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Part I
Specification and Sampling Acceptance

Tests



Statistical Considerations in Setting
Quality Specification Limits Using
Quality Data

Yi Tsong, Tianhua Wang and Xin Hu

Abstract According to ICH Q6A (Specifications: test procedures and acceptance
criteria for new drug substances and new drug procedures: chemical substances,
(1999) [5]) Guidance, a specification is defined as a list of tests, references to ana-
lytical procedures, and appropriate acceptance criteria, which are numerical limits,
ranges, or other criteria for the tests described. They are usually proposed by the
manufacturers, and subject to the regulatory approval for use. When the acceptance
criteria in product specifications cannot be pre-defined based on prior knowledge,
the conventional approach is to use data of clinical batches collected during the clin-
ical development phases. This interval may be revised with the accumulated data
collected from released batches after drug approval. Dong et al. (J Biopharm Stat
25:317–327, 2015 [1]) discussed the statistical properties of the commonly used
intervals and made some recommendations. However, in reviewing the proposed
intervals, it is often difficult for the regulatory scientists to understand the difference
between the intervals, when some intervals require only pre-specified target propor-
tion of the distribution, and others require confidence level, in addition. Therefore,
we propose to use the same confidence level of 95%, and calibrate each interval to
the true coverage, under the tolerance interval setting. It is easy to show that the pre-
dictive interval and reference interval has the variable true coverage, and increases
with the sample size, while tolerance interval covers the fixed true coverage. Based
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4 Y. Tsong et al.

on our study results, we propose somesome appropriate statistical methods, in setting
product specifications, to better ensure the product quality for the regulation purpose.

Keywords Specification · Prediction interval · Reference interval · Tolerance
interval · Coverage

1 Introduction

The two key documents on specifications are ICH Q6A Guidance which covers
the specifications of chemical products and ICH Q6B Guidance which covers the
specification of biological products. In ICH Q6A and ICH Q6B, the specification is
defined as:

A list of tests, references to analytical procedures acceptance criteria, which are numerical
limits, ranges, or other criteria for the tests described. It establishes the set of criteria, towhich
a drug substance or drug product conforms, to be considered acceptable for the intended
use. ‘Conformance to specification’ means that the drug substance and/or drug product,
when tested according to the listed analytical procedures, will meet the listed acceptance
criteria. Specifications are critical quality standards that are proposed and justified by the
manufacturers, and approved by the regulatory authorities as condition of approval.

For a drug product, specifications may be required for potency assay, impurities,
pH, dissolution, water content and microbial limits, depending on the dosage form
DiFeo, DDIP [6]. Statistical involvement in specifications would be in the determina-
tionof the acceptance criteria. In 2015,Donget al. [1] discussed some statisticalmeth-
ods used or proposed in setting up the criteria based on data collected. In this paper,
we extend the discussion about the properties of the methods in pre-marketing deter-
mination. We also discuss the cases when the post-marketing revision is applicable.

2 Statistical Methods for Setting Specification Criteria

In 2015, Dong et al. [1] discussed the statistical properties of the intervals (includ-
ing reference interval, tolerance interval and Min-Max interval) often used or pro-
posed for setting the specification limits. In this article, we extend the discussion and
comparison of the interval methods. In addition, we also include predictive interval
proposed by Geisser [4] in the discussion. In this article, we will restrict the quality
measurement to normally distributed random variable, and consider the two-sided
specification limits including both the lower and upper limits. The tolerance interval
will be restricted to the intersection of two one-sided intervals. As discussed in Dong
et al. [1], Min-Max interval is defined to target on asymptotic 100% of the distribu-
tion and is very different from the other three intervals. Thus we will not include it
in the discussion of this article.
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Weuse the same symbols and notations as described inDong et al. [1], such that the
testing results X1,X2, . . . ,Xn are i.i.d. random samples from a normal distribution
with mean μ and variance σ2. The desired specification is formulated as an interval,
covering a certain proportion of the population, say 100p% , with 0 < p < 1;
then the symmetric interval

(
μ − Z(1+p)/2σ,μ + Z(1+p)/2σ

)
with Z(1+p)/2 being the

(1 + p)/2 percentile of the standard normal distribution, is the shortest interval to
satisfy the requirement. Since μ and σ are to be estimated from the sample, this
interval

(
μ − Z(1+p)/2σ,μ + Z(1+p)/2σ

)
needs to be estimated using the available

data. Some commonly used methods are predictive interval (PI), reference interval
(RI) and tolerance interval (TI). When the mean and variance are unknown, all three
intervals are represented in the form of

(
X − kS,X + kS

)
, with k defined differently

as shown below for the three intervals.

• Predictive interval (PI): with unknown mean and variance, it is formulated as

(
X − t(1+p)/2.S

√
1 + 1/n,X + t(1+p)/2.S

√
1 + 1/n

)
(1)

with t(1+p)/2 being the 100(1 + p)/2th percentile of t-distributionwith n–1 degrees of
freedom. In other words, PI is

(
X − kS,X + kS

)
with k = k1 = t(1+p)/2.

√
1 + 1/n.

It assures with probability p that the next observed value Xn+1 will fall within the PI.
PI gives an interval with the coverage p of the next observed value Xn+1. But there
is no degrees of assurance how frequently it will happen.

• Reference interval (RI) EMA [2]: it is formulated as

(
X − Z(1+p)/2.S,X + Z(1+p)/2.S

)
(2)

with k = k2 = Z(1+p)/2 in
(
X − k.S,X + k.S

)
for a pre-specified coverage p. RI

is a point estimate of
(
μ − Z(1+p)/2.σ,μ + Z(1+p)/2.σ

)
. Therefore, its asymptotic

coverage is p. Its actual coverage is a function of sample size and confidence level,
as we will discuss in Sect. 4.

• Tolerance Interval (TI), Faulkenberry [3]: tolerance interval actually provides a
1 − α confidence that the interval estimated covers a fraction p of the normal
distribution. An exact form of the interval can be constructed with two one-sided
TIs formulated by

(

X − t1−α/2
(
n − 1,Z(1+p)/2

√
n
)

√
n

.S,X + t1−α/2
(
n − 1,Z(1+p)/2

√
n
)

√
n

.S

)

(3)

with k = k3 = t1−α/2(n−1,Z(1+p)/2
√
n)√

n
, where t1−α/2

(
n − 1,Z(1+p)/2

√
n
)
is the

100(1 − α/2)th percentile of non-central t distribution with the degrees of freedom
n–1 and non-central parameter Z(1+p)/2

√
n.
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From the three intervals introduced above, if we let U ∼ N(0, 1), V ∼ χ2
n−1,

and let the parameter W = (U + δ)/
√
V/(n − 1) ∼ tn−1(δ), then it is clear that

V/(n − 1) → 1 and U/
√
n → 0 in probability. For δ/

√
n = Z(1+p)/2, we have

W/
√
n = 1/

√
V/(n − 1)

(
U/

√
n + δ/

√
n
) → Z(1+p)/2 in probability. Thus, we have

both k1 and k3 converge to k2 = Z(1+p)/2 as n → ∞.

3 Relationships Between Coverage and k of PI, RI and TI

Dong et al. [1] discussed the statistical properties, in terms of the coverage and
width of the resulting interval estimated for a specified coverage p, using the (Min,
Max), reference interval, tolerance interval and confidence limit of the percentiles.
In general, except (Min, Max), all methods discussed converge to the asymptotic
coverage p unbiasedly. Dong et al. [1] also pointed out that both PI and RI are point
estimates with a true coverage much smaller than the pre-specified p. However, for
any given sample size n and k,wemay derive the true coverage p∗ with a pre-specified
confidence level 1–α. This can be easily done by solving p∗ in the equation below

k = t1−α/2
(
n − 1,Z(1+p∗)/2

√
n
)

√
n

(4)

For example, let us consider k = 3 used in RI and correspondingly, the asymptotic
result of PI and TI is (μ − 3σ,μ + 3σ), with the coverage of 99.73%. For a sample
size of 21 observations, with a 95% confidence level, the true coverage p∗ of PI can

be derived by solving p∗ in t(1+0.9973)/2
√
1 + 1/21 = t0.9975

(
20,Z(1+p∗)/2

√
21

)

√
21

and the true

coverage p∗ of the three standard deviation RI
(
X − 3.S,X + 3.S

)
can be derived by

solving p* in
t0.9975

(
20,Z(1+p∗)/2

√
21

)

√
21

= 3.
Table 1 summarizes the TI based coverage p∗ (fixed confidence level 95%), calcu-

lated from the 3-standard deviation RI
(
X − k.S,X + k.S

)
, and the PI with asymp-

totic coverage p = 0.9973 under different sample sizes. It is clear to see that the TI-
based coverage p∗, from the 3-standard deviation RI

(
X − k.S,X + k.S

)
increases

when sample size n increases, and it decreases when sample size n decreases. On
the other hand, for the same asymptotic coverage (for example p = 0.9973) of the
RI, the coefficient k of PI and TI can also be derived for each given sample size n
(Fig. 1) when the confidence level of the TI is fixed to be 95%. Similarly, for the
same asymptotic coverage 0.9973, the k values of PI, RI and TI, for each sample
size n can be calculated. As shown in Fig. 1, k values of PI and TI are large when
n is small, but they gradually reduced to 3, asymptotically. To illustrate the relative
size of the interval, sixty one data points generated from X ∼ N(100, 4) are used
to calculate PI, RI and TI at every increase sample size. The intervals are shown in
Fig. 2.
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Table 1 The TI based Coverage p∗ calculated using Reference Interval
(
X − 3S,X + 3S

)
and

Prediction Interval with asymptotic coverage p = 0.9973 under different sample sizes

Sample Size N Equivalent coverage probability p∗ in the

(100 × p∗%Coverage)/(95%Confidence) Two One-Sided
tolerance interval

Reference Interval (%) Prediction Interval (%)

N = 10 86.44 97.51

N = 15 92.51 97.75

N = 20 94.88 98.01

N = 25 96.10 98.22

N = 30 96.82 98.38

N = 100 98.88 99.12

N = 200 99.24 99.33

Fig. 1 Coefficient k for PI, RI and TI against sample size n. The asymptotic coverage for the RI,
the pre-specified coverage p for the PI, and the coverage for the TI are all 0.9973, the confidence
level for the TI is 95%
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Fig. 2 Simulated Interval of RI, PI and TI against n; data points are simulated from the normal
distribution X ∼ N(100, 4). The asymptotic coverage for the RI, the pre-specified coverage p for
the PI, and the coverage for the TI are all 0.9973, the confidence level for the TI is 95%

Often, the specification limits need to be set with a relatively small sample size
before marketing. There is potential that the limits need to be revised when data
cumulated post-marketing. In this paper, we will focus on the properties of the spec-
ification limits estimated, using the predictive internal (PI), reference interval (RI)
and tolerance interval (TI) with the sample size changes.

4 Specification Determined with Pre-marketing Data

Beforemarketing, the data used for specification determination often consists of only
the observed initial and early stability values from the clinical lots subject to phase III
clinical evaluation. The sample size consists often of stability values observed at 0, 3,
6, 9, 12, 18 and 24 months of the few stability lots. The specifications limits derived
by PI, RI and TI, using 20 and 60 observations are plotted in Fig. 3, and the data
simulated is extended to 200 observations here. For the pre-marketing specification
determination, it is often assumed that all observations are independent, even though
some could be stability data, with no trend. As shown in Fig. 3, the specification
limits are determined with the first 20 observations, using PI, RI and TI. The width
of TI is much larger than PI and RI. The specification limits are then applied to
the observations beyond the first 20 observations, until an updated revision, with an
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Fig. 3 The lower and upper specification limits determined by TI, RI, and PI when 20 observations
are available. The limits are revised when a total of 60 observations or a total of 200 observations
are available

additional 40 observations correlated from post-marketing lots manufactured. The
limits are updated again, with another 140 observations (a total of 200 observations).
As shown in Fig. 3, from the first 20 observations, the specification interval is (93.02,
108.03) by reference interval, (91.69, 109.36) by prediction interval and (89.30,
111.75) by tolerance interval. For the pre-marketing determination, TI gives the lower
and upper specification limits, almost two standard deviations below, and above, the
corresponding limits determined by RI.

5 Specification Determined Updated with Post-marketing
Data

Often times, the scientist may want to revise the specifications using updated data of
marketing lots. In Fig. 3, we show an example of the same product with up to 200
lots, after marketing. The qualities of the lots were not changed from the original 20
values. As a contrast, PI, RI and TI are calculated for the data, up to sixty lots. It
shows clearly, with larger sample size, RI provides a similar interval, but both PI and
TI are narrowed with larger sample size. The change of RI, with the updated data, is
due to the sample variance changes.
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Fig. 4 The lower and upper specification limits determined by TI, RI, and PI when 20 observations
are available. The limits are then revised using the data from post-marketing lots information with
mean shifting to upper values

On the other hand, the post-marketing data may involve with shift and manu-
facturing correction, to change the distribution of the data of the attribute. In these
cases, the data variability will be a combination of variability of attribute, change
and correction. In Fig. 4, the manufactured lots were clearly shifted upward, with
most attribute values above the mean line of the control chart. The mean and vari-
ance of the attribute were different between pre-marketing and post-marketing. The
next forty lotsmanufactured post-marketing, shifted, crossing the upper specification
limit, determined by the first 20 pre-marketing lots. An updated revision, using addi-
tional forty post-marketing lots does not help to control the manufacturing process.
In Fig. 5, we show another manufacturing process, with both mean shift and short
term correction. The products become manufactured asymmetric to the mean. An
updated revision of specification will not replace a better quality control adjustment.

6 Conclusions and Discussion

Prediction interval, reference interval and tolerance interval were often used and pro-
posed to be used as the tool to determine the specification limits of a quality attribute.
Reference interval is probably the one tool used most frequently by chemists and
biologists for its simplicity. It derives from the point estimate of a target asymptotic
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Fig. 5 The lower and upper specification limits determined by TI, RI, and PI when 20 observations
are available. The limits are then revised using the data with post-marketing lots information with
mean shifting and manufacturing correction

coverage. Prediction interval was proposed for the objective to set the limits of qual-
ity specification, by controlling the probability of any single future lot falls, within
such limits. The controlled probability is called the coverage for predictive inter-
val. Tolerance interval provides the approach in order to assure the coverage with a
level of confidence. For the estimation purpose, statisticians will consider tolerance
interval most appropriate. However, the precision only improves with large sample
size, and may not be practically useful for setting a specification limits with a small
sample size.

It is often difficult to evaluate the three interval approaches by comparing their
coverage. In this article, we propose to standardize the confidence level for the three
approaches. Through this standardized confidence level, we may recalculate the true
coverage, and have a better understanding across the different approaches. With the
calibrated true coverage of each approach, we can see that, with the same confidence
level, using reference intervals to determine the specification limits will lead to
larger population coverage, with a large sample size. This property is probably more
appearing for setting specification limits.

In this article, we limited the discussion on normally distributed data. For lognor-
mal distribution, it should be an easy generalization. Other than these distributions,
further research will be developed.
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One-Sided Tolerance Interval Test
for Content Uniformity Using Large
Sample Sizes
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Abstract The purpose of uniformity of dosage unit test is to determine the degree
of uniformity in the amount of drug substance among dosage units in a batch.
Recently, there are several nonparametric methods including the large sample count-
ing approach proposed in European Pharmacopeia 8.1 (EU Option 2). All nonpara-
metric methods specify a maximum number of tablets, of which the contents fall
outside the interval (85%, 115%) of labeling claim (LC) for a given large sample size.
The nonparametric method in European Pharmacopeia requires another maximum
number of tablets, of which the contents fall outside the interval (75%, 125%) LC.We
denote the nonparametric method as the counting test whichwill be used in the rest of
the article. We focus on the comparison of the acceptance probabilities between EU
Option 2 and the parametric two one-sided tolerance intervals (PTIT_matchUSP90)
test. Obviously, a counting test is less efficient than a parametric test in general. Our
simulation study clearly shows that the EU Option 2 is not sensitive to batches with
a large variability in contents which follow a normal distribution with an off-target
mean, a mixture of two normal distributions, or a mixture of a uniform distribution
with small percent of extreme values. The EU Option 2 is not sensitive to the mean
shift of the majority population (97%) from 100% LC to 90% LC. In addition, the
EU Option 2 is not sensitive to low assay values (about 90% LC). The EU Option
2 is over-sensitive to one extreme case: 97% tablets with 100% LC and 3% tablets
with 76% LC.
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1 Introduction

The purpose of the uniformity of dosage unit (UDU) test is to quantify the variability
in the amount of drug substance between dosage units in a batch and to compare
that variability to a corresponding specification [6, 11]. In most cases, the UDU test
corresponds to the amount of drug substance contained within the unit (e.g., tablets
and capsules). In some cases, UDU corresponds to the amount of drug delivered
via a dose metering device component (e.g., metered dose inhalers, or MDIs). In
these cases, the test is referred to as uniformity of delivered dose (UDD). In a few
instances, both the UDU andUDD tests may apply to the same product. For example,
in a dry powder inhaler (DPI) that uses individual capsules or blisters containing the
formulation to be inhaled. In such cases, UDU testing is needed to control for the
variability in the individual capsules or blisters, and UDD testing is needed to control
for the delivered dose ex-device used for inhalation. Content uniformity test is based
on the assay of the individual content of drug substance(s) in a number of dosage
units. Content uniformity test is required by the regulatory authorities, such as the
US Food and Drug Administration, to confirm that the unit dose of a drug product
is consistent with the label claim. ICH guideline Q4B, Annex 6 [5] recommends
that a Pharmacopeia procedure is used to assess the uniformity of dosage units.
For example, the United States Pharmacopoeia (USP) publishes USP <905>, the
harmonized content uniformity test using tolerance interval and indifference zone
concepts [11]. Although USP <905> is not intended for batch releases as it is clearly
declared in the USP pharmacopeia, many pharmaceutical companies propose to
implement USP <905> as the batch release specification. USP <905> consists of
two stages. Ten dosage units (e.g., tablets) are randomly sampled from a batch at the
1st stage and 20 additional units are randomly sampled from a batch at the 2nd stage
if the sample is not accepted at the 1st stage. As a compendia test, the USP <905>,
a harmonized content uniformity test, has been developed for a small fixed sample
size, and it provides no guidance on how to conduct the test at different sample sizes.
There have been several proposals in the literature for content uniformity using large
sample sizes. In [8], Sandell, Vukovinsky, Diener, Hofer, Pazdan, and Timmermans
proposed a one-tiered nonparametric test which counted the number of tablets with
content outside (85%, 115%) LC. The batch complies if no more than c units are
outside (85%, 115%) LC. They also provided values of c for a selection of potential
sample sizes. This proposed counting test had operating characteristic (OC) curves
intersectingwith theOCcurveof theUSP<905>around45%probability of accepting
a batch with the batch mean of 100% LC (see Fig. 3, [8]). This counting test has
been proposed as a batch-release test when a large number of dosage units is tested.

In 2010, Bergum and Vukovinsky proposed a modified version of the counting
test by Sandell et al. They proposed setting the integer part of 0.03 × n equal to c*,
which was the acceptance limit for the maximum number of tablets outside (85%,
115%) LC, here n was the number of dosage units tested (For example, with n =
260, c* is 7). Thus, a batch complies if the number of tablets outside (85%, 115%)
LC is no more than c*.
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In 2012, the Council of Europe published two options for uniformity of dosage
units, using large sample sizes in European Pharmacopoeia 7.7. Option 1 is a para-
metric two-sided tolerance interval based methodmodified with an indifference zone
and counting units outside of (0.75 M, 1.25 M). Here, M is defined by the sample
mean of the tested n dosage units, X̄ , as:M = 98.5% if X̄ < 98.5%,M = 101.5% if X̄
> 101.5%, andM = X̄ otherwise. Option 2 is a nonparametric counting method with
an additional indifference zone concept. Option 2 in the EP 7.7 was intended to revise
the original proposal of large sample UDU test whose OC curve intersects with OC
curve of USP <905> around 45% passing probability [7]. However, mathematical
and statistical methodologies to derive the revised Option 2 were not discussed in
[7]. It would result in an unanswered question how to determine c1 and c2 for sample
sizes not included in Table 2.9.47.2 Council of Europe, [2].

In April 2014, the Council of Europe officially published the corrected version
of EU Option 2 in which the indifference zone is removed for uniformity of dosage
units using large sample sizes in European Pharmacopoeia 8.1 (Council of Europe,
[3]. With Option 2, a batch is accepted if no more than c1 units lie outside (0.85T,
1.15T) and no more than c2 units lie outside (0.75T, 1.25T), where T is defined as
100%. The counts c1 and c2 for the selected sample sizes are given in Table 2.9.47.-2
of EP 8.1. The EP 8.1 provides no explanation how the counts were derived. But the
counts c2 are almost identical to Option 1.

Note that the approaches described earlier provide some assurance that a batch
passing the release test may comply with USP <905>, the content uniformity sam-
pling test using small number of dosage units.

Shen et al. [10] studied the statistical properties of the large sample tests for con-
tent uniformity. They proposed a large sample acceptance sampling method based
on parametric two one-sided tolerance intervals. In particular, this proposed method
was designed to have its OC curve for any given sample size intersect with the OC
curve of the harmonized USP <905> at the acceptance probability of 90% for a batch
whose individual tablets follow normality with the mean of 100% LC. They denoted
this proposedmethod as PTIT_matchUSP90method. They compared the acceptance
probabilities of PTIT_matchUSP90 method with those of the two procedures rec-
ommended in the European Pharmacopeia 7.7 when the unit dose is assumed to be
a continuous random variable, e.g., normal or mixture of normal distributions. They
also showed that with two one-sided tolerance intervals criteria, the proposed test
could accept or reject a batch based on the percentage outside either 85% or 115%LC
regardless the distribution was normal or not. Such statistical property assures high
acceptance probability of the same batch when tested again with USP <905>, a small
sample size test, since OC curve (acceptance probability versus standard deviation)
of PTIT_matchUSP90 for any sample size intersects with OC curve of USP <905>
at 90% of acceptance probability when the batch mean is on the target (100% LC).
OC curves of others [8, 1] that intersect with OC curve of USP <905> at <90% (e.g.,
45%) of acceptance probability provide low assurance that the batchmay be accepted
when subjected to the USP<905> UDU sampling acceptance plan. In this paper, we
provide more details on lack of quality assurance of a batch accepted by the proposed
non-parametric plans when subjected to USP<905> UDU plan.We also demonstrate
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the results through simulation results of comparisons between PTIT_matchUSP90
and EU Option 2 in European Pharmacopoeia 8.1. Some of the data distributions
used in the following comparisons may be extreme in order to make some points.

The structure of this paper is arranged as follows. In Sect. 2, we present the details
of EU Option 2 (the counting method) proposed in the European Pharmacopoeia 8.1
and our proposed PTIT_matchUSP90 method. In Sect. 3, we discuss the simulation
methods to generate the OC curves. In Sect. 4, we compare PTIT_matchUSP90
method and the EU Option 2 for a normal distribution, a mixture of two normal
distributions, and other specific scenarios.

2 Sampling Tests

Although there are several versions of the counting method [8], such as Bergum
et al. [1], Council of Europe [2, 7], and Council of Europe [3], we will focus on
EU Option 2 in the European Pharmacopoeia 8.1 since all counting methods share
certain statistical properties as EU Option 2.

EU Option 2
EU Option 2 is a nonparametric acceptance sampling test defined as follows: With a
sample of n (≥100) units, count the number of individual dosage units with a content
outside (1 ± L1 × 0.01)100 LC and the number of individual dosage units with a
content outside (1 ± L2 × 0.01)100 LC. Here L1 = 15 and L2 = 25. A batch passes
the test for the uniformity of dosage units if

1. The number of individual dosage units outside (1 ± L 1 × 0.01)100 LC is less
than or equal to c1; and

2. The number of individual dosage units outside (1 ± L2 × 0.01)100 LC is less
than or equal to c2.

Here, c1 and c2 are listed in Table 2.9.47.-2 of the European pharmacopoeia 8.1.

PTIT_matchUSP90
Let X̄ be the sample mean and S the sample standard deviation of contents of n
units. Unlike the USP<905> with a two-tier procedure, PTIT_matchUSP90 is a
single tier content uniformity test with large sample size of n. A batch passes the
PTIT_matchUSP90 test if

(
X̄ − K (n)S, X̄ + K (n)S

) ∈ (85%, 115%)LC, where
K(n) is the tolerance factor for the PTIT_matchUSP90 sampling test using n units
and is derived as follows.

The PTIT_matchUSP90 test consists of two one-sided hypothesis tests which
ensure that the proportions of over-filled and under-filled tablets are both under
control. Let p(n) (see Tsong et al. [12]) be the desired proportion of the population
within the interval (85%, 115%) LC for the PTIT_matchUSP90 sampling test using n
units. In general, the acceptance probability of a batchwith a given standard deviation
when themean is 100%LC increases with an increase of n for a fixed coveragewithin
the interval (85%, 115%) LC. Since the PTIT_matchUSP90 test is designed to have
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90% acceptance probability for any n at the standard deviation at which USP <905>
has 90% acceptance probability when the batch mean is 100% LC, then we must
increase p(n) within the interval (85%, 115%) LC. The first one-sided test is to ensure
that the proportion of over-filled tablets (>115%LC) is less than (1−p(n))/2 and the
second one-sided test is to ensure the proportion of under-filled tablets (<85% LC)
is also less than (1−p(n))/2. The first test is carried out by comparing the upper
one-sided tolerance interval with 95% confidence level and (1 + p(n))/2 coverage
with the upper limit 115%LC. More specifically, this one-sided tolerance interval is
in the form of (–∞, X̄ + K(n)S), where the tolerance factor K(n) [4] is solved by
the following equation for given values of μ and σ :

Pr

{[∫ X̄+K (n)S

−∞
n(x : μ, σ)dx

]

≥ 1 + p(n)

2

}

= 0.95

where f (x : μ, σ) = 1√
2πσ

e− (x−μ)2

2σ2 . It can be easily showed that for normally dis-

tributed random variable, K (n) = tn−1,1−α(Z(1+p(n))/2
√
n)/

√
n where Z(1+p(n))/2 is

the 100 (1 + p(n))/2%-th percentile of the standard normal distribution and tv(γ )
denotes the non-central t-distribution with degree of freedom v and non-centrality
parameter γ . If X̄ + K(n)S < 115% LC, it ensures that the percentage of over-filled
tablets is less than (1−p(n))/2. Similarly, if X̄−K(n)S > 85% LC, the second test
ensures that the percentage of under-filled tablets (<85% LC) is less than (1- p(n))/2.

The algorithm to obtain K(n) and p(n) is briefly described below under normality
and the detail should be referred to the reference [12]. First, K(n) is determined
for any n such that the probability of the event of

(
X̄ − K (n)S, X̄ + K (n)S

) ∈
(85%, 115%)LC is 90% at the standard deviation at which the USP <905> has 90%
acceptance probability when the batch mean is 100%LC. Second, p(n) is determined
by satisfying the equation K (n) = tn−1,1−α(Z(1+p(n))/2

√
n)/

√
n. Oncewe haveK(n),

the acceptance probability of a batch with an individual table content as a random
variable can be obtained from Monte Carlo simulations described in the following
Sect. 3.

3 Monte Carlo Simulation Method

Assume that content values, X1, X2, …, Xn, are random samples from some specific
distributions with known parameters. The acceptance probability of a batch pass-
ing any sampling test can be obtained with the following Monte Carlo simulation
procedure:

(1) Generate data, X1, X2, …, Xn from a specific parametric distribution with the
known parameters.

(2) Calculate the sample statistics for the n samples.
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(3) Determine if the sample satisfies the acceptance criteria of a given sampling
test.

(4) Repeat Steps 1 to 3 for a large number of times, say 100,000 times.
(5) Calculate the average rate of accepting a batch for the sampling test.

4 Comparison of Acceptance Probabilities Between EU
Option 2 and PTIT_matchUSP90

Generally speaking, a good sampling plan should be sensitive to variations in con-
tent, such as shifting of batch means, deviation from normal distribution, mixture of
two populations, and out of boundary limit percentage. In this section, we compare
acceptance probabilities between EU Option 2 and PTIT_matchUSP90 for two nor-
mal distributions with on target mean and off target mean, a mixture of two normal
distributions, and three extreme cases with non-normal distributions.

4.1 Comparison of PTIT_matchUSP90 with EU Option 2
for Normal Variables with 100% LCMean when n= 1000

When n= 1000, p(n)= 0.9672 andK(n)= 2.2321. OC curves of PTIT_matchUSP90
(in dashed lines) using 1000 tablets, EU Option 2 (in solid lines) using 1000 tablets,
and the USP <905> (in dashed-dotted line) against the standard deviation for a
batch with mean of 100% LC under normality are plotted in Fig. 1. It can be seen
that the acceptance probability of PTIT_matchUSP90 for a given standard deviation
between 6 and 7 is always slightly smaller than that of EU Option 2 for batches with
100% LC. As standard deviation increases, the difference in acceptance probability
between PTIT_matchUSP90 and EU Option 2 increases. Overall, the OC curve of
PTIT_matchUSP90 for normal variables with the on-target (100%LC)mean is close
to that of EU Option 2. OC curve of PTIT_matchUSP90 for normal variables with
the on-target (100% LC) mean intersects with that of the USP <905> at 90% passing
probability.

4.2 Comparison of PTIT_matchUSP90 with EU Option 2
for Normal Variables with 102% LCMean when n= 1000

Figure 2 compares OC curves of PTIT_matchUSP90 (in dashed lines) using 1000
tablets and EU Option 2 (in solid lines) using 1000 tablets against the standard
deviation for a batch withmean of 102%LC under normality. Clearly, the acceptance
probability of PTIT_matchUSP90 for a given standard deviation between 5.6 and 7
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Fig. 1 Comparison of PTIT_matchUSP90 with European Union option 2 for individual dose con-
tent distributed as independent and identical normal variable with 100% of the label claim when
n = 1000

Fig. 2 Comparison of PTIT_matchUSP90 with European Union option 2 for individual dose con-
tent distributed as independent and identical normal variable with 102% of the label claim when
n = 1000

is always much smaller than that of EU Option 2 for batches with 102% LC. The
acceptance probability of PTIT_matchUSP90 is 0.1; while that of EU Option 2 is
almost 1 when the standard deviation is 6%. Note that OC curve of USP <905> is not
added to Figs. 2 and 3 since USP <905> rewards batches with the off-target mean
due to indifference zone [9].
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Fig. 3 Comparison of PTIT_matchUSP90 with European Union option 2 for individual dose con-
tent distributed as a mixture of two normal variables, the overall mean of the mixture is 104% when
n = 1000

4.3 Comparison of PTIT_matchUSP90 with EU Option 2
for a Mixture of Two Normal Variables with off Target
Mean When n = 1000

To assess the performance of the two methods for data not normally distributed, we
compare the OC curves of a batch having a mixture of two normal distributions with
different mean values and different variances. One variable is normally distributed
with the mean of 100% LC and the standard deviation of 10%. The probability of
being this variable is 0.1. The other variable is also normally distributedwith themean
of 104.4% and the standard deviation of σ 2. The overall mean of the mixture variable
is 104%LC. σ 2 can be determined for a given standard deviation σ . From Fig. 3, it
can be seen that the acceptance probability of PTIT_matchUSP90 is smaller than that
of EU Option 2 for any given standard deviation greater than 4.7 when n = 1,000.
For a standard deviation of 5.3%, the acceptance probability of PTIT_matchUSP90
is almost zero while that of EU Option 2 is slightly smaller than 1. It is apparent that
EU Option 2 is not sensitive to large variances and a mean shift under a mixture of
two normal variables as the PTIT_matchUSP90 is.
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4.4 Comparison of PTIT_matchUSP90 with EU Option 2
for Three Extreme Cases

In order to further illustrate the difference between the two approaches, we also
consider the following three extreme cases with non-normal distributions. In the first
case, the tablet contents are simulated from the mixture of a uniform distribution
and a point distribution, such that the individual tablet content is assumed to be an
independently and identically distributed random variable which, with probability
97%, is uniformly distributed in the interval (85%, 115%) LC, and with a probability
of 3% is equal to 84% LC. The purpose of the first case is to investigate how sensitive
these two sampling tests react to a large variation in contents.

In the second case, the tablet contents are simulated from the mixture of two point
distributions such that individual tablet contents is assumed to be an independently
and identically distributed random variable which is equal to 100% LC and 76%
LC with probability 97% and 3%, respectively. The purpose of the second case is
to investigate how sensitive these two sampling tests respond to a small percent of
extreme observations which leads to a small variability in content although 97% of
individual tablets are taken from a batch with 100% LC.

In the third case, individual tablet contents are again simulated from the mixture
of two point distributions such that individual tablet content is assumed to be an
independently and identically distributed random variable which is equal to 90% LC
and 76% LC with probability 97% and 3%, respectively. With this third case, we
investigate how sensitive the two sampling tests respond to excessive low contents
with low percentage. This kind of batches sometimes can pass the assay criteria if
all samples are 90% LC since the assay criteria are (90%, 110%) LC.

The results of the simulation are described as follow.

Case 1: Mixture of a uniform distribution and one single value
For case 1 data, the acceptance probability of the USP <905> is 3.72% for a sample
size of 30 units. As shown in Table 1, it shows that the EU option 2 has acceptance
probabilities higher than 50% for sample sizes up to 200. The acceptance probability
of EUOption 2 goes down to less than 20% only when the sample size is significantly
larger than 1000. On the other hand, such a batch has 0% probability of acceptance
using the PTIT_macthUSP90 procedure with any sample size greater than 100. It
illustrates that the EU option 2 does not take the content variability into consideration
and falsely accepts such batch for content uniformity.

Cases 2 and 3: Mixture of two distinct points
Case 2 in Table 2 shows that the EU Option 2 has 64% probability of passing a batch
whose individual tablet content is assumed to be an independently and identically
random variable which equals to 100% LC with 97% probability and equals to 76%
LC with 3% probability when the sample size is 100; the PTIT_matchUSP90 has
about 99% probability of passing the batch. When the sample size increases to 150,
the EUOption 2 has 53%probability of passing the batch and the PTIT_matchUSP90
has about 99% probability of passing the batch. As the sample size increases, the



22 M. Shen et al.

Table 1 Acceptance
probabilities of EU option 2
method for mixture of a
uniform distribution and a
point distribution

Sample size, n Acceptance probability of EU option 2

100 0.6458

150 0.5276

200 0.6047

300 0.455

500 0.3509

1000 0.2075

1500 0.0899

probability of passing EU Option 2 decreases; while the probability of passing
PTIT_matchUSP90 is about 99%. This should be the case since a batch is almost
ideal batch with 97% of all values on target. Based on the simulation result for
Case 3 in Table 2, the EU Option 2 has 65% probability of passing the batch whose
individual tablet content is assumed to be an independently and identically random
variable which equals to 90% LC with 97% probability and equals to 76% LC with
3% probability when the sample size is 100; the PTIT_matchUSP90 has only 41.7%
probability of passing the batch. When the sample size increases to 1000, the EU
Option 2 has about 20% probability of passing the batch and the PTIT_matchUSP90
has only about 7% probability of passing the batch. Case 3 illustrates that the EU
Option 2 is not sensitive to low assay value (about 90% LC) since the EU Option 2
has more than 50% probability of passing the batch whose 97% of individual tablets
have 90% LC when a sample size is 150. Furthermore both Case 2 and Case 3 in
Table 2 reveal that the EU Option 2 is over-sensitive to the variation in content from
small percent of extreme observations.

Results in Tables 2 show that for a batch in Case 2 and Case 3, the EU Option 2
is not sensitive to the mean shift of the majority population (97%) from 100% LC to
90% LC. For the same sample size, the batch of 97% tablets with 100% LC content
will be accepted with the same probability as the batch of 97% tablets with 90%
LC using EU Option 2. As also shown in the Tables, EU Option 2 has about 64%
acceptance rate for batches of Case 2 or Case 3 with a sample size of 100.

5 Discussion and Conclusion

It is well understood that content values may not be normally distributed and a non-
parametric content uniformity sampling acceptance plan may need to be developed.
However, when developing a new large sample non-parametric approach based on
USP <905>, we need to provide assurance of proper power to satisfy small sample
compendia method USP <905> applied to samples any time. Any method devel-
oped should not fail the basic requirement that samples on shelf should pass the
USP <905> at any time. In this paper, we reviewed the non-parametric approach
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Table 2 Comparison of the acceptance probabilities between EU option 2 and PTIT_matchUSP90
for two cases with a mixture of two distinct values

Case Sample size, n Acceptance probability

EU Option 2 PTIT_matchUSP90

Case 2: Xi is 100 with 97% probability,
and 76 with 3% probability

100 0.6485 0.9887

150 0.5346 0.9972

200 0.6114 0.9984

300 0.4693 0.9998

500 0.3565 1.0

1000 0.2057 1.0

Case 3: Xi is 90 with 97% probability,
and 76 with 3% probability

100 0.6531 0.417

150 0.5369 0.3414

200 0.6046 0.2833

300 0.4477 0.3177

500 0.3617 0.1848

1000 0.1978 0.0721

proposed in the European pharmacopoeia 8.1 and in the recent literature. Due to lack
of publication of mathematical or statistical derivation of the approach, we can only
evaluate the EU Option 2 in the European pharmacopoeia 8.1 through simulation
study. PTIT_matchUSP90 is developed to assure 90% acceptance probability at the
standard deviation where USP <905> has 90% acceptance probability for batches
with 100% LC mean. The following are the summaries of such evaluations.

Under normality, the acceptance probability of EU option 2 is slightly higher
than that of PTIT_matchUSP90 for batches with a large variability. However, under
normality, EU Option 2 is not sensitive to the off-target mean since the acceptance
probability of EUOption 2 ismuch larger than that of PTIT_matchUSP90 for batches
with large variances. Furthermore, EU Option 2 is not sensitive to large variances
and a mean shift under a mixture of two normal variables as the PTIT_matchUSP90
is.

Given that 97% of tablets have content values falling within the range from 85%
LC to 115% LC, clearly EU Option 2 is not sensitive to a large variability in contents
from a uniform distribution; on other hand, EU Option 2 is oversensitive to a small
percent of extreme observations. As a result, EU Option 2 provides low assurance
to be accepted by USP<905> in the subsequent compendia testing. The EU Option
2 is not sensitive to the mean shift of the majority population (97%) from 100% LC
to 90% LC. In addition, the EU Option 2 is not sensitive to low assay values (about
90% LC). Together, it shows that it may be hard to declare the EU Option 2 is a good
sampling test in the sense of providing high probability assurance of acceptance by
the subsequent USP<905> compendia test. Certainly, the examples simulated are
extremes for any batch with consistent good quality. However, they are useful to
illustrate the potential problems of interpreting a variable acceptance sampling test
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(e.g., tolerance interval method) with an acceptance sampling by attribute test (e.g.,
counting test).

In conclusion, the counting method such as EU Option 2 performs insensitively
for a batch with a large variability and an off target mean even under normality and
a mixture of two normal variables, and performs over-sensitively for a batch with
small percent of low extreme values. For content uniformity assessment, information
such as variability can be lost when EU Option 2 is used.
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Attributes for Analytical Biosimilarity
Assessment
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Abstract FDA recommends a stepwise approach for obtaining the totality-of-the-
evidence for assessing biosimilarity between a proposed biosimilar product and
its corresponding reference biologic product being considered (US Food and Drug
Administration.: Guidance for industry: scientific considerations in demonstrating
biosimilarity to a reference product. US Food and Drug Administration, Silver
Spring, 2015 [6]). The stepwise approach starts with analytical studies for assessing
similarity in critical quality attributes (CQAs), which are relevant to clinical out-
comes. For critical quality attributes that are most relevant to clinical outcomes (Tier
1CQAs), FDArequires equivalence testing to beperformed for similarity assessment,
based on an equivalence acceptance criteria. In practice, the number of Tier 1 CQAs
might be greater than one, and should be nomore than four. The number of biosimilar
lots is often recommended to be no less than 10, and the ratio between the reference
product sample size and biosimilar product sample size is recommended within the
range from 2/3 to 3/2 (US Food and Drug Administration.: Guidance for indus-
try: Statistical Approaches to Evaluate Analytical Similarity. US Food and Drug
Administration, Silver Spring, 2017 [7]). Accordingly, we derive the formulas for
the power calculation for the sample size for analytical similarity assessment based
on the equivalence testing currently used in analytical biosimilar assessment (Tsong
et al. J Biopharm Stat 27:197–205, (2017)[10]).
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1 Introduction

To evaluate the analytical similarity between the proposed biosimilar product and
the US-licensed reference product, the equivalence testing approach for the critical
quantitative quality attributes (CQAs), assigned to Tier 1 in the tiered approach
was developed by [8]. In the equivalence testing, the proposed biosimilar product
is concluded to be highly similar to the US-licensed reference product regarding a
specific Tier 1 quality attribute, if the following two one-sided null hypotheses are
rejected at a nominal level α (e.g., 0.05).

H0 : μT − μR ≤ −1.5σR or μT − μR ≥ 1.5σR (1)

Ha : −1.5σR < μT − μR < 1.5σR

where μT and μR are respectively the population means of the biosimilar product
and reference product, and σR is the standard deviation of the reference product for a
given quality attribute. In practice, the reference variability σR is usually unknown,
and needs to be estimated from the reference sample. In this paper, themargin 1.5σR is
estimated from the values of the reference product lots generated by the applicant, and
is established, assuming it is known and a constant. The hypothesis of (1) is rejected
at a significance level of α when the test statistics T1 > tdf∗,1−α and T2 ≤ −tdf∗,1−α

where

T1 �
(
XT − XR

)
+ 1.5σR

√
S2T
n∗
T
+ S2R

n∗
R

; T2 �
(
XT − XR

)− 1.5σR
√

S2T
n∗
T
+ S2R

n∗
R

(2)

XT andXR are respectively the biosimilar and reference samplemeans; S2T and S
2
R are

respectively the biosimilar and reference sample variances; n∗
R � min(nR, 1.5nT) and

n∗
T � min(nT, 1.5nR) are respectively the adjusted reference product and biosimilar
product sample sizes based on the original reference product and biosimilar product
sample sizes nR and nT. The tdf∗,1−α is the 100α-th percentile of the t-distribution with
the adjusted degrees of freedom df∗. In practice, both the variances and sample sizes
of the test and reference products are different, therefore the sampling distribution
needs to be approximated, using the degrees of freedon df*, determined by Satterth-

waite (1964) approximation as df∗ �
(

σ2T
n∗
T
+ σ2R

n∗
R

)2
/

(
σ4T

(n∗
T)

2
(nT−1)

+ σ4R

(n∗
R)

2
(nR−1)

)
. The

test above is the same as requiring the (1 − 2α)100% two-sided confidence interval

of the mean difference
(
XT − XR

) ± tdf∗,1−α

√
S2T/n

∗
T + S2R/n∗

R to be completely
covered by the equivalence margin (−1.5σR, 1.5σR).

Chow et al. [3] discussed the sample size requirement in analytical studies for
similarity assessment. In that paper, they discussed the sample size determination
approach, which was a function of (i) overall significant level α, (ii) type II error rate
β or power 1−β, (iii) clinically or scientifically meaningful difference μT −μR, and
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(iv) the variability associated with the reference product, assuming that σT � σR.
Their sample size was determined by

nT � f(α, β,μT − μR, k, σR) �
(
Zα + Zβ/2

)2
σ2
R(1 + 1/k)

(δ − |μT − μR|)2 (3)

where k � nT/nR and δ � 1.5σR, for a given reference sample size nR, and selective
appropriate k for achieving a desired power of 1 − β for detecting a meaningful
difference of μT − μR at a prespecificed level of significance α,assuming the true
variability is σR.

Although the sample size adjustment approach proposed by Dong et al. [4] could
be applied, the ratio between the reference product sample size and biosimilar product
sample size nR/nT is usually proposed from 2/3 to 1.5, so that the information from
one product sample won’t dominate the information from the other product sample,
and there is no loss of sample information, since no sample size adjustment will
be needed. In practice, the number of Tier 1 CQAs is limited to be less than four
and the number of biosimilar product lots recommended is often no less than 10.
When there are more than one Tier 1 quality attributes, these Tier 1 quality attributes
are usually correlated with each other, the power of passing multiple equivalence
testings for multiple Tier 1 quality attributes becomes very complicated. The method
proposed by Chow et al. was an approximation approach for the case when there is
only one Tier 1 quality attribute. Furthermore, their approach may lead to very large,
unbalanced sample sizes with less than 10 biosimilar lots. In Sect. 2, we present
the explicit mathematical formula for the power function in the context of the two
one-sided tests procedure, and the sample size requirement of the equivalence testing
for a single Tier 1 quality attribute. In Sect. 3, we present the explicit mathematical
formula for the power function of passing the equivalence testing, and the sample
size requirement for two correlated quality attributes. The conclusion and discussion
will be presented in Sect. 4.

2 Sample Size Requirement for the Equivalence Testing
for a Single Tier 1 Quality Attribute

When there is only a single Tier 1 quality attribute to be considered, the power
function of the hypothesis testing in (1) will be

P1 � P
(
T1 > tdf∗,1−α,T2 < −tdf∗,1−α|μT − μR � θ ∈ (−1.5σR,+1.5σR), σT, σR

)

Wewill present twomathematical formulas below to calculate the power function
P1. The first one is the exact mathematical derivation of the power function as shown
in Theorem 1, and the second one is an approximation method to estimate the power
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function, and it is shown in Theorem 2. The proofs are presented in the Appendix 1
and Appendix 2, respectively.

Theorem 1 Given the two one-sided tests in (1) and test statistics in (2), let A1 �
1.5σR−θ√

σ2T
nT

+
σ2R
nR

−tdf∗,1−α

√√√√
x1σ2T

n∗T(nT−1)
+

x2σ2R
n∗R(nR−1)

σ2T
nT

+
σ2R
nR

and B1 � −1.5σR−θ√
σ2T
nT

+
σ2R
nR

+tdf∗,1−α

√√√√
x1σ2T

n∗T(nT−1)
+

x2σ2R
n∗R(nR−1)

σ2T
nT

+
σ2R
nR

, one

explicit mathematical formula for the power function (denoted by P1) is

P1 � +∞∫
0

+∞∫
0

{[�(A1) − �(B1)] × f(x1, x2)} × I

{
x1σ2T

n∗
T(nT − 1)

+
x2σ2R

n∗
R(nR − 1)

≤ 9σ2R
4t2df∗,1−α

}

dx1dx2

(4)

where f(x1, x2) � f(x1)f(x2) are the joint density of two independent chi-square
distributions with x1 ∼ χ2

nT−1 and x2 ∼ χ2
nR−1. I{.} is the indication function to

restrict the triangle area formed by x1 and x2.

Proof : See Appendix 1.

The above two-dimensional intergration over a triangle area, is the exact mathemat-
ical formula of the power function for the test (1), based on the test statistics (2).
We can also simplify it to a univariate integral over a bounded interval, based on the
Satterthwaite (1964) approximation summarized in theorem 2 below.

Theorem 2 Given the two one-sided tests in (1) and test statistics in (2), let A
′
1 �

1.5σR−θ√
σ2T
nT

+
σ2R
nR

− tdf∗,1−α

√ x
df∗

√√√
√

σ2T
n∗T

+
σ2R
n∗R

σ2T
nT

+
σ2R
nR

and B
′
1 � −1.5σR−θ√

σ2T
nT

+
σ2R
nR

+ tdf∗,1−α

√ x
df∗

√√√
√

σ2T
n∗T

+
σ2R
n∗R

σ2T
nT

+
σ2R
nR

, let the

integration limit L � 9σ2Rdf
∗

4t2df∗ ,1−α

(
σ2T
n∗T

+
σ2R
n∗R

) , one approximated mathematical formula for

the power function (denoted by P
′
1) is

P
′
1 � L∫

0

{
[
�
(
A

′
1

)
− �

(
B

′
1

)]
× 1

2
df∗
2 Γ
(
df∗
2

)x
df∗
2 −1e− x

2

}

dx (5)

Proof : See Appendix 2.

Note that both P1 and P
′
1 are functions of (i) overall significance level α, (ii) clinically

or scientifically meaningful difference μT − μR � θ, and (iii) the ratio of the refer-
ence and biosimilar variability σT/σR, and (iv) sample sizes nR and nT. We compare
the calculated power values, based on the two mathematical formulas (4) and (5),
by using R packages “pracma” for the two dimensional integration and R func-
tion “integrate” for the univariate integration separately, with the relative accuracy
requested being no less than 10−10 in the results. Table 1 shows the numerical results,
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Table 1 The comparison between the values of P1 and P
′
1, assuming the fixed biosimilar sample

size nT � 10, α � 0.05, θ � 1/8σR. Three senarios of the variance ratio σT/σR were investigated

nR σT/σR � 1 σT/σR � 1/
√
2 σT/σR � √

2

P1 P
′
1 P1 P

′
1 P1 P

′
1

7 0.7705007 0.7704235 0.8607125 0.8609354 0.5659709 0.5665486

8 0.8164339 0.8164113 0.9047541 0.9046626 0.6060362 0.6062558

9 0.8489424 0.8489381 0.9324436 0.9326455 0.6362877 0.6363838

10 0.8727395 0.8727387 0.9509593 0.9511171 0.6598435 0.6598981

11 0.8906682 0.8906633 0.9636144 0.9636593 0.6786235 0.6787000

12 0.9045066 0.9044975 0.9723765 0.9723951 0.6939049 0.6940430

13 0.9154084 0.9154021 0.9786049 0.9786212 0.7065559 0.7067804

14 0.9241406 0.9241557 0.9831431 0.9831517 0.7173005 0.7175105

15 0.9312208 0.9312954 0.9865090 0.9865112 0.7264445 0.7266641

using the twomathematical formulas.With the assumption of fixed biosimilar sample
size nT � 10, significant level α � 0.05, and the assumed difference θ � 1/8σR, as
recommended by FDA guidance [10], three senarios of the variability ratio between
reference and biosimilar product were investigated. As expected, the power values
are significantly impacted by the variability ratio σT/σR and the reference sample
size nR. Larger variability of the reference product or larger size of reference prod-
uct would lead to higher power values and lower variability of reference product or
lower size of reference product would lead to lower power values. From Table 1,
the differences between the power values by P1 and P

′
1 are not exceeding 0.00025,

which are very small. In the following part of the paper, we will simply use P
′
1 as the

power function for the equivalence testing for a single Tier 1 quality attribute.
Using the mathematical formulas, we can find out the minimal reference product

sample size required (denote by nmin
R ) for achieving the target power of passing

the equivalence testing. The iterative algorithm is summarized as (i) set the target
power value (for example 80%), (ii) fix the sample size nT, the number of biosimilar
product lots available, (iii) set the other parameters σT/σR, α, and θ, (iv) set the ratio
between the reference product sample size and biosimilar product sample size nR/nT
between 2/3 and 1.5 so that no sample size adjustment will be needed, (v) search the
calculated power values starting from nR � 2nT/3 until the target power is achieved
when nR � nmin

R ∈ [2nT/3, 1.5nT] or until nR > 1.5nT which is the case that no

nmin
R is found in the range [2nT/3, 1.5nT]. Using the above proposed algorithm, we

can obtain the minimal reference sample size, nmin
R required to achieve the target

power, 80% with the constraint that 2nT/3 ≤ nR ≤ 1.5nT,α � 0.05, θ � 1/8σR,
and the actual power under different combinations of nT and σT/σR. The results are
shown in Table 2. From Table 2, it can be seen that nmin

R is smaller than, or equal to,
nT, for each fixed nT, when reference product variability is larger than or equal to the
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Table 2 Values of nmin
R , the minimal sample size required to achieve at least 80% power with the

constraint of 2nT/3 ≤ nR ≤ 1.5nT,α � 0.05, and θ � 1/8σR under different combinations of nT
and σT/σR

(nmin
R , actual power)

nT � 10 nT � 12 nT � 15 nT � 20 nT � 25 nT � 30

σT/σR �
1/

√
2

(7, 0.861) (8, 0.917) (10, 0.969) (14, 0.996) (17, 0.999) (20,
>0.999)

σT/σR �
1

(8, 0.816) (8, 0.850) (10, 0.931) (14, 0.984) (17, 0.996) (20,
0.999)

σT/σR �√
2

nmin
R >

1.5nT

(15, 0.809) (10, 0.815) (14, 0.932) (17, 0.972) (20,
0.989)

biosimilar product variability, and nmin
R is larger than or equal to nT for each fixed

nT when biosimilar product variability is larger than reference product variability.
It is noted that nmin

R may not be available within the range from 2nT/3to 1.5nT for
achieving the target powerwhen biosimilar product variability is larger than reference
product variability.

