

(i) For two points (x, y), (x, y)(∈ R
2), an order (x, y) 	 (x, y) implies x ≤

x and y ≤ y.
(ii) For two points (x, y), (x, y)(∈ R

2), an order (x, y) ≺ (x, y) implies (x, y) 	
(x, y) and (x, y) �= (x, y).

(iii) For two sets A,B(⊂ R
2), an order A 	 B implies the following (a) and (b):

(a) For any (x, y) ∈ A there exists (x, y) ∈ B satisfying (x, y) 	 (x, y).
(b) For any (x, y) ∈ B there exists (x, y) ∈ A satisfying (x, y) 	 (x, y).

Let a closed convex region R ∈ R(D) and let a weighting function w ∈ W. We
define a point (xR, yR) on region R by the following weighted quasi-arithmetic
means:

xR =
∫∫

R

x w(x, y) dx dy

/ ∫∫
R

w(x, y) dx dy, (2.2)

yR =
∫∫

R

y w(x, y) dx dy

/ ∫∫
R

w(x, y) dx dy. (2.3)

Hence, (xR, yR) is called an invariant risk neutral point on R with weighting w

(Yoshida [12]). We separate the space R
2 as follows. Let R

(xR,yR)
w,− = {(x, y) ∈

R
2 | (x, y) ≺ (xR, yR)} = {(x, y) ∈ R

2 | x ≤ xR, y ≤ yR, (x, y) �= (xR, yR)}
and R

(xR,yR)
w,+ = {(x, y) ∈ R

2 | (xR, yR) ≺ (x, y)} = {(x, y) ∈ R
2 | x ≥ xR, y ≥

yR, (x, y) �= (xR, yR)}. Then R
(xR,yR)
w,− denotes a subregion of risk averse points

and R
(xR,yR)
w,+ denotes a subregion of risk loving points. Let R

(xR,yR)
w = R

(xR,yR)
w,− ∪

R
(xR,yR)
w,+ ∪{(xR, yR)}. Now we introduce the following relations between decision

maker’s behavior and his utility.

Definition 2.2. Let a utility function f ∈ L and let a rectangle region R ∈ R(D).

(i) Decision making with utility f is called risk neutral on R if

f(xR, yR)
∫∫

R

w(x, y) dx dy =
∫∫

R

f(x, y)w(x, y) dx dy (2.4)

for all density functions w.
(ii) Decision making with utility f is called risk averse on R if

f(xR, yR)
∫∫

R

w(x, y) dx dy ≥
∫∫

R

f(x, y)w(x, y) dx dy (2.5)

for all density functions w.
(iii) Decision making with utility f is called risk loving on R if

f(xR, yR)
∫∫

R

w(x, y) dx dy ≤
∫∫

R

f(x, y)w(x, y) dx dy (2.6)

for all density functions w.
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Example 2.1. Let a domain D = (−0.5, 1.25)2 and a region R = [0, 1]2, and let
a weighting function w(x, y) = 1 for (x, y) ∈ D. Then an invariant neutral point
is (xR, yR) = (0.5, 0.5) and R

(xR,yR)
w,− = [0, 0.5]2 \ {(0.5, 0.5)} and R

(xR,yR)
w,+ =

[0.5, 1]2 \ {(0.5, 0.5)}. Let us consider two utility functions f(x, y) = −x2 − y2 +
3x + 3y and g(x, y) = 2x2 + 2y2 − 5x − 5y for (x, y) ∈ D. Then by Yoshida [12,
Example 3.1(i), Lemma 2.2] decision making with utility function f is called
risk averse on R with weighting w, and decision making with utility function
g is also called risk loving on R with weighting w. Hence the corresponding
weighted quasi-arithmetic means Mf

w(R) and Mg
w(R) are ordered by the order

	 in a restricted subregion R
(xR,yR)
w = R

(xR,yR)
w,− ∪R

(xR,yR)
w,+ ∪{(xR, yR)}. However

they can not be ordered on a subregion R \ R
(xR,yR)
w (Fig. 1).

