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Abstract Biomarkers have proven powerful for target identification, understand-
ing disease progression, drug safety and treatment responses in drug development.
Recent development of omics technology has offered great opportunities for identi-
fications of omics biomarkers at low cost. Although biomarkers have brought many
promises to drug development, steep challenges arise due to high dimensionality of
data, complexity of technology and lack of full understanding of biology. In this arti-
cle, the application of omics data in drug development will be reviewed. A genome
wide association study (GWAS) will be presented.
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1 Introduction

1.1 Overview of Biomarker in Drug Development

Precision medicine has gained great popularity in the last decade. In 2015, a total
of $215 million investment was budgeted to develop national databases after Presi-
dent Barack Obama announced a ‘Precision Medicine Initiative’. The goals of this
initiative are two-folds: (a) to focus on precise cancer drug development and (b) to
build a database with knowledge of biomarkers that can be used for a broader range
of diseases [4].

Biomarkers are indispensable assets to precisionmedicine and overall drug devel-
opment. A biomarker can be defined as “a characteristic that is objectively measured
and evaluated as an indicator of normal biological processes, pathogenic processes,
or pharmacologic responses to a therapeutic intervention” [3]. Biomarkers have been
identified as important factors to improve probability of success in drug development.
From a recent analysis performed by Thomas et al. 9,985 phase transition trials from
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2006 to 2015 were analyzed. Phase transitions are defined as either a drug candidate
advances into the next phase of development or is suspended by the sponsor. It was
shown that the success rate from Phase I to approval was increased to ~25% when
selection biomarkers were used as compared to ~8% for those programs without [2].

In this article, an overview of the biomarker discovery and omics biomarker
technologies will be presented. The statistical considerations in omics biomarker
analysis will be discussed. A GWAS case study will be presented for illustration of
application of omics technology.

1.2 Classification of Biomarkers

Depending on their functions, biomarkers can be classified into predictive biomark-
ers [8], prognostic biomarkers, pharmacodynamic (PD) biomarkers and surrogate
biomarkers. A predictive biomarker predicts a patient’s clinical response to the treat-
ment he/she received. Predictive biomarkers are of particular interest in precision
medicine due to the fact that a predictive biomarker can be used to identify a patient
population that potentially respond or respond better to the new treatment or avoid
side effects of a treatment. A recent successful story was reported by Tesaro, Inc, in
which there was a study that patients who carried the germline BRCA mutation had
progression-free survival (PFS) of 21 months after receiving niraparib as compared
to 5.5 months in the control group (Tesaro 2017). A prognostic biomarker, however,
can predict a patient’s clinical outcome in a way that is independent of any treat-
ment. An example of a prognostic biomarker can be found in a report by Paik et al. in
which case a 21-gene recurrence score was used to predict breast cancer recurrence
and overall survival in node-negative, tamoxifen-treated breast cancer [15]. A prog-
nostic biomarker may not be used to predict treatment response. However, it may
be helpful to a physician to decide whether chemotherapy should be prescribed for
high risk patients or avoided by low risk patients. Many biomarkers, however, may
be both prognostic and predictive biomarkers in nature, for example, in breast cancer
estrogen receptor (ER) can be used as a prognostic biomarker because ER negative
patients have a higher risk of relapse than ER-positive patients. On the other hand,
the anti-estrogen tamoxifen is more effective in preventing breast cancer recurrences
in ER-positive patients than in ER-negative patients, which constitutes ER as a pre-
dictive biomarker. Predictive biomarkers will be focused in most of the discussions
of this article due to their unique value in patient stratification in clinical trial design.

A PD biomarker can be used to quantify drug modulation and demonstrate princi-
ple of mechanism. Frequently, PD biomarkers are useful tools in early clinical trials
such as phase 1 to provide guidance for dose selection. PD biomarkers are critical
to demonstrate three pillars (target exposure, target binding and target modulation)
in drug discovery. It was shown that trials with successful demonstration of these
three pillars had much high overall successful rate in the subsequent proof of concept
(POC) studies [14].
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A surrogate biomarker may be used as a substitute for a clinical endpoint of
interest. According to the Biomarker Working Group [3], a surrogate endpoint is
defined as “a biomarker intended to substitute for a clinical endpoint. A clinical
investigator uses epidemiological, therapeutic, pathophysiological, or other scientific
evidence to select a surrogate endpoint that is expected to predict clinical benefit,
harm, or lack of benefit or harm”. For example, many imaging markers such as total
brain volume, hippocampal volume, etc. have been used as surrogate markers in
Alzheimer’s disease since those imaging markers seem to correlate well with disease
progression [11]. However, Fleming andDeMets [7] pointed out that correlation does
not automatically guarantee a surrogate status. In some circumstances, a drug may
be efficacious on the marker that correlates well with the clinical endpoint but may
not have any effect on the clinical endpoint of interest.

