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Preface

This volume contains papers presented at the 14th International Conference on
Modeling Decisions for Artificial Intelligence (MDAI 2017), held in Kitakyushu,
Japan, October 18–20, 2017. This conference followed MDAI 2004 (Barcelona,
Spain), MDAI 2005 (Tsukuba, Japan), MDAI 2006 (Tarragona, Spain), MDAI 2007
(Kitakyushu, Japan), MDAI 2008 (Sabadell, Spain), MDAI 2009 (Awaji Island,
Japan), MDAI 2010 (Perpignan, France), MDAI 2011 (Changsha, China), MDAI 2012
(Girona, Spain), MDAI 2013 (Barcelona, Spain), MDAI 2014 (Tokyo, Japan),
MDAI 2015 (Skövde, Sweden), and MDAI 2016 (Sant Julià de Lòria, Andorra) with
proceedings also published in the LNAI series (Vols. 3131, 3558, 3885, 4617, 5285,
5861, 6408, 6820, 7647, 8234, 8825, 9321, and 9880).

The aim of this conference was to provide a forum for researchers to discuss theory
and tools for modeling decisions, as well as applications that encompass decision
making processes and information fusion techniques.

The organizers received 30 papers from 12 different countries, 18 of which are
published in this volume. Each submission received at least two reviews from the
Program Committee and a few external reviewers. We would like to express our
gratitude to them for their work. This volume also includes some of the plenary talks.

The conference was supported by the Kyushu Institute of Technology, the
Kitakyushu Convention & Visitors Association, the Japan Society for Industrial and
Applied Mathematics, the Operations Research Society of Japan, the Japan Society for
Fuzzy Theory and Intelligent Informatics (SOFT), the European Society for Fuzzy
Logic and Technology (EUSFLAT), the Catalan Association for Artificial Intelligence
(ACIA), and the UNESCO Chair in Data Privacy.

July 2017 Vicenç Torra
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Aoi Honda
Sozo Inoue
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Integration of Non-Additive Probabilities:
Aggregation When Information Is Incomplete

Ehud Lehrer

Department of Statistics and Operations Research, Tel-Aviv University, Israel

Abstract. Quite often decision makers have only partial information about the
underlying uncertainty. This might happen, for instance, when information
about the subject matter is obtained from different surveys/resources. We model
such an information as a non-additive probability. Consider a decision maker
who has to choose between two portfolios, or between two groups of engineers,
based on incomplete information about the uncertainty of the market, or about
the productivity of the groups. How would the decision maker evaluate the
expected return from each portfolio or expected productivity from each group?
We present different schemes of aggregation with respect to non-additive
probabilities. These schemes might serve as decision tools in many fields, such
as financial markets, production and more.



Sparsity Methods for Estimation and Control

Masaaki Nagahara

Institute of Environmental Science and Technology,
The University of Kitakyushu, Hibikino, Wakamatsu-ku, Kitakyushu,

Fukuoka 808-0135, Japan

Abstract. Recently, sparsity has been playing a central role in signal processing,
machine learning, and data science. Here we consider a problem of recon-
structing (or learning) a signal (or a function) from observed data, which may be
under-sampled and disturbed by noise. To address this problem, a method called
sparse modeling, also known as compressed sensing, has become a hot topic. In
this talk, I will give a brief introduction to sparse modeling for signal estimation,
and its applications to control. In particular, I will give an introduction to
“maximum hands-off control,” which has the minimum support length among
all feasible solutions for saving energy and reducing CO2 emissions in control
systems.



Stream Data Compression and Its Applications

Hiroshi Sakamoto

Kyushu Institute of Technology, Japan

Abstract. Social networking service and sensing device have become more and
more popular in recent years and data flow never stop to increase. Examples are
genome sequences of same species, version controlled documents, and source
codes in repositories. Since such a data is usually highly-compressible, adopting
data compression techniques is a suitable way to process it. In addition, in order
to catch up the speed of data grow, there is a strong demand for stream data
compression, that is, fully online and really scalable compression. In this talk, I
would like to focus on lossless data compression and introduce several
state-of-the-art technologies for stream data compression including their
applications.



Provenance and Privacy

Vicenç Torra1, Guillermo Navarro-Arribas2, David Sanchez-Charles3,
and Victor Muntés-Mulero3

1 School of Informatics, University of Skövde, Skövde, Sweden
vtorra@his.se

2 Department of Information and Communication Engineering,
Universitat Autònoma de Barcelona, Spain
guillermo.navarro@uab.cat

3 CA Technologies, Barcelona, Spain
{david.sanchez,victor.muntes}@ca.com

Abstract. This paper presents an overview of current needs on data provenance
and data privacy, and discusses state-of-the-art results in this area. The paper
highlights the difficulties that we need to face and finishes with some lines that
require further work.
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Provenance and Privacy

Vicenç Torra1, Guillermo Navarro-Arribas2(B), David Sanchez-Charles3,
and Victor Muntés-Mulero3

1 School of Informatics, University of Skövde, Skövde, Sweden
vtorra@his.se

2 Department of Information and Communication Engineering,
Universitat Autònoma de Barcelona, Barcelona, Spain

guillermo.navarro@uab.cat
3 CA Technologies, Barcelona, Spain

{david.sanchez,victor.muntes}@ca.com

Abstract. This paper presents an overview of current needs on data
provenance and data privacy, and discusses state-of-the-art results in
this area. The paper highlights the difficulties that we need to face and
finishes with some lines that require further work.

1 Introduction

Data provenance is the technology that permits to have the history of the data
till present, where data comes from and which processes were applied to the
data. There are multiple reasons why this information is relevant. Applications
of data provenance include scientific data and e-science, archival, accounting
(financial data), medical data, and pharmaceutical provenance. Data provenance
permits us to trace the data from their origins, calibrate systems, and reproduce
experiments. Companies hold large amounts of information about customers that
have been gathered with the purpose of providing personalized services. Other
data is recorded for a future and undefined use. To hold and process this data
is important to increase the competitive advantage of a company.

When data is held, data privacy regulations need to be taken into account.
Data access has to be implemented so that sensitive data is not disclosed to unau-
thorized people. Data privacy methods and access control protocols are being
developed for this purpose [26]. Two important aspects have irrupted recently
within data privacy. On the one hand, European legislation put into force the
right to be forgotten. That is, individuals can require companies to delete the
data they hold that relate to them. Recall the general principle established by
the European Court of Justice in May 2014 in the Google Spain v. AEPD and
Mario Costeja Gonzalez process granting individuals the right to delete records
concerning themselves from Google’s database. After this ruling, Google has
processed 421,949 requests to remove almost 1.5 million links [9]. Requests from
Sweden have caused the removal of 41,618 links. On the other hand, individuals
have also the right to amend their own information. The new EU General Data
Protection Regulation that was adopted on 27 April 2016 and it shall apply
c© Springer International Publishing AG 2017
V. Torra et al. (Eds.): MDAI 2017, LNAI 10571, pp. 3–11, 2017.
DOI: 10.1007/978-3-319-67422-3 1
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from 25 May 2018 consolidates these two rights and it includes as one of the key
changes the right to be forgotten and an easier access to personal information.1

It is important to note that the deletion or modification of the data supplied by
individuals is often not enough: data is typically aggregated and used to build
models and make decisions. Deletion and amendment may require the recon-
sideration of inferences made from these data elements, and reconsideration of
the knowledge extracted from the data. Industry needs to get ready and have
software to control data provenance to know who created and modified data.
This software has to be able to erase or modify data when necessary. Software
also needs to help the industry to know who contributed to data models and
decisions, and help to update models and decisions when they are affected by
deletions and updates. Only in this way, data rich business can run smoothly
under the implementation of the above mentioned individual rights.

Data provenance, also known as data and information lineage, provides tools
to know where data comes from (i.e., sources that have contributed) and how
these data have been processed. Provenance structures, which in short are anno-
tations on the data, can be rather complex as data elements can be obtained
as the result of the integration of several information sources, and/or the appli-
cation of complex models which in turn have been obtained from other data.
The advantages of data provenance is that it improves data quality, permits
accountability, and it is essential to implement the right to be forgotten and the
right to amend. Nevertheless, the implementation of data provenance poses some
problems as they are complex structures that may duplicate (or more) the size
of a database when implemented at value level. Provenance structures can con-
tain sensitive information that may require the implementation of appropriate
data privacy and access control policies. In addition, integrity should be guar-
anteed to provenance structures to avoid their arbitrary modification. The need
for integrity is specially relevant in distributed systems, when data flows from
one business to another and we need to ensure data provenance integrity. Secure
data provenance focus on this issue. Data provenance, which is neither standard
nor fully implemented in regular-size databases, is still more complex in the con-
text of big data. This is due to the amount of information to be dealt with and
the large number of inferences extracted from a single data element. Provenance
annotations, and access control methods increase the computational cost with
respect to space and execution time. The need for ensuring data provenance in
big data has been underlined in a few reports and research papers. See e.g., the
USA Report to the President [22].

In addition, in the era of big data and online social networks, data prove-
nance is useful to help users to assess the validity and trust of the information.
For instance, it can help to identify rumormongers and disinformation centers.
Several important cases have been identified recently were rumors and fake infor-
mation were produced to intoxicate the political discussion and provoke interna-
tional political conflicts. Some of these news generated in social networks even

1 Regulation (EU) 2016/679 of the European Parliament and of the Council: http://
eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679.

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679
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reached the press. Recall the two cases concerning to Sweden politicians and
the war in Ukraine. First, the fake letter attributed to the Minister of Defence
Peter Hultqvist in February 2015 [25] and the letter attributed to Tora Holst
(chief prosecutor at the International Public Prosecution Office in Stockholm)
in September 2015 which reached CNN iReport [1].

In this paper, we present a review of techniques, methods and characteristics
of data provenance, we focus on the aspects related to big data. In Sect. 2 we
discuss the representation of provenance. In Sect. 3 the characteristics of secure
data provenance. Section 4 is a review of systems for both data provenance and
secure data provenance. Section 5 is about standards related to data provenance.
In Sect. 6 we open two research lines related to the usage of data provenance and
privacy in combination with machine learning techniques. The paper finishes
with some conclusions.

2 Provenance Representation

Data provenance can be seen as metadata or as an annotation of the data.
That is, data is expanded with information of the processes that has led to this
data. Provenance can be coarse-grained or fine-grained. That is, we can have
information on how a bunch of data (i.e., files or databases have been produced)
or we can have information particularized at the record or even at the value
level. Fine-grained provenance is what makes provenance useful, as it is only in
this case that we have detailed information on how any data element has been
produced. E.g., we can know who entered the temperature (fever) of a patient,
or in which store our client claimed for a discount. There are different ways to
represent data provenance. There are two types of provenance. They are where
provenance and why provenance. Where provenance describes the origin of the
data, and why provenance the process that generated the data. A data element in
a database typically proceeds from the combination of previous data elements by
means of certain processing functions. Therefore, we need a structure to represent
the transformations. The most common approaches are chains and graphs. In
chains we assume that the processes applied to the data are sequential and that
there is a single origin. In contrast, in graphs we consider that data has multiple
origins and they are the result of the application of functions that have inferred
new values from multiple data elements. Tree-like structures also permit us to
represent combination of data from multiple sources but is unable to represent
a combination of data from the same source after the application of different
partial procedures. The representation by means of graphs is naturally more
flexible than using sequences or trees. [4,29] are probably the first papers to use
graphs for this purpose. [11,12,16] use chains. As provenance graphs represent
a causality [4] relationship and nodes are actions in a given time, they do not
include cycles. I.e., they are directed acyclic graphs. Other provenance structures
may be conceivable.
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2.1 Nodes and Operations on Data Provenance

Following [29], we consider graphs in which a compact notation is used to repre-
sent all types of processes (why and where provenance). In short, nodes represent
the application of a process to generate a new data element. Each node is a tuple
with the following structure:

(seqID, p, {(A1, v1), . . . , (An, vn)}, (A, v))
where seqID is an identifier and can include a time-stamp (in any case, it permits
to order nodes with respect to time), p is the subject who applied a process,
{(A1, v1), . . . , (An, vn)} is the set of input in which (Ai, vi) is a pair consisting
on an object Ai and its value vi, and (A, v) represents the output object and its
value.

In this notation where provenance is represented by means of an empty set
instead of {(A1, v1), . . . , (An, vn)}. This notation is preferable with respect to
others in which only the operation is represented. Explicit representation of
input and output information can be useful for black-box operations and non-
deterministic functions.

Computation of new values requires the expansion of the provenance graph,
adding new nodes. As previous operations cannot be revisited the graph is an
immutable structure.

2.2 Properties of Data Provenance

We can distinguish two main properties that a data provenance system needs to
satisfy:

– Completeness. That is, that all actions that are relevant to computation
should be detected and represented in the provenance structure. Note that
this is not always easy, because some operations as e.g. cut & paste or manual
copy can exclude relevant provenance information.

– Efficiency. Data provenance introduces an overhead to the data. Fine-
grained provenance can double (or more) the size of a database. In addition,
operations on the provenance structure need to be efficient because they also
introduce an overhead on the computation time.

Note that although both issues need to be implemented, efficiency is a much
more relevant and complex issue in the framework of secure data provenance for
big data. Efficient methods have to be designed to satisfy the four properties
discussed here.

3 Secure Data Provenance

Secure provenance was introduced to ensure security and privacy to provenance
data. Observe that provenance data is sensitive. It may contain information
on who and when data was updated. E.g., knowing that a certain doctor has
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modified data from a patient can lead to disclosure on who is the doctor of
whom, what type of illness the patient has, and at what time the patient was at
the hospital. Files and databases typically flow within departments and between
companies. It is specially important to ensure that these third parties cannot
access confidential information contained in the data provenance, whilst allowing
them to work with the factual data and update the provenance structure itself.
For example, this would allow to perform analysis on the medical data, preserving
patient privacy. Hence, provenance data needs to follow these databases and
this has to be done ensuring e.g., provenance integrity. Secure data provenance
focuses on these type of problems. A few properties have been established as a
requirement for secure data provenance [11,12,29]:

– Distributed. When databases flow through untrusted environments, and
provenance data is associated to them, we need secure data provenance sys-
tems to be defined so that they work in a distributed environment. We cannot
use a centralized approach with trusted hardware.

– Integrity. In distributed environments it is important that nobody can forge
provenance data. Provenance data is transmitted and provenance structures
are modified to add the new processes applied to the data. Nevertheless, as
stated above the structure is immutable and no adversary can be granted to
change any part of it. In addition, the provenance system should not allow the
modification of a value without expanding the provenance structure. Finally,
deletion of provenance data should not cause that a record of the database
is unreadable. Additional aspects to be taken into account is to consider
collusions of intruders (that coalitions of intruders should not be able to
attack integrity), repudiation (that intruders should not be able to repudiate
a record as it was not theirs) or creating forged structures (intruders should
not be able to create new provenance structures).

– Availability. We are interested in providing security mechanisms to ensure
provenance data availability. Auditors should be able to access provenance
information in a secure, fast and reliable manner to perform any required
operation, e.g. verify the integrity of an ownership sequence without knowing
the individual records.

– Privacy and confidentiality. We need to ensure that disclosure does not
take place, and this is needed for both the database and the provenance data.
Only authorized users can access the information.

These properties need to be combined with the two properties discussed
in the previous section that are general for any provenance system. They are,
completeness and efficiency.

All these properties are relevant in the context of big data provenance. Big
data is often distributed as different information sources can contribute in a
computation or in a decision. Therefore, integrity is a basic aspect. We need
that provenance structures are not modified at will, and we need to be sure that
only permitted operations are applied to them. Availability is then not only a
requirement for auditors but also for the subjects from which the data has been
extracted. In order that individuals can access and apply the right to delete or
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amend a record, they need to be able to know where is their data or if a certain
record contains data that has been generated from their own data.

4 Data Provenance and Secure Data Provenance Systems

Although data provenance support can be found in some relational database
and data management products [3,19], the development of secure data prove-
nance is very scarce. Moreover, current approaches to support provenance in big
data management and storage systems (Hadoop, Spark, HBase, etc.) are in a
very early stage, usually limited to academic projects that solve very specific
problems.

RAMP [20] provides a wrapper approach for Hadoop by wrapping map and
reduce functions without requiring the modification of the Hadoop core. Simi-
larly, HadoopProv [2] also captures provenance information in map and reduce
functions but attempts to minimize its overhead by deferring the construction of
the provenance graph in a later stage. Although the later approach introduces a
lower overhead in runtime, the first one will respond faster to provenance queries,
and thus to provenance related access control. In the same line Titian [14] is an
extension to Spark adding interactive data provenance to data transformations.
Some other systems also address some limited provenance support in Hadoop-
like systems towards providing debugging information. For example, Newt [15]
supports why provenance for debugging purposes.

In general there is a clear lack of sound provenance support in big data
processing systems. Not only their functionality is very limited, but there is no
support for secure and privacy-preserving provenance.

5 Standards and Data Provenance

The W3C produced the PROV specifications [8] which define a model, serializa-
tion and related tools for the interchange of provenance information, specifically
focused (but not limited) to the Web. These specifications have not yet been
adopted by provenance aware databases [18], but PROV has been widely used
as a standard for the exchange of provenance information. PROV provides a stan-
dardized model based on relations among agents, entities and activities, which
can be expressed in several formats. The specifications cover a wide range of
different aspects from ontologies (OWL2, RDF, . . .), human readable notations,
constraints mechanisms for accessing and querying provenance, etc.

PROV comes from the semantic web community, which departs and attempts
to cover work from previous efforts from similar proposals. This includes Dublin
Core, the Open Provenance Model [17], Provernir Ontology [23], Provenance
Vocabulary [10], SWAN (Semantic Web Applications in Neuromedicine) Ontol-
ogy [5], among others.

In the eHealth field an initiative from the S&I Framework [27] is cur-
rently working towards a standardization of data provenance in the context
of Health IT. HL7 [13] will incorporate this provenance support for CDA
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(Clinical Document Architecture) documents (HL7), which includes typical clin-
ical documents and data exchanges. This work is still in a very early stage, espe-
cially regarding the security and privacy surrounding the provenance data, which
in the case of Health IT is of key relevance. Although they are not specifically
addressing big data, the development of new approaches to deal with secure
provenance in big data will surely contribute to better understand the problem
and contribute to successfully extend initiative such as this one.

6 Data Provenance and Privacy on Multi-actor Systems

In most cases, data owners cannot couple with most of the processes needed in
order to get the most benefits from the data, and the services of third parties
are usually needed. Hence, files and databases are shared between companies,
difficulting compliance of data regulations, in particular related to the right to be
forgotten and data amendment, and posing a potential violation of user privacy.
It is particularly interesting in the machine learning field, in which reducing the
number of model recalculations is desirable.

Data sharing or publication must ensure privacy of the original owners. There
are three main privacy models in data privacy: k-anonymity [24], differential
privacy [7] and reidentification [6,28]. Reidentification and k-anonymity focus on
avoiding identity disclosure. That is, the goal of the intruder is to link a record
of a file with an individual (or company). In k-anonymity identity disclosure is
avoided having for any information of the intruder, k records that match this
information. Differential privacy has a different perspective. It is defined in terms
of a query. Then, the goal of differential privacy is that the output of a query
does not change significantly when a record is added/removed from a database.
As differential privacy focus on a given query, it can be seen as focusing on
attribute disclosure (i.e., the goal of the intruder is to increase their knowledge
on the value of an attribute for a given record).

In the context of data provenance, differential privacy [7] is interesting as
it studies algorithms that try to return similar results when applied to two
databases that only differ on a single record. Hence, when individuals require
the deletion of a record, if data inferences were made using a differentially-
private algorithm we assess if such inference is somehow still valid. Differential
privacy usually proceeds by means of a randomization of the output. This means
that different executions of a differentially private algorithm on the same data
typically results into different outputs. This may be a problem in real practice
because when building a model we need to know that the model produced is
near to the optimal one. Typically, differential privacy does not allow to repeat
the query to avoid the intruder having an accurate estimate of the distribution
of the output, so it may be difficult to evaluate the accuracy of the obtained
calculation. In addition, previous work in differential privacy does not consider
sequences of deletions and amendments.

Provenance structures are not the only data annotations. Sticky policies [21],
a concept arisen in the context of data privacy, is another type of data anno-
tation that focuses on the conditions and constraints that describe how data



10 V. Torra et al.

should be treated so that it is compliant with and enforces current data privacy
requirements. An important novel research area may be defining such conditions
and constraints based on the provenance of the data itself, by only allowing cer-
tain groups of individuals, for instance, to access data after a certain level of
anonymization or aggregation is guaranteed.

7 Conclusions

In this paper, we have presented an overview of the main aspects related to
data provenance and data privacy. This is an area of increasing interests due to
current needs and regulations. We have reviewed in Sect. 6 some lines of research
related to both areas.
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Abstract. Weighted quasi-arithmetic means on two-dimensional
regions are demonstrated, and risk averse conditions are discussed by
the corresponding utility functions. For two utility functions on two-
dimensional regions, we introduce a concept that decision making with
one utility is more risk averse than decision making with the other util-
ity. A necessary condition and a sufficient condition for the concept are
demonstrated by their utility functions. Several examples are given to
explain them.

1 Introduction

Weighted quasi-arithmetic means are important concept for mathematical the-
ory such as the mean value theorems, and it is a fundamental tool for subjective
estimation regarding information in management science, artificial intelligence
and so on. Weighted quasi-arithmetic means of an interval are given mathemat-
ically by aggregation operations (Kolmogorov [4], Nagumo [6] and Aczél [1]).
Bustince et al. [2] discussed aggregation operations on two-dimensional OWA
operators, and Labreuche and Grabisch [5] demonstrated Choquet integral for
aggregation in multicriteria decision making, and Torra and Godo [7] studied
continuous WOWA operators for defuzzification. In micro-economics, subjec-
tive estimations with preference relations are formulated as utility functions
(Fishburn [3]). From the view point of utility functions, Yoshida [8,9] have stud-
ied the relations between weighted quasi-arithmetic means on an interval and
decision maker’s behavior regarding risks. In one-dimensional cases, for twice
continuously differentiable strictly increasing functions ϕ,ψ : [a, b] �→ R as deci-
sion makers’ utility functions and a continuous function ω : [a, b] �→ (0,∞) as a
weighting function, weighted quasi-arithmetic means μ and ν on a closed interval
[a, b] are real numbers satisfying

ϕ(μ)
∫ b

a

ω(x) dx =
∫ b

a

ϕ(x)ω(x) dx, (1.1)

ψ(ν)
∫ b

a

ω(x) dx =
∫ b

a

ψ(x)ω(x) dx (1.2)

c© Springer International Publishing AG 2017
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in the mean value theorem for integration. Then it is said that decision making
with utility function ϕ is more risk averse than decision making with utility
function ψ if μ ≤ ν for all closed intervals [a, b]. Its equivalent condition is

ϕ′′

ϕ′ ≤ ψ′′

ψ′ (1.3)

on R (Yoshida [10,11]).
Yoshida [12] introduced weighted quasi-arithmetic means on two-dimensional

regions, which are related to multi-object decision making. In this paper, using
decision makers’ utility functions we discuss relations between risk averse/risk
neutral/risk loving conditions and the corresponding weighted quasi-arithmetic
means on two-dimensional regions. In this paper we compare two decision mak-
ers’ behaviors regarding risks by the weighted quasi-arithmetic means on two-
dimensional regions and we give a characterization by their utility functions.

In Sect. 2 we introduce weighted quasi-arithmetic means on two-dimensional
regions and we discuss their risk averse conditions. For two utility functions f
and g on two-dimensional regions, we introduce a concept that decision making
with utility f is more risk averse than decision making with utility g. Further
we derive a necessary condition where decision making with utility f is more
risk averse than decision making with utility g on two-dimensional regions, and
we investigate the condition by several examples. In Sect. 3 we give sufficient
conditions for the results in Sect. 2 when utility functions are quadratic.

2 Weighted Quasi-arithmetic Means on Two-Dimensional
Regions

Let R = (−∞,∞) and let a domain D be a non-empty open convex subset of
R

2, and let R(D) be a family of closed convex subsets of D. Denote by L a
family of twice continuously differentiable functions f : D �→ R which is strictly
increasing, i.e. fx > 0 and fy > 0 on D, and denote by W a family of continuous
functions w : D �→ (0,∞). For a closed convex set R ∈ R(D), weighted quasi-
arithmetic means on region R with utility f ∈ L and weighting w ∈ W are given
by a subset Mf

w(R) of region R as follows.

Mf
w(R) =

{
(x̃, ỹ) ∈ R | f(x̃, ỹ)

∫∫
R

w(x, y) dx dy =
∫∫

R

f(x, y)w(x, y) dx dy

}
.

(2.1)

Then we have Mf
w(R) �= ∅ since f is continuous on R and

min
(x̃,ỹ)∈R

f(x̃, ỹ) ≤
∫∫

R

f(x, y)w(x, y) dx dy

/ ∫∫
R

w(x, y) dx dy ≤ max
(x̃,ỹ)∈R

f(x̃, ỹ).

We introduce the following natural ordering on R
2.
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Definition 2.1 (A partial order 	 on R
2).

(i) For two points (x, y), (x, y)(∈ R
2), an order (x, y) 	 (x, y) implies x ≤

x and y ≤ y.
(ii) For two points (x, y), (x, y)(∈ R

2), an order (x, y) ≺ (x, y) implies (x, y) 	
(x, y) and (x, y) �= (x, y).

(iii) For two sets A,B(⊂ R
2), an order A 	 B implies the following (a) and (b):

(a) For any (x, y) ∈ A there exists (x, y) ∈ B satisfying (x, y) 	 (x, y).
(b) For any (x, y) ∈ B there exists (x, y) ∈ A satisfying (x, y) 	 (x, y).

Let a closed convex region R ∈ R(D) and let a weighting function w ∈ W. We
define a point (xR, yR) on region R by the following weighted quasi-arithmetic
means:

xR =
∫∫

R

x w(x, y) dx dy

/ ∫∫
R

w(x, y) dx dy, (2.2)

yR =
∫∫

R

y w(x, y) dx dy

/ ∫∫
R

w(x, y) dx dy. (2.3)

Hence, (xR, yR) is called an invariant risk neutral point on R with weighting w

(Yoshida [12]). We separate the space R
2 as follows. Let R

(xR,yR)
w,− = {(x, y) ∈

R
2 | (x, y) ≺ (xR, yR)} = {(x, y) ∈ R

2 | x ≤ xR, y ≤ yR, (x, y) �= (xR, yR)}
and R

(xR,yR)
w,+ = {(x, y) ∈ R

2 | (xR, yR) ≺ (x, y)} = {(x, y) ∈ R
2 | x ≥ xR, y ≥

yR, (x, y) �= (xR, yR)}. Then R
(xR,yR)
w,− denotes a subregion of risk averse points

and R
(xR,yR)
w,+ denotes a subregion of risk loving points. Let R

(xR,yR)
w = R

(xR,yR)
w,− ∪

R
(xR,yR)
w,+ ∪{(xR, yR)}. Now we introduce the following relations between decision

maker’s behavior and his utility.

Definition 2.2. Let a utility function f ∈ L and let a rectangle region R ∈ R(D).

(i) Decision making with utility f is called risk neutral on R if

f(xR, yR)
∫∫

R

w(x, y) dx dy =
∫∫

R

f(x, y)w(x, y) dx dy (2.4)

for all density functions w.
(ii) Decision making with utility f is called risk averse on R if

f(xR, yR)
∫∫

R

w(x, y) dx dy ≥
∫∫

R

f(x, y)w(x, y) dx dy (2.5)

for all density functions w.
(iii) Decision making with utility f is called risk loving on R if

f(xR, yR)
∫∫

R

w(x, y) dx dy ≤
∫∫

R

f(x, y)w(x, y) dx dy (2.6)

for all density functions w.
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Example 2.1. Let a domain D = (−0.5, 1.25)2 and a region R = [0, 1]2, and let
a weighting function w(x, y) = 1 for (x, y) ∈ D. Then an invariant neutral point
is (xR, yR) = (0.5, 0.5) and R

(xR,yR)
w,− = [0, 0.5]2 \ {(0.5, 0.5)} and R

(xR,yR)
w,+ =

[0.5, 1]2 \ {(0.5, 0.5)}. Let us consider two utility functions f(x, y) = −x2 − y2 +
3x + 3y and g(x, y) = 2x2 + 2y2 − 5x − 5y for (x, y) ∈ D. Then by Yoshida [12,
Example 3.1(i), Lemma 2.2] decision making with utility function f is called
risk averse on R with weighting w, and decision making with utility function
g is also called risk loving on R with weighting w. Hence the corresponding
weighted quasi-arithmetic means Mf

w(R) and Mg
w(R) are ordered by the order

	 in a restricted subregion R
(xR,yR)
w = R

(xR,yR)
w,− ∪R

(xR,yR)
w,+ ∪{(xR, yR)}. However

they can not be ordered on a subregion R \ R
(xR,yR)
w (Fig. 1).

Fig. 1. Mf
w(R)∩R

(xR,yR)
w � Mg

v (R)∩R
(xR,yR)
w (f(x, y) = −x2 −y2 +3x+3y, g(x, y) =

2x2 + 2y2 − 5x − 5y, R = [0, 1]2)

It is natural that the order 	 should be given between weighted quasi-
arithmetic means Mf

w(R) of risk averse utility f and weighted quasi-arithmetic
means Mg

w(R) of risk loving utility g in Example 3.1. Therefore when we compare
weighted quasi-arithmetic means Mf

w(R) and Mg
v (R), we discuss it on the mean-

ingful restricted subregion R
(xR,yR)
w . Hence we introduce the following definition

regarding the comparison of utility functions.

Definition 2.3. Let f, g ∈ L be utility functions on D. Decision making with
utility f is more risk averse than decision making with utility g if it holds that

Mf
w(R) ∩ R(xR,yR)

w 	 Mg
v (R) ∩ R(xR,yR)

w (2.7)

for all weighting functions w ∈ W on D and all closed convex regions R ∈ R(D).
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Example 2.2. Let a domain D = (−0.5, 1.25)2 and a region R = [0, 1]2, and let
a weighting function w(x, y) = 1 for (x, y) ∈ D. Then an invariant neutral point
is (xR, yR) = (0.5, 0.5) and R

(xR,yR)
w,− = [0, 0.5]2 \ {(0.5, 0.5)} and R

(xR,yR)
w,+ =

[0.5, 1]2 \ {(0.5, 0.5)}. Let us consider two utility functions f(x, y) = −x2 − y2 +
3x+3y and g(x, y) = −2x2 −2y2 +5x+5y for (x, y) ∈ D. Then decision making
with utility f is more risk averse than decision making with utility g as we see
the relation (2.7) in Fig. 2.

Fig. 2. Mf
w(R)∩R

(xR,yR)
w � Mg

v (R)∩R
(xR,yR)
w (f(x, y) = −x2 −y2 +3x+3y, g(x, y) =

−2x2 − 2y2 + 5x + 5y, R = [0, 1]2)

Now we give a necessary condition for (2.7), i.e. decision making with utility
f is more risk averse than decision making with utility g.

Theorem 2.1. Let f, g ∈ L be utility functions on D. If decision making with
utility f is more risk averse than decision making with utility g, then it holds
that

h2fxx + 2rhkfxy + k2fyy
hfx + kfy

≤ h2gxx + 2rhkgxy + k2gyy
hgx + kgy

(2.8)

on D for all positive numbers h and k and all real numbers r satisfying −1 ≤
r ≤ 1.

From Theorem 2.1 we can easily obtain the following result, which is correspond-
ing to [12, Theorem 3.1(i)].

Corollary 2.1. Let f, g ∈ L be utility functions on D. If decision making with
utility f is more risk averse than decision making with utility g, then it holds that

fxx
fx

≤ gxx
gx

and
fyy
fy

≤ gyy
gy

on D. (2.9)
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Equation (2.8) in Theorem 2.1 gives a detailed relation between f and g
rather than (2.9). A parameter r in necessary condition (2.8) depends on the
shapes of closed convex regions R ∈ R(D). Now we investigate several examples
with different shapes of regions R.

Example 2.3 (Rectangle regions). Let h and k be positive numbers.Let rectan-
gle regions

RRect
h,k (a, b, t) = [a, a + ht] × [b, b + kt] (2.10)

for (a, b) ∈ D and t > 0. Denote a family of rectangle regions by RRect
h,k (D) =

{RRect
h,k (a, b, t) | RRect

h,k (a, b, t) ⊂ D, (a, b) ∈ D, t > 0}(⊂ R(D)), (Fig. 3).

Corollary 2.2. If utility functions f, g ∈ L satisfy Mf
w(R)∩R

(xR,yR)
w 	 Mg

v (R)∩
R

(xR,yR)
w for all weighting functions w ∈ W on D and all rectangle regions

R ∈ RRect
h,k (D), then it holds that

h2fxx + k2fyy
hfx + kfy

≤ h2gxx + k2gyy
hgx + kgy

(2.11)

on D.

Example 2.4 (Oval regions). Let h and k be positive numbers. Let oval regions

ROval
h,k (a, b, t) =

{
(x, y) ∈ R

2

∣∣∣∣ (x − a)2

h2
+

(y − b)2

k2
≤ t2

}
(2.12)

for (a, b) ∈ D and t > 0. Denote a family of oval regions by ROval
h,k (D) =

{ROval
h,k (a, b, t) | ROval

h,k (a, b, t) ⊂ D, (a, b) ∈ D, t > 0}(⊂ R(D)), (Fig. 3).

Corollary 2.3. If utility functions f, g ∈ L satisfy Mf
w(R)∩R

(xR,yR)
w 	 Mg

v (R)∩
R

(xR,yR)
w for all weighting functions w ∈ W on D and all oval regions R ∈

ROval
h,k (D), then it holds that

h2fxx + k2fyy
hfx + kfy

≤ h2gxx + k2gyy
hgx + kgy

(2.13)

on D.

Example 2.5 (Triangle regions). Let h and k be positive numbers. Let triangle
regions

RTri
h,k(a, b, t) =

{
(x, y) ∈ R

2

∣∣∣∣x ≥ a, y ≥ b,
x − a

h
+

y − b

k
≤ t

}
(2.14)

for (a, b) ∈ D and t > 0. Denote a family of triangle regions by RTri
h,k(D) =

{RTri
h,k(a, b, t) | RTri

h,k(a, b, t) ⊂ D, (a, b) ∈ D, t > 0}(⊂ R(D)), (Fig. 4).
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Fig. 3. Rectangle region RRect
h,k (a, b, t) and oval region ROval

h,k (a, b, t)

Corollary 2.4. If utility functions f, g ∈ L satisfy Mf
w(R)∩R

(xR,yR)
w 	 Mg

v (R)∩
R

(xR,yR)
w for all weighting functions w ∈ W on D and all triangle regions R ∈

RTri
h,k(D), then it holds that

h2fxx − hkfxy + k2fyy
hfx + kfy

≤ h2gxx − hkgxy + k2gyy
hgx + kgy

(2.15)

on D.

Example 2.6 (Parallelogram regions). Let h and k be positive numbers. Let
parallelogram regions

RPara
h,k (a, b, t) = {(x, y) | |k(x − a) − 3h(y − b)| ≤ 4hkt, |3k(x − a) − h(y − b)| ≤ 4hkt}

(2.16)

for (a, b) ∈ D and t > 0. Denote a family of parallelogram regions by RPara
h,k (D) =

{RPara
h,k (a, b, t) | RPara

h,k (a, b, t) ⊂ D, (a, b) ∈ D, t > 0}(⊂ R(D)), (Fig. 4).

Corollary 2.5. If utility functions f, g ∈ L satisfy Mf
w(R)∩R

(xR,yR)
w 	 Mg

v (R)∩
R

(xR,yR)
w for all weighting functions w ∈ W on D and all parallelogram regions

R ∈ RPara
h,k (D), then it holds that

h2fxx + 3
5hkfxy + k2fyy

hfx + kfy
≤ h2gxx + 3

5hkgxy + k2gyy

hgx + kgy
(2.17)

on D.

Example 2.3 (Rectangle regions) and Example 2.4 (Oval regions) are cases
where r = 0 in (2.8), and Example 2.5 (Triangle regions) and Example
2.6 (Parallelogram regions) are cases where r = − 1

2 and r = 3
10 respectively

in (2.8).
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Fig. 4. Triangle region RTri
h,k(a, b, t) and parallelogram region RPara

h,k (a, b, t)

3 A Sufficient Condition

Let f, g ∈ L be utility functions on an open convex domain D. Theorem 2.1 gives
a necessary condition that decision making with utility f is more risk averse than
decision making with utility g. In this section, we discuss its sufficient condition.
For a utility function f ∈ L, its Hessian matrix is written by

Hf (x, y) =
(

fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

)
(3.1)

for (x, y) ∈ D. The the following proposition gives a sufficient condition for (2.8)
in Theorem 2.1.

Proposition 3.1. Let f, g ∈ L be utility functions on D. Then the following
(i) and (ii) hold.

(i) Matrices

1
fx(x, y)

Hf (x, y)− 1
gx(x, y)

Hg(x, y) and
1

fy(x, y)
Hf (x, y) − 1

gy(x, y)
Hg(x, y)

(3.2)

are negative semi-definite for all (x, y) ∈ D if and only if a matrix

1
hfx(x, y) + kfy(x, y)

Hf (x, y) − 1
hgx(x, y) + kgy(x, y)

Hg(x, y) (3.3)

is negative semi-definite for all (x, y) ∈ D and all positive numbers h and k.
(ii) If (3.2) are negative semi-definite at all (x, y) ∈ D, then (2.8) holds on D for

all positive numbers h and k and all real numbers r satisfying −1 ≤ r ≤ 1.

From Proposition 3.1 implies that the condition (3.2) is stronger than the
condition (2.8), however (3.2) is easier than (2.8) to check in actual cases. In
this paper, utility functions f(∈ L) are called quadratic if the second derivatives



Comparison of Risk Averse Utility Functions 23

fxx, fxy and fyy are constant functions. When utility functions are quadratic,
the following theorem gives a sufficient condition for what decision making with
utility f is more risk averse than decision making with utility g.

Theorem 3.1. Let utility functions f, g ∈ L be quadratic on D. If

1

fx(x, y)
Hf (x, y)− 1

gx(x, y)
Hg(x, y) and

1

fy(x, y)
Hf (x, y)− 1

gy(x, y)
Hg(x, y) (3.4)

are negative semi-definite at all (x, y) ∈ D, then decision making with utility f
is more risk averse than decision making with utility g, i.e.

Mf
w(R) ∩ R(xR,yR)

w 	 Mg
v (R) ∩ R(xR,yR)

w

for all weighting functions w ∈ W and all closed convex regions R ∈ R(D).

Now we give an example for Theorem 3.1.

Example 3.1 (Quadratic utility functions). Let a domain D = (−0.5, 1.5)2

and a region R = [0, 1]2, and let a weighting function w(x, y) = 1 for (x, y) ∈
D. Then an invariant neutral point is (xR, yR) = (0.5, 0.5) and R

(xR,yR)
w,− =

[0, 0.5]2 \ {(0.5, 0.5)} and R
(xR,yR)
w,+ = [0.5, 1]2 \ {(0.5, 0.5)}. Let us consider two

quadratic utility functions f(x, y) = −2x2 − 2y2 + 2xy + 8x + 8y and g(x, y) =
−x2 − y2 + xy + 5x + 5y for (x, y) ∈ D. Then f and g are increasing on D, i.e.
fx(x, y) = −4x+2y+8 > 0, fy(x, y) = 2x−4y+8 > 0, gx(x, y) = −2x+y+5 > 0
and gy(x, y) = x − 2y + 5 > 0 on D. Their Hessian matrices are

Hf (x, y) =
(−4 2

2 −4

)
and Hg(x, y) =

(−2 1
1 −2

)
. (3.5)

Let A(x, y) and B(x, y) by A(x, y) = 1
fx(x,y)

Hf (x, y) − 1
gx(x,y)

Hg(x, y) and
B(x, y) = 1

fy(x,y)
Hf (x, y) − 1

gy(x,y)
Hg(x, y) for (x, y) ∈ D, and then we have

A(x, y) =
1

−4x + 2y + 8

(−4 2
2 −4

)
− 1

−2x + y + 5

(−2 1
1 −2

)
, (3.6)

B(x, y) =
1

2x − 4y + 8

(−4 2
2 −4

)
− 1

x − 2y + 5

(−2 1
1 −2

)
. (3.7)

We can easily check A(x, y) and B(x, y) are negative definite for all (x, y) ∈
D. From Theorem 3.1, decision making with utility f is more risk averse than
decision making with utility g on R and it holds that Mf

w(R) ∩ R
(xR,yR)
w 	

Mg
v (R) ∩ R

(xR,yR)
w for all weighting functions w ∈ W (Fig. 5).
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Fig. 5. Mf
w(R) ∩ R

(xR,yR)
w � Mg

v (R) ∩ R
(xR,yR)
w (f(x, y) = −2x2 − 2y2 + 2xy + 8x +

8y, g(x, y) = −x2 − y2 + xy + 5x + 5y, R = [0, 1]2)

Concluding Remark. When utility functions are quadratic, Theorem 3.1 gives
a sufficient condition where decision making with utility f is more risk averse
than decision making with utility g. It is an open problem whether (3.2) is a
sufficient condition when utility functions are not quadratic but more general.
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Abstract. We introduce and discuss the concept of symmetrization
methods for aggregation functions. Several symmetrization methods
are exemplified. A particular stress is put on extremal symmetrization
methods.
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1 Introduction

Symmetry of aggregation functions can be seen as a generalization of the com-
mutativity of binary operations x ∗ y = y ∗ x, and it is known also as neutrality
or anonymity. This important property indicates the equal treating of any con-
sidered input to be aggregated. It is crucial in any situation when the order of
considered inputs is not known, for example when the inputs to be aggregated
are evaluations of jury members stored after an anonymous procedure in a vot-
ing box (this example was motivating to call this property as anonymity in the
field of multicriteria decision support). Two distinguished symmetrization meth-
ods, i.e., methods relating to a considered aggregation function some symmetric
aggregation functions, can be found in [4], see also [5]. Namely, considering an
n-ary real function F and an n-ary input vector x = (x1, . . . xn), the function
F+ and F− given by

F+(x) = F (x(1), . . . , x(n)) and F−(x) = F (x(n), . . . , x(1)),

where (.) is a permutation such that x(1) ≤ · · · ≤ x(n), are symmetric. A gener-
alization of these symmetrization methods based on a fixed permutation σ ∈ Pn

(the set of all permutations on {1, . . . , n}) was introduced in [5], proposing a
function F(σ) given by

F(σ) = F (x(σ(1)), . . . , x(σ(n))).

Obviously F(id) = F+ and F(rev) = F−, where id, rev ∈ Pn are the identity
permutation (1, . . . , n) and the reversed permutation (n, . . . , 1), respectively.
c© Springer International Publishing AG 2017
V. Torra et al. (Eds.): MDAI 2017, LNAI 10571, pp. 26–32, 2017.
DOI: 10.1007/978-3-319-67422-3 3
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Observe that the permutation (.) depends on the input vector x and it need not
be unique (this happens if there are some ties between the arguments x1, . . . , xn).
However, this possible non-uniqueness does not influence the fact that Fσ is well
defined and symmetric for any permutation σ ∈ Pn (σ is independent of any
considered input vector x).

The aim of this contribution is to introduce and discuss an axiomatic app-
roach to symmetrization of aggregation functions. The paper is organized as fol-
lows. In the next section, the necessary preliminaries are given. Section 3 brings
our axiomatic characterization of symmetrization methods and offers several
examples of symmetrization methods. In particular, two extremal symmetriza-
tion methods are described. In Sect. 4 we apply some of the introduced sym-
metrization methods to some non-symmetric aggregation functions, and espe-
cially to weighted arithmetic means. Some interesting observations are added in
the concluding remarks.

2 Preliminaries

For a fixed n ≥ 1, a mapping A : [0, 1]n → [0, 1] is called an aggregation func-
tion whenever it is increasing in each coordinate and it satisfies the boundary
conditions A(0) = A(0, . . . , 0) = 0 and A(1) = A(1, . . . , 1) = 1. Note that
viewing [0, 1]n and [0, 1] as bounded lattices, aggregation functions are just the
order-homomorphisms.

The class of all n-ary aggregation functions is denoted as An. Equipped with
the partial order of n-ary real functions, An is a bounded lattice with the top
element A� and the bottom element A⊥, given respectively by

A�(x) =

{
0 if x = 0
1 otherwise

and A⊥(x) =

{
1 if x = 1
0 otherwise

.

For more details concerning aggregation functions we recommend monographs
[1,2,5].

An aggregation function A ∈ An is called symmetric whenever

A(x) = A(xσ) for any x ∈ [0, 1]n

and any permutation σ ∈ Pn, where xσ = (xσ(1), . . . , xσ(n)).
Observe that the class Pn can be generated by two permutations, say σ1 and
σ2 (i.e., any σ ∈ Pn can be obtained from σ1 and σ2, applying the composition
operator consecutively), and then the symmetry of an aggregation function A is
characterized by the equality

A(x) = A(xσ1) = A(xσ2) valid for each x ∈ [0, 1]n.

As one example recall σ1 = (2, 1, 3, . . . , n) and σ2 = (2, 3, . . . , n, 1).
The class of all n-ary symmetric aggregation functions is denoted as Ans.

It is evident that Ans is a sublattice of An with the top element A� and the
bottom element A⊥. Both classes An and Ans are closed under composition by
means of B ∈ Ak, i.e.,
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◦ for any k ≥ 2, B ∈ Ak and A1, . . . , Ak ∈ An (A1, . . . , Ak ∈ Ans) also the
composite B(A1, . . . , Ak) ∈ An (B(A1, . . . , Ak) ∈ Ans).

Among several other properties of aggregation functions discussed in [1,2,5],
we recall the idempotency. An aggregation function A ∈ An is called idempotent
(averaging, compensative) whenever

A(c) = A(c, . . . , c) for any constant c ∈ [0, 1].

Equivalently, the idempotency of aggregation functions can be characterized by
the averaging property

min(x1, . . . , xn) ≤ A(x) ≤ max(x1, . . . , xn).

3 Symmetrization Methods for Aggregation Functions

Any symmetrization method for (n-ary) aggregation functions should assign to
an aggregation function A ∈ An some idempotent aggregation function As ∈
Ans. We expect that any such reasonable symmetrization method

• does not change the symmetric aggregation functions, i.e.,

A = As whenever A ∈ Ans, and

• preserves the ordering of aggregation functions, i.e.,

if A,B ∈ An, A ≤ B, then As ≤ Bs.

Formally, we propose the next axiomatic approach to symmetrization of aggre-
gation functions.

Definition 1. A mapping ϕ : An → Ans is called a symmetrization method (for
n-ary aggregation functions) whenever it is simultaneously

(i) an order homomorphism;
(ii) a projection.

Hence, ϕ : An → Ans is a symmetrization method whenever

A,B ∈ An, A ≤ B, implies ϕ(A) ≤ ϕ(B), and ϕ(A) = A for any A ∈ Ans.

Clearly, then ϕ(ϕ(A)) = ϕ(A). All till now mentioned symmetrization methods
(recall F+, F− and F(σ)) satisfy Definition 1. They are based on the permutation
(.) ∈ Pn which depends on x. This observation allows to split the class of all
symmetrization methods into two subclasses:

• input dependent symmetrization methods;
• input independent symmetrization methods.
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Note that though the input vector x is necessarily considered when processing
ϕ(A)(x) for any symmetrization method ϕ, the above partition indicates whether
the introduction of ϕ requires the determination of x-dependent permutation (.)
or not. The next results allow to introduce a rich variety of symmetrization
methods of both kinds.

Theorem 1. For a fixed k ≥ 1, for any idempotent aggregation function B ∈ Ak

and k-tuple K = (σ1, . . . , σk) ∈ (Pn)k of permutations, the mapping ϕ : An →
Ans given by

ϕ(A) = AB,K = B(A(σ1), . . . , A(σk)), i.e.,
AB,K(x) = B(A(x(σ1)), . . . , A(x(σk)))

is an input dependent symmetrization method.

Proof.

(i) Note that if k = 1 then B(x) = x, x ∈ [0, 1], and K = (σ) ∈ Pn, and thus
AB,K = A(σ).

(ii) For k ≥ 2, the symmetry of ϕ(A) was discussed in Sect. 2. Moreover, if
A ∈ Ans then A(σ) = A for any σ ∈ Pn. Then the idempotency of B ensures
ϕ(A) = B(A(σ1), . . . , A(σk)) = B(A, . . . , A) = A, thus proving that ϕ is a
symmetrization method. Clearly, it is input dependent. �

To illustrate Theorem 1, consider n = 3, k = 2,K = (id, rev) and B ∈ A2 given
by B(x1, x2) = x1+2x2

3 . Then, for any A ∈ A3,

AB,K(x1, x2, x3) =
A(x(1), x(2), x(3)) + 2A(x(3), x(2), x(1))

3
.

Suppose A(x1, x2, x3) = 6
√

x1x2
2x3

3 (i.e., A is a weighted geometric mean). Then

AB,K(x1, x2, x3) = 6
√

x1x2x3

2 6
√

x(1) + 3
√

x(3)

3
6
√

x(2)

= 6
√

x1x2x3
2 3

√
min(x1, x2, x3) + 3

√
max(x1, x2, x3)

3
6
√

med(x1, x2, x3).

The symmetry of AB,K is obvious.

Theorem 2. Let B ∈ An! be an idempotent symmetric aggregation function of
dimension n!. Then the mapping ϕ : An → Ans given by ϕ(A) = AB,

AB(x) = B(A(xσ)|σ ∈ Pn),

where xσ = (xσ(1), . . . , xσ(n)), and AB is the B-aggregation of all n! values
A(xσ), σ ∈ Pn, is an input independent symmetrization method.



30 R. Mesiar and A. Stupňanová

Proof. Evidently, AB is an n-ary aggregation function not dependent on
x-dependent permutation (.). Moreover, due to the facts that for any permu-
tation τ ∈ Pn, it holds

{σ ◦ τ |σ ∈ Pn} = Pn, and (xτ )σ = xσ◦τ ,

we have

AB(xτ ) = B(A(xσ◦τ )|σ ∈ Pn) = B(A(xσ)|σ ∈ Pn) = AB(x).

Hence AB is symmetric. Finally, if A ∈ Ans, the idempotency of B ensures AB =
A. Summarizing, we have shown that ϕ is an input independent symmetrization
method. �

It is evident that that if B1, B2 ∈ An!, B1 ≤ B2, then also AB1 ≤ AB2 for any
A ∈ An.

Recall that the greatest idempotent aggregation function is the max operator,
while the smallest one is the min operator. Moreover, both these functions are
symmetric. These facts indicate the next interesting result.

Theorem 3. Denote ϕ∗(A) = A∗ = Amax and ϕ∗(A) = A∗ = Amin. Then for
any symmetrization method ϕ and any A ∈ An it holds

ϕ∗(A) ≤ ϕ(A) ≤ ϕ∗(A),

i.e., ϕ∗ is the greatest symmetrization method and ϕ∗ is the smallest symmetriza-
tion method.

Proof. Recall that A(xid) = A(x) and thus A∗ ≤ A ≤ A∗. Due to the preserva-
tion of order of any symmetrization method ϕ it holds

ϕ∗(A) = A∗ = ϕ(A∗) ≤ ϕ(A) ≤ ϕ(A∗) = A∗ = ϕ∗(A). �

Note that extremal symmetrizations A∗ and A∗ were introduced and discussed
in our recent paper [6].

As an interesting input independent symmetrization method we recall that
the arithmetic mean AM satisfies all constraints of Theorem 3, and then

AAM(x) =
1
n!

∑
σ∈Pn

A(xσ).