Fig. 1. Mf
w(R)∩R

(xR,yR)
w � Mg

v (R)∩R
(xR,yR)
w (f(x, y) = −x2 −y2 +3x+3y, g(x, y) =

2x2 + 2y2 − 5x − 5y, R = [0, 1]2)

It is natural that the order 	 should be given between weighted quasi-
arithmetic means Mf

w(R) of risk averse utility f and weighted quasi-arithmetic
means Mg

w(R) of risk loving utility g in Example 3.1. Therefore when we compare
weighted quasi-arithmetic means Mf

w(R) and Mg
v (R), we discuss it on the mean-

ingful restricted subregion R
(xR,yR)
w . Hence we introduce the following definition

regarding the comparison of utility functions.

Definition 2.3. Let f, g ∈ L be utility functions on D. Decision making with
utility f is more risk averse than decision making with utility g if it holds that

Mf
w(R) ∩ R(xR,yR)

w 	 Mg
v (R) ∩ R(xR,yR)

w (2.7)

for all weighting functions w ∈ W on D and all closed convex regions R ∈ R(D).
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Example 2.2. Let a domain D = (−0.5, 1.25)2 and a region R = [0, 1]2, and let
a weighting function w(x, y) = 1 for (x, y) ∈ D. Then an invariant neutral point
is (xR, yR) = (0.5, 0.5) and R

(xR,yR)
w,− = [0, 0.5]2 \ {(0.5, 0.5)} and R

(xR,yR)
w,+ =

[0.5, 1]2 \ {(0.5, 0.5)}. Let us consider two utility functions f(x, y) = −x2 − y2 +
3x+3y and g(x, y) = −2x2 −2y2 +5x+5y for (x, y) ∈ D. Then decision making
with utility f is more risk averse than decision making with utility g as we see
the relation (2.7) in Fig. 2.

Fig. 2. Mf
w(R)∩R

(xR,yR)
w � Mg

v (R)∩R
(xR,yR)
w (f(x, y) = −x2 −y2 +3x+3y, g(x, y) =

−2x2 − 2y2 + 5x + 5y, R = [0, 1]2)

Now we give a necessary condition for (2.7), i.e. decision making with utility
f is more risk averse than decision making with utility g.

Theorem 2.1. Let f, g ∈ L be utility functions on D. If decision making with
utility f is more risk averse than decision making with utility g, then it holds
that

h2fxx + 2rhkfxy + k2fyy
hfx + kfy

≤ h2gxx + 2rhkgxy + k2gyy
hgx + kgy

(2.8)

on D for all positive numbers h and k and all real numbers r satisfying −1 ≤
r ≤ 1.

From Theorem 2.1 we can easily obtain the following result, which is correspond-
ing to [12, Theorem 3.1(i)].

Corollary 2.1. Let f, g ∈ L be utility functions on D. If decision making with
utility f is more risk averse than decision making with utility g, then it holds that

fxx
fx

≤ gxx
gx

and
fyy
fy

≤ gyy
gy

on D. (2.9)
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Equation (2.8) in Theorem 2.1 gives a detailed relation between f and g
rather than (2.9). A parameter r in necessary condition (2.8) depends on the
shapes of closed convex regions R ∈ R(D). Now we investigate several examples
with different shapes of regions R.

Example 2.3 (Rectangle regions). Let h and k be positive numbers.Let rectan-
gle regions

RRect
h,k (a, b, t) = [a, a + ht] × [b, b + kt] (2.10)

for (a, b) ∈ D and t > 0. Denote a family of rectangle regions by RRect
h,k (D) =

{RRect
h,k (a, b, t) | RRect

h,k (a, b, t) ⊂ D, (a, b) ∈ D, t > 0}(⊂ R(D)), (Fig. 3).

Corollary 2.2. If utility functions f, g ∈ L satisfy Mf
w(R)∩R

(xR,yR)
w 	 Mg

v (R)∩
R

(xR,yR)
w for all weighting functions w ∈ W on D and all rectangle regions

R ∈ RRect
h,k (D), then it holds that

h2fxx + k2fyy
hfx + kfy

≤ h2gxx + k2gyy
hgx + kgy

(2.11)

on D.

