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Abstract. We present an approach to generate differentially private
data sets that consists in adding noise to a microaggregated version of
the original data set. While this idea has already been proposed in the
literature to reduce the data sensitivity and hence the noise required to
reach differential privacy, the novelty of our approach is that we focus
on the microaggregated data set as the target of protection, rather than
focusing on the original data set and viewing the microaggregated data
set as a mere intermediate step. As a result, we avoid the complexities
inherent to the insensitive microaggregation used in previous contribu-
tions and we significantly improve the utility of the data. This claim is
supported by theoretical and empirical utility comparisons between our
approach and existing approaches.
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1 Introduction

Microdata (that is, information at the individual level) are usually the most
convenient type of data for secondary use. However, the risk of disclosure inher-
ent to releasing such detailed information is significant. Traditionally, data were
mostly handled by a reduced number of data controllers (e.g. national statistical
offices), who had collected them under strong pledges of privacy. In that sce-
nario, reasonable assumptions about the knowledge available to intruders could
be made and the methodology for disclosure risk limitation could be adjusted
accordingly. Nowadays, the developments in information technology facilitate
the collection of personal data. This bounty of data makes it increasingly diffi-
cult to make well-grounded assumptions about the side knowledge available to
potential intruders [1].

Differential privacy [2] (DP) is a well-known privacy model that gives privacy
guarantees without making any assumption on the intruder’s side knowledge. In
this sense, DP suits well the current scenario with many data controllers. Unlike
privacy models designed to protect sets of microdata (e.g. k-anonymity [3],
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l-diversity [4], t-closeness [5]), DP was designed to protect the outcomes of
interactive queries. However, this limitation was soon overcome with the devel-
opment of several approaches to release differentially private microdata (DP
microdata) [6–10].

The dominant approach to generate DP microdata is based on the computa-
tion of DP histograms. However, histogram-based approaches have severe limita-
tions when the number of attributes grows: for fixed attribute granularities, the
number of histogram bins grows exponentially with the number of attributes,
which has a severe impact on both computational cost and accuracy. To avoid
these issues, we propose to generate the DP data set by masking the records in
the original data set. Plain independent masking of the records in the original
data set is computationally very efficient (its cost is linear on the size of the data
set). However, the amount of masking needed to achieve DP is proportional to
the sensitivity (the maximum possible variation) of what is being masked, and
the sensitivity of an attribute value in a record is large (typically, as large as
the attribute domain size). Therefore, a large amount of masking is needed, that
results in very substantial information loss.

In this work we describe a record-level perturbation-based approach to gener-
ate DP data sets that uses microaggregation to reduce the sensitivity of attribute
values and hence the amount of noise required to attain DP. Our approach does
not require the use of any specific microaggregation algorithm, but we will choose
some microaggregation algorithms for the sake of evaluation. We also compare
our results to previous record perturbation approaches. In Sect. 2 we briefly
introduce some basic concepts about DP. In Sect. 3 we describe our approach to
generate DP data sets. In Sect. 4 we evaluate several microaggregation strategies
theoretically and experimentally (by comparing results among them and by com-
paring results to already existing approaches). Finally, in Sect. 5 we summarize
the conclusions and outline future research avenues.

2 Background on Differential Privacy

Differential privacy [2] is popular among academics due to the strong privacy
guarantees it offers. DP does not rely on assumptions about the side knowledge
available to the intruders. Rather, disclosure risk limitation is tackled in a relative
manner: the result of any analysis should be similar between data sets that differ
in one record. As stated in [11], under DP individuals have no privacy reason to
refuse participating in a data set:

Any given disclosure will be, within a multiplicative factor, just as likely
whether or not the individual participates in the database. As a conse-
quence, there is a nominally higher risk to the individual in participating,
and only nominal gain to be had by concealing or misrepresenting one’s
data.
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Differential privacy assumes the presence of a trusted party that: (i) holds
the data set, (ii) receives the queries submitted by the data users, and (iii)
responds to them in a privacy-aware manner. The notion of differential privacy
is formalized according to the following definition:

Definition 1 (ε-differential privacy). A randomized function κ gives ε-dif-
ferential privacy (ε-DP) if, for all data sets D1 and D2 that differ in one record
(a.k.a. neighbor data sets), and all S ⊂ Range(κ), we have

Pr(κ(D1) ∈ S) ≤ exp(ε) Pr(κ(D2) ∈ S).