3 Sample Size Requirement for the Equivalence Testings
for Two Correlated Tier 1 Quality Attributes

Most of times, there aremore than one Tier 1 quality attributes in the biologics license
application (BLA) submitted by the pharmaceutical industry. These attributes are
usually correlated with each other. In the case of two Tier 1 quality attributes, we
assume the two quality attributes in the reference product X1,R and X2,R have the
same correlation coefficient value ρ as for the 2 quality attributes in the test product
X1,T and X2,T. which could be written as

[
X1,R

X2,R

]
∼ MVN

([
μ1,R

μ2,R

]
,

[
σ2
1,R ρσ1,Rσ2,R

ρσ1,Rσ2,R σ2
2,R

])

[
X1,T

X2,T

]
∼ MVN

([
μ1,T

μ2,T

]
,

[
σ2
1,T ρσ1,Tσ2,T

ρσ1,Tσ2,T σ2
2,T

])

Let i � 1, 2 represent the first (i � 1) or the second (i � 2)Tier 1 quality attribute.
We further assume the sample size of either quality attribute is the same in the
reference product or in the test product for the purpose of correlation, that is n1,R �
n2,R � nR and n1,T � n2,T � nT. The two equivalence testings are:

H0i : μi.T − μi.R ≤ −1.5σi.R or μi.T − μi.R ≥ +1.5σi,R (6)
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Hai : −1.5σi.R < μi.T − μi.R < +1.5σi,R

where μi.T and μi.R are the population means for the ith quality attribute for the
biosimilar and reference products respectively, σi.R is the standard deviation of the
reference product for the ith quality attribute. Both tests from (6) are rejected (each
at a significant level α) when the test statistics Ti1 > tdf∗i ,1−α and Ti2 ≤ −tdf∗i ,1−α

where

Ti1 �
(
Xi.T − Xi.R

)
+ 1.5σi.R

√
S2i,T
n∗
T
+

S2i,R
n∗
R

; Ti2 �
(
Xi.T − Xi.R

)− 1.5σi,R
√

S2i.T
n∗
T
+ S21.R

n∗
R

(7)

Xi.T and Xi.R are the biosimilar and reference sample means for the ith quality
attribute respectively; S2i.T and S

2
i.R are the biosimilar and reference sample variances

for the ith quality attribute respectively; tdf∗i ,1−α is the 100α-th percentile of the t-
distributionwith degrees of freedomdf∗i , which can be approximated bySatterthwaite

(1964) approximation as df∗i �
(

σ2i.T
n∗
T
+ σ2i.R

n∗
R

)2
/

(
σ4i.T

(n∗
T)

2
(nT−1)

+ σ4i.R

(n∗
R)

2
(nR−1)

)
.When there

are two quality attributes, the probability of simultaneously rejecting 2 hypothesis
tests in (6) is

P2 � P ∩
i�1,2

(
Ti1 > tdf∗i ,1−α,Ti2 < −tdf∗i ,1−α|μi.T − μi.R � θi ∈ (−1.5σi.R,+1.5σi.R), σi.T, σi.R

)

Note that in the test statistics Ti1 and Ti2, S21,T and S22,T are not independent and
neither are S21,R and S22,R due to the existence of correlation between the two quality
attributes. The joint distribution for some transformations of S21,T and S22,T or S21,R
and S22,R is a distribution called a bivariate Chi-square distribution which was also
discussed in [6]. We also presented the bivariate Chi-square distribution from [6]
here. Given X1,X2, . . . ,XN, they are two dimensional independent random vectors
where

Xj �
[
X1j

X2j

]
∼ MVN

([
θ,

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]])

Let the sample variances of the 2 variables are S21 �
N∑

j�1
(X1j − X1)2/(N − 1)

and S22 �
N∑

j�1
(X2j − X2)2/(N − 1). The joint distribution of u � (N − 1)S21/σ

2
1

and v � (N − 1)S22/σ
2
2 is a bivariate Chi-square distribution with parameters ρ and

m � N − 1, and the density function is
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f2(u, v|ρ,m) �
(
1 − ρ2

)− m
2 (uv)

m−2
2

2m+1
√

πΓ
(
m
2

)
Γ
(
m−1
2

)exp

{

− (u + v)

2
(
1 − ρ2

)

}

×
∞∑

k�0

{
1

k!

(
ρ
√
uv

1 − ρ2

)k(
1 + (−1)k

)Γ
(
k+1
2

)
Γ
(
m−1
2

)

Γ
(
k+m
2

)

}

Theorem 3 let uT � (nT−1)S21,T
σ21,T

∼ χ2
nT−1, vT � (nT−1)S22,T

σ22,T
∼ χ2

nT−1 and uR �
(nR−1)S21,R

σ21,R
∼ χ2

nR−1, vR � (nR−1)S22,R
σ22,R

∼ χ2
nR−1, then (uT, vT) is a bivariate Chi-square

distribution with parameters ρ andm � nT−1; and (uR, vR) is a bivariate Chi-square
distribution with parameters ρ and m � nR − 1.

The proof of Theorem 3 is very straight forward by using the bivariate Chi-square
distribution introduced above. Using the property of Theorem 3, we will present a
mathematical formula below to calculate the power function P2.

Theorem 4 Given the hypotheses in (6) and test statistics in (7), letτ1 �
√

σ21,T
nT

+
σ21,R
nR

;

τ2 �
√

σ22,T
nT

+
σ22,R
nR

; ρ∗ �
(

ρσ1,Tσ2,T
nT

+ ρσ1,Rσ2,R
nR

)
/

√(
σ21,T
nT

+
σ21,R
nR

)(
σ22,T
nT

+
σ22,R
nR

)
and

f1(x1, x2) � 1

2πτ1τ2

√
1−ρ∗2 exp

{
− x21

2τ21(1−ρ∗2)
+ ρ∗x1x2

τ1τ2(1−ρ∗2)
− x22

2τ22(1−ρ∗2)

}
be the joint

distribution of the bi-variate normal distribution with mean zero and variance-

covariance matrix

[
τ21 ρ∗τ1τ2

ρ∗τ1τ2 τ22

]
. Let U � σ21,TuT

n∗
T(nT−1) +

σ21,RuR
n∗
R(nR−1) � λ1uT +μ1uR and

V � σ22,TvT
n∗
T(nT−1) +

σ22,RvR
n∗
R(nR−1) � λ2vT+μ2 vR, the limits LL1 � −1.5σ1,R−θ1+tdf∗1,1−α

√
U,

LL2 � −1.5σ2,R − θ2 + tdf∗2,1−α

√
V and UL1 � 1.5σ1,R − θ1 − tdf∗1,1−α

√
U, UL2 �

1.5σ2,R − θ2 − tdf∗2,1−α

√
V; the integration limits LU � 9σ21.R

4t2
df∗1 ,1−α

and LV � 9σ22.R
4t2

df∗2 ,1−α

. The

mathematical formula for the power P2 is

P2 � LV∫
0

LU∫
0

{
UL1(U)∫
LL1(U)

UL2(V)∫
LL2(V)

f1(x1, x2)dx1dx2

}

×
⎧
⎨

⎩

V
λ2∫
0

U
μ1∫
0
FF(U, uR, vT,V)duRdvT

⎫
⎬

⎭
dUdV

In the integration, F(U, uR, vT,V) is the joint distribution with two bivariate Chi-
square distributions together inside as

FF(U, uR, vT,V) � f2

(
U − μ1uR

λ1
, vT|ρ,m � nT − 1

)

× f2

(
uR,

V − λ2vT
μ2

|ρ,m � nR − 1

)
1

λ1μ2

Proof : See Appendix 3.
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Fig. 1 The relationship between P2 and the correlation coefficient ρ between two Tier 1 quality
attributes. θ1 � σ1.R/8, θ2 � σ2.R/8, σ1.T/σ1.R � σ2.T/σ2.R � 1, α � 0.05

The power P2 is actually the probability of passing both equivalence testings when
there are two Tier 1 quality attributes. It is a function of multiple parameters, includ-
ing biosimilar and reference sample sizes, nT and nR, correlation coefficient between
the two attributes ρ, the variability ratios between the biosimilar and reference prod-
ucts σ1.T/σ1.R and σ2.T/σ2.R, the clinically or scientifically meaningful differences
θ1 � μ1.T −μ1.R and θ2 � μ2.T −μ2.R, and the significance level α for each individ-
ual hypothesis test. Based on theorem 4, the calculation of P2 is a multi-dimensional
intergration. Using the package “mvtnorm”and the “Sparse Grid” (Smolyak, [7]
computational method, one could develop some R programming functions to calcu-
late P2, when parameter values are given. Figure 1 below illustrates the relationship
between P2 and ρ for different sample sizes N � nT � nR under the assumption of
θ1 � σ1R/8, θ2 � σ2R/8, the variability ratios between the biosimilar and reference
products σ1.T/σ1.R � σ2.T/σ2.R � 1, and α � 0.05. From Fig. 1, it can be seen that
(i) P2 increases from 76% to 88%, as ρ increases from 0 to 1 when N � 10. P2
approaches the multiplication of the powers of two independent equivalence testing
when ρ → 0. On the other hand, when ρ → 1, the two attributes are close to be
unique and P2 → P

′
1. (ii) when sample size N is larger (N � 15, 20), the power of

each individual equivalence testing P
′
1 is already large enough (> 0.95), the impact

of ρ on P2 becomes less profound.
By using the mathematical formulas in theorem 5, we can find out the mini-

mal sample size (nmin
R ) required for achieving the target power of passing both

equivalence testings. For two correlated quality attributes, the iterative algorithm of
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Fig. 2 The minimum reference sample size nmin
R required to at least 80% power at different

correlation coefficients. θ1 � σ1.R/8, θ2 � σ2.R/8, σ1.T/σ1.R � σ2.T/σ2.R � 1, α � 0.05

obtaining the minimum sample size nmin
R required is summarized as below: (i) set

the target power value (for example 80%), (ii) fix the sample size nT, the number of
biosimilar product lots available, (iii) set the other parameters σ1.T/σ1.R, σ2.T/σ2.R, α,
θ1 and θ2, (iv) set the ratio between the reference product sample size and biosimilar
product sample size nR/nT between 2/3 and 1.5 so that no sample size adjustment will
be needed, (v) search the calculated power values starting from nR � 2nT/3, until
the target power is achieved when nR � nmin

R ∈ [2nT/3, 1.5nT], or until nR > 1.5nT,

which is the case that no nmin
R , is to be found in the range [2nT/3, 1.5nT]. Figure 2

demonstrates the minimal reference sample size, nmin
R , required to achieve target

power, 80%, at different senarios of biosimilar sample sizes nT. It clearly shows that
with smaller biosimilar sample sizes nT � 10, 12, it requires larger reference sam-
ple size, nR, when correlation coefficient values ρ is smaller; with larger biosimilar
sample sizes nT � 15, 20, there is no impact on P2 to achieve the target power, 80%.
This is also shown in the summarized results in Table 3.
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Table 3 Values of nmin
R , the minimal sample size required to achieve at least 80% power with

the constraint that 2nT/3 ≤ nR ≤ 1.5nT,α � 0.05, θ1 � σ1.R/8, θ2 � σ2.R/8 and σ1.T/σ1.R �
σ2.T/σ2.R � 1 under different combinations of ρ and nT

(nmin
R , actual power)

nT � 10 nT � 12 nT � 15 nT � 20 nT � 25 nT � 30

ρ � 0 (12, 0.82) (10, 0.82) (10, 0.87) (14, 0.97) (17, 0.99) (20, >0.99)

ρ � 0.10 (12, 0.82) (10, 0.82) (10, 0.87) (14, 0.97) (17, 0.99) (20, >0.99)

ρ � 0.30 (11, 0.80) (10, 0.82) (10, 0.87) (14, 0.97) (17, 0.99) (20, >0.99)

ρ � 0.50 (11, 0.81) (9, 0.80) (10, 0.88) (14, 0.97) (17, 0.99) (20, >0.99)

ρ � 0.70 (10, 0.80) (9, 0.81) (10, 0.89) (14, 0.97) (17, 0.99) (20, >0.99)

4 Discussion and Comments

In this paper, we introduce the sparse grid method for the computation of passing two
equivalence testings when two correlated Tier 1 quality attributes are presented. The
sparse grid method is a general numerical discretization technique for multivariate
problems. This approach, first introduced by theRussianmathematician Smolyak [7],
constructs a multidimensional multilevel basis by a special truncation of the tensor
product expansion of a one-dimensional multilevel basis. Figure 3 presents a regular
two-dimensional sparse grid, which is different from Monte Carlo simulation. The
simulation points at each dimension was not random, and each point has a different
weight at averaging the final value. Please see the exact statistical techniques in
Smolyak [7].

Another question is how we should estimate the value of the correlations during
the computation. It is recommended that the correlation coefficient should be esti-
mated from the historical test values or from other biosimilar products which have
the same reference products. On the other hand, as we have seen from this paper,
when the reference and biosimilar sample sizes get larger, the correlation coefficient,
ρ, between the attributes would only slightly impact the power of passing multiple
equivalence testing under the given assumed parameters, as discussed above. It is
always recommended that the sponsors get enough batches of reference and biosim-
ilar products for satisfying the target power. When in some cases, there are three or
more Tier 1 quality attributes, the mathematical formulas and computation become
even more complicated.

In this paper, we theoretically derived the analytical power calculation formula(
P

′
1and P2

)
. The R programing functions could also be introduced to get the power

values efficiently when needed parameters are given. By keeping the biosimilar
sample size nT ≥ 10, one can find the reference sample size nR required to achieve
target power (say 80%or 90%) to pass one or both of the equivalence testing result(s),
using our derived formulas.
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Fig. 3 A regular two-dimensional sparse grid

The current practice of assuming the equivalence are constant despite being a
function of the standard deviation, determined by the study data, without taking the
estimation error into account. The biasness of the current practice were discussed
in Burdict et al. [1], Dong et al. [5], and [2]. Statistical approaches on the param-
eter margin of the statistical equivalence testing have been proposed and disused
in Burdict et al. [1], Dong et al. [5], [2] and Weng et al. [11]. Further sample size
development of the proposed approaches will be presented in a separate paper.

Appendix

1. The proof of Theorem 1.

Proof: Because the power function is

P1 � P

⎛

⎜
⎜
⎝T1 �

(
XT − XR

)
+ 1.5σR√

S2T
n∗
T
+

S2R
n∗
R

> tdf∗,1−α,T2 �
(
XT − XR

)− 1.5σR√
S2T
n∗
T
+

S2R
n∗
R

< −tdf∗,1−α

⎞

⎟
⎟
⎠

(A.1)

given μT − μR � θ ∈ (−1.5σR,+1.5σR), σT, σR. The inequailities in (A.1) is equiv-
alent to
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−1.5σR + tdf∗,1−α

√
S2T
n∗
T

+
S2R
n∗
R

<
(
XT − XR

)
< 1.5σR − tdf∗,1−α

√
S2T
n∗
T

+
S2R
n∗
R

(A.2)

Because Z � (XT−XR−θ)√
σ2T
nT

+
σ2R
nR

∼ N(0, 1), the inequailities in (A.2) is equivalent to

(−1.5σR − θ)
√

σ2T
nT

+ σ2R
nR

+
tdf∗,1−α

√
S2T
n∗
T
+ S2R

n∗
R√

σ2T
nT

+ σ2R
nR

< Z <
(1.5σR − θ)
√

σ2T
nT

+ σ2R
nR

−
tdf∗,1−α

√
S2T
n∗
T
+ S2R

n∗
R√

σ2T
nT

+ σ2R
nR

(A.3)

Let x1 � (nT−1)S2T
σ2T

∼ χ2
nT−1 and x2 � (nR−1)S2R

σ2R
∼ χ2

nR−1, then S2T � x1σ2T
(nT−1) and

S2R � x2σ2R
(nR−1) , the inequalities in (A.3) is

(−1.5σR − θ)
√

σ2T
nT

+
σ2R
nR

+ tdf∗,1−α

√
x1σ2T

n∗
T(nT−1) +

x2σ2R
n∗
R(nR−1)

√
σ2T
nT

+
σ2R
nR

< Z <
(1.5σR − θ)
√

σ2T
nT

+
σ2R
nR

− tdf∗,1−α

√
x1σ2T

n∗
T(nT−1) +

x2σ2R
n∗
R(nR−1)

√
σ2T
nT

+
σ2R
nR

(A.4)

Let A1 � 1.5σR−θ√
σ2T
nT

+
σ2R
nR

− tdf∗,1−α

√√
√√

x1σ2T
n∗T(nT−1)

+
x2σ2R

n∗R(nR−1)

σ2T
nT

+
σ2R
nR

and B1 � −1.5σR−θ√
σ2T
nT

+
σ2R
nR

+

tdf∗,1−α

√√√√
x1σ2T

n∗T(nT−1)
+

x2σ2R
n∗R(nR−1)

σ2T
nT

+
σ2R
nR

,

From (A.4) since B1 < A1, we can get that
x1σ2T

n∗
T(nT−1) +

x2σ2R
n∗
R(nR−1) <

9σ2R
4t2df∗,1−α

, then the

power function (A.1) is

Ex1,x2{P(B1 < Z < A1)}

Given x1 ∼ χ2
nT−1 and x2 ∼ χ2

nR−1, the power function is

P1 � +∞∫
0

+∞∫
0

{[�(A1) − �(B1)] × f(x1, x2)} × I

{
x1σ2T

n∗
T(nT − 1)

+
x2σ2R

n∗
R(nR − 1)

≤ 9σ2R
4t2df∗,1−α

}

dx1dx2

where f(x1, x2) � f(x1)f(x2) is the density function of two independent Chi-square
distributions with x1 ∼ χ2

nT−1 and x2 ∼ χ2
nR−1. I{.} is the indication function to

restrict the triangle area formed by x1 and x2.

2. The proof of Theorem 2.

Proof: By using the Satterthwaite approximation



40 T. Wang et al.

df∗
(
S2T
n∗
T
+ S2R

n∗
R

)

σ2T
n∗
T
+ σ2R

n∗
R

∼ χ2
df∗ (A.5)

Where df∗ �
(

σ2T
n∗
T
+ σ2R

n∗
R

)2
/

(
σ4T

(n∗
T)

2
(nT−1)

+ σ4R

(n∗
R)

2
(nR−1)

)
, let S2 � S2T

n∗
T
+ S2R

n∗
R
and x �

df∗S2
σ2T
n∗T

+
σ2R
n∗R

∼ χ2
df∗ , then the inequalities (A.3) is

(−1.5σR − θ)
√

σ2T
nT

+
σ2R
nR

+ tdf∗,1−α

√
x

df∗

√
σ2T
n∗
T
+

σ2R
n∗
R√

σ2T
nT

+
σ2R
nR

< Z <
(1.5σR − θ)
√

σ2T
nT

+
σ2R
nR

− tdf∗,1−α

√
x

df∗

√
σ2T
n∗
T
+

σ2R
n∗
R√

σ2T
nT

+
σ2R
nR

(A.6)

LetA
′
1 � 1.5σR−θ√

σ2T
nT

+
σ2R
nR

−tdf∗,1−α

√ x
df∗

√√√√
σ2T
n∗T

+
σ2R
n∗R

σ2T
nT

+
σ2R
nR

andB
′
1 � −1.5σR−θ√

σ2T
nT

+
σ2R
nR

+tdf∗,1−α

√ x
df∗

√√√√
σ2T
n∗T

+
σ2R
n∗R

σ2T
nT

+
σ2R
nR

,

using B
′
1 < A

′
1, we can get x < L � 9σ2Rdf

∗

4t2df∗ ,1−α

(
σ2T
n∗T

+
σ2R
n∗R

) , the power function (A.1) is

Ex
{
P(B

′
1 < Z < A

′
1)
}
, which is equivalent to

P
′
1 � L∫

0

{
[
�
(
A

′
1

)
− �

(
B

′
1

)]
× 1

2
df∗
2 Γ
(
df∗
2

)x
df∗
2 −1e− x

2

}

dx

3. The proof of Theorem 4.

Proof: If there are 2 quality attributes that are correlated, assume the 2 quality
attributes in the reference product X1,R and X2,R have the correlation value ρ; the
same as the 2 quality attributes in the test product X1,T and X2,T

[
X1,R

X2,R

]
∼ MVN

([
μ1,R

μ2,R

]
,

[
σ2
1,R ρσ1,Rσ2,R

ρσ1,Rσ2,R σ2
2,R

])

[
X1,T

X2,T

]
∼ MVN

([
μ1,T

μ2,T

]
,

[
σ2
1,T ρσ1,Tσ2,T

ρσ1,Tσ2,T σ2
2,T

])

We further assume the sample size of either quality attribute is the same in the
reference product or in the test product, that is n1,R � n2,R � nR and n1,T � n2,T �
nT, given the hypotheses in (6) and test statistics in (7), the power of passing both
equivalence testings is equivalent to calculate

P

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣

−1.5σ1,R + tdf∗1 ,1−α

√
S2
1,T
n∗
T

+
S2
1,R
n∗
R

−1.5σ2,R + tdf∗2 ,1−α

√
S2
2,T
n∗
T

+
S2
2,R
n∗
R

⎤

⎥⎥
⎦ ≤

[
X1.T − X1.R

X2.T − X2.R

]

≤

⎡

⎢⎢
⎣
+1.5σ1,R − tdf∗1 ,1−α

√
S2
1,T
n∗
T

+
S2
1,R
n∗
R

+1.5σ2,R − tdf∗2 ,1−α

√
S2
2,T
n∗
T

+
S2
2,R
n∗
R

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

(A.9)
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The degrees of freedom df∗1 �
(

σ21,T
n∗
T
+

σ21,R
n∗
R

)2
/

(
σ41,T

(n∗
T)

2
(nT−1)

+
σ41,R

(n∗
R)

2
(nR−1)

)
and

df∗2 �
(

σ22,T
n∗
T
+

σ22,R
n∗
R

)2
/

(
σ41,T

(n∗
T)

2
(nT−1)

+
σ41,R

(n∗
R)

2
(nR−1)

)
. Let uT � (nT−1)S21,T

σ21,T
∼ χ2

nT−1,

vT � (nT−1)S22,T
σ22,T

∼ χ2
nT−1 and uR � (nR−1)S21,R

σ21,R
∼ χ2

nR−1, vR � (nR−1)S22,R
σ22,R

∼ χ2
nR−1,

and θ1 � μ1,T − μ1,R, θ2 � μ2,T − μ2,R. The inequailities in (A.9) is equivalent to

⎡

⎢⎢
⎣

−1.5σ1,R − θ1 + tdf∗1,1−α

√
σ2
1,TuT

n∗
T(nT−1) +

σ2
1,RuR

n∗
R(nR−1)

−1.5σ2,R − θ2 + tdf∗2,1−α

√
σ2
2,TvT

n∗
T(nT−1) +

σ2
2,RvR

n∗
R(nR−1)

⎤

⎥⎥
⎦ ≤ B

≤

⎡

⎢⎢
⎣
+1.5σ1,R − θ1 − tdf∗1,1−α

√
σ2
1,TuT

n∗
T(nT−1) +

σ2
1,RuR

n∗
R(nR−1)

+1.5σ2,R − θ2 − tdf∗2,1−α

√
σ2
2,TvT

n∗
T(nT−1) +

σ2
2,RvR

n∗
R(nR−1)

⎤

⎥⎥
⎦ (A.10)

where B is a bi-variate normal distribution with mean 0 and variance-covariance
matrix

� �
⎡

⎣
σ2
1,T
nT

+
σ2
1,R
nR

ρσ1,Tσ2,T
nT

+
ρσ1,Rσ2,R
nR

ρσ1,Tσ2,T
nT

+
ρσ1,Rσ2,R
nR

σ2
2,T
nT

+
σ2
2,R
nR

⎤

⎦

let τ1 �
√

σ21,T
nT

+
σ21,R
nR

; τ2 �
√

σ22,T
nT

+
σ22,R
nR

; ρ∗ � ρσ1,Tσ2,T
nT

+

ρσ1,Rσ2,R
nR

/

√(
σ21,T
nT

+
σ21,R
nR

)(
σ22,T
nT

+
σ22,R
nR

)
, then B is a bi-variate normal distribution

with mean 0 and variance-covariance matrix

[
τ21 ρ∗τ1τ2

ρ∗τ1τ2 τ22

]
. The power function

would be

P2 � EuT,vT,uR,vR{P(Inequality(A. 10)Holds | uT, vT, uR, vR)}

Let U � σ21,TuT
n∗
T(nT−1) +

σ21,RuR
n∗
R(nR−1) ≤ 9σ21.R

4t2
df∗1 ,1−α

and V � σ22,TvT
n∗
T(nT−1) +

σ22,RvR
n∗
R(nR−1) ≤ 9σ22.R

4t2
df∗2 ,1−α

by the inequalities (A.10), the limits LL1 � −1.5σ1,R − θ1 + tdf∗1,1−α

√
U, LL2 �

−1.5σ2,R − θ2 + tdf∗2,1−α

√
V and UL1 � 1.5σ1,R − θ1 − tdf∗1,1−α

√
U, UL2 � 1.5σ2,R −

θ2 − tdf∗2,1−α

√
V; then

P2 � EU,V

{
UL1∫
LL1

UL2∫
LL2

1

2πτ1τ2
√
1 − ρ∗2 exp

{

− x21
2τ21
(
1 − ρ∗2) +

ρ∗x1x2
τ1τ2

(
1 − ρ∗2) − x22

2τ22
(
1 − ρ∗2)

}

dx1dx2

}

The problem remains to find the joint distribution ofU andV. Please note that from
theorem 4, F(uT, uR, vT, vR) � f2(uT, vT) ∗ f2(uR, vR) where f2 is the joint density
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of a bivariate chi-square distribution. Let
σ21,TuT

n∗
T(nT−1) +

σ21,RuR
n∗
R(nR−1) � λ1uT +μ1uR � U and

σ22,TvT
n∗
T(nT−1) +

σ22,RvR
n∗
R(nR−1) � λ2vT + μ2vR � V, and we want to get the joint distribution of

U and V. The Jacobian transformation matrix is

Jacobian

[(
uT � U − μ1uR

λ1
, uR, vT, vR � V − λ2vT

μ2

)
→ (U, uR, vT,V)

]
� 1

λ1μ2

Thus

FF(U, uR, vT,V) � F

(
U − μ1uR

λ1
, uR, vT,

V − λ2vT
μ2

)
1

λ1μ2

� f2

(
U − μ1uR

λ1
, vT|m � nT − 1

)
∗ f2

(
uR,

V − λ2vT
μ2

|m � nR − 1

)
1

λ1μ2

We then integrate out uR, vT, we can get the joint distribution of U and V

F2(U,V) �
V
λ2∫
0

U
μ1∫
0
FF(U, uR, vT,V)duRdvT

We can get the power function as

P2 �
9σ22.R

4t2
df∗2 ,1−α

∫
0

9σ21.R
4t2
df∗1 ,1−α

∫
0

{
UL1(U)∫
LL1(U)

UL2(V)∫
LL2(V)

f1(x1, x2)dx1dx2

}
× F2(U,V)dUdV

where f1(x1, x2) � 1

2πτ1τ2

√
1−ρ∗2 exp

{
− x21

2τ21(1−ρ∗2)
+ ρ∗x1x2

τ1τ2(1−ρ∗2)
− x22

2τ22(1−ρ∗2)

}
be

the joint distribution of the bi-variate normal distribution with mean zero and

variance-covariance matrix

[
τ21 ρ∗τ1τ2

ρ∗τ1τ2 τ22

]
.
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A Probability Based Equivalence Test
of NIR Versus HPLC Analytical Methods
in a Continuous Manufacturing Process
Validation Study

Areti Manola, Steven Novick, Jyh-Ming Shoung and Stan Altan

Abstract Continuous manufacturing processes rely on Process Analytical Tech-
nology (PAT) and chemometric Near Infrared (NIR) technologies to carry out real
time release testing (RTRt). A critical requirement for this purpose is to establish
the equivalence between the NIR analytical method with the gold standard analyt-
ical method, say an HPLC method. We propose a variance components model that
acknowledges the inherent blocking across individual dosage units through a paired
comparison. Variance terms corresponding to dosage unit, location effects due to a
stratified sampling plan and heterogeneous residual terms provide estimates of the
total measurement uncertainty in both methods free of dosage unit effects. Bayesian
posterior parameter estimates and the posterior predictive distribution are used to
assess the performance of the NIR method in relation to the HPLC gold standard
method as a measure of equivalence, referred to as a Relative Performance Index
(Rel_Pfm). An acceptably high probability of a Rel_Pfm of 1 (or greater) is pro-
posed as the essential requirement for establishing equivalence (or superiority).

Keywords Continuous manufacture · Bayesian mixed model · Equivalence test ·
Comparison of analytical methods

1 Introduction

Traditionally, pharmaceutical manufacturing has been carried out using the stan-
dard batch process. This involves multiple steps as well as downstream end-product
quality testing. Product is produced in discrete, fixed sizes, irrespective of market
demand. It is a method of manufacture that has changed little over the past half
century or longer. In contrast, continuous manufacturing (CM) works in a virtu-
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ally uninterrupted, sequential process with little delay between operation steps, no
downtime with product sitting in queue and real-time quality testing throughout the
process [2]. Work in process-inventory control is essentially eliminated. CM also
allows quality testing to be performed during the production process and real-time
decisions to be made based on the resulting data. This means that virtually all end-
product testing can be eliminated, and the benefits accrued to the manufacturer, and
ultimately, the consumer, are enormous. To achieve the goal of Real Time Release
testing (RTRt), Process Analytical Testing (PAT) technologies, based on chemomet-
ric near infrared (NIR) methods, must be validated, and shown sufficiently accurate,
and precise. Our objective here is to discuss the connections between experimental
design, modeling, and inferential methodology in order to verify the comparability
between an NIR analytical method, with the gold standard HPLC analytical method,
as part of Stage 2 Process Validation. Equivalence of the two methods is related to
the probability of falling within a desirable interval of the true, but unknown value
of the analyte, accounting for incipient tablet-to-tablet variation.

2 HPLC—NIR Calibration During Process Design

It is outside the scope of this paper to discuss the details of how an NIR calibra-
tion model is developed during the Process Design stage. The current design, with
3 concentration levels at target tablet weight, is sufficient to establish the calibration
curve, using a Partial Least Squares (PLS) methodology. The 3-point design would
be the minimal design for establishing linearity and testing for curvature. Multivari-
ate performance measures of the PLS model are useful for tracking the robustness
of the model over the lifecycle of the product. Following the establishment of the
calibration model, a Gage R&R design can be used to assess analytical performance
and comparability with the HPLC method during the early stages of development.
Any experimental design used needs to acknowledge the blocking at the individ-
ual tablet level, hence leading to a paired comparison where the natural pairing of
NIR versus HPLC at the tablet level is the block. This is a consequence of the NIR
methodology, which allows nondestructive testing. The natural pairing and block-
ing at the tablet level permits a straightforward comparison, and makes possible a
major paradigm shift, from comparisons at the method mean level, to the level of the
tablet. In subsequent sections, wewill propose a Relative Performance Index,which
exploits the natural pairing of NIR to HPLC at the tablet level, by eliminating the
Tablet variance component. The paired design permits probability assessment of an
individual analytical determination (i.e. tablet content), falling within a pre-specified
limit of its true value for both NIR and HPLCmethods. The probability assessment is
carried out through a Bayesian posterior predictive calculation. It is important for the
statistical model to acknowledge HPLC analytical run design. How best to include
the effect of multiple HPLC runs in the comparison with the NIR method which has
no multiple run effects, is an open research question.
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The proposed method will be compared with a common equivalence measure
at the method–mean level, the Two One-Sided Test [7] or TOST. The TOST test
proposes the following null and alternative hypotheses:

H0: δ < �L or δ > �U

versus
H1: �L ≤ δ ≤ �U

where �L and �U are the lower and upper bounds establishing the criterion for
equivalence. Typically, |�L| = |�U| and δ represents the difference between the
method means. One can understand δ as an estimate of the bias if a gold standard
method is being used. The equivalence test is conducted by performing the two
following tests separately:

H0,1: δ < �L

H1,1: δ ≥ �L

and
H0,2: δ > �U

H1,2: δ ≤ �U.
If p1 and p2 are the p-values for the two tests, the overall p-value is max(p1, p2).

Equivalence is claimed if the 100(1−2α)% confidence interval for δ is completely
contained within the interval (�L, �U).

3 Relative Performance Index

Weassume theHPLCmethod is the gold standardmethod and express the probability
of a single analytical determination y from the HPLC (or NIR) method falling within
some interval � of the true value μ as follows:

Pr _H = P(|y − μ|) ≤ �|HPLC) = Φ

(
Δ

σHPLC

)
− Φ

( −Δ

σHPLC

)

Pr _H = P(|y − μ|) ≤ �|NIR) = Φ

(
Δ − bias

σN I R

)
− Φ

(−Δ − bias

σN I R

)

where �(•) is the CDF of standard normal distribution and bias is the difference
between the gold standard HPLC method and the NIR method in relation to their
expected values, E(yNIR) = μ + bias.

We define a Relative Performance Index (Rel_Pfm) as follows:

Rel_Pfm = Pr _N/Pr _H

The practical interpretation of the relative performance index arises from its con-
struction. It is the ratio of two probabilities. The numerator is the probability of a
random analytical determination, falling within � units of its true value by the NIR
method. The denominator is the corresponding probability by the HPLC method. A
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HPLCPr_

NIRPr_

Fig. 1 OC curves of the probability of falling within delta

value of 1 or higher implies that the NIR method is comparable to, or superior to,
the HPLC method.

4 Method Comparison Using the Relative Performance
Index

Given our definition for the relative performance index, and values for delta, bias
andmethod variability, it is straightforward to calculate OC curves of the probability
of falling within delta units of the true value for both methods. An example of such
an OC curve is given in Fig. 1.

Another interesting feature is that it is possible to plot the relative performance
index across increasing values of delta as shown in Fig. 2.

We propose that the criterion for equivalence be defined as Pr(Rel_Pfm≥ 1)≥ PC,
where PC is a desired probability level. The choice of PC is a scientific judgment call.
We propose that a PC = 80% is a reasonable criterion, based on common power
considerations in designing experiments. In the following section, we present a case
study providing details on the practical utility of the proposed equivalence criterion.

5 Case Study

5.1 Data Description

The case study consists of a single CM batch sampled at 20 locations chosen equi-
spaced throughout the CM run. At each location, 3 tablets were sampled and tested
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Fig. 2 Relative performance index across increasing values of delta

Fig. 3 Case study–NIR and HPLC methods results across 20 locations

by both NIR and HPLC methods. Figure 3 displays the results of the two methods
for each tablet, connected by a line.
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Table 1 REML parameter estimates and confidence intervals

Effect Parameter Estimate (se) 95% confidence interval

Lower Upper

Fixed HPLC 100.01 (0.10) 99.81 100.32

NIR 100.18 (0.05) 100.08 100.29

Biasa (NIR-HPLC) 0.17 (0.09) −0.02 0.36

Random (SD) Tablet 0.35 0.26 0.53

Residual (HPLC) 0.70 0.58 0.86

Residual (NIR) 0.20 0.11 1.04

a90% confidence limit for bias = (0.01, 0.33)

5.2 Statistical Model and Results

The following variance components model was used to describe the data:

y j (i),k = Mk + Li + Tj (i) + ε j (i),k

where yj(i),k = assay of jth tablet (j = 1, 2, 3) from ith location (i = 1, 2, …, 20) from
kth method (k = 1, 2 for HPLC, NIR),

Mk = overall mean from kth method, MNIR, MHPLC,
Li = random effect of ith location: ~ N(0, σ 2

L ),
Tj(i) = random effect of jth tablet from ith location: ~ N(0, σ 2

T ),
εj(i),k = residual error from kth method: ~ N(0, σ 2

εk).
A preliminary exploratory analysis showed no location effects, therefore the random
effect of location was dropped from the final model. The results of the analysis
are summarized in Table 1, where the REML parameter estimates and their 95%
confidence intervals are given.

A Bayesian simulation of the posterior parameters distribution based on the previ-
ous hierarchical model, was carried out, using JAGS [4, 5] with the following vague
priors:

MHPLC, MNIR ~ N(μ = 100, σ = 10)
σTablet ~ U(0, 5)
σHPLC, σNIR ~ U(0, 5).

For the simulation run, 60,000 posterior samples were generated, with 3 chains,
following a burn-in of 20,000 simulations and a thinning rate of 25. The results of
the Bayesian simulation are given in Table 2. Other prior distributions appropriate
for sigma are the half-Cauchy and log normal [3].

The normal Density plots of HPLC andNIRmethods centered on their true means
are shown in Fig. 4, given the estimated mean bias and median of sigmas from the
Bayesian posterior predictive distributions.

OC Curves of probability of falling within � units of the true value given the
estimated mean bias and median of sigmas for HPLC and NIR methods are shown
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Table 2 Bayesian parameter estimates and credible limits

Effect Parameter Mean
(Median)

95% credible interval

Lower Upper

Fixed HPLC 100.02
(100.02)

99.81 100.22

NIR 100.19
(100.19)

100.08 100.29

Biasa (NIR-HPLC) 0.17 (0.17) −0.02 0.36

Random (SD scale) Tablet 0.36 (0.36) 0.21 0.47

Residual (HPLC) 0.72 (0.71) 0.59 0.89

Residual (NIR) 0.19 (0.20) 0.02 0.37

a90% credible interval for bias = (0.011, 0.33)

Fig. 4 Normal density plots of HPLC and NIR methods

in Fig. 5. Relative Performance Index across delta values given estimated mean bias
and median of sigmas for HPLC and NIR methods are shown in Fig. 6.

Summary Table 3 lists the posterior distribution of Relative Performance Index
with various values of �.

The comparison of the TOST and Relative Performance Index (Rel_Pfm) for
assessing method equivalence is given in Table 4.

It’s clear from the above table that the Rel_Pfm can lead to different conclusions,
with respect to the TOST. It’s easy to see how this can happen, since the two tests
are fundamentally different in their definition of equivalency. The TOST test places
a confidence bound on the closeness of MHPLC and MNIR, and the REL_PFM is
measuring the closeness of yHPLC to mu and yNIR to the true value. In practical terms,
theREL_PFM is amoremeaningful test to the practitioner, since it compares directly,
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Fig. 5 Probability of falling within � units of the true value for HPLC and NIR methods

Fig. 6 Relative performance index across delta values for HPLC and NIR methods

the performance of random analytical determinations and their relative outcomes,
rather than a mean value, repeated over a long series of trials.

In the clinical literature, the concepts of average bioequivalence (ABE) and indi-
vidual bioequivalence (IBE) [1] are distinguished in relation to “prescribability”
and “switchability”, respectively. These concepts describe the physician’s ability to
interchange patient dosing between two drug products. Corresponding distinctions
have not been formulated with respect to analytical method comparisons or bridging
studies [8], but we believe that the method and statistic presented in this article can
be understood as the analytical method equivalent of individual bioequivalence with
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Table 3 Relative performance index versus �

� Mean Median Maximum Minimum Pr(Rel_Pfm ≥ 1)

0.05 2.21 2.01 24.06 0.00 0.819

0.10 2.25 2.05 12.13 0.00 0.849

0.15 2.29 2.11 8.46 0.00 0.890

0.20 2.31 2.15 6.64 0.00 0.929

0.25 2.28 2.17 5.78 0.00 0.959

0.30 2.21 2.15 4.91 0.00 0.980

0.35 2.11 2.10 4.24 0.00 0.991

0.40 2.01 2.02 3.72 0.00 0.996

0.45 1.90 1.91 3.33 0.00 0.999

0.50 1.79 1.80 3.01 0.00 0.999

0.55 1.70 1.70 2.75 0.86 >0.999

0.60 1.61 1.61 2.54 0.89 >0.999

0.65 1.53 1.53 2.36 0.92 >0.999

0.70 1.47 1.46 2.21 0.95 >0.999

0.75 1.41 1.40 2.08 0.97 >0.999

0.80 1.35 1.34 1.97 0.99 >0.999

0.85 1.31 1.30 1.87 1.01 1.000

0.90 1.26 1.26 1.79 1.02 1.000

0.95 1.23 1.22 1.71 1.02 1.000

1.00 1.20 1.19 1.64 1.02 1.000

Table 4 Comparison of TOST with the relative performance index

Test Criterion � = 0.25 � = 0.50

TOST 90% credible interval
of bias

90%CI = (0.01,
0.33)

90%CI = (0.01,
0.33)

Decision Fail Pass

Relative performance
index

Pr(Rel_Pfm≥1)≥0.80 Pr(Rel_Pfm ≥ 1) =
0.96

Pr(Rel_Pfm ≥ 1) =
1.0

Decision Pass Pass

respect to a random sample preparation. This would be particularly important in the
context of stability studies when a method change is being contemplated in the mid-
dle of the study. This is a topic that should attract greater discussion by nonclinical
statisticians engaged in bridging studies and analytical method comparisons.
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6 Summary

Continuous Manufacture is being actively encouraged by the FDA. Pharmaceuti-
cal companies are now engaged in weighing its costs/benefits, and several products
have received FDA approval to market a product with an associated continuous
manufacturing process. Continuous Manufacture offers many scientific and busi-
ness advantages, but requires PAT analytical methodologies that have been properly
validated. We have shown one example of how to establish equivalence of an NIR
method to the gold standard HPLC method, through a Relative Performance Index,
evaluated through Bayesian calculations. The approach is made possible because
tablet dispersion can be removed orthogonally, given the paired comparison design.
The proposed relative performance index provides a natural interpretation of method
performance. We would expect that the REL_PFM would perform well over a wide
range of concentrations, as indicated by linearity studies of both analytical methods.
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A Further Look at the Current
Equivalence Test for Analytical
Similarity Assessment

Neal Thomas and Aili Cheng

Abstract Establishing analytical similarity is the foundation of biosimilar product
development. Although there is no guidance on how to evaluate analytical data for
similarity, the US Food andDrugAdministration (FDA) recently suggested an equiv-
alence test on the mean difference between innovator and the biosimilar product as
the statistical similarity assessment for Tier 1 quality attributes (QAs), defined as the
QAs that are directly related to the mechanism of action. However, the mathematical
derivation and simulation work presented in this paper shows that the type I error
is typically increased in most realistic settings when an estimate of sigma is used
for the equivalence margin. This error cannot be improved by increasing sample
size. The impacts of the constant c on type I error and sample size adjustment in the
imbalanced situation are discussed, as well.

Keywords Equivalence testing · Type I error rate · Sample size adjustment

1 Introduction

Biosimilar development has recently become a fast growing area. As of June 2017,
Europe has 31 approved biosimilars [1], and US has 5 approved [2]. The FDA defines
biosimilar as the biological product that ‘is highly similar to the reference product
notwithstanding minor differences in clinically inactive components,’ and that ‘there
are no clinically meaningful differences between the biological product and the ref-
erence product in terms of the safety, purity, and potency of the product.’” [3]. The
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Fig. 1 The comparison of the development pathways among standard biologics, small molecule
generics and biosimilars

European Medicine Agency (EMA) defines biosimilars as “a biopharmaceutical
that contains a version of the active substance of an already authorized biophar-
maceutical” [4]. In spite of slightly different definitions, both require similarity to
be established based on quality, biological activity, safety, and efficacy. The key
is to prove the biosimilar product has no meaningful differences from the already
authorized reference product in safety, purity, and efficacy.

It is important to know that for biosimilars the goal is not to reestablish the safety
and efficacy. Instead, it is to demonstrate similarity. Therefore, the development path-
way is different from the standard biological product and the small molecule generic
drug in two aspects [5–8]: (1) the clinical portion of the development is relatively
small; (2) the analytical testing becomes the foundation of the similarity develop-
ment. The FDA not only requires extensive analytical testing, but also recommends
formal statistical assessment (Fig. 1).

In the following two sections, the statistical approach recommended by the FDA
will be described followed by a detailed assessment on the equivalence test that was
recommended by the FDA for the Tier 1 Quality Attributes (QAs).

2 FDA’s Tiered Approach for Analytical Similarity
Assessment

Biosimilarity development requires extensive analytical testingwhich often yields 20
to 30QAsper batch.However, theseQAs are not equally related to safety and efficacy.
The FDA recommended tiered approach [9–12] applies different levels of statistical
rigors to theseQAs depending upon their criticality risk ranking, which is determined
by their potential impact on activity, PK/PD, safety, and immunogenicity. Tier 1 is for
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QAswith the highest risk ranking that usually reflect clinically relevantmechanism(s)
of actions. Statistical equivalence test for the mean difference is recommended for
Tier 1 QAs. Tier 2 is for QAs with relatively lower risk ranking. A lesser stringent
approach, the quality range, is recommended for this tier. Quality range takes the
form of x ± ks, where x and s are the sample mean and sample standard deviation
of nR reference product lots. Biosimilarity for a Tier 2 QA is claimed if at least
90% of the biosimilar product lots fall within the quality range. QAs with lowest
risk ranking or important QAs that are not amenable to formal statistical tests or
quantitative evaluation are categorized into Tier 3 [13], where only raw data and
graphical comparisons are recommended.

3 Assessment of the FDA Recommended Equivalence Test
for Tier 1 QAs

Compared to Tier 2, the equivalence test for Tier 1 is not only more rigorous, but
also harder to implement. The first and most challenging part is the equivalence
acceptance criterion (EAC). Due to the practical limitations, it is very challenging to
determine an EAC that is universal for all the Tier 1 QAs across different therapeutic
areas. Tsong et al. [10] proposed using cσR as the universal criterion for all the
Tier 1 QAs, where σR is the standard deviation of the reference product and c is a
constant and is recommended to take the value of 1.5. Since this EAC is a function of
σR , the performance of the equivalence test is less affected by the assay variability,
which is often different for different biosimilar sponsors even targeting for the same
reference product. However, the true value of σR is usually unknown and has to be
estimated from the sample standard deviation, SR . In other words, cSR becomes the
EAC in practice. However, this apparent minor change in EAC leads to significant
changes in the test properties of the equivalence test as cSR is a variable. The impact
of estimating SR is illustrated in detail below.

3.1 The Impact of SR Estimate on the Type I Error
and the Power

The equivalence test for the mean difference for Tier 1 QAs can be expressed as:

H0 : |μB − μR| ≥ δ

H1 : |μB − μR| < δ (1)

where μB and μR are the true mean responses of the proposed biosimilar and refer-
ence product lots, respectively. The δ is the preset equivalence acceptance criterion.
If the significance level of the above hypothesis test is set at α = 5% (i.e. 90% con-
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fidence interval of the mean difference is compared against the equivalence margin),
the expected type I error rate is 5% if the equivalence margin, δ, is set independently
from the data used for equivalence test. Based on the recent recommendation by
the FDA, δ = 1.5σR , where σR is the variability of the tested reference product lots
which includes both assay and the process variability [9]. The decision rule is to reject
the null hypothesis of non-equivalence and claim analytical similarity for the QA if
the (1 − 2α) 100% two-sided confidence interval of the mean difference between
the biosimilar and reference product is within (−1.5σR ,1.5σR). Unless otherwise
specified, α is set at 0.05.

For the rest of this article, the data are denoted by XiR, i = 1, . . . , nR and
XiB, i = 1, . . . nB . XiR is the reportable value of the ith reference lot. XiB is the
reportable value of the ith biosimilar lot. It is assumed that XiB ∼ N (μB, σB) and
XiR ∼ N (μR, σR). Each reportable value XiB or XiR is generally an average of
multiple individual test values. The nR and nB are the total number of reference and
biosimilar lots. The sample means of the reportable values are denoted by X̄ R and
X̄ B .

In the common variance case, i.e. σ 2
B = σ 2

R = σ 2, the common variance σ 2,
(which includes both within-lot variability and between-lot variability) is estimated
by the pooled sample variance, S2p. Then, the (1 − 2α) 100% two-sided confidence
interval of the mean difference between the biosimilar and reference product is

(
X̄ B − X̄ R

) ± tγ,(1−α)Sp

√(
1

nR

+ 1

nB

)
, (2)

where Sp =
√

(nR + nB − 2)−1

[
nR∑

i=1

(
XiR − X̄ R

)2 +
nB∑

i=1

(
XiB − X̄ B

)2
]

tγ,(1−α) is the (1 − α)×100 percentile of the t-distributionwith γ degrees of freedom,
where γ = nR + nB − 2.

If the variances for the biosimilar lots and reference product lots are not equal,
the confidence interval of the mean difference is

(
X̄ B − X̄ R

) ± tγ,(1−α)

√(
S2R
nR

+ S2B
nB

)
(3)

where S2B and S2R represent the sample variances for the biosimilar and reference
product, respectively. γ is estimated by the Satterthwaite approximation method.

Consider the equal variance case first. Under the null hypothesis: μB − μR = cσ
and for the alternative hypothesis μB − μR < cσ , the type I error can be expressed
as:

P

[
(
X̄ R − X̄ B

) + tγ,(1−α)Sp

√(
1

nR
+ 1

nB

)
< cσ

]

(4)
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Table 1 Comparison of asymptotic and simulated type I error (%) (Nominal level is 5%)

ρ = 1 ρ = 2

nB Margin = 1.5 SR
(%)

Margin = 2.5 SR
(%)

Margin = 1.5 SR
(%)

Margin = 2.5 SR
(%)

Asymptotic 9.4 15.2 8.0 12.5

1000 9.1 14.5 7.8 12.3

100 8.3 14.0 7.2 11.5

10 6.2 10.8 5.7 9.2

Equation (3) is equal to the preset significance level, α, as intended. However,
when cσ is replaced by cSp, the actual type I error becomes

P

[
(
X̄ R − X̄ B

) + tγ,(1−α)Sp

√(
1

nR
+ 1

nB

)
< cSp

]

(5)

Note that the right side of the inequality in (5) is a variable. The distribution
of the quality inside the P(·) is not a simple central t distribution anymore. With
a relatively small sample size (e.g. <20), the estimation errors in Sp on both sides
of the inequality above approximately cancel, and the impact due to the estimation
uncertainty of Sp is less. With a large sample size, the estimation error in Sp on
the left side of the inequality contributes less. The estimation error in Sp on the
right side of the inequality remains, which leads to a relatively larger inflation of
the type I error. Furthermore, it can be shown that the asymptotic distribution of
the quality inside the P(·) in (5) is normal. Equation (5) can be approximated by

Φ
(

zα√
λ

)
, where λ = 1 + Rc2

2(1+R)2
, R = nR

nB
and 	(·) is the normal distribution

probability function (See Appendix 1). Similarly, when 1.5 SR is used as the EAC,
the asymptotic estimate of the actual type I error can be shown to be approximated

by Φ
(

zα√
λ∗

)
,where λ∗ = 1 + c2

2(1+R)
. The asymptotic type I error can be as high as

9.4% when R = 1 (i.e. nR = nB) (See Appendix 1 Table 1).
To further understand the impact of the estimation uncertainty of EAC, the type

I error and the power were calculated via simulation from realistically small to
extremely large sample sizes for both equal and unequal variance cases with different
EACs (i.e c ranges from 1.5 to 2.5). Assuming normal distribution for both biosimilar
and reference products, nB biosimilar lot values and nR reference lot values are
simulated in each simulation cycle with true mean difference of either σR

/
8 or 1.5

σR . The simulated sample statistics were used to compute 90% confidence intervals
on the difference of means, which is then used to compare with different EACs.
The number of simulation cycles is 100,000. The type I error rate is estimated as
the proportion passing the acceptance criteria when the true mean difference is 1.5
σR . The power is estimated as the proportion passing the acceptance criteria when
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Fig. 2 The type I error for sample size 6 to 20 assuming equal variance case and truemeandifference
is 1.5*σR (Desired value is 0.05)

the true mean difference is σR
/
8. The simulation shows the following when cσ is

replaced by cSp or cSR :

(1) Type I error (i.e. the probability of falsely claiming equivalence, or the patient’s
risk) is greater than the theoretical value for most of the realistic sample sizes
(Fig. 2).

(2) The inflation of Type I error problem cannot be corrected by increasing sample
size.On the contrary, the Type I error further increaseswith an increasing sample
size in the balanced case, which is consistent with the derived asymptotic type
I error rate (Fig. 3).

(3) The power of the test is decreased compared to the case with known σ , but it
still increases with increasing sample sizes as expected. When the sample size
increases to 20 per group, the power difference is almost ignorable with a small
true mean difference of σ/8 assuming equal variances (Figs. 4).

(4) The bigger margin (i.e. bigger multiplier c) inflates the impact of the SD esti-
mation errors, which leads to more inflated type I error(s) (Fig. 3).

(5) Similarly, the asymptotic type I error can be derived as well (See Appendix 1)
and similar results have been observed for unequal variance case(s) (Fig. 6).
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Fig. 3 Type I error assuming equal variance at mean difference of 1.5 σ R = 1.5σ (Desired value
is 0.05. The grey dash line represents the derived asymptotic type I error rate. Based on the results
in Table 1)

3.2 The Unbalanced Sample Size

An unbalanced sample size often occurs and is often due to cost as the expense of
purchasing reference product lots is often less than that of manufacturing biosimilar
product lots. Theoretically speaking, statistical power is gained bymaking nR

/
nB >

1 without invalidating the testing procedure, which is also shown in the simulation
(Figs. 5 and 7). Therefore, the equivalence test result could be dominated by the
group with bigger sample size. One way to limit the power increase in this situation
is to split the data so that equal sample size can be achieved. However, random
data splitting leads to potentially inconsistent results, further inflated Type I error,
and decreased power. Another approach to limiting the increase of power due to
unbalanced sample size is to establish an upper bound on the bigger sample size. In
other words, define the adjusted sample sizes n∗

R and n∗
B such that
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Fig. 4 The power of the equivalence test at true mean difference of σ R/8 assuming equal variance
and preset type I error rate at 0.05

n∗
R =

{
nR, i f nR ≤ cnB

cnB, o.w.

n∗
B =

{
nB, i f nB ≤ cnR

cnR, o.w.

where c is a contant. It can take a bigger value like 3 or 5 if less adjustment is
preferred. However, the FDA statisticians proposed 1.5 for the adjustment in the Tier
1 equivalence test [14]. Therefore, 1.5 is used in this paper.

