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Abstract. Fully convolutional deep neural networks carry out excellent
potential for fast and accurate image segmentation. One of the main chal-
lenges in training these networks is data imbalance, which is particularly
problematic in medical imaging applications such as lesion segmentation
where the number of lesion voxels is often much lower than the number of
non-lesion voxels. Training with unbalanced data can lead to predictions
that are severely biased towards high precision but low recall (sensitiv-
ity), which is undesired especially in medical applications where false
negatives are much less tolerable than false positives. Several methods
have been proposed to deal with this problem including balanced sam-
pling, two step training, sample re-weighting, and similarity loss func-
tions. In this paper, we propose a generalized loss function based on the
Tversky index to address the issue of data imbalance and achieve much
better trade-off between precision and recall in training 3D fully convo-
lutional deep neural networks. Experimental results in multiple sclerosis
lesion segmentation on magnetic resonance images show improved F2

score, Dice coefficient, and the area under the precision-recall curve in
test data. Based on these results we suggest Tversky loss function as a
generalized framework to effectively train deep neural networks.

1 Introduction

Deep convolutional neural networks have attracted enormous attention in med-
ical image segmentation as they have shown superior performance compared to
conventional methods in several applications, including automatic segmentation
of brain lesions [2,10], tumors [9,15,21], and neuroanatomy [3,14,22] using vox-
elwise network architectures [9,14,17], and more recently using 3D voxelwise
networks [3,10] and fully convolutional networks (FCNs) [4,13,17]. Compared
to voxelwise methods, FCNs are fast in testing and training, and use all samples
to learn image features. Voxelwise networks, on the other hand, may use a subset
of samples to reduce data imbalance issues and increase efficiency [17].
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Data imbalance is a common issue in medical image segmentation. For exam-
ple in lesion detection the number of non-lesion voxels is typically >500 times
larger than the number of diagnosed lesion voxels. Without balancing the labels
the learning process may converge to local minima of a sub-optimal loss func-
tion, thus predictions may strongly bias towards non-lesion tissue. The outcome
will be high-precision, low-recall segmentations. This is undesired especially in
computer-aided diagnosis or clinical decision support systems where high sensi-
tivity (recall) is a key characteristic of an automatic detection system.

A common approach to account for data imbalance, especially in voxelwise
methods, is to extract equal training samples from each class [20]. The down-
sides of this approach are that it does not use all the information content of the
images and may bias towards rare classes. Hierarchical training [5,20,21] and
retraining [9] have been proposed as alternative strategies but they can be prone
to overfitting and sensitive to the state of the initial classifiers [10]. Recent train-
ing methods for FCNs resorted to loss functions based on sample re-weighting
[2,10,12,16,18], where lesion regions, for example, are given more importance
than non-lesion regions during training. In the re-weighting approach, to bal-
ance the training samples between classes, the total cost is calculated based
on weighted mean of each class. The weights are inversely proportional to the
probability of each class appearance, i.e. higher appearance probabilities lead to
lower weights. Although this approach works well for some relatively unbalanced
data like brain extraction [17] and tumor detection [15], it becomes difficult to
calibrate and does not perform well for highly unbalanced data such as lesion
detection. To eliminate sample re-weighting, Milletari et al. proposed a loss func-
tion based on the Dice similarity coefficient [13].

The Dice loss layer is a harmonic mean of precision and recall thus weighs
false positives (FPs) and false negatives (FNs) equally. To achieve a better trade-
off between precision and recall (FPs vs. FNs), we propose a loss layer based on
the Tversky similarity index [19]. Tversky index is a generalization of the Dice
similarity coefficient and the Fβ scores. We show how adjusting the hyperpa-
rameters of this index allow placing emphasis on false negatives in training a
network that generalizes and performs well in highly imbalanced data as it leads
to high sensitivity, Dice, F2 score, and the area under the precision-recall (PR)
curve [1] in the test set. To this end, we adopt a 3D FCN, based on the U-net
architecture, with a Tversky loss layer, and test it in the challenging multi-
ple sclerosis lesion detection problem on multi-channel MRI [6,20]. The ability
to train a network for higher sensitivity (recall) in the expense of acceptable
decrease in precision is crucial in many medical image segmentation tasks such
as lesion detection.

2 Method

2.1 Network Architecture

We design and evaluate our 3D fully convolutional network [12,18] based on
the U-net architecture [16]. To this end, we develop a 3D U-net based on
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Fig. 1. The 3D U-net style architecture; The complete description of the input and
output size of each level is presented in Table S1 in the supplementary material.