Given a query function f , the goal in differential privacy is to find a randomized
function κf that satisfies ε-DP and approximates f as closely as possible. For
the case of numerical queries, κf can be obtained via noise addition; that is
κf (·) = f(·)+N , where N is a random noise that has been properly adjusted to
attain ε-DP. The addition of a Laplace distributed noise whose scale has been
adjusted to the global sensitivity of the query f is, probably, the most common
approach (although other approaches has been proposed [12–14]).

Definition 2 (L1-sensitivity). The L1-sensitivity, Δf , of a function f : Dn →
R

d is the maximum variation of f between data sets that differ in one record:

Δf = max
d(D,D′)=1

‖f(D) − f(D′)‖1 .

Proposition 1. Let f : Dn → R
d be a function. The mechanism κf (D) =

f(D) + (N1, . . . , Nd), where Ni are drawn i.i.d. from a Laplace(0,Δf/ε) distri-
bution, is ε-DP.

3 DP Data Sets via Microaggregation

Let D be the collected data set. Assume that we want to generate Dε –an
anonymized version of D– that satisfies ε-DP. Let Ir(D) be the query that returns
r. We can think of the data set D as the collected answers to the queries Ir(D)
for r ∈ D, and we can generate Dε by collecting ε-DP responses to Ir(D) for
r ∈ D. Such a naive procedure to generate a DP data set is, however, likely to
produce a large information loss. In the end, the purpose of DP is to make sure
that individual records do not have any significant effect on query responses,
which implies that the accuracy of the responses to Ir(D) is necessarily low.

To make perturbative masking viable for the generation of DP data sets,
we have to reduce the sensitivity of the queries used. This requires a shift from
individual queries to queries that ask for aggregate or statistical information.
Along the lines of [9,10,15,16], our proposal is based on microaggregation. In
spite of microaggregation being itself a well-known technique in disclosure risk
limitation, we use it here with the sole purpose of reducing the sensitivity of
the queries. The disclosure risk limitation comes from the enforcement of DP.
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This change of purpose carries along a change in the traditional way of thinking
about microaggregation.

In standard microaggregation, one splits the data set into clusters of at least
k records and then replaces the records in each cluster by the cluster centroid,
where the minimum value k prevents the cluster from being too representative
of any individual in it. In our case, we are also interested in having not too small
clusters (in order to limit the impact of individual contributions and hence the
sensitivity), but we can relax the requirement of a minimum cluster size. In our
case, the total error is the combination of the error introduced by microaggre-
gation and the error due to noise addition; thus, if adding one more record to a
cluster produces a large increase in the microaggregation error, it may be prefer-
able to use the smaller cluster. In this work, we think of microaggregation as an
algorithm that proceeds in the following two steps:

1. Split the data set into clusters of records.
2. Compute a representative record of each cluster and replace the records in

the cluster by it.

To reduce the error introduced by microaggregation, we usually want to gen-
erate clusters that are as homogeneous as possible. For the sake of generality, in
this section, we do not favor any particular strategy to generate the microaggre-
gation clusters: they can all have the same cardinality or different ones, they can
be optimal (maximally homogeneous) or not, randomized or deterministic, etc.
However, to be able to analyze the effect of microaggregation on the sensitivity,
we need to fix the particular way in which the records in a cluster are combined
to generate a record that is representative of the cluster. In this work, we use the
mean as aggregation operation (that is, we compute the centroid of the cluster).

The approach we propose is different from those of [9,10,15,16], in that here
we consider that the data set to be protected is the microaggregated one, rather than
the original one. In other words, given an original data set D, we generate D̄ by
microaggregation of the records in D. From this point on, we discard D and we
focus on protecting D̄. Hence, the goal is to publish D̄ε, a DP version of D̄.

The data set D̄ acts as a proxy of the original data set D. Thus, when evaluating
the utility of D̄ε we need to account for two sources of error: (i) the error due to the
microaggregation (that is, the error caused by using D̄ as a proxy of D), and (ii) the
noise introduced to attain ε-DP. The advantage of the proposed approach lies in
the fact that the error introduced in the microaggregation step is likely to be more
than compensated by the reduction in the noise required to attain DP (compared
to the noise that would be required to attain DP directly from the original data
set D).