Then n∗
R and n∗

B can be used in the confidence interval calculation in the place of
nR and nB as shown in Table 2. Two versions of adjustments are shown in Table 2. In
version 1, the degrees of freedom (df) for S2R and S2B are chosen not to be adjusted.
So (nR − 1) and (nB − 1) are used for the df of the two sample variances S2R and
S2B . In version 2, adjusted sample sizes, n∗

R and n∗
B , are used to completely replace

nR and nB . The actual difference between version 1 and 2 is minimal. But for the
unequal variance case, version 2 is a slightly more stringent version, leading to a
slightly wider confidence interval than version 1. The results shown in Figs. 6 and 7
are based on Version 1, which is also the version used by Dong et al. [14].
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Fig. 5 Power assuming unequal variances at mean difference of σ R/8

Table 2 The confidence
interval after sample size
adjustment

Equal variance case Unequal variance case

Version 1 (
X̄ B − X̄ R

) ±
tγ,(1−α)

√(
S2p
n∗
R

+ S2p
n∗
B

)

S2p =
(nR−1)S2R+(nB−1)S2B

(nR+nB−2)

(
X̄ B − X̄ R

) ±
tγ,(1−α)

√(
S2R
n∗
R

+ S2B
n∗
B

)

Version 2 (
X̄ B − X̄ R

) ±
tγ,(1−α)

√(
S2p
n∗
R

+ S2p
n∗
B

)

S2p =
(n∗

R−1)S2R+(n∗
B−1)S2B

(n∗
R+n∗

B−2)

(
X̄ B − X̄ R

) ±
tγ,(1−α)

√(
S2R
n∗
R

+ S2B
n∗
B

)
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Fig. 6 Type I error assuming unequal variance at mean difference of 1.5σ R (Desired value is 0.05)

After sample size adjustment, the power is reduced, especially when the smaller
group has sample size of ≤7 (Fig. 7). Although it is not the intention of the sample
size adjustment approach, the type I error happens to be reduced, compared to the
unadjusted version (Fig. 8). In cases where the nR

/
nB ≥ 3, the type I error drops

even below 0.05, the nominal type I error level.

4 Summary

The tiered approach as proposed by the FDA recognizes the different levels of rel-
evance of QAs in the analytical similarity. This approach allows different levels of
statistical rigors be applied to different QAs. However, the current equivalence test as
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Fig. 7 The power of the equivalence test at true mean difference of σ R/8 with and without sample
size adjustment assuming equal variance and preset significance level of 0.05

proposed for Tier 1 QAs is not ideal in that the type I error rate cannot be controlled
to the nominal level due to the formulation of the equivalence acceptance criterion.
Unlike power, which can be improved with increasing sample sizes, the type I error,
not only is inflatedwith realistic sample sizes, but also increasesmorewith increasing
sample sizes in the balanced situation. In addition, the type I error rate increases with
wider equivalence margin. In the unbalanced case, the introduction of the sample
size adjustment approach does help to control the unwanted power increase due to
unbalanced sample size. However, the sample size adjustment tends to over-correct
the Type I error issue, which could lead to an actual type I error, much lower than
the nominal level, especially in cases where the sample size ratio ≥3.

Given the above issues, a new exact test would be needed to ensure proper control
of the power and the type I error. The equivalence test based on effect size (i.e ratio
of the mean difference to the reference product standard deviation) [15] is one such
test that could be used for similarity assessment.
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Fig. 8 The simulated type I error of the equivalence test at true mean difference of 1.5σ R , with
and without sample size adjustment, assuming equal variance and preset significance level of 0.05
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Appendix 1 The Asymptotic Approximation to the Type I
Error Rate for the Statistical Equivalence Test

A1.1 Equal Variance Case: σR = σB = σ

Let θ = (
μR, μB, σ 2

)
and ρ = nR

/
nB , where nB → ∞. Let α be the significance

level of the equivalence test (type I error rate), and t be the (1 − α)× 100th percentile
of the t-distributionwith nR+nB−2 degrees of freedom. All probability calculations
that follow are conditional on the parameters in θ .



A Further Look at the Current Equivalence Test … 67

The probability in (5) can be expressed as

Pr

[

d̄ + t Sp

√(
1

nR
+ 1

nB

)
< cSR

]

−

Pr

[

d̄ − t Sp

√(
1

nR
+ 1

nB

)
< −cSR and d̄ + t Sp

√(
1

nR
+ 1

nB

)
< cSR

]

(A.6)

With small biosimilar sample sizes (e.g., nB = 5-20), the estimation error in SR
in (A.6) is correlated with the estimation error in Sp, because the same reference-
product lots are included in both estimators. This results in substantial cancellation
of estimation errors that improves both type I error and power.

As the biosimilar sample sizes become large, i.e, nB → ∞, the estimation error
from Sp is divided by a large sample size, and thus the contribution of the estimation
error in Sp rapidly decreases with sample size. In contrast, the estimation error in SR
is not divided by the sample size, and so it decreases at the same rate as the estimation
error in d̄, and thus it is no longer approximately cancelled in settings with very large
sample sizes. This results in an unanticipated increase in type I error as sample size
increases. Also, larger values of the multiplier c inflate the impact of the estimation
error on the test boundary that results in less cancellation and larger type I error. A
formal derivation of the asymptotic results that quantifies this heuristic discussion
follows.

With (μR − μB) = cσ , the first probability in (A.6) can be re-expressed as

Pr

⎡

⎣ d̄ − (μR − μB)

Sp

√
1
nR

+ 1
nB

+ t − c

⎛

⎝ SR − σ

Sp

√
1
nR

+ 1
nB

⎞

⎠ < 0

⎤

⎦ (A.7)

which equals

Pθ

⎡

⎣ d̄ − (μR − μB)

Sp

√
1
nR

+ 1
nB

− c

√
ρ

1 + ρ

(√
nB(SR − σ)

Sp

)
< −t

⎤

⎦ (A.8)

As nB → ∞, −t → zα , which is the lower α× 100th percentile of the normal
distribution.

The Sp in the denominators of (A.8) converge in probability to σ , so by Slutksy’s
Theorem (Billingsley, p. 294, exercise 25.7), the probability in (A.8) converges to
the same limit as

Pθ

⎡

⎣ d̄ − (μR − μB)

σ
√

1
nR

+ 1
nB

− c

√
ρ

1 + ρ

(√
nB(SR − σ)

σ

)
< zα

⎤

⎦. (A.9)
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The first term in (A.9) has a standard normal distribution. From Kendall and
Stuart, Volume 1, p. 245, Eq. (10.9),

√
ρnB

(
S2R − σ 2

) ⇒ N
(
0, 2σ 4

)
, so by the delta

method,

√
ρnB(SR − σ) ⇒ N

(
0,

σ 2

2

)
(A.10)

It follows that the asymptotic variance of the right summand on the left side of
the inequality in (A.9) is c2

2(1+ρ)
. For normal data, the sample means and variances

are independent, so the difference in the two terms in (A.9) is asymptotically normal
with mean 0, and variance VA = 1 + c2

2(1+ρ)
, which provides an analytic asymptotic

approximation to the type I error of the test:

Pr

[

d̄ + t Sp

√(
1

nR
+ 1

nB

)
< cSR

]

≈ Φ

(
zα√
VA

)
(A.11)

Note that the asymptotic level of the test does not depend on σ . As nB → ∞, the
second probability in Eq. (A.6) is less than or equal to

Pr

[

d̄ − t Sp

√(
1

nR
+ 1

nB

)
< −cSR

]

(A.12)

The probability in (A.12) approaches 0 as nB and nR increase. Thus, there is no
reduction in the asymptotic type I error of the test. When (μR − μB) = −cσ , the
first probability in (A.6) becomes

Pr

[

d̄ − t Sp

√(
1

nR
+ 1

nB

)
> −cSR

]

, (A.13)

and the second probability is changed accordingly. The derivation is unchanged
except for some sign changes that cancel to produce the same approximation for the
lower bound in (A.13).

Other estimators for σR on the right side of the inequality in (A.6) have been
proposed, including Sp and the sample variance from the reference product obtained
by randomly splitting the reference data. The analytic methods used here can be
easily modified to obtain asymptotic approximations for the resulting type 1 errors
using these estimators, also yielding similar formulas.
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A1.2 Unequal Variance Case: σR �= σB

Let q = σ 2
B

σ 2
R
. The type I error of the test formed using the Satterthwaite approximation

when SR is used in the test boundary is

Pr

⎡

⎣d̄ + t

√(
S2R
nR

+ S2B
nB

)
< cSR

⎤

⎦ (A.14)

where the degrees of freedom for t are nowobtained bySatterthwaite’s approximation
(Satterthwaite, 1946). As nB → ∞, t → zα , and (A.14) becomes

Pr

⎡

⎣ d̄ − (μR − μB)
√

σ 2
R

nR
+ qσ 2

R
nB

− c

⎛

⎝ SR − σR√
σ 2
R

nR
+ qσ 2

R
nB

⎞

⎠ < zα

⎤

⎦ (A.15)

The first term in inequality in (A.15) follows a standard normal, and the second
term follows anormal distribution asymptotically aswellwithmean zero andvariance

c2

2(1+qρ)
, so

Pr

⎡

⎣d̄ + t

√(
S2R
nR

+ S2B
nB

)
< cSR

⎤

⎦ ≈ Φ

(
zα√
VA

)
(A.16)

where VA = 1 + c2

2(1+qρ)
.

A1.3 Comparing Asymptotic Approximations to Simulation
Results

The asymptotic approximations to the type I error were compared to simulation
results with different sample sizes (nB = 10, 100, 1000; ρ = 1, 2), and different
test boundaries (margin = 1.5 SR , 2.5 SR). Table 1 presents a comparison of the
simulated and asymptotic type I error rates. As expected, the simulated type I errors
approach the asymptotic predictions, but the convergence is slow. The simulation
results confirm that the inflation of type I error caused by the estimation error in
the test boundary cannot be fixed by increasing nB . Increasing the ratio ρ; however,
decreases the inflation in the type 1 error because this reduces the estimation error
on the right side of the inequality more rapidly than the error on the left side where
estimation in the mean difference depends on nB . As predicted, larger values of c
inflate the impact of the estimation errors in the test boundary, leading to a higher
type I error. Results with unequal variances were qualitatively similar.
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Shiny Tools for Sample Size Calculation
in Process Performance Qualification
of Large Molecules

Qianqiu Li and Bill Pikounis

Abstract The regulatory guidance documents on process validation have been
recently revised to emphasize the three-stage lifecycle approach throughout vali-
dation. As an important milestone within Stage 2: process qualification, the process
performance qualification (PPQ) requires taking adequate samples to provide suffi-
cient statistical confidence of quality both within a batch and between batches. To
help meet the PPQ requirements and to further support continued process verifica-
tion for large molecules, for continuous critical quality attributes, Shiny tools have
been developed to calculate the minimum numbers of samples within batches to
control the batch-specific beta-content tolerance intervals within prespecified accep-
tance ranges. The tolerance intervals at attribute level are also displayed to assure
the suitability of the predefined number of PPQ batches. In addition, another Shiny
application for creation and evaluation of the sampling plans for binary attributes
will be illustrated in terms of failure rates of future batches and consumer’s and pro-
ducer’s risk probabilities. The tools for both continuous and binary attributes allow to
adjust the sampling plans based on historical data, and are designed with interactive
features including dynamic inputs, outputs and visualization.

Keywords Process performance qualification · R Shiny · Sample size
calculation · Tolerance intervals · Sampling plans · Variance component analysis ·
Normal and Binary attributes

1 Introduction

In pharmaceutical regulation, process validation is a mandatory task consisting of
the collection and evaluation of data from process design phase through commercial
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production. The ultimate goal of process validation is to establish scientific evidence
that a process is capable of consistently delivering quality products. To achieve this
goal, besides proper process design and risk-based control strategy at stage 1 of
process validation, preparation for process performance qualification (PPQ) at stage
2 after equipment/utility/facility qualification is also vital. PPQ must be performed
under GMP guidance and according to the established protocol and an enhanced
sampling plan. The PPQ sampling plan defines the number of PPQ batches and
the number of samples within batches for each evaluated critical quality attribute
(CQA). The regulatory guidance documents on process validation do not explicitly
specify the number of batches and the numbers of samples within batches. However,
the 2011 FDA process validation guidance recommends sampling plans with ade-
quate assurance or statistical confidence. The European Medicines Agency (EMA)
PV guidance also states that the number of batches should be based on the vari-
ability of the process, the complexity of the process and product and the amount of
historical data and available process knowledge. In the paper, we describe three R
Shiny applications to facilitate the task of developing PPQ sampling plans. The Shiny
applications are the web-based interfaces that provides users with customized inputs
and outputs using R [13]. Specifically, for continuous CQAs with acceptance limits,
the Shiny application SSNormTI calculates tolerance intervals across prespecified
numbers of samples within batches under one-way random effects models. These
tolerance intervals are then compared with the acceptance limits to help choose the
number of samples within batches and to evaluate the proposed number of batches.
The Shiny application RiskBinom implements AQL and/or RQL sampling plans for
binary CQAs. VarCompLM, as a supplemental tool, can be used to produce estimates
and confidence limits for the overall and/or group means, and the between-batch and
within-batch variances. The estimates or the confidence limits can then be used as
the inputs of SSNormTI for sample size calculation via normal tolerance intervals.
Statistical methods are detailed in next section.

2 Sample Size Calculation Methods

2.1 For Continuous CQAs with Acceptance Limits

For continuous CQAs with acceptance limit(s), the Shiny application SSNORMTI
determines the number of samples within batches using batch-specific tolerance
intervals for a single population that is normally distributed. The batch-specific tol-
erance intervals are beta-content intervals that with a prespecified confidence level
(e.g., 95%), will contain at least a specified proportion (e.g., 99%) of the data pop-
ulation. The confidence level and the coverage probability of the tolerance intervals
are defined by prior knowledge for the CQA, for example, using criticality levels of
the CQAs evaluated prior to PPQ. The two-sided batch-specific tolerance intervals
are calculated using the R function K.factor() in the “tolerance” package via either
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close-to-exact or approximation approaches. Specifically, the following approaches
were implemented for both two-sided batch-specific and process-specific tolerance
intervals, respectively:

• Howe [6] (with method = “H” in K.factor) and Hoffman and Kringle [5];
• Owen (1964) (with method = “OCT” in K.factor) and Mee [10];
• Krishnamoorth and Mathew [9] (with method = “KM” in K.factor) and Krish-
namoorthy and Lian ([7]; modified large sample approximation and generalized
pivotal quantity approaches)

The degrees of freedom required by K.factor are either not specified or are equal
to the degrees of freedom associated with the residual variance for a one-way random
effects model, given the minimum number of batches specifically required for each
approach to control the process-specific tolerance interval within the acceptance
limits.

Besides the above two-sided batch-specific and process-specific tolerance inter-
vals, for CQAs with only a lower or an upper acceptance limit, SSNormTI also
calculates the exact one-sided batch-specific tolerance interval via K.factor (i.e.,
method = “EXACT”; with the degrees of freedom defined as above), and the one-
sided process-specific tolerance intervals of Mee and Owen [11], Hoffman [4], and
Krishnamoorthy and Mathew [8] via modified large-sample approximation and a
generalized pivotal quantity approach.

The rationale of constructing the process-specific tolerance intervals resides in
the requirement of specifying the number of PPQ batches in a PPQ sampling plan.
Though the number of PPQ batches is not stated in any regulatory process validation
guidance document and it is generally based on historical information about the
process risk and feasible considerations such as limitation of available resources, or
the timing of the PPQ with respect to a regulatory submission, it is still a regulatory
suggestion for a successful PPQ to demonstrate an appropriate level of between-batch
variability. Therefore, we use the process-specific tolerance intervals to examine
the proposed number of PPQ batches. The process-specific tolerance intervals are
constructed under the below one-way random effects model with batch as a random
effect and thus reflect the level of between-batch variability.

Specifically, for a CQA, let Xi1, Xi2, . . . , Xi J be the (original or transformed)
measurements randomly sampled from batch i(i = 1, . . . , I ). It is assumed that the
randomly sampled PPQ data satisfy a random effect model,

Yi j = μ + Bi + Ei j wi th j = 1, . . . , J

where Yi j denotes measurement j from batch i ., μ is the overall mean, and μ + Bi

is the mean for batch i . Bi for all i = 1, . . . , I are independent and follow the same
normal distribution N

(
0, σ 2

B

)
with zero mean and variance σ 2

B . Residuals Ei j for all
i and j are independently and identically distributed as normal variables with mean 0
and variance σ 2 for all batches, that is, Ei j ∼ N

(
0, σ 2

E

)
f or any i and j. Bi and Ei j

are assumed to be mutually independent.
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In addition, without between-batch variance and overall mean, SSNormTI
calculates the number of samples by controlling batch-specific tolerance intervals
within a prespecified acceptance range via the R function norm.ss() in the package
“tolerance”. The R function adopts three methods (named as precision-based
hereafter): Owen (1964), Faulkenberry and Weeks (1968), and Young et al. (2016).

SSNormTI requires the batch mean and within-batch variance for the batch-
specific tolerance intervals, and the overall mean and between-batch variance for
the process-specific tolerance intervals. The methods for those inputs will be pro-
vided using examples in the section “Illustration and Examples”.

2.2 For Binary CQAs

The Shiny application RiskBinom is designed to create and evaluate the PPQ sam-
pling plans for binary CQAs. Two levels of quality, or acceptable quality level (AQL)
and rejectable quality level (RQL), are considered in the sampling plans. Thus, the
sampling plans are attribute (acceptance) sampling plans. Acceptable quality level
(AQL) is the largest proportion of defectives, or the largest value that is considered
acceptable and desired by the producer. Rejectable quality level (RQL) is the smallest
value for which the lot must be rejected. The RQL is also called the Lot Tolerance
Percent Defective (LTPD). In a manner analogous to specification of the confidence
levels and coverage probabilities of the tolerance intervals for continuous CQAs, the
AQL and RQL are chosen with regard to prior knowledge of the associated risks for
the evaluated binary CQA. Given the quality levels, the number of samples within
batches is determined by controlling the producer’s risk rate and/or consumer’s risk
rate to be lower than prespecified acceptance limit(s). The producer’s risk rate is the
probability of rejecting a lot having AQL quality. The consumer’s risk rate is the
probability of accepting a lot having RQL quality. Given prespecified AQL, RQL
and acceptance and rejection limits, the number of samples within batches are deter-
mined by controlling the producer’s risk rate, the consumer’s risk rate, or both not
exceeding prespecified acceptance limit(s).

Specifically, the Shiny applicationRiskBinomcalculates the two risk rates accord-
ing to their conventional definitions under binomial distributions or adjusts them
based on historical data in both frequentist and Bayesian frameworks, as shown by
Table 1 for the single sampling plans. A is defined as the acceptance number. Based
on the historical data, L p and Up are the lower limit and upper limit of the 95%
one-sided confidence interval for the lot failure rate. The 95% one-sided confidence
limits are calculated via the R function binconf() using three methods: Exact, Wilson
and Asymptotic. Then we set Up as the smallest one among the three upper limits
and set L p as the largest one among the three lower limits.

The Bayesian approach assesses the two risk rates using the posterior means. The
posterior means are obtained under an assumption that the number of failed samples
in a historical batch follows a binomial distribution with a common failure rate
across all batches. Namely, Xi ∼ Binomial

(
ni, pF

)
with i = 1, . . . ,B; Xi denotes
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Table 1 Risk probabilities by Shiny application RiskBinom

Name Type Definition

Producer’s risk probability Without historical data Pr(X > A|pF ≤ AQL)

With historical data via
frequentist approach

Pr
(
X > A|pF ≤ min

(
Up, AQL

))

With historical data via
Bayesian approach

Posterior mean of
Pr(X > A|pF ≤ AQL)

Consumer’s risk probability Without historical data Pr(X ≤ A|pF ≥ RQL)

With historical data via
frequentist approach

Pr
(
X ≤ A|p ≥ max

(
L p, RQL

))

With historical data via
Bayesian approach

Posterior mean of
Pr(X ≤ A|pF ≥ RQL)

the number of failed samples in the i-th batch with ni binary measurements. pF is
the failure rate, and B refers to the number of the historical batches. With a conjugate
Beta prior distribution Beta(a, b) [1, 12] for the failure rate pF , conditional on the
binomially distributed historical data, the posterior distribution of the failure rate

also follows a beta distribution Beta

(
a +

B∑

i=1
xi , b +

B∑

i=1
(ni − xi )

)
characterized by

the probability density function:

1

∫1
0 u

a+∑B
i=1 xi−1(1 − u)b+

∑B
i=1(ni−xi )−1du

p
a+

B∑

i=1
xi−1

(1 − p)
b+

B∑

i=1
(ni−xi )−1

In the Beta prior distribution, the two hyper-parameters a and b are set in three
ways:

• to be non-informative: a = b = 0.5;
• under assumption of 20% failure probability: a = 0.2 and b = 0.8;
• empirically based on the historical data.

Besides the above capability of creation of single sampling plans using both
frequentist and Bayesian approaches, the application is also designed for evalua-
tion of acceptance sampling plans under the binomial models. Given the specified
AQL, RQL or both, and batch-specific inputs including the number of measure-
ments, and acceptance and rejection numbers for each batch, the producer’s and/or
consumer’s risk rates are quantified separately by batch and across batches. With
Xi ∼ Binomial(ni , pF ), with Xi and ni as the number of failed samples and the
number of samples in the i-th batch:

• For the i-th batch, the producer’s risk rate, denoted as P(Xi ≥ Ri |pF = AQL),
is the probability that the number of failed samples Xi is equal to or greater than
the rejection number Ri with respect to the i-th batch given pF = AQL . The
consumer’s risk rate, denoted as P(Xi ≤ Ai |pF = RQL), is the probability that
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the number of failed samples Xi is equal to or smaller than the acceptance number
Ai with respect to the i-th batch given pF = RQL;

• Across all batches, the producer’s and consumer’s risk rates are obtained under
the assumption that one batch was sampled at each sampling stage and the batches
are ordered as given by the user’s inputs or the imported file. Specifically, the
producer’s risk occurs when one or more batches of AQL quality are rejected. and
consumer’s risk occurs when one or more batches of RQL are accepted. Under
the assumptions of batch independence and all batch failure rates equal to pF , the
two risk rates can be expressed as follows:

Producer’s Risk Rate =P(X1 ≥ R1|pF = AQL)

+
I∑

i=2

P(Xi ≥ Ri |pF = AQL)

i−1∏

u=1

P(Au < Xu < Ru |pF = AQL)

Consumer’s Risk Rate =P(X1 ≤ A1|pF = RQL)

+
I∑

i=2

P(Xi ≤ Ai |pF = RQL)

i−1∏

u=1

P(Au < Xu < Ru |pF = RQL)

2.3 Illustration and Examples

The three Shiny applications offer the ability to assist the PPQ sampling plans as
web-based tools. Such interfaces are particularly beneficial to users who are not
familiar with R. Key examples are presented below to illustrate the functional and
statistical ability separately for each application.

2.4 SSNormTI

SSNormTI implements the sample size calculation via tolerance intervals at three
scenarios: (1) the between-batch variance and the overall mean across batches are
specified; (2) the between-batch variance and the overall mean across batches are
not specified without historic data imported; and (3) the between-batch variance and
the overall mean across batches are not specified with historical data imported.

In the first scenario, given specified between- and within- batch variances and an
overall mean, the four types of the process-specific tolerance intervals, as described
before, can be calculated to examine the proposed number of batches. For example,
with the user’s inputs in the left window below, the minimum numbers of batches to
control the process-specific tolerance intervals between 70 and 125 are summarized
in the right window, with the minimum numbers of samples per batch required to
control the calculated or extended-by-20%batch-specific tolerance intervals between
70 and 125.
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When clicked, the Download button at the lower-left corner of the left panel
allows all of the calculated batch-specific and process-specific tolerance intervals to
be saved in a default file SampleSizes_viaTL.xlsx or in another file with user defined
format. The file has four spreadsheets, each of which contains the results by one of
the four approaches.

In the second scenario, with no imported historical data, only Owen’s approach
(1964) is applied to obtain the minimum number of samples required to control the
batch-specific tolerance interval within prespecified acceptance range. For example,
with batch mean of 74.6 and within-batch variance of 1.2, at least six samples per
batch (as shown in the last cell of the table below) will be required to control the
batch-specific tolerance interval with 95% coverage and 95% confidence by Owen
(1964) above 70:

If Delta and P.prime are provided, for example, equal to 0.2 and 0.999 as follows,
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then the Faulkenberry and Weeks approach (1968) can be applied to obtain the
minimum number of samples per batch, for example, as shown by the table below.
With batch mean of 74.6 and within-batch variance of 1.2, at least 13 samples per
batch are required to maintain the below-20% probability that the coverage proba-
bility of the 95%-confidence tolerance interval exceeds 99.9%.

The third scenario requires upload of historical data at the first column of a CSV,
XLS or XLSX file, with the first row as the column or data label (as shown in the
table below on the left). Then usingYoung’s approach (2016)without specification of
Delta and P.prime, the minimum number of samples per batch, together with Delta
and P.prime will be determined by controlling either the exact tolerance interval
without inputs of m.0 and n.0 (prior hyperparameters m0 and n0 for the R function
bayesnormtol.int()), or the Bayesian tolerance interval incorporating inputs of m.0
and n.0. With batch mean of 74.6 and within-batch variance of 1.2, the table on
the bottom shows 9 as the minimum number of samples per batch obtained by the
Bayesian tolerance interval using the normal and scaled inverse chi-square as the
priors for mean and variance, respectively with m0 = 17 & n0 = 18. The calculated
Delta and P.prime are 0.05263158 and 0.99998661.
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2.5 VarCompLM

VarCompLM is an under-development application for variance component analy-
sis under linear mixed models with at least one random effect. Given the analysis
model, based on the uploaded data, VarCompLM can produce the estimates and the
confidence limits for the model parameters. One example follows to show how the
estimates and the confidence limits are derived and used for the SSNormTI inputs cor-
responding to the means (overall and batch-specific) and variances (between-batch
and within-batches).

In the example, a stability data set was simulated. The data set (with the first 25
rows shown below on the left) includes 90 data points (in Column E) from different
times (up to 36 months in Column B), batches (A1–A6 & B1–B6 in Column A),
groups (A & B in Column D), and labs (L1–L3 in Column C).

A suitable analysis model contains time as a covariate and lab as a fixed class
variable, and batch as a random effect. As specified below in the right panel, the
model fits to the data separately by group using the R function lme() to get the
estimates and confidence limits (at bottom) for all unique combinations of fixed
effects (time and lab) [16]. Those estimates or confidence limits can be chosen as
the overall mean and batch mean representing the worst-case scenario (e.g., with an
estimate or confidence limit closest to a predefined acceptance limit).
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Table 2 Specification of Beta Prior Hyper-parameters a and b

Scenario Equations for a and b

With one historical batch
x
n = Ê(pF ) ≈ a

a+b

Ê(pF )
(
1−Ê(pF )

)

(a+b+1) = Var
∧

(pF ) ≈
ab

(a+b)2(a+b+1)

With two or more historical batches
1
B

B∑

i=1

xi
ni

= Ê(p) ≈ a
a+b s

2 ≈ 1
B

B∑

i=1
Var
∧(

Xi
ni

)

Where s2 = Var
(
x1
n1

, · · · , xB
nB

)
& Var
∧(

Xi
ni

)
is a function

of Ê(p) & ni
If the above equations result in negative a or b, then use

Var
∧(

Xi√
ni

)

Also, VarCompLM generates two tables including the estimates and confidence
limits of the random components, obtained via the R package VCA [15] based on
the residuals from the model including only the fixed effects (time and lab in this
example). The first table shows the variance estimates based on expected mean
squares (EMS), and two typeof confidence intervals for variances: Satterthwaite’sCIs
[14] under assumption of chi-square distributions for all variance components; and
SASCIs under a chi-square distribution for total and error and normal approximation
for the other variance components. The second table is grounded in likelihood and
bootstrap methods and implemented using the R functions intervals() and confint(),
respectively.As the process-specific tolerance intervals use theEMS-basedvariances,
it is recommended to take the estimates or 95% one-sided upper confidence limits
in Table 1, as the inputs for SSNormTI. The results in Table 2 may be chosen if the
EMS-based estimates or confidence limits are too large to be used.
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2.6 RiskBinom

The walk-through examples below demonstrate how to use this application for each
of the two main tasks in attribute sampling plans: creation and evaluation.

If the objective is to create a sampling plan, then click the first radio-button before
“Sampling Plan Creation”. Secondly, if without historical data, then a user should
choose “NONE” and then enter all inputs in the boxes on the left panel.

For example, as shown above, a user is required to specify:

• AQL/RQL (in the first box): it is accepted to have one or a mixture of the three
formats in the parenthesis; AQL is the value before a backslash, RQL is the value
after a backslash; and two or more AQL/RQL settings are separate by comma;
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• Acceptance/rejection numbers (in the second box): using a backslash to separate
the acceptance number and the rejection number, if without any backslash, then
all input values are referred to as the acceptance numbers; for example, multiple
acceptance numbers are separated using commas; a range of acceptance numbers
can be specified by the minimum and the maximum and with a dash in between;

• Producer’s and Consumer’s risk rates (in the third box): they must be between zero
and 1, separately by a backslash if both are provided; a value before a backslash
defines a producer’s risk rate, while a value after a backlash gives a consumer’s
risk rate;

• Maximum Number of Samples per Batch (in the fourth box): if provided, then the
result table will only show the numbers of samples per batch below this maximum
andmeeting the criteria with respect to the producer’s and/or consumer’s risk rates;
if not provided, then 2,000 will be used as the maximum.

After providing the above inputs, from the header of the right panel, choose
“Sampling Plan Creation” (the middle one below) to get the table including all
sampling plans associated with all combinations of the inputs.

The actual producer’s and consumer’s risk rates are given in the last two columns,
respectively. In the third last column, the numbers of samples within a batch are
listed. An “NA” at the third last column suggests non-existence of any sampling plan
satisfying the corresponding specifications. For example, given the specifications
in the first row of the above table, there doesn’t exist any plan with the number of
samples within a batch below 2,000.

If a user expects to create a sampling plan on the basis of historical data, then
the historical data should be summarized into a data file in.xlsx,.xls, or.csv filetypes,
with the format as follows:
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Batch Number of
samples

Number of
failed samples

Acceptance
number

B1 30 1 0

B2 24 1 0

B3 12 0 0

Then based on the uploaded data, the largest lower confidence limit L p and the
smallest upper confidence limitUp of the 95% one-sided confidence intervals for the
failure rate are calculated and used to justify the AQL and RQL using the equations
below:

AQL = min
(
Up,PrespecifiedAQL

)
and RQL = max

(
Up,PrespecifiedRQL

)

For example, given two AQL/RQL settings: AQL = 0.65%, RQL = 1%; or RQL
= 5%, acceptance number equal to 1 or 2, and two risk sets: producer’s risk rate =
20%& consumer’s risk rate= 10%; or consumer’s risk rate= 20%, then RiskBinom
produces two tables, the first table below shows the frequentist results, including the
calculated sample sizes at the third last column and the actual risk rates at the last
two columns, with RQL adjusted from 1 to 1.01%.

Following the above table, another table contains all the Bayesian results. Below
the screenshot only displays the results given ALQ = 0.65% and RQL = 1%. One
more column has been added to include the posterior distributions, given the three
beta priors: Beta(0.5,0.5), Beta(0.2, 0.5), and Beta(a, b) with a & b empirically
determined by the historical data.
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RiskBinom evaluates an attribute sampling plan by taking inputs from the left
panel or an uploaded file. For example, as shown in the proceeding screenshot below,
AQL and RQL take values of 0.65% and 1%, respectively. The sampling plan allows
one or more batches and assumes that one batch is sampled at one stage and all
batches are sampled in the order according to the inputs. For each batch, firstly, the
number of samples is specified and then followed by a parenthesis, including the
acceptance and rejection numbers.

Then in the “sampling Plan Evaluation” panel, two tables are displayed. The top
one shows the risk rates separately calculated by batch, and the bottom one contains
the overall risk rates across all batches.
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If a user uploads a file to evaluate the sampling plan, then two file formats should
be adopted. In the sampling plan, if all batches have a common number of samples
and common acceptance and rejection numbers across batches, then the template as
follows should be used:

AQL RQL Number of batches Number of samples per
batch

Acceptance/rejection
numbers per batch

0.025 1 3 15 0/2

0.065 1 1 20 0/1

NA 1 4 30 0/2

4 NA 2 18 0/2

In a multiple sampling plan, the acceptance number is generally equal to the
rejection number subtracted by 1 for the last sampled batch, and it’s not rare that
different batches have different numbers of samples. Thus, the template below can
flexibly support such a heterogeneity property of the sampling plan.

AQL RQL Number of
batches

Batch 1 Batch 2 Batch 3

1 5 3 15(0/2) 18(0/2) 20(0/1)

4 10 2 20(0/2) 30(1/2)

The two multiple sampling plans in the above table are evaluated through RiskBi-
nom, and the results are presented below:
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3 Discussion

Development of these shiny tools was motivated by the goal of assisting users to
generate and explore PPQ sampling plans for continuous and binary CQAs. Their
flexible inputs and interactive outputsmay spare users a considerable amount of time,
for example, consumed by searching through different options. The applications have
been tested on common web browsers (Google Chrome, IE 10+).
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Continuous Process



Risk Evaluation of Registered
Specifications and Internal Release
Limits Using a Bayesian Approach

Yijie Dong and Tianhua Wang

Abstract This article proposes to pursue advanced statistical approaches to quan-
tify risks systematically through a product lifecycle for sound decision making. The
work focuses on registered specifications and internal release limits as these are
important elements in pharmaceutical development, manufacturing, and supply to
ensure product safety, efficacy, and quality. Bayesian inference is explored as a poten-
tial valuable approach to enhance risk assessment and related decision making. A
Bayesian approach is utilized to predict risks of batch failure and poor process capa-
bility associated with registered specifications and internal release limits, leading to
a more effective specification setting process. The benefits are demonstrated using a
real-life case.

Keywords Risk assessment · Bayesian · Specification · Release limit · Product
lifecycle · Process verification · Robustness · Process capability

1 Introduction

In the lifecycle of a pharmaceutical product (“product” herein refers to both drug
substance and drug product), decisions need to balance properly the producer’s risk
and customer’s risk (i.e. risk to patients) without failing a producer’s commitment to
patients. Although the process often starts with qualitative evaluations, decisionmak-
ing would be more effective if built on a systematic and quantitative risk assessment
of accumulated product knowledge or data through a product lifecycle.
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Registered specification limits and internal release limits are important elements
in pharmaceutical development, manufacturing, and supply. Registered specification
limits are criteria to which a drug substance or drug product should conform to be
considered acceptable for its intended use, which are proposed and justified by the
manufacturer and approved by regulatory authorities focusing on safety and efficacy.
Registered specification limits for amarket can be at release and/or at shelf-life per the
Health Authority (HA) requirements, between which this work will focus on shelf-
life specification limits (SSLs). InternalReleaseLimits (IRLs) are company-specified
limits for range of acceptability at time of manufacture, usually more restrictive than
registered specifications in order to ensure that a product remains compliant with
the registered specifications with a high confidence through the assigned expiration
period.

Setting SSLs and IRLs needs to consider clinical relevance, process performance,
analytical variability, and stability behavior, and more importantly, risks associated
with the limits to the producer and patients. Although data is presented to justify
SSLs and IRLs, the conventional approach of quantifying risks mostly focuses on
the worst scenario and reflects only a fragment of data accumulated from product
history, e.g. developmental phase 3a for new filings.

This article proposes to pursue advanced statistical approaches to evaluate risks
systematically through a product lifecycle. The idea is inspired to better support the
current regulatory expectations and industrial trends, including continued process
verification, quality by design, and end-to-end (E2E) proactive quality management,
for which SSLs and IRLs are decision rules and control mechanisms. Focusing on the
specification setting process, a Bayesian approach is explored as a potential useful
tool to enhance risk assessments and hence the related decision makings.

2 Decision Making Pertaining to Shelf-Life Specification
Limits and Internal Release Limits

The ICH guidelines Q6A [1] and Q6B [2] provide the principles for setting SSLs.
Both topics indicate the importance to include four elements: toxicology and clinical
studies, long term stability, analytical performance, and manufacturing consistency.
The limits should support the E2E robustness from the drug substance release to drug
product shelf. In addition, the process needs to consider key business factors, such
as needs for future shelf life extensions and commercial time out of refrigeration
requirements. The calculated SSLs will be evaluated further based on toxicology
and clinical experience, technical/scientific inputs, business perspectives, and filing
considerations, which may lead to tightening of the calculated specifications. The
proposed SSLs could be further revised during the review by regulators to ensure
product efficacy and safety. Note that the above is the current practice balancing
product robustness and clinical relevance. There has been an elevating interest in
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building clinically relevant specifications, which is fundamentally different from the
current common practice.

Starting at the product performance qualification stage, IRLs needs to be evaluated
for each round of SSLs considered, which can be the revisions discussed above or
any further updates during commercial production due to product evolvements. By
definition, IRLs should be back calculated from SSLs to allow for stability change
[3], assay variability, and other change and uncertainties over time. Since release test
is usually the last check of a batch by the producer, IRLs serve as a decision rule for
batch disposition and a critical element in ensuring product quality. In addition, IRLs
are appropriate acceptance criteria for process performance as such performance is
largely reflected in the CQA results at release. Since IRLs are internal practice,
they may be changed to reflect the dynamics of continuously accumulated data and
business needs. A commonly used method for calculating IRLs is the approach
proposed by Allen et al. [4]. Other approaches were proposed by Shao and Chow
[5], Wei [6], and Murphy and Hofer [7].

SSLs and IRLs need to be set at appropriate levels to control both producer’s risk
and customer’s risk. If anOut of Specification (OOS) result is observed, it will trigger
various investigations, retests, and potentially lead to a product recall. Furthermore,
OOS results present risk to patients and are monitored in Quality Metrics, which
collectively may hurt the reputation of a producer and prompt HA actions. Out of
internal Release Limit (ORL) results will increase investigation costs and elicit ques-
tions about product robustness and quality. A confirmed ORL may cause rejection
of a batch, stress inventory and supply, and increase operational cost. Note that both
OOS and ORL cases may motivate technical and operational improvements.

Sound risk assessment is evidently vital to make decisions pertaining to SSL
and IRL. The assessment needs to address at minimum process capability (against
IRLs), probability of OOS andORL, sources and control of variabilities, and impacts
to filing and distribution. In reality, there are challenges to quantify such risks. The
most familiar one is the limited amount or history of data, which is a typical situation
for new product filings and frequently for method or process updates of a mature
product. For instance, it is common to use three long-term stability study (LTSS)
batches for registration with no reference to other developmental stability or kinetic
studies; then the LTSS data remains as themain source of stability changes for setting
SSLs and IRLs until a substantial amount of data from commercial stability batches
is accumulated.

Ideally, a producer can leverage knowledge and data accumulated during years of
developmental work and production to define the risks quantitatively. In the case of
SSL and IRL, key questions around risks include:

• What would be the probabilities of observing OOS and/or ORL?
• What would be the predicted process capability in commercial manufacturing?
• What areas should be improved if the OOS and/or ORL risks are high and which
factors should be targeted to ensure the risk mitigation plan is sustainable: e.g.,
analytical or process variability?
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• Can the sources of variability be decomposed and controlled in development and
manufacturing?

If these questions can be answered with accuracy and confidence, one can expect
more robust business decisions and more targeted improvement in investments.

Two classic frequentist approaches have been tempted. First, confidence level and
coverage level are commonly included in the formulas for SSL and IRL calculation,
which gives a rough risk alert to the boundary situations: for instance, if a batch were
released at the IRL value, what would be the chance that the batch mean will remain
within the specifications. It fails to answer questions that aremore relevant to decision
making in practice: what the overall risks, e.g. OOS/ORL probabilities, based on
the product performance are. Second, frequentist simulation propagating multiple
parametersmay help to quantify the overall risks, but with little reference to historical
information or uncertainties in the simulation parameters, such as degradation rate
uncertainty, analytical precision, and process variability in the SSL/IRL case.

To overcome the limitations of the frequentist approaches, Bayesian inference is
considered as a framework for making consistent and sound decisions in the face
of uncertainties and evolvements [8]. Bayesian paradigm offers philosophical con-
sistency by structuring data and knowledge as in the natural learning process: use
new evidence to update beliefs through the application of Bayes’ rule. Moreover,
Bayesian updating can apply the Bayes’ rule interactively: a new posterior proba-
bility can be computed from new evidence using the previous posterior probability
as a prior for the current cycle. Considering that the product lifecycle dynamically
generates sequences of data, the iterative learning capability of Bayesian technique
is particularly important. Furthermore, Bayesian inference improves evaluation of
uncertainties and therefore risk assessments by evaluating the distribution of each
parameter rather than often an optimum point estimate per parameter in frequentist
approaches. Modern computational methods such as Markov Chain Monte Carlo
allow drawing samples from a joint posterior distribution. The sampled results can
then be used to estimate distributions of the model parameters and to predict future
observations or to assign probabilistic statements to possible decisions (i.e. how each
alternative decision is affected by the uncertainties in model parameters), which may
provide direct and reliable answers to risk and prediction questions.

In this work, such potential benefits are demonstrated with a real-life case for
a small molecule potency test. Statistical approaches are applied with two primary
aims: (1) to assess the probabilities of OOS/ORL occurrence; and (2) to predict
process capability during commercial manufacturing.

3 Case: The Potency Test for a Recent Approved Small
Molecule Product

The purpose is to evaluate howBayesian inference performs in estimatingOOS/QRL
risks and in predicting process capability.
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Fig. 1 Data structure of the data at filing in the case

Since the product was recently approved, data from the initial filing (17 batches
as in Fig. 1) and data from the subsequent commercial production after the filing
approval (27 commercial batches) are available. The structure of the data in the
filing is shown in Fig. 1. There are three LTSS batches; and three or four packages
were presented in each batch. Six measurements M1 to M6 were taken at the release
time point (t = 0) and two measurements (M1 and M2) were taken at other testing
time points for each package per LTSS batch. The other 14 batches at filing were
manufactured during product development, with two measurements taken at the
release time points (t = 0) for each batch.

As shown in Fig. 2, a total of four hierarchical Models are developed based on
the data structure in Fig. 1. Note that the zero-order kinetic model is assumed in
the analysis of the LTSS stability data. Collectively, the likelihood functions and
posterior distribution are defined as in Fig. 3.

In the model as described in the case above, the uniform non-informative priors
are used for the parameters. Due to the complexity of the model case, it is rather
difficult to derive the Jeffreys’ priors. The choice of uniform non-informative priors
herein has little impact on the convergence of the MCMC chains and consequently
the results in this case because most of the scale parameters are not of interest in
the final analysis (nuisance parameters). The models are incorporated and simulated
using WinBUGS with subsequent analysis performed in R. Based on the posterior
distribution, MCMC simulations are performed to get statistical references for the
parameters of interest. Three chains are used with n.iter = 20,000 iterations. The
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At ; let (3 
Batches) and (1 sample in 
each Batch) and  (6 
measurements in one sample 
within each batch)

At ; let 
(3 Batches) and (3 
samples/packages in each Batch) 
and (2 measurements in 
one sample within each batch)

At ; Batch: xxx1 ( )
has 1 extra sample/package 
( ); measurements.

Product Development Data: 14 
Batches ( ), 1 
sample ( ), 2 measurements 
( ) in one sample within
each batch, (t=0).

Non-informa ve priors:  

Where is the stability testing time in month, μ denotes parameter means and denote parameter 
uncertainties, denotes the fixed effect stability change rate for the batch, g indicates between-batch 
process component, L indicates within-batch process component, and LS indicates measurement component.

is the measured value for the sample within the batch at the time point ; is the mean 
value for the sample within the batch at the time point ; is the measurement precision ( as
variability) for each sample measurement within a batch; is the mean value for the batch at the time 
point ; is the sample precision ( as variability) within a batch; is the mean value for all batches at the 
release time point; is the between batch precision ( as variability) at the release time point. In the case of 
Product Development Data, the “PD” is added to the notations and other meanings of the notations keep the 
same. 

Fig. 2 Bayesian hierarchical models built based on the case data structure in Fig. 1

length of burn-in is specified to be 5000. Most of the initial values of the parameters
in the simulation chain are randomly chosen but cover the possible practical values.
Based on the posterior distribution, the results at release and various stability testing
stations (i.e., 0, 3, 6, 12… months according to the stability test plan) are sampled
using the same model structure. Using the sampled results, product performance
predictions are made for various scenarios based on the simulation values after
burn-in. For example, if the release batch values (Y0) and the batch values at the
shelf life time (YS) are of interest, the joint distributions of Y0 and YS can be
simulated using the sampled results based on the posterior distribution of the model.
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Fig. 3 The likelihood functions and the posterior distribution in the case

The OOS and ORL risks can be calculated jointly using these Bayesian sampled
results. Figure 4 presents the probability ofOOS at 24month as an example. Based on
this analysis, the approved SSL of 93.0–105.0% (i.e. the SSL endorsed by regulators)
and the IRL of 95.0–104.5% at the time of filing is acceptable. As highlighted by the
dashed box, the combination controls the OOS risks to a minimal level. However, if
business inputs indicated that a higher risk level could be tolerated, more stringent
limits could have been considered if the proposal were pushed back by agencies or
internal stakeholders.

Process capability index (Cpk or long term Cpk) and its credibility interval (CI)
are calculated for various IRLs as summarized in Fig. 5. Specifically, two scenarios
in this case are examined for different number of batches (denoted by N):

• N= 27, the available number of commercial batches reflecting the current manu-
facturing and analytical performance.

• N = 200, an estimated total number of batches in the product life assuming the
manufacturing and analytical performance will remain the same.

The graph illustrates twopoints aligningwith statistical intuitions. First, the tighter
the IRL, the worse the process capability, because the acceptance criteria (i.e. the
IRLs if set appropriately) for the process becomes more stringent. Second, the larger
the number of batches, the narrower the 95% CI of capability index, which reflects
increasingly the long-termperformance. The commercial data of 27 batches is used to
validate the Bayesian results. Process capability index is generated when the number
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Fig. 4 Probability of OOS occurrence at 24 months for combinations of shelf-life specifications
and internal release limits in the case. (SL = Shelf-life Specification Limits; unit for the limits is
% of label.)

Fig. 5 Process capability analysis in the case (Red lines are capability indexes for different internal
release limits. Size denotes the number of batches simulated.Green andblue lines are 95%credibility
intervals (CI) of the capability index for Size= 27 and Size= 200, respectively. Black dots are the
capability indexes calculated using the data from N= 27 based on the implemented internal release
limits of 95.0 to 104.5% of label)
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of batches is greater than 25 for process robustness monitoring. In Fig. 5, the black
dot is the process capability index reported on the available 27 commercial batches
using the classic method, which is within the 95%CI (green lines) from the Bayesian
prediction for N = 27. The results indicate that the Bayesian process capability
prediction is acceptable for the early commercial production. In the scenario of N
= 200, the black dot falls out of the 95% CI for N = 200 at the lower side, which
is more likely because data of the 27 commercial batches is not fully representative
of long term commercial production performance. The Bayesian approach offers the
potential to reduce such inaccuracy in prediction, which needs to be confirmed by
furtherBayesian updating and ideally incorporation of prior development knowledge.

4 Discussion

The real-life case indicates that Bayesian inference has the potential to improve
confidence in risk predictions to inform the specification/limit setting process, even
only based on the limited data used in the filing. The use of non-informative prior
distributions yields results in line with those from conventional statistical analysis,
which is expected as the information from the evidence, i.e. the simulated data,
dominates the not very informative prior.

The posterior distributions can be used as a prior distribution in the next round of
Bayesian modeling, in which the pre-existing evidence is taken into account in the
new prior. Through iterative updating, the posterior is determined increasingly by the
evidence rather than any original prior distribution as data accumulates. If employed
through a product lifecycle, Bayesian updating offers the potential to capture the
knowledge accumulated through development and commercial production, which
will address the limitations of frequentist approaches. Starting with non-informative
priorsmay help tomitigate the frequent doubt about theBayesianmodelling: analysis
manipulation by designing the prior.

Even in a single round application as in the real-life case herein, the Bayesian
approach generatesmore robust risk assessment. First, the joint distribution of release
data and 24-month stability values can be carefully examined as shown in Fig. 6.
Since the batch number for each simulated observation can be tracked, the OOS/ORL
risks can be reviewed in depth and categorized. One may try various combinations
of SSL and IRL to reduce the probability of false rejection and false acceptance.
Moreover, distribution of parameters can be derived and used for investigation and for
continuous improvements. For instance, in the real-life case discussed, the analytical
variability, between batch process variability, and within batch process variability
can be better defined, monitored, and improved as needed.

While the approach generates the probabilities of events, the resulting cost or
benefit can be added relatively easily to compare different risk options. For example,
the costs of a typical OOS investigation, a retest, and a batch rejection can be esti-
mated and even incorporated as parameters in the modelling. Nevertheless, risks can
be interpreted from multiple perspectives. For instance, a higher ORL probability
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Fig. 6 Illustration of joint distribution of the simulated release results and 24-month stability results
for the potency test from a Bayesian approach

translates into (1) a lower capability which is not a favorable scenario to production;
(2) potentially lower OOS occurrence and less other potential consequences such as
recalls, which is positive from a quality perspective. Therefore, the decision rules
need to be aligned among business units, preferably to be standardized for consis-
tency and, most importantly, to balance producer’s risk and customer’s risk but still
fulfill commitments to patients.

If implemented, a Bayesian approach needs to demonstrate consistency and
robustness. To convince stakeholders, structured processes need to be developed
to drive best practices among practitioners. Furthermore, collaboration across stages
and functional areas are critical to integrate knowledge and data accumulated into
defendable prior distributions in Bayesian updating and to align on the decision
framework.

5 Conclusion

This work shares vision and effort to improve pharmaceutical risk assessments,
specifically focusing on risks associated with shelf-life specification and inter-
nal release limits as important factors in development, production, and supply. A
Bayesian approach is considered for its inherent advantages in incorporating evolving
knowledge, estimating uncertainties, and predicting risks. The values of the concept
are discussed and preliminarily demonstrated using a real-life case. The Bayesian
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paradigm can enhance effectiveness of specification setting process and optimize
improvement opportunities to ensure process, analytical, and product robustness.

Based on the proof of concept, Bayesian inference is proposed as a potentially
useful tool to quantitatively build systemic knowledge through product lifecycle. The
approach can be vital to delivering on regulatory expectations and industrial trends,
including continued process verification, quality by design, andE2Eproactive quality
management.

Therefore, the plan is to further evaluate performance of Bayesian approaches,
particularly Bayesian updating, in real-life situations, to expand from potency to
other critical quality attributes, and to broaden the application from specification set-
ting to other decision processes. To fully realize the potential value of the approach,
it requires engagement in quantitative modeling from development to production, a
structured framework with aligned processes and rules, as well as seamless collab-
orations across various functional areas.
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Development of Statistical
Computational Tools Through
Pharmaceutical Drug Development
and Manufacturing Life Cycle

Fasheng Li and Ke Wang

Abstract Statisticians at Pfizer who support Chemistry, Manufacturing, and Con-
trols (CMC), and Regulatory Affairs (Reg CMC) have developed many statistical R-
based computational tools to enable high efficiency, consistency, and fast turnaround
in their routine statistical support to drug product and manufacturing process devel-
opment. Most tools have evolved into web-based applications for convenient access
by statisticians and colleagues across the company. These tools cover a wide range of
areas, such as product stability and shelf life or clinical use period estimation, process
parameter criticality assessment, and design space exploration through experimental
design and parametric bootstrapping. In this article, the general components of these
R-programmed web-based computational tools are introduced, and their successful
applications are demonstrated through an application of estimating a drug product
shelf life based on stability data.