4 Examples

As a prototypical aggregation function which is not symmetric we recall the
weighted arithmetic mean Ww : [0, 1]n → [0, 1] given by

Ww(x) =
n∑

i=1

wixi,
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where the weighting vector w ∈ [0, 1]n satisfies
n∑

i=1

wi = 1 and w 	= (
1
n , . . . , 1

n

)
(obviously, if w =

(
1
n , . . . , 1

n

)
then Ww = AM is the arithmetic mean which

is a symmetric aggregation function). Then, applying different symmetrization
methods, it holds:

• (Ww)AM = AM;
• (Ww)∗ = OWAw∗ is the OWA operator [7], where w∗ = (w[1], . . . , w[n]),

[.] ∈ Pn being a permutation such that w[1] ≤ w[2] ≤ · · · ≤ w[n], and then

(Ww)∗ (x) =
n∑

i=1

w[i]x(i);

note that vectors w∗ and (x(1), . . . , x(n)) are increasing, i.e., we multiply the
smallest weight w[1] and the smallest input x(1), and so one, till the product
of the greatest weight w[n] and the greatest input x(n);

• (Ww)∗ = OWAw∗ , where w∗ = (w[n], . . . , w[1]), and hence

(Ww)∗ (x) =
n∑

i=1

w[n−i+1]x(i);

here the greatest weight w[n] multiplies the smallest input x(1), etc.
• considering the input dependent symmetrization method AB,K introduced in

the previous section for B(x1, x2) = x1+2x2
3 and K = (id, rev), we have

(Ww)B,K (x) =
1
3

(
n∑

i=1

wix(i) + 2
n∑

i=1

wix(n−i+1)

)
=

n∑
i=1

vix(i) = OWAv,

where, for i = 1, . . . , n, the weight vi is given by vi = 1
3 (wi + 2wn−i+1).

For n = 3, let w = (0.5, 0.3, 0.2) and x = (0.4, 0.8, 0.6). Then

Ww(x) = 0.56,

(Ww)AM(x) = 0.6,

(Ww)∗ (x) = OWA(0.2,0.3,0.5)(0.4, 0.8, 0.6) = 0.66,

(Ww)∗ (x) = OWA(0.5,0.3,0.2)(0.4, 0.8, 0.6) = 0.54,

(Ww)B,K (x) =
1
3

(Ww(0.4, 0.6, 0.8) + 2Ww(0.8, 0.6, 0.4))

= OWA(0.3,0.3,0.4)(0.4, 0.8, 0.6) = 0.62.

As another example, consider the weighted geometric mean

G(w1,1−w1)(x1, x2) = x1
w1x2

1−w1 ,

which is not symmetric whenever w1 	= 1
2 . Note that now n = n! = 2. Let

Bp ∈ A2 be a power-root operator given by

Bp(x1, x2) =
(

x1
p + x2

p

2

) 1
p

,
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where p ∈ R\{0}, and B0 = G is the geometric mean. Then, following Theorem 3,
we have

(
G(w1,1−w1)

)
Bp

(x1, x2) =
(

(x1
w1x2

1−w1)p + (x1
1−w1x2

w1)p

2

) 1
p

= (x1x2)αBp(x1
1−2α, x2

1−2α),

where α = min(w1, 1 − w1).

5 Concluding Remarks

We have introduced an axiomatic approach to symmetrization methods for
aggregation functions. These methods belong either to input dependent methods
(where the x-dependent permutation (.) ∈ Pn is considered) or to input inde-
pendent methods. We have also shown two extremal symmetrization methods.
Proposed approaches were illustrated by some examples, with a particular stress
on the symmetrization of the weighted arithmetic means. Note that the extremal
symmetrized weighted arithmetic means W ∗ and W∗ can be seen as solutions
of optimization methods and they can be related to the Hungarian algorithm
[3] known from the area of linear optimization. For more details see [6]. Note
also that one can further extend the problem of symmetrization of aggregation
functions related to weighting vectors, where the symmetrization is related to
both input vector x and the weighting vector w. This approach was initiated in
[6] and we expect its deeper study in the near future.
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Abstract. Event-based transformations of capacities are discussed. We
study 4 particular event-based transformations of capacities and their
convex closures. Due to commuting of convex combinations and our
transformations, it is enough to examine four basic transformations of
boolean capacities only.

Keywords: Boolean capacity · Capacity · Transformation · Fuzzy
integral

1 Introduction

Capacities on a finite universe N of n criteria are commonly applied in multicri-
teria decision support [10–12]. Let us denote N = {1, 2, ..., n} without any loss
of generality. By a capacity we mean a monotone set function m : 2N → [0, 1]
satisfying two boundary conditions m(∅) = 0 and m(N ) = 1. If, additionally, m
is additive namely, m(A∪B) = m(A)+m(B) for any disjoint events A,B ∈ 2N ,
then m is a discrete probability. A mapping that maps a capacity onto another
capacity determined by a fixed event is called an event-based capacity trans-
formation. Recall that capacities in multicriteria decision support express the
weights of groups of criteria, enabling to model the interactions between criteria.
Subsequently, they are used to build utility functions by means of several kinds
of fuzzy integrals, including the Choquet, Sugeno, concave, decomposition and
other integrals [5,7,10,11,16]. Inspired by the idea of conditional probabilities,
when, for any probability P and event B satisfying P (B) > 0, P is transformed
into a new probability measure P (./B), the concept of event-based transforma-
tion of capacities was proposed and studied in recent papers [2,8,14,15]. The aim
of this contribution is a further development in this direction, studying four par-
ticular event-based transformations of capacities and their convex combinations,
including links between these transformations. Our main results are presented
in the Sects. 2 and 3 brings a complete description of the discussed event-based
transformations in the case n = 2.
c© Springer International Publishing AG 2017
V. Torra et al. (Eds.): MDAI 2017, LNAI 10571, pp. 33–39, 2017.
DOI: 10.1007/978-3-319-67422-3 4
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2 Event Based Transforms

Let us denote by Mn the set of all capacities on N . Considering the standard
partial ordering of real set functions, Mn is a complete distributive lattice with
the top element m∗ and the bottom element m∗, given respectively by

m∗(E) =
{

0 ifE = ∅
1 otherwise (1)

and

m∗(E) =
{

1 if E = N
0 otherwise. (2)

Formally a mapping ψ : Mn → Mn is called a capacity transformation. If for
any event B ⊆ N , we have a system Φ =

(
ψB

)
B⊆N of capacity transforma-

tions, where ψB depends on B only, then Φ is called an event-based capacity
transformation system, and ψB is called a B-based capacity transform.

Note that the conditional probability transformation is not a probability
transformation, in general. This is caused by the failure of this approach in the
case when P (B) = 0. On the other hand, the formula P (B ∩ E)/P (B ∪ Ec)
(with convention 0/0 = 1) can be applied for any probability measure P and
any events B,E ⊆ N , preserving the monotonicity and boundary conditions in E
(i.e., defining a capacity), but violating the additivity, in general. This approach
can be applied to any capacity m ∈ Mn, thus yielding a capacity transformation
τ given by, for any fixed B ⊆ N , τB(m)(E) = m(B ∩ E)/m(B ∪ Ec). Recall
now the valuation property (i.e., modularity) of capacities characterized by the
validity of equation (for any subsets B and E of N )

m(E) + m(B) = m(B ∪ E) + m(B ∩ E),

or, equivalently

m(E) = m(B ∪ E) − m(B) + m(B ∩ E). (3)

Interestingly, considering the right-hand side of (3) for a fixed B, and an arbitrary
capacity m ∈ Mn, the set function εB(m) defined on 2N by

εB(m)(E) = m(B ∪ E) − m(B) + m(B ∩ E)

is a capacity transformation. We consider this capacity transformation and some
related capacity transformations in the next example.

Example 1. Fix B ∈ N . Denote by εB , αB , βB and γB the maps over Mn

defined by

εB(m)(E) = m(B ∪ E) − m(B) + m(B ∩ E) (4)
αB(m)(E) = m(B ∪ E) − m(B ∩ Ec) (5)
βB(m)(E) = 1 − m(B ∪ Ec) + m(B ∩ E) (6)
γB(m)(E) = 1 − m(B ∪ Ec) + m(B) − m(B ∩ Ec) (7)
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for m ∈ Mn and E ⊆ N . Then each of εB , αB , βB and γB is a B-based capacity
transformation.

Observe that each of these transformations is related to some representation
of E, namely,

εB :→ E = ((B ∪ E) \ B) ∪ (B ∩ E); αB :→ E = (B ∪ E) \ (B ∩ Ec)
βB :→ E = (N \(B∪Ec))∪(B∩E); γB :→ E = (N \(B∪Ec))∪(B\(B∩Ec)).

Moreover for every (a1, a2, a3, a4) ∈ [0, 1]4 with
∑4

i=1 ai = 1, a1εB + a2αB +
a3βB + a4γB is also a B-based capacity transformation.

Remark 1.

(i) Observe that if B = N then εN (m) = βN (m) = m and αN (m) = γN (m) =
md. Similarly for B = ∅, ε∅(m) = α∅(m) = m, β∅(m) = γ∅(m) = md, where
md denotes the dual measure given by md(E) = 1 − m(Ec).

(ii) We focus on capacity transformations introduced in Example 1 due to the
fact that they are compatible with the convex structure of the set Mn of
all capacities on N . Note that this is not the case of many other possible
capacity transformations, such as the τ transformation introduced above.

Observe that the transformation βB is based on the Lukasiewicz implica-
tion [1,4,6,9], while the transformation αB can be derived by means of the
Lukasiewicz coimplication [3]. Note also that while the transformation βB was
introduced and studied already in [2,7,13,14] the remaining transformations εB ,
αB and γB are, up to our best knowledge, presented for the first time in this
paper. It is not difficult to see that, given B ⊆ N , the transformations εB , αB , βB

and γB are independent in that sense that none of them can be obtained as a
convex combination of the remaining three transformations. Moreover, any com-
position of two of these transformations results into a B-based transformation.
The structure of these compositions is described in the next Theorem.

Theorem 1. For all B, the set GB = {εB , αB , βB , γB} is an Abelian group with
neutral element εB under the composition “◦” operation of functions, given by
the following table.

◦ εB αB βB γB

εB εB αB βB γB

αB αB εB γB βB

βB βB γB εB αB

γB γB βB αB εB

Composition Table

Moreover, GB
∼= Z

+
2 × Z

+
2 so that εB ∼ (0, 0), αB ∼ (1, 0), βB ∼ (0, 1) and

γB ∼ (1, 1).

The convex closure of GB denoted by HB is given by

HB =
{

a1εB +a2αB +a3βB +a4γB | (a1, a2, a3, a4) ∈ [0, 1]4,
4∑

i=1

ai = 1
}

(8)
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It follows from the definition of HB that each of its elements which is of
the form a1εB + a2αB + a3βB + a4γB can be identified with the vector a =
(a1, a2, a3, a4) ∈ [0, 1]4, a1 + a2 + a3 + a4 = 1. Thus under this new notation,
we have εB ∼ (1, 0, 0, 0) and εB+αB+βB+γB

4 ∼ ( 14 , 1
4 , 1

4 , 1
4 ). The composition ◦

of transformations φ, ψ ∈ HB , η = φ ◦ ψ, is defined, when the vector repre-
sentation φ ∼ a, ψ ∼ b and η ∼ c is considered, is defined as follows. For
a,b ∈ [0, 1]4, a ◦ b = b ◦ a = c = (c1, c2, c3, c4), where c1 =

∑4
i=1 aibi and

ck =
∑

i�=j
|i+j−5|=4−k

aibj , k = 2, 3, 4. The next result follows immediately.

Theorem 2. HB is an Abelian semigroup with neutral element εB and annihi-
lator (zero element) εB+αB+βB+γB

4 .

Theorem 3. Let Bn = {m ∈ Mn| Range(m) = {0, 1}} be the set of all boolean
capacities. For all φ ∈ GB , B ⊆ N B ⊆ N , the transformation φ can be
restricted to act on boolean capacities from Bn, φ|Bn

: Bn → Bn (i.e., φ maps
boolean capacities onto boolean capacities).

Proof. The proof follows immediately from the definitions of the transformations.

Theorem 4. For all φ ∈ HB, B ⊆ N , φ commutes with all convex combina-
tions,

φ(
k∑

i=1

λimi) =
k∑

i=1

λiφ(mi)

where λi ∈ [0.1] for each i ∈ N and
∑n

i=1 λi = 1.

Recall that Dirac measures δ1, ...δn : 2N → [0, 1] are given, for i ∈ N , by

δi(A) =
{

1 if i ∈ A
0 otherwise. (9)

Directly one can check that for any δi, B ⊆ N , φ ∈ GB we have φ(δi) =
δi. It follows that ∀φ ∈ HB , φ(δi) = δi. Moreover, it has been shown that
only Dirac measures are totally invariant (i.e., for any B ⊆ N , φ ∈ HB , and
m ∈ Mn: φ(m) ≡ m). From the fact that Mn is the convex closure of Bn (see,
for example, [12]) and due to Theorem 4, it is enough to know, for fixed B ⊆ N ,
transforms ψ(μ) for all boolean capacities μ ∈ Bn and ψ ∈ GB , then for any
η ∼ a = (a1, a2, a3, a4) ∈ HB and m ∈ Mn, m =

∑k
i=1 λiμi, μi ∈ Bn, we have

η(m) = a1

k∑
i=1

λiεB(μi) + a2

k∑
i=1

λiαB(μi) + a3

k∑
i=1

λiβB(μi) + a4

k∑
i=1

λiγB(μi)

(10)

3 Complete Description of Tranformations of Capacities
from M2

In this section, we describe completely the action of transformations from HB

in the case when n = 2, considering arbitrary B ⊆ {1, 2} and arbitrary capacity
m ∈ M2.
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Example 2. For n = 2, we have only four boolean measures : δ1, δ2,m
∗ and

m∗. δ1 and δ2 are totally invariant; each m ∈ M2 is uniquely determined
by (m({1});m({2})). Thus we will use, as an abbreviation, the notation m ∼
(m({1});m({2})). Observe that due to this representation there is a one-to-one
correspondence between the capacities from M2 and couples from [0, 1]2. Due
to the total invariantness of Dirac functions, we need to know the B-transforms
of extremal capacities m∗ and m∗ only. We will describe these transformations
for any B ⊆ {1, 2} and all basic transformations εB , αB , βB and γB .
For m∗ ∼ (1, 1), it holds:

ε∅(m∗) = ε{1,2}(m∗) = m∗; ε{1}(m∗) ∼ (1, 0) ∼ δ1; ε{2}(m∗) ∼ (0, 1) ∼ δ2.
α∅(m∗) = m∗ ∼ (1, 1); α{1,2}(m∗) = m∗ ∼ (0, 0), α{1}(m∗) ∼ (1, 0) ∼ δ1;
α{2}(m∗) ∼ (0, 1) ∼ δ2.
β∅(m∗) = m∗ ∼ (0, 0); β{1,2}(m∗) = m∗ ∼ (1, 1), β{1}(m∗) ∼ (1, 0) ∼ δ1;
β{2}(m∗) ∼ (0, 1) ∼ δ2.
γ∅(m∗) = m∗ = γ{1,2}(m∗) ∼ (0, 0), γ{1}(m∗) ∼ (1, 0) ∼ δ1; γ{2}(m∗) ∼
(0, 1) ∼ δ2.

Summarising, for any φ ∈ HB , φ ∼ a = (a1, a2, a3, a4) it holds : if B = ∅ then
φ(m∗) = sa1+a2 ∼ (a1 + a2, a1 + a2), where sc ∼ (c, c) is a symmetric capacity
on {1, 2} such that sc({1}) = sc({2}) = c; when B = {1, 2} we have φ(m∗) =
sa1+a3 ∼ (a1+a3, a1+a3); when B = {1} we have φ(m∗) = δ1 and when B = {2}
we have φ(m∗) = δ2; similarly, for m∗ it holds: when B = ∅, φ(m∗) = sa3+a4 ;
when B = {1, 2}, it holds φ(m∗) = sa2+a4 ; when B = {1} we have φ(m∗) = δ2
and finally when B = {2} we have φ(m∗) = δ1.

Now we know φ(μ) for all μ ∈ B2. For any capacity m ∈ B2, m ∼ (a, b), we
have the following cases.

Case I:
If a = b, i.e., m = sa, then m = am∗ + (1 − a)m∗ and we have, when
B = ∅, it holds φ(m) = aφ(m∗) + (1 − a)φ(m∗) = asa1+a2 + (1 − a)sa3+a4 =
sa(a1+a2)+(1−a)(a3+a4); when B = {1, 2} we have φ(m) = sa(a1+a3)+(1−a)(a2+a4);
when B = {1} we have φ(m) = aδ1 + (1 − a)δ2 ∼ (a, 1 − a) and finally when
B = {2} we have φ(m) = aδ2 + (1 − a)δ1 ∼ (1 − a, a).

Case II:
If a > b, then m = bm∗+(a−b)δ1+(1−a)m∗ and we have, when B = ∅, it holds:
φ(m) = bφ(m∗) + (a − b)φ(δ1) = bsa1+a2 + (a − b)δ1 + (1 − a) + (1 − a)φ(m∗) ∼
(b(a1+a2)+a−b)+(1−a)(a3+a4), b(a1+a2))+(1−a)(a3+a4); when B = {1, 2}
we have φ(m) ∼ (b(a1+a3)+a−b)+(1−a)(a2+a4), b(a1+a3)+(1−a)(a2+a4));
when B = {1} we have φ(m) = aδ1 + (1 − a)δ2 ∼ (a, 1 − a) and finally when
B = {2} we have φ(m) = bδ2 + (a − b)δ1 + (1 − a)δ1 ∼ (1 − b, b).

Case III:
If a < b, then m = am∗ + (b − a)δ2 + (1 − b)m∗ and we have, when B = ∅, it
holds : φ(m) ∼ (a(a1 +a2)+(1− b)(a3 +a4), a(a1 +a2)+ b−a+(1− b)(a3 +a4);
when B = {1, 2} we have φ(m) ∼ (a(a1 + a2) + (1 − b)(a2 + a4), a(a1 + a3) + b −
a + (1 − b)(a2 + a4)); when B = {1}, it holds φ(m) ∼ (a, 1 − a) and finally when
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B = {2} we have φ(m) =∼ (1 − b, b). Observe that always if a + b = 1, i.e., if m
is additive, we have φ(m) = m, independently of B ⊆ {1, 2}.

4 Concluding Remarks

We have introduced four types of event-based transformations of capacities and
studied their relationships, including the structure of their convex closure. While
our four transformations form an Abelian group GB

∼= Z
+
2 × Z

+
2 , the cor-

responding convex closure HB is an Abelian semigroup with an annihilator.
We have examplified all discussed transformations in the simpliest non-trivial
case, i.e., when n = 2. Recall that the study of event-based transformations of
capacities was inspired by conditional probabilities. Having in mind importance
and applicability of Bayesian approaches based on conditional probabilities, we
believe that also the idea of event-based transformations of capacities will grow
and bring new views into the large area of multicriteria decision support.
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Abstract. The pan-integrals are based on a special type of commutative
isotonic semiring (R+,⊕,⊗) and the monotone measures µ defined on a
measurable space (X,A). On the other hand, based on a pan-addition
⊕ each monotone measure µ generates a new monotone measure µ⊕
which is called the ⊕-optimal measure (to µ and ⊕). Such monotone
measure µ⊕ is greater than or equal to µ and it is super-⊕-additive (i.e.,
µ⊕(A ∪ B) ≥ µ⊕(A) ⊕ µ⊕(B) whenever A,B ∈ A, A ∩ B = ∅). In this
note, we shall present some new properties of the pan-integral. It is shown
that the pan-integral with respect to µ coincides with the pan-integral
with respect to µ⊕ on a given pan-space (X,A, µ, R+,⊕,⊗). As a special
case of this result, we show that the ⊕-optimal measure derived from µ
is totally balanced for the pan-integrals.

Keywords: Motonone measure · Pan-integral · Optimal measure ·
Pan-addition · Pan-multiplication · Super-⊕-additivity

1 Introduction

In nonlinear integral theory there are several prominent integrals, for example,
the Choquet integral [3], the Sugeno integral [19], the pan-integral [23] and the
concave integral introduced by Lehrer [8], etc. The pan-integral introduced in
[23] (see also [21]) is based on a monotone measure μ and relates to a com-
mutative isotonic semiring (R+,⊕,⊗), where ⊕ is a pan-addition and ⊗ is
a pan-multiplication related by the distributivity property [21,23]. This inte-
gral generalizes the Lebesgue integral and Sugeno integral, i.e., when consider-
ing a σ-additive measure m and the commutative isotonic semiring (R+,+, ·),
the Lebesgue integral coincides the pan-integral based on the usual addition
+ and multiplication ·, and considering a monotone measure μ and the com-
mutative isotonic semiring (R+,∨,∧), the Sugeno integral coincides the pan-
integral with respect to (∨,∧). The researches on this topic can be also found in
[1,5,12,16,17,20,24].

In this paper we present some new properties of the pan-integrals. This
study comes from the following problem related to the Lebesgue integral and
the concave integral: Let (X,m,A) be a measure space. For any A ∈ A, con-
sidering Lebesgue integration of the characteristic function χA, then we have
c© Springer International Publishing AG 2017
V. Torra et al. (Eds.): MDAI 2017, LNAI 10571, pp. 40–50, 2017.
DOI: 10.1007/978-3-319-67422-3 5
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∫
χAdm = m(A). Note that when we consider nonlinear integrals with respect

to monotone measure μ, integrating the characteristic function χA the above
discussed equality holds also for several nonlinear integrals with respect to
monotone measure, including the Choquet integral, Shilkret integral [18] or
Sugeno integral [19] (assuming μ(X) = 1), and all integrals which are both
universal [7] and decomposable [15] (see also [6]). In general, for the concave
integrals or the pan-integrals, we have always integral from characteristic func-
tion greater or equal the measure of the corresponding measurable set, and thus
the violation of the equality, which is possible for both types of integrals, neces-
sarily means that integral is greater than the measure of the corresponding set.
If a monotone measure ν satisfies

∫
χAdν = ν(A) for every A ∈ A, then ν is

called totally balanced (with respect to the involved integral), see [9]. In the case
of the concave integral, Lehrer study the above mentioned problem [9].

Given a monotone measure ν over (X,A), one can define a monotone measure
ν̂cav generated by ν, by using the concave integral [9], as follows:

ν̂cav(A) = (cav)
∫

χAdν, ∀A ∈ A.

Then the following properties hold [9]:

(i) ν ≤ ν̂cav, i.e., ∀A ∈ A, ν(A) ≤ ν̂cav(A);
(ii) for all nonnegative measurable function f ,

(cav)
∫

fdν̂ = (cav)
∫

fdν;

(iii) ν̂cav(A) =
∫ cav

χAdν̂cav, i.e., ˆ̂νcav = ν̂cav.

This show that the monotone measure ν̂cav is totally balanced (with respect
to the concave integral).

In this paper we shall make some researches on this topic in the case of
pan-integrals.

Let (X,A, μ,R+,⊕,⊗) be a given pan-space [21]. Similarly, if we define a
new set function μ̂pan generated by μ, as follows:

μ̂pan(A) = (p)
∫

χAdμ, ∀A ∈ A,

then ν̂pan is a monotone measure, and it is just the ⊕-optimal measure μ⊕ to μ
(see [10]), i.e.,

μ⊕(A) = (p)
∫

χAdμ, ∀A ∈ A.

We shall prove that the pan-integral with respect to μ coincides with the
pan-integral with respect to μ⊕. Thus we only need to discuss the pan-integrals
with respect to μ⊕. As a special case of the result, we can see that the ⊕-optimal
measure derived from μ is totally balanced for the pan-integrals.
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2 Preliminaries

Let X be a nonempty set, A a σ-algebra of subsets of X, R+ = [0,+∞) and
R+ = [0,+∞]. A set function μ : A → R+ is called a monotone measure on
(X,A) [21], if it satisfies the following conditions:

(1) μ(∅) = 0 and μ(X) > 0;
(2) μ(A) ≤ μ(B) whenever A ⊂ B and A,B ∈ A.

The triple (X,A, μ) is called a monotone measure space [17,21].
In this paper we restrict our discussion on a fixed measurable space (X,A).

Unless stated otherwise all the subsets mentioned are supposed to belong to A.
M denotes the set of all monotone measures defined on (X,A).

The concept of a pan-integral involves two binary operations, the pan-
addition ⊕ and pan-multiplication ⊗ on non-negative real numbers [21,23]

Definition 1. An binary operation ⊕ on R+ is called a pan-addition if it sat-
isfies the following requirements:

(PA1) a ⊕ b = b ⊕ a = a (commutativity);
(PA2) (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) (associativity);
(PA3) a ≤ c and b ≤ d imply that a ⊕ b ≤ c ⊕ d (monotonicity);
(PA4) a ⊕ 0 = a (neutral element);
(PA5) an → a and bn → b imply that an ⊕ bn → a ⊕ b (continuity).

Definition 2. Let ⊕ be a given pan-addition on R+. A binary operation ⊗
on R+ is said to be a pan-multiplication corresponding to ⊕ if it satisfies the
following properties:

(PM1) a ⊗ b = b ⊗ a (commutativity);
(PM2) (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c) (associativity);
(PM3) a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) (distributive law);
(PM4) a ≤ b implies (a ⊗ c) ≤ (b ⊗ c) for any c (monotonicity);
(PM5) a ⊗ b = 0 ⇔ a = 0 or b = 0 (annihilator);
(PM6) there exists e ∈ R+ such that e⊗a = a for any a ∈ R+ (neutral element);
(PM7) an → a ∈ [0,∞) and bn → b ∈ [0,∞) imply (an ⊗ bn) → (a ⊗ b)

(continuity).

When ⊕ is a pseudo-addition on R+ and ⊗ is a pseudo-multiplication (with
respect to ⊕) on R+, the triple (R+,⊕,⊗) is called a commutative isotonic semi-
ring (with respect to ⊕ and ⊗) and (X,A, μ,R+,⊕,⊗) is called a pan-space [21].

Notice that similar operations called pseudo-addition and pseudo-
multiplication can be found in the literature [1,2,4,5,11,14,17,20,24].

Let ⊕ be a given pan-addition, μ ∈ M. μ is called

(1) sub-⊕-additive, if μ(A ∪ B) ≤ μ(A) ⊕ μ(B) whenever A,B ∈ A;
(2) super-⊕-additive, if μ(A∪B) ≥ μ(A)⊕μ(B) whenever A,B ∈ A, A∩B = ∅;
(3) ⊕-additive, if μ(A ∪ B) = μ(A) ⊕ μ(B) for any A,B ∈ A, A ∩ B = ∅.
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3 Optimal Measures

We recall the concept of optimal measure with respect to a monotone measure
μ and a pan-addition ⊕, see [10].

Definition 3. Given a pan-addition ⊕ and μ ∈ M. The set function μ⊕ : A →
R+ defined by

μ⊕(A) = sup

{
n⊕

i=1

μ
(
A ∩ Ei

) | {Ei}ni=1 ∈ P̂
}

, A ∈ A. (1)

is called the ⊕-optimal measure to μ and ⊕. Moreover, μ is called a ⊕-optimal
measure whenever μ = μ⊕.

The following properties (i)–(iv) are due to [10].

(i) For any μ ∈ M, then μ⊕ ∈ M.
(ii) For each A ∈ A,

μ⊕(A) = sup

{
n⊕

i=1

μ
(
Fi

) | {Fi}ni=1 ∈ A ∩ P̂
}

,

where A ∩ P̂ denotes the set of all finite measurable partitions of A.
(iii) μ ≤ μ⊕, i.e., μ(A) ≤ μ⊕(A) for each A ∈ A.
(iv) (μ⊕)⊕ = μ⊕ for each μ ∈ M.

Proposition 1. Given a pan-addition ⊕ and μ ∈ M. Then μ is ⊕-optimal
measure if and only if μ is super-⊕-additive.

From the above Proposition 1 and property (iv), μ⊕ is ⊕-optimal measure,
and hence μ⊕ is super-⊕-additive.

Proposition 2. Given a pan-addition ⊕ and μ ∈ M. Then μ⊕ is ⊕-optimal
measure, i.e., (μ⊕)⊕ = μ⊕, and hence μ⊕ is super-⊕-additive.

Proof. It follows from Proposition 1 and property (iv).

4 Pan-Integrals

The concept of pan-integral based on pan-addition ⊕ and pan-multiplication ⊗
was introduced in [23] (see also [21,22,24]).

A finite measurable partition of X is a finite disjoint system of sets {Ai}ni=1 ⊂
A such that Ai∩Aj = ∅ for i �= j and ∪n

i=1Ai = X. The set of all finite measurable
partitions of X is denoted by P̂.

We restrict the discussion to a given pan-space (X,A, μ,R+,⊕,⊗).
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Let A ∈ A. A (generalized) real-valued function defined on X given by

χA =
{

e if x ∈ A,
0 otherwise

is called the pseudo-characteristic function of A, where e is fixed neutral element
of ⊗. A real-valued function defined on X given by

s(x) =
n⊕

i=1

[
ai ⊗ χAi

(x)
]

is called a pseudo-simple function (with respect to (⊕,⊗)), where ai ∈ R+, i =
1, 2, . . . , n, {Ai}ni=1 ∈ P̂.

Let S denote the set of all pseudo-simple functions on X, and F+ denote the
class of all real-valued nonnegative measurable functions on (X,A). Obviously,
for any A ∈ A, χA ∈ S and S ⊂ F+.

Definition 4. Let (X,A, μ,R+,⊕,⊗) be a pan-space, A ∈ A and f ∈ F+. The
pan-integral of f on A with respect to μ, is defined by

(p)
∫ (⊕,⊗)

A

fdμ = sup
E∈P̂

{
⊕

E∈E

[(
inf

x∈A∩E
f(x)

) ⊗ μ
(
A ∩ E

)]
}

. (2)

When A = X, (p)
∫ (⊕,⊗)

A
fdμ is written as (p)

∫ (⊕,⊗)
fdμ.

If (p)
∫ (⊕,⊗)

A
fdμ < ∞, then we say that f is pan-integrable on A. When f is

pan-integrable on X, we simply say that f is pan-integrable.

The above pan-integral of f can be expressed as the following form:

(p)
∫ (⊕,⊗)

A

fdμ = sup

{
n⊕

i=1

(
λi ⊗ μ(Ai)

)
:

n⊕

i=1

[
λi ⊗ χAi

] ≤ f, {Ai}ni=1 ∈ P̂
}

.

Note that in the case of commutative isotonic semiring (R+,∨,∧), Sugeno
integral [19] is recovered, while for (R+,∨, ·), Shilkret integral [18] is covered by
the pan-integral in Definition 4.

In the rest of the paper we assume that the neutral element e in the commu-
tative isotonic semiring (R+,⊕,⊗) is finite, i.e., e < +∞. In the case of e = +∞,
⊕ = ∨ (see [14]).

The following recall some basic properties of the pan-integrals [16,21,24].

Proposition 3. Let f, g ∈ F+, A ∈ A and a ∈ R+. Then we have the following:

(1) (p)
∫ (⊕,⊗)

A
fdμ = (p)

∫ (⊕,⊗)
f ⊗ χAdμ;

(2) if f ≤ g, then (p)
∫ (⊕,⊗)

A
fdμ ≤ (p)

∫ (⊕,⊗)

A
gdμ;

(3) (p)
∫ (⊕,⊗)

a ⊗ fdμ ≥ a ⊗ (p)
∫ (⊕,⊗)

fdμ, in particular, for A ∈ A;
(p)

∫ (⊕,⊗)
a ⊗ χAdμ ≥ a ⊗ (p)

∫ (⊕,⊗)
χAdμ;

(4) (p)
∫ (⊕,⊗)

χAdμ ≥ μ(A).



Pan-Integrals Based on Optimal Measures 45

Proposition 4. Let μ ∈ A and μ⊕ be the ⊕-optimal measure to μ. Then

μ⊕(A) = (p)
∫ (⊕,⊗)

χAdμ.

Proof. It follows from definitions of μ⊕ and the pan-integral, see also [10].

5 Pan-Integral Based on Optimal Measures

Given a monotone measure μ ∈ M, similar to the discussion of the concave
integrals [9], we study the totally balance of a monotone measure μ̂pan generated
by μ and the pan-integral. As we have mentioned in Sect. 1 the monotone measure
μ̂pan is just the ⊕-optimal measure μ⊕ to μ. Though, the optimal measure μ⊕
and μ̂pan coincides, in order to compare with the case of the concave integral,
in the following we still adopt the symbols used in the discussion of concave
integrals (see [9]). We stress that the monotone measure μ̂

(⊕,⊗)
pan generated by μ

and the corresponding pan-integral does not depend on the pan-multiplication
(Proposition 4).

Given a monotone measure μ ∈ M. A nonnegative set function μ̂
(⊕,⊗)
pan gen-

erated by μ is defined as

μ̂(⊕,⊗)
pan (A) = (p)

∫ (⊕,⊗)

χAdμ, ∀A ∈ A.

Then, it follows from Proposition 3 that μ̂
(⊕,⊗)
pan ∈ M, and μ ≤ μ̂

(⊕,⊗)
pan , i.e.,

∀A ∈ A, μ(A) ≤ μ̂
(⊕,⊗)
pan (A). Moreover, we will show that μ̂

(⊕,⊗)
pan is totally

balanced (for pan-integral), i.e., ˆ̂μ(⊕,⊗)
pan = μ̂

(⊕,⊗)
pan , that is,

μ̂(⊕,⊗)
pan (A) = (p)

∫ (⊕,⊗)

χAdμ̂(⊕,⊗)
pan . (3)

On the other hand, it follows from Proposition 4 that the monotone measure
μ̂
(⊕,⊗)
pan generated by μ is just the ⊕-optimal measure μ⊕ to μ and ⊕, that is,

μ̂(⊕,⊗)
pan (A) = μ⊕(A) = (p)

∫ (⊕,⊗)

χAdμ.

Therefore, in order to prove ˆ̂μ(⊕,⊗)
pan = μ̂

(⊕,⊗)
pan , we only need to prove μ̂⊕ = μ⊕.

The following theorem is our main result.

Theorem 1. Given a pan-space (X,A, μ,R+,⊕,⊗). Then for all f ∈ F+,

(p)
∫ (⊕,⊗)

fdμ⊕ = (p)
∫ (⊕,⊗)

fdμ. (4)

In particular, for each A ∈ A, we have

(p)
∫ (⊕,⊗)

χAdμ⊕ = (p)
∫ (⊕,⊗)

χAdμ, (5)
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i.e.,

(p)
∫ (⊕,⊗)

χAdμ⊕ = μ⊕(A), (6)

that is μ̂⊕ = μ⊕.

In order to prove this theorem, we prepare two lemmas.

Lemma 1. Given (X,A, μ,R+,⊕,⊗). If A,B ∈ A and A ∩ B = ∅, then

(p)
∫ (⊕,⊗) (

χA ⊕ χB

)
dμ ≥ (p)

∫ (⊕,⊗)

χAdμ ⊕ (p)
∫ (⊕,⊗)

χBdμ. (7)

Proof. Since the optimal measure μ⊕ to μ is super-⊕-additive (see Proposi-
tion 1), therefore

μ⊕(A ∪ B) ≥ μ(A) ⊕ μ(B). (8)

On the other hand,

μ⊕(A) = (p)
∫ (⊕,⊗)

χAdμ and μ⊕(B) = (p)
∫ (⊕,⊗)

χBdμ, (9)

noting that χA ⊕ χB = χA∪B,

μ⊕(A ∪ B) = (p)
∫ (⊕,⊗) (

χA ⊕ χB

)
dμ, (10)

combining (8), (9) and (10) then the result is obtained. ��
Lemma 2. Given a pan-space (X,A, μ,R+,⊕,⊗), for any pseudo-simple
function

s(x) =
n⊕

i=1

[
ai ⊗ χAi

(x)
]
,

we have

(p)
∫ (⊕,⊗) ( n⊕

i=1

[
ai ⊗ χAi

(x)
])

dμ ≥
n⊕

i=1

{
(p)

∫ (⊕,⊗) [
ai ⊗ χAi

(x)
]
dμ

}

≥
n⊕

i=1

{
ai ⊗

(
(p)

∫ (⊕,⊗)

χAi
(x)dμ

)}
.

Proof. We only discuss the case of n = 2 without loss of generality. Suppose
s(x) = (a ⊗ χA(x)) ⊕ (b ⊗ χB(x)), where A ∩ B = ∅.

For any given ε > 0, there are pseudo-simple functions
⊕n

i=1

[
λi ⊗ χAi

(x)
]

and
⊕m

j=1

[
δj ⊗ χBj

(x)
]

such that

n⊕

i=1

[
λi ⊗ χAi

] ≤ a ⊗ χA,

m⊕

j=1

[
δj ⊗ χBi

] ≤ b ⊗ χB,
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and

(p)
∫ (⊕,⊗) (

a ⊗ χA

)
dμ <

n⊕

i=1

[
λi ⊗ μ(Ai)

]
+ ε

and

(p)
∫ (⊕,⊗) (

b ⊗ χB

)
dμ <

m⊕

j=1

[
δj ⊗ μ(Bj)

]
+ ε.

Where we can assume λi > 0, i = 1, 2, · · · , n and δj > 0, j = 1, 2, · · · ,m without
loss of generality. Note that

( ⊕n
i=1

[
λi⊗χAi

])⊕( ⊕m
j=1

[
δj ⊗χBj

])
is a pseudo-

simple function such that

( n⊕

i=1

[
λi ⊗ χAi

]) ⊕ ( m⊕

j=1

[
δj ⊗ χBj

]) ≤ (
a ⊗ χA

) ⊕ (
b ⊗ χB

)
,

therefore

(p)
∫ (⊕,⊗) (

a ⊗ χA

)
dμ

⊕
(p)

∫ (⊕,⊗) (
b ⊗ χB

)
dμ

<

n⊕

i=1

[
λi ⊗ μ(Ai)

] ⊕ m⊕

j=1

[
δj ⊗ μ(Bj)

]
+ 2ε

< (p)
∫ (⊕,⊗) (

(a ⊗ χA) ⊕ (b ⊗ χB)
)
dμ + 2ε.

Since ε is arbitrary and from Proposition 3 we have

(p)
∫ (⊕,⊗) (

(a ⊗ χA) ⊕ (b ⊗ χB)
)
dμ

≥ (p)
∫ (⊕,⊗) (

a ⊗ χA

)
dμ

⊕
(p)

∫ (⊕,⊗) (
b ⊗ χB

)
dμ

≥
(
a ⊗ (p)

∫ (⊕,⊗)

χAdμ
)⊕ (

b ⊗ (p)
∫ (⊕,⊗)

χBdμ
)
.

Similarly, for general pseudo-simple function s(x) we can prove the conclusion
of lemma. ��
Proof of Theorem 1. Obviously, we have the following inequality

(p)
∫ (⊕,⊗)

fdμ⊕ ≥ (p)
∫ (⊕,⊗)

fdμ. (11)

Now we show that the opposite inequality also holds. We assume
(p)

∫ (⊕,⊗)
fdμ⊕ < +∞, in the case of (p)

∫ (⊕,⊗)
fdμ⊕ = +∞, the proof is

similar.
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For any ε > 0, there is pseudo-simple function
⊕n

i=1

[
ai ⊗ χAi

(x)
]

such that⊕n
i=1[ai ⊗ χAi

] ≤ f and

(p)
∫ (⊕,⊗)

fdμ⊕ <

n⊕

i=1

[
ai ⊗ μ⊕(Ai)

]
+ ε. (12)

Combining Lemmas 1 and 2, and Proposition 3, we have

n⊕

i=1

[
ai ⊗ μ⊕(Ai)

]
=

n⊕

i=1

{
ai ⊗

(
(p)

∫ (⊕,⊗)

χAi
(x)dμ

)}

≤
n⊕

i=1

{
(p)

∫ (⊕,⊗) [
ai ⊗ χAi

(x)
]
dμ

}

≤ (p)
∫ (⊕,⊗) ( n⊕

i=1

[
ai ⊗ χAi

(x)
])

dμ

≤ (p)
∫ (⊕,⊗)

fdμ.

Therefore, it follows from formulation (12) that

(p)
∫ (⊕,⊗)

fdμ⊕ ≤ (p)
∫ (⊕,⊗)

fdμ + ε. (13)

Let ε → 0, then

(p)
∫ (⊕,⊗)

fdμ⊕ ≤ (p)
∫ (⊕,⊗)

fdμ (14)

and hence

(p)
∫ (⊕,⊗)

fdμ⊕ = (p)
∫ (⊕,⊗)

fdμ. (15)

The proof of theorem is completed. ��

6 Conclusions

Given a pan-space (X,A, μ,R+,⊕,⊗), we have discussed the relation between
the pan-integral with respect to μ and the pan-integral with respect to μ⊕. We
have shown that these two pan-integrals (with respect to μ and μ⊕, respectively)
are coincident for all f ∈ F+ (Theorem 1). In particular, the monotone measure
μ⊕ generated by μ is totally balanced with respect to the pan-integrals. We stress
that pan integrals for possibly two different measures μ and η coincide whenever
μ⊕ = η⊕ [13]. As optimal measures coincide with super-⊕-additive measures
(Propositions 1 and 2), this means that we have an equivalence on measures,
pan integrals coincide when measures are equivalent, and each equivalence class
is represented by its unique super-⊕-additive member (which is an optimal mea-
sure related to any of measures form the considered equivalence class), see [13].
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When we discuss the properties related to the pan-integrals based on (⊕,⊗),
we only need to consider the case that the involved monotone measures are
super-⊕-additive.
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Narukawa, Y., Navarro-Arribas, G., Yañez, C. (eds.) MDAI 2016. LNCS, vol. 9880,
pp. 107–113. Springer, Cham (2016). doi:10.1007/978-3-319-45656-0 9

17. Pap, E.: Null-Additive Set Functions. Kluwer, Dordrecht (1995)
18. Shilkret, N.: Maxitive measure and integration. Indag. Math. 33, 109–116 (1971)
19. Sugeno, M.: Theory of fuzzy integrals and its applications. Ph.D. Dissertation,

Takyo Institute of Technology (1974)
20. Sugeno, M., Murofushi, T.: Pseudo-additive measures and integrals. J. Math. Anal.

Appl. 122, 197–222 (1987)

http://dx.doi.org/10.1007/978-3-319-45656-0_9


50 J. Li et al.

21. Wang, Z., Klir, G.J.: Generalized Measure Theory. Springer, New York (2009)
22. Wang, Z., Wang, W., Klir, G.J.: Pan-integrals with respect to imprecise probabil-

ities. Int. J. Gen Syst 25, 229–243 (1996)
23. Yang, Q.: The pan-integral on fuzzy measure space. Fuzzy Math. 3, 107–114 (1985).

(in Chinese)
24. Zhang, Q., Mesiar, R., Li, J., Struk, P.: Generalized Lebesgue integral. Int. J.

Approx. Reason. 52, 427–443 (2011)



Orness and Cardinality Indices for Averaging
Inclusion-Exclusion Integrals

Aoi Honda1, Simon James2(B), and Sutharshan Rajasegarar2

1 Kyushu Institute of Technology, Iizuka, Japan
aoi@ces.kyutech.ac.jp

2 Deakin University, Burwood, Australia
{sjames,srajas}@deakin.edu.au

Abstract. The inclusion-exclusion integral is a generalization of the dis-
crete Choquet integral, defined with respect to a fuzzy measure and an
interaction operator that replaces the minimum function in the Choquet
integral’s Möbius representation. While in general this means that the
resulting operator can be non-monotone, we have previously proposed
using averaging aggregation functions for the interaction component,
which under certain requirements can produce non-linear, but still aver-
aging, operators. Here we consider how the orness of the overall function
changes depending on the chosen component functions and hence pro-
pose a simplified calculation for approximating the orness of an averaging
inclusion-exclusion integral.

1 Introduction

Understanding interaction amongst variables is not easy. An important problem
in data analysis and supervised learning is how to determine the importance of
different predictor variables, however in addition to overall importance, it may
be that variables have different effects in different parts of the domain or that
they interact in some way.

The Choquet integral [1,2] has been studied in the context of decision making
for over 20 years and is useful in terms of its ability to model interaction effects
while also being relatively easy to interpret. On this latter virtue, the ability to
make use of a function like the Choquet integral in data analysis is predominantly
thanks to the dedicated works that have developed alternative representations,
measures of importance, interaction indices, and so forth (e.g. [3,4]). In this
work, we focus on the orness [5] and cardinality indices [6] and how they can
be extended to the inclusion-exclusion integral, a generalization of the Choquet
integral that was proposed in [7], with further studies in e.g. [8].

As well as using a fuzzy measure in its definition, the inclusion-exclusion
integral (IE-integral) employs an interaction operator I(x|A) defined for 2, . . . , n
variables. It can be interpreted as breaking down the inputs into positive and
negative interacting contributions in an analogous way to the Möbius repre-
sentation of a fuzzy measure. In some cases this will result in non-monotone
operators. In [9] the idea of using averaging functions for I(x|A) was proposed
c© Springer International Publishing AG 2017
V. Torra et al. (Eds.): MDAI 2017, LNAI 10571, pp. 51–62, 2017.
DOI: 10.1007/978-3-319-67422-3 6
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and conditions on ensuring that the resulting IE-integral is itself averaging were
investigated.

One interesting observation was that as the I(x|A) components gradu-
ate between the minimum and maximum, the resulting IE-integral graduates
between the Choquet integral with respect to its fuzzy measure μ and the dual
Choquet integral with respect to μ∗. The Shapley indices, which indicate the
average importance assigned to each variable by μ are unchanged under duality,
however the orness (the degree to which the function behaves like the maximum)
of μ will be complementary to that of μ∗, i.e. orness(μ) = 1 − orness(μ∗). This
means that the orness of the IE-integral will also change with I(x|A), as will the
cardinality indices [6,10], which give the average importance of inputs based on
their relative ranking.

In this contribution we will establish that, while the orness of averaging
inclusion-exclusion integrals may be difficult to calculate in general, a suitable
approximation can be obtained based on the orness associated with μ and the
orness of the component function I(x|A) when |A| = n.

The paper will be set out as follows. In the Preliminaries section we will give
the necessary background on aggregation functions and the Choquet integral. We
then proceed to give an overview of the inclusion-exclusion integral with respect
to averaging functions in Sect. 3 before defining our orness approximation. In
Sect. 4, we present some results regarding the use of OWA functions for I(x|A)
before providing some examples and calculations in Sect. 5. We briefly conclude
in Sect. 6.

2 Preliminaries

This contribution concerns orness and cardinality indices, which have been used
for years to characterize the behavior of averaging aggregation functions. We
will hence first recall a number of definitions relating to aggregation functions
and, in particular, the Choquet integral. The inclusion-exclusion integral can be
understood as a generalization of the Choquet integral, and therefore the indices
used to define orness with respect to fuzzy measures will be particularly relevant
for us.

2.1 Aggregation Functions

When it comes to modeling decisions, aggregation functions (e.g. see [11–13])
will inevitably play some role in either summarizing data or making overall
evaluations.

We will contain ourselves to averaging aggregation functions defined over
[0, 1]n, although in general, many results will apply to any interval.

Definition 1 (Aggregation function). For n ∈ N\{1} inputs given over the
real interval [0, 1]n, an aggregation function F : [0, 1]n → [0, 1] is a function non-
decreasing in each argument and satisfying F(0, . . . , 0) = 0 and F(1, . . . , 1) = 1.
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The focus of this work is orness, which relates to averaging aggregation func-
tions. An aggregation function F is averaging when for all x ∈ [0, 1]n,

min(x) ≤ F(x) ≤ max(x).

The monotonicity, or non-decreasingness, of aggregation functions means
that averaging behavior ensures idempotency (and idempotency ensures aver-
aging behavior). Typical averaging functions include the weighted arithmetic
means (WAMs) and ordered weighted averaging (OWA) operators. For a weight-
ing vector w, such that

∑n
i=1 wi = 1 and wi ≥ 0 for all i, the weighted arith-

metic mean (WAM) is given by WAM(x) =
∑n

i=1 wixi., while the OWA [14] is
OWA(x) =

∑n
i=1 wix(i)., where x(i) denotes the i − th largest of the inputs.

The weighted arithmetic mean takes the weighted sum of the inputs, usually
allocating wi based on the importance of the i-th criterion or attribute of the
dataset, while the OWA operator assigns wi to the i-th largest input.

The OWA operator and WAM will coincide when wi = 1/n for all i (i.e. an
unweighted arithmetic mean). The OWA also includes special cases such as the
maximum when w1 = 1, the minimum if wn = 1, and the median if the middle
weight is equal to 1 (or spread across the middle two weights if n is even).

The quasi-arithmetic means generalize the weighted arithmetic means to
model non-linear relationships using a generating function g. With respect to
these invertible and monotone functions g : [0, 1] → [−∞,∞] the weighted quasi-
arithmetic mean is given by

Mg(x) = g−1

(
n∑

i=1

wig(xi)

)

.

The weighted power means (Mp(x)) are obtained if g(t) = tp, including the
quadratic mean QM when p = 2. The geometric mean GM(x) =

∏n
i=1 xwi

i can
be obtained using g(t) = ln t and is also a limiting case for the power means as
t → 0. Of course, g(t) = t returns the WAM.

We will also refer to the dual of an aggregation function. The dual Fd of any
aggregation function F can be obtained using the standard negation N(t) = 1−t
and the construction,

Fd(x) = 1 − F(1 − x1, 1 − x2, . . . , 1 − xn).

The dual of the minimum function is the maximum and vice-versa. Weighted
arithmetic means are self-dual and for a given quasi-arithmetic mean with gen-
erator g(t), its dual function with respect to the standard negation N(t) = 1 − t
is generated by g(1 − t).

In general, if a function F tends more toward lower inputs, its dual Fd will
tend more towards higher inputs. For an OWA function with respect to w,
the dual function will be an OWA with the same weights in reverse order, e.g.
if w = 〈0.3, 0.4, 0.2, 0.1〉 then the weighting vector of the dual will be wd =
〈0.1, 0.2, 0.4, 0.3〉.
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2.2 The Choquet Integral

The Choquet integral is a particularly expressive function that generalizes both
the OWA and WAM in a different manner to the quasi-arithmetic means. Rather
than a weighting vector w, the Choquet integral uses a fuzzy measure μ, which
can be interpreted as a set function that allocates weight to every subset of
inputs.

Definition 2 (Fuzzy Measure). For a given finite set {1 : n} = {1, 2, . . . , n},
a fuzzy measure is a set function μ defined for all S ⊆ {1 : n} such that μ(∅) =
0, μ({1 : n}) = 1 and S ⊆ T implies μ(S) ≤ μ(T ).

The discrete Choquet integral for a finite set of inputs can then be expressed as

Cμ(x) =
n∑

i=1

x(i)

(
μ
({(i) : (n)}) − μ

({(i + 1) : (n)})
)
,

where the notation x(i) means the inputs are re-arranged in non-decreasing order
and {(i) : (n)} refers to the set of (ordered) inputs from the (i)-th smallest to
the largest and {(i + 1) : (n)} is the set of the (i + 1)-th smallest to the largest.

The Choquet integral can be given in terms of the Möbius transform of the
fuzzy measure. This can sometimes simplify computations and the learning of
weight parameters from data. The Möbius representation m is calculated from
μ as follows.

mA =
∑

B⊆A

(−1)|A\B|v(B).

The Choquet integral is then given by Cμ(x) = Cm =
n∑

A⊆N

mA min(x|A), where

min(x|A) indicates the minimum xi such that i ∈ A.
Since the number of subsets grows exponentially with n, the Shapley value

[15] has been used to measure the average importance of each variable [2,3]. It
is denoted by the vector

φ = 〈φ1, φ2, . . . , φn〉,
and can be calculated directly from the fuzzy measure μ where

φi =
∑

A⊆N\{i}

(n − |A| − 1)!|A|!
n!

(
μ(A ∪ {i}) − μ(A)

)
.

It can be interpreted similarly1 to the weighting vector w.
The dual fuzzy measure μ∗, which defines the dual Choquet integral, can be

obtained using μ∗(A) = 1−μ(A′) where A′ is the complement of A. The Shapley
index remains the same under duality.