Since the contribution of a record to the centroid is inversely proportional
to the cardinality of the corresponding cluster, the centroid sensitivity can be
obtained as the record sensitivity divided by the cluster cardinality. This is
formalized in the following proposition.
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Proposition 2. Let C ⊂ D be a cluster of records and let c be the mean of the
records in C. Let ΔD be the L1-sensitivity of a record in D. The L1-sensitivity
of the centroid c is Δc = ΔD/|C|.
Proof. Δc represents the maximum change in c due to an arbitrary change in
a single record. Since the maximum change in a single record is ΔD and each
record contributes to c, at most, in a proportion of 1/|C|, the maximum change
in c is ΔD/|C|. ��

Notice that the sensitivities may differ for centroids of different clusters,
because the sensitivity depends on the cluster cardinality. Once the sensitivity
of a centroid c is computed, ε-DP can be attained by adding a Laplace noise with
zero mean and scale Δc/ε. Since each cluster contains disjoint records, parallel
composition applies; thus, by adding Laplace noise independently to each cluster,
we obtain the list of ε-DP centroids (see Fig. 1).

Since each record replaced by the corresponding centroid, each centroid is
repeated as many times as there are records in the corresponding cluster. We
now explain why in Fig. 1 all repetitions of a centroid value are added exactly
the same noise. If we added a different random noise to each repetition of the
centroid, we would have |C| non-independent DP outcomes each of which has
sensitivity ΔD/|C|; hence, by sequential composition, the sensitivity of the list
of centroid repetitions in the cluster would be ΔD, which would cancel the
benefits of microaggregation. To keep the sensitivity of the centroid repetitions
at ΔD/|C|, we must have a single DP centroid value, that is, we must add exactly
the same noise to all the repetitions of given centroid. In other words, for each
cluster Ci, we take a single draw, ni, from the Laplace(0, ΔD

|Ci|ε ) distribution and
use it to mask the |Ci| occurrences of ci.

Fig. 1. Generation of an ε-DP data set using record-level microaggregation to reduce
the amount of noise required

The procedure to generate an ε-DP data set based on record-level microaggre-
gation is formally described in Algorithm 1. The algorithm takes as input parame-
ters the microaggregated data set D̄ (whose records consist of the corresponding
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Algorithm 1 . Procedure to generate an ε-DP data set using record-level
microaggregation to reduce the amount of noise required
Require:

D̄ = {r1, . . . , rL}: microaggregated data set (each record rj is the corresponding
cluster centroid)

Mapping τ between records of D̄ and the clusters C1, . . . , Cl formed in the microag-
gregation

ε: desired level of DP
Output

D̄ε: an ε-DP data set

for i ∈ {1, . . . , l} do
set ni= random draw from the Laplace(0, ΔD

|Ci|ε ) distribution
end for
for j ∈ {1, . . . , L} do

let Ci := τ(rj)
set rε

j = rj + ni

end for
return D̄ε = {rε

1, . . . , r
ε
L}

cluster centroids), the mapping between records in D̄ and clusters, and the desired
level ε of DP. Next, we fix the noise ni that will be added to all records mapped to
each cluster Ci. Finally, we loop through the records in D̄ and add to each record
the noise that corresponds to the cluster it is mapped to.

The procedure depicted in Fig. 1 assumes that microaggregation is performed
over whole records (either because the data set contains a single attribute or
because multivariate microaggregation over all the attributes is used). In the
remainder of this section, we generalize the previous procedure to work indepen-
dently with several individual attributes or subsets of attributes. Essentially, we
split the attributes into disjoint subsets, apply the previous procedure indepen-
dently to each subset, and use sequential composition to determine the overall
level of DP.

Let us assume that the microaggregation has been performed independently
over the disjoint subsets of attributes AS1, . . . , ASm. Sequential composition says
that the level of differential privacy from several independent queries accumulates
to determine the overall level of DP. As we aim to work independently with each
of the subsets ASi, following sequential composition, we need to split the overall
privacy budget, ε, among the previous subsets. That is, we fix values ε1, . . . , εm

subject to the restrictions εi ≥ 0 and ε1 + . . . + εm = ε. For each subset ASi, we
apply the procedure in Algorithm 1 to attain εi-DP. Sequential composition tells
that the result is ε-DP. This is illustrated in Fig. 2 and formalized in Algorithm 2.