Example 2.4 (Oval regions). Let h and k be positive numbers. Let oval regions

ROval
h,k (a, b, t) =

{
(x, y) ∈ R

2

∣∣∣∣ (x − a)2

h2
+

(y − b)2

k2
≤ t2

}
(2.12)

for (a, b) ∈ D and t > 0. Denote a family of oval regions by ROval
h,k (D) =

{ROval
h,k (a, b, t) | ROval

h,k (a, b, t) ⊂ D, (a, b) ∈ D, t > 0}(⊂ R(D)), (Fig. 3).

Corollary 2.3. If utility functions f, g ∈ L satisfy Mf
w(R)∩R

(xR,yR)
w 	 Mg

v (R)∩
R

(xR,yR)
w for all weighting functions w ∈ W on D and all oval regions R ∈

ROval
h,k (D), then it holds that

h2fxx + k2fyy
hfx + kfy

≤ h2gxx + k2gyy
hgx + kgy

(2.13)

on D.

Example 2.5 (Triangle regions). Let h and k be positive numbers. Let triangle
regions

RTri
h,k(a, b, t) =

{
(x, y) ∈ R

2

∣∣∣∣x ≥ a, y ≥ b,
x − a

h
+

y − b

k
≤ t

}
(2.14)

for (a, b) ∈ D and t > 0. Denote a family of triangle regions by RTri
h,k(D) =

{RTri
h,k(a, b, t) | RTri

h,k(a, b, t) ⊂ D, (a, b) ∈ D, t > 0}(⊂ R(D)), (Fig. 4).
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Fig. 3. Rectangle region RRect
h,k (a, b, t) and oval region ROval

h,k (a, b, t)

Corollary 2.4. If utility functions f, g ∈ L satisfy Mf
w(R)∩R

(xR,yR)
w 	 Mg

v (R)∩
R

(xR,yR)
w for all weighting functions w ∈ W on D and all triangle regions R ∈

RTri
h,k(D), then it holds that

h2fxx − hkfxy + k2fyy
hfx + kfy

≤ h2gxx − hkgxy + k2gyy
hgx + kgy

(2.15)

on D.

Example 2.6 (Parallelogram regions). Let h and k be positive numbers. Let
parallelogram regions

RPara
h,k (a, b, t) = {(x, y) | |k(x − a) − 3h(y − b)| ≤ 4hkt, |3k(x − a) − h(y − b)| ≤ 4hkt}

(2.16)

for (a, b) ∈ D and t > 0. Denote a family of parallelogram regions by RPara
h,k (D) =

{RPara
h,k (a, b, t) | RPara

h,k (a, b, t) ⊂ D, (a, b) ∈ D, t > 0}(⊂ R(D)), (Fig. 4).

Corollary 2.5. If utility functions f, g ∈ L satisfy Mf
w(R)∩R

(xR,yR)
w 	 Mg

v (R)∩
R

(xR,yR)
w for all weighting functions w ∈ W on D and all parallelogram regions

R ∈ RPara
h,k (D), then it holds that

h2fxx + 3
5hkfxy + k2fyy

hfx + kfy
≤ h2gxx + 3

5hkgxy + k2gyy

hgx + kgy
(2.17)

on D.

Example 2.3 (Rectangle regions) and Example 2.4 (Oval regions) are cases
where r = 0 in (2.8), and Example 2.5 (Triangle regions) and Example
2.6 (Parallelogram regions) are cases where r = − 1

2 and r = 3
10 respectively

in (2.8).
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Fig. 4. Triangle region RTri
h,k(a, b, t) and parallelogram region RPara

h,k (a, b, t)

3 A Sufficient Condition

Let f, g ∈ L be utility functions on an open convex domain D. Theorem 2.1 gives
a necessary condition that decision making with utility f is more risk averse than
decision making with utility g. In this section, we discuss its sufficient condition.
For a utility function f ∈ L, its Hessian matrix is written by

Hf (x, y) =
(

fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

)
(3.1)

for (x, y) ∈ D. The the following proposition gives a sufficient condition for (2.8)
in Theorem 2.1.

Proposition 3.1. Let f, g ∈ L be utility functions on D. Then the following
(i) and (ii) hold.