Keywords Statistical computing · Web based tool · R programming · Regression
analysis · Design of experiment

1 Introduction

Through the regulatory, chemistry, manufacturing and controls (Reg CMC) devel-
opment lifecycle of a drug product, a series of compendial requirements, quality
standards, and performance criteria must be well established and met. It usually
takes years to perform data collection, analysis, and reporting on chemical process,
formulation and manufacturing process, and analytical method development. Com-
mon practice in current pharmaceutical industry to “optimize” product compositions,
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manufacturing processes, and analytical methods is to apply designed experiments
(DOEs), statistical models and statistical sampling techniques. Data generated in
these procedures, which could be in a large amount, are usually analyzed or evalu-
ated by statisticians or statistically trained professionals with commercial statistical
software systems such as Design Expert, SAS, or SAS-JMP. With the increasing
demand of statistical application and the challenge of limited number of trained
statisticians, it is desirable to develop computational tools to conduct routine statisti-
cal analyses in more efficient and consistent ways. The computational tools promote
consistency, efficiency, and reproducibility for routine statistical analysis. Version
control, monitoring and regular maintenance are an integral part of developing the
computational tools. The features of the computational tools align well with the
requirements of Title 21 Code of Federal Regulations (CFR) Part 11 that the soft-
ware systems should be readily available for and subject to FDA inspection (3) [1].
Working as statisticians at Pfizer supporting pharmaceutical development and Reg
CMC, we have identified many opportunities and areas that benefit from statistical
computation tools. Most tools are developed using a language such as R and have
evolved into web-based applications for easy access by statisticians and colleagues
at Pfizer. This article introduces the general requirements and structure of web-based
statistical tools. The computational application is demonstrated through one tool
which evaluates product stability and predicts shelf life or clinical use period.

2 Overview of Available Web-Based Statistical Tools

2.1 Introduction of Components of Web-Based Statistical
Applications

Figure 1 illustrates three standard components of typical web-based applications:
computer server, GUI platform server and application user. In practice, applet authors
utilize the application servers to construct the computation script and the graphi-
cal user interface (GUI) of the application, and ensure successful communication
between the application servers (usually a web browser) and the computer servers.
General users only need to compile data into a required format by the applications.
For a statistical computational application, additional software systems, such as R
and SAS need to be installed onto the computer server for statistical analysis. The
following section provides an overview of the web-based statistical applications
developed by Pfizer pharmaceutical development and Reg CMC statisticians.
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Fig. 1 Components of a typical web-based application

2.2 Overview of Web-Based CMC Development/Regulatory
Statistics Applications

Most computational tools developed at Pfizer to support analytical method, product,
and process development are written in script codes using R, SAS, MATLAB, JMP,
Minitab, or MS Excel spread sheet templates. One example is drug product shelf life
prediction. Long-term stability data are collected under various storage conditions,
per ICH Q1A (2) and are evaluated per ICH Q1E (1) [2, 3]. The statistical analysis
is coded in SAS and R to generate summary results and plots.

The commercial software packages, nevertheless are important tools for statisti-
cians to carry out data analysis. However, individual usage of the software presents
issues in portability, limited version control, and reproducibility. With support from
Pfizer Information Technology group, statisticians have been able to turn the individ-
ual pieces of code intoweb-based applications. Figure 2 illustrates variousweb-based
statistical applications developed by the CMC statisticians at Pfizer and the targeted
areas throughout the life cycle of drug development and manufacturing. These appli-
cations are searchable and accessible to Global Pfizer colleagues.
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Fig. 2 Examples of statistical computational web-based applications throughout drug development
and manufacturing life cycle

3 An Example Web-Based Statistical Computation Tool

Below, details are provided on the development and usage of one of the web-based
applications listed in Fig. 2, Stability & Shelf Life Prediction.

For this application, assume that the stability data are collected from a registration
stability program that follows ICH Q1A guidelines or a clinical stability program.
Most stability programs have three registration batches per combination of strength,
packaging configuration, and storage condition, whereas clinical stability program
usually has only one batch. The online application of analyzing stability data is pro-
grammed in R, following ICH Q1E guidance for a specific combination of product,
strength, package, and storage condition. The shelf life is determined by the decision
criteria in the guidance. The clinical stability data is analyzed using a simple linear
regressionmodel, and the use period is determined, according to an internal criterion.
For example, the use period of a clinical material is the shorter of the intersection
of the 95% confidence interval and the specification limit or real stability time plus
12 months or longer if statistically supported. Therefore, the shelf life or clinical use
period can be determined by a two-step procedure: model selection and projection
of shelf life/use period.
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3.1 Statistical Model Selection

For the statistical analysis of typical registration stability data, the following model
selection procedure is performed based on the poolability of the data from the three
batches. Assume Yb = yb1, yb2, . . . , ybT are the stability data for an attribute at time
period t =1, 2, …, T months for batch b = 1, 2, …, B for a certain combination of
strength, package type, and storage condition.

(a) Fit a full model (the SSSI model—separate slopes and separate intercepts
model):

y = β0 + β1 ∗ time + β21 ∗ batch + β12 ∗ t ime ∗ batch + ε (1)

where the error 1is normally distributed with mean 0, and standard deviation σ. This
model is referred to as the separate slopes and separate intercept model (SSSI), as it
allows for different slopes and different intercepts for each batch.

Decision: If the p-value of the interaction of time and batch (time*batch) is <0.25,
STOP and use Eq. (1) for the shelf life projection; if the p-value of the interaction of
time and batch (time*batch) is ≥0.25, GOTO step (b).

(b) Fit a reduced model (the CSSI model—common slope and separate intercepts
model):

y = β0 + β1 ∗ time + β21 ∗ batch + ε (2)

Thismodel is referred to as a common slope and separate interceptsmodel (CSSI),
as it permits the same slope estimate but different intercepts for all batches.

Decision: If the p-value of batch is <0.25, STOP and use Eq. (2) for the shelf life
projection; if the p-value of batch is ≥0.25, GOTO step (c).

(c) Fit a reduced model (the CSCI model—common slope and common intercept
model):

y = β0 + β1 ∗ time + ε (3)

Thismodel is referred to as a common slope and common intercept model (CSCI),
since the same slope and intercept are used for all batches.

Decision: Eq. (3) is used for the shelf life projection.
The above described procedure for the statistical analysis of long-term registration

stability data is summarized into a flow chart in Fig. 3. For typical one-batch clinical
stability data, a simple linear regression model is used.
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Fig. 3 Typical regression model selection per ICH Q1E stability data analysis

3.2 Shelf Life or Use-Period Projection

Once the regressionmodel is determined, the 95%confidence interval (CI) can be cal-
culated for any stability time point. The predicted shelf life/use period is determined
as the shortest time point when the confidence limit intersects with the specification
limit of the product. Notice that it is necessary to extrapolate the predictions and
95% CIs in order to determine the shelf life/use period beyond the maximum storage
time of the stability data. Per ICH Q1E, the maximum extrapolation is two times of
the maximum storage time (Tmax) when Tmax is <12 months or an extrapolation of
12 months when Tmax is > = 12 months. Figure 4 illustrates how to establish the
shelf life for an example data set. For this set of stability data, a separate slope and
separate intercept model is selected and the shelf life is determined by the limiting
lot (i.e. Lot 3). This shelf life limiting lot is determined, due to its fastest impurity A
growth (largest slope) and thus its 95% CI intercepts with the specification limit of
1%, the earliest at 32.1 months. Therefore, 32.1 months (or 32 months) is the longest
shelf life can be proposed. Practically, a shelf life of either 24 months or 30 months
can be proposed for this product based on this set of data.
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Fig. 4 Prediction of product shelf life based on regression model per ICH Q1E stability analysis:
the predicted shelf life is the interception point (i.e., 32.1 months) of the upper 95% confidence
limit with specification limit (i.e. the upper limit 1.0%)

3.3 The Internal Web-Based Online Application

Both long-term registration stability data and clinical stability data are collected
routinely for all filed products. The repeated stability data analysis, including stability
data plotting and drug product shelf life prediction, necessitated the development of
a web-based application tool to standardize these statistical activities.

The web application for Registration and Clinical Stability Data Analysis and
Shelflife/Use Period Prediction is programmed inR.A graphical user interface (GUI)
is built to allow users to upload the relevant stability data to the program for analysis.
The GUI of this application is displayed in Figs. 5 and 6 where the main interface
contains links to various features, such as the user manual, example data sets in
required formats, dialogues for uploading data, and choices of analyses.

Once stability data is uploaded and choices of statistical analyses and parameters
are determined, the job is submitted and run in the background through the HPC
computing cluster. As soon as the job is finished, users can view the results (including
tables and graphical plots) through theweb browser (e.g., Internet Explorer, Chrome).
The application also provides the ability to download tables and graphs as well as
consolidating the results in a .pdf formatted report. Figure 6a, b are snapshots of the
output on a web browser.
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Fig. 5 a Web-based application—registration and clinical stability data analysis and shelflife/use
period prediction:GUI—main interface bWeb-based application—registration and clinical stability
data analysis and shelflife/use period prediction: GUI—further dialogues
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Fig. 5 (continued)

In summary, the implementation of the web-based statistical application of “reg-
istration and clinical stability data analysis and shelflife/use period prediction” is
able to offer benefits and features such as,

• Align the statistical analyses of long term stability data
• Offer quick and convenient turnaround to analyze stability data, to generate shelf
life plots and tables, and summary report

• Allow easy maintenance for feature updates due to the version controlled R pro-
gram

• Run jobs in the background on HPC cluster or cloud computers.

4 Conclusions

The benefits and features of web-based statistical applications have been demon-
strated through a selected program “registration and clinical stability data analy-
sis and shelflife/use period prediction”. Statisticians and scientists supporting drug
development and Reg CMC areas can offer their routine statistical activities with
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Fig. 6 a Abbreviated Result—displayed in a browser of the web-based application—registration
and clinical stability data analysis and shelflife/use period prediction: Data read-in, shelf life results
and plots bAbbreviated Result—displayed in a browser of the web-based application—registration
and clinical stability data analysis and shelflife/use period prediction: Summary of data, slopes,
reports, etc.
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increased consistency, improved efficiency, better alignment of statistical analyses,
and easily retrievable results by deploying web-based statistical applications. These
web-based statistical applications can standardize statistical approaches, centralize
software pieces, validate and verify software pieces, and utilize high performance
and cloud computer resources.
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Application of Advanced Statistical Tools
to Achieve Continuous Analytical
Verification: A Risk Assessment Case
of the Impact of Analytical Method
Performance on Process Performance
Using a Bayesian Approach

Iris Yan and Yijie Dong

Abstract The criticalness of robust analytical performance is becoming more and
more recognized in the pharmaceutical industry. An effective analytical control strat-
egy needs to be defined, along with a process control strategy, to ensure that the mea-
surement uncertainties are controlled to achieve the intended purposes of analytical
methods. The principles of Continuous Process Verification (CPV) have been applied
to the lifecycle management of analytical robustness, which leads to our vision of
ContinuousAnalyticalVerification (CAV) through aproduct lifecycle. Thisworkpro-
poses to apply advanced statistical tools to deliver on the vision of CAV. A Bayesian
hierarchical modeling approach is a potential solution to integrate a risk-based con-
trol strategy into the framework of CAV from design, qualification, to continued
verification. A case study is included to illustrate the benefits of a Bayesian-based
systematic tool in assessing the impact of analytical performance on process perfor-
mance and in informing decisions related to analytical control strategy, in order to
ensure analytical and process robustness.

Keywords Continuous process verification · Analytical control strategy · Life
cycle management · Risk assessment

1 Introduction

To achieve Continuous Process Verification (CPV) following the EU and FDA pro-
cess validation expectations [1], it is essential to understand, monitor and control
significant sources of variabilities that could affect product quality, among which
analytical variability is a critical component. From an even broader perspective,
robust analytical performance is a prerequisite for robust process performance. Ana-
lytical variability is always part of the observed variability in the process outputs and
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is often confounded with other sources of variations, such as materials, equipment,
operation, etc. Unsatisfactory analytical performance, andmost commonly high ana-
lytical variability, can cause negative effects, such as lower process capability and
higher risk of out of specification.

The CPV principles can be applied to the lifecycle management of analytical
robustness, which leads to our vision of Continuous Analytical Verification (CAV):
effective design, qualification, and continued verification of analytical performance
through a product lifecycle.

In line with the above efforts (CPV and CAV) to modernize the pharmaceuti-
cal development and operation, advanced statistical tools need to be explored and
applied for more effective risk assessments. For CAV, such tools would enhance the
understanding ofmajor sources of analytical variations and the associated impacts on
process performance and quality, and consequently, the effectiveness of a risk-based
analytical control strategy.

Bayesian hierarchical modeling is potentially a suitable choice. In comparison to
the frequentist approaches, Bayesian provides a structured framework for combining
prior information from historical process and analytical data, integrating analytical
and manufacturing factors across multiple units and/or stages, and making predictive
inferences based on varied hypotheses. Moreover, its continuous learning capability
enables verification of risk assessment results and informs decisions related to control
strategies through a product lifecycle.

A case study is included to illustrate the development of an effective control
strategy for analytical robustness by using a Bayesian approach for risk assessments.

2 Advanced Statistical Modelling to Build Effective
Analytical Control Strategy Through Lifecycle

In this session, business needs for a systematic risk assessment approach to achieve
analytical robustness are described. A flow of building a risk-based analytical control
strategy is presented. Advanced statistical modelling tools, particularly Bayesian,
are discussed to leverage their advantages in building an effective control strategy to
achieve CAV.

a. Robustness through Continuous Analytical Verification

The FDA Process Validation Guidance issued in [1] formalized the framework of
CPV to ensure a consistent and reliable delivery of quality product through a product
lifecycle. The benefits of the scientific and risk-based approach are more and more
recognized across the industry. As all CPV-related data is generated by analytical
methods, it is critical to ensure analytical performance through a product lifecycle.
Analogous to the CPV model, a CAV model can include the following stages:
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Stage 1: Design

• Apply the Quality by Design (QbD) concepts during the design stage [2–4].

– Identifymethod and performance expectations: EstablishAnalytical Target Pro-
file (ATP) to drive the design, development, and validation of appropriate ana-
lytical methods.

– Design and develop optimal method: Further define the analytical method per-
formance criteria in line with the ATP. Enhanced risk assessment and modeling
tools are applied to optimizemethod performance across the entire design space.

Stage 2: Qualification

• Perform a formal method validation or method transfer to demonstrate that the
ATP and the analytical method performance criteria is fulfilled.

Stage 3: Continued Verification

• Utilize method performance monitoring tools to assess method performance and
identify opportunities for improvement. Revisit the validity of the established ATP
and performance criteria on a regular basis as augmented knowledge are gained
through development and operation.

Through the three stages, an effective control strategy is required to ensure that the
analytical performance, especially for critical quality attributes and critical process
parameters, is properly controlled to fit for the intended purposes.

b. Proposed Risk-based Control Strategy

A risk-based control strategy can be developed following the procedures in Fig. 1 to
achieve CAV.

Define: understand themajor sources of variations including analytical variability,
and decide on where in the process the analytical methods need to be employed and
controlled.

Measure: collect available data from development and manufacturing to enable
the evaluation of variations and risk assessments.

Assess: evaluate the variations and quantify the associated risks.When applicable,
determine the analytical method control limits that support specifications and the
desired process performance across the product design space.

Control: inform the control strategy that is commensurate with the level of risks.
Improve: review the analytical and process control strategy regularly or as needed

as more data are being generated from routine monitoring. Increasing knowledge
about the method and process may offer improvement opportunities. Events such
as major process change, specification revisions, or new sources of variations can



116 I. Yan and Y. Dong

Fig. 1 Build risk-based
control strategy for
continuous analytical
verification

impact the analytical performance. Such events, when they happen, may reduce the
effectiveness of the current analytical control and the impacts need to be mitigated.

c. Bayesian’s Advantages in Continuous Analytical Verification

To build an effective control strategy through CAV, advanced statistical risk assess-
ment tools need to be utilized to assess and predict the impact of the analytical
performance over the product manufacturing space. The desired features for the risk
assessment tools are depicted in Fig. 2, including:

(1) Integrate the effects that impact process performance and analytical perfor-
mance;

(2) Evaluate properly the impacts of major sources of variations, which have their
own inherent uncertainties and collectively explain the risks;

(3) Predict reliably analytical and process performances and quantify the producer’s
risk and customer’s risk;

(4) Learn from the prior knowledge accumulated through development to produc-
tion, and provide a systematic way to update the above analyses and risk assess-
ment.

Bayesian hierarchical modeling is a potential solution with the above desired
features. In thiswork,we propose aBayesian-based systematic approach to assess the
impact of analytical performance on process performance, and to inform decisions
related to analytical control strategy to ensure analytical robustness and process
robustness.
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Fig. 2 Values of advanced statistical modeling in continuous analytical verification (adapted from
PhRMA ATG presentation to FDA [2])

3 A Case Study

A case study is shown in this section to demonstrate the benefits of Bayesian mod-
eling as a risk assessment tool for CAV. The case models the impact of a potential
change in the system suitability criterion of the protein concentration method, on
the process performance of both the drug substance and drug product for a biolog-
ics product. Analytical variability and variabilities from critical manufacturing steps
are taken into consideration, and predictive inferences are made to decide whether
the system suitability criterion change can be justified for the protein concentration
method.

a. Background

The existing system suitability criterion for working reference standard (WRS) is to
conduct three tests on the Reference Material (RM) and the average protein concen-
tration must be within ±2.5% from the RM release value. The limits were originally
determined based on limited method historical data. The system suitability criterion
is applied to both drug substance (DS) (reported as protein concentration in unit of
mg/mL) and the drug product (DP) (reported as drug content in unit of mg). The
goal of the study is to evaluate if it is appropriate to widen the system suitability
criterion from±2.5% to±3.0%. A critical consideration for decision making is how
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the quality performance of DS and DP would be impacted by widening the sys-
tem suitability criterion. More specifically, the analysis is to evaluate the impact on
DS protein concentration process capability (Cpk at release) and DP drug content
out-of-specification (OOS) risk.

b. Building Risk-based Control Strategy

(1) Define

To identify the key sources of variation inDS andDPoutcomes, a process flowchart is
presented in Fig. 3with themajor sources identified, the corresponding specifications
or control limits, and the theoretical calculation per stage. The manufacturing and
analytical testing procedures could impact the process and the final product quality
through the following major stages,

• DS is formulated at a target protein concentration of 50 mg/mL (specification:
45–55 mg/mL). The sample is tested using an A280 method, with results con-
taining two sources of variations: the DS manufacturing variability (�DS) and the
analytical variability from the DS testing lab (�1).

• DuringDPmanufacturing,multiple formulatedDSbatches can bemixed if needed,
and then filled into vials. The control limit on fill weight is 8.923–9.381 mg/vial.
The true protein concentration in the vial is the weighted average across the mixed
DS batches. The vial filling procedure introduces a weight variability (�FW).

• The filled DP vials are then lyophilized and stored at 2 °C–8 °C. To test the drug
content in DP, the lyophilized DP is diluted with water to a final volume of 8.8 mL
and tested using an A280 method. The DP sample contained variabilities from DS
manufacturing (�DS), DP fill weight (�FW), as well as analytical variability from
the DP testing lab (�2).

(2) Measure

To evaluate the identified sources of variations and quantify the associated risks, the
historical RM results from three labs (A, B and C) were provided, where lab A and
B are the DP testing labs and lab C is the DS testing lab. A run chart is presented in
Fig. 4, which reveals the performance differences across the three labs.

• Lab C reveals certain bias to the negative direction, comparing to theWRS release
value;

• Lab A reveals certain bias to the positive direction;
• Lab A and C show larger variability compared to lab B.

As suggested by analytical scientists, RM testing results from Lab B and C are
used for the risk assessment, as Lab B and C are the primary testing labs for DP and
DS, respectively.

Paired data formeasured protein concentration results with the corresponding RM
testing results were provided for 34 DS batches. In addition, data for filled weight of
DP vials was provided with average and standard deviation of vial fill weight from
10 DP batches.
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Fig. 3 Flow chart of product manufacturing and theoretical values of the key parameters

Fig. 4 Run chart of system suitability results by lab

(3) Assess

Widening of the system suitability criteria can potentially introduce more analytical
errors into the measured results and thus, impact the process performance. Bayesian
modeling techniques are applied to estimate such effects and the statistical models
are presented as follows.
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Model 1: Analytical Variability of DS Lab
Objective:

• Obtain predictive inference for true DS protein concentration (without analytical
error).

• Obtain predictive inference for DS protein concentration (factoring in true DS
protein concentration and analytical error).

• Predict the results of system suitability test and the corresponding analytical errors
in the DS testing results.

Statistical Model:

PCDS.Obs
i ∼ PCDS

i + �1

PCDS
i ∼ N (μDS, σDS)

�1, SS1, SS2, SS3 ∼ N (μDS
i , σ DS

i )

SSDS
report ∼

∑

k=1,2,3

SSk/(3 · CoA) · I (L ,U )

μDS
i ∼ N (μDS

Mμ, τ DS
Mμ)

where

PCDS
i = true protein concentration for the ith DS lot (i= 1, 2, …, 34)

PCDS.Obs
i = measured protein concentration which contains analytical error

�1 = analytical error in the measured protein concentration (DS lab)
SS1, SS2, SS3 = analytical errors in a series of three individual system suitability
tests
SSDS

report = average of the three system suitability tests which were only reported if
passing the existing system suitability criterion of ±2.5%
μDS, σDS = DS process mean and process standard deviation
μDS
i , σ DS

i = population mean and standard deviation for analytical error under the
same testing circumstance (repeatability)
μDS

Mμ, τ DS
Mμ = populationmean and standard deviation for analytical error under varied

testing circumstances (intermediate precision).
L, U = lower and upper acceptance criteria for the system suitability test.

Priors:

μDS ∼ N (50, 100) μDS ∼ U (0, 100)

μDS
Mμ ∼ N (0, 100) τ DS

Mμ ∼ U (0, 10) σ DS
i ∼ U (0, 1)
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Model 2: DP Fill Weight
Objective:

• Obtain predictive inference for filling weight of individual vials

Model:

FWi j ∼ N (FWi , σi )

FWi ∼ N (μg, σg)

τi = 1

σ 2
i

∼ Γ (α, β)

where

FWi j = fill weight for the jth vial (j = 1, 2, …, 200) from the ith lot (i = 1, 2, …,
10)
FWi = average fill weight for the ith lot (i = 1, 2, …, 10)
μg, σg = process mean and between batch standard deviation for DP fill weight
σi = within batch standard deviation of filling weight
τi = precision of within batch variability of filling weight

Priors:

μg ∼ N (9.152, 100) σg ∼ U (0, 10)

α ∼ Γ (0.001, 0.001) β ∼ Γ (0.001, 0.001)

Model 3: Analytical Variability of DP Lab
Objective:

• Obtain predictive inference for analytical variability from theDPLab. Specifically,
predict the results of system suitability test at the DP lab and the corresponding
analytical errors in the tested DP results.

Model:

�2, SS1, SS2, SS3 ∼ N (μDP
k , σ DP

k )

SSDP
report ∼

∑

k=1,2,3

SSk/(3 · CoA) · I (L ,U )

μDP
k ∼ N (μDP

Mμ, σ DP
Mμ )

where

SS1, SS2, SS3 = analytical errors in a series of three individual system suitability
tests in the DP lab
�2 = analytical error in the measured protein concentration in the DP lab
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SSDP
report = average of the three system suitability tests which were only reported if

passing the existing system suitability criterion of ±2.5%
μDP
k , σ DP

k = population mean and standard deviation for analytical error under the
same testing circumstance in the DP lab (repeatability)
μDP

Mμ, σ DP
Mμ = population mean and standard deviation for analytical error under

varied testing circumstance in the DP lab (intermediate precision)
L, U = lower and upper acceptance criteria for the system suitability test.

Priors:

μDP
Mμ ∼ N (0, 100) σ DP

Mμ ∼ U (0, 5) σ DP
k ∼ U (0, 1)

Model 4: DP Drug Content
Objective:

• Obtain predictive inference on true DP drug content, based on the predicted true
DS protein concentration fromModel 1, the predicted DP fill weight per vial from
Model 2, and the analytical errors per lab (�1 for the DS lab from Model 1 and
�2 for the DP lab from Model 3).

To simplify the model, it is assumed that there was no DS mixing during DP
manufacturing and that DS and DP followed a one-to-one mapping relationship.

Model:

PCDP∗
i j = FW ∗

i j ∗ PCDS∗
i

ρ

PCDP.Obs∗
i j = PCDP∗

i j + �∗
2

|SSDP∗
report | ≤ WRS Criterion

where

PCDP∗
i j = estimated true protein concentration for the jth vial (j = 1, 2,…, 200)

produced from the ith DS lot (i= 1, 2, …, N)
PCDP.Obs∗

i j = estimated tested protein concentration for the jth vial produced from
the ith DS lot
PCDS∗

i = predicted true protein concentration for the ith DS lot from Model 1
FW ∗

i j = predicted fill weight for the jth vial from the ith lot from Model 2
SSDP∗

report = predicted results of the system suitability test (average of three individual
tests)
�∗

2 = predicted analytical error in the measured protein concentration in the DP lab
corresponding to the reported system suitability test
r = DS density of 1.04 g/mL.

Prediction with Widened System Suitability Criteria:
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Fig. 5 Predicted distribution of reported system suitability results (drug substance lab)

Upon widening the system suitability criteria from ±2.5% to ±3.0%, larger values
from system suitability tests would be accepted (SSDS∗

report for DS and SSDP∗
report for

DP). The corresponding analytical error (�∗
1, �∗

2) being introduced to the DS and
DP testing results are also expected to be larger.

The distributions of DS and DP results, as well as the DS Cpk and DP OOS,
are calculated based on the obtained predictive inferences from Models 1 to 4 and
by applying the widened system suitability criteria of ±3.0% to filter the simulated
results. The results are compared against the results filtered with the current system
suitability criteria of ±2.5%.
Results:

From Model 1, 10,000 reported system suitability results from the DS testing lab
are generated and as shown in the histogram in Fig. 5. The system suitability results
has a negative bias of −0.61 mg/mL, comparing to the RM release value of 49.7%.
By widening the system suitability criterion from ±2.5% to ±3.0%, the failure rate
would be reduced by 6.6% for the DS testing lab, from 10.8% to 4.2%.

From Model 3, 10,000 system suitability results (each result is an average of
three individual tests) from the DP testing lab are generated and the histogram is
presented in Fig. 6. The system suitability results center around the RM release
value of 49.7%. The failure rates of system suitability test are estimated to be 0.33%
if applying the existing criterion of ±2.5%, versus 0.08% if applying the proposed
criterion of ±3.0%.

The true analytical error presented in the measured results is plotted against the
analytical error observed in the system suitability testing results in Fig. 7. The ana-
lytical error observed in the system suitability testing results is defined as the relative
difference between system suitability results and RM release value, while the RM
release value is considered as the true value of RM. The plot shows at what level
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Fig. 6 Predicted distribution of reported system suitability results (drug product lab)

Fig. 7 Simulation results of analytical error in measured drug substance results versus in system
suitability results
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Fig. 8 Predicted distribution of measured drug substance protein concentration (with analytical
error introduced by drug substance lab)

Fig. 9 Predicted distribution of measured drug product content (with analytical error introduced
by drug product lab)
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the system suitability testing can efficiently capture unacceptable analytical variation
and reject the run before proceeding to the real samples testing. Widening the system
suitability criteria from±2.5% to±3.0% will potentially reduce the system suitabil-
ity failure rate, but introduce more negative analytical errors into the measured DS
results. The combined effect is further evaluated, as shown in Fig. 8.
The histogram of predicted results for measured DS protein concentration is pre-
sented in Fig. 8, with different system suitability criteria applied. Upon widening
the system suitability criteria, the center of the measured results is slightly shifted
and the spread of the measured results become slightly larger. The DS Cpk against
the specification of 45.0–55.0 mg/mL are almost the same between applying either
system suitability criterion (Cpk = 1.51 vs. 1.50).

The predicted DP drug content tested by DP lab is shown in Fig. 9. The proba-
bilities of OOS occurrence are estimated to be 0.11%, when applying either system
suitability criterion.

(4) Control decision

The study examines the opportunity of widening the system suitability criterion from
±2.5% to±3.0%,whichwould significantly reduce the failure rate during the system
suitability testing.

Bayesian modeling techniques are applied to obtain predictive inference on both
the true and measured DS/DP protein concentration, the vial fill weight, and the ana-
lytical variation per lab. Further predictions are performed to estimate the impacts
on DS process capability and DP OOS risk, due to the widening of system suit-
ability criterion. The risk assessment suggests that both effects are relatively small.
Therefore, widening the system suitability criterion from ±2.5% to ±3.0% is of low
risks.

Limitations of this analysis are noted in the decision making process, including:
the available RM results were censored by the current system suitability criterion;
not all RM results were distinctive measurements (i.e., multiple DS tests could have
shared the same system suitability testing results if theywere tested on the same day);
the reportedRM results were an average of three tests, while individual numberswere
not available, etc.

(5) Improve

Opportunities for improvement are identified through the risk assessment and deci-
sion making discussions. The testing labs plan to pursue operational improvement in
the system suitability test, which may change the distribution of analytical variabil-
ity. Data collection practices can be improved to address the limitations discussed in
Step 4.

Steps 1 to 5 can be repeated regularly or as needed through the product lifecycle
to ensure the effectiveness of the analytical control strategy. Bayesian’s benefit, in
terms of continuous learning, can be explored through cycles of updating analyses.
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4 Conclusion

In this work, we propose to apply advanced statistical tools in developing a risk-
based control strategy to ensure CAV through a product lifecycle. A Bayesian based
systematic approach is proposed to assess the impact of analytical performance on
product robustness, integrate impacts of analytical and process components, inform
decisions related to analytical control strategy, and ultimately, ensure analytical and
process robustness.

A case study is presented to demonstrate the values of the proposed Bayesian-
based risk assessment tool. The analysis models the impacts of a potential change of
the system suitability criterion of the protein concentration method for a biologics
product. Analytical variability and variabilities from critical manufacturing steps
are considered in making predictive inferences related to analytical and process
performances. The predicted results clearly show that relaxing the system suitability
criterion would improve analytical performance without posing major risks to future
process performance.

Once more data becomes available from future testing and improvements, the
analytical control strategy can be revisited and refined, to which Bayesian updating
can provide further benefits. The approach can be expanded to other tests and prod-
ucts, and enable more effective risk management to ensure CAV through a product
lifecycle.
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Exact Inference for Adaptive Group
Sequential Designs

Cyrus Mehta, Lingyun Liu, Pranab Ghosh and Ping Gao

Abstract In this paper we present a method for estimating the treatment effect
in a two-arm adaptive group sequential clinical trial that permits sample size re-
estimation, alterations to the number and spacing of the interim looks, and changes
to the error spending function based on an unblinded look at the accruing data. The
method produces a median unbiased point estimate and a confidence interval having
exact coverage of the parameter of interest. The procedure is based on mapping the
final test statistic obtained in the modified trial into a corresponding backward image
in the original trial. Methods that were developed for classical (non-adaptive) group
sequential inference can then be applied to the backward image.

Keywords Estimation in adaptive design · Exact adaptive confidence intervals ·
Adaptive median unbiased estimates · Group sequential estimation

1 Introduction

An adaptive group sequential trial permits data dependent alterations of the key
design parameters such as sample size, number and spacing of interim looks, and the
error spending function. The primary motivation for these adaptive modifications is
the uncertainty regarding the efficacy of the new treatment relative to the control.
Mehta and Pocock [7] and Mehta [8] present several case studies of actual trials in
which provision was made for such adaptive modifications. The two major statistical
problems for an adaptive group sequential trial are hypothesis testing and parameter
estimation. Specifically, how can we prevent inflation of the type-1 error, and how
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can we obtain valid p-values, confidence intervals and point estimates in an adaptive
group sequential trial?

Cui et al. [2], and Lehmacher and Wassmer [6] showed that the type-1 error of
an adaptive group sequential trial can be preserved by combining the independent
data from the different stages of the trial with pre-specified weights. A more general
approach that permits, amongother options, changes in the sample size, the number of
interim looks, the spacing of interim looks, the error spending function and subgroup
selection, was proposed by [10]. Their method is based on the conditional error
rate principle. Specifically, one must ensure that the conditional type-1 error after
an adaptive change does not exceed the conditional type-1 error of the original
design. For the related problem of parameter estimation, [6] proposed extending [4]
repeated confidence intervals method by applying it to the inverse-normal weighted
statistic. Mehta et al. [9] also proposed an approach based on extending [4] repeated
confidence intervals. Their solution, based on a generalization of the hypothesis
testing procedure of [10], is applicable to a broader class of adaptive changes than
the method of [6]. Repeated confidence intervals do not, however, exhaust the entire
type-1 error and hence produce conservative coverage of the efficacy parameter.
More recently, [1] proposed a one-sided lower confidence bound for the efficacy
parameter, based on extending the stage wise adjusted confidence intervals of [11].
A different approach, applicable to two-sided confidence intervals, was proposed by
[3]. Their method generalizes the stage wise adjusted confidence intervals developed
by [11] for classical group sequential designs, and the hypothesis tests developed by
[10] for adaptive group sequential designs, and combines these two ideas in a novel
manner to map the observed value of the test statistic from the sample space of the
adaptive design to the sample space of the original non-adaptive design. The usual
stage wise adjusted confidence intervals are then derived for the mapped image
of the test statistic. These confidence intervals are referred to as backward image
confidence intervals (BWCI). This paper presents the highlights from the paper by
[3] but refers the reader to the original paper for technical details. The main results
of [3] are summarized in Sect. 2. Section 3 presents extensive simulation results that
demonstratemedian unbiasedness and exact coverage.We endwith some concluding
remarks in Sect. 4.

2 Backward Image Method

Consider a two-arm randomized clinical trial comparing a new treatment to an active
control. The treatment effect is captured by a single parameter θ that might denote
the difference of means for two normal distributions, the difference of proportions
for two binomial distributions, the log hazard ratio for two survival distributions,
or more generally, the coefficient of the treatment effect in a regression model. The
accumulating data are captured by the efficient score statistic



Exact Inference for Adaptive Group Sequential Designs 133

W (t) = θ̂t

where θ̂ is the maximum likelihood estimate of θ and

t = [se(θ̂)]−2

is the Fisher information for θ obtained from the available data. Since t depends on
unknown parameters it is replaced, in practice, by its large sample estimate. Fur-
thermore, as is well known (e.g., [4]), W (t) converges in distribution to a Brownian
motion with drift θ. That is,

W (t)
D−→ B(t) + θt (1)

where B(t) ∼ N (0, t), and for any t2 > t1, cov{B(t1), B(t2)} = t1.
We shall be interested in testing the null hypothesis Hδ: θ = δ for arbitrary val-

ues of δ and inverting this hypothesis test to produce point and interval estimates
for θ. We will assume throughout that a positive value of θ indicates a better prog-
nosis for the treatment arm relative to the control arm. In the absence of adaptive
changes, the following group sequential trial will be employed to test H0. Analyses
are planned at information times t (1)1 , t (1)2 , . . . t (1)K1

with corresponding critical val-

ues c(1)1 , c(1)2 , . . . c(1)K1
. The trial is terminated and null hypothesis H0 is rejected at

the first information time, t (1)j say, such that W (t (1)j ) ≥ c(1)j . If W (t (1)j ) < c(1)j for all
j = 1, 2, . . . K1, then H0 is retained. For a one-sided level-α test of H0, the critical
values, c(1)1 , c(1)2 , . . . c(1)K1

, must satisfy the relationship

P0(
K1⋃

i=1

[W (t (1)i ) ≥ c(1)i ]) = α , (2)

where Pδ(.) represents probability under the assumption that θ = δ.
At any look L < K1, with W (t (1)L ) = x (1)L , it is possible to alter the number and

spacing of the future looks based on an examination of the data already obtained.
Suppose it is decided to take K2 future looks, at information times t (2)1 , t (2)2 , . . . t (2)K2

.

Let c(2)1 , c(2)2 , . . . c(2)K2
be corresponding critical values, so selected that

P0{
K1⋃

j=L+1

W (t (1)j ) ≥ c(1)j |W (t (1)L ) = x (1)L } = P0{
K2⋃

j=1

W (t (2)j ) ≥ c(2)j |W (t (1)L ) = x (1)L } . (3)

We will continue to monitor the accumulating data and will reject H0 at the
first information time t (2)I > t (1)L such that W (t (2)I ) ≥ c(2)I . If W (t (2)i ) < c(2)i for all
i = 1, 2, . . . K2, then we will retain H0 and set t (2)I = t (2)K2

. Müller and Schäfer [10]
have shown that, despite this data driven modification of the trial, the unconditional
probability that such a procedure will reject H0 remains α. Equation (3) is referred
to by [10] as the principle of preserving the conditional error rate.
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Suppose the trial terminates at information time t (2)I with observed statistic x (2)I .
Wenowcompute (t (1)Jδ

, x (1)Jδ
), the backward image of the observed outcome (t (2)I , x (2)I ),

such that

Pδ{
I−1⋃

i=1

[W (t (2)i ) ≥ c(2)i ] ∪ [W (t (2)I ) ≥ x (2)I ]|x (1)L }

= Pδ{
Jδ−1⋃

i=L+1

[W (t (1)i ) ≥ c(1)i ] ∪ [W (t (1)Jδ
) ≥ x (1)Jδ

]|x (1)L } .
(4)

We have shown in [3] that the backward image of any observed outcome in the
adaptive trial is unique and can easily be computed.

Given a final outcome (t (2)I , x (2)I ) in the adaptive trial, we compute (δα/2, δ1−α/2),
the 100 × (1 − α)%twosided confidence interval for θ, and δ0.5, themedianunbiased
point estimate for θ by noting, as proven in [3], that the one-sided p-value of the
observed event for the test of Hδ can be computed from its backward image as

fδ(t
(1)
Jδ
, x (1)Jδ

) = Pδ{
Jδ−1⋃

i=1

[W (t (1)i ) ≥ c(1)i ] ∪ [W (t (1)Jδ
) ≥ x (1)Jδ

]} . (5)

The lower confidence bound, δα/2 and corresponding backward image (t (1)Jδα/2
, x (1)Jδα/2

)

are computed such that
f Jδα/2

(t (1)Jδα/2
, x (1)Jδα/2

) = α/2 . (6)

The upper confidence bound δ1−α/2 and corresponding backward image (t (1)Jδ1−α/2
,

x (1)Jδ1−α/2
) are computed such that

f Jδ1−α/2
(t (1)Jδ1−α/2

, x (1)Jδ1−α/2
) = 1 − α/2 . (7)

Finally, find the median unbiased point estimate δ0.5 and corresponding backward
image (t (1)Jδ0.5

, x (1)Jδ0.5
) are computed such that

f Jδ0.5
(t (1)Jδ0.5

, x (1)Jδ0.5
) = 0.5 . (8)

3 Simulation Experiments

We evaluated the operating characteristics of the backward image method for esti-
mating θ by repeatedly simulating a number of adaptive group sequential designs.
In this section we report the results of three such simulation experiments. Each ex-
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periment involved simulating an adaptive group sequential design with five different
values of θ. We simulated the adaptive group sequential trial 100,000 times with
each value of θ, thereby producing 100,000 confidence intervals whose coverage of
θ we then assessed. All the simulations utilized normally distributed data with mean
θ and σ = 1 (assumed known).

First Simulation Experiment. In this simulation experiment the original trial is
designed for up to four equally spaced looks with the Lan and DeMets [5] O’Brien-
Fleming type error spending function (LD(OF) error spending function). The total
sample size of 480 subjects provides slightly over 90% power to detect δ = 0.3 with
a one-sided level-0.025 group sequential test. At look 1, with 120 subjects enrolled,
the conditional power under the estimated value of θ is evaluated and if it falls
between 30 and 90%, the so called “promising zone” (see Mehta and Pocock, [2]),
the sample size is increased by the amount necessary to boost the conditional power
up to 90%, subject to a cap of 1000 subjects. The trial then proceeds with the new
sample size, up to three additional equally spaced looks, and new stopping boundaries
derived from the LD(OF) error spending function. The α error of the new stopping
boundaries for the adaptive extension is derived from Eq. (3) so as to preserve the
unconditional type-1 error of the trial despite the data dependent adaptation. This trial
is simulated 100,000 times with a fixed value of θ. At the end of each simulation the
point estimate of θ, δ0.5, and the corresponding 95% two-sided confidence interval,
(δ0.025, δ0.975), are computed. If the trial crosses the stopping boundary at look 1, there
is no adaptation and the classical stage wise adjusted point and interval estimates
are obtained. If, however, there is a sample size adaptation at look 1, the point and
interval estimates for θ are computed by the backward image method using Eqs. (6),
(7) and (8). Simulation results for θ = −0.15, 0, 0.15, 0.3 and 0.45 are presented
in Table 1. Column 1 contains the true value of θ that was used in the simulations.
Column2 contains themedian of the 100,000 δ0.5 estimates and demonstrates that δ0.5
is indeed a median unbiased point estimate for θ. Column 3 contains the proportion
of the 100,000 confidence intervals that contain the true value of θ. These intervals
demonstrate 95% coverage up to Monte Carlo accuracy. Columns 4 and 5 display
the proportion of intervals that exclude the true value of θ from below and above
respectively.

Second Simulation Experiment. In this simulation experiment the original trial
is designed for up to three equally spaced looks with the LD(OF) error spending
function. The total sample size of 390 subjects provides about 90% power to detect
δ = 0.3 with a one-sided level-0.05 group sequential test. If the trial does not cross
an early stopping boundary at look 1 or look 2, then at look 2, with 240 subjects
enrolled, the conditional power under the estimated value of θ is evaluated and if
it falls in the promising zone, here specified to between 20 and 90%, the sample
size is increased by the amount necessary to boost the conditional power up to 90%,
subject to a cap of 780 subjects. The trial then proceeds with the new sample size for
up to three additional equally spaced looks with new stopping boundaries derived
from the Lan and DeMets [5] Pocock type error spending function (the LD(PK) error
spending function). This trial was simulated 100,000 times with different values of
θ. The median of the 100,000 point estimates for θ and the coverage proportion of
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Table 1 Results from 100,000 simulations of a 4-look LD(OF) GSD with adaptation at look 1 to a
3-look LD(OF) GSD, demonstrating that the point estimate is median unbiased and the two-sided
95% confidence intervals provide exact coverage of the true value of θ up to Monte Carlo accuracy

True value of θ Median of 100,000
point estimates

Proportion intervals
containing θ

Proportion of intervals that exclude θ

From below From above

−0.15 −0.14971 0.94893 0.02568 0.02539

0.0 0.000363 0.94976 0.02486 0.02538

0.15 0.149574 0.94939 0.02484 0.02577

0.3 0.30028 0.95111 0.02442 0.02447

0.45 0.44996 0.95017 0.02489 0.02494

Table 2 Results from 100,000 simulations of a 3-look LD(OF) GSD with adaptation at look 2 to
a 3-look LD(PK) GSD demonstrating that the point estimate is median unbiased and the two-sided
90% confidence intervals provide exact coverage of the true value of θ up to Monte Carlo accuracy

True value of θ Median of 100,000
point estimates

Proportion intervals
containing θ

Proportion of intervals that exclude θ

From below From above

−0.15 −0.14972 0.90007 0.05022 0.04971

0.0 0.00027 0.90073 0.04920 0.05007

0.15 0.14986 0.89866 0.04955 0.05179

0.3 0.2999 0.90087 0.04940 0.04973

0.45 0.44963 0.89929 0.05083 0.04988

the corresponding 90% confidence intervals for θ are reported in Table 2. It is seen
that the point estimates are median unbiased and the confidence intervals have exact
90% coverage up to Monte Carlo accuracy.

Third Simulation Experiment—Comparison with [6]. An alternative two-
sided confidence interval was proposed by [6] based on extending the repeated
confidence intervals of [4]. It is well known that these repeated confidence inter-
vals provide conservative coverage for classical group sequential designs because of
the possibility that the trial might stop early and not exhaust all the available α. It
would therefore be instructive to assess the extent to which these repeated confidence
intervals are conservative in the adaptive setting. Accordingly we created a design
with three equally spaced looks derived from the LD(OF) spending function and a
planned adaptation at the end of look 1. The total sample size of 480 subjects has
90.44% power to detect θ = 0.3 with a one sided test operating at significance level
α = 0.025. If the trial does not cross the early stopping boundary at look 1 then,
with 160 subjects enrolled, the conditional power under the estimated value of θ
is evaluated and if it falls in the promising zone, here specified to between 30 and
90.44%, the sample size is increased by the amount necessary to boost the condi-
tional power up to 90%, subject to a cap of 960 subjects. The trial then proceeds
with the new sample size for up to two additional equally spaced looks with new
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Table 3 Comparison of the coverage 100,000 simulated 95% confidence intervals generated by the
BWCI, SWCI and RCI methods. The underlying design is a 3-look LD(OF) GSD with adaptation
at look 1 to a 2-look LD(OF) GSD.

True value
of θ

Median of 100,000 Point Estimates Actual Coverage of 95% CIs

BWCI SWCI RCI BWCI SWCI RCI

−0.15 −0.15027 −0.149794 NA 0.95062 NA 0.95771

0.0 0.000118 −0.000421 NA 0.95014 NA 0.95213

0.15 0.150858 0.149064 NA 0.95016 NA 0.95017

0.3 0.300286 0.301016 NA 0.95062 NA 0.97597

0.45 0.449971 0.451704 NA 0.94936 NA 0.9875

stopping boundaries derived from the LD(OF) error spending function. This trial was
simulated 100,000 times with different underlying values of θ. Table 3 compares the
actual coverage of θ by 100,000 95% confidence intervals obtained by the backward
image method (BWCI) and the repeated confidence intervals method (RCI) due to
[6]. The median of the 100,000 point estimates generated by the BWCI method and
by the stage wise adjusted confidence interval method (SWCI) due to [1] methods
is also reported. No corresponding method for obtaining a point estimate from the
RCI method was developed by [6] hence none is reported.

As expected the BWCI method produces median unbiased point estimates and
95% confidence intervals with exact coverage up to Monte Carlo accuracy. The
SWCI method also produces median unbiased point estimates but does not provide
two-sided confidence intervals. The RCI method does not provide valid point esti-
mates and produces confidence intervals with increasingly conservative coverage as
θ increases. The reason for the increase in conservatism is that as θ increases, the
probability of stopping early, and hence of not exhausting the entire α increases.

It is also informative to examine the extent of the one sided coverage by the three
methods. This is shown in Table 4. The BWCI interval excludes the true value for
θ with 0.025 probability symmetrically from below and above, whereas the RCI
method is both extremely asymmetric as well as extremely conservative. The SWCI
method excludes the true value for θ with probability 0.025 from below but is not
applicable for exclusion from above.

4 Concluding Remarks

We have presented a new method for computing confidence intervals and point es-
timates for an adaptive group sequential trial. The confidence intervals are shown
to produce exact coverage and the point estimates are median unbiased. These re-
sults close an important gap that previously existed for inference on adaptive group
sequential designs. Hypothesis tests that control the type-1 error have been avail-
able for over a decade [2, 6, 10]). The development of procedures to produce valid
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Table 4 Comparing the BWCI, SWCI and RCI methods in terms of the probability that the lower
and upper bounds, respectively, of a 95% confidence interval will exclude θ. The underlying design,
a 3-look LD(OF) GSD with adaptation at look 1 to a 2-look LD(OF) GSD, is simulated 100,000
times

True value
of θ

Probability of Low CL > θ Probability of Up CL < θ

BWCI SWCI RCI BWCI SWCI RCI

−0.15 0.02505 0.0256 0.01905 0.02529 NA 0.02324

0.0 0.02462 0.0251 0.02448 0.02524 NA 0.02339

0.15 0.02473 0.0256 0.02585 0.02511 NA 0.02238

0.3 0.02411 0.0253 0.00654 0.02527 NA 0.01749

0.45 0.02470 0.0259 0.00075 0.02594 NA 0.01050

confidence intervals and point estimates proved to be much more challenging. The
first methods to guarantee two-sided coverage [6, 9] were shown to be conservative
and did not produce valid point estimates. Subsequently [1] proposed a procedure
that does produce exact coverage and valid point estimates. However, it only pro-
duces one-sided intervals. In contrast the two sided interval discussed here provides
a bounded region within which it is possible to verify monotonicty with standard
search procedures. This has enabled us to provide an operational proof that the in-
tervals have exact coverage and the point estimates are median unbiased. Refer to
[3] for details.

Finally, the entire development in this paper was expressed in terms of score
statistics and so is applicable to all types of efficacy endpoints including normal,
binomial and survival endpoints and model-based endpoints derived from contrasts
of regression parameters and estimated by maximum likelihood methods.
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A Novel Framework for Bayesian
Response-Adaptive Randomization

Jian Zhu, Ina Jazić and Yi Liu

Abstract The development of response-adaptive randomization (RAR) has taken
many different paths over the past few decades. SomeRAR schemes optimize certain
criteria, but may be complicated and often rely on asymptotic arguments, which may
not be suitable in trials with small sample sizes. Some Bayesian RAR schemes are
very intuitive and easy to implement, but may not always be tailored toward the
study goals. To bridge the gap between these methods, we proposed a framework in
which easy-to-implement Bayesian RAR schemes can be derived to target the study
goals. We showed that the popular Bayesian RAR scheme that assigns more patients
to better performing arms fits in the new framework given a specific intention. We
also illustrated the new framework in the setting where multiple treatment arms are
compared to a concurrent control arm. Through simulation, we demonstrated that the
RAR schemes developed under the new framework outperform a popular method in
achieving the pre-specified study goals.

Keywords Response-adaptive randomization · Bayesian adaptive design ·
Goal function · Multi-arm comparative trials

1 Introduction

Clinical trials face the challenges of low success rates, rising costs, and prolonged
timelines. In an effort to streamline clinical trials and expand the range of questions
that may be explored in a single study, investigators have developed adaptive designs
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that allow a trial in progress to be modified in a pre-specified fashion based on the
accumulated data. Such designs may shorten trials, reduce costs, improve power,
increase the number of patients treated effectively, and allow for the identification
of clinically meaningful subgroups [3, 35]. Many types of adaptive designs have
become part of the standard toolbox for conducting clinical trials [10].

Traditionally, fixed randomized designs have been the gold standard for clini-
cal trials: they balance potential confounders and eliminate bias arising from treat-
ment assignment by physicians. Equal allocation is justified under the principle of
equipoise, in which there is no a priori belief that one treatment is superior. However,
if interim results demonstrate that one treatment is superior to another, an adjustment
of the allocation ratiomay bewarranted. This is one argument for the use of response-
adaptive randomization (RAR), an adaptive strategy that modifies the allocation ratio
in a trial based on interim response data to achieve favorable trial characteristics.

There are many RAR schemes in the literature, differing from each other in terms
of design, implementation, and most importantly, goals. Such goals may include—
but are not limited to—maximizing the power to identify the most efficacious treat-
ment, maximizing the power to identify one treatment that is efficacious, minimizing
the number of non-responders in the trial, and minimizing sample size/cost while
maintaining sufficient power. However, these favorable characteristics are often in
conflict, and a single RAR scheme cannot achieve them all. Therefore, investigators
must identify and prioritize study objectives in order to select an RAR scheme that
is aligned with these objectives.

As described further in the next section, frequently used simple RARmethods are
easy to implement, but cannot be tailored to address particular study goals. On the
other hand, more complex RAR methods can be tailored for particular study goals,
but are harder to implement. In this manuscript, we propose a unifying framework for
a class of simple Bayesian RAR methods that can be targeted to a broader range of
study goals, yet still easy to implement. We illustrate the potential of this framework
by evaluating two novel RARmethods for multi-arm trials with a concurrent control
that were developed with specific study goals in mind.

Overview of RAR designs

RAR in practice can be dated back to the play-the-winner rule in two-arm trials [33,
36]. Since then, a variety ofRARschemes have been developed in both the frequentist
and Bayesian paradigms. Frequentist RAR designs specifically developed to opti-
mize certain criteria have been extensively studied, and their theoretical properties
have been well established [12–14, 24, 25, 30, 37]. Rosenberger et al. [24] describe
an RAR scheme based on Neyman allocation that maximizes the statistical power to
test the difference between treatments, using an allocation ratio proportional to the
empirical standard deviation calculated from the accruing data. Another design aims
to minimize the expected number of failures in the trial while fixing the variance of
the test statistic, thereby maintaining desirable power [14, 24]. The doubly adaptive
biased coin design updates allocation ratios depending on both the observed allo-
cation ratio and the estimated target allocation ratio to converge to a pre-specified
optimal allocation function [8, 13]. However, the theoretical properties of such RAR
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schemes generally rely on asymptotic approximation and have not been evaluated
for small sample sizes, and the ratios themselves may not be intuitive.

Another set of RAR schemes in the literature maximize specific utility functions
under a Bayesian decision-theoretic framework [2, 5, 16, 31]. For example, [2] con-
sider the conditional expected successes lost, a loss function that incorporates the
total number of patients anticipated to receive the drug, both within and beyond the
trial (known as the patient horizon). Such designs extend two- andmulti-armed bandit
problems, in which resources must be optimally allocated among options providing
random rewards according to their own probability distributions. However, this class
of methods has some drawbacks—some methods require extensive recursive com-
putations, some are deterministic and are vulnerable to associated bias, while others
require that the response for each patient must be observed before the next can be
randomized, which may pose challenges in practice.