1.3 Overview of Omics Biomarker and Cutting-Edge
Technologies

Omics technologies refer to the newadvanced technologies that are primarily used for
the global detection of genes (genomics), mRNA (transcriptomics), proteins (pro-
teomics) and metabolites (metabolomics) in a specific biological sample. Omics
biomarkers are typically high-dimensional as illustrated in Fig. 1.

For example, gene expression profile technologies can measure abundance of all
the genes (~25 k) in the transcriptome for each sample, which gives scientists an
unbiased view of the global biological landscape. The omics technologies started
to emerge from the late 20th century when Microarray was first available for gene
profiling of whole transcriptome and whole genome genotyping. The early DNA
microarray consists of a solid glass surface and a collection of DNA fragments,
known as probes or oligos attached to the surface. A probe is a fragment of a section
of a gene that can be used to uniquely hybridize a cDNA or cRNA from a fluo-
rescent molecule labeled target sample. The fluorescent intensity of a probe-target
hybridization is quantified to determine the abundance ofDNAmolecules in the target
sample. The microarray technology has evolved greatly over the last decade; how-
ever, it suffers from major drawback such as dependence on known genes, relatively
low sensitivity and low dynamic range. Early in the 21st century, the next generation
sequencing (NGS) technologies started to show new promises by offering variety of
novel methods for genomics study. Over the last decade, turnaround time and cost
of sequencing have been substantially reduced as a result of the advancement of this
new technology. It was estimated that the cost of sequencing a genome dropped from
$100 million in 2001 to $1,245 in 2015 Wetterstrand [22], and the turnaround time
was shortened fromyears in the late 90 s to days including analysis in 2016 [13]. As of
today, NGS technology has been widely applied to a variety of biomedical research
areas including transcriptome profiling, identification of new RNA splice variant,
genome-wide genetic variants identification, genome-wise epigenetic modification
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Fig. 1 Omics provide paramount view of biological cascade

and DNA methylation profiling etc. In particular, NGS technology is a promising
tool for cancer research, given the “disorder of genome” nature of cancer disease. In
cancer research, NGS has significantly enhanced our ability to conduct comprehen-
sive characterization of cancer genome to identify novel genetic alterations, and has
significantly helped to dissect tumor complexity. Coupling with sophisticated com-
putational tools and algorithms, significant achievements have been accomplished
for breast cancer, ovarian cancer, colorectal cancer, lung cancer, liver cancer, kidney
cancer, head and neck cancer, melanoma, acute myeloid leukemia (AML) etc. [18].

Choice of technologies should be made based on the goal of the study. Unbi-
ased high dimensional technology gives maximum information but may not be an
efficient choice if the pathway under study is relatively well understood. For exam-
ple, in oncology, many times scientists want to focus on a select set of genes, gene
regions, or amplicons that have known associations with cancer, in which case tar-
geted sequencing panel may be used instead of whole exome or whole genome. In
pharmacology, genes from a specific pathway, e.g. JAK-STAT pathway may be of
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interest to study drug modulation for JAK inhibitors, and a Taqman low density array
(TLDA) panel may be sufficient instead of whole transcriptome.

2 Considerations of Statistical Analysis

Analysis of high dimensional omics biomarker needs special statistical considera-
tions. Conventional statistics focus on problems with large number of experimental
units (n) as compared to small number of features or variables (p) measured from
each unit. High dimensional biomarker data are often large in p and small in n. For
example, in GWAS in a clinical trial, about one million single nucleotide polymor-
phisms (SNPs) can be collected using microarray from each subject with the number
of subjects ranging from dozens to hundreds. Many statistical methods have been
developed in analysis of high-dimensional omics data. Typical methods include clus-
tering analysis for pattern discovery, and univariate or multivariate regression and
supervised and unsupervised classification analysis to predict disease status [9]. For
expression based omics data such as gene expression, proteomics, metabolomics
etc., dimension reduction is considered as the first step before subsequent analysis.
Dimension reduction techniques include descriptive statistical approach such as coef-
ficient variation (CV) filtering, by which biomarkers with low CV are removed from
subsequent regression/ANOVA analysis. This approach is particularly useful when
computing power is limited. However, the CV filtering step is typically skipped with
today’s high computational capacity, and instead, a univariate regression analysis is
used for both dimension reduction and inference.