1 It has been noted in [16] that the least squares linear approximation of a given
function f (which could be used to infer the importance of each variable) actually
corresponds with the Banzhaf index, a calculation similar to the Shapley index.
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Another index proposed in [6] and more recently applied in [17] and [10] is the
cardinality index, which allows the average order weights (or rank weights) of a
fuzzy measure to be characterized. For a given fuzzy measure μ, the cardinality
index ϑi for each i in {1, 2, . . . , n} is given by

ϑi =

⎛

⎜
⎜
⎝

1
(

n
i

)
∑

|A|=i

μ(A)

⎞

⎟
⎟
⎠ −

⎛

⎜
⎜
⎝

1
(

n
i − 1

)
∑

|A|=i−1

μ(A)

⎞

⎟
⎟
⎠ .

While the Shapley index should roughly correspond with the weights of a
WAM, the cardinality indices should be viewed similarly to the weights of an
OWA.

2.3 Orness

The measure of orness is intended to characterize averaging aggregation func-
tions in terms of how close they are, on average, to the maximum operator, i.e.,
their tendency toward the higher inputs or the degree to which they behave
disjunctively. The complementary calculation ‘andness’ is the orness subtracted
from 1 and gives the degree to which the function behaves conjunctively.

The following definition was proposed by Dujmovic in 1973 [5,18]. We will
mainly be concerned with calculations over the unit hypercube [0, 1]n, however
it will be useful to provide the following calculation formulas in terms of the
general interval [a, b].

For an averaging aggregation function F, the measure of orness is given by

orness(F) =

∫
[a,b]n

F(x) dx − ∫
[a,b]n

min(x) dx
∫
[a,b]n

max(x) dx − ∫
[a,b]n

min(x) dx
.

When F is the maximum, we have orness(F) = 1 while F being the minimum
results in an orness of 0.

The integral of F is often done numerically, however this too can be compu-
tationally expensive for large n. Some functions have closed form solutions, and
so we will find the following results useful [11].

∫

[a,b]n
max(x) dx = (b − a)n a + bn

n + 1
,

∫

[a,b]n
min(x) dx = (b − a)n an + b

n + 1
(1)

The orness of the geometric mean is given with respect to n by

orness(G) = − 1
n − 1

+
n + 1
n − 1

(
n

n + 1

)n

, (2)

however for other well known averaging functions, only some special cases have
such calculation formulas.



56 A. Honda et al.

Approximation formulas have been proposed for the quasi-arithmetic means,
in particular we recall those of Dujmovic (ornessD) and Liu (ornessL) [19].

ornessD(Mg) =
g(b) − ∫ b

a
g(t) dt

g(b) − g(a)
, ornessL(Mg) =

g−1
( ∫ b

a
g(t) dt

b−a

)
− a

b − a
. (3)

The true orness will always be bound between the two calculations. The
ornessL will approach the true value for large n, while ornessD represents a kind
of limiting case when n = 1. Both values may differ markedly from the real value,
e.g. when n = 2, the orness of the quadratic mean is approximately 0.6232 while
Liu’s formula yields 0.5774 and Dujmovic’s gives 0.6667 (correct to 4 decimal
places).

For the OWA and Choquet integral, the exact orness values can be calcu-
lated directly from the weights and fuzzy measure respectively. For the OWA
function [14],

orness(w) =
n∑

i=1

wi
n − i

n − 1
, (4)

while for the Choquet integral the orness is given by [20],

orness(μ) =
1

n − 1

∑

A⊂N

(n − |A|)!|A|!
n!

μ(A). (5)

Note that A ⊂ N should be strict, so that N is not included in the sum. The
orness for the Choquet integral could also be calculated from the cardinality
indices using the OWA orness calculation.

3 Defining Orness for the Inclusion-Exclusion Integral

The indices for interpreting the Choquet integral’s behavior facilitate its use
in regression and data analysis, since the Shapley indices can be used to infer
the importance of variables and the orness and cardinality indices allow us to
interpret the overall behavior in terms of tendency toward higher or lower inputs.
The inclusion-exclusion integral (IE-integral) generalizes the discrete Choquet
integral by means of a function I(x|A), referred to as the interaction operator.

For this work, we consider I(x|A) to be a family of averaging functions2 with
x|A denoting the input vector x restricted to the inputs xi such that i ∈ A,
defined for each |A| ∈ {1 : n} and satisfying projection, i.e. I(x|i) = xi. From
this we obtain the following definition for the inclusion-exclusion integral [7].

2 We note however that in [7,8], I(x|A) is proposed to be arity-decreasing, i.e. I(x|A) <
I(x|B) if B ⊂ A. As noted in [9], instead using averaging functions (which are not
necessarily arity-decreasing) will allow the IE-integral to be averaging.
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Definition 3 (Inclusion-Exclusion integral). For a fuzzy measure μ and an
interaction operator I, the inclusion-exclusion (IE) integral is given by,

IEI,μ(x) =
∑

A⊆N

μ(A)M I(A)

where M I(A) =
∑

B⊇A

(−1)|B\A|I(x|B).

The IE-integral can also be expressed with respect to the Möbius transformation
of the defining fuzzy measure,

IEI,m(x) =
∑

A⊆N

mAI(x|A).

It has been established in [9] that any μ with Möbius values greater than
zero along with I(x|A) being averaging will result in averaging IE-integrals, as
will any I(x|A) whose partial derivatives decrease sufficiently with increases to
arity (regardless of μ).

Different choices of I(x|A) have the effect of defining functions that graduate
between a discrete Choquet integral with respect to μ and a Choquet integral
with respect to the dual fuzzy measure μ∗ (e.g. See Fig. 1).
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Fig. 1. Inclusion-exclusion integrals with respect to different interaction operators I.

Even for averaging functions defined in a straightforward way for all n (e.g.
the quasi-arithmetic means), the orness will vary depending on the arity. This
makes calculating the orness of the IE-integral problematic, and so we propose
an approximation of the overall orness using the following calculation. We denote
the orness of the Choquet integral with respect to μ by Ω(μ) and an approxi-
mation or calculation of orness for I(x|{1 : n}) by Ω(I). Then,

orness(IE) ≈ (1 − Ω(I)) · Ω(μ) + Ω(I) · (1 − Ω(μ)). (6)

Similarly we can approximate the cardinality indices:

ϑi = (1 − Ω(I)) · ϑi + Ω(I) · ϑn−i+1. (7)

In the following section we will highlight some special cases where I(x|A)
is chosen to be a set of OWA operators before providing some more general
examples and their orness calculations.
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4 IE-integrals with Respect to OWA Operators

When a set of OWA operators are used for the interaction operator I(x|A), i.e.,
OWAs defined for n = 2, . . . , n, the IE-integral will be a weighted sum (with
respect to not necessarily positive weights). This is because once the ordering of
the inputs is fixed, the weights assigned to each variable from the OWA operators
of differing dimension will be set and the IE-integral can be calculated as a
linear multiple of these and the Möbius weights. In some cases, this will simply
coincide with a Choquet integral with respect to an alternative fuzzy measure.
We consider OWAs here in order to help show the relationship between orness
and the approximation equation.

4.1 Case of n = 2 Where I Is an OWA

We can show that Eq. (6) will hold exactly when I is an OWA and n = 2.

Proposition 1. For a 2-variate inclusion-exclusion integral with respect to a
fuzzy measure μ and I(x|A), let Ω(μ) denote the orness associated with μ and let
I(x|A) be given by an OWA operator with weights w1, w2. The resulting function
will be equivalent to a Choquet integral with respect to a fuzzy measure v and
orness given by w2 · Ω(μ) + w1 · (1 − Ω(μ)).

Proof. Denote the singleton measures of the fuzzy measure μ by μ1 = μ({1}) and
μ2 = μ({2}), the larger of x1, x2 by x(1) and the smaller by x(2). The resulting
inclusion-exclusion integral can be expressed,

IEμ,w(x) = μ1(x1−w1x(1)−w2x(2))+μ2(x2−w1x(1)−w2x(2))+w1x(1)+w2x(2).

If x1 > x2, then the coefficient of x1 (the larger value) will be equal to
μ1(1−w1)+(1−μ2)w1, which will correspond with the singleton of the resulting
Choquet integral’s fuzzy measure v, i.e. v({1}). On the other hand, if x2 > x1,
the coefficient of x2 will be μ2(1 − w1) + (1 − μ1)w1, which denotes v({2}).

Taking the average of these gives the orness calculation of v, (1−w1)μ1+μ2
2 +

w1

(
2−μ1−μ2

2

)
, which, since the orness of a 2-variate OWA is given by w1 and the

orness of a 2-variate Choquet integral is μ1+μ2
2 , corresponds with Eq. (6) and

completes the proof.

In [9] it was established that 2-variate IE-integrals will be averaging if the
function I(x|A) is 1-Lipschitz. Since this is always true for 2-variate OWA opera-
tors, using an OWA will always return a function that is equivalent to a Choquet
integral. In the 3-variate case it is slightly more complicated, since use of an OWA
for I(x|A) in 2- and 3-dimensions does not guarantee averaging behavior.



Orness and Cardinality Indices for Averaging Inclusion-Exclusion Integrals 59

4.2 Case of n = 3 Where I2 and I3 Are OWA Operators

For the case of 3 variables, we need to define the interaction operator for 2- and
3-dimensions. While the quasi-arithmetic means have a straightforward exten-
sion, this is not the case with the OWA. As established in [9], we can ensure
averaging behavior of the resulting IE-integral if the following inequalities hold.

1 + I ′
i(x1, x2, x3) −

∑

j∈N\i

I ′
i(xi, xj) > 0, −I ′

i(x1, x2, x3) +
∑

j∈N\i

I ′
i(xi, xj) > 0,

for each i, where I ′
i denotes the partial derivative with respect to i, i.e. the OWA

weight associated with xi.
Unlike the case of 2 variables, using OWA functions for IE-integrals of 3

variables will not always return a Choquet integral or averaging function (even
those that are related by a consistent rule, e.g. quantifiers [21]). However we
can show that the orness calculation will hold whenever the two OWA operators
used have the same orness for 2 and 3 dimensions.

Proposition 2. For a 3-variate inclusion-exclusion integral with respect to a
fuzzy measure μ, denote the orness associated with μ by Ω(μ) and let I(x|A) be
defined by two OWA operators (for 2- and 3-dimensions) with the same orness
Ω(OWA). The resulting function will have an orness given by

(1 − Ω(OWA)) · Ω(μ) + Ω(OWA) · (1 − Ω(μ)).

Proof. Let I(x|A) = OWA2(x) = w2
1x(1) + w2

2x(2) when |A| = 2 and I(x|A) =
OWA3(x) = w3

1x(1) + w3
2x(2) + w3

3x(3) when |A| = 3.
As previously, We can consider the overall weight that will be applied to

a particular input depending on its position, then take the average across the
first position, and then the average across the second position so that we can
calculate the corresponding orness.

Recall that in the calculation of the IE-integral, for each set A we have the
term,

μ(A)
∑

B⊇A

(−1)|B\A|I(x|B).

If x1 is the largest input, its coefficient will be

μ1(1 − w2
1 − w2

1 + w3
1) + μ2(−w2

1 + w3
1) + μ3(−w2

1 + w3
1)

+μ12(w2
1 − w3

1) + μ13(w2
1 − w3

1) + μ23(−w3
1) + μ123w

3
1.

If it is the second largest, and (x2 > x1 > x3), its coefficient becomes

μ1(1 − w2
2 − w2

1 + w3
2) + μ2(−w2

2 + w3
2) + μ3(−w2

1 + w3
2)

+μ12(w2
2 − w3

2) + μ13(w2
1 − w3

2) + μ23(−w3
2) + μ123w

3
2,

while for (x3 > x1 > x2),

μ1(1 − w2
1 − w2

2 + w3
2) + μ2(−w2

1 + w3
2) + μ3(−w2

2 + w3
2)

+μ12(w2
1 − w3

2) + μ13(w2
2 − w3

2) + μ23(−w3
2) + μ123w

3
2.
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With the symmetric cases for x2, x3, the average weight allocated to the
largest input is hence

μ1 + μ2 + μ3

3
(1 − 4w2

1 + 3w3
1) +

μ12 + μ13 + μ23

3
(2w2

1 − 3w3
1) + w3

1.

The average weight allocated to the second largest input is then

μ1 + μ2 + μ3

6
(2 − 4w2

1 − 4w2
2 + 6w3

2) +
μ12 + μ13 + μ23

6
(2w2

1 + 2w2
2 − 6w3

2) + w3
2.

Now, noting that w2
1 + w2

2 = 1, we use ϑ1 = μ1+μ2+μ3
3 to denote the average

singleton weight of the fuzzy measure μ. We also have that the first two cardinal-
ity indices will be equal to the average weight of pairs, i.e. ϑ1+ϑ2 = μ12+μ13+μ23

3 .
Using the formula for orness calculation of three variables, adding half of the sec-
ond weight’s average value to the first gives

ϑ1
2 − 16w2

1 + 12w3
1 + 6w3

2

4
+ (ϑ1 + ϑ2)

2 + 8w2
1 − 12w3

1 − 6w3
2

4
+ w3

1 + (1/2)w3
2.

Since the OWA operators have the same orness, it will hold that w2
1 = w3

1 +
(1/2)w3

2. We then have

ϑ1
1 − 2w2

1

2
+ (ϑ1 + ϑ2)

1 − 2w2
1

2
+ w2

1 = w2
1 + ϑ1 +

ϑ2

2
− 2ϑ1w

2
1 − ϑ2w

2
1

= (1 − w2
1)(ϑ1 +

ϑ2

2
) + w2

1(1 − ϑ1 − ϑ2

2
).

Which corresponds with Eq. (6) since the orness of the OWA is w2
1 and the

orness of μ is ϑ1 + ϑ2
2 .

5 Orness Calculations for Various IE-integrals

We now consider some examples of inclusion-exclusion integrals and calculate
their orness numerically and using Eq. (6) to give an idea of the precision of the
different approximations. For the numerical calculation we evaluated each func-
tion at approximately 10 million equally spaced points in the unit hypercube.
In general this will be close to the true orness, although for 5-dimensions it may
deviate significantly if the function has steep derivatives (e.g. for the geometric
mean the true orness when n = 5 is 0.3528 to 4 decimal places whereas our
numeric calculation gives 0.3562). In Table 1 we have summarized the calcula-
tions where I(x|A) is chosen to be either the geometric mean, a power mean
with p = 2, or a power mean with p = 5. In order to define some example
fuzzy measures, we learned the values from the BikeShare dataset [22] with 2,
3, 4, and 5 predictor variables (chosen from season, workday, weather, temper-
ature, humidity) with the values optimized3 with respect to a Choquet integral
to predict the number of casual users.
3 Using linear programming techniques as found, e.g. in [11]. Full details of the

transformations and code used to learn fuzzy measures can be found at http://
aggregationfunctions.wordpress.com.

http://aggregationfunctions.wordpress.com
http://aggregationfunctions.wordpress.com
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Table 1. Approximated orness values for IE-integrals

I(x|A)

n orness(µ) GM PM (p = 2) PM (p = 5)

num app num Liu Duj num Liu Duj

2 0.220 0.407 0.406 0.569 0.543 0.594 0.663 0.612 0.687

3 0.186 0.402 0.402 0.569 0.549 0.605 0.669 0.625 0.710

4 0.176 0.403 0.402 0.566 0.550 0.608 0.665 0.629 0.716

5 0.208 0.416 0.414 0.556 0.545 0.597 0.644 0.616 0.695

As might have been expected, the approximated values using the Liu and
Dujmovic calculations for power means deviated from the numerical calculations,
while those of the geometric mean remained close. As an example of the change
in cardinality indices, for n = 4, the cardinality indices of the original fuzzy
measure are ϑ = 〈0.01, 0.09, 0.16, 0.21, 0.53〉 whereas with PM and p = 5 this
becomes ϑ = 〈0.40, 0.18, 0.16, 0.12, 0.14〉 based on the numerical calculation of
the power mean’s orness (not using the approximated formulas). The use of
I(x|A) can hence also be seen as a method of adjusting the cardinality indices
for a given Choquet integral without affecting the Shapley index.

6 Conclusion

We have introduced a simple orness calculation that can be used to quickly
evaluate or estimate the orness of an averaging IE-integral if the orness of the
components, μ and I(x|A) are known. This helps enable interpretation of the
inclusion-exclusion integral when it is used as an averaging generalization of
the Choquet integral, however we note that in its original definition, I(x|A)
was proposed to be arity-increasing and therefore the use of averaging functions
produces a function with different properties than the original integral. While
here we have used the orness calculation that is often referred to as the ‘global
orness’, the results could also be compared with other indices such as the mean
‘local orness’ index (as given in [12]).
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Abstract. Let L1(Su) be the L1 space with respect to the Sugeno inte-
gral for a fuzzy measure [7,9]. L1(Su) is a linear space with the natural
quasi-metric. In general L1(Su) is not necessarily a topological linear
space. We shall characterize explicitely the maximal topological linear
subspace of L1(Su).

Keywords: Lp-space · Dual space · Quasi-metric · Fuzzy measure ·
Submeasure · Sugeno integral · Translation invariant metric · Quasi-
additive functional

1 Introduction

We study the linear topological structure of SugenoL1 spaceL1(Su) defined by the
Sugeno integral for a fuzzymeasure. It is well known that theL1 space for Choquet
integral with respect to a submodular fuzzymeasure is a normed space [3]. However
for Sugeno integral, the L1 space L1(Su) is not a normed space. L1(Su) is a linear
space and has a natural translation invariant quasi-metric [7–9]. So that L1(Su)
is an additive topological group, but in genaral it is not a topological linear space.
The aim of this paper is characterize the maximal topological linear subspace of
L1(Su) explicitely.

Definition 1. [4,5,7,9,10,14,16] Let T be a set. A function ρ(s, t) : T × T →
[0,+∞) is called a quasi-metric if and only if

1. ρ(s, t) ≥ 0, ρ(s, t) = 0 ⇐⇒ s = t, s, t ∈ T
2. ρ(s, t) = ρ(t, s), s, t ∈ T, and
3. ∃K ≥ 1 ; ρ(s, t) ≤ K (ρ(s, u) + ρ(u, t)) , s, t, u ∈ T.

Definition 2. [2,3,11,13,15] Let (X,B(X)) be a measurable space on a set X,
that is, B(X) is a σ-algebra on X. A set function μ : B(X) → [0,+∞] is called
a fuzzy measure if and only if

1. μ(∅) = 0,
2. A ⊂ B,A,B ∈ B(X) ⇒ μ(A) ≤ μ(B).

c© Springer International Publishing AG 2017
V. Torra et al. (Eds.): MDAI 2017, LNAI 10571, pp. 63–73, 2017.
DOI: 10.1007/978-3-319-67422-3 7
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A fuzzy measure μ is called subadditive (or μ is a submeasure) if and only if

μ(A ∪ B) ≤ μ(A) + μ(B)

for every A,B ∈ B(X).
A fuzzy measure μ is called weakly subadditive if and only if

∃k ≥ 1; μ(A ∪ B) ≤ μ(A) + kμ(B)

for every A,B ∈ B(X).
A fuzzy measure μ is said to be continuous from below if and only if

μ(An) ↑ μ(A)

for any An, A ∈ B(X) such that An ↑ A.
A fuzzy measure μ is said to be continuous from above if and only if

μ(Bn) ↓ μ(B)

for any Bn, B ∈ B(X) such that Bn ↓ B with μ(B1) < +∞.

Definition 3. [11,15] A set N ∈ B(X) is called a strongly null set if and only if

μ(A ∪ N) = μ(A)

for every A ∈ B(X).

Lemma 1. [11,15] Assume μ is subadditive or weakly subadditive. Then N is
a strongly null set if and only if μ(N) = 0.

Proof. A strongly null set N satisfies μ(N) = μ(∅ ∪ N) = μ(∅) = 0. Conversely
assume μ(N) = 0. Then we have for every A ∈ B(X), μ(A∪N) ≤ μ(A)+kμ(N)
= μ(A) and μ(A ∪ N) = μ(A) which means N is a strongly null set. �
A function f : (X,B(X)) → (−∞,+∞) is called measurable [1,3,6] if for every
real number r, it holds that {f > r} := {x ∈ X | f(x) > r} ∈ B(X).

Let μ : (X,B(X)) → [0,+∞] be a fuzzy measure and f : (X,B(X)) → [0,+∞)
be a non-negative measurable function. Then the Sugeno integral [15] of f with
respect to μ is defined by

(Su)
∫

X

fdμ := sup
r≥0

r ∧ μ({f > r}).

2 Sugeno L1 Space L1(Su)

For a measurable function f : (X,B) → (−∞,+∞), we set

|f |1 = sup
r≥0

r ∧ μ(|f | > r),

L1 = {f | |f |1 < +∞} , and

O1 = {f ∈ L1 | |f |1 = 0} .
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Lemma 2. Assume that μ is a weakly subadditive fuzzy measure. Then we have

|f + g|1 ≤ 2k (|f |1 + |g|1) , f, g ∈ L1.

Proof.

|f + g|1 = sup
r≥0

r ∧ μ (|f + g| > r)

≤ sup
r≥0

r ∧ μ
({

|f | >
r

2

}
∪

{
|g| >

r

2

})

≤ sup
r≥0

r ∧
[
μ

(
|f | >

r

2

)
+ kμ

(
|g| >

r

2

)]

≤
[
sup
r≥0

r ∧ μ
(
|f | >

r

2

)
+ sup

r≥0
r ∧ kμ

(
|g| >

r

2

)]

=
[
sup
r≥0

(
2
r

2

)
∧ μ

(
|f | >

r

2

)
+ sup

r≥0

(
2
r

2

)
∧ kμ

(
|g| >

r

2

)]

≤ 2 sup
r≥0

(r

2

)
∧ μ

(
|f | >

r

2

)
+ 2k sup

r≥0

(r

2

)
∧ μ

(
|g| >

r

2

)

= 2|f |1 + 2k|g|1 ≤ 2k(|f |1 + |g|1),

where we have used the inequality a ∧ (b + c) ≤ (a ∧ b + a ∧ c). �

Lemma 3. We have

|cf |1 ≤ Max{|c|, 1}|f |1 for real number c and f ∈ L1.

Proof.

|cf |1 = sup
r≥0

r ∧ μ (|cf | > r)

= sup
r≥0

r ∧ μ

(
|f | >

r

|c|
)

= sup
r≥0

(
|c| r

|c|
)

∧ μ

(
|f | >

r

|c|
)

.

If |c| > 1, then we have

sup
r≥0

(
|c| r

|c|
)

∧ μ

(
|f | >

r

|c|
)

≤ |c| sup
r≥0

(
r

|c|
)

∧ μ

(
|f | >

r

|c|
)

= |c||f |1.

If |c| ≤ 1, then we have

sup
r≥0

(
|c| r

|c|
)

∧ μ

(
|f | >

r

|c|
)

≤ sup
r≥0

(
r

|c|
)

∧ μ

(
|f | >

r

|c|
)

= |f |1.

So that we have the assertion. �



66 A. Honda and Y. Okazaki

Lemma 4. Assume that h ∈ O1, that is, |h|1 = 0. Then we have

μ(|h| > r) = 0 for every r > 0.

In particular, if μ is continuous from below then h = 0 μ-almost everywhere,
that is

μ(|h| > 0) = 0.

Proof. By the definition of | |1 we have the assertion. �
Lemma 5. Let μ be a weakly subadditive fuzzy measure. Then we have

|f ± h|1 = |f |1
for every f ∈ L1 and h ∈ O1.

Proof. By Lemmas 1 and 4, for every r ≥ 0 it follows that the subset N(r) :=
{|h| > r} is a strongly null set. Let 0 < ε < 1 be arbitrarily fixed. Then we have

μ(|f ± h| > r) = μ ([{|f ± h| > r} ∩ N(εr)c] ∪ [{|f ± h| > r} ∩ N(εr)])
≤ μ ([{|f ± h| > r} ∩ N(εr)c] ∪ N(εr))
= μ({|f ± h| > r} ∩ N(εr)c)
= μ(|f ± h| > r, |h| ≤ εr)
≤ μ(|f | > (1 − ε)r).

So that we have

r ∧ μ(|f ± h| > r) ≤ r ∧ μ(|f | > (1 − ε)r)

≤ 1
(1 − ε))

[(1 − ε)r ∧ μ(|f | > (1 − ε)r)]

≤ 1
(1 − ε))

|f |1.

Taking supr≥0 in the left hand side, we have

|f ± h|1 ≤ 1
(1 − ε))

|f |1.

Letting ε ↓ 0, we have the assertion. �
Definition 4. Let μ be a weakly subadditive fuzzy measure. We set

L1 : = L1/O1

‖f + O1‖1 : = |f |1 for f + O1 ∈ L1.

By Lemma 5, the value ‖f +O1‖1 does not depend on the choice of the represen-
tative f of the equivalence class f +O1. In the sequel we identify the equivalence
class f + O1 with f and write

‖f‖1 = |f + O1|1 for f ∈ L1.

Then ‖f‖1 determines a translation invariant quasi-metric on L1 as follows.
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Theorem 1. Let μ be a weakly subadditive fuzzy measure. Then the space
(L1, ‖f‖1) is a linear space. The function γ(f, g) := ‖f − g‖1 is a quasi-metric
satisfying :

1. γ(cf, 0) ≤ Max{|c|, 1}γ(f, 0) for a real number c and f ∈ L1,

2. γ(f, g) ≤ 2k (γ(f, h) + γ(h, g)) for f, g, h ∈ L1,

3. γ(f + h, g + h) = γ(f, g) for f, g, h ∈ L1 (translation invariance of γ).

Proof. The assertions 1 and 2 follow from Lemmas 3 and 2. The translation
invariance is clear. �

Definition 5. We call the pair (L1, ‖f‖1) the Sugeno L1 space and denote it by
L1(Su).

Remark 1. L1(Su) is a topological additive group but not necessarily a topolog-
ical linear space, see Sect. 4.

Remark 2. For 0 < p < ∞, the Sugeno Lp space Lp(Su) is defined introducing
the quasi-metric

[f |p =
[
sup
r≥0

r ∧ μ (|f |p > r)
] 1

p

=
[
sup
r≥0

rp ∧ μ (|f | > r)
] 1

p

.

In this case, it holds Lp(Su) = Lq(Su) for every 0 < p, q < ∞, see [9]

3 Linear Topological Structure of L1(Su)

We shall introduce two function spaces according to [12].

Definition 6. Let D ∈ B(X) and f be a measurable function. Then ‖f‖L∞(D) =
‖f |D‖∞, where f |D is the restriction of f to D.

Definition 7. M∞ = {f | ∃A ∈ B(X), μ(A) + ‖f‖L∞(X\A) < +∞}
We call M∞ the truncated L∞ space. For f ∈ M∞, we set

γ(f) = inf
A∈B(X)

{μ(A) + ‖f‖L∞(X\A)}.

Lemma 6. Assume μ is weakly subadditive. For f ∈ M∞ we have

γ(f) = inf
r≥0

{r + μ(|f | > r)}.
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Proof. First we show γ(f) ≤ infr≥0{r + μ(|f | > r)}. If infr≥0{r + μ(|f | > r)} =
+∞, the inequality holds. So that we assume � = infr≥0{r+μ(|f | > r)} < +∞.
Then for every ε > 0, there exists r(ε) such that r(ε) + μ(|f | > r(ε)) < � + ε,
that is,

μ(|f | > r(ε)) < � + ε − r(ε).

Let A = {|f | > r(ε)} ∈ B(X). Then we have

‖f‖L∞(X\A) ≤ r(ε).

Consequently we have

μ(A) + ‖f‖L∞(X\A) ≤ � + ε.

Taking infA∈B(X) and letting ε ↓ 0, we have the desired inequality.
Conversely we shall prove γ(f) ≥ infr≥0{r + μ(|f | > r)}. If γ(f) = +∞ the

inequality is clear. Assume that m = γ(f) < +∞. Then for every ε > 0 there
exists A(ε) ∈ B(X) such that μ(A(ε)) + ‖f‖L∞(X\A(ε)) ≤ m + ε, that is

‖f‖L∞(X\A(ε)) ≤ m + ε − μ(A(ε)).

This implies that

μ(x ∈ X\A(ε) | |f | > m + 2ε − μ(A(ε))) = 0.

By the weak subadditivity of μ it follows that

m + 2ε
= m + 2ε − μ(A(ε)) + μ(A(ε)) + kμ(x ∈ X\A(ε) | |f | > m + 2ε − μ(A(ε)))
≥ m + 2ε − μ(A(ε)) + μ(A(ε) ∪ {x ∈ X\A(ε) | |f | > m + 2ε − μ(A(ε))})
≥ m + 2ε − μ(A(ε)) + μ({x ∈ X | |f | > m + 2ε − μ(A(ε))}).

So that we have infr≥0{r + μ(|f | > r)} ≤ m + 2ε. Letting ε ↓ 0 it follows that
infr≥0{r + μ(|f | > r)} ≤ m = γ(f). �

Lemma 7. Assume that μ is weakly subadditive. Then ρ(f, g) = γ(f −g), f, g ∈
M∞ is a translation invariant quasi-metric on the truncated L∞ space M∞.

Proof. Let f, g ∈ M∞. For every ε > 0, there exist A,B ∈ B(X) such that

μ(A) + ‖f‖L∞(X\A) < γ(f) + ε, μ(B) + ‖g‖L∞(X\B) < γ(g) + ε.

This implies

μ(A ∪ B) + ‖f − g‖L∞(X\A∪B)

≤ μ(A) + kμ(B) + ‖f‖L∞(X\A) + ‖g‖L∞(X\B)

≤ k
[(

μ(A) + ‖f‖L∞(X\A)

)
+

(
μ(B) + ‖g‖L∞(X\B)

)]
< k (γ(f) + γ(g)) + 2ε.

Letting ε ↓ 0, it follows that γ(f − g) ≤ k(γ(f) + γ(g)). �
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Remark 3. If μ is subadditive (k=1) then γ is a metric.

Definition 8. Let M0
∞ be the linear space of all functions f satisfying the fol-

lowing condition. For every ε > 0, there is A ∈ B(X) such that

μ(A) < ε, μ(A) + ‖f‖L∞(X\A) < +∞.

We call M0
∞ the finely truncated L∞ space.

Lemma 8. If μ is continuous from above then M0
∞ = M∞.

Proof. Assume f ∈ M∞. Let ε > 0 be arbitrarily fixed. There exists A ∈ B(X)
such that

μ(A) + ‖f‖L∞(X\A) < +∞.

We set An = {x ∈ A | |f(x)| > n}. Since A ⊃ An ↓ ∅ and μ(A) < +∞, by the
continuity from above, there exists N such that μ(AN ) < ε. Then we have

‖f‖L∞(X\AN ) ≤ ‖f‖L∞(X\A) + ‖f‖L∞(A\AN )

≤ ‖f‖L∞(X\A) + N < +∞.

Consequently we have μ(AN ) < ε and μ(AN ) + ‖f‖L∞(X\AN ) < +∞, which
implies f ∈ M0

∞. �

Lemma 9. Assume μ is weakly subadditive. Then we have L∞ ⊂ M0
∞ ⊂

L1(Su) = M∞.

Proof. L∞ ⊂ M0
∞ is clear. We shall show L1(Su) = M∞. Assume f ∈ M∞.

There exists A ∈ B(X) such that

μ(A) + ‖f‖L∞(X\A) < +∞.

Then we have

sup
r≥0

r ∧ μ(|f | > r)

= sup
0≤r≤‖f‖L∞(X\A)

r ∧ μ(|f | > r) ∨ sup
r>‖f‖L∞(X\A)

r ∧ μ(|f | > r)

≤ ‖f‖L∞(X\A) ∨ μ(|f | > ‖f‖L∞(X\A)) < +∞,

since

μ(|f | > ‖f‖L∞(X\A)) ≤ μ(A ∪ {x ∈ X\A | |f(x)| > ‖f‖L∞(X\A)})
≤ μ(A) + kμ({x ∈ X\A | |f(x)| > ‖f‖L∞(X\A)})
= μ(A) + 0 = μ(A) < +∞.

This means f ∈ L1(Su) and M∞ ⊂ L1(Su) holds.
Conversely assume f ∈ L1(Su), that is,

‖f‖1 = sup
r≥0

r ∧ μ(|f | > r) < +∞.
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Then there exists r0 such that μ(|f | > r0) < +∞. In fact, if

μ(|f | > r) = +∞ for all r > 0,

then r ∧ μ(|f | > r) = r ∧ +∞ = r and ‖f‖1 = sup r = +∞, which is a
contradiction. If we set A = {|f | > r0}, then μ(A) < +∞ and for every x ∈
X\A, we have |f(x)| ≤ r0, which implies ‖f‖L∞(X\A) ≤ r0. It follows that
μ(A) + ‖f‖L∞(X\A) < +∞ and f ∈ M∞. �

Lemma 10. Assume μ is weakly subadditive. For every A ∈ B(X) we have

‖f‖1 ≤ μ(A) ∨ ‖f‖L∞(X\A) ≤ μ(A) + ‖f‖L∞(X\A).

Proof.

‖f‖1 = sup
r≥0

r ∧ μ(|f | > r)

= sup
0≤r<‖f‖L∞(X\A)

r ∧ μ(|f | > r) ∨ sup
r≥‖f‖L∞(X\A)

r ∧ μ(|f | > r)

≤ ‖f‖L∞(X\A) ∨ μ(A).

The second term is obtained by

μ(|f | > r) ≤ μ(A ∪ {x ∈ X\A | |f(x)| > ‖f‖L∞(X\A)})
≤ μ(A) + kμ(x ∈ X\A | |f(x)| > ‖f‖L∞(X\A))
= μ(A),

where r ≥ ‖f‖L∞(X\A). �

Proposition 1. Assume μ is weakly subadditive. The identity mapping
(M∞, γ(f)) → (L1(Su), ‖f‖1) is continuous.

Proof. By the preceding Lemma, we have

‖f‖1 ≤ inf
A∈B(X)

{μ(A) + ‖f‖L∞(X\A)} = γ(f).

�

Proposition 2. Assume μ is weakly subadditive. Then (M0
∞, γ(f)) is a topolog-

ical linear space.

Proof. Assume tn → t0 and fn → f0, that is γ(fn − f0) → 0. Then we have

γ(tnfn − t0f0) ≤ k (γ(tn(fn − f0)) + γ((tn − t0)f0)) .
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Let K > 0 be |tn| ≤ K for all n. The first term converges to 0 as follows.

γ(tn(fn − f0)) = inf
A∈B(X)

{μ(A) + ‖tn(fn − f0)‖L∞(X\A)}
≤ inf

A∈B(X)
{μ(A) + K‖fn − f0‖L∞(X\A)}

≤ (K ∨ 1) inf
A

{μ(A) + ‖fn − f0‖L∞(X\A)}
= (K ∨ 1)γ(fn − f0) → 0.

To prove the second term → 0, let ε > 0 be arbitrarily fixed. Then there exists
A = A(ε) such that

μ(A) < ε, ‖f0‖L∞(X\A) < +∞.

Then we have

γ((tn − t0)f0) ≤ μ(A) + ‖(tn − t0)f0‖L∞(X\A)

= μ(A) + |tn − t0|‖f0‖L∞(X\A).

So thatwehave lim sup γ((tn−t0)f0) ≤ μ(A)<ε, which implies γ((tn−t0)f0) → 0.
��

Theorem 2. Assume μ is weakly subadditive. Then (M0
∞, ‖f‖1) is a topological

linear space.

Proof. Assume tn → t0 and fn → f0, that is ‖fn − f0‖1 → 0. Then we have

‖tnfn − t0f0‖1 ≤ 2k (‖tn(fn − f0)‖1 + ‖(tn − t0)f0‖1) .

Let K > 0 be |tn| ≤ K for all n. The first term converges to 0 as follows.

‖tn(fn − f0)‖1 = sup
r≥0

r ∧ μ(|tn(fn − f0| > r)

≤ sup
r≥0

r ∧ μ(K|(fn − f0| > r)

= sup
s≥0

(Ks) ∧ μ(|(fn − f0| > s)

≤ (K ∨ 1)‖fn − f0‖1 → 0.

To prove the second term → 0, let ε > 0 be arbitrarily fixed. Then there exists
A = A(ε) such that

μ(A) < ε, ‖f0‖L∞(X\A) < +∞.

Then we have by Lemma 10 and by Proposition 1

‖(tn − t0)f0‖1 ≤ μ(A) + ‖(tn − t0)f0‖L∞(X\A)

= μ(A) + |tn − t0|‖f0‖L∞(X\A).

So that we have lim sup ‖(tn − t0)f0‖1 ≤ μ(A) < ε, which implies ‖(tn − t0)f0‖1
→ 0. �
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Theorem 3. Assume μ is weakly subadditive. Then (M0
∞, ‖f‖1) is the maximal

topological linear subspace of L1(Su).

Proof. Let Q be any topological linear subspace of L1(Su). Then for every f ∈ Q,
it holds that

tn · f → 0 for any sequence tn → 0.

Since

‖tn · f‖1 = sup
r≥0

r ∧ μ(|tn · f | > r) ≥ s ∧ μ(|tn · f | > s) → 0(n → ∞),

we have μ(|tn · f | > s) → 0(n → ∞) for every s ≥ 0 and for every tn → 0.
Consequently it follows that

lim
R→∞

μ(|f | > R) = 0.

For any ε > 0, there exists R = Rε > 0 such that μ(|f | > R) < ε. Let A =
{|f | > R}, then we have

μ(A) < ε, ‖f‖L∞(X\A) ≤ R < +∞,

which shows f ∈ M0
∞. So we have Q ⊂ M0

∞. �

Corollary 1. M0
∞ = {f ∈ L1(Su) | limR→∞ μ(|f | > R) = 0}.

Corollary 2. Assume μ is weakly subadditive, μ(X) < +∞ and μ is continuous
from above. Then (L1(Su), ‖f‖1) is a topological linear space.

4 Example

Let μ be a fuzzy measure on [0,∞) defined by

μ(A) =
{
1, supA = +∞,
0, otherwise.

Then μ is subadditive. For the function f(x) = x,

‖tf‖1 = sup
r≥0

r ∧ μ(|tf | > r) = sup
r≥0

r ∧ 1 = 1.

This shows the scalar multiplication is not continuous and (L1(Su), ‖f‖1) is not
a topological linear space.
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5 Concluding Remarks

The function spaces Lp(0 < p < ∞) are defined for fuzzy integrals other than
Choquet or Sugeno integrals [8,9]. These function spaces are not necessarily
normed spaces nor metric spaces. However these function spaces admit natural
translation invariant quasi-metric structures in many cases. The linear topolog-
ical properties of these Lp spaces are not widely investigated. In the case where
p = 0 and p = ∞, L0 is a metric space and L∞ is a normed space as in the case
of the additive measure.
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Abstract. The classification problems described in the Machine Learning lit-
erature usually relate to the classification of data in which each example is
associated to a class belonging to a finite set of classes, all at the same level.
However, there are classification issues, of a hierarchical nature, where the
classes can be either subclasses or super classes of other classes. In many
hierarchical problems, one or more examples may be associated with more than
one class simultaneously. These problems are known as hierarchical multi-label
classification (HMC) problems. In this work, the ML-KNN algorithm was used
to predict hierarchical multi-label problems, in order to determine the number of
classes that can be assigned to an example. Through the experiments performed
on 10 protein function databases and the statistical analysis of the results, it can
be shown that the adaptations performed in the ML-KNN algorithm brought
significant performance improvements based on the hierarchical precision and
recall metrics Hierarchical.

Keywords: HMC � ML-KNN � Machine learning

1 Introduction

Data mining has become a powerful tool for decision-making, aiding in the retrieval of
information, since manual classification or use of simple computational methods
became impracticable [13].

As an example of use, one can highlight the categorization of texts and images
[1, 2, 12], protein prediction [3, 4], classification of musical genres [5], diagnosis and
treatment of diseases and development of drugs through uncovered knowledge [15].

The process of data classification in Machine Learning aims to assign a class to a
new example from its characteristics (attributes). Classification problems can be divi-
ded according to the dependency relationship among classes in Flat Classification and
Hierarchical Classification [14].

The ML classification task can also be categorized according to the number of
classes to be estimated for a given example. Thus, this categorization can be applied to
traditional problems (single-label) or multi-label problems.
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The initial motivation for the searches in the area of multi-label classification arose
with the difficulty caused by ambiguities in problems of texts categorization [12]. The
hierarchical multi-label classification is considered a relatively new research area [3,
10, 17], which provides the interest of researchers from different areas. The hierarchy
of the classes in Problems of Hierarchical Multi-Label Classification can be represented
through Trees or Directional Acyclic Graphs, being the last one presents greater
complexity because a class can be the daughter of more than one class, unlike the tree.

The purpose of this work is to study the Problems of Hierarchical Multi-Label
Classification, in which the relationship between classes is represented in Directed
Acyclic Graph (DAG). Consideration is given to a hierarchical organization with the
aim of increasing predictive capacity.

In this work, the ML-KNN algorithm is used to determine the number of classes to
be assigned to a real example that does not belong to the training base. The main
motivation of this work is related to the reduced number of classification algorithms
found in the literature for the type of problem addressed, due to being more complex
because one must preserve the class hierarchy.

The next sections are organized as follows: Sect. 2 presents the concepts of
multi-label hierarchical classification, Sect. 3 addresses the evaluation metrics for hier-
archical classification, Sect. 4 presents the statistical test used, Sect. 5 presents the
methodology of in this work, Sect. 6 describes the experiments performed with databases
of the functional genomic area and discussion about the results obtained with the vari-
ation of threshold values and k-neighbors and Sect. 7 the conclusions of the work done.

2 Hierarchical Multi-label Classification

Hierarchical classification problems aim to classify each new input data into one of the
leaf nodes providing a more specific and useful knowledge [6]. It may occur, however,
that the classifier does not have the desired reliability in the classification in one of the
deeper level classes, and it is safer to perform the classification at the higher levels.

The multi-label hierarchical classification has emerged as a new category of clas-
sification problems, with characteristics of both multi-label classification problems and
hierarchical classification problems. Problems belonging to this new category are called
multi-label hierarchical classification problems (HMC).

In a hierarchical multi-label classification problem, an example can belong to mul-
tiple classes at the same time and these classes are organized in a hierarchical manner.
The hierarchy can be represented in the tree format or a Directed Acyclic Graph (DAG).
Thus, an example belonging to a class automatically belongs to all its super classes.

The main difference between the tree structure and the DAG structure is that, in the
tree structure, each node except the root node has only one parent node, whereas in the
DAG each node, except the root node, may have one or more parent nodes.

Several methods can be used in the treatment of hierarchical multi-label classifi-
cation tasks. In the literature, there are several papers proposing and analyzing
approaches and methods for treatments of multi-label hierarchical problems (HMC)
[3, 10, 14, 17], however, there is no consensus on which algorithm to use for the
treatment of hierarchical problems Multi-label.
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It can also be said that problems of multi-label hierarchical classification are more
complex than the other classification problems, since the classes involved in the
problem, besides being structured in a hierarchy, the examples can belong to more than
one class at the same time.

3 Methods of Evaluation for Hierarchical Classification

The evaluation measures commonly used in data classification do not take into account
that complexity rises according to the depth of the class hierarchy. Based on this, in
[14] two evaluation measures were proposed based on conventional measures of pre-
cision and recall, which take into account hierarchical relationships between classes.
These measures were called hierarchical precision and hierarchical recall, take into
account classifications in the internal nodes, and leaf nodes.

Each example belongs not only to its class but also to all ancestors of that class in
the hierarchical structure. In this way, given any example, with the set of examples, the
set of classes predicted for the example, and the set of true classes of the example, sets
and can be understood to contain their corresponding ancestor classes as follows:

The hierarchical precision and the hierarchical recall are calculated according to
Eqs. (1) and (2), respectively

Prec ¼
P

i j bY 0
i \ bYi jP
i
bYi

ð1Þ

Rev ¼
P

i j bY 0
i \ bYi jP
i
bY 0
i

ð2Þ

These measures count the number of correctly predicted classes along with the
number of ancestor classes of these correctly predicted classes, assuming that examples
also belong to the ancestors of their correct classes [16].

The hierarchical precision and recall used alone are not sufficient for the evaluation
of classifiers. Therefore, the Prec and Rev Measures must be combined in a hierarchical
extension of the F-Measure measure, called FM, presented in Eq. (3). In equation b, it
refers to the importance attributed to the values of Prec and Rev. when the value of b is
increased, the weight attributed to the Rev value is increased, and when b is decreased,
the weight assigned to the value of Prec.

FM ¼ b2 þ 1
� � � Prec � Rev

b2 � PrecþRev
ð3Þ

Weights commonly used for b are: 1 (same weights to the accuracy and recall), 2
(recall is double the accuracy) and 0.5 (accuracy is double the recall). The precision has
a greater weight for values of b < 1, whereas b > 1 favors the recall [17].
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4 Statistical Tests

Statistical analysis of the results obtained from a given study is a very important tool in
validating this data. Statistical tests are fundamentally used in research that aims to
compare experimental conditions.

There are a number of statistical tests that can aid in research and these tests can be
divided into parametric and non-parametric. The difference between both tests refers to
the type of values of the studied variable. In parametric tests, the values of the variable
must have normal distribution or normal approximation. Non-parametric tests, how-
ever, do not have any requirements regarding the knowledge of the distribution of the
variable in the population.

Due to the lack of knowledge of the distribution of data, experiments performed to
deal with multi-label hierarchical problems are used non-parametric tests and the one
was chosen for this study was the Wilcoxon Test.

The Wilcoxon test (1945) is applied when two related groups are compared and the
variable must be ordinal measurement. The test ranks the difference between the
algorithms on each base used for performance evaluation. Then, add the positive
differences presented in Eq. (4) and the negative ones in Eq. (5).

W þ ¼
X

di [ 0
ri ð4Þ

W� ¼
X

di\0
ri ð5Þ

Where ri is rank of the i-th base evaluated considering the differences between the
algorithms compared.

Then, the value T is calculated in Eq. (6), which represents the smallest of the sums
of the same signal stations [8].

T ¼ min ðW þ ;W�Þ ð6Þ

Then the value of N, which is the total of the signal differences, is determined. If
N � 25, the critical values of T are tabulated, where N represents the database number
evaluated, discounting the number of draws (di = 0). For the values where N > 25 the
z statistic is used, in Eq. (7), since the distribution of the data is considered approxi-
mately normal.

z ¼ T � 1
4 nðnþ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
24 nðnþ 1Þð2nþ 1Þ

q ð7Þ

The null hypothesis assumes that the performance difference between algorithms is
not significant. With confidence level a = 0.05, the null hypothesis cannot be rejected
if −1.96 � z � 1.96.
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5 Methodology

This work aims to adapt a technique used in AI that applied to hierarchical problems
multi-label determines the number of classes that can be assigned to a real example not
belonging to the training base. For this, the methodology used in the work can be
divided into three phases: a study of the fundamental concepts of hierarchical
multi-label classification and its methods, application of the methods in different
databases, evaluation, and analysis of the results.

5.1 Dataset

The data set used in the experiments are biological data of the functional genomic area
(GO – Gene Ontology), as below (Table 1):

5.2 Tools

The Mulan framework [14] was used to conduct the experiments together with the
ML-kNN classification method. Mulan works in conjunction with Weka Java classes,
an environment known and used by the machine learning and data mining community
[9]. The package contains a framework that implements a wide range of multi-label
methods, which can be used and extended, as well as various evaluation measures.

The format required by Mulan involves two files, one of which is an ARFF
(Attribute-Relation File Format) type and the other is an XML (eXtensible Markup
Language) type.

In the ARFF file, you can define the type of data being loaded and then provide
your own data. In the file, each column was defined and what each column contains, we
provide each row of data in a comma-delimited format.

The ARFF file adopted by Mulan has small differences with respect to the ARFF
files used in other tools. One difference is that unlike other tools, Mulan does not use
only a hierarchical type attribute for the class by defining the hierarchy shortly after this
attribute. In Mulan, each label turns a class attribute of type {0, 1}, where 1 represents
that example belongs to class and 0 is the absence of that class.

Table 1. Basic properties of the datasets GO

Dataset #Instances #Attributes #Classes #Levels

Cellcycle 3751 77 4125 13
Church 3749 27 4125 13
Derisi 3719 63 4119 13
Eisen 2418 79 3573 13
Expr 3773 551 4131 13
Gasch1 3758 173 4125 13
Gasch2 3773 52 4131 13
Pheno 1586 69 3127 13
Seq 3900 478 4133 13
Spo 3697 80 4119 13
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The XML file is responsible for representing the hierarchy/dependency between the
labels/classes of the base to be parsed. This file is necessary during the classification
and evaluation steps.

It is important to note that this file can only be used to represent multi-label
hierarchical problems that have the hierarchy structured in the type of tree, which are
simpler structures, where a child node has only one parent node.

The bases chosen for this work have their hierarchy structured in DAG-type format,
being this structure more complex when compared to the tree type, since a child node
can have multiple parents. Due to this fact, it was necessary to create a new way to
represent the hierarchy of the labels, thus replacing the need to provide the XML type
file as input, and allowing the use of any hierarchical structure of the DAG-type.

All changes made in this framework will be submitted to the development team for
possible incorporation and will be available to the researchers of the area in the tool’s
own site.

5.3 Methodology of the Experiments

The methodology used to perform the experiments is formed by two main steps:
preprocessing and methods, as below:

1. Pre-processing of databases: After obtaining the bases, an algorithm was developed
that has as main objective to make the adaptation of ARFF files that are used by the
Mulan framework. This algorithm is composed of the following phases:
a. Input: The algorithm receives two text files. The first file contains the descent

ancestry relationship between the labels, and the second contains the values of
each attribute of the examples contained in the database and the associated
classes associated with each example.

b. Processing: The first file that is received by the algorithm, allows storing in a list
all the labels in the base so that later, they are consulted in the writing of the
output file. As mentioned previously, Mulan does not only have a class attribute
of the hierarchical type and this has an impact on the assigned value because in
the other files the classes are represented in the same attribute and separated by
the “@” character. For this, the developed algorithm reads the second input file,
verifies instance by instance, which class it belongs to and defines with value 1
the attribute that represents that class, being that the others receive value 0.

c. Output: As an output, the training and test database files are obtained in the
format required by the Mulan framework.

2. The technique used: In order to perform the task of predicting the number of classes
in the classification of structured hierarchical data, mainly in the form of a DAG,
some changes were made in the ML-kNN algorithm. Since none of the works found
were based in DAG format, only in a special type of DAG, this structure is called
tree.

ML-kNN is an algorithm known as lazy because it does not learn a compact data
model, it just memorizes the training set examples in memory. To classify a new
instance of the test base, this instance is compared to all instances belonging to the
training set by means of distance calculation.
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It has a more complex operation than the traditional kNN algorithm, because, in
multi-label problems, the examples have a set of labels and not just a class more
popular among the k-neighbors with less value of distance, as it happens in the
problems unlabeled.

This algorithm determines the set of labels of the sample to be classified, based on
the maximum a posteriori probability calculated from the frequency of each label
among the nearest neighboring k, compared to the frequency in all examples.

In multi-label problems, there is another difference, which is related to the evalu-
ation of class prediction, because in single-label problems, the prediction is correct or
wrong, and in multi-label problems due to label dependence, the prediction may be
partially correct, where some Labels are predicted correctly, but others are not.

As previously mentioned, the ML-kNN algorithm is implemented in the Mulan
tool, but it has some barriers to multi-label hierarchical classification. In order to
overcome these barriers, the strategy of creating a separate Mulan framework project
was adopted, in which only classes related to the ML-kNN classifier would be added,
making development easier and more practical, but still respecting the organization of
the framework. This new project may be incorporated in the future.

The first change was to create a new input file format to represent the hierarchy of
the labels since the Mulan XML file was only able to represent structured bases in the
tree-like format. It was then chosen to receive as input to the algorithm a text file that
contained the dependency information between the labels.