(i) Matrices

1
fx(x, y)

Hf (x, y)− 1
gx(x, y)

Hg(x, y) and
1

fy(x, y)
Hf (x, y) − 1

gy(x, y)
Hg(x, y)

(3.2)

are negative semi-definite for all (x, y) ∈ D if and only if a matrix

1
hfx(x, y) + kfy(x, y)

Hf (x, y) − 1
hgx(x, y) + kgy(x, y)

Hg(x, y) (3.3)

is negative semi-definite for all (x, y) ∈ D and all positive numbers h and k.
(ii) If (3.2) are negative semi-definite at all (x, y) ∈ D, then (2.8) holds on D for

all positive numbers h and k and all real numbers r satisfying −1 ≤ r ≤ 1.

From Proposition 3.1 implies that the condition (3.2) is stronger than the
condition (2.8), however (3.2) is easier than (2.8) to check in actual cases. In
this paper, utility functions f(∈ L) are called quadratic if the second derivatives
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fxx, fxy and fyy are constant functions. When utility functions are quadratic,
the following theorem gives a sufficient condition for what decision making with
utility f is more risk averse than decision making with utility g.

Theorem 3.1. Let utility functions f, g ∈ L be quadratic on D. If

1

fx(x, y)
Hf (x, y)− 1

gx(x, y)
Hg(x, y) and

1

fy(x, y)
Hf (x, y)− 1

gy(x, y)
Hg(x, y) (3.4)

are negative semi-definite at all (x, y) ∈ D, then decision making with utility f
is more risk averse than decision making with utility g, i.e.

Mf
w(R) ∩ R(xR,yR)

w 	 Mg
v (R) ∩ R(xR,yR)

w

for all weighting functions w ∈ W and all closed convex regions R ∈ R(D).

Now we give an example for Theorem 3.1.

Example 3.1 (Quadratic utility functions). Let a domain D = (−0.5, 1.5)2

and a region R = [0, 1]2, and let a weighting function w(x, y) = 1 for (x, y) ∈
D. Then an invariant neutral point is (xR, yR) = (0.5, 0.5) and R

(xR,yR)
w,− =

[0, 0.5]2 \ {(0.5, 0.5)} and R
(xR,yR)
w,+ = [0.5, 1]2 \ {(0.5, 0.5)}. Let us consider two

quadratic utility functions f(x, y) = −2x2 − 2y2 + 2xy + 8x + 8y and g(x, y) =
−x2 − y2 + xy + 5x + 5y for (x, y) ∈ D. Then f and g are increasing on D, i.e.
fx(x, y) = −4x+2y+8 > 0, fy(x, y) = 2x−4y+8 > 0, gx(x, y) = −2x+y+5 > 0
and gy(x, y) = x − 2y + 5 > 0 on D. Their Hessian matrices are

Hf (x, y) =
(−4 2

2 −4

)
and Hg(x, y) =

(−2 1
1 −2

)
. (3.5)

Let A(x, y) and B(x, y) by A(x, y) = 1
fx(x,y)

Hf (x, y) − 1
gx(x,y)

Hg(x, y) and
B(x, y) = 1

fy(x,y)
Hf (x, y) − 1

gy(x,y)
Hg(x, y) for (x, y) ∈ D, and then we have

A(x, y) =
1

−4x + 2y + 8

(−4 2
2 −4

)
− 1

−2x + y + 5

(−2 1
1 −2

)
, (3.6)

B(x, y) =
1

2x − 4y + 8

(−4 2
2 −4

)
− 1

x − 2y + 5

(−2 1
1 −2

)
. (3.7)

We can easily check A(x, y) and B(x, y) are negative definite for all (x, y) ∈
D. From Theorem 3.1, decision making with utility f is more risk averse than
decision making with utility g on R and it holds that Mf

w(R) ∩ R
(xR,yR)
w 	

Mg
v (R) ∩ R

(xR,yR)
w for all weighting functions w ∈ W (Fig. 5).
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Fig. 5. Mf
w(R) ∩ R

(xR,yR)
w � Mg

v (R) ∩ R
(xR,yR)
w (f(x, y) = −2x2 − 2y2 + 2xy + 8x +

8y, g(x, y) = −x2 − y2 + xy + 5x + 5y, R = [0, 1]2)

Concluding Remark. When utility functions are quadratic, Theorem 3.1 gives
a sufficient condition where decision making with utility f is more risk averse
than decision making with utility g. It is an open problem whether (3.2) is a
sufficient condition when utility functions are not quadratic but more general.
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