Univariate single biomarker analysis is popular due to the simplicity and interpre-
tation benefit, but is often criticized for being oversimplifying biology by including
only one biomarker in the regression model. Multivariate and multiple regressions
consider multiple biomarkers in a model become more popular for being able to take
into account (1) Complexity of disease mechanism requires an integrated informa-
tion from multiple biomarkers to explain more biological variations. (2) Interactions
between biomarkers cannot be modeled with single biomarker analysis. (3) Corre-
lation and dependency among biomarkers cannot be handled with single biomarker
analysis.

Another challenging area in statistical analysis of high-dimensional omics data
is how to control false discovery rate (FDR), especially with presence of correlation
structure among biomarkers. Family-wise error rate (FWER) adjustment techniques
such as Bonferroni correction calculate the probability of making at least one type
I error, often considered too conservative. FDR based approaches control the prob-
ability of false discoveries from the “positive” findings (rejected null hypotheses).
Therefore, FDR procedures are more powerful than FWER but at the cost of high
type I errors. Common FDR based methods include Benjamini and Hochberg (BH)
method [1] and q value method [19]. The BH method first finds the largest k such
that P(m) ≤ k/m ∗ α, where m stands for m tests and α is a predefined FDR level.
Second, the null hypothesis for each H(i)with i = 1 . . . k are rejected. The q value
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method calculates q values that are considered as quantification of false discovery
rate. Both the qvalue and BH methods allow dependence of testing. However, the
qvalue method may provide more power than BH method, and has been widely used
in many omics studies [19].

For GWAS, determination of genome-wide significance threshold is difficult due
to as many as millions of statistical testing and complex genetic linkage disequilib-
rium (LD) structures. Many procedures have been proposed including Bonferroni,
FDR, Sidak, and permutation etc. however, it was suggested that a p = 5 × 10−8 can
be used for genome wide significance and p = 1 × 10−7 can be used as a suggestive
threshold at practical level [16, 17]. Fadista et al. recently studied different scenarios
and suggested that P-value thresholds should take into account impact of LD thresh-
olds, MAF and ancestry characteristics. Further, they confirmed a p value threshold
of 5 × 10−8 was appropriate for European population with MAF > 5%. However,
they suggested that the P-value threshold needs to be more stringent with European
ancestry with low MAF (3 × 10−8 for MAF > = 1%) due to the increasing number
of variants and the lower LD between less frequent variants [6].

3 A Case Study—A Novel Bootstrap Based Model Average
Approach for GWAS Using Outbred Mice

In a study conducted by Zhang et al. [23], a total of 288 outbred mice were used
to identify genetic polymorphisms that may be associated with phenotypes such as
High-density lipoprotein (HDL), Systolic blood pressure (SBP), Triglyceride (TG),
Glucose (GLU) and Albumin Creatinine Ratio (ACR). Outbred mice are similar to
human population with regard to genetic diversity but offer great accessibility. The
genotypeweremeasured usingAffymetrix®MouseDiversity Array covering ~620 k
SNPs. Population structure was first evaluated by calculating correlations between
SNP pairs within 50 Mb sliding window across the whole genome. A kinship matrix
between the individual animals was calculated based on identity by state among
the 44,428 SNPs using Efficient Mixed-Model Association (EMMA) [10]. Single-
locus association genome scans were performed by ANOVA and EMMA taking into
account population structures. To assess genome-wide significance of the association
statistics, a novel simulation technique was used as illustrated in the following steps:

(1) Each phenotype was transformed using van derWaerden’s scores [5].
(2) Genetic and residual variances of the transformed data for each phenotype were

estimated using EMMA. For each phenotype, 288 trait values were generated by
sampling from a multivariate normal distribution using the mvrnorm function
in R with covariance matrix defined by the estimated kinship.

(3) The observed trait values were reordered based on the rank orders of the simu-
lated values. By doing so, permutation was performed on the original data that
retains the correlation structure implied by the kinship matrix.
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(4) A genome scan using the permuted trait values and recorded the largest –log(p)
scores. This was repeated 100 times. A generalized extreme value distribution
was fitted to these scores and significance thresholds were derived from the
quantiles of this distribution [11].