Through this file, it is possible to assemble the structure of a directed acyclic graph,
better known as DAG, because it is possible to store the list with the name of the
vertices and their k-neighbors. This file preserves the dependence between the labels,
being this an important factor both for the classification and for the accomplishment of
the calculations in the evaluation of the performance of the algorithm.

The ARFF file required by the Mulan is still maintained, and for the realization of
the experiments, the bases generated in the preprocessing step are used. When granting
the input files, the next change was to create new methods in the classes imported from
Mulan, these being MLkNN, MultiLabelKNN, MultiLabelLearner, Multi-
LabelLearnerBase, and MultiLabelOutput.

The creation of new methods was necessary because of the modification of the
structure that the XML file represented and was stored, being now represented by a text
file and stored in a graph.

The reading of the base files remains the same, using the Weka library to interpret
the ARFF format files. After reading the bases, the ML-kNN classifier is instantiated,
passing as parameter the value of k-neighbors and the standard smoothing factor for the
classification.

For the construction of the training stage, the training base is passed to the classifier
and after this process, the prediction is performed, being performed as previously
mentioned, each new instance is calculated the Euclidean distance of it with each
instance of the base of training.

For the prediction some changes were made, the first one was to establish a value
for the threshold. To improve the algorithm’s performance concerning to prediction,
the technique of Spyromitros et al. [11]. In this work, the technique previously used in
the BR-kNN transformation algorithm will be adapted to the ML-kNN algorithm.
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This technique consists in considering a confidence value of each label to decide which
will be part of the predicted multi-label, namely: the average number of occurrences of
the labels in the examples.

Based on this principle, the selection of the labels is done by comparing the value
of the confidence of the label with the value of the threshold, if the confidence is higher
than the stipulated threshold, the label is considered part of the predicted multilabel.
However, this label selection procedure can predict empty multi-labels. In order to
cancel this possibility, if no label is selected, the one with the highest trust is considered
part of the multi-label by ML-kNN.

After the prediction of the classes, a search in the graph that represents the hier-
archy of the classes is carried out, with the purpose of assigning value 1 to the ancestral
attributes to the predicted node. This same process of assigning the value 1 to the
ancestor attributes is performed with the attributes class of the test database.

In order to evaluate the performance of the ML-kNN algorithm, precision and recall
measurements were implemented, in addition to the variation of the k value and
threshold.

6 Experiments and Results

The experiments and results were obtained using the ML-kNN classifier. The experi-
ments were carried out using ten databases of the genomic functional area Gene
Ontology of public domain, these being structured in DAG format. For the evaluation,
variations in the ML-kNN algorithm were used for the values of k and threshold, where
k receives the values 3, 5 and 7, while the threshold varies between 0.5, 0.7 and 0.8.

6.1 Experimental Setup

To perform the experiments were used computers with the Windows 7 Operating
System, core i5 processor, 4 Gb of RAM and 1 Tb of HD.

In order to illustrate the proposed modifications, the datasets used in the experi-
ments are biological data from the functional genomic area (GO - Gene Ontology).

The ML-kNN was performed by varying the parameter k, which represents the
value of the nearest k-neighbors, assuming the values of 3, 5 and 7. The threshold value
was also varied, this being the cut-off value used in comparison with the value of each
label of a test instance, between 0.5, 0.7 and 0.8. For the performance evaluation,
precision, recall, and F-Measure measurements were used, these being already
described previously.

As previously mentioned, the experiments use the classes implemented in the
Mulan framework. The holdout strategy is used, where the database is divided into 2/3
for the training base and 1/3 for the test base. The graphs were generated using the
Excel software and the Wilcoxon statistical tests generated by an applet using the Two
Paired Sample Signed Rank Test method.
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6.2 Experimental Setup

The following is the experimental results obtained after the application of the classi-
fication algorithm in a multi-label hierarchical database.

The evaluation measures were calculated for each base by performing all possible
combinations of k and threshold values, in order to observe the behavior of the pre-
diction process of the number of classes, since the k and threshold values directly
influence the process.

These hierarchical measures take into account not only the predicted node but also
all of its ancestors, since a prediction in multi-label problems may be correct, wrong, or
partially correct. The measures applied were Hierarchical Precision, Hierarchical
Revocation, and Hierarchical F-Measure.

After the calculation of the precision and recall measures, the F-Measure mea-
surement is calculated, which is the harmonic measure of the other two measurements.
For this, we used the Excel tool to generate the values of all bases. For better visu-
alization, these measurements were plotted in graphs according to Figs. 1, 2 and 3.

Fig. 1. Metric F-Measure with threshold 0.5

Fig. 2. Metric F-Measure with threshold 0.7

Fig. 3. Metric F-Measure with threshold 0.8
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Through the graphs, it is possible to notice that in the same base, the variation of the
measurement of F-Measure is little significant. In addition, that its value is close to 0,
demonstrating that when the measures of precision and recall are compared, the
algorithm is not very effective.

6.3 Statistical Evaluation

To perform the Wilcoxon statistical test, the values of the precision measurement were
chosen. To compare the results, the threshold and k-neighbors variants were used. In
the first moment, the constant k was maintained and the threshold was varied and in the
second moment the constant threshold was maintained and the value of kneighbors was
varied.

For the two variations performed from the Wilcoxon test, the null hypothesis
assumes that the performance difference between algorithms is not significant. With
confidence level, a = 0.05 and the null hypothesis cannot be rejected if
−1.96 � z � 1.96.

After realizing the experiments, it can be verified that keeping the threshold value
constant by varying the k-neighbors did not improve the performance of the algorithm.
However, in the experiment in which the constant k was maintained and the cut-off
value was varied, there was a significant improvement in the performance of the
algorithm. The following are some results obtained when applying the statistical test.

In Tables 2, 3 and 4 are the tabulated values of the test for threshold assuming the
values 0.5, 0.7 and 0.8.

Table 2. Statistical test with K = 3

K = 3

Threshold = 0.5 com 0.7 Z-Score = −2.8031
Threshold = 0.5 com 0.8 Z-Score = −2.8031
Threshold = 0.8 com 0.7 Z-Score = −2.8031

Table 3. Statistical test with K = 5

K = 5

Threshold = 0.5 com 0.7 Z-Score = −2.8030
Threshold = 0.5 com 0.8 Z-Score = −2.8030
Threshold = 0.8 com 0.7 Z-Score = −2.8030

Table 4. Statistical test with K = 7

K = 7

Threshold = 0.5 com 0.7 Z-Score = −2.8032
Threshold = 0.5 com 0.8 Z-Score = −2.8032
Threshold = 0.8 com 0.7 Z-Score = −2.8032
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Instead, to the result obtained in the variation of the values of k, it is possible to
notice that in this test, the obtained values of, are superior to the limit of -1.96, which
means that the null hypothesis can be rejected and that there are improvements in the
performance of the algorithm.

7 Experiments and Results

In order to carry out the work, a methodology was created that includes the following
phases: Pre-Processing of databases, Adaptation of ML-kNN Hierarchical Classifica-
tion algorithm, Application of algorithm in databases and Statistical evaluation of
results.

During the development of the work, some changes were necessary to use the
MLkNN multi-label classification algorithm. Among these changes, we can mention
the modification of the input file (XML format) of the Mulan framework, where the
algorithm is implemented. We can also emphasize the fact that the technique used
previously only in the BR-kNN algorithm if in the prediction phase no class is assigned
to the instance, it assigns to that instance the class that has the highest confidence value.

Through the experiments performed using the adaptation of the ML-kNN algo-
rithm, the relationship between the cut-off variable and the precision measure was
verified. When performing the variation of the threshold, it was observed that the
adapted algorithm has a superior performance when this variable receives the value of
0.8, being this fact explained in the comparison between the confidence value of the
labels with the threshold, because the higher the value of the Threshold, the tendency is
for a smaller number of classes to be predicted, entering the condition where only the
class with the highest confidence among the labels of that instance is assigned. From
this, it is known that the number of classes of intercession between calculates precision
true and predicted divided by the number of predicted classes, as in this case, the
number of predicates is 1, the tendency is that the accuracy is greater.
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Abstract. In this paper, three fuzzy clustering models for categori-
cal multivariate data are proposed based on the Polya mixture model
and q-divergence. A conventional fuzzy clustering model for categori-
cal multivariate data is constructed by fuzzifying a multinomial mix-
ture model (MMM) via regularizing Kullback-Leibler (KL) divergence
appearing in a pseudo likelihood of an MMM, whereas MMM is extended
to a Polya mixture model (PMM) and no fuzzy counterpart to PMM is
proposed. The first proposed model is constructed by fuzzifying PMM,
by means of regularizing KL-divergence appearing in a pseudo likelihood
of the model. The other two models are derived by modifying the first
proposed algorithm, which is based on the fact that one of the three
fuzzy clustering models for vectorial data is similar to the first proposed
model, and that another fuzzy clustering model for vectorial data can
connect the other two fuzzy clustering models for vectorial data based on
q-divergence. In numerical experiments, the properties of the member-
ship of the proposed methods were observed using an artificial dataset.

1 Introduction

The hard c-means (HCM) clustering algorithm [1] splits datasets into well-
separated clusters by minimizing the sum of the squared distances between
the data and cluster centers. This concept has been extended to fuzzy clus-
tering. Specifically, Bezdek’s algorithm replaces linear membership weights with
the power of membership [2], thereby producing what is commonly known as
the fuzzy c-means (FCM) algorithm. To distinguish this algorithm from the
many variants that have been proposed since, this algorithm is referred to as the
Bezdek-type fuzzified FCM (bFCM) in this paper. Another fuzzy approach used
for cluster analysis is the regularization of the objective function of HCM. HCM
is singular, and an appropriate cluster cannot be obtained using the Lagrangian
multiplier method. Therefore, Miyamoto and Mukaidono introduced a regular-
ization term into its objective function as the negative entropy of membership [3],
thereby producing entropy-regularized FCM (eFCM). A major drawback to the
above clustering algorithms is that these algorithms tend to create clusters of
equal sizes. As a result, it is possible for a part of a large cluster to be mis-
classified as one of a smaller cluster if volumes of clusters are out of balance.
To avoid such issues, some approaches that use variables to control cluster sizes
c© Springer International Publishing AG 2017
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have been proposed [4,5]. Such methods that correspond to bFCM and eFCM
are referred to bFCMA and eFCMA in this paper. Furthermore, bFCMA has
been generalized in [6], and is referred to as the generalized FCM (gFCM).

Clustering for categorical multivariate data is a promising technique for sum-
marizing co-occurrence information such as purchase history transactions and
document-keyword frequencies, which are composed of mutual similarities among
objects and items. A multinomial mixture model (MMM) [7] is a probabilistic
model for clustering tasks for categorical multivariate data, in which component
distributions are given by multinomial distributions. The object assignment and
item typicalities are iteratively estimated based on the EM algorithm [8]. Honda
et al. [9] proposed the Kullback-Leibler (KL) divergence-regularized fuzzy clus-
tering model for categorical multivariate data (FCCM), referred to as KLFCCM,
supported by the KL-divergence-based regularization concept. In the KLFCCM
method, MMMs are extended to a fuzzy clustering model, in which the degree of
fuzziness of object memberships can be controlled by the KL-divergence-based
penalty term. However, Madsen et al. [10] have pointed out that the multinomial
model cannot capture well the phenomenon that pairs of an object and an item
tend to appear in bursts: if a pair of an object and an item appears once, it is
more likely to appear again. Then, Madsen et al. [10] proposed the Polya mix-
ture model (PMM). PMM has the potential to be extended to a fuzzy clustering
model similar to the manner in which MMM was extended to KLFCCM, which
is the primary motivation for this paper.

Several machine learning algorithms for classification and clustering employ
a variety of divergence. The most popular and often used divergences are the
inner product induced squared distance and Kullback-Leibler (KL)-divergence.
The HCM, bFCM, eFCM, bFCMA, eFCMA, and gFCM algorithms use the inner
product induced squared distance to measure the dissimilarities between objects
and cluster centers. The eFCMA [5] algorithm uses KL-divergence between mem-
berships and variables to control cluster size for regularization of HCM. Recently,
advanced machine learning algorithms have used alternative generalized diver-
gences. In particular, q-divergence [11], related to Tsallis entropy [12], might
provide more robust solutions with improved accuracy with respect to outliers
and additive noise. A fuzzy clustering method based on Tsallis entropy has been
proposed in [13]. Furthermore, although it is not described in [6], gFCM can be
interpreted as the regularization of bFCMA with q-divergence between member-
ships and variables controlling cluster sizes, as shown in this paper. However, the
methods in [13] and gFCM apply only to vectorial data. This paper examines
the potential that multivariate categorical data can be clustered effectively with
q-divergence.

In this paper, we propose three clustering algorithms based on PMM and q-
divergence. First, the log-likelihood for PMM is fuzzified by introducing a fuzzifica-
tion parameter into the KL-divergence, similar to the manner in which KLFCCM
was fuzzified from MMM. Then, maximization of the fuzzified log-likelihood leads
to the first proposed algorithm, which is referred to as KLFCCMP. The KLFC-
CMP algorithm reduces into the PMM with a specified parameter. Next, we
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show that gFCM [6] can be interpreted as the regularization of bFCMA [4] with
q-divergence, and that gFCM reduces not only to bFCMA but also reduces to
eFCMA [5] with specified sets of parameters. Furthermore, we show that the max-
imization problem for the first proposed algorithm is similar to the minimization
problem for the eFCMA algorithm. Then, based on the knowledge that eFCMA
based on KL-divergence is generalized into gFCM based on q-divergence, and that
the first proposed algorithm, KLFCCMP, is based on KL-divergence, an FCCM
algorithm based on q-divergence is derived from an optimization problem built
by extending KL-divergence in KLFCCMP to q-divergence, referred to as qFC-
CMP. The qFCCMP algorithm reduces to KLFCCMP with a specified parameter.
Finally, based on the knowledge that gFCM with a specified parameter reduces to
bFCMA, another FCCM algorithm is derived from an optimization problem built
by specifying a parameter value for qFCCMP, which is referred to as bFCCMP.
In numerical experiments, we observe the membership properties of the proposed
methods using a fuzzy classification function (FCF) [14].

The remainder of this paper is organized as follows. In Sect. 2, notations
and the conventional methods are introduced. Section 3 presents the proposed
methods. Section 4 provides some numerical examples. Section 5 presents our
concluding remarks.

2 Preliminaries

2.1 Entropy and Divergence

For a discrete probability distribution P , Shannon entropy HShannon(P ) is defined
as

HShannon(P ) = −
∑

i

P (i) log(P (i)). (1)

For two discrete probability distributions P and Q, the KL-divergence of Q from
P , DKL(P ||Q) is defined as

DKL(P ||Q) =
∑

i

P (i) log (P (i)/Q(i)) . (2)

Shannon entropy and KL-divergence have been used to derive fuzzy clustering [3,
6,9] for vectorial, spherical, and multivariate categorical data.

Shannon entropy and KL-divergence have been generalized by using a family
of functions called generalized logarithmic functions or q-logarithmic function:

logq(x) = (x1−q − 1)/(1 − q) (for x > 0) (3)

as

HTsallis(P ) = − 1
q − 1

(
∑

i

P (i) − 1

)
, (4)

Dq(P ||Q) =
1

q − 1

(
∑

i

P (i)qQ(i)1−q − 1

)
, (5)
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referred to as Tsallis entropy [12] and q-divergence [11]. In the limit, as q → 1,
Shannon entropy and KL-divergence are recovered. Tsallis entropy has been
also used to derive fuzzy clustering [13] only for vectorial data and q-divergence
has been implicitly used to derive fuzzy clustering only for vectorial data [6],
although that is not indicated in the literature. Tsallis entropy and q-divergence
have not been used for fuzzy clustering of multivariate categorical data. That
fact is the main motivation for this work.

2.2 Fuzzy Clustering for Vectorial Data

In this subsection, three optimization problems are introduced, which lead to
the representative three fuzzy clustering methods for vectorial data. These opti-
mization problems and their relation are the basis for the methods proposed in
this study.

Let X = {xk ∈ R
p | k ∈ {1, · · · , N}} be a dataset of p-dimensional points.

The membership of xk that belongs to the i-th cluster is denoted by ui,k (i ∈
{1, · · · , C}, k ∈ {1, · · · , N}) and the set of ui,k is denoted by u, which is also
known as the partition matrix, which satisfies the constraint

C∑

i=1

ui,k = 1, ui,k ∈ [0, 1]. (6)

The cluster center set is denoted by v = {vi | vi ∈ R
p, i ∈ {1, · · · , C}}. The

variable controlling the i-th cluster size is denoted by πi. The i-th element of
vector π is denoted by πi, and π satisfies the constraint

C∑

i=1

πi = 1. (7)

The methods bFCMA, eFCMA, and gFCM are derived by solving the opti-
mization problems

minimize
u,v,π

C∑

i=1

N∑

k=1

(πi)1−m(ui,k)m‖xk − vi‖22, (8)

minimize
u,v,π

C∑

i=1

N∑

k=1

ui,k‖xk − vi‖22 + λ−1
C∑

i=1

N∑

k=1

ui,k log
(

ui,k

πi

)
, (9)

minimize
u,v,π

C∑

i=1

N∑

k=1

(πi)1−m(ui,k)m‖xk − vi‖22 + λ−1
C∑

i=1

N∑

k=1

(πi)1−m(ui,k)m, (10)

respectively, subject to Eqs. (6) and (7), where m > 1 and λ > 0 are fuzzifica-
tion parameters. (These algorithms are omitted for brevity.) The gFCM method
with (m − 1, λ) → (+0,∞) reduces to bFCMA. Although not described in [6], a
reparametrized gFCM can be interpreted as the regularization of bFCMA with
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q-divergence between memberships and variables that control cluster sizes. Fur-
thermore, this reparametrized gFCM reduces to eFCMA with a specified para-
meter value. Then, this reparametrized gFCM connects bFCMA and eFCMA.
These are further described in a later section.

2.3 Conventional Fuzzy Clustering for Categorical Multivariate
Data Based on KL-divergence

It is assumed that for datasets A = {ak | k ∈ {1, . . . , N}} and B = {b� | � ∈
{1, . . . , M}}, the co-occurrence information between ak and b�, x

(�)
k , is given. X

is a matrix whose (k, �)-th element is x
(�)
k . We refer to A and B as the object

and item sets, respectively. The membership of object ak belonging to the i-th
cluster is denoted by ui,k. The (i, k)-th element of matrix u is denoted by ui,k,
and u satisfies the constraint given in Eq. (6). The typicality of item b� belonging
to the i-th cluster is denoted by v

(�)
i . The (i, �)-th element of matrix v is denoted

by v
(�)
i , and v satisfies the constraint

M∑

�=1

v
(�)
i = 1. (11)

The variable controlling the i-th cluster size is denoted by πi. The i-th element
of vector π is denoted by πi, and π satisfies the constraint given in Eq. (7).
Honda et al. proposed an FCCM algorithm [9] induced by MMMs, referred to
as KLFCCM, by solving the following optimization problem:

maximize
u,v,π

C∑

i=1

N∑

k=1

M∑

�=1

ui,kx
(�)
k log

(
v
(�)
i

)
+ λ−1

C∑

i=1

N∑

k=1

ui,k log
(

πi

ui,k

)
, (12)

which is subject to Eqs. (6), (7), and (11), where λ > 0 is a fuzzification para-
meter. This optimization problem is derived from the pseudo log-likelihood of
MMMss described as

C∑

i=1

N∑

k=1

M∑

�=1

ui,kx
(�)
k log

(
v
(�)
i

)
+

C∑

i=1

N∑

k=1

ui,k log
(

πi

ui,k

)
, (13)

where, in the probabilistic framework, ui,k denotes the posterior probability of
the i-th component multinomial distribution given the k-th multinomial object,
v
(�)
i denotes the probability of observing the �-th item from the i-th component

multinomial distribution, and πi denotes the prior probability of the i-th compo-
nent multinomial distribution. The KLFCCM optimization problem is fuzzified
by introducing the fuzzification parameter λ into the KL divergence of the pos-
terior from the prior

DKL(u ‖ π) =
N∑

k=1

C∑

i=1

ui,k log
(

ui,k

πi

)
, (14)
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and the degree of fuzziness of object memberships can be controlled by the KL
divergence-based penalty term. The KLFCCM optimization problem recovers
the MMM optimization problem with λ → 1.

2.4 Polya Mixture Model

In a co-occurrence matrix, if an item occurs once, it is likely that the same
item will occur again. This phenomenon is called burstiness. The multinomial
distribution was used extensively to model the co-occurrence matrix, but it does
not account for burstiness. As an alternative to the co-occurrence matrix, the
Polya mixture model is proposed [10].

The Dirichlet distribution is defined for a random vector, v = (v(1), . . . , v(M)),
on a simplex of M dimensions. Elements of a random vector on a simplex sum to
one. We interpret v as item occurrence probabilities on M items, such that the
Dirichlet distribution models item occurrence probabilities. The density function
of the Dirichlet for v is

ProbD(v;α) =
Γ

(∑M
�=1 α(�)

)

∏M
�=1 Γ (α(�))

M∏

�=1

(v�)α(�)−1, (15)

where α = (α(1), . . . , α(M)) with α(�) > 0 is a parameter vector, and Γ ()̇ is the
gamma function. When the random vector v as the parameter of a multinomial
is drawn from the Dirichlet mixture distribution, defined as

ProbDM(v;π, α) =
C∑

i=1

πiProbD(vi;αi), (16)

where π = (π1, . . . , πC) is a weight vector for each component Dirichlet distribu-
tion and α = (α(1)

1 , . . . , α
(M)
C ) is a parameter matrix, the compound distribution

for objects x = (x(1), . . . , x(M)) is

ProbPM(x;π, α) =
C∑

i=1

πi

Γ
(∑M

�=1 α
(�)
i

)

Γ
(∑M

�=1 α
(�)
i + x(�)

)
M∏

�=1

Γ
(
x(�) + α

(�)
i

)

Γ
(
α
(�)
i

) . (17)

Each x(�) signifies the occurrence frequency of the �-th item in an object. This dis-
tribution is called the Polya mixture distribution. Its set of parameters (π, u, α)
is estimated given objects {xk}N

k=1 by maximizing its pseudo log-likelihood or
solving the following optimization problem:

maximize
π,u,α

N∑

k=1

C∑

i=1

ui,k log
(

πi

ui,k

)
+

N∑

k=1

C∑

i=1

ui,k

(
�Γ

(
M∑

�=1

α
(�)
i

)

− �Γ

(
M∑

�=1

α
(�)
i + x

(�)
k

)
+

M∑

�=1

(
�Γ

(
x
(�)
k + α

(�)
i

)
− �Γ

(
α
(�)
i

)))
, (18)
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which is subject to Eqs. (6) and (7), where �Γ is the log-gamma function. Its
fuzzy counterpart is currently not defined in the literature. This issue is the
motivation for this work.

3 Proposed Method

3.1 Basic Concept

Based on the fact that KLFCCM was derived by fuzzifying MMM, in this paper,
we derive an FCCM method by fuzzifying a PMM; the result is referred to as
KLFCCMP. We can find the KL-divergence of the posterior ui,k from the prior
πi in the first term of the objective function for PMM given in Eq. (18). Then,
the optimization problem of the first proposed method is derived by fuzzifying
PMM by introducing a parameter λ > 0 in the KL-divergence of the posterior
from the prior, described as

maximize
u,v,π

λ−1
N∑

k=1

C∑

i=1

ui,k log
(

πi

ui,k

)
+

N∑

k=1

C∑

i=1

ui,k

(
�Γ

(
M∑

�=1

α
(�)
i

)

− �Γ

(
M∑

�=1

α
(�)
i + x�

k

)
+

M∑

�=1

(
�Γ

(
x�

k + α
(�)
i

)
− �Γ

(
α
(�)
i

)))
, (19)

which is subject to Eqs. (6) and (7). This derivation is similar in manner to the
derivation of KLFCCM by fuzzifying MMM by introducing a parameter λ > 0
in the KL-divergence of the posterior from the prior. This optimization recovers
PMM with λ → 1.

Next, as one of the two preparations to derive the second proposed method,
we recall that gFCM is derived by regularizing bFCMA using the q-divergence.
Rewriting the fuzzification parameter λ in Eq. (10) of the gFCM objective func-
tion, as λ̃(m − 1) with another parameter λ̃, we have

minimize
u,v,π

C∑

i=1

N∑

k=1

(πi)1−m(ui,k)mdi,k +
λ̃−1

m − 1

(
C∑

i=1

N∑

k=1

(πi)1−m(ui,k)m − 1

)
,

(20)

where the first term is the objective function of bFCMA (Eq. (8)). The second
term is the q-divergence between memberships ui,k and variables controlling clus-
ter sizes πi with the parameter of q-divergence, m, and with the fuzzification para-
meter, λ̃. Therefore, gFCM can be interpreted as further fuzzification of bFCMA
by q-divergence. Furthermore, it should be noted that gFCM with m → 1 reduces
to eFCMA because the first term reduces to HCM and the second term reduces to
KL-divergence between memberships ui,k and variables controlling cluster sizes
πi with the parameter of q-divergence, m, and with the fuzzification parameter,
λ̃. Therefore, gFCM connects bFCMA and eFCMA.

Next, as another preparation to derive the second proposed method, we show
that the maximization problem for the first proposed algorithm, KLFCCMP, is
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similar to the minimization problem for the eFCMA algorithm. The KLFCCMP
maximization problem is equivalently described as the following minimization
problem:

minimize
u,v,π

λ−1
N∑

k=1

C∑

i=1

ui,k log
(

ui,k

πi

)
+

N∑

k=1

C∑

i=1

ui,k

(
−�Γ

(
M∑

�=1

α
(�)
i

)

+ �Γ

(
M∑

�=1

α
(�)
i + x

(�)
k

)
−

M∑

�=1

(
�Γ

(
x
(�)
k + α

(�)
i

)
+ �Γ

(
α
(�)
i

)))
, (21)

which is identical to the eFCMA minimizing problem except that the object-
cluster dissimilarity in eFCMA is described as ‖xk − vi‖22, whereas the object-
item membership relation in KLFCCMP is described as −�Γ (

∑M
�=1 α

(�)
i ) +

�Γ (
∑M

�=1 α
(�)
i + x

(�)
k ) − ∑M

�=1(�Γ (x(�)
k + α

(�)
i ) + �Γ (α(�)

i )).
Similar to the manner in which eFCMA is generalized to gFCM by q-

divergence, we propose a generalized optimization problem of KLFCCMP,
Eq. (19), by fuzzifying with q-divergence as

minimize
u,v,π

λ−1

m − 1

(
N∑

k=1

C∑
i=1

(πi)
1−m(ui,k)

m − 1

)
+

N∑
k=1

C∑
i=1

(πi)
1−m(ui,k)

m

×
(
−�Γ

(
M∑

�=1

α
(�)
i

)
+ �Γ

(
M∑

�=1

α
(�)
i + x

(�)
k

)
−

M∑
�=1

(
�Γ
(
x
(�)
k + α

(�)
i

)
+ �Γ

(
α
(�)
i

)))
, (22)

which is subject to Eqs. (6) and (7). This qFCCMP optimization problem with
m − 1 → +0 reduces to the KLFCCMP optimization problem.

Finally, on the basis of the knowledge that gFCM with λ → +∞ reduces
to bFCMA, another FCCM, referred to as bFCCMP, optimization problem is
derived from the qFCCMP optimization problem with λ → +∞, as

minimize
u,v,π

N∑

k=1

C∑

i=1

(πi)1−m(ui,k)m

(
−�Γ

(
M∑

�=1

α
(�)
i

)

+ �Γ

(
M∑

�=1

α
(�)
i + x

(�)
k

)
−

M∑

�=1

(
�Γ

(
x
(�)
k + α

(�)
i

)
+ �Γ

(
α
(�)
i

)))
, (23)

which is subject to Eqs. (6) and (7). In the ensuring subsection, we derive three
FCCM algorithms based on the above optimization problems.

3.2 Proposed Algorithms

The proposed three FCCM algorithms are obtained by solving the optimiza-
tion problems given in Eqs. (19), (22), and (23) subject to the constraints in
Eqs. (6) and (7), where their Lagrangians LKLFCCMP(u, α, π), LqFCCMP(u, α, π),
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LbLFCCMP(u, α, π) are described as

LKLFCCMP(u, α, π) = λ−1
N∑

k=1

C∑
i=1

ui,k log

(
πi

ui,k

)
+

N∑
k=1

C∑
i=1

ui,k

(
�Γ

(
M∑

�=1

α
(�)
i

)

− �Γ

(
M∑

�=1

α
(�)
i + x(�)

)
+

M∑
�=1

(
�Γ
(
x(�) + α

(�)
i

)
− �Γ

(
α
(�)
i

)))

−
N∑

k=1

γk(1−
C∑

i=1

ui,k)− η(1−
C∑

i=1

πi), (24)

LqFCCMP(u, α, π) =
λ−1

m − 1

(
N∑

k=1

C∑
i=1

(πi)
1−m(ui,k)

m − 1

)
+

N∑
k=1

C∑
i=1

(πi)
1−m(ui,k)

m

×
(
−�Γ

(
M∑

�=1

α
(�)
i

)
+ �Γ

(
M∑

�=1

α
(�)
i + x(�)

)
−

M∑
�=1

(
�Γ
(
x(�) + α

(�)
i

)
+ �Γ

(
α
(�)
i

)))
,

−
N∑

k=1

γk(1−
C∑

i=1

ui,k)− η(1−
C∑

i=1

πi), (25)

LbFCCMP(u, α, π) =

N∑
k=1

C∑
i=1

(πi)
1−m(ui,k)

m

(
−�Γ

(
M∑

�=1

α
(�)
i

)

+ �Γ

(
M∑

�=1

α
(�)
i + x(�)

)
−

M∑
�=1

(
�Γ
(
x(�) + α

(�)
i

)
+ �Γ

(
α
(�)
i

)))

−
N∑

k=1

γk(1−
C∑

i=1

ui,k)− η(1−
C∑

i=1

πi), (26)

respectively, with the Lagrange multipliers (γ, η). The analysis of the necessary
conditions of optimality, although the detail is omitted for brevity, is summarized
by the following algorithm:

Algorithm 1

Step 1. Set the number of clusters C. Set the fuzzification parameter λ for
KLFCCMP, (m,λ) for qFCCMP, and (m,λ) for bFCCMP. Set the initial
object membership as u, and the initial variables controlling cluster size as π.

Step 2. Calculate d using

di,k = − �Γ

(
M∑

�=1

α
(�)
i

)
+ �Γ

(
M∑

�=1

α
(�)
i + x

(�)
k

)

−
M∑

�=1

(
�Γ

(
x
(�)
k + α

(�)
i

)
+ �Γ

(
α
(�)
i

))
. (27)

Step 3. Calculate u as

ui,k = πi exp(−λdi,k)/
C∑

j=1

πj exp(−λdj,k) (28)
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for KLFCCMP,

ui,k = πi(1 − λ(1 − m)di,k)1/(1−m)/

C∑

j=1

πj(1 − λ(1 − m)dj,k)1/(1−m) (29)

for qFCCMP, and

ui,k = πi(di,k)1/(1−m)/

C∑

j=1

πi(dj,k)1/(1−m) (30)

for bFCCMP.
Step 4. Calculate α using the iterative formula

αi,� ← αi,�

∑N
k=1 ui,k(x(�)

k /(x(�)
k − 1 + αi,�))

∑N
k=1 ui,k(

∑M
r=1 x

(r)
k /(

∑M
r=1 x

(r)
k − 1 + αi,r))

(31)

for KLFCCMP, and

αi,� ← αi,�

∑N
k=1(ui,k)m(x(�)

k /(x(�)
k − 1 + αi,�))

∑N
k=1(ui,k)m(

∑M
r=1 x

(r)
k /(

∑M
r=1 x

(r)
k − 1 + αi,r))

(32)

for qFCCMP and bFCCMP, with a stopping criterion.
Step 5. Calculate π as

πi =
N∑

k=1

ui,k/N (33)

for KLFCCMP,

πi =

(∑N
k=1(ui,k)m(1 − λ(1 − m)di,k)

)1/(m−1)

∑C
j=1

(∑N
k=1(uj,k)m(1 − λ(1 − m)dj,k)

)1/(m−1)
(34)

for qFCCMP, and

πi =

(
N∑

k=1

(ui,k)mdi,k

)1/(m−1)

/

C∑

j=1

(
N∑

k=1

(uj,k)mdj,k

)1/(m−1)

(35)

for bFCCMP.
Step 6. Check the limiting criterion for (u, α, π). If the criterion is not satisfied,

go to Step. 2.

Using the values (α, π) obtained with this algorithm, the corresponding FCF
ui(x) is described as

ui(x) = πi exp(−λdi(x))/
C∑

j=1

πj exp(−λdj(x)) (36)
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for KLFCCMP,

ui(x) = πi(1 − λ(1 − m)di(x))1/(1−m)/
C∑

j=1

πj(1 − λ(1 − m)dj(x))1/(1−m) (37)

for qFCCMP, and

ui(x) = πi(di(x))1/(1−m)/

C∑

j=1

πi(dj(x))1/(1−m) (38)

for bFCCMP, where

di(x) = − �Γ

(
M∑

�=1

α
(�)
i

)
+ �Γ

(
M∑

�=1

α
(�)
i + x(�)

)

−
M∑

�=1

(
�Γ

(
x(�) + α

(�)
i

)
+ �Γ

(
α
(�)
i

))
. (39)

4 Numerical Examples

This section presents several numerical examples that illustrate the proposed
methods based on an artificial dataset.

The first dataset was obtained from the Polya mixture of two compo-
nents of Polya distributions, where each component comprised 50 points on
a two-dimensional simplex with the Polya parameter values

∑3
�=1 x(�) = 100,

α1 = (3, 3, 12) and α2 = (96, 96, 30), as shown in Fig. 1a. The conventional
method, KLFCCM, and the three proposed methods, KLFCCMP, qFCCMP,
and bFCCMP, with C = 2 and with various fuzzification parameter values, par-
tition this dataset well, as shown in Fig. 1b, where the points in each cluster are
described with circles and triangles.

The FCFs of qFCCM with (m,λ) = (1 + 10−15, 1010) and KLFCCM with
λ = 1010 are shown in Figs. 2 and 3, respectively, which are extreme cases of both
fuzzification parameter values (m,λ). In these figures, the FCF values on most
points are zero or one. Thus, this case shows a crisp clustering result. We find the
classification borders in these figures and the difference of the classification prop-
erties between qFCCMP and KLFCCM: the classification border of qFCCMP is
nonlinear, whereas that of KLFCCM is linear. This implies that qFCCMP can
capture each variability of data in each cluster whereas KLFCCM cannot, which
is similar to the capability of a Gaussian mixture model with different variance
parameters for each cluster to capture each variance in each cluster, whereas a
restricted Gaussian mixture model with unified variance parameter for all clus-
ters cannot. Figure 2 also shows both the cases of KLFCCMP with an extreme
fuzzification parameter value λ and bFCCMP with an extreme fuzzification para-
meter value m, because qFCCMP with m − 1 → +0 reduces to KLFCCMP and
qFCCMP with λ → +∞ reduces to bFCCMP. Then, not only qFCCMP but
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also KLFCCMP and bFCCMP can capture each variability of the data in each
cluster. This difference between the conventional method, KLFCCM, and the
three proposed methods, qFCCMP, KLFCCMP, and bFCCMP, may influence
the clustering accuracy, which will be shown in later paragraphs.

The FCF of qFCCM with (m,λ) = (1 + 10−15, 0.5) is shown in Fig. 4, which
is an extreme case of the fuzzification parameter value m. The difference between
Figs. 2 and 4 shows that for qFCCMP, the smaller the fuzzification parameter
value λ is, the fuzzier the FCF values are. Since qFCCMP with m − 1 → +0
reduces to KLFCCMP, also for KLFCCMP, the smaller the fuzzification para-
meter value λ is, the fuzzier the FCF values are. The FCF of qFCCM with
(m,λ) = (1.021, 1010), which is an extreme case of the fuzzification parameter
value λ, is similar to that with (m,λ) = (1 + 10−15, 0.5), shown in Fig. 4. This
implies that for qFCCMP, the larger the fuzzification parameter value m is, the
fuzzier the FCF values are. Although we tested qFCCMP with various fuzzifica-
tion parameter values, we could not find any difference in the properties of the
fuzzification parameters (m,λ) (this will be further investigated in future work).
As qFCCMP with λ → +∞ reduces to bFCCMP, also for bFCCMP, the larger
the fuzzification parameter value m is, the fuzzier the FCF values are. Revealing
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Fig. 1. Artificial dataset and its clus-
tering result.
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Fig. 2. FCFs of qFCCMP with
(m, λ) = (1.01, 2.0).
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Fig. 3. FCFs of KLFCCM with λ = 10.
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Fig. 4. FCFs of qFCCMP with
(m, λ) = (1.01, 0.5).
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the difference among properties of the three proposed methods is also one of
our future works because we could not find it. This depends on clarifying the
difference in the properties of both fuzzification parameters (m,λ) in qFCCMP.

5 Conclusions

In this paper, three FCCM algorithms were proposed based on PMM and q-
divergence. One algorithm was obtained by fuzzifying the log-likelihood for
PMM, where as the others were obtained by modifying the first proposed algo-
rithm based on the fact that gFCM is interpreted as a fuzzification of bFCMA
by q-divergence and that gFCM connects bFCMA and eFCMA. In numerical
experiments, the membership properties of the proposed methods were observed
using FCF.

In future work, we will investigate the differences among the proposed three
algorithms, because we could not find any in this study, in terms of both their
membership properties using FCF. We will also test the proposed algorithms
on many datasets and compare them with conventional methods. We also plan
to apply other fuzzification techniques (e.g. [18,19]) to PMM, and extend the
proposed method to possibilistic clustering [15,16] and noise clustering [17].

Acknowledgment. This work was supported by JSPS KAKENHI Grant Number
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Abstract. Various fuzzy co-clustering methods have been proposed for
collaborative filtering; however, it is not clear which method is best
in terms of accuracy. This paper proposes a recommender system that
utilizes fuzzy co-clustering-based collaborative filtering and also evalu-
ates four fuzzy co-clustering methods. The proposed system recommends
optimal items to users using large-scale rating datasets. The results of
numerical experiments conducted using one artificial dataset and two
real datasets indicate that, the proposed method combined with a par-
ticular fuzzy co-clustering method is more accurate than conventional
methods.

Keywords: Collaborative filtering · Fuzzy clustering · Co-clustering

1 Introduction

Recommender systems assist and augment our natural social process of rely-
ing on recommendations from other people to make choices without sufficient
personal experience. In a typical recommender system, people provide recom-
mendations as inputs, which the system then aggregates and directs to appro-
priate recipients. In some cases, the primary transformation is in the aggregation;
in others, the system’s value lies in its ability to make good matches between
the recommenders and those seeking recommendations [1]. Recommender sys-
tems have evolved in the extremely interactive environment of the Web. They
apply data analysis techniques to the problem of helping customers determine
the products they would like to purchase on E-Commerce sites. For instance,
a recommender system on Amazon.com (www.amazon.com) suggests items to
customers based on other items customers have told Amazon they like [2].

One typical recommender system implementation method is based on collab-
orative filtering using evaluation data generated from users [3,4]. Collaborative
filtering provides three key additional advantages to information filtering that
are not provided by content-based filtering: (1) support for filtering items whose
content is not easily analyzed by automated processes; (2) ability to filter items
based on quality and taste; (3) ability to provide serendipitous recommendations.

c© Springer International Publishing AG 2017
V. Torra et al. (Eds.): MDAI 2017, LNAI 10571, pp. 103–116, 2017.
DOI: 10.1007/978-3-319-67422-3 10
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Co-clustering models have been proven useful in collaborative filtering
tasks [5], where categorical multivariate datasets are provided in the form of
cross-classification table, contingency table, or co-occurrence matrix. In these
datasets, each individual is described by a set of qualitative variables with sev-
eral categories. The categorical variables are defined by several quantifications of
qualitative data: binary indicator, frequency, or scaled variable, in which several
popular items can be shared by multiple clusters. Although several fuzzy co-
clustering methods have been proposed [6–9], the best method for collaborative
filtering in terms of accuracy is still unclear.

In this paper, we compare fuzzy co-clustering-based collaborative filter-
ing algorithms using four fuzzy co-clustering methods specifically, FCCM [6],
bFCCM [7], KLFCCM [8], and αFCCM [9] and two conventional methods specif-
ically, Firefly [10] and GroupLens [11]. FCCM [6] is the first proposed fuzzy co-
clustering model: it utilizes entropy-based fuzzification. bFCCM [7] is derived
from Bezdek-type fuzzification instead of entropy-based fuzzification in FCCM.
KLFCCM [8] is derived by introducing the Kullback-Leibler (KL) divergence-
based regularization concept in multinomial mixture models. αFCCM [9] is
derived by utilizing α-divergence instead of KL-divergence in KLFCCM. We
consider two approaches to incorporate a fuzzy co-clustering method into col-
laborative filtering tasks: (1) using the approach proposed by Thomas and
Srujana [12], in which a different type of co-clustering other than fuzzy co-
clustering is used. (2) combining fuzzy co-clustering and GroupLens. The com-
bination of two fuzzy co-clustering method collaborative filtering incorporation
approaches and four fuzzy co-clustering methods yields eight fuzzy co-clustering-
based collaborative filtering. Through numerical experiments using two real
datasets, the proposed method with a particular fuzzy co-clustering method
is shown to be more accurate than the conventional methods.

The remainder of this paper is organized as follows: Sect. 2 demonstrates
user-based filtering prediction by two conventional methods and four FCCM
methods. Section 3 outlines two proposed collaborative filtering algorithms that
utilize co-clustering. Section 4 presents numerical experiments conducted using
one artificial dataset and two real datasets. Section 5 summarizes and concludes
of this paper.

2 Preliminaries

2.1 Conventional Collaborative Filtering Methods

The algorithms most frequently used in collaborative filtering are neighborhood-
based methods [11]. In neighborhood-based methods, the subset of appropriate
users is chosen based on their similarity to an active user and the weighted
aggregate of their ratings is used to generate predictions for the active user. Let
N and M be the number of users and items, respectively. Let x ∈ R

N×M
+ be a

matrix whose (k, �)-th element is the rating value of the k-th user for the �-th
item. Some elements of x may be missing; the goal of collaborative filtering is
to predict such missing values. Define a binary matrix y ∈ R

N×M by setting
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yk,� equal to one if the k-th user has rated the �-th item, and zero otherwise.
x̂k,� represents the prediction for the active user k for item �. sim(k, k′) is the
similarity weight between the active user and a neighbor k′ as defined by the
following Pearson correlation coefficient:

sim(k, k′) =

∑
�:yk,�yk′,�=1(xk,� − x̆k,·)(xk′,� − x̆k′,·)

√∑
�:yk,�yk′,�=1(xk,� − x̆k,·)2

√∑
�:yk,�yk′,�=1(xk′,� − x̆k′,·)2

, (1)

where x̆k,· is the average of {xk,� | yk,�yk′,� = 1, � ∈ {1, . . . , M}}.
The Firefly method [10] predicts the missing values of active users, x̂k,�, from

the other users’ evaluated values and their similarities using

x̂k,� =

∑
k′:sim(k,k′)≥0 xk′,�sim(k, k′)
∑

k′:sim(k,k′)≥0 sim(k, k′)
. (2)

The GroupLens method [11] uses Pearson correlations to weight the user sim-
ilarity used by all available correlated neighbors and estimates the rating by
computing the weighted average of deviations from the neighbors’ mean. Then,
the missing values of active users, x̂k,�, are predicted from the other users’ eval-
uated values and their similarities using

x̂k,� = x̆k,· +

∑
k′:sim(k,k′)≥0 sim(k, k′)(xk′,� − x̆k′,·)

∑
k′:sim(k,k′)≥0 sim(k, k′)

, (3)

where xk′,� is replaced by x̆k′,· if xk′,� is missing.
Prediction methods are summarized by the following algorithm:

Algorithm 1

Step 1 Calculate similarities using Eq. (1).
Step 2 Calculate x̂ using Eq. (2) for the Firefly method, and using Eq. (3) for

the GroupLens method.

2.2 Fuzzy Co-clustering

Assume that for datasets A = {ak | k ∈ {1, · · · , N}} and B = {b� | � ∈
{1, · · · ,M}}, the co-occurrence information between ak and b�, xk,� is given,
where x is the matrix whose (k, �)-th element is xk,�. We refer to A and B as the
row and column data sets, respectively, because the k-th row of x represents the
similarities between ak and b�, and the �-th column of x represents the similarities
between b� and ak. The object membership of datum ak belonging to the i-th
cluster is denoted by ui,k. The (i, k)-th element of matrix u is denoted by ui,k,
and u satisfies the constraint

C∑

i=1

ui,k = 1 and ui,k ∈ [0, 1]. (4)
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The item membership of datum b� belonging to the i-th cluster is denoted by
wi,�. The (i, �)-th element of matrix w is denoted by wi,�, and w satisfies the
constraint

M∑

�=1

wi,� = 1 and wi,� ∈ [0, 1]. (5)

A variable to control the i-th cluster size is denoted by πi. The i-th element of
vector π is denoted by πi, and π satisfies the constraint

C∑

i=1

πi = 1. (6)

FCCM [6] is obtained by solving the following optimization problem:

maximize
u,w,π

C∑

i=1

N∑

k=1

M∑

�=1

ui,kwi,�xk,�

− λ1

C∑

i=1

N∑

k=1

ui,k log (
πi

ui,k
) − λ2

C∑

i=1

M∑

�=1

wi,� log (wi,�), (7)

subject to Eqs. (4), (5), and (6), where λ1 > 0 and λ2 > 0 are fuzzification
parameters. The Bezdek-type Fuzzified FCCM method [7] is obtained by solving
the following optimization problem:

maximize
u,w,π

C∑

i=1

N∑

k=1

M∑

�=1

(πi)
m1−1

m1 (ui,k)
1

m1 (wi,�)
1

m2 xk,�, (8)

subject to Eqs. (4), (5), and (6), where m1 > 1 and m2 > 0 are fuzzification para-
meters. KLFCCM [8] is obtained by solving the following optimization problem:

maximize
u,v,π

C∑

i=1

N∑

k=1

M∑

�=1

ui,k log (wi,�)xk,� + λ−1
C∑

i=1

N∑

k=1

ui,k log (
πi

ui,k
), (9)

subject to Eqs. (4), (5), and (6), where λ > 0 is a fuzzification parameter. The
α-divergence FCCM method [9] is obtained by solving the following optimization
problem:

maximize
u,v,π

C∑

i=1

N∑

k=1

M∑

�=1

(πi)1−m(ui,k)m log(wi,�)xk,�

+
λ−1

1 − m

C∑

i=1

N∑

k=1

(πi)1−m(ui,k)m, (10)

subject to Eqs. (4), (5), and (6), where m > 1 and λ > 0 are fuzzification
parameters. The analysis of the necessary conditions of optimality (although the
details are omitted for brevity) is summarized by the following algorithm:
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Algorithm 2

Step 1 Set the number of clusters as C, the fuzzification parameters (m1, m2)
for bFCCM, (λ1, λ2) for FCCM, (m, λ) for KLFCCM and αFCCM, the
initial cluster centers as wi,�, and the initial variables controlling cluster
size as π.

Step 2 Calculate s as

si,k =
M∑

�=1

wi,�xk,� (11)

for FCCM,

si,k =
M∑

�=1

(wi,�)
1

m2 xk,� (12)

for bFCCM and

si,k =
M∑

�=1

log (wi,�)xk,� (13)

for KLFCCM and αFCCM.
Step 3 Calculate u as

ui,k =
πi exp

(
λ−1
1 si,k

)

∑C
j=1 πj exp

(
λ−1
1 sj,k

) (14)

for FCCM,

ui,k =
πi (si,k)

m1
m1−1

∑C
j=1 πj (sj,k)

m1
m1−1

(15)

for bFCCM and

ui,k =
πi

∏M
�=1(wi,�)xk,�λ

∑C
j=1 πj

∏M
�=1(wj,�)xk,�λ

(16)

for KLFCCM,

ui,k =
πi(1 + λ(1 − m)si,k)

1
1−m

∑C
j=1 πj(1 + λ(1 − m)sj,k)

1
1−m

(17)

for αFCCM.
Step 4 Calculate w as

wi,� =
exp

(
λ−1
2

∑N
k=1 ui,kxk,�

)

∑M
r=1 exp

(
λ−1
2

∑N
k=1 ui,kxk,r

) (18)
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for FCCM,

wi,� =

(∑N
k=1(ui,k)

1
m1 xk,�

) m2
m2−1

∑M
r=1

(∑N
k=1(ui,k)

1
m1 xk,r

) m2
m2−1

(19)

for bFCCM,

wi,� =
∑N

k=1 ui,kxk,�
∑M

r=1

∑N
k=1 ui,kxk,r

(20)

for KLFCCM and

wi,� =
∑N

k=1(ui,k)mxk,�
∑M

r=1

∑N
k=1(ui,k)mxk,r

(21)

for αFCCM.
Step 5 Calculate π as

πi =
1
N

N∑

k=1

ui,k (22)

for FCCM and KLFCCM,

πi =

(∑N
k=1(ui,k)

1
m1 si,k

) 1
m1

∑C
j=1

(∑N
k=1(uj,k)

1
m1 sj,k

) 1
m1

(23)

for bFCCM and

πi =

(∑N
k=1(ui,k)m(1 + λ(1 − m)si,�)

) 1
m

∑C
j=1

(∑N
k=1(uj,k)m(1 + λ(1 − m)sj,k)

) 1
m

(24)

for αFCCM.
Step 6 Check the limiting criterion for (u,w, π). If the criterion is not satisfied,

go to Step 2.

3 Proposed Methods

We now formulate the recommendation problem in terms of a weighted matrix
approximation and motivate the co-clustering approach for solving it. We applied
low parameter approximations based on co-clustering of users and items in the
ratings matrix x. The simplest approximation scheme based on co-clustering
is one in which each missing rating is approximated by the average value in
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the corresponding co-cluster. We applied a more complex approximation from
Thomas and Srujana [12] that incorporates the biases of the individual users
and items by including the terms (user average − user-cluster average) and
(item average − item-cluster average) in addition to the co-cluster average. The
approximate matrix x̂k,� is given by

x̂k,� = x̄k,· + x̄·,� −
∑

k μi,kx̄k,·∑
k μi,k

−
∑

� ωi,�x̄·,�∑
� ωi,�

+
∑

k

∑
� μi,kωi,�xk,�∑

k

∑
� μi,kωi,�

, (25)

where x̄k,· is the average of {xk,� | yk,� = 1, � ∈ {1, . . . , M}}, x̄·,� is the average
of {xk,� | yk,� = 1, k ∈ {1, . . . , N}}, μ is the defuzzifying of u, and ω is the
defuzzifying of w. This prediction is referred to as the first proposed method.
Table 1 shows an example of the evaluation values matrix before clustering, and
Table 2 is a result that co-clustered the matrix, where we see four co-clusters:
the first co-cluster including User #1 and #3, Item #1, #3 and #5, the second
co-cluster including User #2 and #4, Item #2 and #4, the third co-cluster
including User #1 and #3, Item #1, #3 and #5, the fourth co-cluster including
User #2 and #4, Item #2 and #4.

