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Abstract. In this paper, we investigate if the MR prostate segmenta-
tion performance could be improved, by only providing one-point labeling
information in the prostate region. To achieve this goal, by asking the
physician to first click one point inside the prostate region, we present a
novel segmentation method by simultaneously integrating the boundary
detection results and the patch-based prediction. Particularly, since the
clicked point belongs to the prostate, we first generate the location-prior
maps, with two basic assumptions: (1) a point closer to the clicked point
should be with higher probability to be the prostate voxel, (2) a point
separated by more boundaries to the clicked point, will have lower chance
to be the prostate voxel. We perform the Canny edge detector and obtain
two location-prior maps from horizontal and vertical directions, respec-
tively. Then, the obtained location-prior maps along with the original MR
images are fed into a multi-channel fully convolutional network to con-
duct the patch-based prediction. With the obtained prostate-likelihood
map, we employ a level-set method to achieve the final segmentation.
We evaluate the performance of our method on 22 MR images collected
from 22 different patients, with the manual delineation provided as the
ground truth for evaluation. The experimental results not only show
the promising performance of our method but also demonstrate the one-
point labeling could largely enhance the results when a pure patch-based
prediction fails.

1 Introduction

Prostate cancer is one of the most leading cause of male death [1]. Previous clin-
ical studies demonstrate that the radiotherapy can provide effective treatment
for prostate cancer. During the radiotherapy process, the prostate cancer tissues
should be killed while the normal tissues could not be hurt at the same time.
Therefore, an accurate prostate segmentation is significant from the clinical per-
spective, which indicates that the success of the radiotherapy highly depends on
the accuracy of prostate segmentation. In fact, the segmentation of prostate is
conventionally done by physician with slice-by-slice delineation, which is very
time-consuming.
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In recent years, many automatic prostate segmentation methods have been
proposed with promising results for different modalities, e.g. CT and Ultrasound
[2]. In this paper, we focus on segmentation of MR images. The prostate seg-
mentation is a challenging task due to the low tissue contrast, irregular prostate
motion, as well as large shape variation among different patients. Many previous
attempts were developed to address the aforementioned challenges. Atlas-based
prostate segmentation in MR images is popular in the last decade [3]. Also,
prior information is employed to improve the segmentation performance. Gao
et al. [4] incorporated both local image statistics and learnt shape prior to guide
better segmentation. In [5] the spatial locations of the prostate identified via
spectra are used as the initial ROI for a 2D Active Shape Model (ASM). These
approaches largely depend on the discriminative ability of the hand-crafted fea-
tures, with different types of features to choose and also lots of parameters to
select. Fortuantely, in recent years, deep learning provides a more feasible way
for learning good features. Liao et al. in [6] propose a deep learning framework
using independent subspace analysis to extract useful features for segmentation.

However, the performance of these previous automatic segmentation meth-
ods largely depends on the consistency of sample distributions between training
and testing images. A natural question is whether we could use a simple interac-
tion from physicians to improve the performance. To overcome this issue, several
interactive segmentation methods are presented by performing prostate segmen-
tation with a few interactions from physician, although these methods are not
specifically designed for segmentation in MR images. In [7], physician’s inter-
active labeling information is first required to label a small set of prostate and
non-prostate voxels, and then transductive Lasso is used to select the most dis-
criminative features. Moreover, interactive methods based on prior knowledge of
training data have been proposed: Park et al. [8] used the spatial relationship of
adjacent patches to constrain the specific shapes of organs.
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Fig. 1. Typical boundary image of our training data. The black curves denote the
boundary detected by Canny edge detector. The red curves denote the ground-truth
manual delineation. (Color figure online)
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In this paper, a novel interactive method for MR prostate segmentation is
proposed, by only requiring one-point interaction from physicians. This is moti-
vated by the following two facts. First, for a new MR image, physician focuses
on the region which has a high probability of being prostate, instead of wasting
time on other regions. Second, the borders in image provide more information
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for segmentation than the inside regions. As what Fig. 1 conveys, although the
exact boundary of prostate cannot be detected, the edges in image are useful
to infer the location of prostate. Specifically, we first ask a physician to provide
one point on the MR image, which is probably in the center of prostate. Then,
we use Canny operator to obtain the detected edges. By simultaneously com-
bining detected edges and one-point labeling information, we could obtain two
prostate location-prior maps from the vertical and horizontal directions, respec-
tively, with two basic assumptions: (1) a point closer to the clicked point should
be with higher probability to be prostate voxel, (2) a point separated by more
boundaries to the clicked point will have lower chance to be the prostate voxel.
The location-prior maps are regarded as new channels and added to the original
raw image. We finally train a multi-channel patch-based FCN [9] to perform the
patch-based prediction, and employ the refinement for the final segmentation
results.