It is well known that the biological process is a complex system that involves
multiple components. To obtain realistic estimates of effect sizes, multilocus analysis
was performed using forward stepwise regression with bootstrap resampling [21].
First, 100 data sets were generated by sampling with replacement from the 288
animals. Forward stepwise regression on each resampled data set was performed to
obtain a multilocus regression model with 20 SNPs. The choice of 20 is arbitrary
just to ensure that the number of SNPs in the regression model is more than the
number that could significantly influence the phenotype. A resamplemodel inclusion
probabilities (RMIP) for each SNP m was calculated as

RMI Pm = 1

R

R∑

r=1

irm

where R = 100 is the number of resampled data sets irm = 1 if at least one SNP
within ±wMb of SNP m was included in the model of sample r, otherwise irm = 0.
We varied the window size w from ±0.5 Mb to ±4 Mb.

Precision of the locations of theGWAShits was not well understood. A simulation
approach was used in this study to assess the genome-wide average precision of
mapping in this population. The steps are illustrated as follows:

(1) A SNP was randomly selected from the genome and trait values were simulated
assuming that SNP selected was the causal locus.

(2) Simulate an effect size corresponding to the same percentage of total variance
explained as the HDL QTL on Chromosome 1. Phenotype values were sampled
from a multivariate normal distribution using mvrnorm in R with correlation
structure defined by the kinship matrix and the genetic and residual variances
were the same as those estimated for HDL.

(3) The selected SNPwas removed from the data and a genome scan was performed
using EMMA. The distance between the SNPwith highest –log(p) and the target
SNP was recorded.

(4) The process from (2) to (3) was repeated 1000 times, and the distribution of
distances from the peak to the target SNP was computed.

The significance thresholds were evaluated by simulation and unrestricted per-
mutation, and was applied to each of the following three methods for measuring
association: the trend test, ANOVA test and EMMA. The estimated genome-wide
significance thresholds for glucose, HDL cholesterol, systolic blood pressure, and
triglycerides were similar across all of these combinations. Values ranged from 5.12
to 5.90, but no single method or trait was consistently higher or lower than another.

Two highly significant loci associated with HDL were identified from chromo-
some 1 and 5. There seemed to be an association with SBP on proximal Chromosome
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10 at 7 Mb that exceeded the genome-wide 0.05 thresholds for the simple trend and
ANOVA tests, however, it was not significant for the EMMA test. The logACR trait
was the most variable of the five traits two loci seemed to be significant on Chro-
mosome 5 at 147 Mb and Chromosome 11 at 88 Mb using the 0.05 thresholds from
either simple trend test or theANOVA test. The results frommultilocus genome-wide
scans using forward stepwise variable selection on bootstrapped samples showed that
RMIP for the two loci Chromosome 1 at 173 Mb and Chromosome 5 at 126 Mb for
HLD were 100% but the hit on Chromosome 1 at 181 Mb was never included as
an independent QTL in the multilocus analysis, which indicate this method may be
useful for prioritization of GWAS hits.

The simulated precision analysis showed that a GWAS hit in this population with
a large effect, e.g. as large as the effect of the HDL hit on chromosome 1, can be
localized within 1.34 Mb of the greatest association peak. This approach could be
expanded to a range of effect sizes in any genotyped population sample including
human GWA studies.

This study demonstrates that theGWAanalysis employed here can be successfully
applied to outbred mice populations to identify genetic variants underlying complex
traits.

4 Summary

Omics technology and genomics data have proven to be powerful tools in drug
development. Complexity of the biology, technology and high dimensionality of
omics data require extensive attention on novel analytical methodology develop-
ment. Using an example in GWAS, it can be shown that simulation-based method
offers many advantages in regards to prioritizing multiple GWAS hits, determina-
tion of genome wide threshold considering population structure, and estimation of
precision of GWAS hits. With whole-genome sequencing becoming a new norm for
genotyping, transcriptome profiling and many other genomic quantification applica-
tions, additional challenges associated with handling data quality control, interaction
modeling and integration of multiple types of biomarkers will manifold more com-
plex. With collective efforts from the statistical and other analytical communities,
significant progresses have been made and will greatly facilitate using these omics
information to elucidate disease mechanisms.
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