4 Evaluation

We evaluate the proposal in Sect. 3 by fixing several microaggregation strategies
and comparing the new proposal to existing methods that are also based on
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Fig. 2. Generation of an ε-DP data set by independently microaggregating the subsets
of attributes AS1, . . . , ASm and reaching εi-DP for group ASi

Algorithm 2 . Procedure to generate an ε-DP data set by independently
microaggregating the groups of attributes AS1, . . . , ASn and reaching εi-DP for
group ASi

Require:
AS1, . . . , ASm: list of disjoint subsets of attributes
D̄: microaggregated data set, where microaggregation has been independently com-

puted for the projections on each subset of attributes (each record has been replaced
by the centroids of the clusters that contain it in each projection)

(τ1, . . . , τm): τi is the mapping between records in D̄ and the clusters Ci
1, . . . , C

i
li

computed for the projection D̄[ASi] of D̄ on attribute subset ASi

ε1, . . . , εm: level of DP for attributes ASi (subject to
∑

εi = ε)
Output

D̄ε: an ε-DP data set

for i ∈ {1, . . . , m} do
D̄ε[ASi] = Algorithm 1(D̄[ASi], τi, εi)

end for
return D̄ε

record perturbation [9,10]. At first sight, the fact that we employ basic microag-
gregation algorithms rather than (the more restrictive and less utility-preserving)
insensitive microaggregation [9] seems a substantial advantage. Moreover, the
method in Sect. 3 allows adjusting the noise to the size of each cluster.

A difference between the method of Sect. 3 and the methods in [9,10] is that
the former considers that the data set to be protected is the microaggregated one
(D̄), whereas the latter aim at protecting the original data set (D). Nonetheless,
regardless of the method used, utility must be evaluated in terms of how good
is the DP data set Dε as a replacement for the original data set D.

4.1 Evaluated Methods

In Sect. 3 we did not favor any microaggregation strategy. However, the fact is
that the microaggregation approach has a significant impact on the utility of
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the DP data set output by our method. For that reason, empirical results are
necessarily tied to a specific microaggregation strategy.

We evaluate the accuracy of our proposal when microaggregation is instan-
tiated with the MDAV algorithm (a heuristic multivariate microaggregation
algorithm, [17]) and with individual ranking MDAV microaggregation (which
runs independent univariate MDAV microaggregations for each attribute). We
have chosen these microaggregation algorithms not only because they are well
known, but because they have previously been used to improve the accuracy of
DP data sets generated via record perturbation [9,10].

It is clear, however, that the above-mentioned microaggregation algorithms
have some restrictions that limit the accuracy improvements they can offer. An
important limitation is that the clusters they generate have a fixed cardinality k
(except, maybe, the last cluster, that is of size between k and 2k − 1). However,
as noted in Sect. 3, the method to generate DP data sets described in that section
does not require a fixed cluster size, not even a minimum cluster size.

We have evaluated the following DP methods in our comparison:

– MDAV+DP. The method described in Sect. 3 instantiated with a multivariate
MDAV microaggregation of entire records.

– IR MDAV+DP. The method described in Sect. 3 instantiated with individual
ranking MDAV microaggregation.

– INS+DP (baseline). The method for DP based on insensitive multivariate
microaggregation that is described in [9]. This method is a suitable compari-
son baseline for MDAV+DP because both methods use multivariate microag-
gregation of entire records.

The method described in [10] could also be considered as a comparison baseline
(it would be a good baseline for IR MDAV+DP, because both are based on
individual ranking MDAV microaggregation). However, we skip it because the
computation of the sensitivity in [10] is flawed, which leads to overly reducing
the noise required to attain DP.

Even if they do not yield DP, the standalone MDAV and IR MDAV microag-
gregation algorithms (without subsequent noise addition to attain DP) have
also been evaluated. The reason is that using standalone MDAV and IR MDAV
provides an upper bound of the accuracy reachable with MDAV+DP and
IR MDAV+DP, respectively.

4.2 Theoretical Evaluation

Although an empirical evaluation is provided further below, we think that
a theoretical comparison of some methods, specifically MDAV+DP and
IR MDAV+DP, can yield some important insights.

The following proposition shows that both MDAV+DP and IR MDAV+DP
can yield an ε-DP data set by adding the same amount of noise to each attribute.