2 Our Method

We now first present how to generate the location-prior maps and then illustrate
details of network structure. Finally, we will introduce the result refinement for
generating final segmentations. The pipeline of the whole framework is shown in
Fig. 2.

Generating location-prior maps: For a new MR image, we ask the physician
to roughly find the center of prostate for generating the location-prior maps.
Please note that, we do not mean that the physician must find the true center
of prostate, and the later evaluation also shows the robustness of our method
to different initializations. Then more attention is paid to the regions extend-
ing from the center of prostate, especially those with border information. As
what Fig. 1 conveys, partial edges of prostate can be detected by common edge
detector (i.e., Canny edge detector), which are close to the ground-truth manual
delineation. Also, the borders of rectum and bladder can be detected at the same
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Fig. 2. Illustration of the pipeline of our method.
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Fig. 3. Typical location-prior maps generated from our dataset. Images in first row are
the border images obtained by Canny edge detector, while the second and the third are
the location-prior maps obtained from vertical and horizontal directions, respectively.

time, which are in fact surrounding the prostate region. Although it is infeasible
that all the images could provide relative clear and complete edge of prostate
region, the border of other organs surrounding prostate is generally clear and
can thus provide effective heuristic information for generating the location-prior
maps. Figure 3 shows several typical examples.

For each testing image, we ask the physician to first provide one point to
indicate the location of prostate, which is generally in the central area of prostate.
For the sake of convenience, we take the point as a voxel in the image with exact
coordinates. Please note that, the one point information for training images is
given by calculating the mass center, since the manual delineation of training
images are available during the training stage. Normally, to generate the prior-
location maps, we follow the two basic assumptions: (1) a point closer to the
clicked point should be with higher probability to be the prostate voxel, (2) a
point separated by more boundaries to the clicked point will have lower chance
to be the prostate voxel. After using Canny edge detector to detect all edges in
the MR image, two horizontal and vertical rays are extended out from one-point
voxel (we set the intensity value as 255) with the intensity reducing strategy as
follows for each move: in the location-prior map, the intensity value is reduced by
1, and in particular, when the move crosses through a detected edge by Canny
edge detector, the intensity value is reduced by 10. From each voxel in all lines,
rays are extended with the same intensity reducing strategy as above. Then we
use a median filter to smooth these two calculated images as the location-prior
maps from two different directions, respectively. Finally, the original MR image
along with the two location-prior maps are combined as a multi-channel image
in the subsequent learning process.
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Since different regions of prostate and non-prostate regions do not distribute
uniformly, we sample patches from both prostate and non-prostate regions from
training images as previous methods [10,11]. Typically, we sample patches in
the following ways: (1) densely sampling the patches which locate inside the
prostate region or are centered close to prostate boundary, and (2) sparsely
sampling patches which are far from prostate boundary.

Table 1. Network structure. Neural network structure: To
predict the prostate-likelihood for

Layer | Kernel Pooling | Activation the patches from testing images,
Conv |5 x5 %3 %32 | NA. Relu we design a multi-channel fully
Conv |5 x 5 x 32 % 32| N.A. Relu convolutional network inspired by
Conv | 5 x 5 x 32 x 64 | Max Relu FCN [9]. The traditional FCN [9]
Conv | 4 x 4 x 64 x 64 N.A. Relu %s modified to’ fit the small si?e
Conv |4 X 4 x 64 x 2 | Upsample | Softmax input patches in our task. Specif-

ically, the whole structure is sim-
ilar to traditional FCN [9], but
with fewer layers. Please refer to Table 1 for details. Training a deep neural net-
work will be a challenging task when internal covariance shift problem happens
[12]: the distribution of internal nodes changes when the parameter of previ-
ous layer is updated. Fortunately, batch normalization [12] provides an efficient
way to tackle this issue. To avoid the above issue, we perform batch normal-
ization towards reducing internal covariance shift. Typically, we add one batch
normalization layer to each convolutional layer. We observe that, with batch
normalization [12], the neural network will end up with a poor local optimum.
The Adam [13] optimizer is employed for optimization, where initial learning
rate is set 0.001 and other parameters keep default.

We implement our method with TensorFlow toolbox [14], on a PC with
3.7GHz CPU, 128 GB RAM, and Nvidia Tesla K80 GPU. The number of epoch
is set to 30. The running time for training requires 2 to 3h. Currently, our
method only takes 1-5s to segment a new coming image.