Table 1. Sample of the evaluated matrix

User
Item 1 2 3 4 5

1 x1,1 x1,2 x1,3 x1,4 x1,5
2 x2,1 x2,2 x2,3 x2,4 x2,5
3 x3,1 x3,2 x3,3 x3,4 x3,5
4 x4,1 x4,2 x4,3 x4,4 x4,5

Table 2. Sample 1 of the evaluated matrix after clustering

Cluster 1 2

User
Item 1 3 5 2 4

1 1 x1,1 x1,3 x1,5 x1,2 x1,4
3 x3,1 x3,3 x3,5 x3,2 x3,4

2 2 x2,1 x2,3 x2,5 x2,2 x2,4
4 x4,1 x4,3 x4,5 x4,2 x4,4

During the experiments, we found that the first proposed method is inferior to
the GroupLens method when applied to many datasets. Therefore, we applied
the GroupLens method after fuzzy co-clustering by using the similarity with
users of the user-cluster to which the active user belongs, which is referred to as
the second proposed method. Let f : X → {1, . . . , C} be the function indicating
the index of the cluster to which the given datum belongs. Then, the missing
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values of active users, x̂k,�, from the other user’s evaluated values and their
similarities are obtained from

x̂k,� = x̄k,· +

∑
f(k′)≡f(xk)

sim(k, k′)(xk′,� − x̄k′,·)
∑

f(k′)≡f(xk)
sim(k, k′)

. (26)

For example, if x2,1 is a missing value in Table 3, Pearson’s correlation coefficient
between user 2 and user 4 is calculated, and the GroupLens method is applied.
Assuming that Algorithm 3 is implemented, the missing values are obtained
using the proposed methods.

Algorithm 3

Step 1 Replace each missing value with the value one, which is the lowest value
of ratings value.

Step 2 Process Algorithm 2 for FCCM type clustering.
Step 3 Calculate x̂ as Eq. (25) for the first proposed method and Eq. (26) using

for the second proposed method.

Table 3. Sample 2 of the evaluated matrix after clustering

Cluster

User
Item 1 3 5 2 4

1 1 x1,1 x1,3 x1,5 x1,2 x1,4
3 x3,1 x3,3 x3,5 x3,2 x3,4

2 2 x2,1 x2,3 x2,5 x2,2 x2,4
4 x4,1 x4,3 x4,5 x4,2 x4,4

4 Numerical Experiments

This section describes five example datasets used to evaluate the proposed
algorithms: one artificial dataset and two real datasets.

An artificial 100 × 100 rating matrix composed of 100 objects and 100 items
is shown in Table 4, which includes exactly 5×5 co-clusters. In the dataset, users
and items #1–#20 have exactly the same ratings for all values, for the same users
and items #21–#40, #61–#80, and #81–#100 have exactly the same ratings.
The ideal object memberships of five object clusters is depicted in Fig. 1a, and the
ideal item memberships of five item clusters is depicted in Fig. 1b, in which each
row shows the 100-dimensional object membership vector ui = (ui,1, · · · , ui,100)�

or the 100-dimensional item membership vector wi = (wi,1, · · · , wi,100)� by gray-
scale (white and black are for umax (wmax) and 0, respectively). Then, the goal
is to extract a similar structure from the dataset.

The experiment was executed as follows. The cluster numbers were set as
C ∈ {4, 5, 6}. The fuzzification parameters were set as (λ1, λ2) = (0.9, 0.8) for
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Table 4. The artificial dataset

User
Item 1 · · · 20 21 · · · 40 41 · · · 60 61 · · · 80 81 · · · 100

1 1 · · · 1 2 · · · 2 3 · · · 3 4 · · · 4 5 · · · 5
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
20 1 · · · 1 2 · · · 2 3 · · · 3 4 · · · 4 5 · · · 5
21 5 · · · 5 1 · · · 1 2 · · · 2 3 · · · 3 4 · · · 4
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
40 5 · · · 5 1 · · · 1 2 · · · 2 3 · · · 3 4 · · · 4
41 4 · · · 4 5 · · · 5 1 · · · 1 2 · · · 2 3 · · · 3
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
60 4 · · · 4 5 · · · 5 1 · · · 1 2 · · · 2 3 · · · 3
61 3 · · · 3 4 · · · 4 5 · · · 5 1 · · · 1 2 · · · 2
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
80 3 · · · 3 4 · · · 4 5 · · · 5 1 · · · 1 2 · · · 2
81 2 · · · 2 3 · · · 3 4 · · · 4 5 · · · 5 1 · · · 1
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
100 2 · · · 2 3 · · · 3 4 · · · 4 5 · · · 5 1 · · · 1

(a) Ideal object membership vector ui (b) Ideal item membership vectors wi

Fig. 1. Ideal membership of artificial rating matrix

FCCM, (m1,m2) = (1.3, 1.2) for bFCCM, (λ = 0.1) for KLFCCM, and (m,λ) =
(1.0001, 1.0) for αFCCM. The initial object membership was set following the
actual information. We applied the first proposed method to this dataset with
the number of missing values set at {5, 10, 15, . . . , 1000}. The rating values were
chosen randomly and were caused to be missing in this dataset. For each missing
value, there is a probabilistic aspect to the outcome that depends on which
entries were randomly deleted. In these cases, five trials of the experiment were
performed (using five different sets of incomplete data) in order to produce more
significant, reproducible results. Algorithms 1 and 2 were applied to this setting.
We used mean absolute error (MAE) to evaluate the prediction accuracy. MAE
measures the average error in the predicted rating and the true rating. Let x∗

k,�

be the true ratings, and x̂k,� be the ratings predicted by a recommender system.
Let W be the number of user-item pairs for which the recommender system
made predictions. Then, MAE is defined as follows:

MAE =

∑N
k=1

∑M
�=1 |x̂k,� − x∗

k,�|
W

. (27)

The average of five MAE values for each set of missing values is shown in Fig. 2a
for FCCM, Fig. 2b for bFCCM, Fig. 2c for KLFCCM, and Fig. 2d for αFCCM,
where “conv.1” corresponds to Firefly, “conv.2” corresponds to GroupLens, “4C”
corresponds to four clusters setting, “5C” corresponds to five clusters setting,
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(a) FCCM (λ1, λ2) = (0.9, 0.8)

0.1

1

0 100 500 1000

M
A
E

Wconv.1
conv.2

4C
5C

6C

(b) bFCCM (m1, m2) = (1.3, 1.2)
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(c) KLFCCM (λ = 0.1)
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(d) αFCCM (m, λ) = (1.0001, 1.0)

Fig. 2. MAE on the artificial dataset using the first proposed method

and “6C” corresponds to six clusters setting. Note that every fuzzy co-clustering-
based methods with both C = 5 and C = 6 exactly produce the same results
except for the FCCM-based method. These figures indicate that all fuzzy co-
clustering-based methods with C = 4 produce very bad results, all fuzzy co-
clustering-based methods with C ∈ {5, 6} outperform both Firefly and Grou-
pLens for fewer missing values. In particular, the bFCCM-based method outper-
forms both Firefly and GroupLens for every set of missing values. From these
results, it is clear that fuzzy co-clustering-based methods have the potential to
outperform conventional methods if the number of clusters and initial object
membership are adequately set.

The real datasets were MovieLens and BookCrossing. The MovieLens dataset
was released by the GroupLens Research Project at the University of Minnesota.
The data were collected through the MovieLens web site [16]. The dataset con-
tains the response of users who were asked to rate the movies they had seen. It
contains one million ratings for 3900 movies by 6040 users. Only 271,379 rat-
ings from 905 users for 684 movies were used in this experiment; thus, each
movie was evaluated by more than 240 users and each user evaluated more
than 200 movies. Ratings are on a one to five scale where five is the best. The
BookCrossing dataset was collected by Cai-Nicolas Ziegler in a four-week crawl
(August/September 2004) of the Book-Crossing community with kind permis-
sion from Ron Hornbaker, CTO of Humankind Systems. It contains 1,149,780
ratings about 271,379 books provided by 278,858 users (anonymous but with
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demographic information) [17]. Only 35,157 ratings from 1090 users for 2247
books were used in this experiment. Thus, each book was evaluated by more
than eight users and each user evaluated more than 15 books. Ratings were on a
one to 10 scale where 10 is the best. We applied two conventional methods and
two proposed methods to these two real datasets, and compared the prediction
accuracy MAE, F-measure [13], and the area underneath the receiver operating
characteristic (ROC) curve (AUC) [14,15].

In the proposed methods, the initial item membership values were provided
in an manner similar to k-means++ [20]. Specifically, the first item membership
is the normalizing value chosen uniformly at random from the data points being
clustered, after which each subsequent item membership is the normalizing value
chosen from the remaining data points with probability inversely proportional
to its pseudo similarity from the point’s closest existing initial object member-
ship. The similarity between the i-th item membership (wi,1, . . . , wi,M ) and the
k-th object xk is calculated using Eq. (11) for FCCM, Eq. (12) for bFCCM,
and Eq. (13) for KLFCCM and αFCCM. For ten initial settings, the cluster-
ing result with the maximal objective function value was selected for Step 1 in
Algorithm 3. The number of clusters and the fuzzification parameter values for
each clustering algorithm were heuristically determined. They are summarized
into Table 5.

The experiment was executed as follows. First, 20480 rating values were
chosen randomly and caused to be missing from the all datasets, except for
BookCrossing, from which only 10240 values were missing. Next, Algorithms 1
and 2 were applied to these datasets for five settings of missing values. Finally,
the average of five MAE values, the average of five F-measure values, and the
average of five AUC values were calculated for each dataset.

The obtained results are summarized in Tables 6, 7 and 8. Table 6 shows
the MAE values for the two proposed methods and two conventional methods,
Table 7 shows F-measure values for the two proposed methods and two conven-
tional methods, and Table 8 shows AUC values for the two proposed methods
and two conventional methods. The results for the first proposed method are as
follows. The first proposed method is superior to both Firefly and GroupLens
only for BookCrossing (Tables 6, 7, and 8). The results for the second proposed
method are as follows. The second proposed method with all four clustering
algorithms is superior to both Firefly and GroupLens with the case applied
to BookCrossing. The second proposed method with FCCM, KLFCCM, and
αFCCM is superior to both Firefly and GroupLens in terms of AUC. In partic-
ular, the second proposed method with αFCCM is superior to both Firefly and
GroupLens for all three accuracy measures.
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5 Conclusion

In this study, we proposed two methods for a recommendation system based on
fuzzy co-clustering. The results of experiments conducted on one artificial dataset
and two real datasets indicate that a combination of one of the proposed methods
with αFCCM is superior to conventional methods. Firefly and GroupLens in
terms of accuracy metrics F-measure, AUC, and MAE.

Possible future works include adopting the deterministic annealing app-
roach [21] by exploiting the controllable fuzzification penalty and applying var-
ious cluster validity indexes to determine the adequate number of clusters. We
also plan to apply a possibilistic approach to co-clustering [22], and fuzzy co-
clustering induced by multinomial mixture models (FCCMM) [23,24] in the
collaborative filtering setting.
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Abstract. We present an approach to generate differentially private
data sets that consists in adding noise to a microaggregated version of
the original data set. While this idea has already been proposed in the
literature to reduce the data sensitivity and hence the noise required to
reach differential privacy, the novelty of our approach is that we focus
on the microaggregated data set as the target of protection, rather than
focusing on the original data set and viewing the microaggregated data
set as a mere intermediate step. As a result, we avoid the complexities
inherent to the insensitive microaggregation used in previous contribu-
tions and we significantly improve the utility of the data. This claim is
supported by theoretical and empirical utility comparisons between our
approach and existing approaches.

Keywords: Anonymization · Differential privacy · Microaggregation ·
Privacy

1 Introduction

Microdata (that is, information at the individual level) are usually the most
convenient type of data for secondary use. However, the risk of disclosure inher-
ent to releasing such detailed information is significant. Traditionally, data were
mostly handled by a reduced number of data controllers (e.g. national statistical
offices), who had collected them under strong pledges of privacy. In that sce-
nario, reasonable assumptions about the knowledge available to intruders could
be made and the methodology for disclosure risk limitation could be adjusted
accordingly. Nowadays, the developments in information technology facilitate
the collection of personal data. This bounty of data makes it increasingly diffi-
cult to make well-grounded assumptions about the side knowledge available to
potential intruders [1].

Differential privacy [2] (DP) is a well-known privacy model that gives privacy
guarantees without making any assumption on the intruder’s side knowledge. In
this sense, DP suits well the current scenario with many data controllers. Unlike
privacy models designed to protect sets of microdata (e.g. k-anonymity [3],
c© Springer International Publishing AG 2017
V. Torra et al. (Eds.): MDAI 2017, LNAI 10571, pp. 119–131, 2017.
DOI: 10.1007/978-3-319-67422-3 11
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l-diversity [4], t-closeness [5]), DP was designed to protect the outcomes of
interactive queries. However, this limitation was soon overcome with the devel-
opment of several approaches to release differentially private microdata (DP
microdata) [6–10].

The dominant approach to generate DP microdata is based on the computa-
tion of DP histograms. However, histogram-based approaches have severe limita-
tions when the number of attributes grows: for fixed attribute granularities, the
number of histogram bins grows exponentially with the number of attributes,
which has a severe impact on both computational cost and accuracy. To avoid
these issues, we propose to generate the DP data set by masking the records in
the original data set. Plain independent masking of the records in the original
data set is computationally very efficient (its cost is linear on the size of the data
set). However, the amount of masking needed to achieve DP is proportional to
the sensitivity (the maximum possible variation) of what is being masked, and
the sensitivity of an attribute value in a record is large (typically, as large as
the attribute domain size). Therefore, a large amount of masking is needed, that
results in very substantial information loss.

In this work we describe a record-level perturbation-based approach to gener-
ate DP data sets that uses microaggregation to reduce the sensitivity of attribute
values and hence the amount of noise required to attain DP. Our approach does
not require the use of any specific microaggregation algorithm, but we will choose
some microaggregation algorithms for the sake of evaluation. We also compare
our results to previous record perturbation approaches. In Sect. 2 we briefly
introduce some basic concepts about DP. In Sect. 3 we describe our approach to
generate DP data sets. In Sect. 4 we evaluate several microaggregation strategies
theoretically and experimentally (by comparing results among them and by com-
paring results to already existing approaches). Finally, in Sect. 5 we summarize
the conclusions and outline future research avenues.

2 Background on Differential Privacy

Differential privacy [2] is popular among academics due to the strong privacy
guarantees it offers. DP does not rely on assumptions about the side knowledge
available to the intruders. Rather, disclosure risk limitation is tackled in a relative
manner: the result of any analysis should be similar between data sets that differ
in one record. As stated in [11], under DP individuals have no privacy reason to
refuse participating in a data set:

Any given disclosure will be, within a multiplicative factor, just as likely
whether or not the individual participates in the database. As a conse-
quence, there is a nominally higher risk to the individual in participating,
and only nominal gain to be had by concealing or misrepresenting one’s
data.
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Differential privacy assumes the presence of a trusted party that: (i) holds
the data set, (ii) receives the queries submitted by the data users, and (iii)
responds to them in a privacy-aware manner. The notion of differential privacy
is formalized according to the following definition:

Definition 1 (ε-differential privacy). A randomized function κ gives ε-dif-
ferential privacy (ε-DP) if, for all data sets D1 and D2 that differ in one record
(a.k.a. neighbor data sets), and all S ⊂ Range(κ), we have

Pr(κ(D1) ∈ S) ≤ exp(ε) Pr(κ(D2) ∈ S).

Given a query function f , the goal in differential privacy is to find a randomized
function κf that satisfies ε-DP and approximates f as closely as possible. For
the case of numerical queries, κf can be obtained via noise addition; that is
κf (·) = f(·)+N , where N is a random noise that has been properly adjusted to
attain ε-DP. The addition of a Laplace distributed noise whose scale has been
adjusted to the global sensitivity of the query f is, probably, the most common
approach (although other approaches has been proposed [12–14]).

Definition 2 (L1-sensitivity). The L1-sensitivity, Δf , of a function f : Dn →
R

d is the maximum variation of f between data sets that differ in one record:

Δf = max
d(D,D′)=1

‖f(D) − f(D′)‖1 .

Proposition 1. Let f : Dn → R
d be a function. The mechanism κf (D) =

f(D) + (N1, . . . , Nd), where Ni are drawn i.i.d. from a Laplace(0,Δf/ε) distri-
bution, is ε-DP.

3 DP Data Sets via Microaggregation

Let D be the collected data set. Assume that we want to generate Dε –an
anonymized version of D– that satisfies ε-DP. Let Ir(D) be the query that returns
r. We can think of the data set D as the collected answers to the queries Ir(D)
for r ∈ D, and we can generate Dε by collecting ε-DP responses to Ir(D) for
r ∈ D. Such a naive procedure to generate a DP data set is, however, likely to
produce a large information loss. In the end, the purpose of DP is to make sure
that individual records do not have any significant effect on query responses,
which implies that the accuracy of the responses to Ir(D) is necessarily low.

To make perturbative masking viable for the generation of DP data sets,
we have to reduce the sensitivity of the queries used. This requires a shift from
individual queries to queries that ask for aggregate or statistical information.
Along the lines of [9,10,15,16], our proposal is based on microaggregation. In
spite of microaggregation being itself a well-known technique in disclosure risk
limitation, we use it here with the sole purpose of reducing the sensitivity of
the queries. The disclosure risk limitation comes from the enforcement of DP.
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This change of purpose carries along a change in the traditional way of thinking
about microaggregation.

In standard microaggregation, one splits the data set into clusters of at least
k records and then replaces the records in each cluster by the cluster centroid,
where the minimum value k prevents the cluster from being too representative
of any individual in it. In our case, we are also interested in having not too small
clusters (in order to limit the impact of individual contributions and hence the
sensitivity), but we can relax the requirement of a minimum cluster size. In our
case, the total error is the combination of the error introduced by microaggre-
gation and the error due to noise addition; thus, if adding one more record to a
cluster produces a large increase in the microaggregation error, it may be prefer-
able to use the smaller cluster. In this work, we think of microaggregation as an
algorithm that proceeds in the following two steps:

1. Split the data set into clusters of records.
2. Compute a representative record of each cluster and replace the records in

the cluster by it.

To reduce the error introduced by microaggregation, we usually want to gen-
erate clusters that are as homogeneous as possible. For the sake of generality, in
this section, we do not favor any particular strategy to generate the microaggre-
gation clusters: they can all have the same cardinality or different ones, they can
be optimal (maximally homogeneous) or not, randomized or deterministic, etc.
However, to be able to analyze the effect of microaggregation on the sensitivity,
we need to fix the particular way in which the records in a cluster are combined
to generate a record that is representative of the cluster. In this work, we use the
mean as aggregation operation (that is, we compute the centroid of the cluster).

The approach we propose is different from those of [9,10,15,16], in that here
we consider that the data set to be protected is the microaggregated one, rather than
the original one. In other words, given an original data set D, we generate D̄ by
microaggregation of the records in D. From this point on, we discard D and we
focus on protecting D̄. Hence, the goal is to publish D̄ε, a DP version of D̄.

The data set D̄ acts as a proxy of the original data set D. Thus, when evaluating
the utility of D̄ε we need to account for two sources of error: (i) the error due to the
microaggregation (that is, the error caused by using D̄ as a proxy of D), and (ii) the
noise introduced to attain ε-DP. The advantage of the proposed approach lies in
the fact that the error introduced in the microaggregation step is likely to be more
than compensated by the reduction in the noise required to attain DP (compared
to the noise that would be required to attain DP directly from the original data
set D).

Since the contribution of a record to the centroid is inversely proportional
to the cardinality of the corresponding cluster, the centroid sensitivity can be
obtained as the record sensitivity divided by the cluster cardinality. This is
formalized in the following proposition.
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Proposition 2. Let C ⊂ D be a cluster of records and let c be the mean of the
records in C. Let ΔD be the L1-sensitivity of a record in D. The L1-sensitivity
of the centroid c is Δc = ΔD/|C|.
Proof. Δc represents the maximum change in c due to an arbitrary change in
a single record. Since the maximum change in a single record is ΔD and each
record contributes to c, at most, in a proportion of 1/|C|, the maximum change
in c is ΔD/|C|. ��

Notice that the sensitivities may differ for centroids of different clusters,
because the sensitivity depends on the cluster cardinality. Once the sensitivity
of a centroid c is computed, ε-DP can be attained by adding a Laplace noise with
zero mean and scale Δc/ε. Since each cluster contains disjoint records, parallel
composition applies; thus, by adding Laplace noise independently to each cluster,
we obtain the list of ε-DP centroids (see Fig. 1).

Since each record replaced by the corresponding centroid, each centroid is
repeated as many times as there are records in the corresponding cluster. We
now explain why in Fig. 1 all repetitions of a centroid value are added exactly
the same noise. If we added a different random noise to each repetition of the
centroid, we would have |C| non-independent DP outcomes each of which has
sensitivity ΔD/|C|; hence, by sequential composition, the sensitivity of the list
of centroid repetitions in the cluster would be ΔD, which would cancel the
benefits of microaggregation. To keep the sensitivity of the centroid repetitions
at ΔD/|C|, we must have a single DP centroid value, that is, we must add exactly
the same noise to all the repetitions of given centroid. In other words, for each
cluster Ci, we take a single draw, ni, from the Laplace(0, ΔD

|Ci|ε ) distribution and
use it to mask the |Ci| occurrences of ci.

Fig. 1. Generation of an ε-DP data set using record-level microaggregation to reduce
the amount of noise required

The procedure to generate an ε-DP data set based on record-level microaggre-
gation is formally described in Algorithm 1. The algorithm takes as input parame-
ters the microaggregated data set D̄ (whose records consist of the corresponding
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Algorithm 1 . Procedure to generate an ε-DP data set using record-level
microaggregation to reduce the amount of noise required
Require:

D̄ = {r1, . . . , rL}: microaggregated data set (each record rj is the corresponding
cluster centroid)

Mapping τ between records of D̄ and the clusters C1, . . . , Cl formed in the microag-
gregation

ε: desired level of DP
Output

D̄ε: an ε-DP data set

for i ∈ {1, . . . , l} do
set ni= random draw from the Laplace(0, ΔD

|Ci|ε ) distribution
end for
for j ∈ {1, . . . , L} do

let Ci := τ(rj)
set rε

j = rj + ni

end for
return D̄ε = {rε

1, . . . , r
ε
L}

cluster centroids), the mapping between records in D̄ and clusters, and the desired
level ε of DP. Next, we fix the noise ni that will be added to all records mapped to
each cluster Ci. Finally, we loop through the records in D̄ and add to each record
the noise that corresponds to the cluster it is mapped to.

The procedure depicted in Fig. 1 assumes that microaggregation is performed
over whole records (either because the data set contains a single attribute or
because multivariate microaggregation over all the attributes is used). In the
remainder of this section, we generalize the previous procedure to work indepen-
dently with several individual attributes or subsets of attributes. Essentially, we
split the attributes into disjoint subsets, apply the previous procedure indepen-
dently to each subset, and use sequential composition to determine the overall
level of DP.

Let us assume that the microaggregation has been performed independently
over the disjoint subsets of attributes AS1, . . . , ASm. Sequential composition says
that the level of differential privacy from several independent queries accumulates
to determine the overall level of DP. As we aim to work independently with each
of the subsets ASi, following sequential composition, we need to split the overall
privacy budget, ε, among the previous subsets. That is, we fix values ε1, . . . , εm

subject to the restrictions εi ≥ 0 and ε1 + . . . + εm = ε. For each subset ASi, we
apply the procedure in Algorithm 1 to attain εi-DP. Sequential composition tells
that the result is ε-DP. This is illustrated in Fig. 2 and formalized in Algorithm 2.

4 Evaluation

We evaluate the proposal in Sect. 3 by fixing several microaggregation strategies
and comparing the new proposal to existing methods that are also based on
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Fig. 2. Generation of an ε-DP data set by independently microaggregating the subsets
of attributes AS1, . . . , ASm and reaching εi-DP for group ASi

Algorithm 2 . Procedure to generate an ε-DP data set by independently
microaggregating the groups of attributes AS1, . . . , ASn and reaching εi-DP for
group ASi

Require:
AS1, . . . , ASm: list of disjoint subsets of attributes
D̄: microaggregated data set, where microaggregation has been independently com-

puted for the projections on each subset of attributes (each record has been replaced
by the centroids of the clusters that contain it in each projection)

(τ1, . . . , τm): τi is the mapping between records in D̄ and the clusters Ci
1, . . . , C

i
li

computed for the projection D̄[ASi] of D̄ on attribute subset ASi

ε1, . . . , εm: level of DP for attributes ASi (subject to
∑

εi = ε)
Output

D̄ε: an ε-DP data set

for i ∈ {1, . . . , m} do
D̄ε[ASi] = Algorithm 1(D̄[ASi], τi, εi)

end for
return D̄ε

record perturbation [9,10]. At first sight, the fact that we employ basic microag-
gregation algorithms rather than (the more restrictive and less utility-preserving)
insensitive microaggregation [9] seems a substantial advantage. Moreover, the
method in Sect. 3 allows adjusting the noise to the size of each cluster.

A difference between the method of Sect. 3 and the methods in [9,10] is that
the former considers that the data set to be protected is the microaggregated one
(D̄), whereas the latter aim at protecting the original data set (D). Nonetheless,
regardless of the method used, utility must be evaluated in terms of how good
is the DP data set Dε as a replacement for the original data set D.

4.1 Evaluated Methods

In Sect. 3 we did not favor any microaggregation strategy. However, the fact is
that the microaggregation approach has a significant impact on the utility of
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the DP data set output by our method. For that reason, empirical results are
necessarily tied to a specific microaggregation strategy.

We evaluate the accuracy of our proposal when microaggregation is instan-
tiated with the MDAV algorithm (a heuristic multivariate microaggregation
algorithm, [17]) and with individual ranking MDAV microaggregation (which
runs independent univariate MDAV microaggregations for each attribute). We
have chosen these microaggregation algorithms not only because they are well
known, but because they have previously been used to improve the accuracy of
DP data sets generated via record perturbation [9,10].

It is clear, however, that the above-mentioned microaggregation algorithms
have some restrictions that limit the accuracy improvements they can offer. An
important limitation is that the clusters they generate have a fixed cardinality k
(except, maybe, the last cluster, that is of size between k and 2k − 1). However,
as noted in Sect. 3, the method to generate DP data sets described in that section
does not require a fixed cluster size, not even a minimum cluster size.

We have evaluated the following DP methods in our comparison:

– MDAV+DP. The method described in Sect. 3 instantiated with a multivariate
MDAV microaggregation of entire records.

– IR MDAV+DP. The method described in Sect. 3 instantiated with individual
ranking MDAV microaggregation.

– INS+DP (baseline). The method for DP based on insensitive multivariate
microaggregation that is described in [9]. This method is a suitable compari-
son baseline for MDAV+DP because both methods use multivariate microag-
gregation of entire records.

The method described in [10] could also be considered as a comparison baseline
(it would be a good baseline for IR MDAV+DP, because both are based on
individual ranking MDAV microaggregation). However, we skip it because the
computation of the sensitivity in [10] is flawed, which leads to overly reducing
the noise required to attain DP.

Even if they do not yield DP, the standalone MDAV and IR MDAV microag-
gregation algorithms (without subsequent noise addition to attain DP) have
also been evaluated. The reason is that using standalone MDAV and IR MDAV
provides an upper bound of the accuracy reachable with MDAV+DP and
IR MDAV+DP, respectively.

4.2 Theoretical Evaluation

Although an empirical evaluation is provided further below, we think that
a theoretical comparison of some methods, specifically MDAV+DP and
IR MDAV+DP, can yield some important insights.

The following proposition shows that both MDAV+DP and IR MDAV+DP
can yield an ε-DP data set by adding the same amount of noise to each attribute.

Proposition 3. Given a cluster size k used in microaggregation and a target
DP level ε, both MDAV+DP and IR MDAV+DP can yield an ε-DP data set by
adding the same amount of noise to each original attribute.
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Proof. According to Algorithm 1, to attain ε-DP with MDAV+DP, we need to
add a noise that is distributed according to a Laplace(0,ΔD/ε) to each attribute.
Assume now we use IR MDAV+DP instead, and attribute i having sensitivity
ΔDi is added noise drawn from Laplace(0,ΔDi/εi). Both Laplace distributions
are equal when ΔD/ε = ΔDi/εi, which may be enforced by taking

εi = ε
ΔDi

ΔD
. (1)

Since ΔD =
∑

ΔDi, the sum of the εi amounts to ε (as required by the
IR MDAV+DP method). ��

The conclusion from the previous proposition is that IR MDAV+DP (with
appropriate εi) should always be preferred to MDAV+DP: the error due to
microaggregation is smaller with IR MDAV+DP (because less attributes are
clustered together) and the error due to noise addition can be made equal. In
spite of this result, for the sake of completeness, we will perform the empirical
evaluation over both IR MDAV+DP and MDAV+DP. Actually, we consider two
variants of IR MDAV+DP: IR MDAV+DP 1 uses the same level of DP for all
attributes (ε1 = . . . = εm = ε/m), and IR MDAV+DP 2 uses the values of εi

given by Expression (1), for i = 1, . . . , m, so that Proposition 3 holds.

4.3 Evaluation Data

The empirical evaluation has been performed on the Census data set, which was
first used in the “CASC” European project [18] as a reference data set to test
and compare statistical disclosure control methods, and was also used in [9].
This data set contains 13 numerical attributes and 1080 records. For the sake of
comparability with [9], we focus on 4 attributes: FICA (Social security retirement
payroll deduction), FEDTAX (Federal income tax liability), INTVAL (Amount
of interest income) and POTHVAL (Total other persons income).

The selected attributes take values above 0 but they are not naturally upper-
bounded. Since the L1-sensitivity is proportional to the sizes of the domains of
attributes, we need to upper-bound the domain of each attribute. For the sake
of comparability, we use the upper bounds that were used in [9]; that is, we
upper-bound the domain of an attribute by 1.5 times the maximum value of the
attribute in the data set. The domain bounds on the attributes are also enforced
when adding noise to attain DP: the DP masked values are truncated to lie
within the fixed bounds.

4.4 Evaluation Measures

The evaluation is based on two measures of error: the sum of squared errors
(SSE) and the sum of absolute errors (SAE). The SSE is a measure of overall
information loss that is commonly used in the evaluation of SDC methods (and
particularly in microaggregation). It is computed as
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SSE =
∑

i=1,...,n

∑

j=1,...,m

(rij − rε
ij)

2

where rij is the value of attribute j in original record ri and rε
ij is value of

attribute j in the record rε
i of the DP data set D̄ε that corresponds to ri.

SAE is similar to SSE but, rather than being based on squared errors, it is
based on absolute errors. It is computed as

SAE =
∑

i=1,...,n

∑

j=1,...,m

|rij − rε
ij |.

Both measures give an overall estimation of the error in the generated data set
but they differ in the relative importance they attach to the magnitude of each
difference. In SSE a large error in a single record may have a large overall impact,
while in SAE a large error in a single record can be more easily compensated by
small errors in other records.

4.5 Experimental Results

Figure 3 shows the evolution of SSE as a function of the cluster size. In both
graphs of the figure we can see that, as expected, the SSE for the microaggre-
gation algorithms MDAV and IR MDAV increases with the size of the cluster
(which is represented in the abscissae). There is a steep increase for small cluster
sizes that flattens out progressively as the cluster size gets larger. On the con-
trary, for MDAV+DP and IR MDAV+DP the opposite occurs: SSE decreases
with the size of the clusters and the decrease is steeper for small cluster sizes.
We observe that, for large cluster sizes, the SSE of all DP methods converge
to the SSE of the underlying microaggregation. This result was to be expected
because, the greater the cluster size, the less noise we need to attain DP. As
it can be seen by comparing both graphics, the rate of convergence is propor-
tional to ε (faster convergence for larger ε). The comparison between MDAV DP
and IR MDAV+DP (both variants) shows that IR MDAV+DP has a lower SSE.
This could also be expected, because IR MDAV is more utility-preserving than
MDAV. The comparison between IR MDAV+DP 1 and IR MDAV+DP 2 shows
that IR MDAV+DP 2 has slightly less SSE than IR MDAV+DP 1, but the dif-
ference seems to be relatively small.

We then compared the SSE obtained with the methods in this paper with the
SSE obtained with the method in [9]. Figure 4a in [9] shows the SSE of the DP
data set generated by performing a prior insensitive microaggregation to reduce
the noise needed to reach DP. By comparing that figure with Fig. 3, we observe
that IR MDAV+DP with ε = 1 performs as well as the insensitive approach
in [9] with ε = 10. This is a very significant improvement in the utility of the
data.

Figure 4 shows the SAE of MDAV+DP, IR MDAV+DP 1 and IR MDAV+
DP 2, and compares them with the baseline MDAV and IR microaggregation algo-
rithms. Consistently with the theoretical comparison between MDAV+DP and
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Fig. 3. SSE for ε = 1 (left) and ε = 2 (right)

Fig. 4. SAE for ε = 1 (left) and ε = 2 (right)

IR MDAV+DP above and with the SSE results, we observe that IR MDAV+DP
is more utility-preserving.

5 Conclusions and Future Work

We have presented an approach to generate DP data sets that consists of adding
noise to a microaggregated version of the original data set. Using microaggre-
gation as a prior step to reduce the sensitivity of the data and hence the noise
that needs to be added to reach DP had already been proposed in the literature.
However, the novelty of our approach is that we focus on the microaggregated
data set as the target of protection, rather than focusing on the original data
set and viewing the microaggregated data set as a mere intermediate step. As
a result, we avoid the complexities inherent to insensitive microaggregation and
significantly improve the utility of the data.

The approach we have presented works with any microaggregation algorithm.
For concreteness and convenience, we have analyzed three actual approaches
to generate DP data sets: MDAV DP and two variants of IR MDAV DP. The
comparison (both theoretical and empirical) has shown that IR MDAV DP is
better than MDAV DP. Comparisons of IR MDAV DP with the insensitive based
approach in [9] have shown that IR MDAV DP with ε = 1 is similar in terms of
SSE to the insensitive approach with ε = 10. This is a significant improvement
in the utility with respect to prior work.
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Future work will include:

– Considering non-numerical data by using microaggregation algorithms capa-
ble of dealing with categorical data (ordinal, nominal or hierarchical).

– Trying aggregation operators different from the mean (e.g. the medoid) to
compute the representative record of a cluster.

– Using variable-size microaggregation heuristics, such as [19], without min-
imum cluster size (that is, taking k = 1). The optimal solution to stand-
alone variable-size microaggregation without minimum cluster size consists
of all clusters containing a single record. However, the optimal solution when
variable-size microaggregation is used as a preliminary step of DP is likely
to contain larger clusters (because larger clusters reduce the noise that is
needed to attain DP). In general, the less restrictive nature of variable-size
microaggregation algorithms can be expected to deliver DP data sets with
better utility, at the cost of increasing the computational effort.
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19. Domingo-Ferrer, J., Sebé, F., Solanas, A.: A polynomial-time approximation to
optimal multivariate microaggregation. Comput. Math. Appl. 55(4), 714–732
(2008)

http://dx.doi.org/10.1007/11787006_1
http://dx.doi.org/10.1007/978-3-319-11257-2_11
http://dx.doi.org/10.1007/978-3-319-11257-2_11
http://neon.vb.cbs.nl/casc/CASCtestsets.htm
http://neon.vb.cbs.nl/casc/CASCtestsets.htm


A Methodology to Compare Anonymization
Methods Regarding Their Risk-Utility Trade-off

Josep Domingo-Ferrer, Sara Ricci(B), and Jordi Soria-Comas

UNESCO Chair in Data Privacy, Department of Computer Science and Mathematics,
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Abstract. We present here a methodology to compare statistical dis-
closure control methods for microdata in terms of how they perform
regarding the risk-utility trade-off. Previous comparative studies (e.g. [3])
usually start by selecting some parameter values for a set of SDC meth-
ods and evaluate the disclosure risk and the information loss yielded by
the methods for those parameterizations. In contrast, here we start by
setting a certain risk level (resp. utility preservation level) and then we
find which parameter values are needed to attain that risk (resp. utility)
under different SDC methods; finally, once we have achieved an equiva-
lent risk (resp. utility) level across methods, we evaluate the utility (resp.
the risk) provided by each method, in order to rank methods according
to their utility preservation (resp. disclosure protection), given a certain
level of risk (resp. utility) and a certain original data set. The novelty
of this comparison is not limited to the above-described methodology:
we also justify and use general utility and risk measures that differ from
those used in previous comparisons. Furthermore, we present experimen-
tal results of our methodology when used to compare the utility preser-
vation of several methods given an equivalent level of risk for all of them.

Keywords: Record linkage · Disclosure risk · Utility preservation ·
Privacy · Permutation paradigm

1 Introduction

With the expansion of information technology, the importance of data analysis
(e.g. to support decision making processes) has increased significantly. Although
data collection has become easier and more affordable than ever before, releasing
data for secondary use (that is, for a purpose other than the one that triggered
the data collection) remains very important: in most cases, researchers cannot
afford collecting themselves the data they need. However, when the data released
for secondary use refer to individuals, households or companies, the privacy of
the data subjects must be taken into account.

Statistical disclosure control (SDC) methods aim at releasing data that pre-
serve their statistical validity while protecting the privacy of each data subject.

c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-67422-3 12



A Methodology to Compare Anonymization Methods 133

Among the possible types of data releases, this work focuses on microdata (that
is, on the release of data about individual subjects).

While there is a great diversity of SDC methods for microdata protection,
all of them imply some level of data masking. The greater the amount of mask-
ing, the greater are both privacy protection and information loss. Different SDC
methods tackle the trade-off between privacy and utility in different ways. For
example, in global recoding the level of information loss is set beforehand (the
amount of coarsening of the categories of each attribute), whereas the disclo-
sure risk is evaluated afterwards on the protected data set. In contrast, in
k-anonymity [9] the risk of disclosure (the risk of record re-identification, in
particular) is set beforehand, whereas the actual information loss results from
the masking needed to attain the desired level of disclosure risk.

Although some general assertions about specific SDC methods/models can be
made, comparing the latter regarding the privacy-utility trade-off is not straight-
forward. Let us illustrate this point with two well-known privacy models: differen-
tial privacy [5] and k-anonymity [9]. In terms of privacy protection, ε-differential
privacy is regarded as stronger than k-anonymity. On the contrary, k-anonymity
is regarded as more utility-preserving than ε-differential privacy. The practical
value of these general statements is dubious. After all, by increasing ε we reduce
the protection of differential privacy, and by increasing k we reduce the utility of
k-anonymous data. An accurate comparison between SDC methods has to take
into consideration both aspects of the privacy-utility trade-off.

1.1 Contribution and Plan of this Paper

Many risk and utility measures have been proposed in the literature, but some
of them are designed for use with specific SDC methods. For example, the prob-
ability of record re-identification is the natural risk measure in k-anonymity, but
it may not be appropriate in SDC methods that are not predicated on protecting
privacy by hiding each data subject within a crowd. In this work, we propose a
framework based on general empirical measures of utility and risk to compare
the risk-utility trade-off of several SDC methods.

Previous comparative studies (e.g. [3]) usually start by selecting some para-
meter values for a set of SDC methods and evaluate the disclosure risk and the
information loss yielded by the methods for those parameterizations. In contrast,
here we start by setting a certain risk level (or a certain utility level) and then
we find which parameter values are needed to attain that risk (resp. that utility)
under different SDC methods; finally, once we have achieved an equivalent risk
level (resp. utility level) across methods, we evaluate the utility (resp. the risk)
provided by each method, in order to rank methods according to their utility
preservation (resp. disclosure protection), given a certain level of risk (resp. util-
ity) and a certain original data set. Furthermore, we present experimental work
that illustrates the application of the proposed methodology.

The rest of the paper is organized as follows. In Sect. 2, we introduce some
background relevant to the remaining sections. In Sect. 3, we describe the pro-
posed framework for comparing methods regarding their risk-utility trade-off.
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In Sect. 4, we propose an empirical measure of disclosure risk that is based on
record linkage. Experimental results are reported in Sect. 5. Conclusions are gath-
ered in Sect. 6.

2 Background

2.1 Permutation Paradigm and Permutation Distance

In [2], a permutation paradigm to model anonymization was proposed. Let X =
{x1, . . . , xn} be the values taken by attribute X in the original data set. Let
Y = {y1, . . . , yn} represent the anonymized version of X. Consider the attribute
Z obtained using the following reverse-mapping procedure

For i = 1 to n
Compute j = rank(yi)
Set zi = x(j) (where x(j) is the value of X of rank j)

Endfor

We can now view the anonymization of X into Y as a permutation step to turn
X into Z, plus a small noise addition to turn Z into Y . Note the noise addition
must be necessarily small, because it cannot alter ranks: by construction the
ranks of Y and Z are the same. If we perform the above procedure independently
for all attributes of an original data set X and corresponding attributes of an
anonymized data set Y, we can say that anonymization can be decomposed into
a permutation step to obtain a data set Z plus a (small) noise addition to obtain
Y from Z.

The permutation distance measures the dissimilarity between two records in
terms of the ranks of the values of their attributes. Assume the original data set
X consists of m attributes X1, . . . , Xm and the anonymized data set consists of
corresponding attributes Y 1, . . . , Y m. Let x = (x1, . . . , xm) be a record in X and
y = (y1, . . . , ym) be a record in Y. The permutation distance between x and y
is the maximum of the rank distances of the attributes:

d(x,y) = max
1≤i≤m

|rank(xi) − rank(yi)|.

The permutation distance between records is used in [2] to conduct a record
linkage between the original data set X and the anonymized data set Y. In
particular, records with minimal permutation distance are linked.

2.2 Utility Measures

Utility measures are a key component to compare SDC methods. We introduce
two utility measures that will be used in the empirical evaluation of the proposed
methodology: the propensity scores [12] and the earth mover’s distance [8].
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Algorithm 1 shows a way to use the propensity scores as a utility measure.

Algorithm 1

1. Merge the original data set X and the anonymized data set Y and add a
binary attribute T with value 1 for the anonymized records and 0 for the
original records.

2. Regress T on the rest of attributes of the merged data set and call the adjusted
attribute T̂ . Let the propensity score p̂i of record i of the merged data set be
the value of T̂ for record i.

3. The utility can be considered high if the propensity scores of the anonymized
and original records are similar. Hence, if the original and the anonymized
data sets have the same number n of records, the following is a utility measure

Ups(X,Y) =
1
2n

2n∑

i=1

[p̂i − 1
2
]2. (1)

The value Ups resulting from Eq. (1) is close to zero if the propensity scores
computed with the regression model for all records are similar (in which case
they will be neither 0 nor 1, but close to 1/2). This situation means that the
original and the anonymized records cannot be distinguished by the regression
model, and hence the utility of the anonymized data set is high (its records
“look” like the original records). In contrast, if the adjusted propensity scores
were exactly the original values of T , it would mean that the regression model
can exactly tell the original from the anonymized records, so the utility of the
latter is low; in this case, we would have n propensity scores 0 and n propensity
scores 1, which would yield a large Ups. Obviously, propensity scores as a utility
measure are very dependent on the accuracy of the regression model adjusted
to the data: the more accurate the model, the more discriminating it is and the
less likely are values of Ups indicating good utility (close to 0).

The earth mover’s distance (EMD) is a natural extension of the notion of
distance between single elements to distance between sets, or distributions, of
elements. Given two distributions, one can be seen as a mass of earth in the
space and the other as a collection of holes in that same space. Then, the EMD
measures the least amount of work needed to fill the holes with earth, i.e. the
minimal cost needed to transform one distribution into another by moving dis-
tribution mass. Thus, the EMD distance can be used to evaluate the similarity
between the distribution of the original data set and the distribution of the
anonymized data set. Note here that measuring similarity amounts to measur-
ing utility, because, the more similar the distribution of the anonymized data to
the distribution of the original data, the more useful are the anonymized data.

Formally, we can group records in clusters and represent each cluster j by its
mean and the fraction ωj of records that belong to that cluster. Let the original
data set X be clustered as {(t1, ωt1), . . . , (th, ωth)}, and the anonymized data
set Y as {(q1, ωq1), . . . , (qk, ωqk)}. Let D = (dij) be the matrix of the distance
between the h clusters of X and the k clusters of Y, i.e. dij = ti − qj (in
the multivariate case, we take the Euclidean distance between cluster means).



136 J. Domingo-Ferrer et al.

The problem is to find a flow F = (fij), with fij being the flow between ti
and qj , that minimizes the overall cost under some constraints (see [8] for more
details). Once the optimal flow F is found, the earth mover’s distance is defined
as the resulting work normalized by the total flow:

Uemd(X,Y) =

∑h
i=1

∑k
j=1 dijfij

∑h
i=1

∑k
j=1 fij

(2)

The greater Uemd is, the more different are the distributions of X and Y and
hence the more utility has been lost in the anonymization process.

3 A Methodology for Comparing the Risk-Utility
Trade-off in SDC

In this section we describe a methodology for comparing SDC methods. Looking
only at either the disclosure risk or the utility of an SDC method would be a
flawed comparison. We need to analyze the privacy-utility trade-off, as explained
in the introduction. Even if this principle may seem evident, very often it is not
followed.

To make the proposed methodology as general as possible, we will employ
empirical measures of risk and utility. That is, we will choose risk and utility
measures that depend on the original and the anonymized data sets, rather than
being prior conditions. To select specific measures, we need to define the aspects
of risk and utility that we consider relevant for our comparison. In turn, the
choice of measures will shape the outcome of the evaluation.

Let us illustrate the difference between empirical measures and prior condi-
tions by taking differential privacy as an example. As a privacy model, differential
privacy states some privacy guarantees but does not tell how they ought to be
attained. Let us assume that A1 and A2 are ε-differentially private algorithms
that output a data set. Let us also assume that A2 is a refined version of A1

that manages to attain ε-differential privacy while adding less noise than A1.
If we use the level ε of differential privacy as our risk measure, both A1 and
A2 are equally good (they are both ε-differentially private). However, the fact
that A1 adds more noise to the original records may indicate that the data set
output by A1 entails less disclosure risk than the data set generated by A2, even
if differential privacy is unable to capture the difference. Alternative measures of
disclosure risk (e.g. risk measures based on record linkage) should be able to cap-
ture the difference in risk between A1 and A2. In this work, we do not deny the
value of any measure of disclosure risk, but, due to their broader applicability,
we will employ empirical risk measures based on record linkage.

Let us assume that we are given functions

U : D × D → R

R : D × D → R

such that, for any given original data set X and anonymized data set Y,
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– U(X,Y) measures the utility of Y as a replacement for X.
– R(X,Y) measures the disclosure risk of Y as a replacement for X.

We have described some utility measures in Sect. 2.2. In Sect. 4 we will describe
several risk measures based on record linkage.

SDC methods usually accept some parameters that can be adjusted to select
the desired level of disclosure risk/utility. Let Mα(X) be the anonymized data
output by SDC method M with parameter α when applied to data set X.

Given an original data set X and two anonymization algorithms M1 and M2,
we say that M1 is more utility-preserving than M2 at risk level r if

U(X,M1
α(X)) ≥ U(X,M2

β(X)),

for α and β such that R(X,M1
α(X)) = R(X,M2

β(X)) = r.
In a similar fashion, we can compare the risk associated to a given level of

data utility. We say that M1 is less disclosive than M2 at utility level u if

R(X,M1
α(X)) ≤ R(X,M2

β(X)),

for α and β such that U(X,M1
α(X)) = U(X,M2

β(X)) = u.
The results of the previous utility (resp. risk) comparison depend not only

on the SDC method, but also on the original data set, the risk and the utility
measures selected, and the target level of risk (resp. utility). Actually, this com-
parison methodology is designed for use by a data controller who must decide
which among several SDC methods is best suited to anonymize a given data set
with a given target level of disclosure risk or utility. In other words, the aim
is not to make general statements about the relative goodness of several SDC
methods. Although such statements may make sense in some cases, our results
can only be taken as empirical clues of such underlying truths.

4 Empirical Measures of Disclosure Risk

To compare the risk-utility trade-off between SDC methods, we need adequate
measures of disclosure risk. For the methodology described in Sect. 3 to be
broadly applicable, the risk measure should be as general as possible (rather
than based on specific characteristics of an SDC method).

We propose a risk measure based on record linkage [11], which is a technique
that seeks to match original records that correspond to the same individual.
Among its several uses, record linkage has a direct application to disclosure
risk assessment [10]. Such an application bears some resemblance to the way
an intruder having access to the anonymized data and to some side knowledge
would proceed. Let E be a data set that represents the non-anonymous side
information available to the intruder. By linking records in E to records in Y,
the intruder associates identities to the records in Y.

The number (or the proportion) of correct re-identifications is a common
record linkage-based measure of disclosure risk. However, this measure has some
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limitations that we next discuss. It is certainly appropriate when SDC is achieved
by masking the quasi-identifier attributes, whereas the sensitive attributes are
left unmodified (or are only slightly modified). However, if the sensitive attributes
have been significantly altered, a correct linkage may not be equivalent to dis-
closure. Furthermore, if we use SDC methods that are not based on masking
the original records, we may not even be able to tell what a correct linkage
is. Generating a synthetic data set by repeatedly sampling from a statistical
model adjusted on the original data is an example of an SDC method not based
on masking; and indeed, it is not possible to say what is the correct mapping
between the original records and the synthetic records.

In the spirit of [2], rather than measuring the disclosure risk as the proportion
of correct re-identifications, we will measure the risk of disclosure associated to
a record in the original data set X by means of a distance to its linked record
in Y. Such an approach has two important advantages with respect to counting
the number of correct re-identifications:

– It is more broadly applicable. The linkage between records in X and Y
can be performed independently of the SDC methodology used, even when
the correct mapping between original and anonymized records cannot be
established.

– The distance between a record in X and its linked record in Y provides more
detailed information about the risk associated to a record in X than a mere
binary outcome (right/wrong linkage):

• On the one hand, the binary nature of correct linkages could lead to
understating the risk of disclosure when, in spite of failing to find the
correct linkage, the intruder links to a record that is similar to the correct
one.

• On the other hand, if all the attributes in Y have been thoroughly altered
by the SDC method, a correct linkage may not disclose any useful infor-
mation to the intruder; in this case, the proportion of correct linkages
would overstate the risk of disclosure.

Any record x in the original data set X is linked to the record yx ∈ Y at the
smallest distance, that is, such that

d(x,yx) = d(x,Y) = min
y∈Y

d(x,y).

The distance d(x,Y) is an indicator of the disclosure risk associated to x. If the
distance is small, there is a record in Y that is quite similar to x and the risk of
disclosure is high.

The choice of the distance d(x,Y) is an important step in determining the
disclosure risk. Along the lines of the permutation paradigm (see Sect. 2), our
proposal is based on ranks, but it differs from [2] in the way attributes are
aggregated. Let x = (x1, . . . , xm) be a record from an original data set X with
attributes X1, . . . , Xm and y = (y1, . . . , ym) be a record from an anonymized
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data set Y with attributes Y 1, . . . , Y m. Take the distance between x and y to
be the Euclidean distance between ranks, that is,

d(x,y) =

√√√√
m∑

i=1

[rankXi(xi) − rankY i(yi)]2,

where the subscript of the rank function denotes the attribute within which the
rank of the value in the argument is computed.

The overall risk of disclosure is an aggregation of the distances d(x,Y) for
all x ∈ X. Many different aggregations are possible. In this work we focus on
the average risk of disclosure by computing the mean of the record distances.

R(X,Y) =
1
n

log
∑

x∈X

d(x,Y). (3)

The smaller R(X,Y ), the greater the risk of disclosure. The logarithm accounts
for the fact that in disclosure risk the focus is on small distances. Without the
logarithm, a large distance for a single record x ∈ X could reduce in a significant
manner the perception of risk for the overall data set; the logarithm reduces the
influence of large distances.

5 Experimental Results

In this section we apply the methodology described in Sect. 3 to analyze the rel-
ative goodness of several anonymizations. Experiments are conducted by taking
as original data the “Census” and “EIA” data sets [1], which are usual test sets
in the SDC literature. The “Census” contains 13 numerical attributes and 1080
records, and “EIA” contains 11 numerical attributes and 4092 records.

The anonymized data sets have been generated by applying the following
methods:

– Correlated noise addition. Multivariate normally distributed noise is added
to the records in the collected data set, that is

Y = X + N(0, γΣ),

where Σ is the covariance matrix of X and γ is an input parameter. Note that
the covariance matrix of Y is proportional to the covariance matrix of X.