Proposition 3. Given a cluster size k used in microaggregation and a target
DP level ε, both MDAV+DP and IR MDAV+DP can yield an ε-DP data set by
adding the same amount of noise to each original attribute.
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Proof. According to Algorithm 1, to attain ε-DP with MDAV+DP, we need to
add a noise that is distributed according to a Laplace(0,ΔD/ε) to each attribute.
Assume now we use IR MDAV+DP instead, and attribute i having sensitivity
ΔDi is added noise drawn from Laplace(0,ΔDi/εi). Both Laplace distributions
are equal when ΔD/ε = ΔDi/εi, which may be enforced by taking

εi = ε
ΔDi

ΔD
. (1)

Since ΔD =
∑

ΔDi, the sum of the εi amounts to ε (as required by the
IR MDAV+DP method). ��

The conclusion from the previous proposition is that IR MDAV+DP (with
appropriate εi) should always be preferred to MDAV+DP: the error due to
microaggregation is smaller with IR MDAV+DP (because less attributes are
clustered together) and the error due to noise addition can be made equal. In
spite of this result, for the sake of completeness, we will perform the empirical
evaluation over both IR MDAV+DP and MDAV+DP. Actually, we consider two
variants of IR MDAV+DP: IR MDAV+DP 1 uses the same level of DP for all
attributes (ε1 = . . . = εm = ε/m), and IR MDAV+DP 2 uses the values of εi

given by Expression (1), for i = 1, . . . , m, so that Proposition 3 holds.

4.3 Evaluation Data

The empirical evaluation has been performed on the Census data set, which was
first used in the “CASC” European project [18] as a reference data set to test
and compare statistical disclosure control methods, and was also used in [9].
This data set contains 13 numerical attributes and 1080 records. For the sake of
comparability with [9], we focus on 4 attributes: FICA (Social security retirement
payroll deduction), FEDTAX (Federal income tax liability), INTVAL (Amount
of interest income) and POTHVAL (Total other persons income).

The selected attributes take values above 0 but they are not naturally upper-
bounded. Since the L1-sensitivity is proportional to the sizes of the domains of
attributes, we need to upper-bound the domain of each attribute. For the sake
of comparability, we use the upper bounds that were used in [9]; that is, we
upper-bound the domain of an attribute by 1.5 times the maximum value of the
attribute in the data set. The domain bounds on the attributes are also enforced
when adding noise to attain DP: the DP masked values are truncated to lie
within the fixed bounds.

4.4 Evaluation Measures

The evaluation is based on two measures of error: the sum of squared errors
(SSE) and the sum of absolute errors (SAE). The SSE is a measure of overall
information loss that is commonly used in the evaluation of SDC methods (and
particularly in microaggregation). It is computed as
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SSE =
∑

i=1,...,n

∑

j=1,...,m

(rij − rε
ij)

2

where rij is the value of attribute j in original record ri and rε
ij is value of

attribute j in the record rε
i of the DP data set D̄ε that corresponds to ri.

SAE is similar to SSE but, rather than being based on squared errors, it is
based on absolute errors. It is computed as

SAE =
∑

i=1,...,n

∑

j=1,...,m

|rij − rε
ij |.

Both measures give an overall estimation of the error in the generated data set
but they differ in the relative importance they attach to the magnitude of each
difference. In SSE a large error in a single record may have a large overall impact,
while in SAE a large error in a single record can be more easily compensated by
small errors in other records.

4.5 Experimental Results

Figure 3 shows the evolution of SSE as a function of the cluster size. In both
graphs of the figure we can see that, as expected, the SSE for the microaggre-
gation algorithms MDAV and IR MDAV increases with the size of the cluster
(which is represented in the abscissae). There is a steep increase for small cluster
sizes that flattens out progressively as the cluster size gets larger. On the con-
trary, for MDAV+DP and IR MDAV+DP the opposite occurs: SSE decreases
with the size of the clusters and the decrease is steeper for small cluster sizes.
We observe that, for large cluster sizes, the SSE of all DP methods converge
to the SSE of the underlying microaggregation. This result was to be expected
because, the greater the cluster size, the less noise we need to attain DP. As
it can be seen by comparing both graphics, the rate of convergence is propor-
tional to ε (faster convergence for larger ε). The comparison between MDAV DP
and IR MDAV+DP (both variants) shows that IR MDAV+DP has a lower SSE.
This could also be expected, because IR MDAV is more utility-preserving than
MDAV. The comparison between IR MDAV+DP 1 and IR MDAV+DP 2 shows
that IR MDAV+DP 2 has slightly less SSE than IR MDAV+DP 1, but the dif-
ference seems to be relatively small.