Themost frequently usedRARscheme inmedical research and thepharmaceutical
industry stems from [29] paper on calculating the probability that one underlying
response rate exceeds another, given two samples. In the version that is currently used
in practice, updated allocation probabilities are computed at each interim analysis
based on the posterior probability of each arm being the most efficacious. In the
absence of a name for this method in the literature, we refer to it as Thompson
RAR. Beginning in the late 1990s, Donald Berry and his colleagues at the MD
AndersonCancerCenter designedmanyBayesian adaptive clinical trials in oncology,
employing Thompson RAR as one of a host of adaptive strategies. For example,
the I-SPY 2 breast cancer trial [1] and the BATTLE lung cancer trial [15] are two
well known large-scale phase II clinical trials that adopted this method for RAR.
Thompson RAR has also been used in trial designs in a variety of other therapeutic
areas, such as cardiovascular disease [6, 17], gastrointestinal disorders [23], diabetes
[9, 26], and neurology [4, 18].

Thompson RAR is appealing from a practical standpoint—it is intuitive, simple to
implement, can accommodate block randomization, anddoes not rely on asymptotics.
Unlike the optimal frequentist and Bayesian methods described above, though, the
theoretical properties of ThompsonRARhave not been extensively studied, and it has
not been explicitly linked with a specific intention or goal. The fact that Thompson
RAR is the preeminent RARmethod used in practice carries with it the risk of a “one
size fits all” approach in applying it across studies with possibly disparate study
goals. In the next section, we describe our proposed RAR framework that enables
Thompson RAR to be linked with a specific intention and, in effect, generalizes it to
a larger class of simple Bayesian RARmethods that can be customized to a particular
goal.

2 Proposed Framework

Consider a clinical trial with a total of K arms. For k = 1, . . . , K , let θk ∈ �k denote
the response parameter vector for the kth arm, where�k is the parameter space for θk
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and� = �1 × · · · × �K . For example, θk may represent the response rate if the end-
point is binary, or themean and variance if the endpoint is normal. Traditionally, fixed
equal randomization designs use the allocation ratio (1/K , . . . , 1/K ). Some fixed
randomization designs determine the optimal allocation ratio w = (w1, . . . , wK ),
where

∑K
k=1 wk = 1, based on assumptions of some constant values for the response

parameters θ = {θ1, . . . , θK } prior to the study. This is desirable since w is specif-
ically derived based on the study goal. For instance, in a comparative trial with a
treatment and a control arm, one can derive an optimal fixed allocation to maximize
the statistical power to detect the treatment difference using a Wald test, which is
the Neyman allocation assigning patients to each arm with weight proportional to its
standard deviation. However, such design is usually sensitive to the pre-specification
of θ . In other words, for each θ ∈ �, the desirable randomization weight w is dif-
ferent and can be viewed as a function of θ . If there is no additional information
regarding θ , it is impractical if not impossible to implement the weight w(θ).

In the context of RAR, suppose there are I interim analyses, and let Yi =
{Yi1, . . . , Yi K } denote the observed response data for all arms at the ith interim
analysis, i = 1, . . . , I . The accumulated data can be used for two purposes. Firstly,
sincew(θ) is derived before any data is collected, we can updatew based on the study
goal for any θ given Yi , which is denoted as w(θ | Yi ). In other words, w(θ | Yi )

can be regarded as an optimal weight function in the presence of historical data Yi .
Secondly, in the Bayesian framework, instead of pre-specifying the exact values for
θ , one can assume a prior distribution p(θ), often non-informative, and summarize
the information regarding θ into a joint posterior distribution p(θ | Yi ).

The above two components give a complete picture about the parameter space
�: given observed data, p(θ | Yi ) tells us where the parameters are likely to be, and
w(θ | Yi ) tells us for such θ what the allocation ratio should be. Combining the two
components, we propose a novel framework to calculate the adaptive randomization
ratio as below:

At the ith interim analysis with observed data Yi , let G(θ, w | Yi ) denote the
metric for the study goal. Then for any θ and data, we define the weight function:

w∗(θ | Yi ) = argmaxwG(θ, w | Yi ),

subject to the constraint that ∀ θ ,
∑

k w∗
k (θ | Yi ) = 1. The allocation ratio for the kth

arm is calculated as:

wik = E[w∗
k (θ | Yi ) | Yi ] =

∫

w∗
k (θ | Yi )p(θ | Yi )dθ.

If the optimal weight function is difficult to obtain, one may choose a weight
function that aligns with the goal.

Although the analytic form of the allocation ratio can be derived for some cases, in
practice, it is easier to obtain such weight throughMonte Carlo integration following
three steps:
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1.Generate D draws {θ(1), . . . , θ (d), . . . , θ (D)} from the joint posterior distribution
p(θ | Yi );

2. For each drawn parameter vector θ(d), derive the weight w(d) = w∗(θ (d) | Yi );
3. Define wi = ∑D

d=1 w(d)/D.

2.1 Revisiting Thompson RAR

In this subsectionwewill demonstrate that ThompsonRARfits neatly in the proposed
framework.

We consider applying RAR in a common type of multi-arm comparative trials
without a concurrent control arm, where the intention of the RAR scheme is to
maximize the average number of patients assigned to the most efficacious treatment
arm. Following the notation described earlier, we assume that the trial includes a
total of K candidate treatments. For the rest of the paper, we focus on a measure
of treatment efficacy. To differentiate efficacy from the general response parameter
θ , let μk denote the efficacy parameter for the kth arm, where μ = {μ1, . . . , μK }. μ
can be identical with θ (response rate for binary endpoint), can be a part of θ (mean
for continuous endpoint), or can be a transformation of θ (effect size for continuous
endpoint).Without loss of generality, we assume that a larger value ofμk corresponds
to a better efficacy.

Given observed data Yi at the interim analysis, let nik be the sample size for Yik

and nnext be the total sample size for the next cohort of patients to be randomized.
For any allocation weight w, the average total sample size for the kth arm at the end
of the next cohort is Nk = nik + nnextwk . The average number of patients assigned
to the most efficacious treatment can be defined as

G(μ,w | Yi ) =
K∑

k=1

1{μk=μ(K )} × Nk = ni(K ) +
K∑

k=1

1{μk=μ(K )} × nnextwk,

whereμ(K ) = max1≤ j≤K μ j , and ni(K ) is the corresponding sample size for that arm.
The allocation weight vector w can be determined so that the average sample

size defined above is maximized. Note that ni(K ) is fixed given the observed data,
and G(μ,w | Yi ) ≤ ni(K ) + nnext. Without loss of generality, we can assume μ to
be a continuous efficacy measure, therefore it is almost surely that only one arm
has μ(K ). It is then easy to show that G(μ,w | Yi ) = ni(K ) + nnext if and only if
w∗

k = 1{μk=μ(K )} a.s. An intuitive interpretation suggests that we should assign all
patients in the next cohort to the most efficacious arm and none to the other arms if
we know the true efficacy profile.

Combining both, we can calculate

wik = E[w∗
k (μ) | Yi ] = Pr(μk = μ(K ) | Yi ).
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This is exactly the Thompson RAR allocation ratio. This allocation ratio can
also be obtained through Monte Carlo integration. One can generate D draws
{μ(1), . . . , μ(d), . . . , μ(D)} from the joint posterior distribution p(μ | Yi ). For the
dth drawn μ(d) = (μ

(d)
1 , μ

(d)
2 , . . . , μ

(d)
K ), let Bd denote the index of the most effica-

cious treatment arm. Then the weight function w(d) has weight 1 for the Bd -th arm
and 0 for all other arms. The average of w(d) is then a numerical approximation of
the Thompson RAR allocation ratio.

By applying the proposed framework on this particular example, we provide an
intention for ThompsonRARas a by-product. In the next sectionwewill demonstrate
that this framework can be applied to a much broader range of studies.

3 Application in Multi-arm Trials with a Concurrent
Control

We consider another common type of multi-arm trials in which multiple candidate
treatment arms are compared to a concurrent control. For specific study goals, we
propose RAR schemes under the new framework.

3.1 Background

Thompson RAR is widely used in multi-arm comparative trials without a concurrent
control. However, when the trial has a control arm that is generally worse than
the treatment arms, naive implementation of Thompson RAR often assigns too few
patients to the control and thus reduces power to detect differences between the
treatment arms and the control arm.

A popular approach to protect the allocation to the control, while still adopting
Thompson RAR, is to assign a pre-specified fixed allocation ratio to the control
arm, and distribute the rest of the patients to the treatment arms according to the
posterior probability of each treatment arm being the most efficacious. We refer to
this approach as Fixed Control (FC) RAR. Our literature review [7, 11, 18, 19, 22,
23, 26] suggests that, among all published multi-arm trials with a control that use
Thompson RAR, almost all adopted FC RAR.

However, there are two major issues with FC RAR. Firstly, while this constant
control allocation ratio throughout the trial prevents under-allocation, there is no
clear guidance on what value this ratio should take, as different published trials
have used different control allocation ratios ranging from 20% to 35%. In general,
the appropriate fixed control ratio depends on the number of treatment arms in the
study as well as the true underlying efficacy profiles of the treatment and control
arms, which is typically unknown. For a particular assumed efficacy profile, one
may pick a desirable fixed ratio through simulation, but it may no longer be desirable
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if the efficacy profile changes. Secondly, in most trials using Thompson RAR, the
study goal is rarely considered before FC RAR is implemented or evaluated. FC is
often applied in studies with different goals. Some investigators may be interested in
identifying the most efficacious treatment arm, while others are interested in finding
any efficacious treatment arm. For example, suppose a trial has a true efficacy profile
(π0, π1, π2, π3) = (0.2, 0.2, 0.3, 0.35), where π0 is the control response rate and
π1, π2, π3 are the treatment response rates, and any treatment arm with a response
rate higher than 0.2 is regarded as efficacious. Suppose treatment arm 2 is selected
at the end of the study (π2 = 0.3). If the study goal is to select the most efficacious
treatment, then selecting arm 2 does not reach the goal; if the study goal is to select
any efficacious treatment, then selecting arm 2 is a correct decision that meets the
goal.

To address these issues, we developed new RAR schemes through our proposed
framework, which will be described in the next subsection.

3.2 New RAR Through Proposed Framework

Notation adjustment: To accommodate the control arm, we adjust our notation
slightly by shifting the arm index from 1, . . . , K to 0, 1, . . . , K − 1, where 0 refers
to the control arm, and k = 1, . . . , K − 1 refers to the kth treatment arm.

We assume that the study tests whetherμk is more efficacious thanμ0 by compar-
ing the frequentist test statistic μ̂k−μ̂0

SE(μ̂k−μ̂0)
with a critical value. The critical value will

be determined later to ensure that the type I error is controlled. Note that the selection
of this test is for demonstration purpose only. In actual trials one may choose to use
a different type of tests.

This subsection will focus on introducing the new schemes to derive the adaptive
allocation ratio at interim analyses.

3.2.1 RAR Aiming to Pick the Most Efficacious Treatment

Let’s consider a study goal, which is to maximize the power to detect the most effica-
cious treatment if at least one treatment arm is better than the control arm.We propose
a RAR scheme targeting this goal, which borrows the Neyman allocation ratio [14] to
determine the weight function. For any value ofμ = {μ0, μ1, . . . , μK−1}, in order to
maximize the power to detect the difference between the most efficacious treatment
arm (K − 1) and the control arm, all patients from the next cohort should be assigned
to these two arms, with allocation weight proportional to the standard deviation in
each arm. Since this heavily depends on the standard deviation in each arm, we name
this scheme as the SD RAR.
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Given observed data Yi at the interim analysis, the SD RAR scheme is executed
in three steps:

1.Generate D draws {θ(1), . . . , θ (d), . . . , θ (D)} from the joint posterior distribution
p(θ | Yi ); Within each draw, derive the corresponding efficacy parameter draw μ(d)

for all arms if it is not identical with the θ(d).
2. For each drawn efficacy parameter vector μ(d) = {μ(d)

0 , μ
(d)
1 , . . . , μ

(d)
K−1},

derive the standard deviation vector σ (d) if it is not included in θ(d) (e.g. σ
(d)
k =√

μ(d)(1 − μ(d)) if μ(d) denotes the response rate for a binary endpoint). Let
Bd denote the index of the most efficacious treatment arm in the dth draw, i.e.,
μ

(d)
Bd

= maxk>0 μ
(d)
k . Calculate

w(d) =
(

σ
(d)
0

σ
(d)
0 + σ

(d)
Bd

, 0, . . . , 0,
σ

(d)
Bd

σ
(d)
0 + σ

(d)
Bd

, 0, . . . , 0

)

,

where w(d) only has non-zero elements when k = 0 or k = Bd .
3. Calculate wi = ∑D

d=1 w(d)/D.

3.2.2 RAR Aiming to Pick One Efficacious Treatment

As shown in the example in Sect. 3.1, the treatment with the best estimated efficacy
may not necessarily be themost efficacious. However, for some studies this is accept-
able as long as the selected treatment arm is truly efficacious. We then introduce a
RAR developed with such study goal being considered.

We define a treatment arm k to be promising if Pr(μk > μ0 | Yi) > P , where
P is a pre-specified promising threshold and is generally lower than the thresholds
for early stopping for efficacy. For any value of μ = {μ0, μ1, . . . , μK−1}, in order
to increase the power to detect one treatment arm that is efficacious, we assign all
patients from the next cohort equally to the arms with μk > μ0 if there is no strong
evidence suggesting that one arm among those efficacious arms is promising. On the
other hand, if the accumulated data suggest that one arm is the most promising arm to
be declared as efficacious, even though it may not be the best, we assign all patients
from the next cohort to only this arm and the control arm. To further increase the
power to select this arm, the allocation weights to this arm and the control arm are
proportional to the standard deviations respectively. This is particularly desirable for
the case where there are several treatment arms with similar efficacy. We name this
method as PT RAR since the promising threshold is a key component.

Given observed data Yi at the interim analysis, the PT RAR scheme is executed
in three steps:

1.Generate D draws {θ(1), . . . , θ (d), . . . , θ (D)} from the joint posterior distribution
p(θ | Yi ); Within each draw, derive the corresponding efficacy parameter draw μ(d)

for all arms if it is not identical with the θ(d).
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2. For each treatment arm k > 0, calculate Pr(μk > μ0 | Yi), and let (K − 1)
denote the index of the arm with the highest posterior probability of being better
than the control, i.e., Pr(μ(K−1) > μ0 | Yi) = maxk>0 Pr(μk > μ0 | Yi).

If Pr(μ(K−1) > μ0 | Yi) > P , where P is a pre-specified threshold, for each drawn
efficacy parameter vector μ(d) = {μ(d)

0 , μ
(d)
1 , . . . , μ

(d)
K−1}, derive the standard devia-

tion vector σ (d) if it is not included in θ(d). Then calculate

w(d) =
(

σ
(d)
0

σ
(d)
0 + σ

(d)

(K−1)

, 0, . . . , 0,
σ

(d)

(K−1)

σ
(d)
0 + σ

(d)

(K−1)

, 0, . . . , 0

)

.

Note: If one treatment arm is classified as (the most) promising, then for all draws,
w(d) only has non-zero elements for the control arm and themost promising treatment
arm (K − 1).

This is not equivalent to early dropping of all other treatment arms. If accumulated
data in later cohorts suggest this arm is not the most promising arm, other treatment
arms will be considered again for randomization.

If Pr(μ(K−1) > μ0 | Yi) ≤ P , for each drawn efficacy parameter vector μ(d), let
Sd = {k|k > 0, μ(d)

k > μ
(d)
0 } and Ld be the length of Sd . w(d) is calculated as w

(d)
k =

1/(Ld + 1) if k = 0 or k ∈ Sd , and w
(d)
k = 0 otherwise.

Note: If none of the treatment arms is promising, for each draw,w(d) assigns equal
weights to the treatment arms with better efficacy parameters than the control arm
as well as the control arm. The set of treatment arms with better efficacy parameters
than the control arm is different across draws.

3. Calculate wi = ∑D
d=1 w(d)/D.

4 Simulation Study

In the setting ofmulti-arm trials with a concurrent control, we performed a simulation
study comparing existing methods to the methods we have developed under our new
framework, and evaluated their relative performance on the relevant study goals.
Specifically, we compared equal randomization (ER) and fixed control (FC) to (1)
the standard deviation (SD)method based on the probability of selecting the best arm
and (2) the promising threshold (PT) method based on the probability of selecting
one efficacious arm. We considered six sets of true response rates (in addition to the
null scenario where all response rates equal 0.3):

• One efficacious arm (“One eff”): (0.3, 0.3, 0.3, 0.5)
• Two efficacious arms, similar (“Two eff, S”): (0.3, 0.3, 0.45, 0.46)
• Two efficacious arms, different (“Two eff, D”): (0.3, 0.3, 0.45, 0.5)
• Three efficacious arms, similar (“Three eff, S”): (0.3, 0.45, 0.45, 0.46)
• Three efficacious arms, different (“Three eff, D”): (0.3, 0.4, 0.45, 0.46)
• Staircase (“Staircase”): (0.3, 0.36, 0.42, 0.48).
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For each set of response rates and each randomization method (ER, FC, SD, PT),
10,000 trials were simulated using the procedure described in the next section. For
simulations under FC, we used a fixed 30% allocation to the control arm, and for
simulations under PT, we used a promising threshold P = 0.75.

Simulation procedure

All simulated trials described here used a binary endpoint and involved three treat-
ment arms and a concurrent control arm.Each trial beganwith an equal randomization
burn-in period, in which 10 patients were assigned to each arm. This allowed some
information on all arms to accumulate before adaptive randomization was initiated.
Outcomes were simulated for these patients according to the specified true response
rates for each arm, and an allocation vector wi for the next cohort of patients was
computed according to the specified randomization scheme. Note that under equal
randomization, wi = (0.25, 0.25, 0.25, 0.25) is fixed for the entirety of the trial.
If the specified randomization scheme fell under the new framework, then Monte
Carlo integration via sampling from the joint posterior distribution of response rates
may have been necessary to calculate wi . For all simulations, a prior distribution
of Beta(0.2, 0.8) was used for each response rate, as in [32]. Then, a cohort of 20
patients was assigned to the four arms through block randomization based onwi . The
process of simulating outcomes for newly assigned patients, calculating an updated
wi , and assigning patients to treatment accordingly was repeated until a total of 160
patients (six cohorts) were allocated. Without early stopping, each trial consisted of
six interim analyses (I = 6) and one final analysis.

After outcomes were simulated for all patients in the trial, test statistics Tk were
calculated for all treatment arms k ∈ {1, 2, 3} at the final analysis:

Tk = p̂k − p̂0
√
p̃k(1 − p̃k)(

1
nk

+ 1
n0

)
; p̂k = rk

nk
; p̃k = rk + r0

nk + n0

where nk and n0 respectively denote the total number of patients assigned to arm k
and the control arm, and rk and r0 respectively denote the number of patients assigned
to arm k and the control armwho responded. Arm k was selected as efficacious in this
final analysis if its test statistic Tk exceeded a pre-specified critical value CF . If more
than one arm had a test statistic exceeding this critical value, the armwith the highest
Tk was selected. The computation of CF is described further in the next section.

We also performed simulations incorporating an early stopping rule for efficacy.
In this case, after outcomes were simulated for 120 patients (i = 5) and 140 patients
(i = 6), test statistics Tik were computed as above using the accumulated data. If
test statistic Tik exceeded a pre-specified critical value CS at either of these interim
analyses, then the trial was terminated early and arm k was selected as efficacious.
Once again, if more than one arm had a test statistic exceeding this critical value, the
arm with the highest Tik was selected. No early stopping rules for futility were used
in this simulation study.
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Type I error control

CF is a critical value specific to each randomization method that was computed via
simulation to guarantee control of the type I error at 0.05. When no early stopping
rules were used, we simulated 10,000 trials under the null, where all true response
rates were equal to 0.3, for under each randomization method. For each trial, the
highest test statistic Tk at the end of the trial was recorded. Then, CF for the cor-
responding randomization method was set to the 95th percentile of these maximum
test statistics. Under our selection rule, 5% of simulated trials under the null would
select some treatment arm as efficacious.

For simulationswith early stopping for efficacy, we setCS = 3 as the critical value
used in interim analyses after four and five cohorts. In this setting, we still perform
simulations under the null in the same fashion, but including an early stopping rule.
For a particular randomizationmethod,CF is chosen such that the proportion of trials
that are terminated early and the proportion of trials where a treatment arm is deemed
efficacious in the final analysis sum to 0.05. Consequently, CF differs depending on
whether an early stopping rule for efficacy is used.

Note that this procedure is sound because no more than one treatment arm can
be selected at the end of each trial. For trials in which multiple treatment arms may
be chosen (for example, under an adaptive randomization scheme tailored to the
intention of choosing all efficacious treatment arms), this procedure would need to
be modified to control the family-wise error rate (FWER).

Results

The tables below compare the performance of these randomization methods for
selecting the best arm and selecting one effective arm, both with and without an
early stopping rule for efficacy. Results for simulations under the null are not shown,
since they were explicitly used to compute CF and by definition selected one of the
treatment arms with probability 0.05.

Selecting the best arm

In all scenarios examined, RARmethods substantially outperform equal randomiza-
tion in selecting the best arm, supporting previous conclusions that RAR is particu-
larly valuable in the multi-arm trial setting. FC does perform well here, although the
performance of this method is highly dependent on the proportion allocated to con-
trol. SD always has similar or better performance than FC, with the advantage of not
needing to fix a control allocation proportion in advance. Selection probabilities are
lower and closer together across all methods in the “two efficacious arms, similar”
and both “three efficacious arms” scenarios—these are cases where the difference
between the response rates of the best arm and the next-best arm is very small (Tables
1 and 2).

Selecting one efficacious arm

As in the previous pair of tables, RAR methods have substantially greater power to
select one efficacious arm than equal randomization does (Tables 3 and 4). Across
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Table 1 Probability of selecting the best arm, no stopping rule

One eff Two eff, S Two eff, D Three eff, S Three eff, D Staircase

ER 0.38 0.19 0.31 0.15 0.18 0.26

FC 0.56 0.28 0.43 0.20 0.23 0.36

SD 0.58 0.27 0.44 0.22 0.25 0.38

Table 2 Probability of selecting the best arm, early stopping for efficacy

One eff Two eff, S Two eff, D Three eff, S Three eff, D Staircase

ER 0.38 0.20 0.32 0.16 0.18 0.27

FC 0.55 0.27 0.42 0.20 0.24 0.36

SD 0.53 0.27 0.43 0.21 0.25 0.36

Table 3 Probability of selecting one efficacious arm, no stopping rule

One eff Two eff, S Two eff, D Three eff, S Three eff, D Staircase

ER 0.38 0.37 0.46 0.45 0.40 0.39

FC 0.56 0.50 0.60 0.54 0.49 0.49

PT 0.59 0.54 0.65 0.61 0.55 0.54

Table 4 Probability of selecting one efficacious arm, early stopping for efficacy

One eff Two eff, S Two eff, D Three eff, S Three eff, D Staircase

ER 0.38 0.38 0.46 0.45 0.41 0.40

FC 0.55 0.48 0.59 0.54 0.49 0.50

PT 0.58 0.53 0.65 0.59 0.54 0.54

all scenarios examined, PT has the best performance, regardless of whether an early
stopping rule is used. PT performs exceptionally well in the “three efficacious arms,
similar” case—the fact that the posterior probability of each arm being the best is
roughly the same on average means that methods based more closely on Thompson
RAR may end up with essentially equal allocations among the treatment arms. PT,
on the other hand, avoids this pitfall with its initial step in which one treatment arm
may be identified. Moreover, sensitivity analyses show that the performance of PT
is quite robust to the choice of the initial posterior probability threshold.

5 Discussion

There are two major classes of RAR schemes in the literature. RAR schemes in one
class are optimized but with the price of complexity and reliance on large sample
approximation, while RAR schemes in the other class are easy to implement without
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relying on asymptotics, but are not tailored toward specific study goals. The two
classes complement each other so much that it seems natural to unify both by borrow
both advantages. This paper is an attempt to bridge the gap. The proposed framework
aligns with the study goals, is intuitive for statisticians to derive and for investigators
to understand, and its Bayesian approach allows implementation for both small and
large sample sizes.

It should be noted that, although it is often straightforward to optimize the goal
function in the response parameter space, in general the proposed framework does
not optimize the average goal function. This is a compromise between simplicity and
optimality. Despite this, the simulation results show that the proposed RAR schemes
under the new framework robustly outperform FC RAR, the current popular method.

Thompson RAR has been shown to perform well in cases where there is one
efficacious arm that truly stands out. It has also been pointed out that when the
treatment efficacies are similar, its performance is not necessarily desirable [20].
However, the proposed RAR schemes, especially PT RAR, have higher power to
detect one efficacious treatment arm among similar treatment arms.

Although the simulation study only considers binary endpoints, in general, it is
easy to extend to continuous endpoints, where investigators may choose the mean
or effect size as the efficacy parameter. The new framework opens a new avenue
for researchers to develop simple Bayesian RAR schemes more closely tailored to
specific goals, and can be applied for various endpoints with or without control arms.
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Sample Size Determination Under
Non-proportional Hazards

Miao Yang, Zhaowei Hua and Saran Vardhanabhuti

Abstract The proportional hazards assumption rarely holds in clinical trials of can-
cer immunotherapy. Specifically, delayed separation of the Kaplan-Meier survival
curves and long-term survival have been observed. Routine practice in designing a
randomized controlled two-arm clinical trial with a time-to-event endpoint assumes
proportional hazards. If this assumption is violated, traditional methods could inac-
curately estimate statistical power and study duration. This article addresses how to
determine the sample size in the presence of nonproportional hazards (NPH) due to
delayed separation, diminishing effects, etc. Simulations were performed to illustrate
the relationship between power and the number of patients/events for different types
of nonproportional hazards. Novel efficient algorithms are proposed to optimize the
selection of a cost-effective sample size.

Keywords Non-proportional hazards · Sample size · Time-to-event endpoint ·
Log-rank test · Cancer immunotherapy · Power analysis

1 Introduction

Time-to-event endpoints such as overall survival and progression-free survival are
commonly used as primary clinical endpoints in oncology clinical trials. The conven-
tionalway to design a randomized controlled two-armclinical trialwith time-to-event
endpoints assumes proportional hazards between the two arms [6]. Using the log-
rank test statistic to test the equality of two survival functions, the required number
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of events is driven by the assumption of hazard ratio (HR) at the pre-specified test
significance level and the expected power level [5].

However, in clinical trials of cancer immunotherapy, the proportional-hazards
assumption rarely holds presenting unique challenges for sample size determina-
tion. Cancer immunotherapy has achieved unprecedented milestones in treating life-
threatening cancers such as melanoma and non-small cell lung cancer. These innova-
tive therapies work by stimulating the immune system thereby imparting substantial
benefits in tumor response and long term survival [4]. However, there is a lag in the
translation of immune and anti-tumor response into a survival benefit [4] resulting in
delayed separation of the Kaplan-Meier survival curves [1]. For example, the overall
survival curves from CheckMate 141 trial targeting recurrent squamous-cell carci-
noma of the head and neck demonstrate delayed separation around 4 months [2].
In addition, a subset of patients receiving cancer immunotherapy experience long-
term survival and can be considered cured [1]. For example, the overall survival
curves from CA184-024 trial targeting previously untreated metastatic melanoma
show plateaus starting from approximately 3 years for both of the treatment arm of
ipilimumab plus dacarbazine and the control arm of dacarbazine plus placebo [8].

In the presence of delayed separation of the survival curves or long-term survival,
the assumption of proportional hazards no longer holds and conventional methods
for determining sample size cannot be used. A potential consequence of ignoring
delayed separation in survival curves is a potential loss of statistical power. Failing to
account for long-term survival could lead to an underestimation of the study duration
and, as a result, delayed access to effective therapies for patients [1]. Therefore, if
nonproportional hazards are anticipated, it is important for trial design to take that
into account when designing the trial.

Other sources of nonproportional hazards that have been observed in clinical trials
include diminishing effects and crossing of survival curves. If diminishing effects
are not considered in the trial design, statistical power could be reduced. Crossing
of survival curves could also lead to power loss. More importantly, interpretation
is challenging when the survival curves cross. For example, the progression-free
survival (PFS) curves in the IPASS study cross around 6 months. The curves suggest
a benefit of the control arm (carboplatin plus paclitaxel) before 6 months and a
benefit of the treatment arm (gefitinib monotherapy) after 6 months [7]. However,
the p-value based on log-rank test for the difference was less than 0.001, which
is highly significant. But it is difficult to interpret that there is significant better
treatment benefit for the combination of carboplatin plus paclitaxel over the gefitinib
monotherapy because the PFS curves crosses around 6 months.

This article focuses on addressing how to determine the sample size using log-rank
test statistic when nonproportional hazards are anticipated in designing a randomized
2-arm clinical trial with a time-to-event endpoint. Power patterns were evaluated
for different types of nonproportional hazards. Novel computation-based efficient
algorithms are proposed to search for cost-effective sample sizes.
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2 Power Analyses Under Proportional Hazards

Sample size determination is a vital aspect of clinical trial design. If too few patients
are enrolled, the study may turn out to lack statistical power to detect a clinically
important treatment effect. In this section, we introduce traditional methods to deter-
mine sample size in a time-to-event trial.

In a time-to-event clinical trial where one wants to test the equality of two survival
curves (treatment arm and control arm), the number of events required to achieve the
power of 1 − β at the significance level of α is given by

D = 4
(
zα/2 + zβ

)2

θ2
, (1)

where D is the number of events required; α, β are Type I and II errors, respectively;
and θ is the log hazard ratio comparing the treatment and control arms. This equation
is based on the log-rank test and requires the assumption of proportional hazards.
Note that in Eq. (1), power depends on the number of events (D), but not on the
sample size (N ).

To show the relationship between power, the total number of events (D), and
sample size (N ), we ran a simple simulation. Proportional hazard assumption is
made, such that the hazard ratio comparing treatment and control was set to 0.7, with
the hazard rates for the control arm to be 0.05 frommonth 0–5, and 0.10 frommonth
5–10, and 0.15 otherwise. The Type I error was set to 0.05.We simultaneously varied
D from 300 and 500 by 10 events and N from 500 to 1000 by 20 patients. For each
combination of D and N , we determined power by Monte Carlo simulation using
log-rank test. These powers are plotted in Fig. 1.

Fig. 1 Heatmap of relationsip between power and number of events (D)/sample size (N ) under
the proportional hazard assumption. The left panel plots the heatmap and the right panel uses the
orange zone to highlight the combinations of D and N achieving the 90% power. The grey area in
the lower right corner of both panels represent combinations of D and N that are infeasible under
the clinical assumptions
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Fig. 2 Heatmap when PH assumption is slightly violated. The left panel plots the heatmap and the
right panel uses the orange zone to highlight the combinations of (D, N ) achieving 90% power.
The grey areas in both panels are the infeasible (D, N )

Notice the vertical stripes of color in the left panel and the vertical highlighted
stripe with 90% power in the right panel. In other words, for a fixed number of total
events (D), change to the sample size (N) has little impact on power. In practice, with
a target power (90%), we can design a study to target the same D with either larger
N/shorter study duration or smaller N/longer study duration. These results support
the use of Eq. (1) for power analyses under the proportional hazards assumption.

When the proportional hazards assumption is not severely violated, Eq. (1) can still
be used. For example, we ran a second simulation where the hazard ratio comparing
treatment and control varied over time and the survival distribution is piecewise
exponential. Specifically, the hazard ratio was set to 0.65 in the time interval of
months 0–5, 0.7 in months 5–10, and 0.75 in months≥10. The heatmap of power for
this simulation is plotted in Fig. 2. Note that the color patterns are similar to those of
Fig. 1, suggesting Eq. (1) can be applied when the hazard ratio varies slightly over
time. In this case, a reasonable guess of constant which represents the overall trend
should be used.

3 Power Analyses Under Non-proportional Hazards

Inmany clinical trials, the PH assumption is severely violatedmaking power analyses
more challenging because Eq. (1) cannot be used. This is in part due to the fact
that the relationship between power and D/N is more complex when the hazards
are nonproportional. In this section, we explore this relationship via simulations
under two sources of nonproportionality: delayed and diminishing treatment effects.
Figure 3 shows sample survival curves for both scenarios. The left panel is a delayed
effect model with hazard ratios to be 1 for the first 5 months and 0.7 otherwise, and
the right panel is a diminishing effect model with hazard ratios increasing from 0.5
to 1 by 0.1 for every 1.2 months.
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Fig. 3 Survival curves for NPH simulation

Under both cases, log-rank test is performed. Even though log-rank is no
longer the most power test under these two scenarios, we still apply it in our
simulations. This is because the relationship of power with D and N are simi-
lar regardless of which test we perform, and the only difference is that in order
to achieve the same power, log-rank test may require larger combinations of
(D,N) than other tests. Therefore 90%power under these two scenarioswith log-rank
tests will need much larger (D, N) and generate higher computing burden. To save
computational time, we will set our target power to be lower (70%, 78% in delayed
and diminishing effect models, respectively) in this section.

Figure 4 shows the power heatmap for the delayed treatment effect model with
no effect in the first 5 months (HR = 1) and strong effect otherwise (HR = 0.7).
The left panel shows that, for a fixed value of D, increasing N will cause power to
decrease. The intuition for this finding is that, when there is a larger N , there will
be higher proportion of early events occurring at early time points when there is no
difference between the two arms, thus the test is less powered to detect a difference
between the arms. As of the same reason of higher proportion of early events, a
shorter study duration is required to observed D events with a larger N . The right
panel uses the red band to highlight the (D, N ) pairs which generate 70% power
using log-rank test. Unlike Figs. 1 and 2, this band is no longer vertical and suggests
that as either D or N increase, the other must also increase in order to maintain the
same power. The practical implication is, we can no longer design a study to target
the same D with either larger N /shorter study duration or smaller N /longer study
duration to generate the same power. Instead, we need to run a simulation study to
look for an optimal combination (D, N ).

Figure 5 shows the power heatmap for the diminishing effects model with HR
increasing from 0.5 to 1 by 0.1 for every 1.2 months. The left panel shows that, for
a fixed value of D, increasing N will cause power to initially increase and then level
off. When N increases, there will be higher proportion of early events occurring at
early time points where there is larger treatment benefit, and the test is more powered
to detect a difference between the arms.When N reaches to a limit such as that adding
additional subjects will not contribute additional events to the fixed D, power will
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Fig. 4 Heatmap for a delayed effect model with hazard ratio 1 in (0, 5) and 0.7 otherwise

Fig. 5 Heatmap for a diminishing effect model with hazard ratio increasing from 0.5 to 1

stay stable. Again, with a larger sample size, a shorter study duration is required
to observe D events. For a fixed value of N , increasing D will cause the power to
initially increase and then decrease. New events that occur at early time points will
increase the power to detect a difference between treatment and control. However,
increasing Dwill also prolong the study andnewevents occurring at later times (when
there is no difference between the treatment and control arms) will reduce the power.
The right panel uses the orange band to display the (D, N ) pairs with 78% power,
which is made up of a vertical band and an increasing band. Regarding the increasing
band, it is straightforward that increasing D without increasing N will cause higher
proportion of late events at later time points where there is smaller treatment effect
size, thus power will be lower than the target power. So increasing D will require
larger N tomaintain the appropriate proportion of early and late events tomaintain the
same power. Regarding the vertical band, the bottom point of minimal combination
(D, N ) corresponds to the limit of N such that adding additional subjects no longer
contribute additional events to the minimal D. Thus when we choose the minimal
D, increasing N will have no impact on power. Similarly in practice, we should run
simulation to identify an optimal combination (D, N ).
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Therefore, in the presence of NPH, power depends on both the number of events
and the number of subjects.Whenwedesign a study, awide range of the combinations
of (D, N) should be explored via simulation. The optimal combination of (D, N) will
need to consider other factors such as cost and study duration.

4 Algorithm for Detecting Sample Size Under NPH

In the previous section,we demonstrated that power changeswith both D and N in the
presence ofNPH.Unfortunately, there is no equation to determine the sample size and
the number of events needed for a given power level when there is nonproportionality.
In addition,we also showed thatmultiple combinations of sample size and the number
of events yield the same power. In both Figs. 4 and 5, there is a (Dmin, Nmin) pair that
requires the fewest patients and events for a given power level.While the (Dmin, Nmin)

pairmay not yield an optimal trial in terms of other factors, such as follow-up time and
study duration, they do serve as a useful lower bound in finding the “best” (D, N ).
What is “best” is generally determined by the resources one has. In this section,
we propose algorithms to search for (Dmin, Nmin) for both delayed and diminishing
effects models.

The literature contains numerous search algorithms including the binary search
algorithm. This algorithm is efficient. In order to target (Dmin, Nmin) using the binary
search algorithm, power must be either monotone with D for fixed value of N or
monotone with N for a fixed value of D, or both.

Figure 4 showed that, in a trial with delayed clinical effects, power monotonically
decreases with increasing N for a fixed value of D. If our goal is to find (Dmin, Nmin),
we would select the pair at the bottom left of the orange band in the right panel.

Note that for any D, one can always search for an N , such that power (D, N )

is larger than any other N , where power (D, N ) is the power of a test (for example
log-rank) when there are N patients and D events. So we can search until we find
a smallest Dmin, and for each D we can always get the corresponding N given the
targeted power. In both search steps, binary search algorithm will be performed. We
would take the following steps:

• Initialization a small D0, tolerance parameter ε, moving windows �D,�N , type
I and II errors α, β.

• Find N 0 = argmaxN power
(
D0, N

)
;

• Use binary search to go through a series of D to update D0; Initially start with
increment of �D , if returning to smaller D, using decrement of �D/2; Every time
changing direction, set moving window �D = �D/2;

• Find Nmin = argmaxN power (Dmin, N ).

In the case of diminishing effects, power is no longer monotone with D for
a fixed value of N , which suggests that a binary search may not be appropriate.
However if we start with a huge N (for example 1, 500 for themodel in Fig. 5), power
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Table 1 Minimumnumbers of events and sample sizes needed for 90%power in the case of delayed
and diminishing effects using a binary search algorithm

Case Test Dmin Nmin Power niter Time
(min)

Delayed effects LR 611 731 0.9040 8 1.169

FH(0,1) 531 651 0.9081 6 0.959

Diminishing effects LR 751 1, 006 0.8915 8 4.189

FH(1,0) 383 628 0.8950 6 3.014

Abbreviations: LR = log-rank; FH = Fleming-Harrington

is approximately monotone increasing with D. Therefore the searching algorithm
contains two binary search steps:

• With a huge N , since a huge N will correspond to Dmin based on the vertical
band in the right panel of Fig. 5, use binary search algorithm to find Dmin (that is,
approximately 400 events for 78% power);

• With Dmin, go through the vertical band in the right panel of Fig. 5 to search Nmin

via binary search algorithm.

We apply the above algorithms to search for (Dmin, Nmin) for both the delayed
and diminishing effects using both the log-rank and Fleming-Harrington (FH) tests
[3]. The resulting (Dmin, Nmin)’s are given listed in Table 1 along with the empirical
power based on 10, 000 simulations, the number of iterations in the algorithm, and the
computation time in minutes. For all four cases, the number of iterations was small
and the computation time was short suggesting that the algorithm was efficient. In
addition, all four of the empirical powers are close to the target power of 90%. Please
note unlike generating heatmap that higher power (90%) will require much longer
computational time, the binary search for (Dmin, Nmin) is very efficient. So we use
90% target power to illustrate efficiency of binary search algorithm. One more thing
to note is that for the delayed effects case, the fact that FH(0,1) selected smaller
values of (Dmin, Nmin) than LR indicates that FH(0,1) is more powerful than LR in
this case. An even stronger trend is seen in the diminishing effects case indicating
that FH(1,0) is much more powerful than LR.

5 Discussion

Nonproportional hazards have become a real challenge for biostatisticians tasked
with determining sample sizes for clinical trials. In the presence of nonproportional
hazards due to both delayed and diminishing effects, we first demonstrated how the
power is related to the number of events and sample size. We then proposed com-
putationally efficient algorithms for each case to search for the combined minimum
number of events and patients (Dmin, Nmin) that meets the desired power level.
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Our analysis focused on only two types of nonproportional hazards. We also did
not consider other aspects of clinical trials which play important roles in power
analyses such as accrual and dropout. Further research is necessary to determine
sample sizes undermore types ofNPHwhile taking into account additional important
factors.

We use heatmap to illustrate the power pattern under different combinations of
(D, N ) with using log-rank test. Such pattern of power depending on number of
events and number of subjects maintains if other tests such as Fleming-Harrington
weighted log rank test are used. For example, if using Fleming-Harrington(1, 0)
with weight function Ŝ (t) (pooled survival estimate) to allocate more weights to
early time points, the power pattern is similar under diminishing effects with a shift
to smaller D as Fleming-Harrington(1,0) is more powerful than log-rank test under
diminishing effects; if using Fleming-Harrington(0,1) with weight function 1 − Ŝ (t)
to allocate more weights to late time points, the power pattern is similar under delay
separation with a shift to smaller D as well because Fleming-Harrington(0,1) is more
powerful than log rank test under delay separation.
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Adaptive Three-Stage Clinical
Trial Design for a Binary Endpoint
in the Rare Disease Setting

Lingrui Gan and Zhaowei Hua

Abstract A fundamental challenge in developing therapeutic agents for rare dis-
eases is the limited number of eligible patients. A conventional randomized clini-
cal trial may not be adequately powered if the sample size is small and asymptotic
assumptions needed to apply common test statistics are violated. This paper proposes
an adaptive three-stage clinical trial design for a binary endpoint in the rare disease
setting. It presents an exact unconditional test statistic to generally control Type I
error when sample size is small while not sacrificing power. Adaptive randomization
has the potential to increase power by allocating greater numbers of patients to a
more effective treatment. Performance of the method is illustrated using simulation
studies.

Keywords Rare disease · Small clinical trial · Z-pooled unconditional Test ·
Type I error · Combination method

1 Introduction

Rare diseases are often life threatening or chronically debilitating. Because of their
low prevalences (e.g., a diseases is defined as rare if its prevalence is 5 per 10, 000
in Europe Union [1]), the fundamental challenge in conducting rare disease clinical
trials is to make appropriate, conclusive inference with a small sample size.

Small sample size brings a caveat in use of asymptotic test statistics. Inappropriate
use of asymptotic test statistics when the pillar of large sample is not present will
lead to Type I error inflation or large Type II error. For example, the normal way
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of comparing the means in two groups is using two sample Z test. However, when
samples sizes are less than 30, this approach becomes problematic [7]. Similarly,
the normal way of comparing the proportion across two groups, chi-square statistic,
becomes problematic when expected cell counts are less than 5 [8]. In addition,
conventional randomized controlled designs require sufficiently large samples to
maintain power and control Type I error. Therefore, alternative clinical trial designs
are needed in the setting of rare diseases.

Alternative clinical trial designs have been proposed in the literature. (1) One
strategy is to collect richer information from each individual patient, e.g., cross-over
design and N of 1 design. Cross-over designs randomize patients to two treatment
orders of treatment followed by control or vice versa [2]. N of 1 designs randomize a
single patient sequentially to a sequence of treatment and control [3]. These designs,
however, rely on every patient taking part in a placebo stage equal in length to the
treatment stage. In addition, when expectations for the drug are high, the placebo
stage may pose a recruitment problem. (2) Another strategy is to run a lead-in period
to select a subset to patients that will be randomized to receive either treatment or
control, e.g., randomized withdrawal design, the early escape design and response-
adaptive randomization design. After the lead-in period, the randomized withdrawal
designs enrich to the subset of high-sensitive patients to the investigated treatment [4].
The early escape designs drop early failures [5]. Response-adaptive randomization
designs increase power by allocating patients with higher probability to the more
effective treatment [6]. However, because only rather limited information is collected
from each patient, using these designs is often not sufficient to achieve an acceptable
statistical power when sample size is small.

Learned from both of the strategies, a three-stage design [9] combines an ordi-
nary randomized trial with a randomized withdrawal trial to allow collecting richer
information from each patient while also enriching to responders to treatment after
the first stage. It increases the statistical power by collecting richer information from
each patient, while avoiding the aforementioned recruitment problem.

It consists of an initial randomized-controlled stage, followed by a randomized
withdrawal stage for responders to treatment, and another randomized stage of sec-
ondary responders to treatment who initially are non-responders to control. The
chi-square statistics is used to test on the difference between the proportion across
two groups. Although the statistical power is increased compared with the one stage
randomized design, because asymptotic test is used, the Type I error of this design
is not controlled, i.e., if we test the null hypothesis at the alpha level of α, the Type
I error can not be controlled under the nominal level α.

In this paper, we introduce an adaptive three-stage clinical trial designwhich com-
bine features of a three-stage design with a response-adaptive design. This design
retains the benefits of the three-stage design and optimizes power of the design by
allowing larger chances for responders to be randomized to more effective treatment
after the first stage. In addition, instead of the chi-square statistics, Z-pooled uncon-
ditional test for a 2 × 2 contingency table [18] is recommended to use to generally
control the study-wise Type I error when sample size is not adequately large to use
chi-square test.
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To introduce the adaptive three-stage design, the paper is organized as follows. The
framework of the adaptive three-stage clinical trial design for a binary endpoint in the
setting of rare diseases is described in Sect. 2. Performance of the proposed design in
comparison with other approaches is illustrated in Sect. 3. Section 4 provides further
discussion.

2 Methods

2.1 Adaptive Three Stage Randomization Design

The proposed design, illustrated in Fig. 1, embeds adaptive randomization within a
three-stage design. The utility of a three-stage trial is to collect richer information
from individual patient enrolled. This type of design is also attractive to patients
because they have a better chance of receiving an efficacious treatmentwhich benefits
enrollment and retention.

The general procedure of the design is as follows. In Stage 1, patients are ran-
domized to receive either treatment or control with equal probability. Treatment
responders and control non-responders at Stage 1 proceed to the next stages. For eth-
ical reasons, the follow-up of treatment non-responders and control responders ends.
It would not be ethical to continually expose treatment non-responders to poten-
tially toxic effects nor to require control responders to switch to treatment and incur
additional expense.

In Stage 2, treatment responders from Stage 1 are re-randomized to either treat-
ment or control. However, they are no longer randomized with equal probability.
Instead, the randomization ratio is adaptive in that it depends on the response rates
from Stage 1. Patients are randomized to the more efficacious treatment with greater
probability.

In Stage 2.5, control non-responders from Stage 1 are assigned to receive treat-
ment. In Stage 3, the treatment responders from Stage 2.5 are re-randomized to either
treatment or control. Again, adaptive randomization (AR) based on the relative effi-
cacy learned from Stage 1 and Stage 2 is used to determine the randomization ratio
for Stage 3.

In Stages 1, 2 and 3, two-by-two contingency tables and their associated p-values
p1, p2 and p3 are computed. To appropriately control Type I error while also max-
imizing power, the Z-pooled unconditional test [18] is proposed to be used as the
test statistics, instead of the conservative Fisher’s exact test. Combination methods
such as Stouffer’s Z-score method [16] are used to combine these p-values and test
whether there is a significant difference in response rates between patients assigned
to treatment and control. Details on adaptive randomization (AR), test statistics and
combinations methods are discussed in Sects. 2.2, 2.3 and 2.4.
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2.2 Response-Adaptive Randomization

The main feature of response-adaptive randomization [10, 11] in clinical trials fea-
tures is that the randomization ratio can adapt to favor a treatment regimen, using
Bayesian framework, which has shown superior efficacy in earlier stages (i.e., higher
response rate). In this section, we will briefly go through the adaptive randomiza-
tion technique.

First, we will first define some notations. In Stage 2 and 3 of the designed trial,
shown in Fig. 1, we use the adaptive randomization. For the outcomes gathered before
each Stage (i.e., the outcomes in Stage 1 when adaptive randomizing for Stage 2 and
the outcomes in Stage 1 and Stage 2 when adaptive randomizing for Stage 3), we
denote nj as the number of patients enrolled in treatment j, where j = 1 for control
and 2 for treatment, Xi,j as the outcome of patient i on treatment j, which takes 1 for
response and 0 otherwise, and denote Xj = ∑

i Xi,j as the total number of responders
in treatment j. The adaptive randomization follows the followingBayesian structures:

Xi,j|πj ∼ Bern(πj), j = 1, 2;
πj ∼ Beta(αj,βj).

(1)

where πj is the response rate in the treatment j and αj,βj are the hyper-parameters
summarized from the prior information.

Fig. 1 Clinical Trial Design Diagram. Define T, C, R, N as treatment, control, responder and
non-responder respectively, we use the combinations of these symbols to denote the sizes of every
outcome groups in each stage. For example, TRCN in Stage 2 denotes the size of patients who
respond in the treatment group in Stage 1, and then respond to control afterwards in Stage 2
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The corresponding posterior distribution πj|Xj, denoted as Yj, then follows a Beta
distribution, Beta(αj + Xj,βj + nj − Xj). According to the posteriors, we will allo-
cate patients to arm j with the probability:

ρj = pλ
j

pλ
1 + pλ

2

, (2)

where λ ≥ 0 and pj = P(Yj > Yj′). The stochastic inequality P(Yj > Yj′) is the prob-
ability that treatment j is better than treatment j′. It could be computed efficiently
and deterministically by calculating a hypergeometric function [10].

The parameter λ plays a role of shrinkage and controls howmuch information we
want to learn from the previous information for the adaptive randomization. When
λ = 0, the assignment is equivalent to equal randomization (ER). The shrinkage from
assigning according to the posterior distributions from the previous observations to
ER is controlled through changing λ from 1 to 0. Proper tuning of λ could lead to
optimal adaptive randomization, i.e., maximizing power. For more guidances on how
we chooseλ in the adaptive randomization, we refer toWathen andCook (2006) [11].

To facilitate response-adaptive randomization, Jeffery’s prior Beta( 12 ,
1
2 ) [19] is

combined with data from Stage 1 to determine the adaptive randomization ratio for
Stage 2. To determine the randomization ratio for Stage 3, prior information from
Stage 1 is combined with the data from Stage 2 to determine posterior assigning
probabilities for Stage 3. Specifically, the hyperparameters αj,βj in the prior are set
to be proportional to the numbers of responders and non-responders in the corre-
sponding treatment arm from the previous stages and to make the prior only weakly
informative.

2.3 Test Statistics

As previously mentioned, the commonly used asymptotic Pearson’s chi-squared test
may not be appropriate in the rare disease setting [12].When the large sample require-
ment is not met, the use of Pearson’s chi-squared test could lead to Type I error infla-
tion. In order to obtain p-values from two-by-two contingency tables with small cell
counts while maintaining Type I error control, we consider alternatives to Pearson’s
chi-square test: Fisher’s exact test and the Z-pooled unconditional exact test.

It is feasible to calculate the exact power using both Fisher’s exact test and the
Z-pooled unconditional exact test. However, in the rare disease setting when sample
sizes are small, we would prefer to use the test with higher power.

Respond Not respond
Treatment x1 N1 − x1
Control x2 N2 − x2
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Suppose we have a two by two table as above, the exact power of a level α test is
given by:

Power|θ1, θ2 =
∑

(x1,x2)∈R

(
N1

x1

)(
N2

x2

)

θx11 (1 − θ1)
N1−x1θx22 (1 − θ2)

N2−x2 , (3)

where N1,N2 are the numbers of patients enrolled, x1, x2 are the numbers of respon-
ders, and θ1, θ2 are the true response rates for the treatment and control arms, respec-
tively. The power function depends on the rejection region R for a test.

Both Fisher’s exact test and the Z-pooled unconditional exact test assume a fixed
total number of patients: T = t. Fisher’s exact test also assumes fixed margins,
i.e., row sums are fixed as N1, t − N1, and column sums are fixed as x1 + x2, and
t − (x1 + x2). Conditioning on the total number of patients T = t, the Fisher’s exact
test becomes a test statistic based on the one-dimensional distribution of X1. The
exact p-value for a one-sided Fisher’s exact test is given by:

P-value =
∑

i∈R
PH0(X1 = i|T = t),

where

PH0(X1 = i|T = t) =
(N1

i

)( t−N1

x1+x2−i

)

∑
j

(N1

j

)( t−N1

x1+x2−j

) .

Fisher’s exact test is conservative, because of the additional assumption of fixed
margins. The Z-pooled unconditional test, on the other hand, only assumes fixed row
sums. The exact p-value is calculated as the supremum of the exact probabilities for
all possible θ under the null, assuming binomial distributions of X1 and X2:

P-value = sup
0≤θ≤1

{ N1∑

i=0

N2∑

j=0

PH0(X1 = i,X2 = j|θ) × 1|ZP(i,j)|≥|ZP(x1,x2)|
}
, (4)

where

PH0(X1 = x1,X2 = x2|θ) =
(
N1

x1

)(
N2

x2

)

θx1+x2(1 − θ)N1+N2−x1−x2 ,

and the Z-pooled statistic is used to define the rejection region:

ZP(x1, x2) = θ̂1 − θ̂2
√

θ̃(1 − θ̃)( 1
N1

+ 1
N2

)

,

where θ̂i = xi
Ni

and θ̃ = x1+x2
N1+N2

.
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Fig. 2 The numeric difference between the exact powers of the Z-pooled unconditional exact test
and the Fisher’s conditional exact test at the 5% significance level for samples of patients ranging
in size 2–30 per treatment arm. The statistical powers of Z-pooled unconditional exact test are
uniformly greater than the ones of Fisher’s exact test

The optimal θ is searched over the space [0, 1] to maximize the p-value for the
two-sided test. A one-sided p-value for the Z-pooled unconditional test can also be
obtained by summing the probabilities on one side of the rejection region. To gain
computational efficiency in identifying the optimal θ, the interval method [13] is
used by restricting optimization into a confidence set of highly likely regions of θ.