Refinement: It is noteworthy that, in the training stage, for each image we
randomly sample patches from the whole image to train our model, while, in the
testing stage, we use a different sample pattern to choose patches fed into the
neural network: a number of rays in equal degree intervals are extended from the
one-point pixel labeled by physicians, we choose testing patches whose center
point locates at these rays. Their responding segmentation will be integrated
to forming the prostate likelihood map. Experiments show that, in this way, we
can capture more precise boundaries of prostate. Since the patient-specific shape
prior is not available, on the obtained prostate-likelihood maps, we perform the
level-set method [15] to generate the final segmentations.

3 Experimental Results

Setting: Our dataset consists of 22 MR images, scanned from 22 differ-
ent patients. The resolution of each MR image after image preprocessing is
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193 x 152 x 60: the in-plane voxel size is 1 x 1 mm? and the inter-slice thickness
is 1mm. The manual delineation results are available for each image that can
be used as ground truth for evaluation. Meanwhile, for segmenting each testing
image, we will first ask the physician to provide an additional one-point coordi-
nate. We perform 2-fold cross validation on these 22 MR images. For evaluation
metrics, we employ the Dice ratio and centroid distance (CD) along 3 directions
(i.e., lateral x-axis, anterior-posterior y-axis, and superior-inferior z-axis), which
are widely used in previous studies [10,11].

Table 2. Evaluation comparison with FCN. Qualitative results: Figure 4
shows the typical MR images

CD-x (mm) | CD-y (mm) | CD-z (mm) | Dice ratio in our dataset along with
FCN 1.91+2.63 [1.31£0.99 |0.57+0.37 |0.71+0.15  the detected prostate bound-
Our method |0.744+0.48 |0.494+0.44 |0.274+0.19 |0.84 +0.02 aries by our Segmentation

method (green) and manual
rater (red). It is obvious that our method can achieve promising result.

Fig. 4. Typical results. Red curves denote the manual delineation. Green curves denote
the results obtained by our method. (Color figure online)

Figure 5 shows that, with the help of additional one-point information, com-
pared to the traditional fully convolutional network, our method can locate
prostate more precisely with a significant improvement.

Since the point provided from physician is important in our framework, it is
necessary to evaluate how the point coordinates affect the segmentation result.
As what Fig.6 conveys, the coordinates of point truly have effect on the final
segmentation result: the farther away from the center area of prostate, the worse

Fig. 5. Typical results of FCN and our method. Red, green, yellow curves denote
the manual delineation, traditional FCN and our method, respectively. (Color figure
online)
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Fig. 6. Illustration of prostate likelihood maps. Left part demonstrates prostate like-
lihood maps when different point coordinates are given for the same image (i.e., initial
coordinates of point are (62,98)). Right part illustrates the likelihood maps obtained
by our method on prostates with irregular shapes. The red curves denote the manual
delineation. (Color figure online)

the result will be. Besides, we plot a heatmap in Fig. 7 to illustrate the impact.
It is noteworthy that, for this image, the Dice ratio by performing traditional
FCN [9] is 0.85.

Table 3. Comparison with other state-of-the-art Quantative results: Our

methods. method can obtain mean dice
ratio of 0.84 £+ 0.02 which
Coup et al. [16] | Klein et al. [17] | Liao et al. [6] is hlgher than 0.71 + 0.15

Dice ratio | 0.82+0.03 0.83+0.03 0.86 +0.02

achieved by traditional FCN
[9]. Please refer to Fig.7 for
the Dice ratio of each patient. Table2 shows evaluation compared with tra-
ditional FCN [9].
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Fig. 7. (Left) Illustration of the Dice ratio values with changes of coordinates. (Right)
The Dice ratio values for 22 individual patients in our dataset.
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Due to the fact that neither executables nor the datasets of other works
are publicly available, it is difficult for us to directly compare our method with
other MR prostate segmentation method [6,16,17]. Thus, we only cite the results
reported in their publications in Table3 for reference. It is worth noting that
our method can obtain competitive results compared with these state-of-art
methods.

4 Conclusion

In this paper, we propose a novel interactive segmentation method for MR
prostate, which can achieve the promising results with just one-point labeling
from the physician. Specifically, we can make full use of provided interaction
information by simultaneously incorporating the additional point labeling and
detected edges, in order to generate two location-prior maps, from vertical and
horizontal directions, respectively. Upon the obtained location-prior maps along
with the original patches from MR images, a multi-channel patch-based fully con-
volutional network is then used for patch-based prediction. Finally, a level-set
based refinement is performed for final segmentation results. The experimental
results demonstrate the effectiveness of our method.
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