– Multiplicative noise. We have used Höhne’s variant ([6] and Ch. 3 of [7]). In
a first step, each attribute value xi

j ∈ X is multiplied by 1 ± N(0, s), where s
is an input parameter. Then, a transformation is applied to preserve the first
and second-order moments.

– Multivariate microaggregation. We have used the MDAV heuristic [4]. In
microaggregation, we partition the records of X in groups of k or more records,
where records in a group are as similar as possible, and we replace each record
by the corresponding centroid.
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Fig. 1. Disclosure risk computed according to Eq. (3) for the anonymization methods
under test and several input parameters. The x-axis shows the input parameter of the
anonymization method (k, γ, p and s, respectively), so its scale should be disregarded.
The y-axis shows the disclosure risk value. Left, “CENSUS” data set. Right, “EIA”
data set.

– Rank swapping. Independently for each attribute, this method swaps the
attribute’s values within a restricted range: the ranks of two swapped val-
ues cannot differ by more than p% of the total number of records, where p is
an input parameter.

More details about these methods can be found in [7].

5.1 Disclosure Risk Assessment

Recall that the comparison of anonymized data sets in Sect. 3 was performed
on data sets that had either the same level of risk or the same level of utility.
In this experimental work, we aim at determining which among the previous
anonymization approaches gives better utility at a given level of disclosure risk.
Thus, the first step is to find appropriate parameters for the previous anonymiza-
tion algorithms that result in a given level of disclosure risk.

Figure 1 shows the disclosure risk computed according to Eq. (3) for the
anonymization methods under test:

1. The curve labeled “micro” shows the risk of multivariate microaggregation
for values of k ∈ {5, 10, 15, 20, 25, 50}.

2. The curve labeled “noise” shows the risk of correlated noise addition when
γ ∈ {0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 1, 3}.

3. The curve labeled “swap” shows the risk of rank swapping when p ∈ {0.01,
0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

4. The curve labeled “Mnoise” shows the risk of multiplicative noise when s ∈
{0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9, 1}.
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Table 1. Utility loss measured using propensity scores (Eq. (1)) and the earth mover’s
distance (Eq. (2)) for the anonymization methods under test and for input parameters
that were found to yield the same level of disclosure risk.

Methods CENSUS EIA

Propensity EMD Propensity EMD

Microaggregation 4.28 × 10−4 0.16 2.17 × 10−5 0.040

Correlated noise addition 3.83 × 10−2 0.38 4.22 × 10−5 0.065

Rank swapping 3.51 × 10−3 0.28 9.01 × 10−4 0.091

Multiplicative noise 6.3 × 10−3 0.29 9.85 × 10−5 0.066

For the “Census” data set, a possible match between methods occurs at
R(X,Y ) = 0.45 and is given by:

1. multivariate microaggregation with k = 5,
2. correlated noise addition with γ = 1,
3. rank swapping with p = 0.2, and
4. multiplicative noise with s = 0.5.

The microaggregation cluster size k = 5 may seem small compared to the
parameter values that we get for the other methods. However, such a difference
in magnitude can be explained by the fact that multivariate microaggregation
is known to yield poorly homogeneous clusters when the number of dimensions
is large, even if the cluster size k is small.

For the “EIA” data set, a possible match between methods occurs at
R(X,Y ) = 0.58 and is given by:

1. multivariate microaggregation with k = 5,
2. correlated noise addition with γ = 0.05,
3. rank swapping with p = 0.08, and
4. multiplicative noise with s = 0.3.

5.2 Utility Assessment

We evaluate the utility of the anonymization methods for the parameters above
that were found to yield the same level of disclosure risk. The utility is evaluated
using the measures based on propensity scores and EMD, that were described
in Sect. 2.2.

We found in Sect. 5.1 that, for the “Census” data set, the SDC methods being
compared with parameters k = 5, γ = 1, p = 0.2 and s = 0.5, respectively, yielded
the same risk of disclosure. By comparing the utility measures for these methods,
we can determine which among them is preferable in this case. Table 1 shows the
results for the propensity scores and EMD measures. Both utility measures are
consistent and tell us that microaggregation has the best utility, followed by rank
swapping, multiplicative noise and, finally, correlated noise addition.
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For the “EIA” data set, the SDC methods being compared with parameters
k = 5, γ = 0.05, p = 0.08 and s = 0.3, respectively, yielded the same risk
of disclosure. The utility results for the propensity scores and EMD measures
for this data set are shown in Table 1. Like in the other data set, methods are
consistently ranked by the both measures, but the ranking is different: multivari-
ate microaggregation has the best utility, followed by correlated noise addition,
multiplicative noise, and, finally, rank swapping.

The results have shown that the SDC methods under comparison perform
differently in different situations. Multivariate microaggregation always had the
best utility (at the given level of disclosure risk), but the relative utility perfor-
mance of the other methods changed between “Census” and “EIA”. This shows
that, unless there are good reasons for using a given anonymization method, it is
usually better to make several anonymizations at the desired level of disclosure
risk and select the one that has the greatest utility.

6 Conclusions

We have described a methodology to compare different anonymizations in terms
of the risk-utility trade-off they attain. It is not enough to compare methods
based on the level of risk or the utility they provide, because that gives only a
partial picture.

We have proposed a disclosure risk measure based on record linkage and in
the spirit of the permutation paradigm (which tells that disclosure risk control
comes essentially from rank permutation)

We have contributed an experimental analysis for two well-known data sets
and four well-known anonymization methods. The results differ between data
sets. As a conclusion from the experimental analysis, the best strategy seems
to be to make several anonymizations at the desired level of disclosure risk and
select the one that has the greatest utility.
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Abstract. Intrusion detection is extremely crucial to prevent computer
systems from being compromised. However, as numerous complicated
attack types have growingly appeared and evolved in recent years, obtain-
ing quite high detection rates is increasingly difficult. Also, traditional
heavily hand-crafted evaluation datasets for network intrusion detec-
tion have not been practical. In addition, deep learning techniques have
shown extraordinary capabilities in various application fields. The pri-
mary goal of this research is utilizing unsupervised deep learning tech-
niques to automatically learn essential features from raw network traffics
and achieve quite high detection accuracy. In this paper, we propose a
session-based network intrusion detection model using a deep learning
architecture. Comparative experiments demonstrate that the proposed
model can achieve incredibly high performance to detect botnet network
traffics.

Keywords: Network intrusion detection · Deep learning · Raw network
traffics · Session

1 Introduction

Network intrusion detection systems (NIDSs) play increasingly significant roles
in protecting computer systems from malicious attacks. Traditionally, NIDSs
are divided into signature-based NIDSs and anomaly-based NIDSs. A signature-
based NIDS detects known attacks through matching established rules and pat-
terns. In contrast, an anomaly-based NIDS involved in unknown attacks detec-
tion identifies attacks via discovering deviations from normal activities. The
growing increase of new attacks and large volumes of network traffic data are
posing incredible challenges to the information industry [3,4]. In addition, deep
learning techniques have been successfully applied in numerous research fields
(e.g., image recognition). Therefore, deep learning approaches are expected to
obtain rather impressive performance in anomaly detection.

Existing deep learning approaches utilized in intrusion detection are catego-
rized into unsupervised deep learning methods and supervised deep learning meth-
ods. The difference between supervised and unsupervised methods is whether
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training data are labeled. Specifically, unsupervised deep learning methods using
unlabeled data include sparse auto-encoder [11], restricted boltzmann machine
(RBM) [6], deep belief network (DBN) [9,21] and recurrent neural network (RNN)
[8]. The supervised deep learning methods include convolutional neural network
(CNN) which combines with multi-layer perceptron (MLP) in [19]. Moreover,
stacked autoencoders (SAE) algorithm obtained remarkable performance in traf-
fic identification [17]. Machine learning methods combining with different deep
learning approaches are also applied in intrusion detection, such as extreme learn-
ing machine (ELM) [18] and support vector machine (SVM) [5,13]. However, the
majority of these studies have been limited to evaluate their research on the out-
dated dataset (i.e., KDD Cup 99 dataset [10,15] and NSL-KDD dataset [12]). In
general, substantive network traffic data collected from the real world are always
high dimensional and unlabeled. Consequently, unsupervised deep learning algo-
rithms are usually utilized for dimensionality reduction and feature extraction.

As numerous novel attacks have increasingly appeared and evolved in recent
years, traditional network intrusion detection techniques are facing several chal-
lenges. First, network intrusion techniques producing too many false positives and
false negatives can not satisfy the requirement of high accuracy of NIDSs [14].
Second, intrusion features used for traditional machine learning methods are heav-
ily structured and have special semantics involved in specific expert knowledge,
which is extremely expensive and time-consuming. Finally, the heavily hand-
crafted features are closely related to specific attack types. In other words, those
features would fail to detect novel and complicated attacks. On the other hand,
deep learning approaches can automatically learn essential features from large vol-
umes of data. Moreover, unsupervised deep learning techniques are more potential
than traditional machine learning methods for intrusion detection [20] due to the
difficulty of obtaining labeled data.

The objective of our paper is utilizing unsupervised deep learning methods
to automatically learn essential features from raw network packets and achieve
quite high detection accuracy. In this study, we propose a session-based net-
work intrusion detection model using a deep learning architecture. Comparative
experiments demonstrate that the proposed model can achieve incredibly high
performance for network intrusion detection. We obtain quite impressive per-
formance through applying stacked denoising autoencoders (SDA) based deep
learning architecture to detect botnet traffics.

The remainder of this paper is organized as follows. Section 2 describes a
session-based network intrusion detection model using a deep learning architec-
ture. Section 3 shows experimental results and discusses their specific meanings
and implications. Finally, Sect. 4 concludes the study with some future work.

2 Methodology

In this paper, we propose a session-based network intrusion detection model
using a deep learning architecture illustrated in Fig. 1. Generally, this model is
composed of session-based data preprocessing module and a deep learning archi-
tecture module. Network session data can well reflect the correlation of network
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packets. Specifically, the session-based data preprocessing module extracts few
simple features from packets’ header portion and selects payloads of the network
application layer within a session as features. The header features and payloads
within a session together form a record. Subsequently, those records are fed into
an unsupervised deep learning algorithm to obtain essential features for classi-
fying normal and malicious network traffics.

Fig. 1. The session-based network intrusion detection model using a deep learning
architecture

2.1 Session-Based Data Preprocessing Method

A record is a training sample which consists of little packets’ header information
and raw payload data of the network application layer. There are three steps
to transform raw network traffics into normalized records: session construction,
record construction, and normalization. The data preprocessing procedure is
presented in Fig. 2.

Session Construction. TCP, UDP, and ICMP packets are first utilized to con-
struct sessions, respectively. The TCP, UDP, and ICMP sessions are separately
defined by a five tuple which is referred to as a session ID which can identify
a unique session. There is a one-to-one correspondence between the session ID
and the record. Specifically, a TCP session ID, as well as a UDP session ID,
consists of protocol type, IP source address, IP destination address, source port,
and destination port. Similarly, an ICMP session ID is composed of protocol
type, IP source address, IP destination address, ICMP type, and ICMP code.
The payloads of the application layer within each session are separately joined.

Record Construction. Part of packets’ header information and payloads
within a session are extracted as features of a record. The dimensional distribu-
tion of the record features is described in Table 1. The length of each record is
1000. The first 17 positions of the record are reserved for the features of packets’
header. The rest of positions is payloads of packets in a session. If the length of
a record is less than 1000, zeroes are padded. Correspondingly, the extra part is
truncated. The protocol type (TCP, UDP, ICMP) and time features of the IP
header are selected to be features. The protocol type is represented as 100, 010,
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Table 1. Dimensional distribution of the record features in our dataset

Feature name Description Length

protocol type 110 if protocol type is tcp; 010 if protocol type is udp; 001
if protocol type is icmp.

3

port Source port and destination port 2

icmp type Value of type field of icmp packet 1

icmp code Value of code field of icmp packet 1

tcp flags Separate cumulative sum of FIN, SYN, RST, PSH, ACK,
URG, ECE, CWR within a session in each dimension

8

interval mean Mean value of time intervals of all packets within a session 1

interval variance Variance value of time intervals of all packets within a
session

1

payload Partial payloads of the network application layer in a
session

983

001 for TCP, UDP and ICMP, respectively. We eliminate source and destination
IP addresses because they can be used to identify botnet traffics [1]. The time
intervals of packets in a session are calculated, and their mean and variance val-
ues are used as time features of a record. For the TCP header, besides source and
destination ports, numbers of TCP flags (FIN, SYN, RST, PSH, ACK, URG,
ECE, CWR) of packets in a session are counted for each flag. For example, if
there are only ten packets whose SYN flag is set to 1 in a session, the value of
SYN feature would be 10.

Normalization. The payloads based on bytes are expressed as integer num-
bers between 0 to 255. The integer numbers then are normalized to float num-
bers from 0 to 1. For some features of the packet header, which we can not
know numerical bounds, min-max normalization method is used to normalize
each single feature to the range [0, 1]. The formula of the min-max normaliza-
tion is x′ = x−min(F )

max(F )−min(F ) , where min(F) = minimum value of feature F and
max (F) = maximum value of feature F.

Fig. 2. The session-based data preprocessing procedure
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2.2 Deep Learning Architecture Description

In this section, we present a SDA-based deep learning architecture for session-
based network intrusion detection model. Stacked denoising autoencoders (SDA)
[16] are the extension of classical stacked autoencoders. The structure and rele-
vant terminology of a denoising autoencoder are first briefly introduced. Suppose
there is an unlabeled training dataset D =

{
x(1),x(2), ...,x(m)

}
with m samples,

where the input sample x(i) ∈ �n is an n-dimensional vector. The input of a
denoising autoencoder is first stochastically corrupted via a stochastic mapping
x̃ ∼ qD (x̃|x). In particular, the corruption approach in our experiments is to
randomly set some of the input units to zero. A denoising autoencoder then
maps the corrupted input vector x̃ to a hidden representation h called code via
a deterministic mapping:

h = f (Wx̃ + b) , (1)

where W is a weight matrix and b is a bias vector, and the mapping f (·)
called the encoder is a sigmoid function (i.e., f (z) = 1

1+e−z ) in our model. The
code h then is transformed back into an n-dimensional vector x = x̂ called
the reconstruction of input x. The transformation is implemented by the same
mapping called decoder:

x̂ = f (W ′h + b′) , (2)

where we set the weight matrix W ′ to tied weighs which means W ′ is the matrix
transpose of W (i.e., W ′ = W T ) in our experiments. The denoising autoencoder
attempts to reconstruct the raw input from corrupted version of the input. In
order to minimize the reconstruction error of the input and the output, the loss
function in our experiments is the cross-entropy loss:

L (x, x̂) = −
n∑

j=1

[xj log x̂j + (1 − xj) log (1 − x̂j)]. (3)

Figure 3 depicts the specific steps that how to train a SDA-based deep learn-
ing architecture. The procedure of stacking denoising autoencoders is mainly
divided into two stages. The first stage, unsupervised layer-wise pre-training
stage, is a greedy layer-wise training process. Specifically, a denoising autoen-
coder neural network is first trained through minimizing the reconstruction error
of the input and out. The second denoising autoencoder is then trained by tak-
ing the hidden-layer output of the fist autoencoder as input. Thus, the denoising
autoencoders are stacked into a deep neural network through training a number
of denoising autoencoders. The training set is utilized in the unsupervised layer-
wise training stage only involved in unlabeled data. The second stage, supervised
fine-tuning stage, adds a logistic regression layer for classification on the top of
the stacked denoising autoencoders. In other words, the output of the last hid-
den layer of stacked autoencoders is the input of a softmax classifier. The entire
neural network is then trained as a multilayer perceptron and optimize all the
parameters using labeled samples. The validation set is used to select the best
model, and early-stopping method is applied to avoid overfitting. Finally, the
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Fig. 3. Specific steps to train a SDA-based deep learning architecture

test set is employed for the classification task and evaluating the performance of
classification results.

The SDA-based deep learning architecture has some advantages as follows.
First, it can use numerous unlabeled samples to automatically learn important
features. Second, the corruption strategy makes it obtain more robust features
from missing data and noisy input. Finally, it provides the more effective method
of dimensionality reduction than principal components analysis (PCA) when the
hidden layer is non-linear [7].

3 Experimental Results and Performance Analysis

Our experiments included two types of classification tasks, namely, binary
classification and multi-classification. Specifically, the binary classification task
included normal and attacks (bots). The multi-classification task included eight
types of classes, i.e., normal and seven types of bots. Two sizes of dataset were
separately used to evaluate the performance of the SDA-based neural network
architecture, and we compared this architecture with other state-of-art deep
learning methods.

In this section, we first present the evaluation dataset and algorithmic para-
meter settings information. Next, we briefly introduce evaluation metrics for
the performance analysis. Finally, we discuss experimental results of three-part
experiments.

3.1 Dataset and Parameter Settings

There are two types of network traffics in our dataset, namely normal traffics and
botnet traffics. The normal portion of our dataset is supplied by the UNB ISCX
IDS 2012 dataset [2] because its data do not be heavily anonymized and have no
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privacy issues. The UNB ISCX IDS 2012 dataset includes seven days of normal
and malicious network traffics. We select the first-day network traces which
contain full packet payloads of normal activity in a pcap file format. In addition,
We choose botnet traffics of CTU-13 dataset [1] to express cases of malicious
behaviors in the real world. The CTU-13 dataset contains 13 botnet scenarios
in which specific malwares (bots) are separately executed. Table 2 presents the
distribution of traffic records in our dataset. The data size of the 43% dataset is
43% of the whole dataset. There are seven types of bot network traffics in both
43% dataset and the whole dataset.

Table 2. Distribution of traffic records in our dataset

43% dataset Whole dataset

Traffic Training Validation Test Total Traffic Training Validation Test Total

Normal 18467 3700 3743 25910 Normal 41480 8123 8174 57867

Bot Neris 3516 675 677 4868 Bot Neris 8039 1567 1565 11171

Rbot 6015 1185 1158 8358 Rbot 6073 1228 1221 8522

Virut 507 102 114 723 Virut 18914 3680 3767 26361

Menti 220 42 38 300 Menti 217 40 43 300

Sogou 31 5 8 44 Sogou 34 5 5 44

Murlo 1911 424 400 2735 Murlo 2013 364 358 2735

NSIS.ay 4436 867 862 6165 NSIS.ay 4395 903 867 6165

Total 16636 3300 3257 23193 Total 39685 7877 7826 55298

Total 35103 7000 7000 49103 Total 81165 16000 16000 113165

The 43% dataset and the whole dataset are used to evaluate the performance
of the SDA-based neural network architecture, respectively. The proportion of
the training, validation and test set is 5:1:1. There were three hidden layers in
the SDA neural network. The number of hidden units was all simply set to 1000
and the corruption level for training each denoising autoencoder was separately
set to 10%, 20%, and 30%. The corruption level in our experiments means how
many input units of a denoising autoencoder are randomly set to 0.

3.2 Evaluation Metrics

Generally, the performance of network intrusion detection is evaluated through
four metrics, i.e., accuracy (AC), precision (P), recall (R), F-measure (F). These
metrics are further defined by true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN). They can be obtained by a confusion
matrix C whose element Ci,j equals to the number of samples of class i predicted
to class j. Specifically, TP and TN are the numbers of attack and normal records
predicted correctly, respectively. Accordingly, FP and FN are separately the
number of normal and attack records classified incorrectly.

• Accuracy (AC): presents the percentage of true prediction over all records.

AC = (TP + TN) / (TP + TN + FP + FN) (4)
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• Precision (P): presents the ability of a classifier predicting actual attacks over
all attack records it predicted.

P = TP/ (TP + FP ) (5)

• Recall (R): presents the percentage of predicted attack records versus all the
attack records.

R = TP/ (TP + FN) (6)

• F-measure (F): can better evaluate the performance due to the combination
of recall and precision.

F = 2PR/ (P + R) (7)

In addition, receiver operating characteristic (ROC) metric can evaluate the
result quality of the classifier through false positive rate and true positive rate.
The left top corner of a ROC figure means the highest true positive rate and the
lowest false positive rate. Hence, the closer that the value of the area under the
ROC curve (AUC) is to 1, the better result is.

3.3 Experimental Results

We discuss results of three-part experiments: binary classification using the SDA-
based deep neural network, multi-classification using the SDA-based deep neural
network, and classification using different deep learning architectures.

Binary Classification Using the SDA-Based Deep Neural Network.
The results of binary classification are presented in Table 3. We found that the
SDA approach obtained a little higher overall performance on the larger size
dataset. This result suggests that the amounts of training data could influence
the performance of the SDA approach and the SDA approach presents better
learning ability with more training data. Also, we noticed that the values of
all the evaluation metrics of the SDA approach achieved were over 99%. These
results implicate that the SDA approach could learn highly significant features
from the raw payloads of the network application layer.

Table 3. Metrics for binary classification

Dataset Type Accuracy (%) Precision (%) Recall (%) F-measure (%)

43% dataset Total 99.41 99.29 99.29 99.29

Normal 99.25 99.25 99.41 99.33

Attack 99.60 99.32 99.14 99.23

Whole dataset Total 99.48 99.39 99.39 99.39

Normal 99.46 99.45 99.36 99.41

Attack 99.50 99.34 99.43 99.38
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Additionally, the ROC curves for the two sizes of the dataset are shown in
Fig. 4. As expected, AUC values of two experiments are high and equal. This
result indicates that session-based network intrusion detection can achieve quite
high true positive rate and false positive rate.

Fig. 4. ROC curves of the SDA for the binary classification task

Multi-classification Using the SDA-Based Deep Neural Network. As
observed from Fig. 5a, the SDA approach performs well too in the multi-
classification (8 class) task comparing with binary classification task on both
the 43% dataset and the whole dataset. Specifically, the SDA approach achieved
98.11% accuracy rate on the whole dataset, whereas the SDA approach achieved
97.96% accuracy rate on the 43% dataset. In other words, the SDA approach
performs better in the larger dataset for the multi-classification task, which is the
same as the binary classification. We also observed that the precision, recall and
F-measure values of two experiments were equal to corresponding accuracy value
of each experiment. We found that the SDA approach achieved lesser metric val-
ues for the multi-classification task than the binary classification task. This is
because sample sizes of some bots (e.g., Sogou and Menti) are too small to learn
important features for the SDA approach in the multi-classification task, which
would decrease the overall accuracy rate. Figure 5b displays the ROC curves
for the multi-classification task. The AUC values of the ROC curves just are
the same as binary classification. We obtained high AUC values in the multi-
classification task too, which suggests that the SDA approach could perform well
in the multi-classification task and learn robust features even when sample sizes
of some classes are small.

Classification Using Different Deep Learning Architectures. We also eval-
uated some different deep learning approaches, namely SAE, DBN, and AE-CNN.
Those methods have similar training steps described in Fig. 3. In the AE-CNN
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(a) Evaluation metrics (b) ROC curve of the SDA

Fig. 5. Metrics and ROC curve for the multi-classification task

experiment, the raw input data of 1000 dimensions were firstmapped to 784 dimen-
sions through an autoencoder to simulate the image classification. CNN then took
the compressed data as input. The number of hidden layers of these approaches was
three. The classification accuracy of different deep learning approaches is shown
in Table 4. Compared with other deep learning approaches, SDA achieved bet-
ter overall performance in all experiments except multi-classification on the 43%
dataset. Furthermore, while other approaches got worse performance when the
dataset size increased, the SDA method achieved the highest accuracy on the whole
dataset. The SDA approach also had the best performance in the binary classifica-
tion on the two datasets. While SDA and DBN have the similar training principles,
SDA appears to be comparable and superior to DBN. And the AE-CNN method
always yields worse performance than others. These results suggest that SDA with
the denoising criterion can learn significant higher level representation (features)
from raw traffic data, and deep learning approaches have remarkable capabilities
for the intrusion detection task.

Table 4. Classification accuracy of different deep learning approaches

Type Dataset SDA SAE DBN AE-CNN

2-class 43% dataset 99.41% 99.26% 99.29% 98.46%

Whole dataset 99.48% 99.42% 99.39% 98.54%

8-class 43% dataset 97.96% 98.51% 98.04% 96.37%

Whole dataset 98.11% 97.96% 97.55% 93.58%
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4 Conclusion and Future Work

The numerous derived features contained in existing benchmark intrusion detec-
tion datasets have not been practical anymore for the real-world and sophis-
ticated intrusion detection. We implemented a SDA-based deep architecture
automatically learn essential features of botnet traffics. We also proposed a
session-based method to construct intrusion detection dataset from raw network
traffics, and we evaluated the performance of different deep learning approaches
on the dataset. The experimental results showed that deep learning approaches
had high effectiveness and incredible potential to be applied in the session-based
network intrusion detection. In future, we plan to adjust some parameters of deep
learning architectures (e.g., the number of hidden layers) and utilize the entire
payloads of the network application layer to further improve performance. In
addition, the different hybrid approaches of combining machine learning and
deep learning approaches for intrusion detection can also be promising and
potential.
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Abstract. Improving the prediction performance is a main objective in
time series forecasting research area. Wavelet transform has been used
for decomposing time series into approximation and detail before further
analysis with forecasting models. However, generally, the approximation
and the detail are assumed as either linear or nonlinear. In fact, the
wavelet transform is not for decomposing the original time series into
linear and nonlinear time series. Therefore, this study proposes a hybrid
forecasting model of discrete wavelet transform (DWT), autoregressive
integrated moving average (ARIMA) and artificial neural network (ANN)
without linear or nonlinear assumption on the approximation and the
detail. The proposed model decomposes the time series by the DWT
to get the approximation and the detail. Then, the approximation and
the detail are separately analyzed by Zhang’s hybrid model involving
the ARIMA and the ANN in order to capture both linear and nonlinear
components of the approximation and the detail. Finally, the linear and
nonlinear components are combined for final forecasting. The proposed
model has been tested with three well-known data sets: Wolf’s sunspot,
Canadian lynx and British pound/US dollar exchange rate. The exper-
imental results indicate that the proposed model can outperform the
ARIMA, the ANN, and the Zhang’s hybrid model in all three tested
time series and measures (i.e. MSE, MAE and MAPE).

Keywords: Hybrid model · Time series forecasting · Autoregressive
Integrated Moving Average (ARIMA) · Artificial Neural Network (ANN)

1 Introduction

Time series forecasting is an active research area that plays important role in
planning and decision making in several practical applications [1]. The main
task of this research area is to improve the prediction accuracy. For decades,
autoregressive integrated moving average (ARIMA) and artificial neural net-
work (ANN) are wildly used for time series prediction. The ARIMA is popular
due to capability in dealing with various types of data such as stationary and
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non-stationary data. However, the linear relationship between historical and pre-
dicted time series is pre-assumed. Such assumption is very difficult to be com-
pletely satisfied in practical situations.

On the other hand, the ANN can predict the future time series without any
prior assumption. Nevertheless, there is no forecasting model that can be the best
for all time series. For instance, the ARIMA works properly for linear time series
but for nonlinear time series, the ANN can model nonlinear time series while the
ARIMA is not appropriate. Therefore, using the single model is insufficient for
dealing with the time series of real-world applications which normally contain
linear and nonlinear relationship [2].

Wavelet transform is traditionally used for decomposing signal into low fre-
quency (approximation) and high frequency (detail) components. In time series
forecasting, the wavelet transform is adapted to decompose time series. Pre-
diction performances of both ARIMA and ANN have been improved through
the wavelet transform in several applications: electrical price [3,4]; short term
load [5]; monthly river discharge [6–8]; groundwater level [18]; rainfall and runoff
[9,10]; hourly flood forecasting [11]. Furthermore, even though, the wavelet trans-
form has been combined with ARIMA and ANN models [12], however, this app-
roach assumed that the approximation contains only nonlinear component. Such
assumption is not practical since the DWT is not a method to transform time
series into linear or nonlinear components.

This study proposes a forecasting model capturing both linear and nonlinear
components of the detail and the approximation instead of original time series.
Firstly, the discrete wavelet transform (DWT) is used to decompose the time
series. Then, the hybrid model of ARIMA and ANN are constructed for the
approximation and the detail to extract their linear and nonlinear components.
Eventually, the final prediction is the combination of the linear and nonlinear
components.

The rest of this paper is organized as follows. In Sect. 2, the ARIMA, the
ANN and the DWT are introduced. In Sect. 3, the proposed model is described.
The experiments and the results are presented in Sect. 4. Finally, Sect. 5 gives
the conclusions.

2 Preliminaries

2.1 Autoregressive Integrated Moving Average (ARIMA)

The autoregressive integrated moving average (ARIMA) is a time series forecast-
ing model widely used for several decades because it is capable to handle both
stationary and nonstationary data [1]. However, the relationship between histor-
ical and forecasted time series is pre-assumed to be linear. The ARIMA has three
components which are autoregressive (AR), integration (I) and moving average
(MA). In case that the input time series is nonstationary, the integration (I) which
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is differencing of time series must be performed before further analysis. The math-
ematical model of the ARIMA can be expressed as:

φp(B)(1 − B)dyt = c + θq(B)at (1)

where yt and at denote the time series and random error at period t respectively,
c denotes the constant, φp(B) = 1 − ∑p

i=1 φiB
i, θq(B) = 1 − ∑q

j=1 θjB
j , B is

the backward shift operator defined as Biyt = yt−i, φi and θj are autoregressive
and moving average parameters respectively, p and q denote the orders of the
autoregressive (AR) and the moving average (MA) respectively, and d denotes
the degree of differencing.

2.2 Artificial Neural Network (ANN)

The artificial neural network (ANN) is a nonlinear mathematical model mim-
icking biological neurons [13]. The ANN is popular in time series forecasting
due to its flexibility in fitting the relationship between historical and forecasted
time series without prior assumption. The structure of the ANN has three kinds
of layer such as input, hidden and output layers. In each layer, there are neu-
rons (nodes). Generally, the numbers of layers and nodes are decided based on
architect insight in the problem. However, a feed-forward neural network with
single hidden layer has been proved that it can be an universal approximator
for any continuous function [14]. The feed-forward neural network [15] can be
mathematically expressed as:

yt = f

(

bh +
R∑

h=1

whg

(

bi,h +
Q∑

i=1

wi,hpi

))

(2)

where yt denotes the time series at period t, bi,h and bh denote the biases, f and
g denote the transfer functions which are generally the linear and the nonlin-
ear functions respectively, wi,h and wh denote the connection weights between
the layers, Q and R denote the numbers of the input and the hidden nodes
respectively.

In this study, the feed-forward neural network with single hidden layer and
Levenberg-Marquardt algorithm with Bayesian regularization training algorithm
[16] are involved in the experiments.

2.3 Discrete Wavelet Transform (DWT)

The wavelet transform is a technique analyzing both time and frequency of
signals simultaneously [17]. This technique decomposes an input signal into two
parts: low frequency information (approximation) and high frequency (detail)
by using low and high frequency pass filters. For multiple decomposition level,
the approximation of the previous decomposition level is the input of higher
decomposition level. Actually, there are two main types of the wavelet transform:
continuous and discrete wavelet transforms. However, in practical, the time series
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are discrete and suitable to be decomposed by the discrete wavelet transform
(DWT) as:

yt = AJ(t) +
J∑

j=1

Dj(t)

=
K∑

k=1

cJ,kφJ,k(t) +
J∑

j=1

K∑

k=1

dj,kψj,k(t)

(3)

where yt denotes the time series at period t; AJ(t) denotes the approximation
of the highest decomposition level (J); Dj(t) denotes the detail of decomposi-
tion level j; cj,k and dj,k denote the coefficient of the approximation and detail
respectively, at decomposition level j and period k; φj,k(t) and ψj,k(t) denote
low (approximation) and high (detail) pass filters respectively, at decomposition
level j and period k; K denotes the total number of time series J denotes the
total level of decomposition.

3 Proposed Forecasting Model

The main idea of the proposed model is using the unique strength of the ARIMA
and the ANN in capturing linear and nonlinear components from time series
while not assuming the approximation and the detail from the DWT as either
linear or nonlinear. The proposed model consists of thee main steps: time series
decomposition, extracting linear and nonlinear components, and final forecasting
(Fig. 1).

Fig. 1. The proposed forecasting model

In the first step, the DWT with Daubechies wavelet basis function decom-
poses actual time series (yt) into the approximation (yapp

t ), which reveals the
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trend, and the detail (ydet
t ) which implied the noise involving seasonality, white

noise, etc.
Rather than applying a forecasting model directly to the time series con-

taining both trend and noise, further analysis from the approximation and the
detail can give the better prediction result because the forecasting model does
not have to deals with the trend and the noise simultaneously.

In the second step, the Zhang’s hybrid model of ARIMA and ANN [2] is
applied to both the approximation and the detail. This step contributes the new
approach that does not make either linear or nonlinear assumption, which have
been normally made in several researches, to the characteristic of the approxi-
mation and the detail.

Normally, the Zhang’s model predicts the future value at period t (ŷt) from
a combination of linear (L̂t) and nonlinear (N̂t) components as:

ŷt = L̂t + N̂t (4)

The linear component (L̂t) can be obtained from the result of applying the
ARIMA to the actual time series (yt). Then the ARIMA residual (et) is computed
as:

et = yt − L̂t (5)

For the nonlinear component (N̂t), it is the result of the ANN using the
lagged values of the ARIMA residual (et) as the inputs as:

N̂t = f(et−1, et−2, . . . , et−n) (6)

where f is a nonlinear function defined by the ANN, n is total lagged periods.
In case of the proposed model, different Zhang’s models are dedicatedly con-

structed for the approximation and the detail as:

ŷapp
t = L̂app

t + N̂app
t (7)

ŷdet
t = L̂det

t + N̂det
t (8)

where ŷapp
t and ŷdet

t are the predicted approximation and detail respectively, at
period t; L̂app

t and L̂det
t are linear components of the approximation and the

detail respectively, at period t; N̂app
t and N̂det

t are nonlinear components of the
approximation and the detail respectively, at period t.

The linear components (L̂app
t and L̂det

t ) are the results of applying the
ARIMA to yapp

t and ydet
t respectively. Then, the ARIMA residuals of the approx-

imation (eappt ) and the detail (edett ) can be computed as:

eappt = yapp
t − L̂app

t (9)

edett = ydet
t − L̂det

t (10)
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For the nonlinear components (N̂app
t and N̂det

t ), they are obtained from the
ANN as:

N̂app
t = fapp(eappt−1, e

app
t−2, . . . , e

app
t−n1

) (11)

N̂det
t = fdet(edett−1, e

det
t−2, . . . , e

det
t−n2

) (12)

where fapp and fdet are functions fitted by the ANN, n1 and n2 are total lagged
periods which are determined by trial and error in the experiments.

At this step, we obtain two linear (L̂app
t and L̂det

t ) and two nonlinear compo-
nents (N̂app

t and N̂det
t ). Finally, the final forecasting can be done by aggregation

of the linear and nonlinear components as:

ŷt = ŷapp
t + ŷdet

t

= L̂app
t + N̂app

t + L̂det
t + N̂det

t

(13)

In summary, instead of applying the Zhang’s model directly to the time series,
the DWT is used for filtering the time series into the approximation (trend) and
the detail (noise). Then, without preassuming linear or nonlinear characteristic
of the approximation and the detail, the Zhang’s model is applied to both of
them. In fact, until now, there is no theoretical prove about linear and nonlinear
characteristic of the approximation and the detail. Since the specific Zhang’s
models have been constructed for capturing the trend and the noise separately,
they would have more potential to give the better prediction results because the
different Zhang’s models focus on only either trend or noise (not both of them at
the same time). Finally, the final forecasting is done by additive combination of
both linear and nonlinear components of the approximation the detail because
the relationship between the approximation and the detail is additive as well.

4 Experiments and Results

In order to evaluate the prediction capability of the proposed model, the pro-
posed model is applied to three well-known time series (Table 1): Wolf’s sunspot
(Fig. 2), Canadian lynx (Fig. 3) and British pound/US dollar exchange rate
(Fig. 4). The prediction performance measures involved in this study consist of
three measures: mean square error (MSE), mean absolute error (MAE) and mean
absolute percentage error (MAPE). The performance of the proposed model is
compared to the ARIMA, the ANN and the Zhang’s hybrid model.

For the sunspot time series, there are totally 288 annual records (1700–1987).
The first 221 records (1700–1920) are used as training set. The remaining 67
records (1921–1987) are test set. Firstly, the sunspot time series is passed through
the DWT to generate the approximation and the detail. Secondly, the ARIMA is
fitted to both the approximation and the detail. ARIMA(0, 0, 6) and ARIMA(0,
0, 3) are the most fitted models. Thirdly, the residuals of the two most fitted
ARIMAs are computed and analyzed by the ANN. The best ANNs for the resid-
uals of the approximation and the detail are ANN(10-10-1) and ANN(2-2-1).
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After the final forecasting, the performance measures of short term (35 years)
and long term (67 years) horizontal predictions are evaluated (Table 2). From
the comparison, the proposed model gives the lowest error in all three measures.
In the short term prediction, the MSE, MAE and MAPE are 121.12, 6.16 and
19.45% respectively. For the long term prediction, the MSE, MAE and MAPE
are 199.24, 7.77 and 22.56% which are higher than the short term prediction
because the long term prediction includes the highest peak at period 37 (see
Fig. 5a) that causes shift up in variability of the time series. However, the pro-
posed model is still the best model because the measures of the other models
are increased as well. Therefore, for the sunspot, the proposed model is the best
model in both short and long term prediction.
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Fig. 2. Sunspot time series (1700–1987)
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Fig. 3. Canadian lynx time series (1821–1934)

The Canadian lynx time series contains 114 observations (1821–1934). The
size of the training and the test set are 100 observations (1821–1920) and 14
observations (1921–1934) respectively. After obtaining the approximation and
the detail from the DWT, their best fitted ARIMAs are determined as ARIMA(0,
0, 5) and ARIMA(2, 0, 0) respectively. The most suitable ANNs for predicting
the residuals of these two ARIMAs are ANN(3-8-1) and ANN(4-4-1) respec-
tively. The performance comparison is shown in Table 3. The proposed model
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Fig. 4. Exchange rate time series (1821–1934)

has the best performance in MSE, MAE and MAPE which are 0.0154, 0.1014
and 3.4575% respectively. With the proposed model, the MSE is significantly
improved. Based on the mathematical formular of the MSE, it is more sensitive
to a big error. Thus, lower MSE has more chance to promise lower maximum of
error. In this case, the proposed model has the lowest maximum error which is
at period 1 (see Fig. 5b).

Table 1. Detail of time series and experiment

Time series Size (total, training, test)

Sunspot (1700–1987) (288, 221, 67)

Canadian lynx (1821–1934) (114, 100, 14)

Exchange rate (1980–1993) (731, 679, 52)

Table 2. Sunspot forecasting result

Model 35 year ahead 67 year ahead

MSE MAE MAPE MSE MAE MAPE

ARIMA 197.87 10.52 29.17% 323.48 13.25 32.86%

ANN 164.08 9.51 31.76% 413.90 14.19 33.34%

Zhang’s model 156.76 9.63 30.22% 300.88 12.74 32.08%

Proposed model 121.12 6.16 19.45% 199.24 7.77 22.56%

Table 3. Lynx forecasting result

Model MSE MAE MAPE

ARIMA 0.0229 0.1120 3.7062%

ANN 0.0201 0.1165 4.0156%

Zhang’s model 0.0247 0.1083 3.5504%

Proposed model 0.0154 0.1014 3.4575%
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Table 4. Exchange rate forecasting result

Model 1 month 6 months 12 months

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE

ARIMA 36.6514 0.01508 3.6628% 35.5387 0.0155 3.8883% 29.0517 0.01375 3.4286%

ANN 33.7797 0.0147 3.5767% 37.6072 0.0157 3.9298% 30.4533 0.01404 3.5065%

Zhang’s model 36.1826 0.0151 3.6605% 35.6239 0.0156 3.8994% 28.8004 0.01379 3.4335%

Proposed model 31.0259 0.0102 2.5541% 10.9023 0.0073 1.8240% 8.1812 0.00601 1.4959%
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Fig. 5. Forecasted values: (a) Sunspot, (b) Canadian lynx, (c) Exchange rate
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In case of the exchange rate, the data set includes 731 weekly exchange rates
(1980–1993). The data is partitioned into 679 and 52 observations as training and
test set. The ARIMAs fitted to the approximation and the detail are ARIMA(0,
1, 0) and ARIMA(0, 0, 3) respectively. The suitable ANNs of the ARIMAs
residuals are ANN(2-3-1) and ANN(7-9-1). In evaluation of the prediction per-
formance, three horizontal predictions are considered: 1 month, 6 months and 12
months. From Table 4, the proposed model can outperform the other model in all
cases. Surprisingly, the longest prediction period has the highest accuracy; MSE,
MAE and MAPE are 8.1812, 0.00601 and 1.4959% respectively. Eventhough, the
prediction period (12 months) is the longest but the average variability is the
lowest because it includes the end of the year (see Fig. 5c) which has more stable
exchange rates than both the beginning and the middle of the year.

5 Conclusions

In purpose of improving prediction accuracy in time series forecasting, the novel
hybrid model of ARIMA and ANN with discrete wavelet transform (DWT) has
been developed. Its capability is tested with the sunspot, the Canadian lynx and
the exchange rate time series. The experimental results imply that the proposed
model can give the best performance in all three data sets and measures (i.e.
MSE, MAE and MAPE).

The better forecasting accuracy indicates the advantage of combining the
DWT, the ARIMA and the ANN in extracting linear and nonlinear components
of the approximation and the detail without linear or nonlinear assumption. The
limitation of this study is that the decomposition level of the DWT is only one.
In the future works, the effect of multiple decomposition levels will be concerned.
The statistical testing of the performance measures will be conducted to confirm
the significance of the improvement in prediction accuracy.
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Abstract. Activity recognition focuses on inferring current user activ-
ities by leveraging sensory data available. Nowadays, combining data
driven with knowledge based methods has show an increasing interest.
However, uncertainty of sensor data has not been tackled in previous
hybrid models. To address this issue, in this paper we propose a new
hybrid model to cope with the uncertain nature of sensors data. We fully
implement the system and evaluate it using a large real-world dataset.
Experimental results prove the high performance level of the proposal in
terms of recognition rates.

Keywords: Smart home · Machine learning · Ontology · Activity recog-
nition

1 Introduction

Context awareness is a hot research field in various domains since it may help to
ensure end-user well being and improve quality of life. A trending context aware
applications are the smart environments, in particular smart home (SH). SH
have emerged as an achievable technology that can support peoples, such as the
elderly, for independent living. To provide assistance for individual inhabitants
of an SH, activity recognition is needed to identify the task that the individual is
currently undertaking based on the received sensor data. However, in real world
deployment, sensors data are not always well-aimed and precise [7] as devices
may encounter multiple breakdown including hardware failure, energy deple-
tion, communication problems, etc. Therefore, a context-aware system should
handle the missing or imprecise sensors data in order to make the right deci-
sions. Previously, approaches tackling sensors’ uncertainty to recognize activity
can be into three categories: data driven, knowledge based, and hybrid. Data
driven methods [7,9,10] apply different supervised and unsupervised machine
learning techniques to classify sensors data into activities based on provided
training datasets. Support Vector Machine (SVM) [9], and Conditional Random
Fields (CRF) [10] are examples of well-known classifiers. Although this group
of methods is suited to handle uncertainty and to deal with a broad range of
sensors, it also needs a large amount of training data to set up a model and
estimate its parameters. On the other hand, knowledge based methods relies on
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logic rules, ontologies and reasoning engine to infer proper activities from cur-
rent sensors input. Despite their powerful semantic representation of real world
data and their reasoning capabilities, their use is restricted to a limited num-
ber of sensors. Given the limitations of both data driven and knowledge based
approaches, combining them is a promising research direction as it was stated
in analysis done in [7,11]. Intuitively, a hybrid approach takes the “best of both
worlds” by using a combination of methods. Such an approach is able to pro-
vide a formal, semantic and extensible model with the capability of dealing with
uncertainty of sensors data and reasoning rules [7]. Therefore, proposing hybrid
models has been the motivation of recent works including [2,12]. However, none
of the aforementioned approaches of hybrid models address the problem of sen-
sors data uncertainty. This a clear drawback in our context. To overcome this
limitation, this paper proposes a new hybrid model combining data driven and
knowledge based methods for activity recognition and uncertainty management.
The main contributions of the paper are as follows:

1. Introduction of a new hybrid model for activity recognition in smart home
that combines the ontology and semantic reasoning with data driven tech-
nique. The novel model handles uncertain sensors data and it exploits these
uncertainty values to compute the produced activities uncertainty values.

2. Improvement of an existing method for feature extraction [5] in order to deal
with more time distant actions and their uncertainty values.

3. Fully implemented system for activity recognition with a high level of effi-
ciency.

The rest of this paper is organized as follows: Sect. 2 discusses related work
about hybrid models for activity recognition. Section 3 presents the proposed
hybrid model. Section 4 reports experimental results. Finally, Sect. 5 concludes
the paper.

2 Related Work

The combination of data driven and knowledge based methods for activity recog-
nition has been a recent topic of interest. Therefore, few hybrid activity recog-
nition systems have been proposed in the literature.

COSAR [3,13] is a context-aware mobile application that combines machine
learning techniques and an ontology. As a first step, the machine learning method
is triggered in order to predict the most probable activities based on a provided
training data. Then, an ontological reasoner is applied to refine the results by
selecting the set of possible activities performed by a user based on his/her
location acquired by a localization server. Despite the fact that the sensor data
are supposed to be certain, COSAR deals with the uncertainty of the transfor-
mation of the localization from a physical format to a symbolic one. Another
hybrid model that combines a machine learning technique, an ontology, and a
log-linear system has been proposed in [12]. The aim of this approach is to recog-
nize a multilevel activity structure that holds 4 levels: atomic gesture (Level 4),
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manipulative gesture (Level 3), simple activity (Level 2), and complex activ-
ity (Level 1). The atomic gestures are recognized through the application of a
machine learning technique. Moreover, using a probabilistic ontology defined by
the log-linear, and standard ontological reasoning tasks, the manipulative ges-
tures, simple activities, and complex activities are inferred. Each level is deduced
based on a time window that contains elements from the previous level. Even
though the work in [12] is similar to the previous one regarding the absence of
sensor data uncertainty’s handling, the inference of the 4 levels activities is based
on a probabilistic reasoning that represents a sort of uncertainty.

FallRisk [8] is another pervasive system that combines data driven and knowl-
edge based methods. Its main objective is to detect a fall of an elderly person
living independently in a smart home. FallRisk is a platform that integrates sev-
eral systems that use machine learning methods for fall detection. It filters the
results of these systems thanks to the use of an ontology that stores the contex-
tual information about the elderly person. The main advantage of this system
is that it is extensible to integrate several fall detection systems. Moreover, the
contextual information of the elderly is taken into account. However, this work
does not consider any kind of uncertainty.

FABER [14] is a pervasive system used to detect abnormal behavior of a
patient. Firstly, it deduces events and actions from the acquired sensor data.
This is done based on simple ontological inference methods. Then, these events
and actions are sent to a Markov Logic Network (MLN) as a machine learning
method to analyze the event logs and infer the start/end time of activities. The
inferred activity boundaries are communicated together with actions and events
to the knowledge based inference engine. This engine evaluates the rules model-
ing abnormal behaviors and detected abnormal behaviors are communicated to
the hospital center for further analysis by the doctors. Nevertheless, similarly to
previous works this system does not handle uncertainty of sensor data.

SmartFABER [2] system is an extension and an improvement of FABER [14].
These two frameworks share the same aims. Regarding SmartFABER [2], instead
of communicating the inferred events and actions to MLN classifier, the system
sends them to a module that is in charge of building vectors of features based
on the received events. Then, these features are communicated to a machine
learning module for the classification of activities. Next, a proposed algorithm
called SmartAggregation is applied to infer current activity instances. For deduc-
ing an activity’s instance from a sequence of events classified to an activity, the
algorithm verifies whether each event satisfies a set of conditions. These con-
ditions are defined by a human expert after a deep analysis of the semantic of
activity. If all events satisfy all conditions, then an activity instance could be
inferred. This work is proved to outperform FABER [14]. However, it suffers
from two main drawbacks: (1) There is no uncertainty handling for sensor data;
(2) The performance of the SmartAggregation algorithm depends heavily on the
defined conditions. It can suffer from time consuming if there is a huge number
of conditions that need semantic verification.
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Combining the Hidden Markov Model (HMM) with the ontology has been
also addressed in [17] to recognize the user activity within a wireless smart home.
In the proposed prototype system, the smart devices are described by semantic
models. When the user needs assistance, smart gateway can provide appropriate
services according to the inference results of the HMM algorithm. However,
the sensor data uncertainty issue has not been tackled in this method. In [18]
a recent proposal for activity recognition that mixes the use of ontology and
the statistical learning approach Markov Logic Network (MLN). The proposed
system utilizes the model theoretic semantic property of description logic, to
convert the represented ontology activity model to its corresponding first order
rules. MLN is constructed by learning weighted first order rules that enable
probabilistic reasoning within a knowledge representation framework. However,
the sensor data uncertainty handling is not discussed enough in the paper.

3 Model Architecture

The model architecture contains, as depicted in Fig. 1, two main components:
Ontological modeling & Semantic reasoning, and Data Driven layer. The former
is in charge of the ontological representation of sensors data and their uncertainty
values. Afterwards, it infers events and actions from this representation and com-
pute their uncertainty values. The latter, receives the actions together with their
uncertainty values. It starts by gathering the input into features and computes
the features weights (Features extraction). Then, it classifies actions and fea-
tures into activities (Activities classification). In the following, clear explanation
of each component is given.