Mehrotra et al. [14] commented that Fishers exact test is generally less powerful
than the Z-pooled unconditional test. We also conducted a study to compare power
between the Fisher’s exact test and the Z-pooled unconditional exact test. As a toy
example, consider a sample of patients from 2 to 30 for each treatment arm with the
treatment and control response rate at 0.4 and 0.2 respectively. Figure 2 shows that
the Z-pooled unconditional exact test is uniformly more powerful than the Fisher
exact test. Therefore, we chose to use the Z-pooled unconditional exact test for the
calculations of p-values in our analysis.

2.4 Combination Methods

Recall from Sect. 2.1 that our three-stage design generates three p-values, p1, p2, and
p3. In order to combine these p-values into a single p-value for the difference between
groups, we consider two combination methods: Fisher’s combination method [15]
and Stouffer’s Z-score method [16].
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Assuming p1, p2, and p3 are independent, the two combination methods utilize
different distributions to build the test statistics. Specifically, theFisher’s combination
test combines the three individual p-values into a single p-value that follows a chi-
square distribution (i.e., −2

∑3
i=1 log(pi) ∼ χ2

2×3). The Stouffer’s Z-score method
first transforms each p-values pi, i = 1, 2, 3 into Z score Zi = �−1(1 − pi) where �

is the cumulative distribution function for the standard normal distribution. It then
combines them into be a single p-value that follows standard normal distribution,

i.e.,
∑3

i=1 Zi√
3

∼ N (0, 1). If there is a stage having patients fewer than 4 (i.e., at least
one cell of the contingency table is zero), the p-value calculated can only be at its
extreme, i.e., 0 or 1. It hurts the correctness of decision making and often makes the
combination method invalid. Thus, when a stage having patients fewer than 4, it will
not be included when p-values are combined and decisions are made. For example,
if there are more than 4 patients included in Stages 1 and 2, but fewer than 4 patients
at Stage 3, decisions will be made based on the p-value combined from p1 and p2.

3 Simulation Studies

In this section, we compare our models with the competitive alternatives in a set of
simulated rare-disease scenarios and demonstrate the performance of our approach
in the Type I error control and the statistical power improvement.

We used a similar strategy as Honkanen et al. [9] to calculate the exact Type I
error and power. Pseudo-code for the calculation is provided in Algorithm 1. Clinical
trials are simulated for every possible case according to the proposed design in Fig. 1.
Patients are first equally randomized to treatment and control in Stage 1.We calculate
the probability P for each downstream possibility in terms of numbers of responses
at each stage.

Define T, C, R, N as treatment, control, responder and non-responder respectively,
we use the combinations of these symbols to denote the sizes of every outcome
groups in each stage. Specifically, we denote the numbers of patients assigned to
treatment and control as nT and nC respectively. We further assume a clinical trail
has nTR responders to treatment among nT patients randomized to treatment and nCR
responders to control among nC patients randomized to control in Stage 1. At Stage
2, nTRT and nTRC (nTR = nTRT + nTRC) patients are re-randomized to either treatment
or control, and nTRTR respond to treatment and nTRCR respond to control. At Stage
2.5, nCNTR respond to treatment among nCNT patients. At Stage 3, nCNTRT and nCNTRC
(nCNTR = nCNTRT + nCNTRC) patients are re-randomized to either treatment or control,
and nCNTRTR respond to treatment and nCNTRCR respond to control. The response rates
for each of these groups is denoted as pT , pC , pTT , pTC , pCT , pCTT and pCTC according
to the assignments each of these groups received. The probability P for this scenario
is calculated as:
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(
nT
nTR

)

pnTRT (1 − pT )nT−nTR
(
nC
nCR

)

pnCRC (1 − pC)nC−nCR

(
nTRT
nTRTR

)

pnTRTRTT (1 − pTT )nTRT−nTRTR
(
nTRC
nTRCR

)

pnTRCRTC (1 − pTC)nTRC−nTRCR

(
nCNT
nCNTR

)

pnCNTRCT (1 − pCT )nCNT−nCNTR
(
nCNTRT
nCNTRTR

)

pnCNTRTRCTT (1 − pCTT )nCNTRT−nCNTRTR

(
nCNTRC
nCNTRCR

)

pnCNTRCRCTC (1 − pCTC)nCNTRC−nCNTRCR ,

(5)

We analyze each simulation scenario from the adaptive three stage randomization
design by using exact numeration as discussed in Algorithm 1.

Algorithm 1 Calculating Exact Power
Initialize Power=0
for TR in 0:[n/2] do

for CR in 0:n-[n/2] do
TN=[n/2]-TR; CN=n-[n/2]-CR
Assign treatment responders to TRT and TRC by AR.
for TRTR in 0:TRT do

for TRCR in 0:TRC do
TRTN=TRT-TRTR; TRCN=TRC-TRCR;
CNT=CN;
for CNTR in 0:CNT do

CNTN=CNT-CNTR;
Assign to CNTRT and CNTRC by AR.
for CNTRTR in 0:CNTRT do

for CNTRCR in 0:CNTRC do
CNTRTN=CNTRT-CNTRTR;
CNTRCN=CNTRC-CNTRCR;
Calculate probability P according to (5)
If the null hypothesis is rejected, Power← Power+P

end for
end for

end for
end for

end for
end for

end for
Return

We considered scenarios where the sample size n is set to be 20, 25, 30, 35, 40,
45, 50 and 55. To compute the 3 p-values, i.e., p1, p2, p3, for Stages 1, 2 and 3, the
Z-pooled unconditional test is used. In our studies, both Fisher’s combinationmethod
and Stouffer’s Z-score method are considered to combine the 3 p-values and to test
the null hypothesis at the alpha level of 5%. We compare these results to those of a
one-stage equal randomization design with the same sample sizes.
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Fig. 3 Null case 1—Type I error when the response rate is uniformly 20% across stages for both
treatment and control

Fig. 4 Null case 2—Type I error when the response rate is uniformly 40% across stages for both
treatment and control

Type I error control is illustrated via 2 null cases: (1) pT = pTT = pCT = pCTT =
pC = pTC = pCTC = 0.2; (2) pT = pTT = pCT = pCTT = pC = pTC = pCTC = 0.4.
Results are shown in Figs. 3 and 4, and adaptive three stage randomization designs
with both Fisher’s combination method and Stouffer’s Z-score method have Type
I error within the nominal 5% level. Compared with the one stage randomization
design, these two methods have Type I error closer to the nominal 5% level.

Three alternative cases are presented to show the statistical power of detecting
a significant treatment effect. In the first two cases, treatment is beneficial (i.e.,
the response rate is higher for treatment than control) and the response rates are
constant across stages. Case 1: pT = pTT = pCT = pCTT = 0.4; pC = pTC = pCTC =
0.2;Case 2: pT = pTT = pCT = pCTT = 0.5; pC = pTC = pCTC = 0.2. The third case
assumes a mixed population in which 20% of subjects always respond to treatment
and never respond to control, and the remaining 80% of subjects have a 25% chance
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of responding to either treatment or control. This population composition results
in higher response rates for treatment and lower response rates for control at later
stages:

• Stage 1: pT = 0.4, pC = 0.2;
• Stage 2: pTT = 0.625, pTC = 0.125;
• Stage 2.5: pCT = 0.4375;
• Stage 3: pCTT = 0.6786, pCTC = 0.1071.

Results of these alternative studies are shown in Figs. 5, 6 and 7. In the uniform
response rate cases (Figs. 5, 6), both Fisher’s combination method and Stouffer’s
Z-score method for the adaptive three-stage randomization design produce higher
powers than the one-stage randomization design. The larger the sample size and the
larger the underlying treatment effect size, the greater the improvement in power. In

Fig. 5 Alternative hypothesis case 1—Power comparison when response rate is uniformly 40%
across stages for treatment and uniformly 20% across stages for control

Fig. 6 Alternative hypothesis case 2—Power comparison when response rate is uniformly 50%
across stages for treatment and uniformly 20% across stages for control
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Fig. 7 Alternative hypothesis case 3—Power comparison when response rates are non-uniform
across stages for both treatment and control, and come from a mixture model that 20% subjects
always respond to treatment and never respond to control, and the remaining 80% subjects have
25% chance equally responding to either treatment or control. The response rates are: Stage 1, pT =
0.4; pC = 0.2; Stage 2, pTT = 0.625; pTC = 0.125; Stage 2.5, pCT = 0.4375; Stage 3 pCTT =
0.6786; pCTC = 0.1071

the mixed population case (Fig. 7), the relationship between sample size, underlying
treatment effect size, and power improvement is even more pronounced. This is in
part because the difference in response rates between treatment and control is larger
at later stages.

In all of the scenarios consider, the Stouffer’s Z-score method generated higher
power than the Fisher’s combination method. The superiority of the Stouffer’s Z-
score method over the Fisher’s combination method for the design coincides with
the claims in Abelson [17]: “the Stouffer’s test statistic is sensitive to consistent, even
if mild, departures from the null hypothesis, whereas the Fisher procedure is most
sensitive to occasional, extreme departures”.

4 Discussion

In this paper, we introduced an adaptive three-stage design for small clinical trials
with a binary endpoint and demonstrated its superior performance to one-stage equal
randomization designs. The use of a Z-pooled unconditional test together with com-
bination methods for three-stage designs controlled the Type I error when the sample
size was small and asymptotic statistics were not appropriate. We considered both
Fisher’s combination method and Stouffer’s Z-score method to combine p-values
from the three stages and discovered that Stouffer’s Z-score method can generate
higher powers than Fisher’s combination method.

If the study is designed to start with blinding from stage 1, Investigators should be
aware that it is not possible to conduct a trial with this adaptive three-stage design in
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a completely double-blinded manner as patients, investigators, and statisticians will
learn the treatment assignments from stage 1 when the study proceeds to later stages.
This unblinding has the potential to introduce bias. Alternatively, stage 1 can be run
as an open-label induction phase with blinding only in later stages. In this case, the
primary analysis will focus on patients from stages 2 and 3. The overall p-value then
is a combination of the p-values from stages 2 and 3.

In this paper, we focused on binary endpoints. Future work will extend the design
to non-binary endpoints (e.g., continuous and time-to-event endpoints). We are also
considering using amodel-based approach or a non-parametric approach to avoid the
need to combine p-values. The combination methods do not consider the correlation
in response rates between stage 1 and later stages. If the response rate at stage
1 is highly correlated with the response rate at later stages, our calculations may
overestimate power. A model-based approach or a non-parametric approach can
account for the correlation.

Clinical trials for rare diseases are challenging and the crucial challenges lie
in how to reach acceptable statistical power with a small sample size. We believe
the proposed adaptive three-stage design provides a decent option in optimizing
statistical powers with limited small sample size. Its success through our extensive
simulation studies will motivate further interest in this direction of rare-disease trial
design.
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Clinical Trial Designs to Evaluate
Predictive Biomarkers: What’s Being
Estimated?

Gene Pennello and Jingjing Ye

Abstract Predictive biomarkers are used to predict whether a patient is likely to
receive benefits from a therapy that outweigh its risks. In practice, a predictive
biomarker is measured with a diagnostic assay or test kit. Usually the test has some
potential formeasuring the biomarker with error. For qualitative tests indicating pres-
ence or absence of a biomarker, the probability of misclassification is usually not
zero. Study designs to evaluate predictive biomarkers include the biomarker-stratified
design, the biomarker-strategy design, the enrichment (or targeted) design, and the
discordant risk randomizationdesign.Manyauthors have reviewed themain strengths
andweaknesses of these study designs. However, the estimand being used to evaluate
the performance of the predictive biomarker is usually not provided explicitly. In this
chapter,weprovide explicit formulas for the estimands used in common studydesigns
assuming that the misclassification error of the biomarker test is non-differential to
outcome. The estimands are expressed as terms of the biomarker’s predictive capac-
ity (differential in treatment effect between biomarker positive and negative patients
when the biomarker is never misclassified) and the test’s predictive accuracy (e.g.,
positive and negative predictive values of the test for the biomarker). Upon inspec-
tion, the estimands reveal not only well-known strengths andweaknesses of the study
designs, but other insights. In particular, for the biomarker-stratified design, the esti-
mand is the product of the biomarker predictive capacity and an attenuation factor
between 0 and 1 that increases with the test’s predictive accuracy. For other designs,
the estimands illuminate important limitations in evaluating the clinical utility of the
biomarker test. After presenting the theoretical estimands, we present and discuss
estimand values for a hypothetical case study of Procalcitonin (PCT) as a biomarker
in Procalcitonin-guided evaluation and management of subjects suspected of lower
respiratory tract infection.
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1 Introduction

Predictive biomarkers have become essential for individualizing safe and effective
treatments of cancer and other diseases, thereby improving health care through preci-
sion medicine. Formally, a predictive biomarker is “used to identify individuals who
are more likely than similar individuals without the biomarker to experience a favor-
able or unfavorable effect from exposure to a medical product or an environmental
agent” [1].

Predictive biomarkers are typically measured with a commercially developed,
in vitro diagnostic device (IVD) or test kit. According to the Food and Drug Admin-
istration (FDA), an IVD is a “companion diagnostic” to a specific therapy, if it is
“essential for the safe and effective use of [the] therapeutic product” [2]. For a binary-
valued test to be considered a companion diagnostic, the treatment effect may need
to be positive (beneficial) and large in patients who are test positive, but close to zero
or negative (harmful) in patients who are test negative [3].

To evaluate binary-valued predictive marker tests, including companion diag-
nostics, common Phase III trial designs include the biomarker-stratified design, the
biomarker-strategy design, and the enrichment design [4–9]. The biomarker-stratified
design has also been called the all-comers or interaction design. The enrichment
design has also been called the targeted design. These designs have been reviewed
for practical and statistical considerations in many publications, e.g., [10–13]. Alter-
natively, in a discordant risk randomization design, a new biomarker test is evaluated
only in subjects with a test result that is discordant with a standard evaluation [8, 12].

While the literature is generally excellent in listing considerations for choosing a
trial design to evaluate the predictive biomarker test as a companion to a treatment,
the target estimand being utilized is generally not stated precisely as a mathematical
expression. Furthermore, the propensity of the test to misclassify biomarker status
is frequently not considered. In this paper, we identify precisely the target estimand
of the four trial designs mentioned. To identify the estimand, we assume that test
misclassification error is non-differential to the outcome under study [14]. We show
that the precise estimand for a particular trial design can reveal not only well-known
strengths and weaknesses, but other useful insights.

For the four trial designs mentioned, we identify the target estimand for a mean
difference between randomization arms of either a binary or a continuous outcome
(e.g., objective response, time-to-event, etc.). For each trial design, we use the esti-
mand to interpret the design’s strengths and weaknesses in evaluating the predictive
biomarker test for clinical utility. To facilitate this interpretation, we express the
estimand in terms of the biomarker’s predictive capacity (difference in treatment
effect between biomarker positive and negative patients when never misclassified)
and the test’s predictive accuracy (negative and positive predictive values for the
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biomarker). To illustrate, we discuss the results of a hypothetical case study of Pro-
calcitonin (PCT) as a biomarker in Procalcitonin-guided evaluation andmanagement
of subjects suspected of lower respiratory tract infection.

We consider an estimand to be simply what is being estimated in a statistical
analysis. In a clinical trial, the estimand is ideally a direct reflection of the scientific
question of interest. For trials of predictive biomarkers, the estimand should link
biomarker test results with expected outcomes of treatment decisions. In a recent
addendum to the ICH E9 guideline, E9 (R1), a main concern is “absence of a clear
relationship between the apparent target estimand and the trial design and analysis
in terms of aspects such as patient follow-up after discontinuation of randomised
treatment, decisions around which data to exclude from the statistical analysis and
handling of missing data” [15]. While aspects of the design, conduct, and analysis of
a trial should be consistent with its target estimand, the focus of our paper is not trial
implementation, but simply to identify the estimand for the purpose of evaluating
the trial design.

2 Clinical Performance of Predictive Biomarkers
and Biomarker Tests

Consider a binary biomarker B = 0 or 1 whose absence or presence is measured with
a binary-valued test T = 0 or 1 indicating if a subject is negative or positive for the
biomarker. In general, the biomarker test may measure biomarker status with some
probability of misclassification. That is, the test result has a non-zero probability of
misclassifying the biomarker status. The predictive value of test result T = t for
biomarker presence is

pt = Pr(B = 1|T = t), t = 0, 1

That is, 1− p0 = Pr(B = 0|T = 0) is the negative predictive value (NPV) of the
test and p1 = Pr(B = 1|T = 1) is its positive predictive value (PPV). The overall
probability of testing positive is τ = Pr(T = 1).

Given the biomarker status and test result, the probability of true negative (TN) is
Pr(TN) = Pr(B = 0, T = 0) = Pr(B = 0|T = 0)Pr(T = 0) = (1 − p0)(1 − τ ).

The probability of false positive (FP), false negative (FN) and true positive (TP) can
be defined similarly (Table 1).

For the general presentation, we assume δb > 0 confers treatment benefit, consis-
tent with many outcomes Y such as binary response status and time to an untoward
event. However, for other outcomes, such as duration of hospital stay in the case
study presented later, δb < 0 confers treatment benefit. The problem can then be
fit into the general presentation by considering δ′

b = −δb , with δ′
b > 0 conferring

treatment benefit.
The predictive capacity of the biomarker is defined as the difference in treatment

effects
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Table 1 Joint probabilities of
biomarker status and
biomarker test result

Biomarker status

Test result B = 0 B = 1 Test
probability

T = 0 Pr(T N ) =
(1 − τ)(1 − p0)

Pr(FN ) =
(1 − τ)p0

1 − τ

T = 1 Pr(FP) =
τ(1 − p1)

Pr(T P) =
τp1

τ

Table 2 Clinical trial mean
outcome by treatment
assignment and biomarker
status

Biomarker status

Treatment B = 0 B = 1

A = 0 θ00 θ01

A = 1 θ10 θ11

Effect δ0 = θ10 − θ00 δ1 = θ11 − θ01

� = δ1 − δ0,

i.e., the interaction between biomarker and treatment on outcome. For quantitative
interactions, the predictive capacity of the biomarker depends on how the outcome
is scaled. For example, if biomarker and treatment have multiplicative effects on Y,

then they have additive effects on log Y.Thus the predictive capacity of the biomarker
is non-zero on the original scale of Y but zero on the log scale. However, choice of
scale cannot eliminate a qualitative interaction, which is often observed for predictive
biomarkers especially if, e.g., the biomarker is the molecular target of an effective
cancer treatment and is well-measured. A qualitative interaction of a biomarker with
a treatment, that is, δ1 > 0 ≥ δ0 , is generally considered to confer clinical utility
(Table 2).

Given treatment A = a and biomarker statust B = b, a, b = 0, 1, we denote
the mean outcome by θab = E(Y |A = a, B = b) = Eab(Y ). The true status of
the biomarker is typically not known. We measure it with biomarker test result T .

To distinguish mean outcome given true biomarker status from mean outcome by
biomarker test value, we use star notation. Given treatment A = a and biomarker
test result T = t, we denote the expected outcome by θ∗

at = E(Y |A = a, T = t) =
Eat (Y ), a, t = 0, 1 (Table 3). The treatment effect given test result T = t is the
difference in mean outcome

δ∗
t = θ∗

1t − θ∗
0t ,

t = 0, 1. That is, δ∗
0 = θ∗

10 − θ∗
00 and δ∗

1 = θ∗
11 − θ∗

01 are the treatment effects
in biomarker test negative and positive subjects, The difference in treatment effect
between test positive and negative subjects (treatment by test interaction) is
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Table 3 Clinical trial mean
outcome by treatment
assignment and test result

Biomarker test result

Treatment T = 0 T = 1

A = 0 θ∗
00 θ∗

01

A = 1 θ∗
10 θ∗

11

Effect δ∗
0 = θ∗

10 − θ∗
00 δ∗

1 = θ∗
11 − θ∗

01

�∗ = δ∗
1 − δ∗

0 ,

which links biomarker test results to the outcomes of treatment decisions.
The connection between θ∗

at and θab can be derived using conditional probability:

θ∗
at = Eat (Y ) = Σ1

b=0Eat (Y |B = b)Pr(B = b|T = t)

This expression simplifies if T is assumed to exhibit non-differential misclassifi-
cation error (NDME) [14]. Under NDME, T is conditionally independent of clinical
outcome Y given biomarker status B :

T |Y, B = T |B

That is, the probability of misclassification of B by T is non-differential to (inde-
pendent of) clinical outcome Y. Equivalently,

Y |T, B = Y |B

That is, test result T provides no additional predictive information about outcome
Y if the biomarker value B is known, an assumption that is often plausible.

Given NDME, the term Eat (Y |B = b) in the above expression reduces to

Eat (Y |B = b) = Ea(Y |B = b) = Eab(Y ) = θab

Therefore,

θ∗
at = Σ1

b=0θabPr(B = b|T = t)

= θa0 + pt (θa1 − θa0)

Thus given test result T = t the treatment effect is

δ∗
t = θ∗

1t − θ∗
0t

= δ0 + pt (δ1 − δ0)
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Fig. 1 Biomarker-stratified design

The difference in treatment effect between test positives and negatives is

�∗ = δ∗
1 − δ∗

0

= (p1 − p0)(δ1 − δ0) (1)

= (N PV + PPV − 1)�.

That is, �∗ is the product of the predictive capacity � of the biomarker and an
attenuation factor N PV +PPV −1,which quantifies the ability of the test to predict
the correct biomarker value over and above a random test.

3 Study Designs and Estimands

3.1 Biomarker-Stratified Design

In a biomarker-stratified design, all patients are enrolled regardless of biomarker
test value. The enrolled patients are randomized to the treatment or a control. The
treatment effect (mean difference between treatment and control) is stratified by
biomarker test value. The study design is illustrated in Fig. 1. If the test is available
at time of randomization, then randomization may be stratified by test value to avoid
imbalance in numbers of subjects assigned to treatment or control within biomarker
test subsets.

In the biomarker stratified design, the estimand is �∗, the interaction between
treatment and biomarker test. From Eq. (1), �∗ is non-zero if
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Fig. 2 Biomarker-strategy design

(1) the treatment effect is not homogeneous (e.g., δ1 > δ0 ), and
(2) the test is informative, i.e., is not a random test for biomarker status (p1 > p0 ).

This estimand is ideal in that it factors out diagnostic accuracy, as measured by
p1− p0, frombiomarker capacity, i.e., treatment by biomarker interaction δ1−δ0. The
treatment by test interaction δ∗

1 − δ∗
0 is the treatment by biomarker interaction δ1 − δ0

attenuated by the accuracy of the test p1 − p0 , which is the positive predictive value
(PPV = p1 ) of the test plus its negative predictive value (N PV = 1− p0 ) minus 1.

3.2 Biomarker-Strategy Design

In a biomarker strategy design, patients are randomized to either a test strategy arm
in which the biomarker test value is utilized to determine treatment received or a
control arm in which it is not utilized. In its simplest version, patients assigned to the
control arm receive the control (standard) treatment (A = 0), while patients in the
experimental arm receive the experimental treatment (A = 1) or the control treatment
(A = 0), depending on whether they test positive or negative for the biomarker,
respectively. The design is an attempt to evaluate if test-directed treatment selection
can improve clinical outcomes. A diagram of the design is shown in Fig. 2.

For the biomarker-strategy design, the estimand is the difference in average out-
come between test-strategy and control arms. In the notation given above, the esti-
mand for biomarker-strategy design can be expressed as

�∗
S = τθ∗

11 + (1 − τ)θ∗
00 − [

τθ∗
01 + (1 − τ)θ∗

00

] = τ [θ∗
11 − θ∗

01]

= τδ∗
1 = τ [δ0 + p1(δ1 − δ0)] = τ [δ0 + p1�]
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where recall δ∗
1 = δ0 + p1(δ1 − δ0) is the treatment effect in patients who test

positive. Note that patients who test negative are given the control treatment A = 0,
regardless of whether they are randomized to the test strategy arm or the control
arm. In patients who test negative, the difference in expected outcome between the
arms is zero. As a result, the expected difference between the arms is �∗

S = τδ∗
1 ,

the treatment effect δ∗
1 in test positive subjects diluted by the probability of testing

positive τ . The inefficiency of diluting the treatment effect in test positives by τ is a
well-known limitation of the biomarker-strategy design [10–13].

Some special cases of the estimand for the biomarker-strategy design are worth
noting:

(1) When the treatment effect is homogeneous, δ0 = δ1 = δ, and the predictive
capacity of the biomarker is � = 0. In this case, the estimand of the biomarker-
strategy design reduces to �∗

S = τδ. That is, the estimand is positive even when
the biomarker has no predictive capacity but the homogeneous treatment effect is
positive. Moreover, the estimand depends not on the diagnostic accuracy of test for
biomarker status, but only on the probability of testing positive τ , the factor by which
the homogeneous treatment effect is diluted. Thus, the difference between arms is
the same for a perfectly accurate test (p1 = 1, p0 = 0) or a random test (p0 = p1),
if the probability of testing positive is the same.

(2) When the treatment only has an effect among biomarker positive subjects,
i.e. δ1 > δ0 = 0, the difference between arms is �∗

S = τp1δ1 = Pr(T P)δ1, the
treatment effect δ1 among biomarker positive subjects diluted by the probability of
a true positive test result, i.e., correct identification of biomarker positive subjects.

(3) In scenario (2), if the probability of a true positive test result is random,
then p0 = p1 ≡ p, where p is the prevalence of being biomarker positive, and
�∗

S = τpδ1. In this case, the treatment only has an effect in biomarker positive
subjects, the test selects some of these subjects at random, and the result is a positive
difference between study arms. This case shows that estimand for the biomarker-
strategy arm can be positive, even when the test is merely selecting at random some
of the subjects in the subset who benefit from the treatment, another well-known
limitation of the design [10–13, 17–21].

3.3 Enrichment Design

If biological rationale and early-phase evidence is strong enough to expect that
patients who are biomarker negative are likely to not benefit from the therapy, then an
enrichment design is often employed in which only test positive subjects are enrolled
into a confirmatory trial of the investigational treatment. Biomarker test positive sub-
jects are randomized to receive either the treatment or a control, but test negative
subjects are screened out, not eligible for trial enrollment. The diagram of the study
design is shown in Fig. 3.

Because only patients who test positive are enrolled in the trial, the estimand for
the enrichment design is simply
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Fig. 3 Enrichment design

�∗
E = δ∗

1 = δ0 + p1(δ1 − δ0)

Some special cases in enrichment design are worth noting:
(1) When the treatment effect is homogeneous, δ0 = δ1 = δ, and the estimand

reduces to �∗
E = δ, the treatment effect. As with the biomarker-strategy design,

the difference between arms does not depend on the diagnostic accuracy of test for
biomarker status. Thus the difference between arms is the same for a perfectly accu-
rate test (p1 = 1, p0 = 0) or a random test (p0 = p1 ). However, unlike biomarker-
strategy design, the enrichment design is not inefficient in that the homogeneous
treatment effect δ is not diluted by τ .

(2) When the treatment only has an effect among biomarker positive subjects, i.e.
δ1 > δ0 = 0 the estimand is �∗

E = p1δ1 = PPV ∗ δ1, the treatment effect δ1 in
biomarker positive subjects diluted by the positive predictive value of the test.

(3) In scenario (2), if the test is random, p0 = p1 ≡ p, and the estimand reduces
to �∗ = pδ1 the treatment effect δ1 in biomarker positive subjects diluted by their
prevalence p.

In sum, for special cases (2) and (3), in which the treatment only has an effect in
biomarker positive subjects, the estimand is the treatment effect in biomarker positive
subjects is diluted proportionally by the predictive value of test in identifying these
subjects, which could be random but still result in a positive difference between study
arms.

While the enrichment design can validate that a treatment is effective in a subset
of subjects selected by the test (test positives), a well-known drawback of the design
is that it obviously can’t be used to evaluate if the treatment is effective in the
complement of that subset.

Comparing the estimands for the enrichment and biomarker-strategy designs,
the biomarker-strategy design can be interpreted as an inefficient version of the
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Fig. 4 Discordant risk randomization design

enrichment design in which treatment effect is diluted by biomarker test-positive
probability τ.

3.4 Discordant Risk Randomization Design

In a discordant risk randomization design [8], patients are randomized to either
investigational treatment or control when there is discordance between biomarker
test result and the clinical risk, as evaluated by traditional clinical variables in rou-
tine use, which could include one or more standard biomarker assessments. For
example, in the case study of the next section, based on her clinical assessment,
a clinician may intend to give antibiotic therapy to a subject with suspected lower
respiratory tract infection. However, this assessment may be discordant with a low
level of the biomarker procalcitonin (PCT), indicating low risk of infection. This
subject would be eligible for randomization to receive the therapy or not, in a dis-
cordant risk randomization trial design. A version of this design is being imple-
mented in the ongoing trial, Targeted Reduction of Antibiotics using Procalcitonin
in a multi-center, randomized, blinded, placebo-controlled, non-inferiority study of
azithromycin treatment in outpatient adults with suspect Lower Respiratory Tract
Infections (LRTI) and a procalcitonin level of <0.1 ng/mL (TRAP-LRTI, http://arlg.
org/studies-in-progress). Another example of discordant risk randomization is given
in [12], Fig. 2. A virtue of the discordant risk randomization design is that the pre-
dictive biomarker is evaluated only in subjects for whom it may change the treatment
decision (Fig. 4).

Biomarker test value T = 0 or 1 and standard clinical assessment S = 0 or 1
both attempt to classify correctly a latent subset of subjects B = 0 or 1 in whom,
respectively, the investigational treatment A = 1 is less or more effective, relative
to standard treatment A = 0. In the most inclusive discordant risk randomization
design, subjects eligible for enrollment may have a test value that is discordant with

http://arlg.org/studies-in-progress


Clinical Trial Designs to Evaluate Predictive … 193

either a positive or negative standard clinical assessment. Let δ∗
st be the treatment

effect given S = s and T = t. An estimand is

�∗
D = δ∗

01 − δ∗
10,

the difference in treatment effect between subjects with test results positively dis-
cordant with the clinical assessment and those negatively discordant. If the mea-
surement errors in S and T are both non-differential to outcome Y, and we denote
pst = Pr(B = 1|S = s, T = t). Then the estimand can be written as

�∗
D = (p01 − p10)(δ1 − δ0)

Note if T is not associated with B given S, then it adds no incremental value
over S in predicting B, and p01 − p10 = p0. − p1. < 0 if S is better than random
at predicting B. Thus if B has predictive capacity (δ1 > δ0), then the estimand is
positive only if T adds sufficient incremental value over non-random S at predicting
B.

In sum, test T would be useful to decide treatment within subsets defined by
standard test S if

(1) the effect of experimental treatment is not homogeneous, with B having predic-
tive capacity (δ1 > δ0 ), and

(2) the predictive value for B = 1 is greater if the standard assessment is negative
(S = 0) but the test is positive (T = 1) than if the standard is positive (S = 1)
but the test is negative (T = 0), i.e., p10 > p01 .

4 Case Study

We consider a hypothetical case study for Procalcitonin (PCT) as a biomarker in
Procalcitonin-guided evaluation and management of subjects suspected of lower
respiratory tract infection. The clinical outcome of interest in this case study is the
number of days of hospital stay.

Using the notation in the paper, B is the biomarker status, i.e., the indicator
of bacterial infection. Treatment indicator value A = 0 or 1 indicates that antibi-
otic (AB) therapy was or was not initiated, respectively. Test measurement of PCT
level (ng/mL) is dichotomized, with T = 0 or 1indicating whether or not PCT <=
0.25 ng/ml.

Hypothetical values for the expected number of days of hospital stay stratified by
biomarker value, test value, and treatment assignment are summarized in Table 4.
For example, for the no antibiotic therapy treatment arm (A = 1), the mean length
of stay in the hospital is 6 days if bacterial infection is absent (B = 0), but 18 days
if bacterial infection is present (B = 1). Meanwhile for antibiotic therapy treatment
arm (A = 0), the mean length of stay is 6 days regardless of whether bacterial
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Table 4 Hypothetical case
study on PCT for
management of antibiotic
(AB) use, length of hospital
stay (Days) by AB use and
bacterial infection status

No Bact (B
= 0)

Bact (B = 1) Test
probability

PCT <=0.25
(T = 0)

TN FN 1 − τ

PCT > 0.25
(T = 1)

FP TP τ

Prevalence 1 − p p

AB (A = 0) 6 6

No AB (A =
1)

6 18

Fig. 5 Biomarker-strategy design for procalcitonin-guided strategy of antibiotic (AB) initiation

infection is absent or present. Thus the effects of not initiating AB therapy on length
of hospital stay are δ1 = θ11 − θ01 = 18 − 6 = 12 and δ0 = θ10 − θ00 = 6 − 6 = 0
days for subjects with and without bacterial infection. Note that in the notation, a
positive treatment effect confers not benefit, but detriment. To translate to effects that
confer benefit, in the subsequent discussion we use δ′

b = −δb .
In the biomarker strategy design, subjects are randomized to have the decision

to initiate antibiotic therapy guided by PCT level or not (Fig. 5). All subjects in
the nonPCT guided group receive, antibiotic (AB) therapy (A = 0), the standard
of care (SOC). Subjects in the PCT-guided group will receive AB therapy unless
PCT ≤ 0.25 ng/ml, indicating low risk of bacterial infection.

Because in this biomarker-strategy design (Fig. 5), standard AB therapy is with-
held in the test-strategy arm for subjects testing negative (T = 0), the estimand is

�∗
S = (1 − τ)δ′∗

0 = (1 − τ)
[
δ′
0 + p0(δ

′
1 − δ′

0)
]
,
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a modification of the estimand derived in Sect. 3.2. It is a comparison between
nonPCT guided- and PCT guided-therapy groups.

In this case study, suppose the prevalence of bacterial infection is p =
Pr(B = 1) = 0.1. We examine the estimand for three different scenarios of test
performance: as a random test, a perfect test, or a decent test.

Suppose binary-valued PCT is a random test for predicting bacterial infection,
i.e., p1 = p0 = p = 0.1 = prevalence, with probability of testing positive τ = τ0 =
τ1 = 0.25, where τb = Pr(T = 1|B = b) denotes test classification accuracy, i.e.,
τ0 is the test’s false positive fraction (1 – specificity) and τ1 is its sensitivity. Then
the estimand value is

�∗
S = (1 − τ)δ′∗

0 = (1 − τ)
[
δ′
0 + p0

(
δ′
1 − δ′

0

)]

= (1 − τ)p
(
δ′
1 − δ′

0

) = 0.75(0.1)(−12 − 0) = −0.9

days. According to this estimand value, the detrimental effect of using PCT to guide
decisions to initiate AB therapy or not is just 0.9 days, on average, which could be
mis-interpreted to mean that PCT is providing adequate stewardship in determining
who should, and who should not, receive AB therapy, despite that it is a random
test! In fact, this estimand value is a dilution of the 12 extra days of hospital stay
occurring on average when not providing antibiotic (AB) therapy to subjects with
bacterial infection.

Alternatively, suppose thePCT test is better than randomwith decent performance,
specifically specificity= 1−τ0 = 0.75 and sensitivity τ1 = 0.9.Because prevalence
p = 0.1 for bacterial infection, the probability of testing positive is τ = 0.315. By
Bayes theorem the predictive values of the test are N PV = 1 − p0 = 0.9854 and
PPV = p1 = 0.2857. Therefore, the estimand value is

�∗
S = (1 − τ)δ′∗

0 = (1 − τ)
[
δ′
0 + p0

(
δ′
1 − δ′

0

)]

= (1 − τ)p0
(
δ′
1 − δ′

0

) = 0.685(0.0146)(−12 − 0) = −0.12

days. The negative predictive value of the test N PV = 0.9854 has mitigated the
effect of not providing antibiotic (AB) therapy to subjects with bacterial infection
from 12 extra days of hospital stay to 0.1752 days on average. However, this effect
is diluted from 0.1752 days to 0.12 days by the probability 0.685 of testing negative,
illustrating an inadequacy of the biomarker strategy design.

For a perfect test, p0 = 0 and p1 = 1, and the estimand is �∗
S = 0, the best

possible result, given the configuration of expected outcomes in Table 4.
For the enrichment design (Fig. 6), the estimand is

�∗
E = δ′∗

0 ,
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Fig. 6 Enrichment design for procalcitonin-guided strategy of antibiotic initiation

which is equal to −1.2, −0.1752, and 0 days for the random, decent, and perfect
tests. Unlike the biomarker-strategy design, the treatment effect is not subject to
dilution by the probability of testing negative because the estimand is conditional on
enrollment of only test negative subjects into the trial.

For ethical reasons, a biomarker-stratified design should not be conducted, but if
it were, the estimand would be:

�∗ = δ′∗
1 − δ′∗

0

= (p1 − p0)
(
δ′
1 − δ′

0

)
,

which is 0,−3.25, and −12 days for the random, decent and perfect tests. In this
case, a large, negative estimand value confers that the biomarker test has clinical
utility. For a perfect test, the estimand value is –12 days, the predictive capacity
of the biomarker to discriminate treatment effects when biomarker status is never
misclassified. The results for all of the designs and tests are summarized in Table 5.

Discordant risk randomization is an attractive option for this example. In a discor-
dant risk randomization design, only those whose PCT test result disagrees with the
clinician’s assessment on whether AB should be initiated or not are randomized to
these treatment options (Table 6, Fig. 7). By comparison, in the biomarker strategy
design (Fig. 5), a randomized comparison ismade of PCT+SOCguided therapywith
SOC on the whole population. In contrast, in the discordant randomization design,
randomization is restricted to the subsets of subjects forwhomPCTwould change the
treatment decision (Table 6). The point of randomization has changed from whether
to use the test (biomarker strategy), to what to do with the test result (discordant risk
randomization), which intuitively can be seen to increase trial efficiency [12].

In the aforementioned TRAP trial (TRAP-LRTI, http://arlg.org/studies-in-
progress), subjects suspected of LRTI are being enrolled who (most likely) would

http://arlg.org/studies-in-progress
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Table 5 Estimand of PCT case study given different biomarker test results*. Biomarker predictive
capacity is defined as δ′

1 − δ′
0, the differential in treatment effect between biomarker positive and

negative subjects when biomarker status is never misclassified

Random Test Decent Test Perfect Test

τ = 0.25
τ0 = 0.25
τ1 = 0.25

τ = 0.315
τ0 = 0.25
τ1 = 0.90

τ = 0.10
τ0 = 0
τ1 = 1

Trial
Design

Estimand p0 = .0146
p1 = .2857

p0 = 0
p1 = 1

Biomarker
Stratified

�∗ =
(p1 − p0)

(
δ′
1 − δ′

0

)
0 −3.25 −12

Biomarker
Strategy

�∗
S =

(1 − τ)
[
δ′
0 + p0(δ′

1 − δ′
0)

]
−0.9 −0.12 0

Enrichment �∗
E = δ′

0 + p0(δ′
1 − δ′

0) −1.2 −0.1752 0

*Prevalence of bacterial infection p = Pr(B = 1) = 0.1

Table 6 Discordant
Randomization Treatment
Decisions

SOC + PCT

SOCa no AB AB

no AB No change Change

AB Change No change
aSOC = standard of care

Fig. 7 Discordant risk randomization design for procalcitonin-guided strategy of antibiotics initi-
ation
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have received AB therapy but whose PCT value indicated low risk of bacterial infec-
tion. Thus, only one of the two types of discordant risk subsets is being enrolled
(Table 6, lower left off-diagonal cell.)

For the TRAP design of enrollment of subjects with low PCT value for whom
AB therapy would otherwise have been initiated (Fig. 5), the estimand for discordant
risk randomization is modified from the formula in Sect. 3.4 to

�∗
D = δ′∗

10,

the treatment effect in subjects who are standard clinical assessment positive, (would
receive AB therapy) but test negative (low risk of bacterial infection according to
PCT low value). Under NDME,

�∗
D = δ′

0 + p10
(
δ′
1 − δ′

0

)
,

where pst = Pr(B = 1|S = s, T = t) is the predictive value of standard clinical
assessment S = s and PCT test result T = t, s, t = 0, 1. Suppose the false and
true positive fractions (1 – specificity and sensitivity) are τ0 = 0.4 and τ1 = 0.9
for standard assessment and τ0 = 0.25 and τ1 = 0.9 for PCT. Suppose also that
the correlation of PCT with standard assessment is 0.5556 for subjects with and 0
for subjects without bacterial infection. Then calculations show that p10 = 0.0146,
and the estimand value is �∗

D = δ′
0 + p10

(
δ′
1 − δ′

0

) = 0 + 0.0146(−12 − 0) =
−0.1752 days. Therefore, using PCT low value (T = 0) as the basis for deciding to
withhold initiation of AB therapy among those whowould have received it according
to standard assessment leads to 0.1752 extra days of hospital stay, on average, which
can be compared with 12 and 0 extra days on average in subjects with and without
bacterial infection. By comparison, if PCT were a random test, p10 = 0.2, the PPV
of standard assessment, and the estimand value is −2.4 days. If PCT were a perfect
test, then p10 = 0, because PCT is never false negative (N PV = 1), and the
estimand value is 0 days.

5 Discussion and Conclusions

Clinical trials are conducted in efforts to translate trial results to clinical practice.
A predictive biomarker test has direct clinical consequences because it is essential
for the safe and effective use of a corresponding therapeutic product. A predictive
biomarker test for a therapeutic product should be evaluated using an estimand that
provides a clear link between test results and the outcomes of treatment decisions.

Four commonly used study designs were discussed in the paper, namely, the
biomarker-stratified, biomarker-strategy, enrichment and discordant risk randomiza-
tiondesigns.Even though strengths and limitations of the designs havebeendescribed
by many authors, among the papers of which we are aware, the estimand being used
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in each design to evaluate performance of the predictive biomarker is not given pre-
cisely. We developed a general framework for deriving the explicit estimand of each
design. These estimands permitted us to draw connections between the designs in
greater detail than perhaps other publications.

In the biomarker-stratified design, the predictive capacity of biomarker to differ-
entiate treatment effects is attenuated by the factor PPV + N PV − 1, which is
intuitively appealing, being equal to the sum of the two predictive values of the test
minus 1. We reiterate that our general framework is predicated on the assumption of
NDME (non-differential misclassification error), i.e., that the biomarker test result
is conditionally independent of clinical outcome, given the true biomarker status.
This assumption could be relaxed by assuming that NDME holds conditional on
covariates that have effects on outcome.

Our derived estimands for the study designs hold true for clinical outcomes of
either binary or continuous endpoints in which the treatment effect is defined as the
difference in mean outcome between the treatments. For a time-to-event endpoint,
the treatment effect could be defined, not as a mean difference, but by the hazard
ratio, which requires a different form of estimand, not discussed here. Derivation of
this estimand could be the subject of future research.

Identifying the estimand is important because it defines what is to be estimated to
address the scientific question of interest. As discussed in ICH E11, an estimand is
often confused with estimator or estimate. An estimator is a method for obtaining an
estimate, a likely value of the estimand given the sample data. Once the estimand has
been identified, it may suggest an efficient estimator. Appropriate estimators for esti-
mands used in trial designs involving predictive biomarkers can be a focus of future
research. Sensitivity of an estimate to such factors as treatment non-compliance,
missing data, modeling assumptions, (e.g., NDME), etc., can generally be used to
assess robustness of study results. In this paper, we ignored aspects of trial conduct
or analysis assumptions that could have introduced bias into an estimate for a study.

Besides the four commonly used study designs discussed in the paper, Eng [22]
proposed a design called reverse biomarker- based strategy design. In this design,
patients are randomly assigned to one of the two treatment strategies. In the first arm,
biomarker-positive patients receive the experimental treatment, whereas biomarker-
negative patients are allocated to receive the control. By contrast, in the second
arm, biomarker-positive patients receive the control and biomarker-negative patients
receive the treatment [22]. As Ondra et al. [23] point out, the reverse biomarker-
based design cannot address the question ofwhether a treatment strategy that does not
require the determination of the biomarker status would be superior to the biomarker-
guided treatment strategy. This design has not been commonly used in practice for
evaluation of predictive biomarkers. Therefore, evaluation of its estimand is not
provided here. However, in our general framework, the estimand for this design
could be derived.

We discussed commonly used study designs based on randomized clinical trials.
However, a, single-arm trial based on biomarker status is sometimes conducted. For
example, a trial could be conducted in which patients who are biomarker-positive
are enrolled and only treated with the active treatment. Rather than the treatment
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difference defined based on δ∗
0 or δ∗

1 , the estimand in this trial can be derived based
on θ∗

at , a, t = 0, 1. In the case of patients only treated when they are biomarker-
positive, the estimand for the single-arm trial would be θ∗

11 = θ10 + p1(θ11 − θ10),

which reduces to θ11 for a perfect test.
We restricted the biomarkers considered in this paper to those with binary val-

ues, e.g. positive or negative. However, the attenuation factor we introduced can be
extended to biomarkers having more than two levels. For example, for a gene with
two different alleles A and B, the biomarker value may be one of the three geno-
types: homozygous in A, homozygous in B, or heterozygous. For a biomarker with
more than two ordered categories, misclassification error attenuates the difference
in treatment effects between the two most extreme categories, but may not attenuate
the difference between other pairs of categories (Kuha and Skinner [24]).
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Biomarker Enrichment Design
Considerations in Oncology Single Arm
Studies

Hong Tian and Kevin Liu

Abstract Oncology drug development has been increasingly shaped bymolecularly
targeted agents (MTAs), which often demonstrate differential effectiveness driven
by the biomarker expression levels on tumors. Innovative statistical designs have
been proposed to tackle this challenge, e.g., Freidlin et al. [3, 4], Jiang et al. [7].
All of these are essentially adaptive confirmatory Phase 3 designs that combine
the testing of treatment effectiveness in the overall population with an alternative
pathway for a more restrictive efficacy claim in a sensitive subpopulation.We believe
that, in cases that there are strong biological rationales to support that a MTA may
provide differential benefit in a general patient population; proof-of-concept (POC)
is likely intertwined with predictive enrichment. Therefore, it is imperative that early
phase POC studies be designed to specifically address biomarker-related questions
to improve the efficiency of development. In this paper, we propose three strategies
for detecting efficacy signals in single-arm studies that allow claiming statistical
significance either in the overall population or in a biomarker enriched subpopulation.
None of the three methods requires pre-specification of biomarker thresholds, but
still maintains statistical rigor in the presence of multiplicity. The performance of
these proposed methods are evaluated with simulation studies.

Keywords Biomarker thresholds · Enrichment design · Proof of concept · Single
arm · Binary outcome

1 Introduction

In the past two decade, the landscape of oncology drug development has witnessed
a dramatic shift to molecularly targeted agents, which attack cancer cells with more
specificity, from traditional cytotoxic chemotherapeutic drugs. These novel agents
tend to demonstrate differential effectiveness driven by heterogeneous expression
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profile of their molecular targets on tumors. Among all therapies which were
approved by FDA between July 2013 to December 2015 for non-small cell lung
cancer, 8 out of 12 were approved in biomarker enriched subpopulations using
companion diagnostic devices to identify patients who are more likely to benefit
from the therapy, such as Xalkori (approved in 2013), Keytruda (approved in 2015),
and Tagrisso (approved in 2015).

It is imperative for researchers to properly design clinical experiments by pro-
viding flexibility to identify and confirm efficacy signal in either the overall patient
population or a biomarker defined subgroup. Innovative statistical designs have been
proposed to tackle this new challenge, e.g., Freidlin et al. [3, 4], Jiang et al. [7]. All of
these are essentially adaptive confirmatory Phase 3 designs that combine the testing
of treatment effectiveness in the overall population with an alternative pathway to
identify a sensitive subpopulation for label claim. We argue that, in cases that there
are strong biological rationales and preclinical evidence to support that a MTA may
provide differential benefit in a general patient population, early phase POC studies
can be designed to specifically address biomarker-related questions, e.g., subgroup
selection, biomarker threshold evaluation, in order to improve the efficiency of devel-
opment. For example, a companion diagnostic may have to be developed for a more
restrictive label claim, and this should not wait until the completion of confirmatory
Phase 3 trials. Due to the nature of oncology drug development, POC is often stud-
ied in relapsed and/or refractory patient populations on the ground that spontaneous
tumor regression is rare, therefore leading to single-armPOC study designs including
only the experimental therapy. None of the aforementioned designs are specifically
designed for single arm studies. Freidlin et al. [3, 4] used modeling of the treatment
by subgroup interactions for subgroup identification, which requires a competitor
arm. The statistical inference for Jiang et al. [7] relies on the permutation tests to
evaluate the strength of statistical evidence, which again only applies to randomized
settings.

In this paper, we will present our proposed designs. In Sect. 2, we provide motiva-
tions for our research and a brief review of current methods proposed for Phase 3 con-
firmatory settingswith a competitor arm; InSect. 3,wepropose three newapproaches,
namely, single-arm adaptive signature design (ASD), cross-validated version of
single-arm adaptive signature design (CV-ASD) and single-arm biomarker-adaptive
threshold (BAT) design. In Sect. 4, we present our simulation studies to evaluate the
performance of our proposed methods in comparison to the strategy for testing the
overall population only. We will conclude the paper with a brief discussion including
directions for future work.

2 Motivations

For novel oncologic agents that target specific molecular pathways, it is likely to
benefit only a subset of patient population based on certain predictive biomarkers.
For example, the molecular targets may only express in a subset of tumor cells, often
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with varying intensity. After a recommend Phase 2 dose (RP2D) is established in
a dose escalation study in which toxicity is typically the outcome of primary inter-
est, a Phase 2 proof-of-concept (POC) study, often in a single-arm setting, provides
first meaningful opportunity to explore anti-tumor activity and its association with
biomarker expression levels. A typical occurrence is to treat an unselected patient
population with the experimental therapy and evaluate the objective response rate
(ORR) when the data is sufficiently mature. If the ORR is sufficiently high, all is
good; otherwise, exploratory analyses will be performed to evaluate ORR in sub-
groups defined by biomarker levels. In case that a promising subgroup is identified,
the finding should be considered as part of hypothesis-generating, which need be con-
firmed by another study in order for POC to be established. Obviously this is not an
efficientway for designing POC studies. An alternative is to conduct the POC study in
amore restrictive population based on the best guess about what the subset should be.
However, given that it is not rare to have a targeted therapy to show effectiveness in a
broad population, this approach can lead to missed opportunities. Furthermore, with
available accelerated approval pathways (e.g., accelerated approval in the U.S. and
conditional approval in EU) for unmet medical needs in serious or life-threatening
diseases such as refractory cancer, it is even possible for transformational therapies to
gain marketing authorizations based on data from single-arm studies using objective
response rate (or some other endpoint that can be reliably assessed in uncontrolled
studies) as the primary endpoint. Therefore, it is both scientifically important and
strategically imperative to evaluate the efficacy of a drug with statistical rigor using
pre-planned analysis in POC studies.

While researchers have provided some useful tools to address these issues in a
randomized Phase 3 setting, there is still a void for specific and reasonably rigorous
designs that can be used to evaluate POC via a single-arm Phase 2 study simul-
taneously in an overall population and in an enriched subpopulation driven by the
data.

2.1 A Literature Review of Current Methods

In case that a well-defined subpopulation of interest has already been established
prior to the initiation of a confirmatory study, a variety of methodologies have been
proposed to test treatment efficacy in the overall population as well as in the sub-
population while maintaining the overall alpha at the 5% (two-sided) level. This is
commonly done by Bonferroni adjustment, which allocates a small portion of the
overall alpha (say, 1%) for the subpopulation while reserving most of the alpha for
the overall population, or some other possibly adaptive methods (e.g., [1, 2, 9] that
take advantage of the correlation structure of the test statistics between the overall
population and the pre-specified subpopulations, and/or use alpha recycling method-
ologies. However, in practice, these approaches often face challenges, such as how
to precisely define the subpopulation of interest before the trial starts. This issue
becomes especially pronounced in the settings where the underlying biomarker level
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is continuous but an optimal cutoff is yet to be selected, or in the cases wheremultiple
proteomic/genomic signatures are possibly associated with the mechanism of action,
which in turn may impact the treatment efficacy.