We then compared the SSE obtained with the methods in this paper with the
SSE obtained with the method in [9]. Figure 4a in [9] shows the SSE of the DP
data set generated by performing a prior insensitive microaggregation to reduce
the noise needed to reach DP. By comparing that figure with Fig. 3, we observe
that IR MDAV+DP with ε = 1 performs as well as the insensitive approach
in [9] with ε = 10. This is a very significant improvement in the utility of the
data.

Figure 4 shows the SAE of MDAV+DP, IR MDAV+DP 1 and IR MDAV+
DP 2, and compares them with the baseline MDAV and IR microaggregation algo-
rithms. Consistently with the theoretical comparison between MDAV+DP and
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Fig. 3. SSE for ε = 1 (left) and ε = 2 (right)

Fig. 4. SAE for ε = 1 (left) and ε = 2 (right)

IR MDAV+DP above and with the SSE results, we observe that IR MDAV+DP
is more utility-preserving.

5 Conclusions and Future Work

We have presented an approach to generate DP data sets that consists of adding
noise to a microaggregated version of the original data set. Using microaggre-
gation as a prior step to reduce the sensitivity of the data and hence the noise
that needs to be added to reach DP had already been proposed in the literature.
However, the novelty of our approach is that we focus on the microaggregated
data set as the target of protection, rather than focusing on the original data
set and viewing the microaggregated data set as a mere intermediate step. As
a result, we avoid the complexities inherent to insensitive microaggregation and
significantly improve the utility of the data.

The approach we have presented works with any microaggregation algorithm.
For concreteness and convenience, we have analyzed three actual approaches
to generate DP data sets: MDAV DP and two variants of IR MDAV DP. The
comparison (both theoretical and empirical) has shown that IR MDAV DP is
better than MDAV DP. Comparisons of IR MDAV DP with the insensitive based
approach in [9] have shown that IR MDAV DP with ε = 1 is similar in terms of
SSE to the insensitive approach with ε = 10. This is a significant improvement
in the utility with respect to prior work.
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Future work will include:

– Considering non-numerical data by using microaggregation algorithms capa-
ble of dealing with categorical data (ordinal, nominal or hierarchical).

– Trying aggregation operators different from the mean (e.g. the medoid) to
compute the representative record of a cluster.

– Using variable-size microaggregation heuristics, such as [19], without min-
imum cluster size (that is, taking k = 1). The optimal solution to stand-
alone variable-size microaggregation without minimum cluster size consists
of all clusters containing a single record. However, the optimal solution when
variable-size microaggregation is used as a preliminary step of DP is likely
to contain larger clusters (because larger clusters reduce the noise that is
needed to attain DP). In general, the less restrictive nature of variable-size
microaggregation algorithms can be expected to deliver DP data sets with
better utility, at the cost of increasing the computational effort.
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Ferrer), and from the Spanish Government (projects TIN2014-57364-C2-1-R “Smart-
Glacis” and TIN 2015-70054-REDC). The authors are with the UNESCO Chair in
Data Privacy, but the views in this paper are their own and are not necessarily shared
by UNESCO.

References

1. Soria-Comas, J., Domingo-Ferrer, J.: Big data privacy: challenges to privacy prin-
ciples and models. Data Sci. Eng. 1(1), 21–28 (2015)

2. Dwork, C., McSherry, F., Nissim, K., Smith, A.D.: Calibrating noise to sensitivity
in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol.
3876, pp. 265–284. Springer, Heidelberg (2006). doi:10.1007/11681878 14

3. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. Technical
report, SRI International (1998)

4. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity:
privacy beyond k-anonymity. ACM Trans. Knowl. Disc. Data 1(1) (2007).

5. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity
and l-diversity. In: 23th IEEE International Conference on Data Engineering-ICDE
2007, pp. 106–115. IEEE (2007)

6. Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., Vilhuber, L.: Privacy: the-
ory meets practice on the map. In: 24th IEEE International Conference on Data
Engineering-ICDE 2008, pp. 277–286 (2008)

7. Zhang, J., Cormode, G., Procopiuc, C.M., Srivastava, D., Xiao, X.: Privbayes:
private data release via Bayesian networks. In: 2014 ACM SIGMOD Interna-
tional Conference on Management of Data-SIGMOD 2014, pp. 1423–1434. ACM,
New York (2014)

8. Xiao, Y., Xiong, L., Yuan, C.: Differentially private data release through multidi-
mensional partitioning. In: Jonker, W., Petković, M. (eds.) SDM 2010. LNCS, vol.
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