Fig. 1. Architecture overview



174 H. Sfar et al.

3.1 Ontological Modeling and Semantic Reasoning

The main aim of this module is to infer events and actions and compute their
uncertainty values based on the coming sensors data with their uncertainty val-
ues. In this work we consider three levels of inference. The lower one contains
the events which are the simple atomic gesture done by the user. The second
level is the actions that are about more complicated gestures of the user. The
third level is inferred by the data driven layer that contains the set of activities.
An activity is the conclusion of a set of actions that result the undertaking task
of the user. The ontology is used in our model to represent the sensors data
together with their uncertainty values. This ontological modeling allows sensors
data to be formally conceptualized. This conceptualization, as the ontology is
defined for, serves to provide a semantic model from these data. Moreover, it
becomes possible to infer new information based on these modeled data. To do
so, for events and actions inference, simple logic rules are applied. The uncer-
tainty values of the produced events and actions are computed thanks to the
application of the possibility logic [4]. Regarding events, they are deduced from
sensors data. For a better insight we show how we can deduce the occurrence of
an event with label SitOnChair :

∀ t1, t2 ∈ {Time}, p ∈ {Person}, n1, n2 ∈ {Uncertainty}
〈p;hasLocomotion;SitOn〉 ∧ 〈SitOn;hasUncertainty;n1〉 ∧ 〈SitOn;hasT ime;

t1〉 ∧
〈Chair;hasState;Used〉 ∧ 〈Chair;hasUser, p〉 ∧ 〈Used;hasUncertainty;n2〉 ∧
〈Used;hasT ime; t2〉 −→ ev(SitOnChair,max(t1, t2),min(n1, n2))

As we can see, the produced event is in the form ev(e, t, c). Where e is its label,
t is its time occurrence and c its uncertainty value. In the above example, the
left side of the rule contains conjunction between RDF triplet representing the
received sensor data in the ontology, their uncertainty values, and their time
occurrence. In the right side, the conclusion of the rule is the creation of a new
event. The uncertainty value of this event is computed through the application
of possibility logic and equal to min(n1, n2). This is because the rule contains
a conjunction between clauses. Due to the lack of space we refer to [4] for more
information about possibility logic. Regarding actions, they are deduced basi-
cally from events. For example through the following rule we can deduce the
occurrence of the actions with label SitOnChairAtKitechenTable:

ev(SitOnChair, t1, n1) ∧ ev(PresenceAtKitchenTable, t2, n2) ∧ (t1 ≥ t2) ∧
((t1 − t2) ≤ 5s) −→ (SitOnChairAtKitchenTable, t2, min(n1,n2))

3.2 Features Extraction

The second contribution of this paper, as we stated in the introduction, is a
proposal of new measure to compute the weight of the extracted features. This
measure is to overcome the issues in a previous measure proposed in [5]. More
clearly, for each received action ac(ai, ti, ci), this module is in charge of building
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a feature vector representing the sequence S of the recent actions in a time
window’s size n: S = 〈ac(ai−n+1, ti−n+1, ci−n+1),..., ac(ai−1, ti−1, ci−1), ac(ai,
ti, ci)〉. In this work, we improve the technique proposed in [5]. We have chosen
this method since it is proved to be effective in features extraction based on
sensors events or actions streams instead of streams of sensors data compared
to traditional features extraction techniques [7]. This technique builds a vector
of feature for each events sequence S. The produced feature vector of an events
sequence Si holds essentially: (i) The label of the feature, Ki; (ii) The list of
events under Si; (ii) A weight value fine-tunes the contribution of each event in
Si, so that recent events participate more than the older ones. This weight value
is computed as follows:

Fki
(Si) =

∑

ev(ej ,tj)∈Si

exp(−χ(ti − tj)) × fki
(ev(ej , tj)) (1)

where the factor χ determines the time-based decay rate of the events in Si;
ti − tj is expressed in seconds and fki

(ev(ej , tj)) is the time-independent par-
ticipation of ev(ej , tj) in the computation of the Fki

value. The other way
around if ev(ej , tj) participates in the execution of ki then fki

(ev(ej , tj)) = 1
and else 0. For a better illustration, Fig. 2 shows the curve’s shape of the function
exp(−χ(ti − tj)) with χ = 0.5 and , ti − tj ∈ [0..10]. As we can see in the figure,
when ti − tj 
 4s, exp(−χ(ti − tj)) ≈ 0. Consequently, ev(ej , tj) with tj 
 4s
does not participate in the computation of Fki

. In our understanding, this may
be true when the approximate duration of the feature is short. In contrast, when
it is long, this hypothesis is not always valid. Let us take the example of the
feature “stove usage” in [2]. The duration of the execution of this feature, for a
particular recipe, may be equal to a number of hours. We suppose that the vector
of this feature contains the following two events “openStove” and “closeStove”.
Since the duration of the feature “stove usage” is in terms of hours, the value of
(tcloseStove − topenStove) may be equal to 1 or 2 h. Accordingly, by applying Eq. 1
the event “openStove” does not participate in the feature “stove usage” weight
calculus. Therefore, incorrect value of weight may be obtained. Accordingly, the
execution of the event “openStove” must have a high impact in the execution of
the feature. Intuitively, the stove can not be used if it is not opened. Moreover,
this technique assumes that the only factor that may have impact on the compu-
tation of the feature weight is the time distance between events. However, when

Fig. 2. The graphic of exp(−χ(ti − tj)) with χ = 0.5
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information about actions and events uncertainty values is provided, this infor-
mation should participate in the computation of the feature’s weight. Therefore
we made the following assumptions:

A1. The uncertainty values must have an impact on the calculus of the feature
weight: the higher uncertainty value of event or action is, the more the weight
of the feature increases.

A2. The uncertainty of an event or action value can be decreased, but it cannot
be increased.

To overcome the problem mentioned above, we propose a new version of Eq. 1
that meets the assumptions A1 and A2. We formally define the notion of Short
Time Feature (STF) and Long Term Feature (LTF) as follows:

Definition 1. Short Time Features (STF) is a set of features that holds
only features having duration less or equal to ten minutes. Let Dur(f) be the
duration of feature f : f ∈ STF ⇔ Dur(f) ≤ 600s.

Definition 2. Long Term Features (LTF) is a set of features that holds only
features having duration more than ten minute. Let Dur(f) be the duration of
feature f : f ∈ LTF ⇔ Dur(f) 
 600s.

Firstly, it is important to note that this value of ten minutes is chosen intuitively
and it is variable according to the experiments. Then, to compute the weight of
the feature, we propose the following Eq. 2.

Fki
(Si) =

∑

ac(aj ,tj ,cj)∈Si

cj × Factχ,δtij × fki
(ac(aj , tj , cj)) (2)

Factχ,δtij =

⎧
⎪⎪⎨

⎪⎪⎩

exp(−χ ∗ δhtij) If (ki ∈ LTF )
1

χ∗δstij
If((χ ∗ δstij 
 1) &
(ki ∈ STF ))

1 Otherwise

Foremost, it is worth mentioning that in our work the features vectors are
built from actions instead of events in contrast to [5]. We note that cj×Factχ,δtij ,
in Eq. 2, is a sort of uncertainty where cj × Factχ,δtij ≤ cj (Assumption A2).
δtij = ti − tj . δhtij means that δtij is expressed in hours and δstij means that
δtij is expressed in seconds. To fix the problem of the time delay in Eq. 1, we
distinguish three cases: (1) The feature is a LTF (ki ∈ LTF ). Then, to compute
Factχ,δtij the same function (exp(−χ ∗ δtij)) in Eq. 1 is used. However, δtij is
expressed in hours (δhtij) instead of seconds. Accordingly, δhtij will have low
values and then the curve will have less decreasing shape. Therefore, the actions
that happened earlier could participate in the weight computation in contrast
to Eq. 1; (2) The feature is a STF (ki ∈ STF ) and χ ∗ δtij ≥ 1. Then, Factχ,δtij

= 1
χ∗δstij

. The quotient function is chosen to compute Factχ,δtij since it has a
lesser decreasing shape than the exponentiation function. It is obvious as it can
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Fig. 3. The graphic of 1
χ∗δstij

with χ = 0.5

be seen in Fig. 3 which shows the shape of the curve for the function 1
χ∗δstij

with χ = 0.5 and δstij ∈ [3..10]; (3) If (χ ∗ δstij) ≺ 1, then 1
χ∗δstij


 1 and
accordingly cj × Factχ,δtij 
 ci that does not correspond to Assumption A2.
Therefore, Factχ,δstij = 1. The reason behind this is: since ti and tj are very
close, ac(aj , tj , cj) must have the highest impact on the weight computation,
i.e. the value 1 in [0..1] is chosen. The computed weights serve, subsequently, as
their uncertainty values. Afterwards, the actions and the features together with
their uncertainty values are sent to Dempster-Shafer theory for activity
classification module.

3.3 Activities Classification

In order to classify activities, we propose a new model for the application of the
Dempster Shafer theory (DS) [1] to classify actions and features into activities.
DS has proven to provide decent results in comparison to other machine learning
techniques such as J48 Decision Tree [6]. Usually the Directed Acyclic Graph
(DAG) is used to represent the named source evidences in DS, their hypothesis,
the mass functions, the activities, and to support the distribution and the fusion
of evidences. In the DAG, evidence sources represent the root nodes at the base of
the diagram. Evidence source readings are mapped to one or more hypothesis.
Each one in turn will be mapped to one or more activities. In this work, as
depicted in Fig. 4, the DAG is used where each evidence source is a sequence of
actions Si which are in the feature vector. Then the named hypothesis in DS are
the features in our work. The mass function value is computed as the number of
the feature’s occurrence while the activity execution. These mass function values
are discounted by being multiplied with the feature weight value Fki

(Eq. 2) after
normalization. This product reflects an uncertainty value about the production
of the feature (its weight value) and about the classification of the features into
activities (mass value). The final value of uncertainty is propagated to activities
thanks to the Dempster’s rule of combination. We refer to this paper [1] for
more details about this rule. This final value forms the uncertainty value of the
matching activity. Please note that Dempster Shafer could be replaced by any
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Fig. 4. DAG for activity recognition applied in our model

classification method that support uncertainty handling, such as Support Vector
Machine [9] (SVM), see Sect. 4.

4 Experimental Evaluation

For this experimentation, we evaluate the proposed system. In this section, we
first describe the dataset used for the experiments. Then, the experiments and
the achieved results are presented.

4.1 DataSet

We used real-life data collected in highly rich smart environments. The dataset1

was obtained as a part of the EU research project “Activity and Context Recog-
nition with Opportunistic Sensor Configuration”2. The dataset holds (from our
model perspective) sensors data (level 4), events (level 3), actions (level 2), and
activities (level 1) that have been done by three persons S10, S11, and S12 with
three different routines each (ADL1-3). In order to test our system, this dataset
does not contain information about sensors data uncertainty values (level 4).
Therefore, we have randomly annotated the level 4 in the dataset with high
uncertainty values in [0.8...1]. Moreover, we have injected a set erroneous sen-
sors data in the dataset annotated with low uncertainty values in [0...0.4]. In the
experimentation, we have tested the performance of the system with different
number of injected erroneous sensors data.

4.2 Implementation and Experimental Setup

We have implemented the proposed system using JAVA. Regarding data driven
layer, for this dataset, we have considered the set of features depicted in Table 1
1 The dataset can be downloaded from this link: http://webmind.dico.unimi.it/care/

annotations.zip.
2 http://www.opportunity-project.eu.

http://webmind.dico.unimi.it/care/annotations.zip
http://webmind.dico.unimi.it/care/annotations.zip
http://www.opportunity-project.eu
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to be treated in the Time & Uncertainty based features extraction module. Since
the Time & Uncertainty based features extraction module requires the prelimi-
nary step in which the value of parameter n, corresponding to the time window
duration of the temporal sequence of actions, is experimentally chosen.

Table 1. List of considered features. STF: Short Time Feature, LTF: Long Term
Feature

Feature name STF/LTF Duration (s)

PrepareCoffee STF 600

Drink STF 120

GatherCutlery STF 600

GatherFood STF 600

Eat STF 1200

PutAwayFood STF 600

PutAwayCutl STF 600

Dishwhasher STF 300

Resting STF 600

Therefore, we have tested the method with different values of n. Furthermore,
for the Activity classification module, the experimentation is not limited only to
the use of Demspter Shafer Theory – we also have the Support Vector Machine
(SVM) [9] for activity classification. The results obtained from this module are
compared with those obtained in [12].

4.3 Evaluation and Results

As described in the previous sections, the Activity classification module outputs
the predicted activity class. It is worth mentioning that the system has no False
Negative result (FN = 0): it outputs always at least one activity. Figure 5 depicts
the average precision measure over the three routines for all subjects by varying
the value of n in [60s...300s] with one erroneous sensor data for five correct ones
(e.g., 1/5 erroneous sensors data). We have chosen the interval [60s...300s] for
varying the value of n since all the features for this dataset are STF (as pre-
sented in Table 1). Therefore, the time window n must not exceed the maximum
duration of an STF (e.g., 600s see Subsect. 4.1) You can find more detailed result
online3. As it is clearly shown in the Fig. 5, the Dempster Shafer (DS) with n
= 180 s reaches 91% of precision recognition rate. For time windows shorter or
longer than 180, DS tends to become less efficient: DS is efficient where time
window is properly proportioned to the activities: when the time window is too

3 http://nara.wp.tem-tsp.eu/what-is-my-work-about/cognition-situation-reaction-
wip/agacy/.

http://nara.wp.tem-tsp.eu/what-is-my-work-about/cognition-situation-reaction-wip/agacy/
http://nara.wp.tem-tsp.eu/what-is-my-work-about/cognition-situation-reaction-wip/agacy/
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Fig. 5. Average recognition precision for all subject over the three routines with dif-
ferent values of the time window n

Fig. 6. Average recognition precision for all subject over the three routines for varying
frequency of uncertain event. The value 1/5 means there is one uncertain sensor data
for five correct ones. 1 means there is one uncertain sensor data for one correct one

big, there may be conflict between activities, while when they are too small,
DS does not have enough data to be efficient. On the other hand, SVM gives
better results for short time window (n≤ 120 s), but with the increase of n value,
the accuracy of classification gets worse. This maybe explained by the fact that
SVM is not as dependent on features weight as DS. In general, DS provides
better results than SVM.

Figure 6 shows the average precision measure over the three routines for all
subjects by varying the proportion of the introduced uncertain sensors data
compared to the correct sensors data with n = 180 s. As it is clearly shown in
the figure the DS [1] theory is more efficient than the SVM [9]: The precision
values of DS [1] are in range [0,74...0,91], however that of SVM are in range
[0,65...0,77]. Both methods have a decreasing precision values when the number
of uncertain sensors data in the dataset increases. This is an expected result since
the methods will have less certain data to make the right decision. However, the
system even with a dataset whose half contains uncertain sensors data it can
predict the activity with a good precision level (74%).
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5 Conclusion

In this paper, we proposed a new hybrid model for activity recognition and
sensors data uncertainty handling. The main novelty of our proposal is the com-
bination of knowledge based with data driven methods. Thus, several modules
contribute to compute the uncertainty value of the expected output. Unlike the
related work, the proposed system supports the inherent uncertain nature of sen-
sors data and exploits it to compute the uncertainty value of each module’s out-
put. Furthermore, our experiments show the proposed system to be efficient and
precise even with uncertain sensor data. Comparing the model results with other
previous hybrid model, proposing algorithm for inferring activities instances, and
proposing an ontological model for uncertainty integrating are the extensions of
the proposed method [16].
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Abstract. Document vector embeddings are numeric fixed length rep-
resentations of text documents that can be used for machine learning
and text mining purposes. We describe in this paper a new technique for
generating document vectors. Our novel idea builds on the recently pop-
ular notion of neural word vector embeddings and combines this concept
with the statistics of kernel density estimation. We show that robust doc-
ument vectors can be produced using our new algorithm, and perform
an experiment involving several challenging text classification datasets
to demonstrate its effectiveness.

1 Introduction

Machine learning approaches to text-based classification problems usually rely on
suitable preprocessing methods to convert the text of a document into a numeric
representation suitable for further processing. Typically document lengths vary,
and preprocessing methods often account for this by producing fixed-length rep-
resentations.

A classic approach taken for document preprocessing is the Bag-of-Words
(BOW) method [20]. Essentially, this approach considers all possible words in
the corpus and represents a document as a binary vector where each 1 denotes
the presence of a particular word, and each 0 denotes its absence. Commonly
occurring words that may lack informative value such as “is” and “a” (stop
words) may be removed, thus reducing the dimensionality of the vectors. The
method can be extended by replacing the binary values with frequencies instead,
or some metric computed from the frequencies such as the term frequency–
inverse document frequency, which may increase overall performance (according
to machine learning metrics such as accuracy).

Clear disadvantages of this approach, however, are threefold. Firstly, the
order of the words is ignored, which may result in loss of the information con-
tained in word orderings (e.g. consider the difference in meaning of “house boat”
vs. “boat house”). Secondly, the dimensionality of the document vectors depends
on the size of the corpus – the greater the number of documents in the corpus,
the larger the quantity of words, in general. And thirdly, no prior information
about the words are assumed beyond their occurrence statistics in the corpus
being used for training.

c© Springer International Publishing AG 2017
V. Torra et al. (Eds.): MDAI 2017, LNAI 10571, pp. 183–194, 2017.
DOI: 10.1007/978-3-319-67422-3 16
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More recently, neural word embeddings [1,10,13,14] have been proposed as
a means of overcoming primarily the third (but also the second) of these disad-
vantages. The basis for neural word embeddings is the so-called distributional
hypothesis [7] stating that words with similar meanings frequently occur in sim-
ilar contexts. Thus, unsupervised learning can be performed using unlabelled
text (e.g. news articles or Wikipedia text) prior to supervised learning in order
to determine clues about word semantics based on context. Traditional BOW
approaches typically ignore this information.

The basic idea behind neural word embeddings is as follows: if a neural
network with a single hidden layer can be used to either predict the context of a
word w1, . . . wi−1, wi+1, . . . wn given the word wi (the Skip-Gram model [13,14])
or alternatively predict a word wi given its context w1, . . . wi−1, wi+1, . . . wn

(the Continuous Bag-of-Words approach [13]), then the activation values of the
hidden layer of the network can serve as a representation of the current word.
This is a word vector.

Producing document vectors can be straightforward when neural word
embeddings are available. The simplest approach is averaging the word vec-
tors in the document. Since the size of the hidden layer is fixed prior to training,
then the size of the corresponding word vectors is also fixed. Averaging of word
vectors in a document is a powerful, simple and practical method for comput-
ing document vectors. To illustrate, [9] performed one comparison between word
vector averaging and a much more complex recursive neural network approach
for the purposes of text classification. It was shown that the averaging approach
is competitive with the significantly neural network approach, and therefore we
employ word vector averaging as the baseline algorithm in this research.

The main focus of this paper is a new method for constructing document
vectors. Our idea is based on the entirely novel notion of modelling a document’s
words using Kernel Density Estimation (KDE, [19]). Essentially, the word vectors
of a document can be modelled using a KDE, and then the KDE can be sampled
at regular intervals throughout the word embedding space to produce a fixed-
length representation of a document. This is an alternative and computationally
simpler approach than some of the other ideas in the literature.

We show in a comprehensive set of text classification experiments that this
approach leads to statistically significant improvements in performance com-
pared to a baseline method that produces document vectors via simple word
vector averaging.

2 Background

In this section, the notion of word and document vectors are reviewed in more
detail and then the basis of KDE is outlined.

2.1 Word and Document Vectors

Devising algorithms for constructing useful new word embeddings is an ongo-
ing research area. It is currently an open question as to which methods result
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in the most effective word embeddings. [12] performed a rigorous comparison
between several competing modern approaches and concluded that parameter
tuning contributes significantly to the differences in performances, and this may
have significant impact on experimental results: therefore there is currently no
clear single “best” approach.

An early neural word embedding approach is [13] who proposed both the
CBOW and the skip-gram models for learning word vectors. The skip-gram
model was shown to be the most effective of the two and is frequently the focus
of later studies such as those reported in [14].

Since then, several refinements to word vector learning algorithms have been
proposed. Amongst them, the fastText algorithm and its corresponding open
source implementation [1,10] significantly reduces the training time of the neural
embedding model by several orders of magnitude. The system achieves this by
learning character n-gram vectors instead of word vectors. Word vectors are then
constructed indirectly by summing the n-gram vectors that form a word [1].

The fastText approach has been shown empirically to outperform most
existing approaches to text classification on most problems while at the same
time significantly speeding up both training time by an order of magnitude [10].

2.2 Kernel Density Estimation

KDE is an approach from statistics for estimating the underlying (hidden) proba-
bility distribution that a set of data samples are drawn from [3,19]. In statistics,
low-dimensional KDEs are useful for visualisation purposes, while in machine
learning, KDEs find useful application in clustering (e.g. the DENCLUE algo-
rithms [8]).

In essence, KDE starts with the choice of a kernel function K. There are
many possible choices for K, and in this paper we set K to the oft-used Gaussian
distribution with zero mean and unit variance, i.e.

K(y) =
1√
2π

e− y2

2 (1)

Given K and a set of data samples x1, x2,. . .xn, a one-dimensional KDE is
defined as

f(x|h) =
1

nh

n∑

i=1

K(
x − xi

h
) (2)

where h is the bandwidth parameter governing the smoothness of the KDE. This
parameter is chosen to ensure that the f is neither too smooth nor that it overfits
the samples [3].
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Fig. 1. Construction of a frequency histogram (a) and its corresponding KDE (b) from
252 data points. Vertical lines in b indicate a fixed number of uniformly-spaced samples
of the KDE as discussed in Sect. 3.

Figure 1a shows a frequency histogram for a set of 252 samples drawn from an
unknown underlying probability distribution. The reconstruction of the under-
lying distribution using KDE is shown in Fig. 1b.

3 Kernel Density Estimation for Defining Document
Vectors

In this section, we outline a novel approach to generating document vectors based
on KDE, which is the main contribution of this paper. Figure 2 summarises the
approach graphically.

We first of all assume that each document d in our corpus can be represented
by a bag of words, {w1, w2, . . . w|d|}. In turn, a function f(w) → v which converts
words into vectors of fixed constant dimensionality n is also assumed. The func-
tion f can be thought of as encapsulating a neural embedding method such as
a skip gram model trained using fastText. The dimensionality will typically be
quite high for these vectors, e.g. n = 100 is a reasonable value. The bag of words
for d can then be converted into a corresponding bag of vectors {v1, v2, . . . v|d|}.

A document can therefore be represented as a matrix with |d| rows, one
per word, and n columns. Now consider a single column from this matrix. This
column, with |d| values, can be thought of as a random sample of values drawn
from some underlying probability distribution. Figure 1 illustrates this process
with the variable x corresponding to the first column of a matrix constructed
from a document with 252 words.

Given that there are n columns in this matrix and since neural word embed-
dings typically set n to be quite large in order for them to be effective, this will
result in a large number of one-dimensional KDEs being constructed.

Once the n KDEs are constructed, the next step of our approach is to sample
at fixed and regular intervals the KDEs in order to produce a “resampled” set of
data. Let us assume that there are e such resamples (or estimates) per dimension,
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with e � |d|. Two significant outcomes of this step are: (i) data reduction, i.e.
we are converting the |d|×n matrix representation of the document into a e×n
matrix, and (ii) length equalisation, i.e. if e is a constant across all documents
then the resulting matrix will be the same size for all documents regardless of
the varying number of words between documents.

document words
w1 . . . w|d|

word vectors
v1 . . . v|d|, vi ∈ IRn

KDE1 . . .KDEn

estimates
s1 . . . sn, si ∈ IRe

document vec-
tor x ∈ IRen

word vector
lookups

compute n KDEs,
one for each vector
dimension

sample each KDE
at e uniformly-
spaced intervals

concatenate the
samples

Fig. 2. The KDE-based approach to a
computing a vector for a single docu-
ment.

This estimation process is illustrated
by Fig. 1b. In the figure, a KDE con-
structed from 252 samples is estimated at
21 equally-spaced points between -1 and
1, as indicated by the vertical dotted lines.
Thus the number of data points required
to model the document along one dimen-
sion has been reduced from 252 to 21. If
this same process is repeated for each of
the n dimensions of the word vectors, then
if n = 100, the document representation is
reduced from 252×100 = 252, 000 original
data points (which may not be uniformly
spaced in embedding space) to 2,100 esti-
mates that are uniformly spaced. We hope
that this uniform resampling process will
produce a more concise and accurate “pic-
ture” of the document’s contents than the
original word vectors do.

Once the reduced matrix has been com-
puted, it is possible to visualise it in order
to obtain some insight into the distribution
of its elements. Figure 3 illustrates this for
the same document that was used to gener-
ate the example in Fig. 1b. The same num-
ber of estimates (e = 21) per dimension is
used as before. As can be observed, the
distributions across each of the n = 100
dimensions varies quite a bit, with values ranging from 0 to a maximum of
nearly 3.5. The matrix appears to be semi-sparse, with values near the edges
of each sequence (i.e. close to -1 or 1) frequently zero or very close to zero.
Furthermore, each dimension clearly has a differently-shaped KDE.

The primary advantage of the reduced matrix is that it is a compressed, fixed-
size representation of the document that ideally captures all essential features of
the document. The next step therefore is to flatten the matrix into a 1D vector of
length e × n, which can then be input to standard machine learning algorithms.



188 M. Mayo and S. Goltz

n

sa
m

pl
e

5

10

15

20

20 40 60 80

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fig. 3. Visualisation of a document vector representation of a 252-word article from
the BBC Sports dataset. The n axis indicates the dimension of the word vector and
the sample axis indicates the sample number (along that axis, sample 0 corresponds
to position -1 and sample 21 corresponds position 1; the step size is 0.1). The intensity
indicates the sample value.

4 Evaluation

In this section, we describe an extensive evaluation of the document vector rep-
resentation method outlined in the previous section. We use word vector aver-
aging as a baseline document vector representation and consider six challeng-
ing document classification datasets along with three different machine learning
algorithms.

4.1 Datasets

Six text classification datasets were selected for our evaluation in this paper.
Table 1 gives some basic statistics about each of the datasets, in particular the
number of classes, number of documents, and the average document length in
words. Some comments on each of the datasets are also briefly given.

BBC News. The first dataset listed in Table 1 is the BBC News dataset, first
contributed to the research community by [6]. The dataset consists of over two
thousand news articles from the BBC and is divided into five classes: business,
entertainment, politics, sport and technology. The problem to solve is news topic
identification.
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Table 1. Description of the text datasets used for evaluations.

Dataset Num. documents Num. classes Average words/Doc

BBC news 2225 5 384

BBC sports 737 5 341

Compliance 80 2 110

Political ideology 4335 3 42

Movie reviews 2000 2 746

Deceptive reviews 800 2 119

BBC Sports. The BBC Sports dataset (also courtesy of [6]) is similar to the
news dataset just mentioned in that it involves news topic identification, but
the number of examples is smaller. Furthermore, this dataset focusses on sports
news articles only, dividing articles into five classes namely athletics, cricket,
football, rugby and tennis. Both the news and sports datasets from the BBC are
approximately evenly balanced in terms of numbers of examples per class.

Canadian Compliance Law. The Canadian Compliance Laws dataset is a
small dataset created by the authors for a previous study [5]. The documents
in this dataset are fragments or clauses of Canadian federal and provincial leg-
islation. The negative examples are clauses from laws and regulations that do
not contain penalties. The positive examples are clauses taken from regulations
that do contain penalties. Both clause types contain dollar amounts, and the
examples in this dataset are evenly balanced between the classes. Due to the
infrequency of positive examples in this domain, this dataset is relatively small
compared to the other datasets.

Political Ideology. The political ideology dataset is a challenging dataset [9]
consisting of a large number of very small fragments of text, with the task being
to label each fragment as either conservative, liberal or neutral. The dataset is
severely imbalanced with 1701 fragments labelled conservative, 2025 fragments
labelled liberal, but only 600 neutral fragments. In original paper in which this
dataset was introduced [9], significant preprocessing steps were taken improve
the accuracy prior to experiments being performed. Specifically, these were: (i)
the dataset was subsampled to make the classes more evenly balanced, and (ii)
phrase level annotations were added to the examples to increase the amount of
explicit information used for training. In order to keep our experiment simple
and reproducible, we do not perform the same preprocessing steps, but instead
run our experiment on the entire unaltered dataset.

Movie Reviews. The movie reviews dataset version 2.0 [17] consists of 2,000
reviews of movies taken from popular online blogs and magazines. The reviews
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are evenly divided between positive reviews (i.e. the reviewer liked the movies)
and negative reviews, so this is a sentiment classification task. The document
length is much longer on average than the other datasets.

Deceptive Hotel Reviews. The opinion spam dataset version 1.4 [15,16]
poses a similarly challenging problem to the movie review dataset. The problem
that the dataset encapsulates is to detect untruthful reviews of hotels, otherwise
known as “opinion spam”. The dataset itself is divided into four categories, each
consisting of 400 reviews. The categories are: positive truthful reviews of a hotel,
positive deceptive reviews, negative truthful reviews, and finally negative decep-
tive reviews. A hierarchical approach to classification could be taken for this
problem, in that one could build multiple classifiers (e.g. a top level classifier for
positive vs. negative sentiment followed by two lower level classifiers for distin-
guishing truthful vs. deceptive reviews). However, as with the political ideology
dataset, we kept our approach here simple since these are initial experiments
and instead divide the examples into two evenly balanced classes: truthful and
deceptive.

4.2 Statistical and Machine Learning Algorithm Implementations
and Parameter Settings

We use several publicly available open source software implementations to per-
form our experiments. For learning the word vectors, we make use of the
fastText system [1,10]1 trained on a dump of the English-language version
of Wikipedia2. The following text preprocessing steps were taken to prepare the
text: firstly, only the visible portions of the Wikipedia dump were preserved (i.e.
XML tags were removed); and secondly, numbers were converted into their word
equivalents (i.e. “200” was converted to “two zero zero”).

The settings used for our fastText experiments are all standard defaults
(i.e. skipgram model, word vector dimensionality n = 100, learning rate of 0.025
etc.) except for the number of epochs which is set to four to improve the quality
of the word vectors.

For computing the one-dimensional KDEs, we use the R package ks [3],
version 2.23, again with all default settings. The range and intervals for taking
estimates from each KDE are the same as shown in Fig. 1b, i.e. 21 estimates per
dimension are taken between -1 and 1 inclusive in steps of 0.1.

Finally, the machine learning algorithms we utilise are implemented in
WEKA 3.8.0 [4]. Particularly, we use an implementation of Support Vector
Machines (SVMs) [11] in conjunction with two different kernels: a simple lin-
ear kernel and a radial basis function kernel for producing a non-linear classifier.
All settings for the SVM and the kernels are defaults. Besides SVMs, we also
tested the well known Random Forests [2] ensemble classifier, but increased the

1 Version from December 2016.
2 http://mattmahoney.net/dc/textdata.html as at December 2016.

http://mattmahoney.net/dc/textdata.html
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Table 2. Experiment results (mean testing accuracy and standard deviation)for the
topic modelling datasets.Symbols ◦, • indicate statistically significant improvement or
degradation with 95% certainty.

Classifier BBC news BBC sports

WV averaging KDE approach WV averaging KDE approach

SVM (linear) 97.01(1.03) 97.48(0.96) 93.46(2.72) 97.61(1.58) ◦
SVM (radial basis) 95.16(1.38) 97.09(1.14) ◦ 49.83(3.58) 94.47(2.37) ◦
Random forest 95.92(1.27) 95.23(1.36) 84.76(3.71) 80.66(3.71) •

Table 3. Experiment results (mean testing accuracy and standard deviation) for the
compliance and political ideology datasets. Symbols ◦, • indicate statistically significant
improvement or degradation with 95% certainty.

Classifier Compliance Political ideology

WV averaging KDE approach WV averaging KDE approach

SVM (linear) 96.50(5.91) 90.50(10.07) 54.42(2.11) 50.26(2.09) •
SVM (radial basis) 90.75(10.60) 76.75(12.05) • 48.29(0.81) 54.81(1.96) ◦
Random forest 90.25(10.89) 93.50(8.04) 52.57(1.73) 50.93(1.50) •

Table 4. Experiment results (mean testing accuracy and standard deviation) for the
opinion-based datasets. Symbols ◦, • indicate statistically significant improvement or
degradation with 95% certainty.

Classifier Movie reviews Deceptive reviews

WV averaging KDE approach WV averaging KDE approach

SVM (linear) 74.14(3.23) 77.91(2.70) ◦ 81.03(2.90) 84.87(2.32) ◦
SVM (radial basis) 69.23(3.10) 79.93(2.70) ◦ 76.59(3.08) 85.26(2.48) ◦
Random forest 70.39(3.04) 72.58(3.23) 77.94(3.03) 79.84(3.05)

ensemble size from its WEKA default value to 10,000. At the same time we fixed
the number of randomly-selected attributes per tree to five.

4.3 Results

The experiments we conducted were stratified ten-fold cross validation experi-
ments repeated ten times. Exactly 100 train/test runs were therefore performed
for each algorithm/dataset/document vector type combination. For each dataset
and algorithm, the resulting accuracies were averaged and the standard devia-
tions computed.

The results are given in Tables 2, 3 and 4 (we have split the results into multiple
tables to enhance the readability) and are laid out so that the accuracies using the



192 M. Mayo and S. Goltz

word vector averaging approach (the baseline) can be compared directly to our
new KDE-based approach.

We also performed standard statistical t-tests at 95% confidence to deter-
mine if the document vector type makes any significant difference to the average
classification accuracy. The results of this test are noted in the tables.

Examining the results, we can observe first of all that the KDE-based app-
roach to defining document vectors improves the accuracy of the classification
algorithm compared to the using the baseline document vectors in each case
except for the Compliance dataset.

On the BBC News and Political Ideology datasets, the improvement is small.
In the case of the news dataset, this appears to be because word vector averaging
already achieves a high accuracy; in the case of the ideology dataset, the prob-
lem appears to be simply extremely challenging. For that particular dataset, all
methods achieved a performance not much greater than would be expected by
a simple method that simply classifies all fragments as “conservative” (which
would yield approximately 46% accuracy). The difficulty of classification using
this dataset is most likely a result of the extremely short average document
length (42 words per example compared to 384 words for the news dataset) and
the typical nature of political language, which may be more subtle or ambiguous
then other language.

However, performance on the BBC Sports dataset as a consequence of apply-
ing our new document vector algorithm results in a much more drastic improve-
ment, going from a best result of approximately 93% accuracy to a new best
result of approximately 97% – quite a significant performance gain.

Similar improvements are observed with the Movie Reviews and the Decep-
tive Hotel Reviews datasets. The best performing movie review sentiment detec-
tor using a KDE-based document vector representation has nearly 80% accuracy
compared to word vector averaging which achieves at most approximately 74%
accuracy. Similarly, the gain in performance accuracy for the problem of detect-
ing fraudulent hotel reviews is in the order of 3% as a direct consequence of our
new approach.

After considering these results, we revisited the compliance dataset. The
best performing classifier was a linear SVM in conjunction with word vector
averaging, which achieved a mean best accuracy of 96.5%. We hypothesise that
our KDE-based approach did not improved performance in this one case because
of overfitting: the dimensionality of the KDE-based word vectors is 2,100 but the
number of examples in the dataset is 80, significantly less than the other datasets.
Machine learning algorithms typically find such “wide” datasets challenging.

We therefore re-ran our experiments on this dataset only, but modified the
algorithms so that prior to the classifier being constructed, we first of all selected
the best 100 feature values according to the information gain of each feature with
respect to the class. This was performed using the training data only for each run.
This selection process resulted in 2,000 feature values from the document vectors
being discarded, and significantly reduced the dimensionality of the KDE-based
document vectors for the compliance dataset. As a consequence, the KDE-based
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approach in conjunctionwith a linear SVMimproved its accuracy to 98.00 ± 4.61%,
a reasonable (although not statistically significant) improvement.

5 Conclusion

To conclude, we have provided in this paper a new technique for document
vector construction based on modelling a document’s “bag of word vectors”
using KDEs, and evaluated it in the context of document classification using
machine learning.

The results show that the in most cases the degree of improvement is positive,
but this depends significantly on the problem domain and the machine learning
classifier used. For some domains (e.g. BBC News) the improvement is small; for
others (e.g. the sentiment domains) the improvement is quite significant. Future
work in this area could focus on an analysis of which domain and classifier
characteristics lead to improved performance, and why. Future work could also
explore in more detail one of the domains, either a domain where the algorithm
works well compared to the baseline (e.g. Movie Reviews) to further improve
and understand performance, or one where performance is poor (i.e. Political
Ideology) in order to better ascertain why.

Another issue is the complexity of this algorithm compared to the baseline.
For the datasets used in our experiments, the time complexity of computing the
KDEs was minimal because the datasets were small to medium sized. However, it
is an open question as to how the complexity would scale to very large problems
with millions of documents as our method requires multiple KDEs to be com-
puted for each document. A critical issue here is how the bandwidth parameter
h (in Eq. 2) is chosen. In our current implementation, h is determined using a
combination of optimisation and cross validation which is an effective method
but may not scale well. A more efficient alternative would be to use Silverman’s
rule of thumb [18] and see how much this impacts performance. Using kernels
other than Gaussian may also improve the KDE computation complexity.

Finally, future refinements to the algorithm itself are also possible. For exam-
ple, we could address the selection of parameters used to construct both the
KDEs and the number and location of the estimates along the KDE used as fea-
ture values. In the case of the former, we have used default parameter settings
in the ks package, and in the case of the latter we have used a fixed range of
[−1, 1] in steps of 0.1 for all datasets. Optimising these values for specific prob-
lems may be helpful, and also allow us to address the issue of document vector
size, which is 2,100 for our KDE-based approach compared to 100 for the word
vector averaging approach.
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Abstract. Cell detection is the essential step for various analyses in
biological fields. One of the conventional approach is to construct a spe-
cialized method for every specified task, but it is not efficient in the
meaning of the coding workload. Another approach is based on some
machine learning technique, but it is difficult to prepare many training
data. To solve these problems, we propose a balanced system by com-
bining image processing and machine learning. The system is universally
applicable to any image, because it only consists of basic methods of
image processing. The code of the system does not need to be modified,
because its behavior is adaptively tuned by machine learning. Users are
free from excessive request of training data, because only a few desir-
able data is specifically requested by the system. The system consists
of three units to achieve functionalities for avoiding parameter collision,
compensating lack of training data, and reducing complexity of feature
space. The effectiveness of the system is evaluated with a typical set of
cell images, and the result is sufficient. The proposed system provides a
reasonable way of preparing a tuned cell detection method for arbitrary
sets of images in this field.

1 Introduction

Analysis of shape or movements of cells is useful for a wide range of fields such
as biology and pathology. In many cases, the cell regions are detected by image
processing at the beginning of the analysis task. A large amount of image process-
ing techniques have been developed in various fields, e.g. post-processing on
photograph and robot vision. Each technique such as filter operations, image
normalization, edge extraction is applicable to the cell detection [9,10], if their
translucency is carefully considered. However, it is necessary to prepare a differ-
ent algorithm for each task, because the appearance of the cells varies according
to the type of cell, magnification of microscope, state of illumination, and so on.
It is inefficient to write algorithms for every task in the fields.

Hence many researches have been done aiming to provide universal or flexible
methods for cell detection. For example, the cell region can be obtained by solv-
ing some optimization problem based on the mechanism of microscopic imaging
[1]. Although this approach is very effective for some types of microscope, the
same idea cannot be applied to the most common bright field microscope.
c© Springer International Publishing AG 2017
V. Torra et al. (Eds.): MDAI 2017, LNAI 10571, pp. 195–206, 2017.
DOI: 10.1007/978-3-319-67422-3 17
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There are also researches to apply deep neural networks (DNN) to detect cell
regions [3,4]. DNN-related technologies have been improved their performance
remarkably today, but sometimes they require too much on training data to get
satisfying results. It is difficult to apply DNN to cell detection except in special
situations where large amounts of data can be prepared.

The goal of this paper is to propose a cell detection system which can handle
many types of images with reasonable amount of user workload. The desired
characteristics of the system are as follows:

– It can be applied to different tasks without any modification on code.
– It does not rely on characteristics which are specific to a certain type of cell.
– It does not require heavy user workload, in terms of quality and quantity.

2 Proposed System

2.1 Overview of the System

We propose a practical system for cell detection based on conventional image
processing and machine learning. The overview of the system is shown as Fig. 1.
The system consists of three processing units as follows:

Assortment Unit: Input images are classified.
Drafting Unit: Rough cell regions are detected.
Reformation Unit: The detected rough cell regions are improved.

The first unit acts like an algorithm switcher for stability and efficiency of
the system. The characteristics of the cell images may change unexpectedly
even within a single biological experiment. In addition, the images may contain
abnormal images due to device errors. If these images are processed without
discrimination, the result of the analysis will be undesirable. In the proposed
system, each input image is classified into an appropriate image-class or excluded
as an error. Each image-class assigns its own cell detection process. Thus the
system can operate stably and efficiently for usual image-sets of cells.

The latter two units perform as a specialized cell-detector for each image
class. Machine learning techniques can be useful for this specialization. However,
it is difficult to acquire a good criterion with small amount of training data
because the feature space of the image is too complicated. Worse, it is difficult to
identify the datum which improves the criterion even if the user is positive to add
training data. In order to solve these problems, the detection process of proposed
system consists of two units; drafting unit and reformation unit. In the drafting
unit, rough cell regions are detected. The rough detection is performed based
on some classwise associations defined by user inputs. When the association
is ambiguous, adequate questions are generated to resolve the ambiguity. This
behavior compensates for lack of training data efficiently. In the reformation
unit, rough cell regions are improved by supervised learning. The improvements
are performed restrictively along the boundary of the regions. This restriction
reduces the complexity of the feature space. Therefore, detection processes are
specialized efficiently even with minimal user inputs and simple classifiers.
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Fig. 1. Overview of the system

2.2 Usage of the System

Before explaining the details of the units, we will describe about the usage of
the system. The main usage is to recognize the cells in an image, considering
the type of the image. Therefore the system has to be trained about the type
before the recognition performed. The overview of the training process and the
recognition process are shown as Fig. 2. Each unit has two functions; for training
and for recognition.

In the training process (Fig. 2a), multiple images are processed at once with
some user interactions. The training process is constructed as follows:

1. In the first unit, the recognition function is trained by all input images.
2. The input images are classified into subsets by the recognition function. The

subsequent learning process is repeated for each of them.
3. In the second unit, the recognition function is trained with the each subset.

The function is improved with some user interactions as necessary.
4. The rough cell regions are detected in each image by the recognition function.

The image and its rough cell regions are coupled as an output.
5. In the third unit, the recognition function is trained with the outputs. The

recognition function is updated with some user interactions.

In the recognition process (Fig. 2b), each image is processed one-by-one with-
out any user interaction. The recognition process is just a sequence of the recog-
nition function of each unit.

2.3 Assortment Unit

In this unit, the system classifies the input images into a small number of groups
for efficient training and stable operation.

The training process consists of image-normalization, calculation of the
image-feature, and formulation of image-classification criterion, as shown in
Algorithm 1. The image-feature Fimg is a vector which is calculated for every nor-
malized image Inrm. Hierarchical clustering is performed on all image-features,
and some clusters are extracted by a given threshold. An image-class is defined
for each cluster by a center vector and a radius, i.e. the centroid and the stan-
dard deviation of the image-features in the cluster. The criterion Limage consists
of these image-class definitions.
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Fig. 2. Usage of the proposed system

In the recognition process, the input images are discriminated into the appro-
priate image-class or error, using the criterion Limage as shown in Algorithm 2.
A candidate class cin is identified so that the distance between the image-feature
Fimg and the center vector Center[i] is minimized. If the minimum distance is less
than the reference radius of the criterion, the candidate class cmin is accepted.
Otherwise, the image is regarded as an error and excluded from subsequent
processes.

About Pseudo-Codes in This Paper. The outline of the algorithm is shown using
MATLAB-like and Python-like notation. In particular, the binary operator such
as .* or ./ denotes the component-wise operations. Variables decorated with
@ denotes that they are given parameters. Any variable in script capitals like
L or FG denotes that the variable’s scope is global. Since the name of func-
tion itself shows the main concept of operation, the details of trivial function is
not provided. However, the implementation for our experiment would be briefly
described in Sect. 3.2. The same rules apply to other algorithms shown in this
paper.

2.4 Drafting Unit

In this unit, the system extracts rough cell regions by a detection criterion. The
criterion is based on a pixel-wise classification using a pixel-feature. The pixel-
feature is a vector which can be calculated from the small area around the pixel.
The training process of the drafting unit consists of two phases, as shown in
Algorithm 3.

The first phase is to create multiple criteria for pixel-classification. A set
of pixel-features are collected so that they approximately cover the entire pixel
variations of all input images. Next, k-means clustering is applied to the set using
various k as cluster number. A pixel-class is defined from each cluster by using
some measure, such as centroid and standard deviation of the pixel-features in
the cluster. Each pixel-classification criterion Mk is composed of these definitions
of pixel-classes.
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Algorithm 1. Training Process in Assortment Unit

void Learn_Assortment( List of Image images )
features = List of ImageFeature
foreach Image Iorg ∈ images

Inrm = Normalize( Iorg )
Fimg = CalculateImageFeature ( Inrm )
features.Add( Fimg )

Limage = ImageClassifier
clusters = HierarchicalClustering ( features ). ExtractClusters (@threshold)
foreach Index i of clusters

Limage.Center[i] = Mean( v ∈ clusters[i] )
Limage.Radius[i] = Std( v ∈ clusters[i] ) * @scale

end

Algorithm 2. Recognition Process in Assortment Unit

ImageClassIndex Recognition_Assortment ( Image Iorg )
Inrm = Normalize( Iorg )
Fimg = CalculateImageFeature ( Inrm )
cmin = arg min

i
‖Limage.Center[i] − Fimg‖

if ‖Limage.Center[cmin] − Fimg‖ < Limage.Radius[cmin]
then return cmin

else return ERROR_CODE
end

The second phase is to select the best criterion among them and to refine it
as a pixel-classifier. A few regions are provided by the user with labels of cells
and background; FG and BG respectively. The best criterion is selected among
all criteria Mk concerning the provided information. The selected criterion is
associated with the provided information to define a pixel classifier Lpixel. If the
classifier Lpixel is ambiguous, the user is requested to input more regions to refine
the classifier. The details of the selection and the refinement are described later
in this section. The system repeats the second phase until the pixel-classifier
Lpixel is sufficient.

The recognition process simply consists of pixel-classification, value assign-
ment, and binarization. The pixel-classes are determined for every pixels by the
pixel-classifier Lpixel. Values are assigned to every pixels according to their pixel-
classes, and the cell-likeliness map is generated by smoothing operation. Finally,
the rough regions of cells are extracted for each input image, by binarization on
the map using a given threshold.

Selecting the Optimum Criterion. The selection of the optimum criterion is
processed as Algorithm 4. Four k-dimensional vectors are determined for each cri-
terion Mk, based on cumulative count of pixels with some conditions. Each condi-
tion and component-wise definition is shown in Algorithm 4; certainty, foreground-
likelihood, background-likelihood, and cell-likelihood. The optimum criterion is
selected so that it maximizes the difference between foreground-likelihood and the
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Algorithm 3. Training Process in Drafting Unit

void Drafting_Learn( List of Image images )
features = List of Vector
foreach Image Iorg ∈ images

Inrm = Normalize( Iorg )
samples = CalculatePixelFeatures ( Inrm ). Sampling(@samplesPerImage)
features.Add( samples )

criteria = List of PixelClassCriterion
foreach Integer kin @CandidatesOfK

Mk = KMeans( features, k ). ToPixelClassCriterion ()
criteria.Add( Mk )

Lpixel = PixelClassifier
( FG,BG ) = Region : Empty
while( not enough )

RequestUserInput( Rquery : if exists )
Lpixel = SelectOptimumCriterion ( criteria )
Rquery = FindAmbiguousAreas ( images )

end

background-likelihood. The difference can be computed by Jensen-Shannon diver-
gence, for example.

Refining the Pixel-Classifier. The pixel-classifier Lpixel consists of class-
wise associations for certainty, foreground-likelihood, background-likelihood, and
cell-likelihood. The certainty value is low when there are few labeled pixels of
the class. The system detects ambiguous pixel-classes by checking whether it is
associated with low certainty value. If any pixel-class is ambiguous, the system
requests more regions to the user. The request involves a specified area Rquery

where the desirable information would be obtained. The area Rquery is specified
from among all the images so that it contains more unlabeled pixels of the desired
class.

2.5 Reformation Unit

In this unit, the system improves the rough cell regions which are detected in
the drafting unit. The region shape is iteratively improved by a modifier which is
acquired by supervised learning. Since the modifier itself is also updated multiple
times, it should support stream-learning, e.g., Refs. [7,8]. The training process
consists of two phases as shown in Algorithm 5.

The first phase is to update the modifier using all available data, and to obtain
the results of modification. The training data for the modifier Lmodify is prepared
using pixels which are labeled by the user. To reduce complexity of the feature
space, these pixels are restricted onto the boundaries of the rough regions. The
input part of each training datum is a boundary-feature which is computed from
the area around each pixel of the boundary. The output part is a binary value
for the label. The boundary-feature should be defined to discriminate efficiently
whether the target pixel is inside or outside of the cell. After the modifier Lmodify
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Algorithm 4. Selecting Optimum Criterion in Drafting Unit

PixelClassifier SelectOptimumCriterion (List of PixelCriterion criteria)
classifiers = List of PixelClassifier
foreach PixelCriterion Mk ∈ criteria

Ck = PixelClassifier : ( Criterion = Mk )
( Nfg, Nbg, Nknown, Nall ) = Vector : ( Size = Mk.ClusterCount )
foreach Image Iorg tied to ( FGor BG )

Iclass = PixelClassMap ( Iorg, Mk )
foreach Index cin Mk.ClusterCount

Nfg[c] += CountOf( Iclass[p] = c, p ∈ FG )
Nbg[c] += CountOf( Iclass[p] = c, p ∈ BG )
Nans[c] += CountOf( Iclass[p] = c, p ∈ (BG ∪ FG) )
Nall[c] += CountOf( Iclass[p] = c, p ∈ (Positions of Iorg) )

Ck.Certainty = Nans ./ Nall

Ck.ForegroundLikelihood = Ck.Certainty .* ( Nfg ./ Nans )
Ck.BackgroundLikelihood = Ck.Certainty .* ( Nbg ./ Nans )
Ck.CellLikelihood = Ck.ForegroundLikelihood - Ck.BackgroundLikelihood
Ck.Score = JS_Divergence (Ck.ForegroundLikelihood, Ck.BackgroundLikelihood)
classifiers.Add( Ck )

return arg max
Ct

Ct.Score, Ct ∈ classifiers

end

is trained, the region is updated by the modifier. Since the boundary of the region
changes accordingly, new training data can be created in the same way reflecting
the new states of regions. The additional training is performed on the modifier
Lmodify, and the region is modified again by that. By repeating these procedures
for appropriate times, the modifier Lmodify can be trained with effective use of
all available data.

The second phase is to check whether the modifier is working correctly, and
to add some user inputs on the area where the error is noticeable. The final
regions of the first phase are displayed to the user for his/her check. If there are
any area where the modifier does not work correctly, the user corrects that by
giving some regions labeled for cells and background. The system repeats the
process from the first phase again with the enriched informations.

The recognition process repeats the modification until some termination con-
dition is satisfied. The termination condition can be set based on the number of
repetition or the occurrence rate of region change.

3 An Experiment of Rabbit Chondrocytes

3.1 Dataset and the Typical Difficulties

We applied the proposed system to an image-set of rabbit chondrocytes. The
set consists of 16 images by a phase contrast microscope, and each image is
512 × 512 gray-scaled pixels. Two kinds of cell states are artificially created in
order to reproduce the typical difficulties in cell detection. The appearance of
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Algorithm 5. Training Process in Reformation Unit

EdgeModifier Reformation_Learn ( List of Region regions )
Lmodify = BoundaryModifier
while( user not satisfied )

repeat @learnCountmodifiy times
trainingData = List of Vector
foreach Region Ri ∈ regions

Ei = BoundaryOf( Ri )
foreach Position p ∈ Ei

BoundaryFeature Fp = CalculateBoundaryFeature ( p, Ri )
if FGcontains p

then trainingData.Add( Fp, true )
if BGcontains p

then trainingData.Add( Fp, false )
Lmodify.Learn( trainingdata )
regions = Reformation_Recognition ( regions )

if( User_CheckAndCorrect () )
regions.Clear ()
foreach Image Ij tied to FGor BG

regions.Add( Drafting_Recognition( Ij ) )
end

the cell is compact in one state, and spreading in the other. Both types are found
in Fig. 3. The typical difficulties can be found there as follows:

– The image has uneven brightness over the image.
– The background area does not appear flat.
– The cell area is a mixture of parts with various brightnesses.
– There are several types of appearance of cells.

Most difficulties are due to unavoidable factors, such as out-of-focus dusts, dis-
tortion of the petri dish, internal cell structure, cell state and halo effect of phase
contrast microscope. They cause the large variation of appearance of cells and
background. It prevents both approaches of the manual coding and machine
learning. Moreover, it is impossible to pre-classify images into appropriate num-
bers in a normal situation, because the appearance may change unpredictably
even within a single experiment.

…

Fig. 3. A typical set of images containing different appearances of cells
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3.2 Definitions of Feature Vectors

The feature vectors in each unit can be defined freely, as described before. How-
ever, the definitions of the feature vectors can affect the whole performance of
the proposed system. Although many good definitions have been proposed, for
example [11,12], we used rather simple definitions in the experiment. This is
to confirm the performance derived from the structure of the system, excluding
the influence of the excellence of the feature definitions. The image-feature and
pixel-feature are based on the well-known image processing methods such as
average, standard deviation, gradient, and their histograms as shown in Fig. 4.
The boundary-feature has a slightly more complex definition to describe enough
about the boundary area, as shown in Fig. 5. The boundary-feature consists
of two parts, a simple part and a contrastive part. The simple part describes
about the central pixel of the boundary area, similar to the pixel-feature. The
contrastive part represents difference between inside and outside of a cell. The
boundary area is divided into two areas by the edge direction of the central pixel,
and sub-features are computed for each of them. Each sub-feature contains the
histogram-based components and an additional component which reflects the
state of current region. The difference between the sub-features is defined as the
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Fig. 4. Definitions of the image-feature and the pixel-feature
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contrastive part. The boundary-feature of the same position can change every
time after the modification due to the additional component.