Freidlin et al. [3, 4] proposed an adaptive signature design (ASD) and later a
cross-validated version of the adaptive signature design for randomized Phase 3
confirmatory trials.Both designs aim tobuild an alternative pathway, in addition to the
testing in the overall population, which enables the identification of a subpopulation
based on genomic/proteomic signatures and testing of efficacy in this population,
while still controlling the overall Type I error rate. The general idea is to split the
study population in two complementary cohorts: (1) a development cohort, which is
used to build the statistical model to identify potential biomarker(s) by examining
potential treatment and biomarker interactions; (2) a validation cohort, in which
the biomarker signature developed using the development cohort is employed to
define the subpopulation. The treatment effect can then be tested either in the overall
population including all subjects from both development and validation cohorts, or
in the biomarker-tailored subpopulation within the validation cohort. Freidlin et al.
[3] concluded that the ASD controls the overall Type I error rate since the method
for identifying subpopulation is established using data external to the validation
cohort. Freidlin et al. [4] further improved the original ASD by incorporating a
cross-validation component. This enhanced the efficiency of the original design by
allowing every subject enrolled to be used for the signature development as well as
for the signature validation, but also introduced a drawback in that the biomarker
signatures employed to classify biomarker sensitive status may lack consistency due
to the difference in the subset of patients used to develop the signatures. It is noted that
Freidlin et al. [3, 4] focused on qualitative biomarkers and the work is developed for
large randomized studies with a comparator arm, and therefore cannot be applied to
single-arm studies, inwhich all subjects receive the experimental therapy. In addition,
both variants used Bonferroni adjustment to deal with multiplicity in efficacy testing
that occurs in both the overall population and the data-dependent biomarker-sensitive
subpopulation, which is straightforward to implement but may not have the optimal
operating characteristics.

Jiang et al. [7] proposed biomarker-adaptive threshold (BAT) design to identify
biomarker tailored subpopulation. The assumptions are that a primary, quantitative
biomarker is clearly established based on MOA, and can be reliably quantified
with a validated assay. The BAT design is developed to simultaneously achieve two
objectives: (1) to establish treatment effectiveness either in the overall population
or in an enriched subpopulation based on pre-specified primary biomarker; and (2)
to estimate the biomarker threshold if the experimental treatment is efficacious only
in the enriched subpopulation. The method (Procedure B in their article) combines
the test of treatment effect in the overall population along with those tests in nested
sets of subpopulations based on a finite set of candidate biomarker threshold values,
which is done via a maximally selected chi-square test. The authors proposed to
add a constant to the test statistic for the overall population in order to ensure
a reasonable power when the experimental treatment is effective for the overall
population. Since the standard asymptotic theory doesn’t apply, the authors proposed
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to use the permutation test for the hypothesis testing. On a side note, given that their
focus was on the setting with a time-to-event endpoint, we caution on the use of
permutation tests as it may inflate the Type I error rate since the null would be the
equality of both the survival distribution for the event of interest and the censoring
distribution. Again, their method was proposed in a randomized phase 3 setting with
a comparator arm, and we would like to focus on the setting for single-arm studies.

2.2 Potential Application in Single Arm Studies

All the methods mentioned in Sect. 2.1 are limited to studies with a comparator
arm. As stated earlier, POC for cytotoxic oncology drugs are commonly evaluated in
single-arm studies, especially in relapsed/refractory settings in which spontaneous
tumor regression is rare if not completely impossible. As such, in the following
section, we will discuss our proposals to extend these ideas to single-arm POC
studies. It should be noted that we implicitly assume that the quantitative biomarker
of interest may be predictive of antitumor efficacy, but not prognostic. In other words,
any difference in efficacy at different biomarker levels is attributed to differential
effectiveness rather than the prognostic value of the biomarker. In case that the
biomarker of interest is also prognostic, a randomized study should be used, or
alternatively, a Bayesian design may be used if the prognostic value of the biomarker
is well-understood.

3 Methods

Themost widely used endpoint in oncology POC studies is objective tumor response,
which enjoys a rare advantage that it may be reliably evaluated in single-arm studies.
Denoting p as the objective response rate for the experimental treatment, the main
statistical inference is then about the testing of the null hypothesis (H0) that p ≤ p0
against an alternative hypothesis (Ha) that p ≥ pa. Here, p0 represents a response
rate that is of no interest for further development and pa is a promising response rate
which may warrant future development or even likely to predict clinical benefit. The
study is considered as positive if the null hypothesis can be rejected in the overall
study population or a biomarker enriched subpopulation to be identified in the same
study.We assume that there is a strong scientific rationale to support that a biomarker
may be predictive of clinical activity, and that an assay has been developed to reliably
measure the biomarker of interest. Without loss of generality, we also assume that
higher biomarker values is associated with more active antitumor activity.
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3.1 Single-Arm Adaptive Signature Design (ASD)

For a quantitatively measured biomarker Z (Z≥ 0), we can specify a set of cut points
{C1,…, CJ} as candidate threshold values. We then divide the enrolled subjects into
two non-overlapping cohorts: a development cohort and a validation cohort (i.e., a
training set and a validation set). The separation of two cohorts can be done by a
pre-specified randomization scheme according to a prefixed ratio based on the size
of the development and validation sets (e.g., 2–3). As in Freidlin et al. [3, 4], we also
employ an alpha splitting strategy for multiplicity (e.g., assign 80% of the total α

to the testing in the overall population and the remaining 20% α to the biomarker-
enriched subpopulation).

Step 1: Test H0: p ≤ p0 in the overall population using its allocated α. If the null
hypothesis is rejected, then stop and claim satisfactory antitumor activity for the
overall population, otherwise proceed to the next step.

Step 2: Select the biomarker threshold from the set of candidate values using the
development cohort. Since a biomarker threshold is assumed predictive, meaning
that the objective response rate differs between those subjects whose biomarker
values are greater or below the threshold, we can then calculate the likelihood given
the biomarker threshold value Cj.

Assume there are a total of n subjects in the development cohort. For the sub-
ject i, let Yi be the binary response (Yi = 1, responder; Yi = 0, non-responder)
and Zi be his/her biomarker expression level (continuous, without loss of generality
assuming between 0 and 1, which can be achieved by empirical cumulative distri-
bution transformation). For each candidate threshold value Cj, we can separate the
patient population into two subpopulations. Let n1 denote the number of subjects
with biomarker level below Cj, and n2 = n − n1 for those at or above Cj; also let
k1 denote the total number of responders among those n1 subjects below the thresh-
old, and k2 the total number of responders among the n2 subjects at or above the

threshold. In other words, n1 =
n∑

i=1
I (Zi < C j ), k1 =

n∑

i=1
I
(
Zi < C jandYi = 1

)
,

n2 =
n∑

i=1
I (Zi ≥ C j ) and k2 =

n∑

i=1
I
(
Zi ≥ C jandYi = 1

)
. Let θ1 be the objective

response rate below the threshold and θ2 be the objective response rate at or above
the threshold. The likelihood function, given the threshold Cj, can then be written as,

(
n1
k1

)

θ
k1
1 (1 − θ1)

(n1−k1)

(
n2
k2

)

θ
k2
2 (1 − θ2)

(n2−k2)

With the likelihood values computed for all the candidate threshold values, the
optimal threshold can then be identified by selecting the one corresponding to the
maximum likelihood value, which can be used to define the biomarker-enriched
population in the validation cohort.
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Step 3: Test H0 in the biomarker enriched population using the threshold identified
in Step 2. The population in which the test is to be performed will be the subjects
in the validation cohort with biomarker value greater than or equal to the threshold
found in Step 2. The allocated type I error rate will be the remaining α.

The POC study is considered as successful if the hypothesis can be rejected either
in the overall population or in the biomarker enriched subpopulation.

3.2 Cross Validated Single-Arm Adaptive Signature Design
(CV-ASD)

The idea of cross-validation can be similarly adopted as in Freidlin et al. [4]. The
only modification to the single arm adaptive threshold design in Sect. 3.1 is limited
to STEP2. A K-way cross validation can be utilized. First randomly divide the entire
cohort into K approximately equal sized subpopulations. For each one of the sub-
population, use the complimentary set including (K − 1) subpopulations to estimate
the biomarker threshold as discussed in Sect. 3.1 STEP2; use the estimated thresh-
old to identify “sensitive patients” for each subpopulation. Pool all the “sensitive
patients” together and perform hypothesis testing as stated in STEP3. Please notice
the estimated threshold used to identify sensitive group for each subpopulation can
be different. A summary measure (e.g., median or mean) may be used as estimate
for the threshold.

3.3 Single Arm Biomarker-Adaptive Threshold (BAT) Design

For a quantitatively measured biomarker Z (Z ≥ 0), we again assume that a set
of candidate threshold values {C0, C1, …, CJ}, with C0 = 0 (corresponding to
the overall population). For each cutpoint Cj (j = 1, …, J), a log likelihood ratio
statistics Si can then be constructed against the null hypothesis H0: P ≤ P0 using
subjects with biomarker value at or above this threshold. (An alternative is to obtain
the tail probability using binomial tabulation, and then transform it into a quantile of
either a standard normal or a chi-square distribution). Similar to Jiang et al. [7], we
prespecify a constant R that will be used to weight up the test statistic for the overall
population, S0.

The selection of the threshold is then based on the maximum of the test statistics

T = max{S0 + R,S1, . . . SJ}

The selected threshold value will be the one corresponding to the component
Si statistic that gives T the maximum value. The response rate p for the selected
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population can be estimated using those subjects whose biomarker values are at or
above the selected threshold.

The hypothesis testing using T is not straightforward. Here we propose a resam-
pling approach. Incorporating the two guidelines for bootstrap hypothesis testing
according to Hall et al. [6], the bootstrap hypothesis testing can be carried out using
p̂, which is the observed response rate in the population with biomarker value greater
or equal to the selected threshold. Denoting p̂∗ as the value obtained following the
abovemaximumT-based procedure using a bootstrap sample, and σ̂ ∗ as the bootstrap
standard deviation. The test is then based on the bootstrap distribution

(
p̂∗ − p̂

)
/σ̂ ∗

and the critical value cr
∧

can be found by

Pr

(
p̂∗ − p̂

σ̂ ∗ > cr
∧

)

> α

The statistical significance can be claimed when p̂−p0
σ̂

> cr
∧

, where σ̂ is the
standard deviation of p̂.

In line with the recommendation by Jiang et al. [7], a possible choice of R can be
2.2, which is equal to the difference between the 95-th and 80-th percentiles from
the chi-squared distribution with 1 degree of freedom.

4 Simulation

4.1 Simulation Setup

We consider the setting in which biomarker values are obtained by an immunohisto-
chemistry (IHC) staining assay on tumor tissues, and the potential outcomes are 0,
1+, 2+, 3+ according to the intensity of staining.

The outcome of interest is overall response rate. The response rate and biomarker
value follows a monotonically non-decreasing relationship.

The prevalence of a biomarker positive population is the percentage of subjects
whose biomarker values are at or above a threshold.

In our simulation, we assume the prevalence of 0, 1+ , 2+ and 3+ in the popu-
lation is 20%, 30%, 30% and 20% respectively, and the true response rates for the
positive and negative populations may differ. Therefore, the prevalence of biomarker
positive population can be 100, 80, 50 or 20%depending onwhere the true biomarker
threshold is.

We analyzed each simulation dataset using four methods testing H0: p < 20%
versusHa:p>35%at a total alpha of 5%.The total number of subjects is 80,which can
provide 90% power under Ha, assuming a homogenous population (i.e., biomarker
threshold equals to 0) using the exact binominal test for the overall population.



Biomarker Enrichment Design Considerations … 211

(1) Overall Test: Test the overall population at the 5% alpha level; if successful,
claim efficacy signal in the overall population (i.e., biomarker threshold equals
to 0).

(2) ASD: Allocate an alpha of 4% to the overall population and using the remaining
1% for the biomarker positive population to be identified using the method
specified in Sect. 3.2. Forty percent of the randomly selected population is
assigned to the development cohort (i.e., the training set) and the rest is in the
validation cohort (i.e., the test set).

(3) CV-ASD:Alpha allocation stays the same as theASD and 4 fold cross validation
is added to evaluate potential performance.

(4) BAT: Set R = 2.2 as the constant to weight up the likelihood ratio test for
the overall population. The number of bootstrap sampling runs is set at 10,000
times.

To evaluate the performance of these methods, we used the following operating
characteristics measures:

(1) Probability of claiming statistical significance in the overall population or in
any subpopulation;

(2) Probability of identifying the correct threshold.

Simulation Results
Table 1 presents the simulation results. The left panel presents the simulation setup
for 18 scenarios with varying threshold values, true response rates for the biomarker
negative and the biomarker positive populations, and the prevalence of the biomarker
positive population. For example, Scenario 18 is for the setting in which the true
response rate is 40% for the 3+ group, and 20% for the rest of the population, the
true threshold value is 3+, and the prevalence of the biomarker positive population
(3+) is 20% of the overall population.

The right panel reports the simulation results in terms of probability of claiming
success using each of the four methods, and the probability of identifying the correct
threshold using these methods.

In Scenarios 1–3, the biomarker is assumed to have no predictive value, i.e., the
biomarker threshold is zero. In this sense, Scenario 1 can be considered as the setting
inwhich the null hypothesis is true,where the true response rate is 20% for all subjects
regardless of what biomarker values they have. On the other hand, Scenarios 2 and
3 are intended to evaluate the operating characteristics of the proposed methods in
the situation where the experimental therapy is active regardless of the biomarker
value. In other words, we can assess potential tradeoff by building in an alternative
pathway for an enriched subpopulation.

In Scenarios 4–12, the response rate for the biomarker negative population is
assumed to be zero; while in Scenarios 13–19, the response rate for the biomarker
negative population is assumed to be 20% (the same as in the null hypothesis).

All methods appear to have satisfactory Type I error rate control as intended
according to the simulation results in Scenario 1.
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In Scenarios 2 and 3, where the experimental treatment works uniformly well
for the overall population, the testing in the overall population gives highest power,
as expected, while the other methods, which allow an alternative pathway for an
enriched subpopulation, resulted in mild to moderate power loss.

Scenarios 6, 9 and 12 assumes that the response rate is 0.4 for the biomarker pos-
itive population and 0 for the biomarker negative population, with the prevalence for
the biomarker positive population varying from 80, 50, to 20%. The performance of
ASD and CV-ASD is close to the overall testing, while the BATmethod outperforms
the other three by an impressive margin when the prevalence of biomarker positive
population is relatively low. In addition, the BAT method appears to perform better
in identifying the correct threshold most of the cases. More research is needed to
shed more insight into this finding.

Scenarios 14, 16 and 18 mirror the settings in Scenarios 6, 9 and 12, except that
the response rate for the biomarker negative population is assumed to be 20% (the
null) instead of 0. Similarly, the benefit of employing the BAT Approach starts to
manifest as the prevalence of biomarker becomes lower. However, the advantage
appears to be less pronounced when the response rate for the biomarker negative
population increases from zero to 20%.

In conclusion, the ASD and CV-ASD method performs similarly to the overall
testing but does have an alternative pathway for an enriched subpopulation. Adding
cross validation component to ASD does not provide additional benefit at least in
the scenarios we evaluated. On the other hand, the BAT method appears to have
better operating characteristics in terms of establishing an efficacy signal as well
as identifying the correct biomarker threshold, especially when the prevalence of
biomarker positive population is relatively low and the difference of true response
rates between the biomarker positive and negative populations is pronounced.

5 Discussions

In this paper, we proposed three strategies to detect efficacy signals in single-arm
POC studies which allow simultaneous statistical significance testing either in the
overall population or in a biomarker enriched subpopulation to be identified using the
same study. None of the three methods require the pre-specification of a biomarker
threshold to identify the sensitive population. Instead they allow the threshold to be
estimated using the data but still maintain reasonable statistical rigor. Among the
proposed methods, the BAT appears to have notably better operating characteristics,
particularly when the difference in response rate between biomarker positive and
negative is pronounced and the prevalence of biomarker positive population is rela-
tively low. The ASD and CV-ASD perform similarly to the overall test, which may
be due to the relatively small size of the biomarker enriched subpopulation, which is
only a part of the validation cohort, as well as the relatively conservative Bonferroni
adjustment. In contrast, the implicit alpha sharing in the BAT test via a maximal test
statistic is theoretically more efficient. The choice of the value for R needs to be
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further elucidated. Intuitively, a very large value of R will let the overall test dom-
inate the maximally selected test statistic, hence approximating the performance of
BAT closer to the overall testing. The performance of ASD was not improved by
adding cross-validated component in our evaluation, in spite of the complication of
biomarker threshold identification when different development cohorts are used.

In the POC stage, a companion diagnosis assaymay still be in development,mean-
ing that the quantification of the biomarker of interest may have yet to be perfected.
There are two implications: (1) the threshold estimated in the POC study should still
be further evaluated and validated in future development studies, and (2) it is impor-
tant to evaluate the impact of measurement error in biomarker quantification on the
operating characteristics of the proposed strategies. The preliminary results (not pre-
sented here) of our ongoing research shows that the adverse effect of measurement
error may be mitigated by adjusting for misclassifications utilizing a predictive value
weighting method [8].
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Challenges of Bridging Studies
in Biomarker Driven Clinical Trials: The
Impact of Companion Diagnostic Device
Performance on Clinical Efficacy

Szu-Yu Tang and Bonnie LaFleur

Abstract Personalized medicine involves the co-development of both the therapeu-
tic agent (Rx) and a companion diagnostic device (CDx), which directs a group of
patients to a particular treatment. There are instances, however, when there are com-
peting, or multiple CDx products for a given Rx. Drivers for multiple CDx products
can be driven by improved efficiency, cost, novel technologies, or updated techniques
over time. In these instances, concordance between the old assay (e.g., the assay used
in the clinical trial or comparator companion diagnostic device in this paper) and a
new assay (follow-on companion diagnostic device) needs to be assessed. Discrep-
ancies between the old and new assays, and specifically the impact of discordance on
clinical efficacy, need to be evaluated. Studies that establish similarity between two
ormore CDx products are called bridging studies.We provide a statistical framework
for method comparison studies where there is bias in measurement of one or both
assessments. We then present a simulation study to evaluate the statistical impact
of an imperfect CDx on the sensitivity and specificity of the follow-on companion
diagnostic device. Further, we demonstrate the influence of the CDx accuracy on
clinical efficacy in the context of an enrichment clinical trial.

Keywords Bridging studies · Companion diagnostic device (CDx) · Comparator
companion diagnostic device · Follow-on companion diagnostic device ·
Personalized medicine

1 Introduction

Personalized medicine is the practice of prescribing treatments that are tailored for
groups of patients who will benefit from a specific therapy. Patients are identified
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All-Comers Trial Enrichment Trial

Fig. 1 Schematic illustrating the difference between an all-comers clinical trial and an enrichment
clinical trial design. T is treatment arm and C is control arm in the clinical trial. Red indicates CDx
positive patients and black indicates CDx negative patients. Solid symbols represent responders
and dotted symbols represent non-responders to the drug. The proportion of responders versus
non-responders depicted above is hypothetical

by one or more biomarkers [1]. The successful implementation of personalized
medicine relies on both an accurate companion diagnostic device (CDx) that can
correctly identify the patients who will benefit from a specific treatment, and the
efficacious treatment of the identified patients. Therefore, personalized medicine is
a co-development process, where both drug efficacy and device accuracy determine
the success of treatment.

Two types of strategy for biomarker trials are enrichment trials or all-comers tri-
als (Fig. 1). An all-comers trial enrolls all patients meeting the eligibility criteria
(regardless of a particular biomarker status). An enrichment design prospectively
selects a study population in which detection of a drug effect is more likely than it
would be in an all-comers trial. In this paper, an enrichment trial refers to the clinical
trial that only enrolls patients who are biomarker positive. Because enrichment trials
randomize patients within a known biomarker status, as identified by a companion
diagnostic, it is important to know how the accuracy of a CDx assay impacts evalua-
tion of drug efficacy. For the purposes of the methods described here, we assume the
same drug therapy is paired with multiple diagnostic devices. For example, after hav-
ing received FDA-approval with a diagnostic device (i.e., a comparator companion
diagnostic, CCD), a drug company seeks another less expensive, more effective, or
updated device (i.e., a follow-on companion diagnostic device (FCD) [2]. An FCD
should demonstrate similar safety and efficacy as the CCD and a common approach
is to evaluate this expectation is by way of a bridging study. The difficulties and
challenges for bridging studies have been discussed in several papers [2–4]. In this
article, we focus on evaluation of the impact of FCD accuracy on the establishment
of clinical efficacy under FCD stratification.
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Sensitivity and specificity are measures of performance for a diagnostic device.
Sensitivity of an assay is defined as the probability that theCDx result is positivewhen
the patient’s true biomarker status is positive. Specificity is defined as the probability
that the CDx tested result is negative when the patient’s true biomarker status is
negative. Both sensitivity and specificity provide distinct, and equally important,
pieces of information; and the FDA recommends optimization of metrics unless
clinically justifiable otherwise. In this paper, CDx accuracy (or assay performance)
refers to both sensitivity and specificity.

In Sect. 2, we establish the relationship between clinical efficacy and CDx accu-
racy. We use simulation results to demonstrate how CDx accuracy impacts clinical
efficacy in an enrichment trial design. In Sect. 3, we extend the relationship between
clinical efficacy and CDx accuracy to include two assays (FCD and CCD) for the
same therapy. We use simulation results to explain how FCD accuracy impacts effi-
cacy conditioned on positive and negative test results from the CCD, assuming both
FCD and CCD are independent and correlated scenarios.

2 The Impact of Diagnostic Accuracy on Clinical Efficacy
in an Enrichment Trial (Single Assay)

2.1 Assumptions and Notation

A simple case scenario is the impact of diagnostic accuracy on clinical efficacy in
an enrichment trial using a single CDx assay. It is assumed that the enrichment trial
is designed to enroll biomarker positive patients using a CDx assay. Notation and
parameters include: total number of patients screened (n); true biomarker positive or
negative status (G+ or G−); biomarker positive prevalence (π); CDx sensitivity (S),
and assay specificity (C). The number of patients enrolled and not-enrolled, based
on results from the CDx assay, can be calculated as shown in Table 1.

For this disposition table, we assume a 1:1 randomization such that half of the
patients are assigned to the treatment arm and the other half are assigned to the control
arm. Therefore, ½*[n* π * S + n*(1 − π)*(1 − C)] patients receive treatment drug
and the same number of patients receive control drug.

Table 1 Disposition table of patients enrolled or not enrolled in an enrichment trial, expressed by
CDx sensitivity and specificity

CDx Total

CDx + (Enrolled) CDx – (Not Enrolled)

True biomarker status G+ n ∗ π ∗ S n ∗ π ∗ (1 − S) n ∗ π

G− n ∗ (1 − π) ∗ (1 − C) n ∗ (1 − π) ∗ C n ∗
(1 − π)
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Let the true response rate (RR) from true biomarker positive patients
(G+) and who receive the treatment equal γ + δ(δ > 0) and let
the response rate equal γ for all other groups (control arm patients
or G− patients). Therefore, the expected numbers of responders in the
treatment arm are 1/

2 ∗ [
n ∗ π ∗ S ∗ (γ + δ) + n ∗ (1 − π) ∗ (1 − C) ∗ γ

]
.

In the control arm, the expected numbers of responders are 1/
2 ∗[

n ∗ π ∗ S ∗ γ + n ∗ (1 − π) ∗ (1 − C) ∗ γ
]
. The clinical efficacy in an enrich-

ment trial (r+) is measured by way of the difference between response rate in the
treatment and control arms. It follows that the relationship between clinical efficacy
(r+) and CDx accuracy (S and C) is defined as follows:

r+ =
1/
2 ∗ [

n*π ∗ S*(γ + δ) + n*(1 − π) ∗ (1 − C) ∗ γ
]

1/
2 ∗ [n*π ∗ S + n *(1 − π) ∗ (1 − C)]

− γ

= δ ∗ πs

πs + (1 − π)(1 − c)

2.2 Simulation

From the relationship established above, clinical efficacy in the enrichment trial is
impacted by both CDx sensitivity and specificity. We conduct a simple simulation
to express the association between accuracy and efficacy. This simulation assumes
the prevalence of biomarker (π) is 50%, RR for G+ and treatment group is γ + δ =
60%, and RR for all other groups (G− or control group) is γ = 40%. Therefore, in
an enrichment trial which enrolls patients by a CDx, the expected clinical efficacy
(r+) would be between 0% and 20%.

2.3 Simulation Results

ACDxaccuracy or assay performance (i.e., specificity or sensitivity) of less than 50%
means that the chance to correctly identity biomarker positive or negative patients
is less than 50% and it is unlikely that an assay of such low accuracy would be on
market. Therefore, this discussion is focused on the assay performance above 50%
(the gray area in Fig. 2).

Figure 2 shows the relationship between assay performance (either specificity or
sensitivity) on the x-axis and clinical efficacy (r+) on the y-axiswhen either sensitivity
(S) or specificity (C) is fixed at 50, 70, and 90% (i.e., panels 1, 2, and 3). If C is fixed,
sensitivity (S) varies (solid curve) and if S is fixed, specificity (C) varies (dotted
curve).

At 50% assay performance (white-gray boundary on Fig. 2), sensitivity is asso-
ciated with higher (or equal) clinical efficacy (r+) relative to specificity. However,
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Fig. 2 Graph depicting the impact of CDx accuracy on clinical efficacy in an enrichment trial
(single assay). The solid curves are the relationship between sensitivity (S) and clinical efficacy
in an enrichment trial (r+) when specificity (C) is fixed at 50%, 70% and 90% (panels 1, 2, and 3
respectively). The dotted curves are the relationship between specificity (C) and clinical efficacy
in an enrichment trial (r+) when sensitivity (S) is fixed at 50%, 70% and 90% (panels 1, 2, and 3
respectively)

as assay performance increases (approaching 100%), specificity is associated with
higher clinical efficacy compared to sensitivity.

When specificity equals 100%, clinical efficacy (r+) reaches a maximum of 20%,
regardless of sensitivity (i.e., specificity reaches 20% at each panel shown in Fig. 2).
On the other hand, clinical efficacy (r+) does not reach a 20% maximum when
sensitivity equals 100%. This implies that the upper limit of clinical efficacy (r+) is
determined by specificity and not sensitivity. In addition, dotted curves (specificity)
have a steeper slope than solid curves (sensitivity) when assay performance is high.
This suggests thatCDxassay specificity is a better indicator of improveddrug efficacy
than sensitivity, especially when the diagnostic accuracy is high.

3 The Impact of FCD Accuracy on Clinical Efficacy
Conditioned on a CCD in an Enrichment Trial (Two
Assays)

3.1 Assumption and Notation

Amore complicated situation occurs when an FCD is developed following the enroll-
ment of patients in a clinical trial using a CCD. In these cases, a bridging study may
be needed to bridge the efficacy from the CCD to the FCD. The relationship between
the FCD and clinical efficacy is influenced by the accuracy of the CCD used to enroll



220 S.-Y. Tang and B. LaFleur

patients. In this section, we extend the simulation from one assay to two assays
(CCD and FCD) and establish the relationship between clinical efficacy and FCD
assay performance conditional on CCD assay performance.

Following the notation and assumptions from 2.1, let n be the total number of
patients screened, G+ or G− be true biomarker positive or negative status and π be
the biomarker positive prevalence. Furthermore, let sensitivity of the CCD and the
FCD be S1 and S2 respectively, and let specificity of the CCD and the FCD be C1
and C2, respectively.

First, we describe the number of patients under CCD and FCD assay performance
by a 2 by 2 by 2 (2 × 2 × 2) table (true marker status by CCD status by FCD status)
which is like Table 1 in Sect. 2. The disposition table can be constructed based on two
different assumptions: under the conditional independent assumption (CIA), where
CCD and FCD are conditionally independent; and without the CIA, where CCD and
FCD are correlated.

3.1.1 Under CIA: CCD and FCD are Conditionally Independent

The conditional independence assumption (CIA) assumes that CCD test results and
FCD test results are independent given the true marker status (G+ or G−). This
means CCD and FCD do not tend to misdiagnose the same patient [6]. Under CIA,
the joint probability of test results from CCD and FCD, conditioned on the true
biomarker status, can be calculated as follows:

pind1+∩ 2+|G+ = Pr(FCD = + ∩ CCD = +|G+)

= Pr(FCD = +|G+) ∗ Pr(CCD = +|G+) (CIA)

= S1S2

Similarly,

pind1−∩ 2+|G+ = (1 − S1) ∗ S2

pind1+∩ 2+|G− = (1 − C1) ∗ (1 − C2)

pind1−∩ 2+|G− = C1 ∗ (1 − C2)

pind1+∩ 2−|G+ = S1 ∗ (1 − S2)

pind1−∩ 2−|G+ = (1 − S1) ∗ (1 − S2)

pind1+∩ 2−|G− = (1 − C1) ∗ C2

pind1−∩ 2−|G− = C1 ∗ C2
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Table 2 Using CIA, Disposition table of patients grouped by true biomarker status (G+ or G−)
and test results status (+ or −) for both CCD and FCD

G+ G-

CCD+ CCD- Total CCD+ CCD- Total

FCD+ n ∗ π ∗
S1 ∗ S2

n ∗ π ∗
(1 − S1) ∗
S2

n ∗ π ∗ S2 n ∗
(1 − π) ∗
(1 − C1) ∗
(1 − C2)

n ∗
(1 − π) ∗
C1 ∗
(1 − C2)

n ∗
(1 − π) ∗
(1 − C2)

FCD- n∗ π ∗S1∗
(1 − S2)

n ∗ π ∗
(1 − S1) ∗
(1 − S2)

n ∗ π ∗
(1 − S2)

n ∗
(1 − π) ∗
(1 − C1) ∗
C2

n ∗
(1 − π) ∗
C1 ∗ C2

n ∗
(1 − π) ∗
C2

Total n ∗ π ∗ S1 n ∗ π ∗
(1 − S1)

n ∗ π n ∗
(1 − π) ∗
(1 − C1)

n ∗
(1 − π) ∗
C1

n ∗ (1 − π)

Applying the probabilities calculated under CIA, the sampling distribution of
results can be described in a 2 × 2 × 2 table based on FCD and CCD accuracy (S1,
S2, C1 and C2) (Table 2).

The relationship between clinical efficacy and both CCD and FCD accuracy using
sampling distributions is provided in Table 2. As discussed in Sect. 1, patients in the
clinical trial would be tested and enrolled using CCD; therefore, the bridging study
examines the drug efficacy that would likely have occurred if the FCD had been used
to enroll patients. Drug efficacy in FCD positive patients is established for CCD
positive and negative patients separately.

We assume that patients are 1:1 randomized into the treatment arm and control
arm within stratified FCD and CCD test results. We again assume that the response
rate for patients that are both G+ and within the treatment group equals γ + δ (δ >
0) and for all other patients (control arm patients or G- patients) response rate equals
γ.

Conditioned on the CCD tested positive patients, the number of FCD positive
patients is equal to 1/

2 ∗ [n ∗ π ∗ S1 ∗ S2 + n ∗ (1 − π) ∗ (1 − C1) ∗ (1 − C2)].

The expected numbers of responders is equal to 1/
2 ∗[

n ∗ π ∗ S1 ∗ S2 ∗ (γ + δ) + n ∗ (1 − π) ∗ (1 − C1) ∗ (1 − C2) ∗ γ
]
. The clin-

ical efficacy for FCD positive patients, conditioned on CCD positive (r ind2+|1+), is
derived as below:

r ind2+|1+ = δ ∗ πS1S2
πS1S2 + (1 − π)(1 − C1)(1 − C2)

Similarly, the clinical efficacy for FCD positive patients, conditioned on CCD
negative (r ind2+|1−), is derived as below:

r ind2+|1− = δ ∗ π(1 − S1)S2
π(1 − S1)S2 + (1 − π)C1(1 − C2)
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3.1.2 Without CIA: CCD and FCD are Correlated

In the previous Sect. 3.1.1, we assume that CCD and FCD are conditionally indepen-
dent given the true biomarker status (G+ or G−). In reality, CCD and FCD are highly
correlated for a given patient. For example, if a patient’s marker expression is highly
positive, there is higher chance that CCD and FCD test results are also positive. To
account for conditional dependence between the CCD and the FCD, the covariance
(covp or covn) is included among those who have positive or negative latent true
biomarker status where 0 <= covp <= (min(S1, S2) − S1 ∗ S2) and 0 <=
covn <= (min(C1, C2) − C1 ∗ C2) [5]. Table 2 can be revised as Table 3 by
adding covariance parameters.

By adding the covariance,we refine the relationship in an enrichment trial between
clinical efficacy and FCD accuracy, conditioned on CCD positive (rcorr2+|1+) and CCD
negative (rcorr2+|1−), without CIA as follows:

rcorr2+|1+ = δ ∗ π(S1S2 + cov p)

π(S1S2 + cov p) + (1 − π)((1 − C1)(1 − C2) + covn)

rcorr2+|1− = δ ∗ π((1 − S1)S2 − cov p)

π((1 − S1)S2 − cov p) + (1 − π)(C1(1 − C2) − covn)

3.2 Simulation

Similar to that performed in Sect. 2 (the impact of diagnostic accuracy on clini-
cal efficacy in an enrichment trial: single assay), in this simulation we assess the
impact of diagnostic accuracy on clinical efficacy in an enrichment trial for FCD
accuracy conditioned on CCD positive or negative results. Fixed assumptions for
the simulations include prevalence of biomarker (π) fixed at 50%. RR for G+ and
treatment group is 60% and RR for G− or control group is 40%. For the “with-
out CIA scenario”, covp and covn are added using ((min (S1, S2) − S1 ∗ S2) ∗ 0.8)
and ((min (C1, C2) − C1 ∗ C2) ∗ 0.8), respectively, to represent an 80% correlation
between two assays.

Figures 3 and 4 show FCD assay performance (either specificity or sensitivity)
on the x-axis and clinical efficacy under CIA (r ind2+|1+ and r ind2+|1−) on the y-axis when
either FCD sensitivity (S2) or FCD specificity (C2) is fixed at 50, 70, and 90% (i.e.,
panels 1, 2, and 3). Figures 5 and 6 show the relationship between FCD assay per-
formance (either specificity or sensitivity) and clinical efficacy without using CIA
(rcorr2+|1+ and rcorr2+|1−). If C2 is fixed, sensitivity (S2) varies (solid curve) and if S2 is
fixed, specificity (C2) varies (dotted curve). The different colored curves represent
the different combinations of CCD accuracy (S1, C1) at 50, 70, and 90%. Curves
representing a specificity of C1 = 90% are shown in light-dark green, curves repre-
senting a specificity of C1 = 70% are shown in purple-pink, and curves representing
a specificity of C1 = 50% are shown in light-dark blue.
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Fig. 3 Graph depicting the impact of FCD accuracy on clinical efficacy in an enrichment trial
conditioned on CCD tested result is positive (r ind2+|1+) using CIA. Solid curves represent the rela-

tionship between FCD sensitivity (S2) versus r ind2+|1+ when specificity (C2) is fixed at 50%, 70%
and 90% (panels 1, 2, and 3, respectively). The dotted curves represent the relationship between
specificity (C2) versus r ind2+|1+ when sensitivity (S2) is fixed at 50%, 70% and 90% (panels 1, 2, and
3, respectively). Different color of curves indicates different combination of CCD sensitivity and
specificity

Fig. 4 Graph depicting the impact of FCD accuracy on clinical efficacy in an enrichment trial
conditioned on CCD tested result is negative (r ind2+|1−) using CIA. Solid curves represent the rela-

tionship between FCD sensitivity (S2) versus r ind2+|1− when specificity (C2) is fixed at 50%, 70%
and 90% (panels 1, 2, and 3, respectively). The dotted curves represent the relationship between
specificity (C2) versus r ind2+|1− when sensitivity (S2) is fixed at 50%, 70% and 90% (panels 1, 2, and
3, respectively). Different color of curves indicates different combination of CCD sensitivity and
specificity
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Fig. 5 Graph depicting the impact of FCD accuracy on clinical efficacy in an enrichment trial
conditioned on CCD tested result is positive (rcorr2+|1+)when CCD and FCD are 80% correlated. Solid
curves represent the relationship between FCD sensitivity (S2) versus rcorr2+|1+ when specificity (C2)
is fixed at 50%, 70% and 90% (panels 1, 2, and 3, respectively). The dotted curves represent the
relationship between specificity (C2) versus rcorr2+|1+ when sensitivity (S2) is fixed at 50%, 70% and
90% (panels 1, 2, and 3, respectively). Different color of curves indicates different combination of
CCD sensitivity and specificity

Fig. 6 Graph depicting the impact of FCD accuracy on clinical efficacy in an enrichment trial
conditioned on CCD tested result is negative (rcorr2+|1−) when CCD and FCD are 80% correlated.
Solid curves represent the relationship between FCD sensitivity (S2) versus rcorr2+|1− when specificity
(C2) is fixed at 50%, 70% and 90% (panels 1, 2, and 3, respectively). The dotted curves represent
the relationship between specificity (C2) versus rcorr2+|1− when sensitivity (S2) is fixed at 50%, 70%
and 90% (panels 1, 2, and 3, respectively). Different color of curves indicates different combination
of CCD sensitivity and specificity
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3.3 Simulation Results

3.3.1 With CIA and Conditioned on CCD Positive Results

Figure 3 shows the impact of FCD accuracy on clinical efficacy in the enrichment
trial given that the CCD test result is positive (r ind2+|1+) under CIA. Regardless of CCD
sensitivity and specificity (i.e., shown in different colored curves), the impact of the
FCD on efficacy is similar to observations in the single assay scenario described
in Sect. 2. In other words, as assay performance increases (approaching 100%),
(1) specificity is associated with greater clinical efficacy than is sensitivity, and (2)
specificity can reach a maximum clinical efficacy of 20%whereas sensitivity cannot.

When considering CCD sensitivity and specificity (i.e., colored curves), the sim-
ulation results demonstrate highest clinical efficacy occurs when CCD specificity
is equal to 90% (C1 = 0.9, 3 light-dark green curves) and lowest clinical efficacy
occurs when CCD specificity is equal to 50% (C1= 0.5, two light-dark blue curves).
This indicates that, for CCD tested positive patients; higher CCD specificity pre-
dicts increased clinical efficacy. This is because there are fewer false positive results
with higher CCD specificity. Therefore, we can expect more power to detect clinical
efficacy if both FCD and CCD specificities are high.

3.3.2 CIA and Conditioned on CCD Negative Results

Figure 4 shows the impact of FCDaccuracy on clinical efficacy in the enrichment trial
given that the CCD test result is negative (r ind2+|1−) using CIA. Similar to that observed
for CCD positive (Sect. 3.3.1), FCD specificity is associated with greater clinical
efficacy than is sensitivity, and specificity reaches a maximum clinical efficacy of
20%.

However, unlike that observed for CCD positive, when considering CCD sensitiv-
ity and specificity, the simulation results show that the higher clinical efficacy occurs
when CCD sensitivity is equal to 50% (S1 = 0.5) and the lower clinical efficacy
occurs when CCD sensitivity is equal to 90% (S1 = 0.9). This suggests lower CCD
sensitivity can increase r ind2+|1− to a greater degree than higher CCD sensitivity. This
is likely because true positive patients (i.e., G+) were misclassified by the CCD as
negative, because of bad CCD sensitivity, but then identified as positive by the FCD
as positive, thereby increasing efficacy.

To summarize the CIA results, when CCD test result is positive, increased speci-
ficity of both CCD and FCD is associated with increased clinical efficacy. When
CCD test result is negative, decreased sensitivity of CCD and increased specificity
of FCD is associated with increased clinical efficacy.
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3.3.3 Without CIA and Conditioned on CCD Positive Results

Figure 5 shows the impact of FCD accuracy on clinical efficacy in an enrichment trial
given that the CCD test result is positive (rcorr2+|1+) and when FCD and CCD have an
80% correlation. Regardless of CCD sensitivity and specificity (i.e., shown in Fig. 4
in different colored curves), the FCD impact on efficacy without CIA is similar to
the impact observed for both the single assay and CIA scenarios, except that the
shapes of the curves are slightly different. The clinical efficacy increases quickly at
lower values of FCD sensitivity and then stays at similar level for the higher values
of sensitivity (i.e., the solid curves in Fig. 5). On the contrary, clinical efficacy stays
at similar level for lower values of FCD specificity but quickly increases at the higher
values of FCD sensitivity (i.e., the dotted curves in Fig. 5). This suggests there is some
impact plateau of improving clinical efficacy corresponding to correlation between
FCD and CCD.

Similar to the results for CCD positive under CIA (Sect. 3.3.1), simulation results
show that clinical efficacy is demonstrated when CCD specificity is equal to 90%
(C1 = 0.9, 3 light-dark green curves) and diminishes when CCD specificity is equal
to 50% (C1 = 0.5, two light-dark blue curves). This again suggests that higher
CCD specificity results in increased clinical efficacy. This is especially true when
sensitivity or specificity of the FCD is low (i.e., Figure 5, Panel 1). The impact of
FCD accuracy on clinical efficacy are similar when CCD specificity is at the same
level regardless of CCD sensitivity (i.e., solid curves or dotted curves are grouped
together by the same level of C1 in Fig. 5). In other words, the degree of which the
CCD specificity impacts efficacy is greatest with lower accuracy based on the FCD.

3.3.4 Without CIA and Conditioned on CCD Negative Results

Figure 6 shows the impact of FCD accuracy on clinical efficacy in an enrichment trial
given that the CCD test result is negative (rcorr2+|1−) and when FCD and CCD have an
80% correlation. The consistent message is that FCD specificity is more associated
with clinical efficacy than is sensitivity, and specificity reaches a maximum clinical
efficacy of 20%. However, comparing using CIA versus without using CIA and
conditioned on CCD negative results (Fig. 4 versus Fig. 6), we observed the different
shape of the solid curve (sensitivity of FCD vs. rcorr2+|1− when specificity of FCD
is fixed) and the dotted curve (specificity of FCD vs. rcorr2+|1− when sensitivity of
FCD is fixed). The solid curves are very steep when FCD sensitivity value is high.
This indicates small improvements of FCD sensitivity can quickly increase clinical
efficacy.

When considering CCD sensitivity and specificity (i.e., different colored curves
in Fig. 6), the maximum clinical efficacy occurs when sensitivity is equal to 50% (S1
= 0.5) and the minimum clinical efficacy occurs when sensitivity is equal to 90%
(S1 = 0.9). This is also a consistent message from under CIA conditioned on CCD
negative results (Sect. 3.3.2) which indicates that lower CCD sensitivity can increase
rcorr2+|1− to a greater degree than higher CCD sensitivity.



228 S.-Y. Tang and B. LaFleur

In summary, simulations based onCIA show similar results to simulationswithout
CIA; specifically, for caseswhere the CCD test result is positive, increased specificity
of both CCD and FCD is associated with increased clinical efficacy. And when the
CCD test result is negative, decreased sensitivity of CCD and increased specificity of
FCD is associated with increased clinical efficacy. However, the shape of sensitivity
and specificity curves are different under these two assumptions (with and without
CIA).

4 Discussion and Summary

We demonstrate the impact that CDx accuracy has on clinical efficacy in an enrich-
ment trial. For a single assay, clinical efficacy of a targeted treatment is a function of
the sensitivity and specificity of the CDx used to identify patients. CDx assays with
poor assay performance diminish the chance of demonstrating clinical efficacy and
may cause the enrichment trial to fail. Moreover, specificity, rather than sensitivity, is
more correlated with improvements in clinical efficacy. In an enrichment trial, only
diagnostic positive patients will be enrolled into clinical trial. An assay with better
specificity would ensure that there are fewer false positive patients enrolled, which
would dilute the true efficacy.

We also have the impact of a diagnostic device accuracy of a follow-on companion
device (FCD) on clinical efficacy. Specifically, accuracy of the FCD conditioned
on the test results from a comparator companion diagnostic device (CCD). The
scenarios with and without considering the conditional independence assumption
(CIA) between CCD and FCD are both evaluated. Simulations show how increased
specificity of a FCD can enhance clinical efficacy regardless of CCD. These results
are consistent with those found for the single assay scenario. Furthermore, the
simulations under CIA or without CIA suggest: (1) when the CCD test result is
positive, increased specificity of both CCD and FCD is associated with increased
clinical efficacy; and (2) when the CCD test result is negative, decreased sensitivity
of CCD and increased specificity of FCD is associated with increased clinical
efficacy. In actual enrichment trial; however, CCD negative patients are not enrolled;
therefore, efficacy will not be evaluated for this subgroup. However, the simulation
results of conditioned on CCD native patients can provide theoretically insight about
how the efficacy is impacted if the performance of CCD and FCD are known.
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Parallel-Tempered Feature Allocation
for Large-Scale Tumor Heterogeneity
with Deep Sequencing Data
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Abstract We developed a parallel-tempered feature allocation algorithm to infer
tumor heterogeneity from deep DNA sequencing data. The feature allocation model
is based on a binomial likelihood and an Indian Buffet process prior on the latent hap-
lotypes. A variation of parallel tempering technique is introduced to flatten peaked
local modes of the posterior distribution, and yields a more efficient Markov chain
Monte Carlo algorithm. Simulation studies provide empirical evidence that the pro-
posed method is superior to competing methods at a high read depth. In our applica-
tion to Glioblastoma multiforme data, we found several distinctive haplotypes that
indicate the presence of multiple subclones in the tumor sample.
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1 Introduction

We propose a computational strategy for statistical inference aiming to reconstruct
subclone diversity and infer intra-tumor heterogeneity using deep DNA sequencing.
Increased read depth provides a larger sample size per site, and consequently more
information for subclone phasing. However, it also poses challenging computational
problems, as the likelihood is essentially a point mass at empirical allele frequencies
(assuming a binomial sampling model). Inference methods based on optimization or
sampling algorithms are inefficient, due to peaked local modes. In this paper, we use
a latent feature allocation model with the Indian buffet process (IBP, [1]) prior, and
incorporate a variant of parallel tempering technique [2] to facilitate the sampling
algorithm.

Tumors are genetically heterogeneous, often containing a diverse population of
subclonal variants [3]. While somatic (or clonal) mutations associated with the early
stages of tumorigenesis are typically shared across all subclones, individual sub-
clonal lineages are defined by having somatic mutations that are not shared by other
cell lines in the tumor. This is the basis of within-tumor heterogeneity, which allows
cancer cells to adapt to the host environment and to therapies, and introduces sub-
stantial challenges in designing effective treatment regimes. Understanding tumor
heterogeneity allows for better understanding of the causes and progression of cancer,
and is critical to stratify the patient population that is likely to benefit from specific
targeted therapies [4]. Many personalized treatments have been developed; some of
these targeted therapies have proven to be successful, (e.g., [5, 6]).

Clonal mutations are shared by all cells and are expected to occur in the tumor
at approximately 0.5 frequency, assuming no copy number variation and no loss of
heterozygosity through gene conversion (we note that both assumptions are major
caveats for cancer genomes), while mutations that are specific to a subclone will
occur at lower frequencies. A complete characterization of genetic variation within a
tumor requires the identification of the lower frequency, subclone-specificmutations.
Tumor sequencing experiments using lower coverage (e.g.<100x) are only capable
of reliably identifying the most common clonal mutations shared by most tumor
cells, while deep sequencing (e.g. 500–1000x) facilitates the identification of low-
frequency variants unique to particular subclonal lineages, provided that sufficiently
large regions of tumor are sampled. Furthermore, deep sequencing allows us to
accurately estimate the frequency of variant nucleotides within the tumor sample,
rather than their presence or absence alone. Estimated allele frequency across sites
is critical for the reconstruction of multilocus subclone genotypes and their relative
frequencies.

Because next-generation sequencing (NGS) of tumor samples generates short
reads from the genomes of multiple cells, and variant sites at individual reads are
separately genotyped, there is the problem of “phasing” variants at different loci
to reconstruct subclone genotypes. Even when the majority of somatic mutations
are identified in a tumor through deep sequencing, subclonality is not known with
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independent genotyping of reads. For the clonal (fixed) mutations, this problem is
trivial, but for subclonal mutations, the phasing problem poses a significant challenge
for cancer genomics.

The identification of subclones through phasing allows us to fully characterize
tumor heterogeneity at the level of haplotypes, rather than variants at individual
loci. This information is critical for the reconstruction of the evolutionary history
of subclonal lineages, using phylogenetic methods [7], as well as in the application
of tests of natural selection versus neutral evolution [8] that leverage multilocus
genotype frequency data.

Feature allocation models have been proposed in the literature to model tumor
heterogeneity with NGS data. Reference [9] studied tumor heterogeneity, in terms of
subclones, which are defined as a set of single nucleotide variants (SNVs) on the same
homologous genome. Since the subclones are not directly observable, they modeled
the latent subclones with a finite feature allocation model, using observed SNVs read
counts. The inference was implemented by reversible jump Markov chain Monte
Carlo [10], using a variation, inspired by fractional Bayes factors [11]. Recently,
[12] considered an infinite feature allocation model, with IBP prior, and proposed
an optimization-based algorithm for maximum a posteriori estimation and scalable
tumor heterogeneity inference.

However, neither of these two approaches is suitable for our deep sequencing
data where read depths often approach or exceed ∼1000, with a depth of up to
4437 for some sites. In [12] and earlier applications, the read depth is typically
around 50. Deep sequencing data are more informative in identifying subclones, but
also pose challenges in computation because of extremely peaked likelihood and
posterior distribution. We propose a parallel-tempered feature allocation algorithm
(PTFA) which flattens the posterior landscape while targeting the correct posterior
distribution. With parallel tempering, the Markov chain transits more smoothly in its
state space and is less likely to be trapped in local modes. Empirical studies show
superior performance of our methods against competing methods.

We remark that the approach presented here is not restricted to cancer genomic
data. Rather, it is applicable to any data set where variant alleles and their frequencies
are estimated from NGS data with reads sampled from a large number of pooled
genomes, such as microbial cultures.

2 Model

2.1 Sampling Model

We briefly review the model from [9]. Let ns and Ns denote the number of short
reads that bear a variant sequence and the total number of reads at the loci of single
nucleotide variant (SNV) s = 1, . . . , S in a given tumor sample. The ratio fs =
ns/Ns , termed variant allele fraction (VAF), is the proportion of short reads bearing
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a variant sequence. Given Ns , we model ns as an independent binomial random
variable ns ∼ Bin(Ns, ps) where ps = E( fs) is the expected VAF. The likelihood is
then given by

p(n|N, p) =
S∏

s=1

p(ns |Ns, ps) =
S∏

s=1

(
Ns

ns

)
pnss (1 − ps)

Ns−ns , (1)

with n = (n1, . . . , nS), N = (N1, . . . , NS) and p = (p1, . . . , pS). We assume the
tumor tissue is composed of a mixture of C haplotypes, with each haplotype char-
acterized by a different configuration of SNVs. Let Zsc ∈ {0, 1} be the latent binary
variable that indicates whether SNV s bears a variant sequence for haplotype c and
let wc be the proportion of haplotype c in the tumor tissue for c = 1, . . . ,C . Then
we deconvolute ps with respect to latent haplotypes.

ps = w0ρ +
C∑

c=1

wcZsc, (2)

with
∑C

c=0 wc = 1. The first term is added to allow for background VAF’s.

2.2 Prior

Themodel defined by (1) and (2) involves a latent feature matrix Z = (Zsc), a weight
vector w = (w0,w1, . . . ,wC ) and a background SNV frequency parameter ρ. In this
section, we discuss the prior distribution for each set of parameters in turn.

In describing the prior for Z, we start with a fixed number of features (hap-
lotypes) C but will later relax it. Given C , we assume each entry of Z is an
independent Bernoulli random variable Zsc|πc ∼ Bernoulli(πc) with success prob-
ability πc following a conjugate beta prior πc ∼ Beta(α/C, 1) where α is a fixed
hyperparameter. Integrating out πc, the marginal prior for Z is given by p(Z) =∏C

c=1

α
C �(mc+ α

C )�(S−mc+1)
�(S+1+ α

C )
, where mc = ∑S

s=1 Zsc.
However, in practice, the number C of latent features is unknown a priori and

inference on C is often of key interest by itself. Taking the limit as C → ∞ and
removing columns of Z with all zeros, we obtain the IBP prior for Z ∼ IBP(α)

p(Z) = αC+ exp{−αHS}
C+!

C+∏

c=1

�(mc)�(S − mc + 1)

�(S + 1)
(3)

where C+ is the number of non-empty features (columns), HS = ∑S
s=1 1/s is

the S-th harmonic number, and the columns of Z are uniformly ordered. Note that
the rows of Z are exchangeable as the right-hand side of Eq. (3) does not depend
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on the row indices of Z. The name IBP originates from a description of customers
entering an Indian buffet restaurant with infinitely many dishes. The first customer
(SNV) chooses a Poisson(α) number of dishes (haplotypes). The s-th customer takes
dish c with probabilitymc/s, withmc being the number of customers who have tried
dish c before, and then tries a Poisson(α/s) number of new dishes. The choices of
all customers are recorded in matrix Z where Zsc = 1 if the sth customer took the
cth dish. Then the matrix Z is said to follow an IBP, and the probability of Z is given
by (3) after randomly permuting the columns of Z.

Due to the exchangeability of the IBP prior in (3), the conditional distribu-
tion P(Zsc = 1|Z−s,c) is the same as if s = S were the last customer. That is,
P(Zsc = 1|Z−s,c) = m−s,c/S provided m−s,c > 0 where Z−s,c is the cth column
of Z excluding sth row, m−s,c is the number of 1’s in Z−s,c, and the distribution of
the number of new features (haplotypes) for each row (SNV) is Poisson(α/S).