Auto-Net [17] and introduce a new loss layer based on the Tversky index. This
U-net style architecture, which has been designed to work with very small num-
ber of training images, is shown in Fig. 1. It consists of a contracting path (to
the right) and an expanding path (to the left). To learn and use local infor-
mation, high-resolution 3D features in the contracting path are concatenated
with upsampled versions of global low-resolution 3D features in the expanding
path. Through this concatenation the network learns to use both high-resolution
local features and low-resolution global features. The contracting path contains
padded 3×3×3 convolutions followed by ReLU non-linear layers. A 2×2×2 max
pooling operation with stride 2 is applied after every two convolutional layers.
After each downsampling by the max pooling layers, the number of features is
doubled. In the expanding path, a 2 × 2 × 2 transposed convolution operation
is applied after every two convolutional layers, and the resulting feature map is
concatenated to the corresponding feature map from the contracting path. At
the final layer a 1 × 1 × 1 convolution with softmax output is used to reach the
feature map with a depth equal to the number of classes (lesion or non-lesion).

2.2 Tversky Loss Layer

The output layer in the network consists of c planes, one per class (c = 2 in
lesion detection). We applied softmax along each voxel to form the loss. Let P
and G be the set of predicted and ground truth binary labels, respectively. The
Dice similarity coefficient D between two binary volumes is defined as:

D(P,G) =
2|PG|

|P | + |G| (1)

If this is used in a loss layer in training [13], it weighs FPs and FNs (precision
and recall) equally. To give FNs higher weights than FPs in training our network
for highly imbalanced data, where detecting small lesions is crucial, we propose
a loss layer based on the Tversky index [19]. The Tiversky index is defined as:



382 S.S.M. Salehi et al.

S(P,G;α, β) =
|PG|

|PG| + α|P \ G| + β|G \ P | (2)

where α and β control the magnitude of penalties for FPs and FNs, respectively.
To define the Tversky loss function we use the following formulation:

T (α, β) =
∑N

i=1 p0ig0i
∑N

i=1 p0ig0i + α
∑N

i=1 p0ig1i + β
∑N

i=1 p1ig0i

(3)

where in the output of the softmax layer, the p0i is the probability of voxel i be
a lesion and p1i is the probability of voxel i be a non-lesion. Also, g0i is 1 for a
lesion voxel and 0 for a non-lesion voxel and vice versa for the g1i. The gradient
of the loss in Eq. 3 with respect to p0i and p1i can be calculated as:

∂T

∂p0i
= 2

g0j(
∑N

i=1 p0ig0i + α
∑N

i=1 p0ig1i + β
∑N

i=1 p1ig0i)− (g0j + αg1j)
∑N

i=1 p0ig0i

(
∑N

i=1 p0ig0i + α
∑N

i=1 p0ig1i + β
∑N

i=1 p1ig0i)2
(4)

∂T

∂p1i
= − βg1j

∑N
i=1 p0ig0i

(
∑N

i=1 p0ig0i + α
∑N

i=1 p0ig1i + β
∑N

i=1 p1ig0i)2
(5)

Using this formulation we do not need to balance the weights for training. Also
by adjusting the hyperparameters α and β we can control the trade-off between
false positives and false negatives. It is noteworthy that in the case of α = β = 0.5
the Tversky index simplifies to be the same as the Dice coefficient, which is also
equal to the F1 score. With α = β = 1, Eq. 2 produces Tanimoto coefficient, and
setting α + β = 1 produces the set of Fβ scores. Larger βs weigh recall higher
than precision (by placing more emphasis on false negatives). We hypothesize
that using higher βs in our generalized loss function in training will effectively
helps us shift the emphasis to lower FNs and boost recall.

2.3 Experimental Design

We tested our FCN with Tversky loss layer to segment multiple sclerosis (MS)
lesions [6,20]. T1-weighted, T2-weighted, and FLAIR MRI of 15 subjects were
used as input, where we used two-fold cross-validation for training and testing.
Images of different sizes were all rigidly registered to a reference image at size
128×224×256. Our 3D-Unet was trained end-to-end. Cost minimization on 1000
epochs was performed using ADAM optimizer [11] with an initial learning rate
of 0.0001 multiplied by 0.9 every 1000 steps. The training time for this network
was approximately 4 h on a workstation with Nvidia Geforce GTX1080 GPU.