3.3 Results of the Experiment

The image-set was divided into two subsets of eight images for training and
test. Each subset consists of six images under the same condition, one image at
different magnification, and one image in different cell-state. It is expected that
the system prepare an image-class for six images, and exclude the rest two images
as error. Note that a new image-class would not be prepared for the image in
different cell-state, because multiple images were required to prepare new image-
class in our implementation. In the training process, the system successfully
classified six images into a class, and excluded the rest two images. However, in
the test-subset, the system failed to exclude a different cell-stated image. It was
classified into a same class as six images.

One of the results of the test-subset is shown as Fig. 6. The edges of the
regions are overlaid on the image for showing the detected regions in the right-
most picture. The three pictures in the middle indicate that the rough regions
were detected with reasonable accuracy and the modification worked well.
Figures 7 and 8 shows several examples of the user interactions which occurred in
the experiment. The labeled areas are displayed brighter for cells and darker for
background, in pictures showing user inputs. The user inputed five cell regions
and one background region in total two images during the training process of the
drafting unit. Total six background regions were available in this case because
fixed-width background regions were automatically generated around every cell
regions. One out of the five cell regions was acquired as an answer to the ques-
tion from the system. The desired area in the question is displayed as brighter
rectangle in the middle picture in Fig. 7. Nine regions in an image were corrected
as the significant errors of modification results as shown in Fig. 8, e.g. loss of the
dark details of the cells, and tiny wrong-regions in the background.

The total time spent on the training process including user interactions was
about 20 min. The system required about 30 seconds for processing each image
in the test-subset. The occurrence count of user interactions is modest and the
required time is sufficiently short, compared to those assumed in conventional
methods.

input rough regions during modifica on improved regions result ( overlaid )

Fig. 6. An example of the results
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user inputed 
4 cells + 1 background

in an image

system asked
area-indicated ques on

in another image

user inputed a region
containing the desired area

check
ambiguity

user interac on

Fig. 7. A example of the interaction in drafting unit

modifica on result
by ini al modifier

improved modifica on result
by updated modifier

user inputed some regions
to correct errors

update
modifier

user interac on

Fig. 8. An example of the interaction in reformation unit

4 Conclusion

We proposed a flexible and efficient cell detection system by combining machine
learning and image processing. We verified its effectiveness through an exper-
iment of rabbit chondrocyte images. The proposed system solves some typical
problems of cell detection as follows:

It is not efficient to specialize a method for every type of images:
The system is universally applicable to any type of cell image, because it
only consists of basic methods of image processing. The code of the sys-
tem does not need to be modified, because the behavior of the system are
adaptively tuned by supervised machine learning. Parameter collision does
not occur, because the images are classified and passed to the appropriately
tuned detector.

It is difficult to prepare many training data:
The system compensates the lack of the training data by associating clus-
tering results and user inputs. It has a function to request the data which
effectively improve the detection criterion. The complexity of the feature
space is reduced by constraining the targets onto the boundaries of the cell
regions.

The system has an advantage that it can quickly and easily prepare a tuned cell
detection method for arbitrary sets of images.
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In the future, we will consider some problems of evaluation. The behavior of
each unit should be evaluated independently with more large dataset. Especially
the assortment unit is not evaluated enough because the experiment did not
contain multiple valid image-classes. We mainly confirmed efficiency of the sys-
tem with simple implementation. However, it is worth considering the problems
of accuracy and calculation cost to improve practicality of the system. Input
images can be classified more appropriately when the definition of image-feature
is revised. Cell regions can be detected more precisely and quickly when the defi-
nitions of pixel-feature and boundary-feature are improved. The recently revised
DNN-related techniques such as [5,6] can be applied to the system to improve
its performance.
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Abstract. A fuzzy colour model is defined to deal with human-machine
communication situations where perceptual and conceptual deviations
can appear. Logics have been defined to combine this model with the
Probabilistic Reference And GRounding mechanism (PRAGR) (Mast
and Wolter 2013) in order to obtain the most acceptable and appropri-
ate colour descriptor depending on the situation. Two case studies are
presented and promising results are obtained.

1 Introduction

Human-machine understanding is crucial for modeling cognitive decisions for
AI. Misunderstandings usually appear when entities are classified differently by
the interactuators due to distinct perceptions or due to conceptual deviation. A
cognitive system must evaluate which category within a domain to assign (e.g.,
for colours yellow or orange) in order to maximise the chances of the listener to
identify the correct target object in the given context.

The challenge of colour categorization is tackled in this paper. Colour per-
ception is very subjective since there are colours which may be named differently
depending on the person who refers to them. There are other cognitive effects in
colour perception, such as sensitivity to brightness or/and colour context (Lotto
and Purves 1999), which may cause conceptual mismatch and communication
failure between humans and machines. Examples of these effects are shown in
Fig. 1. There is also empirical evidence which confirms that object colour per-
ception changes with change in illumination and background (Helson 1938).

Spranger and Pauw (2012) show that overlapping, graded colour categories
can improve the chances of communicative success under circumstances of per-
ceptual and conceptual deviation. Furthermore, it is well-known that the concept
of fuzzy set provides a methodology for translating the numerical data obtained
from the world into linguistic categories with a degree of believing which can be
given a meaning and used for reasoning (Zadeh 1965). Thus, this is an attractive
methodology to model colours since providing a fuzzy model for colour naming
may allow the adaptation of the system’s usage of colour terms to the idiosyn-
crasies of user groups or individuals.

c© Springer International Publishing AG 2017
V. Torra et al. (Eds.): MDAI 2017, LNAI 10571, pp. 207–219, 2017.
DOI: 10.1007/978-3-319-67422-3 18



208 Z. Falomir and L. Gonzalez-Abril

(a) (b) (c)

Fig. 1. (a) Example of Perceptual deviation: is it a green or a yellow square? Other
examples of contextual sensitivity of brightness perception are also shown: the colour
of the small circle is the same in both objects, in both scenes (b) colour with no hue,
and (c) colour with hue. (Color figure online)

In the literature, fuzzy colour descriptors were defined on colour models, as
for example: (i) the approach for computational colour categorisation and nam-
ing based on the CIE Lab colour space and fuzzy partitioning formulated by
Menegaz et al. (2007); (ii) the fuzzy colour categories on the Musell Colour Solid
and the HCL colour space and similarity values based on the Fuzzy C-Means
by Seaborn et al. (2005); (iii) the approach to automatically design customised
fuzzy colour spaces on any Euclidean crisp space proposed by Soto-Hidalgo
et al. (2010), etc.

All these previous works provide evidence for the effectiveness of applying
fuzzy methods for colour naming. However, in the literature, very few approaches
manage the context for colour naming. Meo et al. (2014) use uncertain bound-
aries of colour terms in their system, which can generate appropriate colour
names in referential situations for discriminating similar colour patches. Mast
et al. (2016) combined the Probabilistic Reference And GRounding (PRAGR)
mechanism with a vague qualitative colour model in a linguistic environment
based on ontologies and the open world assumption (OWA).

The main contribution in this paper is the definition of a fuzzy qualitative
colour model (Fuzzy-QCD) using first-order logics and the closed world assump-
tion (CWA). In order to deal with context perception, the Fuzzy-QCD model is
combined with PRAGR using the logics defined.

The remainder of this paper is organized as follows. A Fuzzy Colour Descrip-
tor is presented in Sect. 2 and its membership functions are given in Sect. 3.
Section 4 provides logics for the Fuzzy-QCD. Section 5 combines these logics with
PRAGR. Sections 5 and 6 provides two case studies used in the implementation
of these logics which prove applicability of the Fuzzy-QCD+PRAGR approach.
Finally a discussion is provided.

2 A Fuzzy Qualitative Colour Descriptor (Fuzzy-QCD)

Let us define a Reference System (RS) for our Fuzzy Qualitative Colour Descrip-
tor (QCD) as:

Fuzzy-QCRS = {uH, uS, uL, CFzSet1..5
}

where uH, uS and uL are the unit of Hue, Saturation and Lightness, respectively,
in the HSL colour space (Fig. 2); CFzSet1..5 refers to the selected colour names
and the fuzzy sets related to them, as follows:
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– CFzSet1 = {(G1, μG1), ..., (Gi, μGi
), ...,

(G�, μG�
)} where � colour names are defined

for the grey scale in CFzSet1 by fuzzy
sets.

– CFzSet2 = {(R1, μR1), ..., (Rj , μRj
), ...,

(Rr, μRr
)} where r colour names are defined

for the rainbow scale in CFzSet2 and are con-
sidered the more saturated or stronger ones.
The saturation of the Ri colours take val-
ues between rusMIN

and 100, whereas their
luminance take values between rulMIN

and
rulMAX

. Thus, the different values of hue
(ruhr

) take values between 0 and 360 and
determine the colour names defined for the
CFzSet2 set.

– CFzSet3 = {pale- + CFzSet2} where r pale colour names are defined in CFzSet3

by adding the prefix pale- to the colours defined for the rainbow scale, CFzSet2 .
The colour names defined in CFzSet3 have the same interval values of hue
as rainbow colours (CFzSet2). The lightness intervals also coincide, but they
differ from rainbow colours in their saturation, which can take values between
gusMAX

and rusMIN
.

– CFzSet4 = {light- + CFzSet2} and CFzSet5 = {dark- + CFzSet2} where r
light and dark colour names are defined in CFzSet4 and CFzSet5 , respec-
tively, by addition of the prefixes dark- and light- to the colour names in
the rainbow scale (CFzSet2). The intervals of values for dark and light colour
sets, CFzSet4 and CFzSet5 , take the same values of hue as rainbow colours in
CFzSet2 , respectively. The saturation intervals also coincide, but the lightness
coordinate (uL) differs and determines the luminosity of the colour (dark or
light) taking values between rulMAX

and 100 for light colours and between rul

and rulMIN
for dark colours.

Fig. 2. The Fuzzy Qualitative
Colour Descriptor (Fuzzy-QCD)
build on the HSL colour space.
(Color figure online)

It is worth noting that the parameters � and r depend on the granularity
that an expert defines for a scenario. The rest of parameters, rusMIN

, rulMIN
,

rulMAX
, gusMAX

, rusMIN
and rul can be defined by experimentation. The Fuzzy-

QCD is parameterised as a baseline using data of a collection of colour intervals
(each one assumed to be fully representative of a certain colour term) coming
from previous experiments (Falomir et al. 2015). However, those crisp intervals
have been adapted to a more intuitive definition where values are overlapped.
Colours in the grey scale, CFzSet1 , have uncertain boundaries in the dimen-
sion of lightness, such as the prototypical colours, CFzSet2 , in the dimension of
hue. Moreover, prototypical colours are defined in the whole range of lightness,
because a light-red or a dark-red colour is considered also red. As a result, the
intervals defining light/dark colours are overlapping also prototypical colours.
Table 1 shows the values used for parameterisation of the Fuzzy-QCD extracted
from the experimentation aforementioned.
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Table 1. HSL overlapping intervals for colour names.

Colour name H(h0, h1) S(s0, s1) L(l0, l1)

CFzSet1 black [0, 360] [0, 20] [0, 20)

dark-grey [20, 30)

grey [30, 50)

light-grey [50, 75)

white [75, 100]

CFzSet2 red (335, 360] ∧ [0, 20] (50, 100] (20, 80]

orange (20, 50]

yellow (50, 80]

green (80, 160]

turquoise (160, 200]

blue (200, 260]

purple (260, 300]

pink (300, 335]

CFzSet3 pale + CFzSet2 Idem (20, 50] (40, 100]

CFzSet4 light + CFzSet2 Idem (50, 100] (55, 100]

CFzSet5 dark + CFzSet2 Idem (50, 100] (0, 40]

Moreover, inspired by other works in the literature (Palmer and Schloss
2010), this Fuzzy-QCD model has also defined some equivalent colours such
as: dark-orange ≡ brown, dark-yellow ≡ olive, light-red ≡ pastel-pink according to
the Inter-Society Colour Council - National Bureau of Standards (ISCC-NBS1).

3 Fuzzy-QCD Membership Functions

Let us define a fuzzy degree of believing for each colour defined on HSL internals:
[h0, h1] × [s0, s1] × [l0, l1] ≡ Br(h, s) × Blr(lc)2.

Thus, a colour A in the Fuzzy-QCD is determined by the parameters
(hc, hr, sc, sr, lc, lr) where (hc, sc, lc) and (hr, sr, lr) are the centroids and the
half-amplitudes of the intervals in hue (h0, h1), saturation (s0, s1) and lightness
(l0, l1) for each defined colour, respectively.

The membership function of A, μA : [0.360] × [0, 100] × [0, 100] → [0, 1] is
defined from a three-dimensional Radial Basis Function (RBF) as follows:

μA(h, s, l) = e− 1
2 ((

h−hc
hr

)2+( s−sc
sr

)2+( l−lc
lr

)2) (1)

1 ISCC-NBS: http://tx4.us/nbs-iscc.htm (Accessed June 2017).
2 Note that, given an open interval (analogously for another kind of interval) of finite

dimension, there are two main ways to represent it: from the extreme points as (a, b)
(classical notation) or as an open ball Br(c) (Borelian notation) where c = (a+ b)/2
(centre) and r = (b − a)/2 (radius).

http://tx4.us/nbs-iscc.htm
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Note that, from the spatial structure of the HSL colour space, it is obtained
that:

• In CFzSet1 , the interval values obtained in HSL coordinates correspond to
cylinders in the Cartesian coordinate system. Therefore, for the colours in
the grey scale, it is holds that:
(hc, sc, lc) where hc = sc = s0 = minsaturation and lc = l0+l1

2

(hr, sr, lr) where hr = sr = s1 = maxsaturation and lr = l1−l0
2

As hc = sc and hr = sr, then (1) is independent of hue and it can be
rewritten as:

μ(h, s, l) = e− 1
2 ((

s−sc
sr

)2+( l−lc
lr

)2) (2)

Note that for the colour black, lc = l0 = 0 and for the colour white, lc = l1 =
100.

• In all other cases except prototypical colours (CFzSet2), the interval values in
HSL correspond to wedges in the Cartesian axis (see Fig. 3). Therefore, for
the colours in the rest of scales, it is holds that:

(hc, sc, lc) where hc = h0+h1
2 , sc =

√
s2
0+s2

1
2 ; and lc = l0+l1

2

(hr, sr, lr) where hr = h1−h0
2 , sr =

√
s2
0+s2

1
2 that is, sc = sr, and lr = l1−l0

2
The exception is the red colour, which is divided into two parts in order to

cover the starting and ending part of the central circle in HSL. For the first,
hc = h0 = 0 and hr = h1 − h0, whereas for the second red, hc = h1 = 360
and hr = h1 − h0.

• For the prototypical colours (CFzSet2), setting sc = s1 = 100 means that
a maximally saturated colour gets the highest certainty, and since reducing
saturation reduces certainty.

h1 h0

lr

s = 100 s = min

Fig. 3. Wedges which determine
the colours in the most satu-
rated colour scale CFzSet2 , the
pale scale CFzSet3 , the light
scale CFzSet4 and the dark scale
CFzSet5 .

A colour described in HSL coordinates can
get more than one colour name with a different
degrees of believing (calculated from 1 and 2).
Thus, in order to normalise these values, the fol-
lowing operation is applied:

μN
A (h, s, l) =

μA(h, s, l)∑
Ai of the Fuzzy-QCD

μAi
(h, s, l)

where the input variables are hue (h), satura-
tion (s) and lightness (l) as the coordinates of
the colour in HSL and

∑
μ(h, s, l) is the total

amount of certainties obtained for these HSL
colour coordinates.
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Fig. 4. Fuzzy colours: (a) in the grey scale in the lightness dimension (L); (b) in the
prototypical scale in the hue dimension (H). (Color figure online)
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Fig. 5. Fuzzy colours in: (a) the dimension of lightness (L) and (b) the dimension of
saturation (S). (Color figure online)

The HSL intervals in Table 1 are used to obtain the parameters (hc, sc, lc) and
(hr, sr, lr) as aforementioned. These parameters are applied to (1) to generate
three dimensional RBFs for obtaining the degree of believing for each colour
name.

Some RBF functions in one-dimension are represented here. Figure 4(a) shows
the membership functions of the colours in the grey scale, CFzSet1 , taking into
account the dimension of lightness.

The membership functions of the prototypical colours, CFzSet2 , in the dimen-
sion of hue are depicted in Fig. 4(b). Figure 5(a) shows the membership function
of a prototypical colour, red, defined in the whole range of lightness, since light-
red and dark-red colour are considered also red.

Figure 5(b) shows the membership functions obtained for any prototypical
colour defined in the dimension of lightness or saturation, respectively. Note
how the membership functions overlap as a result of the RBF parameters.

Finally, Fig. 6 shows a two-dimensional RBF membership function of a pro-
totypical colour (orange) depending on the amount of hue and the amount of
saturation, considered together.

4 Logics for the Fuzzy-QCD

The Fuzzy-QCD presented is used for generating logic descriptions of colours
related to objects obtained in a digital image (Falomir 2017):
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Fig. 6. Radial Basis Function in two dimensions (hue and saturation) for the colour
orange. (Color figure online)

hasQSD_category(SceneID,ObjectID,ShapeCategory,Certainty).

hasHSL(SceneID,ObjectID,H,S,L).

has_FuzzyQCD(ObjectID, Fuzzy-QC_LAB1..5).

where ObjectID refers to the object identifier in the image, hasHSL refers to
the colour coordinates in the HSL colour space and Fuzzy-QCLAB1..5 refers to
the colour names and their certainties given an object in an image. Figure 7
shows an example of a digital image where the qualitative shape description
(QSD*) (Falomir and Olteţeanu 2015) of the objects is extracted together with
its Fuzzy-QCD.

5 The Probabilistic Reference And GRounding
Mechanism (PRAGR) Combined with Fuzzy-QCD
Using Logics

The Probabilistic Reference And GRounding mechanism (PRAGR) (Mast and
Wolter 2013) can determine, in a given situation, the most appropriate refer-
ring expression to use for describing a particular object. PRAGR is based on:
acceptability, discriminatory power and appropriateness. This section describes
PRAGR using logics3. The results shown are related to the scene in Fig. 7.

The acceptability of a description D is the conditional probability P (D|x)
that the listener will accept D as a good description for object x. For simple
properties, like colour terms, acceptability can correspond to the fuzzy degree
of believing obtained by the Fuzzy-QCD presented here. Using logic definitions
3 A Prolog program has been developed for connecting Fuzzy-QCD and PRAGR and

it is available for download: https://sites.google.com/site/cogqda/publications.

https://sites.google.com/site/cogqda/publications
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Fig. 7. Example of Fuzzy-QCDs obtained for the objects in the image. (Color figure
online)

based on the previous facts showed by Fig. 7, acceptabilities of colours (i.e. green)
can be extracted:

acceptability_colour(Scene,Obj,Colour,C):-
has_FuzzyQCD(Scene,Obj,ColourList),
extract_certainty(Colour,ColourList,C).

?- acceptability_colour(scene-z1,
Obj,green,Certainty).

Obj = object-1, Certainty = 0.51 ;
Obj = object-2, Certainty = 0.77 ;
Obj = object-3, Certainty = 0 ;
Obj = object-4, Certainty = 0.75

The discriminatory power (DP) is the power of a description to discriminate
the intended object from the rest. It can be defined as the conditional probability
P (x|D) of determining the correct object, given a description. DP and accept-
ability are thus interrelated by the Theorem of Bayes: P (x|D) = P (D|x)P (x)

P (D)

where P (x) is the prior probability of selecting object x (P (x) = 1
N where N is

the total number of objects in the scene, assuming equal probability for selecting
any one of them – maximum entropy) and P (D) is the prior probability of the
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description. Using logic definitions and the facts from Fig. 7, prior probabilities
of selecting a colour (i.e. yellow, green) are obtained as follows:

prob_colour_in_a_scene(Scene,Colour,PD):-
objects_in_scene(Scene,List,N),
coloured_objects_in_scene(Scene,Colour,List,Accumulative),
PD is Accumulative/N.

?- prob_colour_in_a_scene(scene-z1,green,PD). PD = 0.5075

DP compares the acceptability of D for the target object to the acceptability
of D for other distractors. For identifying the most likely referent of a given
description, PRAGR selects the object for which D has the highest acceptability.
Logically, the DP of a colour for a particular object can be computed from the
previous facts and definitions as follows:

discriminatory_power(Scene, Object, Colour, DP):-
acceptability_colour(Scene,Object,Colour,PDx),
prob_choosing_object(Scene,Px),
prob_colour_in_a_scene(Scene,Colour,PD),
DP is PDx*Px/PD.

?- discriminatory_power(scene-z1,object-1,green, DP). DP = 0.25 .
?- discriminatory_power(scene-z1,object-1,yellow, DP). DP = 0.783 .

When generating referring expressions, PRAGR jointly maximises accept-
ability and DP , selecting an expression that yields the best balance between
providing an adequate description of an object per se, and a description that
distinguishes it from the other objects in the context, that is, it obtains the
more appropriate description depending on the context. In order to maximize
the appropriateness of the description, a parameter α ∈ [0, 1] is introduced:
D∗

x := arg maxD(1 − α)P (x|D) + αP (D|x).
The parameter α determines the weighting of acceptability, with a value of

0 indicating that acceptability is ignored, and a value of 1 meaning that only
acceptability is considered, and DP is ignored. Previous experimentations by
Mast et al. (2016), identified that a choice of α ∈ [0.1, 0.4] leads to intuitive
descriptions. Using logics, the appropriateness of a colour (i.e. green, yellow) for
an object can be obtained as follows:

appropriateness(Scene, Object, Colour, Alfa, Dx):-
discriminatory_power(Scene, Object, Colour, PxD),
acceptability_colour(Scene,Object,Colour,PDx),
Dx is (1-Alfa)*PxD + Alfa*PDx.

?- appropriateness(scene-z1, object-1, yellow, 0.4, Dx). Dx = 0.658 .
?- appropriateness(scene-z1, object-1, green, 0.4, Dx). Dx = 0.355 .

Table 2 presents a summary of the values obtained by Fuzzy-QCD+PRAGR
using logics and the facts from the scene in Fig. 7. As a result, the more appro-
priate colour descriptor for object-1 is light-yellow (D∗

x = 0.8), which is quite
acceptable for that particular object (P (D|x) = 0.5) but highly discriminative
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Table 2. Values of PRAGR for different colour descriptors. Note that P (x) = 0.25 for
all the cases, since there are 4 objects in the scene.

Scene Acceptability
P (D|x)

P (D) Discriminatory
Power (DP)

Appropriateness
D∗

x α = 0.4

Object Colour

object-1 green 0.51 0.5075 0.250 0.355

object-1 yellow 0.47 0.1500 0.780 0.658

object-1 light-yellow 0.50 0.1250 1.000 0.800

object-2 green 0.77 0.5075 0.380 0.536

object-2 pale-green 0.65 0.5175 0.314 0.448

object-4 green 0.75 0.5075 0.370 0.520

object-4 pale-green 0.84 0.5175 0.400 0.579

object-4 light-green 0.67 0.3025 0.550 0.600

(DP = 1.0). For object-2, the more appropriate colour is green (D∗
x = 0.536),

and for object-4 is light-green (D∗
x = 0.6).

6 Flexibility of Fuzzy-QCD + PRAGR Depending
on the Context

In this section, another use case for combining Fuzzy-QCD with PRAGR is
provided considering the scene examples in Fig. 8. This case is cognitively inter-
esting because the red colour in scene-a is usually perceived more reddish than
in the scene-b, where people usually perceive it as more orange. However, in
both scenes, the HSL colour coordinates of the objects are nearly the same
(HSL[5, 56, 64] vs. HSL[8, 59, 61]).

Table 3 presents the values of acceptability, discriminatory power and appro-
priateness calculated by Fuzzy-QCD+PRAGR for object-4 (square located up)
in both scenes in Fig. 8. Results show that, in scene-b, the orange colour obtains
a higher appropriateness value than red (using α = 0.18). Even though red has
a higher acceptability value, the potential acceptability of colour red for the dis-
tractor object-1 (P (red|object-1 ) = 0.174) leads to a low discriminatory power,
in favour of the less acceptable, but more discriminating orange.

In scene-b, the objects would be referred as the pink circle, the orange circle,
the orange square and the pink square. Thus, no object is referred as red to
maximize appropriateness. However, the acceptability obtained by Fuzzy-QCD
for red, remains in the agent knowledge-base, so that, if red is used by a person
in a dialogue, this colour would still be understood by the agent.
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Fig. 8. Contextual sensitivity of colour perception –note that red is more distinguishing
in (a)– and Fuzzy-QCD obtained for the objects. Note that they are numbered anti-
clockwise (Color figure online).

Table 3. Evaluation values of Fuzzy-QCD+PRAGR for object-4 in both scenes, where
there are 4 objects in each scene, thus P (x) = 0.25.

Object Colour Acceptability
P (D|x)

P (D) Discriminatory
Power (DP)

Appropriateness
D∗

x α = 0.18

Scene-a object-4 red 0.93 0.465 0.500 0.5774

object-4 orange 0.13 0.065 0.500 0.4334

Scene-b object-4 red 0.90 0.690 0.326 0.4290

object-4 orange 0.19 0.095 0.500 0.4440

7 Discussion

A fuzzy colour model (Fuzzy-QCD) is defined and combined with the Probabilis-
tic Reference And GRounding mechanism (PRAGR) (Mast and Wolter 2013) in
order to obtain the most acceptable and appropriate colour descriptor based on
cognitive properties and depending on the situation. First order logics have been
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used to implement the Fuzzy-QCD and Swi-Prolog4 has been used as the test-
ing platform (Wielemaker et al. 2012). Two case studies are presented and the
results obtained by Fuzzy-QCD+PRAGR maximizes appropriateness of colour
names according to human understanding.

As future work, we intend to: (i) compare our approach to conventional colour
naming models and (ii) study its applicability to model other cognitive contexts
such as contextual sensitivity of brightness perception situations (i.e. Fig. 1(b)
and (c)).
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Abstract. Subjective opinions generalize probability distributions by
including degrees of uncertainty which reflect lack of confidence in the
probabilities. This paper describes a method for computing the joint sub-
jective opinion of two variables which can be generalized to a method
for computing joint subjective opinions over multiple variables in a sub-
jective Bayesian network. We show how the joint opinions can be mar-
ginalized to provide subjective opinions on a reduced number of variables.
With an example we compare the marginalization of a joint opinion with
subjective logic deduction which also produces a marginal opinion.

1 Introduction

In many contexts of probabilistic reasoning one deals with uncertainty and
incomplete information. This leads to rough estimation or vague guesses of the
probabilities which can influence the correctness of the conclusions in the analy-
sis. Many formalisms for dealing with uncertain probabilities have been proposed
in the literature, such as the work on imprecise probabilities [13], which when
applied to Bayesian networks produces a certain type of credal networks [1],
where the main idea is to work with probability intervals. In contrast to impre-
cise probabilities, subjective logic [6] is a formalism that offers explicit treatment
of the uncertainty about probabilities in both representation and inference. The
arguments in subjective logic are subjective opinions on random variables. A
subjective opinion includes a belief mass distribution over the values of the vari-
able, complemented by an uncertainty mass, which together reflect a specific
analysis of the probability distribution; and a base rate probability distribu-
tion over the variable, reflecting a prior domain knowledge that is relevant to
the specific analysis. In an attempt to convey as reliable as possible inference
with uncertain probabilistic information, subjective logic provides many oper-
ators that generalize calculations with probability distributions, for a detailed
overview see [6].

This paper introduces a method for computing joint subjective opinions on
two random variables X and Y based on a subjective opinion on X and con-
ditional opinions on Y given X. The result is a subjective opinion on the joint
distribution of X and Y (as opposed to the belief fusion operation in subjective
logic that fuses different sources’ opinions on the same variable). The marginal
of a joint opinion should ideally be equal to the deduced subjective opinion on
c© Springer International Publishing AG 2017
V. Torra et al. (Eds.): MDAI 2017, LNAI 10571, pp. 220–233, 2017.
DOI: 10.1007/978-3-319-67422-3 19
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the same variable. This equality always holds for probability distributions, but
produces slightly different uncertainty masses for subjective opinions, since sub-
jective opinions are equivalent to PDFs (probability density functions) and each
operation induces an approximation of the corresponding resulting PDF as well.
In that sense, the more direct the method of determining the required subjective
opinion, the less approximate it is. To illustrate the latter, we present an example
which compares the indirect method of marginalization of a joint opinion with
the direct method of subjective logic deduction.

The joint operation can be extended to multiple variables, which enables
determining the joint opinions in a subjective Bayesian network (SBN) - an
extension of a Bayesian network (BN) where the conditional probability distri-
butions are substituted with subjective opinions, for details see [2].

2 Subjective Opinions

Let X be a random variable. A subjective opinion on X [4] is a tuple:

ωX = (bX , uX ,aX) , (1)

where bX : X → [0, 1] is a belief mass distribution over X, uX ∈ [0, 1] is an uncer-
tainty mass, and aX : X → [0, 1] is a base rate distribution over X, satisfying
the additivity constraints:1

uX +
∑

x∈X
bX(x) = 1 and

∑
x∈X

aX(x) = 1 . (2)

The beliefs and the uncertainty mass are a result of a specific analysis of the
random variable by applying expert knowledge, experiments, a personal judge-
ment, etc. bX(x) is the belief that X takes the value x expressed as a degree in
[0, 1]. It represents the amount of experimental or analytical evidence in favour
of x. uX is a scalar, representing the degree of uncertainty about the belief
analysis. It represents lack of evidence that can be due to lack of knowledge or
expertise, or insufficient experimental analysis. The base rate distribution aX is
the prior probability distribution of X that reflects domain knowledge relevant
to the specific analysis, most usually relevant statistical information.

A multinomial opinion can be represented as a point inside a regular simplex.
In particular, a trinomial opinion can be represented inside a tetrahedron, as
shown in Fig. 1. The beliefs are the distances to the sides and the uncertainty
mass is the distance to the base of the tetrahedron. The base rate distribution
is represented as a point on the base.

A subjective opinion in which uX = 0, i.e. an opinion without any uncer-
tainty, is called a dogmatic opinion. Dogmatic opinions correspond to probability
distributions. A dogmatic opinion for which bX(x) = 1, for some x ∈ X, is called

1 This definition is for a multinomial subjective opinion. In general, we can define
hyper opinions, where bX : R(X) = 2X \{X, ∅}, and operate with them through their
multinomial projections (see [6]).
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Fig. 1. Visualisation of a trinomial opinion

an absolute opinion. Absolute opinions correspond to observations. In contrast,
an opinion for which uX = 1 (and consequently bX(x) = 0, for every x) is
called a vacuous opinion. For a given multinomial opinion ωX we define its cor-
responding projected probability distribution PX : X → [0, 1] in the following
way:

PX(x) = bX(x) + aX(x) uX . (3)

PX(x) is an estimate for the probability of x which varies from the base rate
value, in the case of complete ignorance (uX = 1), to the belief in the case
uX = 0.

3 Joint Subjective Opinions

This section introduces a method of computing joint opinions. A joint subjective
opinion on the variables X1, . . . , Xn, n ≥ 2, is a tuple:

ωX1...Xn
= (bX1...Xn

, uX1...Xn
,aX1...Xn

) , (4)

where bX1...Xn
: X1 × . . . × Xn → [0, 1] and uX1...Xn

∈ [0, 1] satisfy the addi-
tivity condition in Eq. (2) and aX1...Xn

is a joint probability distribution of the
variables X1, . . . , Xn.

Our method assumes conditional opinions as part of the input. Given two
(sets of) random variables X and Y , a conditional opinion on Y given that X
takes the value x is a subjective opinion on Y defined as a tuple:

ωY |x = (bY |x, uY |x,aY |x) , (5)

where the conditional belief mass distribution bY |x : Y → [0, 1], the conditional
uncertainty mass uY |x ∈ [0, 1] and the conditional base rate distribution aY |x :
Y → [0, 1] satisfy the additivity constraints of Eq. (2). We use the notation ωY |X
to denote a set of conditional opinions on Y , one for each value x ∈ X, i.e.:

ωY |X = {ωY |x | x ∈ X} . (6)
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3.1 Joint Subjective Opinion of Two Variables

Let X and Y be two random variables, and suppose we are given a subjective
opinion ωX and a set of conditional opinions ωY |X . As we see later, this forms
a two-node subjective Bayesian network. The computation of base rate distrib-
utions follows the same principles as the computation of traditional probability
distributions in Bayesian networks.

We describe a method for determining a joint subjective opinion ωY X on
the Cartesian product of variables Y and X. This operation is denoted by the
following expression:

ωY X = ωY |X · ωX (7)

Determining Joint and Marginal Base Rates. In determining the base
rates of the joint opinion ωY X , we use the base rate distribution of X, aX , and
the projected probability distributions of the conditional opinions ωY |x, x ∈ X.
This will also directly determine the marginal base rate distribution aY . For
every x ∈ X, and y ∈ Y, the base rate is:

aY X(y, x) = PY |x(y)aX(x) (8)

=
(
bY |x(y) + aY (y)uY |x

)
aX(x) . (9)

We assume that the marginal base rate distribution aY on the child variable
Y can be obtained from the joint one by marginalizing out the variable X:

aY (y) =
∑

x∈X
aY X(y, x) (10)

=
∑

x∈X

(
bY |x(y) + aY (y)uY |x

)
aX(x) . (11)

Solving the last equation for aY (y), we obtain:

aY (y) =
∑

x∈X
bY |x(y)aX(x)

1 − ∑
x∈X

uY |xaX(x)
, (12)

Which along with Eq. (9) provides the joint and the marginal base rates.

3.2 Determining the Uncertainty and the Beliefs

First we compute the joint base rate distribution according to Eq. (9). Then we
compute the projected probability distribution of the joint opinion and express
it through Eq. (3):

PY X(y, x) = PY |x(y)PX(x) (13)
= bY X(y, x) + aY X(y, x)uY X . (14)

We impose the following requirement on the beliefs:

bY X(y, x) ≥ bY |x(y)bX(x) . (15)
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This constraint comes from the interpretation of the belief masses as the min-
imum probability values (in which case the uncertainty mass will be a kind
of ‘non-assigned’ probability mass that can distribute among the states of the
domain in any possible way) and the fact that probability of the joint is a product
of the probabilities pX(x) and pY |x(y).

Now, having PY X and aY X , we need to find belief masses bY X(y, x) and
uncertainty mass uY X that satisfy Eq. (14) and the constraint in Eq. (15). We
do this by looking for the maximum possible uncertainty mass value uY X under
the given constraints. From Eq. (14) we obtain:

uY X =
PY X(y, x) − bY X(y, x)

aY X(y, x)
. (16)

Applying Eqs. (3) and (13) to the last, we obtain:

uY X =

(
bY |x(y) + aY (y)uY |x

)
bX(x) +

(
bY |x(y) + aY (y)uY |x

)
aX(x)uX − bY X(y, x)

aY X(y, x)
,

(17)

For every pair of values x and y, the maximum uncertainty mass on the
right-hand side of Eq. (17) is achieved for the smallest allowable belief mass of
bY X(y, x), which is bY |x(y)bX(x) by the Eq. (15). We denote that uncertainty
mass by uY X(y, x):

uY X(y, x) =
aY (y)uY |xbX(x) + bY |x(y)aX(x)uX + aY (y)aX(x)uY |xuX

aY X(y, x)
. (18)

We take uY X to be the minimum of the uncertainty masses in Eq. (18),
i.e. uY X = miny,x [uY X(y, x)], to assure that Eq. (15) always holds. In that way
we obtain the following expression for the uncertainty of the joint opinion:

uY X = min
y,x

[
aY (y)uY |xbX(x) + bY |x(y)aX(x)uX + aY (y)aX(x)uY |xuX

aY X(y, x)

]
. (19)

The joint belief mass distribution bY X emerges from Eqs. (13) and (19):

bY X(y, x) = PY X(y, x) − aY X(y, x) uY X . (20)

The above described procedure generalizes for the case when Y has parents
X1, . . . , Xk, where k ≥ 2. Then the input arguments for the joint operation are:
(1) a set of conditional opinions ωY |X1...Xk

on Y , one for each combination of
values of its parents; and (2) a joint opinion on the parents ωX1...Xk

. In the next
sections is shown that in a subjective Bayesian network (1) is given as input,
and (2) is determined in a preceding step.
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3.3 Joint Opinions for Multiple Variables

In this section we propose a way of extending the joint operation to more than
two variables. Assume we have N random variables X1, . . . , Xn where e.g. xi rep-
resents a specific value of variable Xi. According to the chain rule of probability,
we have the following expression for their joint probability distribution:

p(x1, . . . , xn) = p(xn|x1, . . . , xn−1) · · · p(x2|x1)p(x1) , (21)

or written in a more compact way:

p(X1, . . . , Xn) =
n∏

k=1

p(Xk|Xk−1 . . . X1) . (22)

We generalize Eq. (22) to subjective opinions:

ωXn...X1 =
n∏

k=1

ωXk|Xk−1...X1 , (23)

where the above product is performed applying the following recursive step:

ωXk...X1 = ωXk|Xk−1...X1 · ωXk−1...X1 , (24)

for k = 2, . . . , n, where the operation · is the joint of two subjective opinions.
This procedure assumes that the conditional opinions ωXk|Xk−1...X1 are available.
This is the case when determining the joint opinions in a subjective Bayesian
network, which we elaborate in the next section.

3.4 Subjective Bayesian Networks

A Bayesian network [11] with n variables is a directed acyclic graph (DAG)
with random variables V = {X1, . . . , Xn} as nodes, and a set of conditional
probability distributions p(Xi|XPa(i)) associated with each node Xi containing
one probability distribution p(Xi|xPa(i)) of Xi for every value assignment xPa(i)

of its parent nodes XPa(i).
If the Markov property holds for the given DAG and the joint distribu-

tion p of the variables X1, . . . , Xn (every node is conditionally independent (I)
of its non-descendant (ND) nodes given its parent (Pa) nodes in the graph,
I
(
Xi,XND(i)|XPa(i)

)
, then p is determined from the input information in the

network as follows:

p(x1, . . . , xn) =
n∏

i=1

p(xi|xPa(i)) , (25)

where xPa(i) is the value assignment of the parent variables of Xi that corre-
sponds to the tuple (x1, . . . , xn).

A subjective Bayesian network (SBN) is a generalization of a classical
Bayesian network where a set of conditional opinions ωXi|XPa(i)

substitutes the
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set of conditional probability distributions p(Xi|XPa(i)). If we assume that the
independencies embedded in the graph apply in the same way to the subjec-
tive opinions as to their corresponding probability distributions, then based on
Eq. (25) we obtain the following equation:

ωX1,...,Xn
=

n∏

i=1

ωXi|XPa(i)
, (26)

where the product denotes the joint operation. Assume X1, . . . , Xn is an ‘ances-
tral order’ of the nodes in the graph meaning that there is no child that precedes
its parent on the list, or more formally, if Xi is a parent of Xj , then i < j, where
i, j ∈ {1, . . . , n}. Then Eq. (26) is equivalent to Eq. (23) since for every i,

ωXi|XPa(i)
= ωXi|Xi−1...X1 , (27)

because Xi−1, . . . , X1 are non-descendants of Xi and we assume that the Markov
condition applies in the same way as for probabilities. The equality in Eq. (27)
means that ωXi|xi−1...x1 = ωXi|(xPa(i), xNPa(i)) for every value assignment xNPa(i)

of the variables in the non-parent set XNPa(i) = {Xi−1 . . . X1}\XPa(i). Hence, we
can apply subsequent joint operations to obtain the joint opinion on X1, . . . , Xn

using the information provided in the network. The same would apply for a
subset of nodes {Y1, . . . , Yk} ⊆ V in the case they form an ancestral order that
is complete, meaning that for every node Yi all the ancestors of Yi are contained
on the list Y1, . . . , Yi−1.

4 Opinion Marginalization

Let ωXY be a joint multinomial opinion on the Cartesian product domain X×Y.
The joint opinion can be marginalized on one of the factor variables as either
ω[[X]] or ω[[Y ]]. The special subscript notation [[·]] is used to indicate that the
opinions are obtained through marginalization, and not, for example through
operations like deduction described in Sect. 5. A marginal opinion represents the
opinion on one of the joint factor variables without reference to the other factor
variable, i.e. where the other variable has been marginalized out.

By applying probability marginalization and Eq. (3) we get:

P[[X]](x) =
∑

y∈Y

PXY (x, y) , (28)

b[[X]](x) + a[[X]](x)u[[X]] =
∑

y∈Y

bXY (x, y) + uXY

∑

y∈Y

aXY (x, y) . (29)

Then we define:

a[[X]](x) =
∑

y∈Y

aXY (x, y) , (30)

b[[X]](x) =
∑

y∈Y

bXY (x, y) , (31)

u[[X]] = uXY . (32)
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The marginal opinion on X is the tuple ω[[X]] = (b[[X]], u[[X]], a[[X]]). Similarly,
ω[[Y ]] is obtained in the same way. The rationale for this definition of marginal-
ization is that projected probabilities and base rates should behave like probabil-
ity distributions, while the uncertainty of the marginal opinion should stay the
same as in the joint opinion since the joint opinion is the only input in the oper-
ation (the amount/lack of information is the same). Then the beliefs inevitably
marginalize in the same way as the probabilities.

4.1 Marginalization in SBNs

Opinion marginalization can be used in determining marginal opinions on one
variable in a subjective Bayesian network. For simplicity we show this for a
three-node network, but the generalization to an arbitrary network is straight-
forward. Assume a network e.g. expressed as Z → Y → X where we want to
determine ωXZ .

To determine ωXZ we marginalize the joint opinion ωXY Z on the complete
ancestral list X,Y,Z which is determined applying the joint operation. We obtain
the following:

P[[XZ]](x, z) =
∑

y∈Y

PXY Z(x, y, z) , (33)

b[[XZ]](x, z) =
∑

y∈Y

bXY Z(x, y, z) , (34)

u[[XZ]] = uXY Z . (35)

In the general case, if we want to determine the joint opinion on the variables
Y1, . . . , Yk in a SBN, we first complete the sequence of nodes Y1, . . . , Yk to a
complete ancestral order X1, . . . , Xm by taking the ancestors of all the nodes
in {Y1, . . . , Yk} and putting them in an ancestral order, and then determine the
joint opinion on X1, . . . , Xm according to the method described in Sect. 3.4. At
the end, we marginalize it to obtain the opinion on the required set of variables.

5 Subjective Logic Deduction

This section briefly introduces subjective logic deduction as described in [3]. The
method is based on the principle of maximizing the uncertainty upon constraints
on the beliefs. In case the two variables are probabilistically independent, the
joint operation reduces to the normal multiplication operation described in [8].

Given a set of conditional opinions ωY |X and a subjective opinion ωX , the
goal of the deduction operation is to deduce a marginal opinion on Y, denoted
ωY ‖X . Subjective logic deduction is denoted using the operator symbol ‘�’ as:

ωY ‖X = ωY |X � ωX . (36)

The deduced opinion ωY ‖X is a subjective opinion on Y . The special subscript
notation ·‖X is used to indicate that this marginal opinion has been computed
through deduction.
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First the projected probability distribution of ωY ‖X is determined as follows:

PY ‖X(y) =
∑

x∈X

PY |x(y)PX(x) . (37)

The base rate distribution aY is determined by Eq. (12). It remains to deter-
mine the uncertainty and the beliefs of the deduced opinion.

For the belief masses of the deduced opinion ωY ‖X , we assume the following:

bY ‖X(y) ≥ min
x∈X

[
bY |x(y)

]
, (38)

for every y ∈ Y, which can be found as the principle of plausible reasoning in [12].
Let ωY ‖ ̂X be the deduced opinion from the vacuous opinion ω̂X with a base

rate distribution aX (û = 1). Then uY ‖ ̂X is determined as the maximum possi-
ble uncertainty mass value under the conditions imposed by Eqs. (37) and (38)
applied to a vacuous opinion. The result is the following expression:

uY ‖ ̂X = min
y∈Y

[∑
x PY |x(y)aX(x) − minx

[
bY |x(y)

]

aY (y)

]

. (39)

The uncertainty of the opinion ωY ‖X deduced from an arbitrary ωX is then deter-
mined as the weighted average of the uncertainty mass uY ‖ ̂X and the uncertainty
masses of the given conditional opinions:

uY ‖X = uXuY ‖ ̂X +
∑

x∈X

bX(x)uY |x . (40)

Equation (40) is the unique transformation that maps ω̂X into uY ‖ ̂X , and the
corresponding absolute opinions on X into uY |x, for x ∈ X. Once we have the
uncertainty mass of the deduced opinion, the beliefs are easily derived as a
consequence, applying Eq. (3) solved for bY ‖X :

bY ‖X(y) = PY ‖X(y) − aY (y) uY ‖X . (41)

Deduction can also be generalized for the case when Y has parents X1 . . . Xk,
where k ≥ 2, i.e. when the input arguments are a joint opinion ωX1...Xk

and a
set of conditional opinions ωY |X1...Xk

on Y , one for each combination of values
of its parents.

6 Example: Marginalization vs. Deduction

The purpose of this section is to compare the direct and indirect method of com-
puting the opinion on a child variable. The two methods are illustrated in Fig. 2.
Note that ωY ‖X and ω[[Y ]] in Fig. 2 are both subjective opinions on Y , where the
subscripts indicate how they have been computed. The opinion ωY ‖X has been
computed through direct deduction, whereas ω[[Y ]] has been computed indirectly,
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Fig. 2. The direct and indirect methods of computing ωY

by first computing the joint opinion on X and Y and then marginalizing out X.
We compare the levels of uncertainty in these two opinions through the following
example.

The scenario is a football match between Team 1 and Team 2, where it
is generally predicted that Team 1 will win. A gambler who plans to bet on
the match has received second-hand information about possible match-fixing
whereby Team 1 has been paid to lose. The gambler has an opinion about the
outcome of the match in case Team 1 has been paid to lose, and in the absence
of match-fixing. The gambler also has an opinion about whether Team 1 actually
has been paid to lose.

The variable X represents whether or not Team 1 has been paid to lose:

X =
{

x1 : Team 1 has been paid to lose,
x2 : No match-fixing.

The gambler’s opinion on it is given in Table 1. The provided base rate refers to
a general rate of appearance of match-fixing.

Table 1. Opinion ωX on the match-fixing

ωX x1 x2 uX

bX 0.90 0.00 0.10

aX 0.10 0.90

The variable Y represents the outcome of the game:

Y =

⎧
⎨

⎩

y1 : Team 1 wins the match,
y2 : Team 2 wins the match,
y3 : The match ends in a draw.

Table 2 sets conditional opinions on Y given X, with marginal base rates from
Eq. (12).
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Table 2. Conditional opinions ωY |X

y1 y2 y3 uX

bY |x1 0.000 0.800 0.100 0.100

bY |x1 0.700 0.000 0.100 0.200

aY 0.778 0.099 0.123

The first step in deriving the joint opinion ωY X is to compute the joint
base rate distribution using Eqs. (9) and (12) and the joint projected probability
distribution according to Eq. (13), the results are provided in Table 3.

Table 3. (a) Joint base rate distribution, and (b) Joint projected probability distrib-
ution

aYX y1 y2 y3 PYX y1 y2 y3
x1 0.008 0.081 0.011 x1 0.063 0.656 0.091
x2 0.770 0.018 0.112 x2 0.162 0.004 0.024

The second step is to compute the joint uncertainty mass uY X using Eq. (19)
and then the joint belief mass distribution using Eq. (20). Table 4 provides the
results.

Table 4. Joint belief mass distribution

bY X y1 y2 y3 uY X

x1 0.062 0.646 0.090 0.120

x2 0.070 0.002 0.010

The derived marginal opinions on X and Y are shown in Table 5.

Table 5. (a) Marginal opinion on X, and (b) Marginal opinion on Y

x1 x2 u X y1 y2 y3 u Y
bbb X 0.798 0.082 0.120 bbb Y 0.132 0.648 0.100 0.120
aaa X 0.100 0.900 aaa Y 0.778 0.099 0.123

Next we determine the deduced opinion ωY ‖X based on the given ωX and
the set of conditional opinions ωY |X . First, the marginal base rate distribution
aY is determined as explained in Sect. 3.1. The second step is to use Eq. (39) to
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compute the uncertainty uY ‖ ̂X = 0.29. The third step is to apply Eqs. (40) and
(41) to compute the deduced opinion about which team will win the match. The
results are in Table 6.

Table 6. Deduced opinion on Y

y1 y2 y3 uY ‖X

bY ‖X 0.133 0.648 0.100 0.119

aY 0.778 0.099 0.123

PY ‖X 0.225 0.660 0.115

Based on the opinion about match-fixing, as well as on the conditional opin-
ions, it appears that Team 1 has a relatively slim chance of winning. Despite the
high marginal base rate of winning given by aY (y1) = 0.778, when the evidence
of match fixing is taken into account the projected probability of Team 1 win-
ning the match is only PY ‖X(y1) = 0.225. The probability of Team 2 winning is
PY ‖X(y2) = 0.660. The uncertainty mass in the marginal opinion u[[Y ]] = 0.120
is not exactly the same as the deduced uncertainty mass uY ‖X = 0.119.

It can also be seen that the marginal opinion ω[[X]] on X in Table 5 is close,
but not exactly the same as the original opinion ωX in Table 1.

7 Discussion and Conclusions

We have shown that the notion of joint probability distributions can be extended
to joint subjective opinions, providing a method to determine the joint opinion
of two variables and a way to extend it to multiple variables.

In a subjective Bayesian network with two variables, the obtained marginal-
ized opinions ω[[X]] and ω[[Y ]] can be compared against the input opinion ωX and
the deduced opinion ωY ‖X , respectively. Since the base rate distributions and
the projected probability distributions are determined in the same way in both
the cases, and the rest relies on the uncertainty mass of the opinion, that is
exactly what we are observing in this comparison. The difference between the
two uncertainty values is due to the approximate nature of uncertainty mass in
the computation of deduction and joint opinions, which makes the direct method
(the deduction) result in an opinion with slightly less uncertainty mass than the
indirect method (marginalization of the joint opinion). However, the example
shows that this difference is relatively small, so the two methods produce very
similar results.

A method for computing joint opinions involving an unnecessary indirect
step of applying the subjective Bayes’ theorem is discussed in [6]. Due to limited
space, and because it has limited interest, that method is not described here.
Suffice to say that it produced relatively poor approximations of the uncertainty
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level of the joint opinion in a similar example to the one described above. In con-
trast, the method presented here computes the joint opinion directly based on
the principle of maximizing the uncertainty, and in that sense is more compatible
and comparable with both multiplication and deduction that are derived based
on the same principle. The method presented here produces very good approx-
imations of the uncertainty level in the specific example described. A general
analytical investigation of the quality of the approximation of the uncertainty
level is difficult because the expressions have many degrees of freedom. A partial
analysis of the approximation quality of the product operator was done in [5],
which showed very high quality, and we assume the same to be the case for the
joint operator presented here.

There exists a bijective mapping between subjective opinions and Dirichlet
probability density functions (PDFs) [7]. This correspondence is widely exploited
for reducing the inference with subjective opinions to approximate inference with
the corresponding Dirichlet PDFs [9,10]. In that sense, the method for joint opin-
ions described here is also a method for approximating joint Dirichlet PDFs.
The joining of two Dirichlet PDFs does not produce a Dirichlet PDF in general,
but a hypergeometric PDF which has different higher-order moments than the
Dirichlet PDF. However, to derive the analytically correct expressions would be
intractable in the general case. The joint operator described here approximates
the result to a Dirichlet PDF. The advantage is its simplicity and low computa-
tional complexity. The simplicity of the method is therefore a trade-off with the
approximate results it produces.
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