The test fold MRI volumes were segmented using feedforward through the
network. The output of the last convolutional layer with softmax non-linearity
consisted of a probability map for lesion and non-lesion tissues. Voxels with
computed probabilities of 0.5 or more were considered to belong to the lesion
tissue and those with probabilities <0.5 were considered non-lesion tissue.
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2.4 Evaluation Metrics

To evaluate the performance of the networks and compare them against state-of-
the-art in MS lesion segmentation, we report Dice similarity coefficient (DSC):
DSC = 2|P∩R|

|P |+|R| = 2TP
2TP+FP+FN , where P and R are the predicted and ground

truth labels, respectively; and TP , FP , and FN are the true positive, false pos-
itive, and false negative rates, respectively. We also calculate and report speci-
ficity, TN

TN+FP , and sensitivity, TP
TP+FN , and the F2 score as a measure that is

commonly used in applications where recall is more important than precision (as
compared to F1 or DSC): F2 = 5TP

5TP+4FN+FP . To critically evaluate the perfor-
mance of the detection for the highly unbalanced (skewed) dataset, we use the
Precision-Recall (PR) curve (as opposed to the receiver-operator characteristic,
or ROC, curve) as well as the area under the PR curve (the APR score) [1,7,8].
For such skewed datasets, the PR curves and APR scores (on test data) are
preferred figures of algorithm performance.

3 Results

To evaluate the effect of Tversky loss function and compare it with Dice in lesion
segmentation, we trained our FCN with different α and β values. The perfor-
mance metrics (on the test set) are reported in Table 1. The results show that
(1) the balance between sensitivity and specificity was controlled by the para-
meters of the loss function; and (2) according to all combined test measures,
the best results were obtained from the FCN trained with β = 0.7, which per-
formed better than the FCN trained with the Dice loss layer corresponding to
α = β = 0.5.

Figure 2(a) shows the PR curve for the entire test dataset, and Fig. 2(b) and
(c) show the PR curves for two cases with extremely high and extremely low
density of lesions, respectively. The best results based on the precision-recall
trade-off were always obtained at β = 0.7 and not with the Dice loss function.

Table 1. Performance metrics (on the test set) for different values of the hyperpara-
meters α and β used in training the FCN. The best values for each metric have been
highlighted in bold. As expected, it is observed that higher β led to higher sensitivity
(recall) and lower specificity. The combined performance metrics, in particular APR,
F2 and DSC indicate that the best performance was achieved at β = 0.7.

Penalties DSC Sensitivity Specificity F2 score APR score

α = 0.5, β = 0.5 53.42 49.85 99.93 51.77 52.57

α = 0.4, β = 0.6 54.57 55.85 99.91 55.47 54.34

α = 0.3, β = 0.7 56.42 56.85 99.93 57.32 56.04

α = 0.2, β = 0.8 48.57 61.00 99.89 54.53 53.31

α = 0.1, β = 0.9 46.42 65.57 99.87 56.11 51.65
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(a) (b) (c)

Fig. 2. PR curves with different α and β for: (a) all test set; (b) a subject with high
density of lesions (Fig. 3); and (c) a subject with very low density of lesions (Fig. 4).
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Fig. 3. The effect of different penalties on FP and FN in the Tverskey loss function on
a case with extremely high density of lesions. The best results were obtained at β = 0.7

Figures 3 and 4 show the effect of different penalty magnitudes (βs) on seg-
menting a subject with high density of lesions and a subject with very few lesions,
respectively. These cases, that correspond to the PR curves shown in Fig. 2(b
and c), show that the best performance was achieved by using a loss function
with β = 0.7 in training. We note that the network trained with the Dice loss
layer (β = 0.5) did not detect the lesions in the case shown in Fig. 4.
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Fig. 4. The effect of different penalties on FP and FN in the Tverskey loss function on
a case with extremely low density of lesions. The best results were obtained at β = 0.7.

4 Discussion and Conclusion

We introduced a new loss function based on the Tversky index, that general-
izes the Dice coefficient and Fβ scores, to achieve improved trade-off between
precision and recall in segmenting highly unbalanced data via deep learning. To
this end, we added our proposed loss layer to a state-of-the-art 3D fully convolu-
tional deep neural network based on the U-net architecture [16,17]. Experimental
results in MS lesion segmentation show that all performance evaluation metrics
(on the test data) improved by using the Tversky loss function rather than using
the Dice similarity coefficient in the loss layer. While the loss function was delib-
erately designed to weigh recall higher than precision (at β = 0.7), consistent
improvements in all test performance metrics including DSC and F2 scores on
the test set indicate improved generalization through this type of training. Com-
pared to DSC which weighs recall and precision equally, and the ROC analysis,
we consider the area under the PR curves (APR, shown in Fig. 2) the most
reliable performance metric for such highly skewed data [1,8]. To put the work
in context, we reported average DSC, F2, and APR scores (equal to 56.4, 57.3,
and 56.0, respectively), which indicate that our approach performed very well
compared to the latest results in MS lesion segmentation [6,20]. We did not
conduct a direct comparison in the application domain, however, as this paper
intended to provide proof-of-concept on the effect and usefulness of the Tversky
loss layer (and Fβ scores) in deep learning. Future work involves training and
testing on larger, standard datasets in multiple applications to compare against
state-of-the-art segmentations using appropriate performance criteria.
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