Conditioning on the number C of features, we assign a Dirichlet distribution
to the weights w = (w0,w1, . . . ,wC ) ∼ Dir(a0, a, . . . , a) with a0 < a to reflect the
prior belief that the proportion of background noise is smaller than the proportion
of the haplotypes. Equivalently, each wc can be written as wc = θc/

∑C
c=0 θc where

θ0 ∼ Gamma(a0, 1), θc ∼ Gamma(a, 1) for c = 1, . . . ,C . The gamma representa-
tion of Dirichlet distribution is adopted in our sampling algorithm as described in
Sect. 3. Finally, the background SNV frequency ρ is given a beta prior, ρ ∼
Beta(aρ, bρ). We set aρ � bρ as we expect ρ to be very small.

3 Posterior Inference and Parallel Tempering

The posterior distribution of the model described in Sect. 2 is given by

p(Z, θ , ρ|n) ∝ p(n|N, p)p(Z)p(θ |Z)p(ρ)

where the weights w are replaced by the unnormalized weights θ = (θ0, θ1, . . . , θC ).
Since the posterior is analytically intractable, we use Markov chain Monte Carlo
(MCMC) simulation to generate a Monte Carlo sample of (Z,w, ρ) from the pos-
terior. Let p = (Z, θ , ρ) and let p(i) denote the state of the Markov chain at the i th
iteration. Define the following one-step operator (that is, the transition probability of
the Markov chain), which takes the current state and data as input, and outputs the
state for the next step. In the description below we use “new features” to refer for
each customer s to the set of features c that are only selected by customer s.

Operator p∗ = S ( p, N, n)

(1) Update Z. We iterate through each row s of Z.
(1a) Update existing features. Sample Zsc from its full conditional
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P(Zsc = 1|·) ∝ P(Zsc = 1|Z−s,c)p(ns |Ns, ps) = m−s,c

S

(
Ns

ns

)
pnss (1 − ps)

Ns−ns ,

for c = 1, . . . ,C where C is the current number of features.
(1b) Update new features (that is, features that are only selected by customer

s). We propose C∗ = Poisson(α/S) new features and for each new feature we
propose a new feature-specific parameter θ∗

c from its prior θ∗
c ∼ Gamma(a, 1) for

c = C + 1, . . . ,C + C∗. We accept the new features and the feature-specific param-
eters, with probability min{1, r}, where the Metropolis-Hasting (M-H) ratio

r = p(n|N, p∗)
p(n|N, p)

reduces to the likelihood ratio because the prior ratio and proposal ratio are canceled
out.
(2) Update θ . For c = 0, . . . ,C , we propose θ∗

c from a proposal density q(θ∗
c |θc),

and accept it with probability min{1, r} where

r = p(n|N, p∗)p(θ∗
c |Z)q(θc|θ∗

c )

p(n|N, p)p(θc|Z)q(θ∗
c |θc) .

(3) Update ρ. We propose ρ from a proposal density q(ρ∗|ρ), and accept it with
probability min{1, r} where

r = p(n|N, p∗)p(ρ∗)q(ρ|ρ∗)
p(n|N, p)p(ρ)q(ρ∗|ρ)

.

Then ourMetropolis-within-Gibbs algorithmproceeds by iteratively calling the oper-
ator p∗ = S ( p, N, n).

Algorithm: MCMC
(I) Initialize p(0) = (Z(0), θ (0), ρ(0))

(II) Iteratively apply the operator p(i) = S ( p(i−1), N, n) until convergence.
The above MCMC only works for a small to moderate total number Ns of reads.

When Ns is large (up to 4437 in our application), the likelihood p(ns |Ns, ps) as
a function of ps (hence the posterior distribution) is extremely concentrated at the
empirical VAF f̂s = ns/Ns , which results in effectively zero acceptance rate for the
M-H steps (1b), (2) and (3). For this reason, the previous proposed approaches [9,
12] are not suitable for our data. In their applications, Ns is typically around 50.

We instead implement a variation of the parallel tempering technique, also known
as Metropolis-coupled MCMC [2]. In particular, we run L parallel Markov chains
with different target distributions π1, . . . , πL . The chains are “heated" by raising the
likelihood to a power 1/T� for T� ≥ 1, creating a target distribution

π� ∝
S∏

s=1

p(ns |Ns, ps)
1
T� p(Z)p(θ |Z)p(ρ)
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for � = 1, . . . , L . The first chain is the “cold" chain with the lowest temperature T1 =
1 and its target distribution is our desired posterior distribution π1 = p(Z, θ , ρ|n).
The “heated" chain has a less peaked likelihood, which makes it easier to traverse the
parameter space. Under the binomial sampling model (1), the power transformation
of the likelihood has a direct interpretation as using only a fraction (ns/T, Ns/T ) of
the data

p(ns |Ns, ps)
1
T ∝ p

(
ns
T

∣∣∣∣
Ns

T
, ps

)
.

With a smaller total number of reads (while keeping the empirical VAF unchanged),
the posterior distribution becomes flatter, and consequently, the heated chain tends
to accept more proposals than a cold chain. In order for the cold chain to mix better,
we couple it with the heated chains by swapping the states between two randomly
selected chains with a predefined rate Pswap. The swapping is then accepted/rejected
according to a Metropolis-Hasting ratio.

Algorithm: Parallel-tempered MCMC
(I) Initialize p(0)

� = (Z(0)
� , θ

(0)
� , ρ

(0)
� ) for � = 1, . . . , L where the subscript � is the

chain indicator.
(II) At each iteration i

(a)With probability Pswap, propose a swappingmove. Randomly select two chains
� and m and swap the states of the two chains with probability min{1, r} where

r = p(n�|N�, p(i−1)
m )p(nm |Nm, p(i−1)

� )

p(n�|N�, p
(i−1)
� )p(nm |Nm, p(i−1)

m )
,

with n� = n/T� and N� = N/T� and similar definition for nm and Nm .
(b) Perform a one-step update for all chains: p(i)

� = S ( p(i−1)
� , N�, n�) for � =

1, . . . , L .
(III) Repeat step (II) until convergence.
Each individual chain is no longer Markov, because of the dependencies across
the chains, introduced by swapping. However, the validity of the algorithm can be
understood by viewing all the chains as a joint stochastic process which is Markov;
technical details can be found in [2].

To summarize the posterior distribution p(Z,w, ρ|n) = p(w, ρ|n, Z)p(Z|n,C)

p(C |n) using MCMC samples, we proceed by first calculating the maximum a pos-
teriori (MAP) estimator Ĉ from the marginal posterior distribution ofC . Conditional
on Ĉ , we find the least squares feature allocation estimator [13] Ẑ by the following
procedure. For any two binary matrices Z, Z′ ∈ {0, 1}n×Ĉ , we define the distance
d(Z, Z′) = minπ H (Z, π(Z′)) where π(Z′) denotes a permutation of the columns
of Z′ and H (·, ·) is the Hamming distance of two binary matrices. The point esti-
mator Ẑ is then obtained by

Ẑ = argmin
Z′

∫
d(Z, Z′)dp(Z|n, Ĉ),
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which can be approximated by MCMC samples. The posterior point estimators ŵ
and ρ̂ are then computed by (ŵ, ρ̂) = E(w, ρ|n, Ẑ) conditional on Ẑ.

4 Simulations

In this section, we present two simulation studies to assess the performance of the
proposed approach. In the first scenario, we compare PTFA with MAD-Bayes using
a similar simulation setting as in [12].We let N be the observed total number of reads
from the Glioblastoma multiforme (GBM) data in Sect. 5 which has S = 483 SNVs.
We assumeC = 4 haplotypes where each haplotype has the following configuration:
haplotype c has variant sequences at the first 100 · c SNV positions for c = 1, . . . , 4.
The true feature allocation matrix Z is shown in Fig. 2a. We set the true weights
w ∝ (0.2, 10, 7, 3, 1) and ρ = 0.01. Then we generate ns ∼ Bin(Ns, ptrues ) where
ptrues = w0ρ + ∑C

c=1 wcZsc for s = 1, . . . , S.
The hyperparameters of our model are specified as: α = 1, a0 = 0.1, a = 0.5,

aρ = 1 and bρ = 100. We run L = 10 parallel chains, each with 50,000 iterations,
and set the probability of swapping Pswap = 0.3. The temperatures are chosen to be

T� = S
�−1
L−1 for � = 1, . . . , L . Only the cold chain is retained for subsequent analysis.

We discard the first 50% of the iterations as burn-in, and thin the chain by taking
every 10th sample.

The posterior distribution of the number C of haplotypes is displayed in Fig. 1a,
which is peaked at the simulation truth, Ĉ = 4.Conditional on Ĉ , the (posterior) point
estimator Ẑ is shown in Fig. 2b with mis-allocation rate H (Ẑ, Z)/S/C = 13%.
Conditional on Ẑ, the point estimator ŵ is plotted against the true w in Fig. 1b. The
estimation works well, as can be seen from the very close fit of points to the diag-
onal line. This can also be seen from the histogram of p̂ − ptrue in Fig. 1c where

p̂ = ŵ0ρ̂ + ∑Ĉ
c=1 ŵc Ẑsc.

For comparison, we apply MAD-Bayes to the same simulated data. MAD-Bayes
has a tuning parameter λ2 which penalizes the number of columns in Z, with smaller
λ2 implying larger Ĉ .We run the algorithmwith 50 different initializations for a range
of λ2 = {2, 4, 6, 8, 10, 20, 200, 500}, recommended by [12]. The best fit is obtained
λ2 = 2 and the frequency of the estimated Ĉ across 50 simulations is shown in Fig.
1d. Even with a small penalty, MAD-Bayes tends to select 3 haplotypes (28 out
of 50 simulations); in only 12 out of 50 simulations does MAD-Bayes correctly
identify the correct number of haplotypes. A typical estimated Ẑ with Ĉ = 4 from
MAD-Bayes is shown in Fig. 2c with mis-allocation rate 14%. Since MAD-Bayes
tends to underestimate C , we alter the simulation truth by removing the first and the
third column of Z (therefore C = 2) and rerun PTFA and MAD-Bayes. PTFA has
a perfect recovery of Z with mis-allocation rate 0%, due to the simplified scenario.
For the same reason, the performance of MAD-Bayes is also improved: it correctly
estimates C and Z in 32 out of 50 simulations.
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Fig. 1 Simulation results of PTFA and MAD-Bayes in the first scenario. a Posterior distribution
of C for PTFA. b Scatter plot of estimated ŵ versus true w for PTFA. c Histogram of of p̂ − ptrue

for PTFA. d Empirical distribution of Ĉ across 50 runs of MAD-Bayes with λ2 = 2

In our second simulation, we consider the scenario where the VAFs are similar
to those in the GBM data. Specifically, we obtain the new matrix Z (shown in Fig.
3a) by altering the earlier Z: (1) remove the last 50 1’s from the second column; (2)
remove the first 50 and last 100 1’s from the third column; and (3) remove the first
100 1’s from the fourth column. We keep other simulation settings unchanged. The
proportion of the mutations with VAF > 0.5 is now approximately 10%. We find
similar results as in the first scenario. For example, the estimated Ẑ is shown in
Fig. 3b and the mis-allocation rate is 4%. We also run the same algorithm with
different initial values and we don’t observe any significant difference. In addition,
we investigate how PTFA performs when read depth is 10-fold shallower. We find
Ĉ = 6 haplotypes with two haplotypes having only 1 and 3 mutated loci (out of 483
loci).
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1 2 3 4

(a) True Z
1 2 3 4

(b) Estimated Ẑ from PTFA

1 2 3 4

(c) Estimated Ẑ from MAD-Bayes

Fig. 2 Simulation results of PTFA and MAD-Bayes in the first scenario. Heatmaps of the feature
allocation matrix Z, where 1 is represented by the color, green and 0 by the color, red. Panel a
displays the true Z. Panel b displays the estimated Ẑ from PTFA. Panel c displays the estimated Ẑ
from MAD-Bayes

1 2 3 4

(a) True Z

1 2 3 4

(b) Estimated Ẑ

Fig. 3 Simulation results of PTFA in the second scenario. Heatmaps of the feature allocationmatrix
Z, where 1 is represented by the color, green and 0 by the color, red. Panel a displays the true Z.
Panel b displays the estimated Ẑ

5 GBM Data Analysis

Glioblastoma multiforme (GBM) is the most common and aggressive form of pri-
mary brain cancer in human adults with poor prognosis and a lack of effective ther-
apeutic options. Many recent studies [14] suggest that intra-tumor heterogeneity is
crucial to understanding treatment failure, due to the existence of subclones that
resist conventional therapies.
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Fig. 4 GBM data summaries. a Histogram of the total number of mapped reads Ns . b Histogram
of the empirical VAF f̂s = ns/Ns

In this study, frozen GBM tumor tissue andmatched blood samples were obtained
from the Austin Brain Tumor Repository at St. David’s Medical Center. Exome
extraction and sequencing were performed at the Genomic Sequencing and Analysis
Facility (GSAF) at the University of Texas at Austin. Exome extraction was done
using Agilent SureSelect V5+UTR exome-capture kits. DNA sequencing was per-
formed on the Sequenced Illumina HiSeq 25000 NGS platform, with 2 × 125 bp
paired-end reads, and 2 × 107 reads per sample, for an average exome coverage of
500x. Low-quality reads were removed using Samtools, and sequence reads were
mapped to the reference human genome hg19, using BWA. Base-quality recalibra-
tion, indel calling/realignment, and variant calling/annotation was performed using
GATK [15–17]. The resulting dataset consists of a total of S = 483 SNVs. We sum-
marize the data in Fig. 4 with a histogram of the total number of mapped reads Ns and
a histogram of the empirical VAF f̂s = ns/Ns for s = 1, . . . , 483. Deep sequenc-
ing technology identifies, not only common clonal mutations, but also rarer variants
( f̂s ≈ 10%), which might be unique to particular subclonal lineages. However, the
likelihood is essentially a point mass at f̂s , since the total number Ns of reads is very
large.

Using abioinformatics tool such as [18, 19],we estimate thenormal contamination
to be τ = 0.17, which is incorporated in our model by modifying Eq. (2) as

p̃s = (1 − τ)ps = (1 − τ)(w0ρ +
C∑

c=1

wcZsc)

and the likelihood (1) as
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Fig. 5 GBM data analysis using PTFA. a Posterior distribution of C . b Heatmap of the feature
allocation matrix Z, where 1 is represented by the color, green and 0 by the color, red. c Histogram
of of p̂ − f̂

p(n|N, p̃) =
S∏

s=1

p(ns |Ns, p̃s) =
S∏

s=1

(
Ns

ns

)
p̃nss (1 − p̃s)

Ns−ns .

We apply PTFA using the same specifications as in Sect. 4. The algorithm (imple-
mented in R) takes ∼11 h on a 3.5 GHz Intel Core i7 CPU with 16 GB memory. We
show the posterior distribution of C in Fig. 5a and find the posterior mode for Ĉ = 7
haplotypes. Given Ĉ , the posterior point estimator of feature allocation matrix Ẑ is
provided in Fig. 5b, with green and red indicating mutant and wildtype genotypes,
respectively. As before, the rows are SNVs, and the columns are haplotypes.

The extent of intra-tumor heterogeneity is evident from the heatmap. For exam-
ple, haplotype 1 is characterized by a large number of mutations while haplo-
type 6 has far fewer mutations. The haplotype proportions are estimated to be
ŵ = (0.17, 0.18, 0.19, 0.05, 0.10, 0.11, 0.03). The first three haplotypes dominate
the subclone distribution, and they differ from one another at multiple loci. To assess
the fit of PTFA to the data, we plot the histogram of p̂s − f̂s for s = 1, . . . , 483 in

Fig. 5c where p̂s = ŵ0ρ̂ + ∑Ĉ
c=1 ŵc Ẑsc and f̂s = ns/Ns . With the histogram being

concentrated around zero the model fit appears to be adequate.
For comparison, we ran MAD-Bayes 50 times (∼2 min) using this data, with

λ2 = 2, as it yields the best performance in simulation studies, and imposes small
penalization on the number of haplotypes. The results are shown in Fig. 6. The
empirical distribution of Ĉ has a peak at 4 (Fig. 6a). Although it is hard to judge
which estimate is closer to the true number C of haplotypes, it seems that MAD-
Bayes is inefficient in exploring new haplotypes, possibly due to large read depth,
which is also seen in simulation studies. We randomly choose one result from 50
MAD-Bayes runs for which Ĉ = 4, and plot the heatmap of Ẑ in Fig. 6b and the
histogram of p̂ − f̂ in Fig. 6c. The latter shows some evidence for a worse fit than
under PTFA.
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50 runs. b Heatmap of the feature allocation matrix Z, where 1 is represented by the color, green
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6 Discussion

Characterizing tumor heterogeneity through the identification of subclones is key
to understanding cancer genomics, and has the potential to provide vital informa-
tion in developing personalized treatments. Deep sequencing technology generates
more informative data from which to infer subclones, while simultaneously posing
a computational challenge, due to peaked likelihood associated with sample means.
In this paper, we have developed a parallel-tempered feature allocation algorithm
(PTFA) to overcome these difficulties. Simulation studies show PTFA is superior to
competingmethods when read depth is large. PTFA’s applicability was demonstrated
by identifying subclones using GBM genomes sequenced at high read depth. Future
data analysis will build upon our empirical results by investigating the phylogenetic
history of subclonal lineages in GBM and applying tests of neutral evolution versus
subclonal selection to the haplotype frequency distribution. We discussed inference
for tumor heterogeneity. A similar setup and inference approach could potentially
be used with other experiments that use NGS data, including possibly microbiome
data if the data include samples from multiple tissue types for each individual. See,
for example, [20] for a related discussion.

One drawback of the proposedmethod is its scalability compared to optimization-
based approaches such asMAD-Bayes (which is hundreds times faster). The running
speed can be greatly improved by implementing it in C++. However, more clever
algorithm is needed if one wants to consider genome-wide sequencing data. Method-
ologically, in our future work, wewill allowmisspecification in the feature allocation
model. For example, instead of assuming a deterministic relationship in Eq. (2), we
could assign a beta prior on ps which centers on w0ρ + ∑C

c=1 wcZsc. The additional
degree of freedom in the beta prior would strengthen the robustness of our method
against model misspecification.
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Analysis of T-Cell Immune Responses as
Measured by Intracellular Cytokine
Staining with Application to Vaccine
Clinical Trials

Yunzhi Lin and Cong Han

Abstract Recent advances in single-cell technologies, in particular intracellular
cytokine staining (ICS), have enabled multidimensional functional measurements of
naturally occurring or vaccine-induced T-cell responses in clinical studies. Analysis
of such increasingly multidimensional datasets presents a great challenge to statis-
ticians. Currently, multidimensional functional cell measures are largely analyzed,
either by univariate analysis of all combinations of functions individually, or by sum-
marizing a few particular groups of functions separately. Such simple analyses do
not reflect comprehensively the polyfunctional profile of the T-cell responses, nor
do they allow more sophisticated statistical analysis and inference. In this paper, we
introduce a new approach to statistical inference for multidimensional ICS data. We
propose to reduce the dimensionality by using a weighted sum, followed by com-
puting the minimum and maximum of the test statistic over all eligible assignments
of weights which satisfy the underlying partial ordering of the data. The computa-
tion technique is presented. Statistical inference is then based on the minimum and
maximum of the test statistic. We illustrate, through an example, that the technique
can be useful in reducing the complexity of the multidimensional response data and
providing insightful reporting of the results.

Keywords Cell-mediated immunity · Intracellular cytokine staining · Vaccine ·
Clinical trials · Partial ordering · Min max statistics · Stochastic ordering

1 Introduction

Evaluation of vaccine-induced immunity is essential in vaccine clinical trials in
understanding and establishing the immunological basis of the efficacy of test vac-
cines. Immunological endpoints in vaccine trials are classified by the type of adap-
tive immune responses invoked—humoral or cellular—and are measured by various
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immunologic assays at a select few time points. Because of the complexity of the
immune system, the majority of the vaccine trials to-date have measured a rela-
tively small number of variables, mainly humoral immune responses measured by
antibody titers or antibody concentrations. However, recent advances in technology
enable many parameters to be measured quickly and at low cost, allowing much
broader immune profiling. In particular, single-cell level intracellular cytokine stain-
ing (ICS), an application of flow cytometry, has become an important method for
determining T-cell immunogenicity in recent vaccine trials.

Intracellular cytokine staining is a process in which the secretion of multiple
functional molecules called cytokines (e.g., interferon (IFN)-γ, tumor necrosis factor
(TNF)-α, interleukin (IL)-2, IL-21) ismeasured simultaneously for individual T cells
while the cells pass through the machine in a thin fluid stream. Typically, cell-level
measurements are thresholded so that each cell will be classified as positive (+) or
negative (−) in expressing each function (cytokine); e.g. IFN-γ+ TNF-α− IL-2+ IL-
21+. An ICS experiment measuring K functions therefore defines 2K − 1 Boolean
combinations of functions (leaving out the category of “all negative” in order to focus
on the responding cells), and the set of responses in a sample of blood is characterized
by summarizing the frequencies of expression profiles corresponding to the 2K − 1
different combinations of functions (Fig. 1).

Recent works have highlighted the importance of such multidimensional func-
tional T-cell assessment in vaccine immunogenicity and efficacy studies. The pres-
ence of antigen-specific T cells capable of simultaneously expressing multiple
cytokines, known as polyfunctional T cells, has been shown to correlate with favor-
able clinical outcomes [1–3]. Effective vaccination is expected to generate broad
T-cell cytokine expressions [4, 5], making them attractive as potential markers of
protection. However, statistical tools for analyzing this complex multidimensional
data have been lacking.

Fig. 1 Illustration of ICS T-cell response data collected from n subjects in an experimental group.
Data are number of antigen-specific phenotypic (i.e., CD4+, CD8+) T cells expressing different
combinatorial functional cytokines (e.g., the numbers of antigen-specific CD4+ T cells expressing
different combinations of cytokines). For K cytokines, this produces an n by M matrix of counts,
where M = 2K − 1
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Very few tools have been developed specifically for multidimensional T-cell data
analysis. To date, most clinical studies have been limited to reporting univariate
results, such as summaries and comparisons of individual function expressions (e.g,.
IFN-γ, marginalizing over other functions), analyses of “polyfunctionality” (i.e.,
cells expressing a specified number of functions), or laborious analyses of all func-
tional combinations individually. Simple graphics such as bar plots and pie charts
are used to display the summary statistics [6]. The problems with such univariate
approaches are that they cannot evaluate T-cell responses as an entirety, ignore the
dependency between combinations, and lead tomultiple testing problems. These sep-
arate analyses require heavy human interpretation into identifying a distinct vaccine-
induced T-cell response, e.g., by subjectively applying weights of importance to
individual functions or combinations, and this becomes particularly problematic as
the number of combinations grows exponentially with the number of cytokines ana-
lyzed.A fewglobal statistics have been proposed to address some of these limitations.
Nason discussed using Hotelling’s T 2 statistic [7, 8], which tests globally whether
the treatment groups differ on any of the combinations. However, the test does not
differentiate the relative importance of the combinations, nor does it differentiate
the direction of the differences. Larsen et al. introduced a polyfunctionality index
(PI) that reduces themultidimensional profile into a weighted one-dimensional index
value [9]. Although such a reductionist approach inevitably leads to a loss of infor-
mation, it largely benefits from the numerous analytical tools exclusively compatible
with one-dimensional values. The PI however, uses an arbitrary selection of weights
whichdoes not discriminate amongdifferent cytokines, and thus falls short of describ-
ing the true profile of functional T-cell responses, limiting its clinical utility. A few
Bayesian frameworks for multidimensional analysis have been proposed, including
the mixture models for single-cell analysis (MIMOSA) introduced by Finak et al.
[10] and the unbiased combinatorial polyfunctionality analysis of antigen-specific
T-cell subsets (COMPASS) proposed by Lin et al. [11].

In vaccine trials the common statistical problem is to assess whether or not there
is a difference between the treatment groups in functional T-cell responses. Further-
more, an ideal framework for the analysis should quantify both the magnitude (i.e.,
amount of cells expressing the cytokines or combinations of cytokines of interest)
and the quality (i.e., profiles of the polyfunctional coexpression) of T-cell responses,
and thus permits a comprehensive comparison between the treatment groups. To
address these needs, we introduce a new approach to statistical inference for multidi-
mensional ICS data. We consider a “generalized cytokine production index” which,
similar to the PI, reduces the dimensionality by using a weighted sum. Rather than
assigning a fixed set of weights, we allow all possible weights to permit a comprehen-
sive analysis.We further specify that the weights need to follow an underlying partial
ordering such that the cells expressingmore functions (i.e.,more polyfunctional com-
binations) will be preferred. The resulting generalized index thus quantifies not only
the magnitude of response by simply summing up the numbers of cells expressing
each combination, but also the quality of response by giving more weight to more
polyfunctional responses.



252 Y. Lin and C. Han

The one-dimensional index enables easy statistical comparison (e.g., t test) of
the treatment groups. To allow for the comprehensive analysis, we propose basing
statistical inference on the minimum and the maximum of the test statistic over all
possible assignments of weights, and present a solution to the problem of finding
the minimum (min) and the maximum (max) of the statistics. If the range of the
min and max statistics does not include the critical value, then the significance (or
non-significance) of the result can immediately be concluded regardless of the choice
of weights. On the other hand, if the range includes the critical value, the choice of
weights and the corresponding conclusions must be carefully justified.

Our paper is organized as follows. The proposed method is described in Sect. 2
along with the computational approach to find the minimum and maximum of stan-
dard two-sample test statistics over all eligible assignments of weights. Section3
provides an example of T-cell response data collected in a vaccine trial with further
details on the multidimensional ICS data. The application of the method is illustrated
using the example data. Discussion and conclusions are presented in Sect. 4.

2 Method

In general, suppose K cytokines are assessed. Let M denote the total number of
cytokine combinations examined, subtracting out the category of “all negative” in
order to focus on the responding cells, i.e., M = 2K − 1. Without loss of generality,
in the rest of the paper we will focus on two-sample comparison of CD4+ antigen-
specific T-cell responses.

Let n1 be the sample size in the test group and n2 be the sample size in the con-
trol group. We denote by xi,k and y j,k , i = 1, ..., n1, j = 1, ..., n2, k = 1, ..., M ,
the observed frequencies of the M combinations for subjects in the test and
control groups, respectively. The M-dimensional observation for each subject is
xi = {xi,1, xi,2, ..., xi,M } and y j = {y j,1, y j,2, ..., y j,M }. We order the M combina-
tions by decreasing numbers of cytokines expressed as in Fig. 1, i.e., xi,1 represents
the frequency of responding cells for subject i that are “+” for all K cytokines,
xi,2 represents the frequency of responding cells for subject i that are “+” for the
first K − 1 cytokines and “−” for the last (i.e., IFN-γ+ TNF-α+ IL-2+ IL-21−),
and so forth.

Let C = {C1,C2, ...,CM } denote the set of the M combinations. Naturally, there
is an underlying order to these combinations. As intuitively a polyfunctional expres-
sion is considered better than a mono-functional expression, the M combinations
are said to be partially ordered such that the kth combination (i.e., Ck) is “better”
than (or at least equal to) the lth combination (i.e., Cl) if Ck expresses all the func-
tions expressed in Cl and more. Let � denote the underlying partial ordering. As an
example, given combinations as shown in Fig. 1, we would have C2, ...,C15 � C1;
C6,C7,C8,C12,C13,C14 � C2; butC2 can’t be ordered in respect to the partial order-
ing with C3,C4,C5,C9,C10,C11, and C15, because the later ones contain cytokines
that are not presented in Combination #2; and so forth.
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2.1 Testing a Generalized Cytokine Production Index

An intuitive approach for analyzing multidimensional data is to reduce the dimen-
sionality by using a weighted sum. The polyfunctionality index (PI) is one example,
which gives linearly increasing weights to combinations corresponding to 1, 2, until
K functions while not discriminating the importance of each function. The selection
of weights can be much more arbitrary, however, as there is no definitive knowledge
yet from biology to determine the relative importance of different functional combi-
nations, apart from the partial ordering described above. There can be an infinite set
of possible weights and therefore, an infinite set of possible results to report.

In the context of ordinal data analysis, Agresti (1984) wrote about handling the
ambiguities arising from the choice of weights [12]: “sometimes it is not obvious
how to assign scores. In such case it is informative to assign scores a variety of
‘reasonable’ ways to check whether substantive conclusions depend on the actual
choice.” Kimeldorf et al. expanded this idea and proposed a test of two-sample
categorical data by assigning all possible weights to the categories, and making
inference by examining the maximum and the minimum of the test statistics over all
assignments of weights [13, 14]. Along the same line of thought, we propose a test
of the two-sample T-cell response data by allowing all possible weight assignments
to the M combinations. In this spirit, a “generalized cytokine production index” can
be written for subject i (e.g., in the test group) as

CP Ii =
M∑

k=1

αk xi,k = αT xi (1)

where α = {α1,α2, ...,αM } can be any non-negative, “eligible” weights that are
assigned to the M combinations. Apparently, any “eligible” weights need to satisfy
the underlying partial ordering�. That is, in the above 4-cytokine example,α satisfies
α1 ≥ α2, ...,α15; α2 ≥ α6, α7, α8, α12, α13, α14, but not constrained with regard to
α9, α10, α11, or α15; etc.

Once the multidimensional data are reduced to a one-dimensional continuous
endpoint, standard two-sample testing techniques such as t test can be applied to
compare the treatment groups. The t statistic comparing the test and control groups
computed with weight α is given by

t (α) = αT (x̄ − ȳ)√
( 1
n1

+ 1
n2

)αT Sα
, (2)

where x̄ = (x̄·1, ..., x̄·M )T , ȳ = (ȳ·1, ..., ȳ·M )T are the sample means, and S is the
pooled covariance matrix estimate.

A basic calculation, as proposed by Kimeldorf et al., is to find both the minimum
and the maximum of the t statistic, tMIN and tMAX, over all eligible assignments of
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weights. The statistical inference is then based on the minimum and the maximum
of the test statistic:

1. If the resultingminimum t statistic is greater than the critical value, i.e., tMIN > tα,
then the result is statistically significant regardless of the choice of weights;

2. If the resulting maximum t statistic is smaller than the critical value, i.e., tMAX <

tα, then the result is not significant regardless of the choice of weights;
3. If the optimized t statistics straddle tα, i.e., tMIN < tα < tMAX, then the result

depends on the choice of weights. In this case, care must be taken in the choice of
weights and in justifying them. Theα values atwhich theminimumandmaximum
occur should be examined to evaluate which scenarios lead to significant and non-
significant results. The analysis may be inconclusive.

2.2 Computing Min and Max t Statistics

Next we give a procedure to find tMIN and tMAX over all non-negative, non-degenerate
weightsα1,α2, ...,αM allowed by the partial ordering. In view of the scale invariance
of t (α), we assume that the optimized weights satisfy max(α1,α2, ...,αM ) = 1, i.e.,
α1 = 1, which ensures that weights are non-degenerate. Finding tMIN and tMAX thus
becomes a nonlinear optimization problem subject to linear equality and inequality
constraints as defined in Eqs. (3) and (4):

min
α

t (α) = αT (x̄ − ȳ)√
( 1
n1

+ 1
n2

)αT Sα

s.t. Cα ≥ 0

αk ≥ 0; α1 = 1

(3)

max
α

t (α) = αT (x̄ − ȳ)√
( 1
n1

+ 1
n2

)αT Sα

s.t. Cα ≥ 0

αk ≥ 0; α1 = 1

(4)

where C is the linear inequality constraint matrix which defines the partial ordering.
We show that the computation of tMIN and tMAX is different under three scenar-

ios determined by the stochastic ordering of the study populations. The notion of
stochastic ordering plays an important role in whether or not the optimized t statistics
straddle 0. The following definitions are needed in determining stochastic ordering
among data sets [14].

Definition 2.1 A subset L of C is called a lower set with respect to the partial
ordering � if Ci ∈ C ,C j ∈ L , and Ci � C j imply Ci ∈ L . A subset U of C is
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called a upper set with respect to the partial ordering � if Ci ∈ U,C j ∈ C , and
Ci � C j imply C j ∈ U .

For example,U = {C1,C2,C5,C8} is anupper set among the combinations shown
in Fig. 1. Denote the class of all lower sets by L and the class of all upper sets by
U . For a given partial order, the enumeration and specification of all upper sets (or
equivalently lower sets) may require careful algorithms and substantial computa-
tional time. As an example, the set of 15 combinations in Fig. 1 would constitute a
total of 94 upper sets.

Definition 2.2 The data from Population X are said to be stochastically larger than
data from Population Y with respect to the partial ordering �, if

∑

{ j :C j∈U }
x̄. j ≥

∑

{ j :C j∈U }
ȳ. j (5)

for every upper set U ∈ U .

We have the following equivalence theorem for the stochastic ordering of the
study populations with respect to � and the non-negativity of the key statistic t (α).
The proof is given in the Appendix.

Theorem 2.1 If the data fromPopulation X are stochastically greater (smaller) than
data from Population Y with respect to the partial order �, then t(α) ≥ 0 (t(α) ≤ 0)
for all eligible weights consistent with the partial order �.

The applications of Theorem 2.1 is immediate. If the data from population X
are stochastically larger than the data from population Y with respect to the partial
order�, then tMIN ≥ 0. On the other hand, if the population X data are stochastically
smaller than the population Y data, then tMAX ≤ 0. If they are incomparable, then
tMIN ≤ 0 ≤ tMAX. The computation of tMIN and tMAX therefore can be considered
separately for these three cases:

Scenario 1. If data from Population X (test) are stochastically greater than data from
Population Y (control) with respect to the partial order �, then

(1) tMIN is attained at one of the extreme points of the feasible region;
(2) tMAX can be found by convex programming.

This result follows from the observation that t (α) is a quasiconcave function under
Scenario 1, and that the feasible region defined by the partial ordering constraints is
a convex set.

To see that function t (α) is quasiconcave under Scenario 1, let us first notice that
t (α) is a ratio of a linear function and the square root of a quadratic term. Under
Scenario 1, the linear term is non-negative for all α that satisfies the partial ordering
constraints, and therefore a non-negative concave function. Next, we observe that
the pooled covariance matrix estimate S is positive definite, which suggests that
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the square root of the quadratic term is strictly positive convex [15]. From Avriel
et al. [16], this implies that t (α), as a ratio of a non-negative concave function and a
strictly positive convex function, is quasiconcave.

It follows from Theorem 3.5.3 of Bazaraa and Shetty (1979) that t (α) attains
its minimum among the extreme points of the feasible region defined by the linear
inequality constraints [17]. Let S={(α1,α2, ...,αM ),Cα ≥ 0, αk ≥ 0, and α1 = 1}
denote the feasible region, and U denote the class of all upper sets of the partial
order �.

Definition 2.3 The extreme points of the feasible set S are given by pr , r = 1, ..., s,
where pr = (α1,α2, ...,αM ), and αk , k = 1, ..., M , is defined by

αk =
{
1, Ck ∈ Ur ,

0, otherwise,

for each upper set Ur ∈ U , r = 1, ..., s.

Thus, to find tMIN under Scenario 1, we need to compute t for all the extreme points
of S, and an extreme point where t takes the minimum gives tMIN. For a given partial
order, the specification of all extreme points (or equivalently upper sets) requires
careful enumeration. As mentioned above, for example, the set of 15 combinations
in Fig. 1 would constitute a total of 94 upper sets and thus 94 extreme points.

Next we consider computing the maximum of t (α) under Scenario 1. Because
t (α) is quasiconcave, and the feasible region S is a convex set, it follows from
Proposition 1 and Theorem 3.37 of Avriel et al. that any local maximum is also a
global maximum of Eq. (4) under Scenario 1 [16]. Therefore, Eq. (4) can be solved
by any convex programming algorithms.

In like manner we obtain the results for the analogous case when population X
data are stochastically smaller than population Y data:

Scenario 2. If data from Population X (test) are stochastically smaller than data from
Population Y (control) with respect to the partial order �, then

(1) tMIN can be found by convex programming;
(2) tMAX is attained at one of the extreme points of the feasible region.

Scenario 3. If data from Population X (test) and Y (control) are stochastically incom-
parable with respect to the partial order �, then

(1) tMIN can be found by convex programming by solving Eq. (3) with an additional
constraint αT (x̄ − ȳ) ≤ 0;

(2) tMAX can be found by convex programming by solving Eq. (4) with an additional
constraint αT (x̄ − ȳ) ≥ 0.

Scenario 3 implies that tMIN ≤ 0. Hence solving Eq. (3) is equivalent to solving
it with the additional constraint of αT (x̄ − ȳ) ≤ 0, which requires t (α) ≤ 0 within
the feasible region. Thus t (α) is quasiconvex in the feasible region and tMIN can be
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found by convex programming. Similarly t (α) is quasiconcave under the additional
constraint of αT (x̄ − ȳ) ≥ 0, and tMAX can be found by convex programming.

3 Example

We illustrate the application of the proposedmethod on a publicly available dataset of
ICS T-cell responses [11].We consider T-cell production data generated as part of the
RV144 HIV vaccine study among health adults in Thailand [18, 19]. Expression of a
set of six functions (TNF-α, IFN-γ, IL-4, IL-2, CD40L, and IL-17α) was measured
in CD4+ T cells by ICS to determine if there are differences in the induced T-cell
responses between vaccine (n = 226) and control (n = 36) groups.

Using the ICS assay, each individual cell is classified as either positive (+) or nega-
tive (−) upon antigen stimulation for each cytokine based on fixed thresholds, and the
numbers of CD4+ antigen-specific cells expressing each functional combination are
counted. These measurements are available for each person on CD4+ T-cells, against
the 92TH023-Env peptide pool. Although a total of 63 (26 − 1) functional combi-
nations can be defined by the six functions, only 15 of these had non-negligible
cell counts (over five cells in more than two subjects). Hence for the purpose of
illustration in this paper we will focus on these 15 combinations. Figure2 gives an
illustration of the data for CD4+ antigen-specific T cells in a particular treatment
group (e.g., vaccine group); the columns represent the functional combinations and
the data are numbers of cells producing each combination per million cells, after
subtracting background (unstimulated) values.

Fig. 2 Illustration of RV144 ICS T-cell response data in the vaccine group. Data are background-
subtracted numbers of antigen-specific CD4+ T cells, per million cells, expressing the 15 functional
combinations. Combinations are grouped by color = “degree of functionality”. The α’s are the
weights assigned to each combination in a weighted analysis
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Fig. 3 Polyfunctional profiles of antigen-specific CD4+ T cells. The bar represents the mean
number of CD4+ T cells expressing each of the 15 combinations per million cells in each group
and the whisker represents the standard deviation

As shown in Fig. 3, the vaccine induced considerably larger numbers of CD4+
cells exhibiting polyfunctional responses compared to the control. The magnitude
of response was significantly higher in the vaccine group compared to the control
group, for all combinations except for the 13th (TNF-α- IFN-γ- IL-4+ IL-2- CD40L-
IL-17α-) and 15th (TNF-α- IFN-γ- IL-4- IL-2- CD40L- IL-17α+) combinations, at
the Bonferroni-adjusted level of α = 0.0033. Applying the simple polyfunctionality
index, the vaccine group reported a mean PI of 631, significantly higher than the
control group, which reported mean PI of 155 (p = 0.0002).

We would like to see if the significant result could remain for any choice of
weights that satisfy the partial ordering, which could help us confidently claim a
significant effect of the vaccination. Using Definition 2.2, we first observe that the
empirical distribution for the vaccine group is stochastically larger than the empirical
distribution for the control group by checking the class of all upper sets. Note that
this particular set of 15 combinations with its partial ordering constitutes a total of
167 upper sets. Thus under Scenario 1, the weights αMIN which minimize t (α) over
all weights consistent with the partial ordering can be found by calculating t (α)

for all extreme points. The weights αMAX which maximize t (α) can be found by
convex programming. The resulting optimizingweightsαMIN andαMAX are tabulated
in Table 1A with tMIN = 0.6147 (p = 0.5382) and tMAX = 5.3688 (p < 0.0001).
We know therefore, in this straddling case, there are some weights that produce
significance and some that do not.

Upon examining the weights leading to tMIN, we notice that αMIN gives 0 weights
to one tetra-functional and several tri-functional combinations. Although this is the-
oretically allowed by the partial ordering, we might ask whether this is sensible
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Table 1 Minimum and Maximum t statistics for testing a treatment difference with the RV144 T
cell response data, and corresponding optimizing weights and p-values: A under the general partial
ordering constraints; B under informative constraints incorporating medical judgment

x̄ − ȳ (A) Genrel constraints (B) Genrel constraints

αMIN αMAX αMIN αMAX

α1 + + +++− 23.85 1 1 1 1

α2 ++−++− 98.84 0 1 1 1

α3 +−+ + +− 21.74 1 0.26 1 0.26

α4 −+ + ++− 19.48 1 1 1 1

α5 + + −+−− 15.21 0 0 1 0

α6 + + − − +− 17.11 0 1 1 1

α7 +− − ++− 110.45 0 0.26 1 0.26

α8 −+−++− 89.61 1 0.26 1 0.26

α9 − − + + +− 36.19 1 0.26 1 0.26

α10 −+− − +− 54.82 0 1 1 1

α11 − − +−+− 18.61 1 0.26 1 0.26

α12 − − −+ + − 361.78 0 0.26 1 0.26

α13 − − +− − − 195.58 1 0.01 1 0.01

α14 − − − − +− 316.59 0 0.26 0 0.26

α15 − − − − −+ −3.80 0 0 1 0

t
p-value

tMIN =
0.6147
0.5382

tMAX =
5.3688
<0.0001

tMIN =
2.0018
0.0463

tMAX =
5.3688
<0.0001

medically and biologically. In light of this consideration, we note that our method
can be easily adapted to incorporate medical insight and common sense when appro-
priate. Specifically, basic medical knowledge and/or judgment can be incorporated
into the statistical calculation by being quantified in the form of simple constrains
to the weights. In this example, for instance, a clinical researcher might require
weights no less than 0.5 for the tetra-functional combinations, no less than 0.3 for
the triple-functional combinations, and no less than 0.1 for the dual functional com-
binations; i.e., α2, ...,α4 ≥ 0.5, α5, ...,α9 ≥ 0.3, and α10, ...,α12 ≥ 0.1. We solve
tMIN and tMAX similarly under these added constraints—we can call them “informa-
tive constraints”—and the results are given in Table1B. Here tMAX remains the same
and tMIN = 2.0018 (p = 0.0463). If there is sufficient medical evidence to support
the informative constraints, we can conclude the null hypothesis that vaccine and
control recipients exhibit the same T-cell responses can always be rejected.
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4 Discussion

Analysis of increasingly multidimensional T-cell response datasets presents a great
challenge to statisticians. An intuitive approach for analyzing multidimensional data
is to reduce the dimensionality by using a weighted sum. The selection of weights
can be arbitrary, as there are few biological reason for considering one functional
combination more important than the others. There can be, therefore, a limitless set
of possible results to report. To handle the ambiguities arising from the choice of
weights, we propose a solution by computing the maximum and the minimum of the
test statistic over all possible assignments of weights. Statistical inference is based
on the maximum and the minimum of the test statistic. We illustrate that under non-
straddling cases our approach allows for a strong scientific statement concerning
the significance or insignificance of the difference between the two populations or
treatments. In the straddling case, we become aware that care and interpretability are
important in choosing the numeric weights by which we analyze the data.

Our method can still provide helpful insight into the data under the straddling
cases. We suggest the scientific meaning of the weights that produce both signifi-
cance and insignificance be examined in the context of the study for their relevance.
For example, one can become more confident with the significant results, if the mini-
mizingweights (ormore generally the sets ofweights that produce smaller t statistics)
are much less clinically meaningful as the maximizing weights. One can also use
the degree of overlap of tMIN and tMAX relative to their appropriate critical value as
an indication of the strength of experimental evidence. A larger sample size might
be helpful if a trend towards significance is observed. This could be a direction of
future work in this topic. Nonetheless, the straddling cases, we expect, will always
be somewhat difficult in its interpretability due to the inherent ambiguity in the data.

It is important to note that there are still many areas of cell-mediated immunity
analyses that could benefit from increased statistical input. For example, the iden-
tification a vaccine-induced immune response that predicts vaccine protection, i.e.
correlate of protection, has long been a central goal of vaccine research. Multiple
authors have proposedmethods and frameworks to assess and establish such immune
correlates, with one or a few immune response variables involved.We expect the task
of establish immune correlates and a prediction model becomes exponentially more
challenging, with multidimensional ICS data. In addition, the focus of the current
paper gears more towards testing rather than estimation, which could be an important
area for future work. More exploratory work will need to be done in this area to fully
utilize these multidimensional data to really benefit clinical investigation.

Appendix

Proof of Theorem 2.1. Let population X data be stochastically greater with respect
to the partial ordering � than population Y data. We need to show t(α) ≥ 0 for all
eligible weights consistent with �.
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Given any α consistent with the partial ordering �, let α(1) ≥ α(2) ≥ ... ≥ α(M)

denote them placed in descending order. The M combinations corresponding to this
order can be written as {C(1),C(2), ...,C(M)} and the corresponding data as x̄∗ =
(x·(1), ..., x·(M))

T and ȳ∗ = (y·(1), ..., y·(M))
T .

Denote a sequence of sets {U(k)} such that U(k) = {C(1),C(2), ...,C(k)}, k =
1, 2, ..., M . It is easy to see that each U(k) is an upper set. Then by Definition 2.2
we have

∑k
j=1 x̄·( j) ≥ ∑k

j=1 ȳ·( j), k = 1, 2, ..., M . Let �( j) = x̄·( j) − ȳ·( j), we have∑k
j=1 �( j) ≥ 0, k = 1, 2, ..., M .
Given α(1) ≥ α(2) ≥ ... ≥ α(M), let us write α(1) = α(2) + δ(1), α(2) = α(3) +

δ(2), ..., α(M−1) = α(M) + δ(M−1), with δ(1), ..., δ(M−1) ≥ 0. That is, α( j) = α(M) +∑M−1
r= j δ(r), j = 1, 2, ..., M . It follows that

αT (x̄ − ȳ) =
M∑

j=1

α( j)(x̄·( j) − ȳ·( j))

=
M∑

j=1

{α(M) +
M−1∑

r= j

δ(r)}�( j)

= α(M)

M∑

j=1

�( j) +
M−1∑

j=1

δ( j)

j∑

r=1

�(r) ≥ 0,

(6)

where the inequality follows from the fact thatα(k) ≥ 0, δ(k) ≥ 0, and
∑k

j=1 �( j) ≥ 0,
for k = 1, 2, ..., M . Hence we have proven Theorem 2.1.
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Project Data Sphere and the Applications
of Historical Patient Level Clinical Trial
Data in Oncology Drug Development

Greg Hather and Ray Liu

Abstract As scientific data sharing initiatives become more popular, an increasing
amount of oncology clinical trial data is becoming available to the public. This histor-
ical data has the potential to help improve the design and analysis of future studies of
new oncology compounds. Project Data Sphere is one such public database of oncol-
ogy studies, with patient level data from over 76,000 patients. Here, we review the
contents of this database and describe several examples of how the data has been used
or could potentially be used in drug development. Applications include population
selection, historical comparisons, and identification of stratification factors.

Keywords Oncology · Data sharing · Project Data Sphere · Population selection ·
Stratification · Historical comparison

1 Introduction

Since the first human clinical trials of oncology compounds began, over 35,000
oncology clinical trials have been completed [1]. Traditionally, the patient level data
from these trials has been kept private due to commercial, legal, and patient privacy
concerns. This private data can only be reused by the data owner, thus limiting its
utility. The resulting inefficiency and duplication of effort slows the progress of
oncology drug development.

In recent years, some data owners have agreed to share their oncology data through
various initiatives. These initiatives include Project Data Sphere [2], which is an
oncology focused data sharing platform. Project Data Sphere was started by the
CEO Roundtable on Cancer Life Sciences Consortium as a platform to voluntarily
share deidentified historical oncology clinical trial datasets for the sake of advancing
future cancer research. The goal was for industry, academia, and governmental orga-

G. Hather (B) · R. Liu
Takeda Pharmaceuticals Inc., Cambridge, MA, USA
e-mail: Greg.hather@takeda.com

© Springer Nature Switzerland AG 2019
R. Liu and Y. Tsong (eds.), Pharmaceutical Statistics,
Springer Proceedings in Mathematics & Statistics 218,
https://doi.org/10.1007/978-3-319-67386-8_19

263

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-67386-8_19&domain=pdf
mailto:Greg.hather@takeda.com
https://doi.org/10.1007/978-3-319-67386-8_19


264 G. Hather and R. Liu

nizations to share their data with the public for scientific reuse. Project Data Sphere
began sharing patient data in 2014.

Project Data Sphere can be compared to several other data sharing initiatives that
include oncology clinical trial data. For example,ClinicalStudyDataRequest.com [3],
Yale University Open Data Access [4], and Pfizer’s data transparency initiative [5],
all include patient level oncology data. However, these platforms require a research
proposal and an approval process which can take many months [6]. These access
restrictions discourage the use of the data in drug development. Other potential
sources of oncology clinical trial data include the NCI Genomic Data Commons
[7] and dbGaP [8]. However, most studies in these databases lack detailed clinical
data, since the focus of these initiatives is to share genomic data. Shared data is
also available for specialized oncology populations, such as the MMRF CoMMpass
study, which has clinical data from a large cohort of multiple myeloma patients [9].

In terms of the number of patients included, Project Data Sphere is currently the
largest public source of patient level oncology clinical trial data, to the knowledge of
the authors. In addition, the data is detailed and relatively easy to access. While the
number of studies in Project Data Sphere is only a small fraction of all completed
oncology trials, we believe that formany cancer types, there is now enough publically
available patient level data to routinely consider using it as an aid in the design and
analysis of new trials. In this paper, we describe the contents of Project Data Sphere
and potential applications of this historical patient level data for oncology drug
development.

2 Project Data Sphere

Project Data Sphere currently contains data from over 76,000 patients [10]. These
patients are in 108 studies volunteered by 25 different providers. Users may browse
and download available study data through the platform’s website (https://www.
projectdatasphere.org/). Table 1 shows the number of studies provided for each type
of cancer. Most of the studies began on or after 2005 (see Fig. 1). Older data is
present in the database, but the older data may be less valuable if current treatment
patterns and outcomes have changed. The large majority of the studies (105 out of
108) are Phase III trials. All trials include the protocol, CRF, data dictionary, and
SAS datasets.

Project Data Sphere comes with very few access restrictions. To obtain access,
the user submits a brief application online. Although users are encouraged to submit
a brief description (up to 1,000 characters) of their research, no proposal is required.
In the authors’ experience, we were granted access within one business day of apply-
ing. Once access is granted, the user has access to the majority (85 out of 108) of
trials in Project Data Sphere. The remaining trials are those contributed by the NCI,
which require additional steps to access. To access an NCI trial, the user must fill
out a brief online form and provide a short research plan specific to the requested
data (up to 1,000 characters). In addition, the user must have a member of their

https://www.projectdatasphere.org/


Project Data Sphere and the Applications of Historical Patient … 265

Table 1 The number of
studies available for each type
of cancer. Note that some
studies are counted more than
once in this table because
they include multiple types of
cancer

Cancer type Number of studies

Breast 27

Prostate 26

Colorectal 15

Lung (Non-small cell) 13

Ovarian 7

Central nervous system 6

Leukemia 6

Pancreatic 6

Head-neck 5

Gastric 4

Liver 4

Lung (Small cell) 4

Myelodysplastic syndrome (MDS) 4

Neuroblastoma 4

Bone sarcoma 3

Brain 3

Germ 3

Kidney 3

Lymphoma (Non-hodgkins) 3

Multiple myeloma 3

Bladder 2

Melanoma 2

Myeloproliferative neoplasm 2

Soft tissue sarcoma 2

Testicular 2

Esophageal 1

Lymphoma (Hodgkins) 1

Mucositis 1

Myelofibrosis 1

Neuroendocrine tumors 1

Uterine cervix 1



266 G. Hather and R. Liu

Fig. 1 Distribution of the trial start year for studies in Project Data Sphere

organization’s legal department sign the NCI data use agreement. The agreement
requires that patient level data must not be shared, and that Project Data Sphere must
be acknowledged in publications.

To give an example of the richness of the data in Project Data Sphere, we highlight
the data available from a single study, NCT00415194, conducted by Eli Lilly. In this
study, have data for 397 subjects with metastatic cancer in the standard of care
arm, which was Placebo + Cisplatin. For each patient, we have age, sex, tobacco
use history, and cancer primary site. In addition, we have lab values and collection
dates, vitals at each visit, including weight and ECOG status, and list of concomitant
medicines. The data also provides AE records, with start and end dates. Finally, we
have the average Cisplatin dose (planned and actual), Overall Survival Time, and
Progression-free Survival Time.

One limitation of Project Data Sphere is that for the majority of studies (73 out
of 108), only control data is available. Another limitation of Project Data Sphere
is that the data is not standardized across formats. Data is provided in raw data
format or analysis data format. The level of data standardization for a particular study
depends on the age of the trial and the level of CDISC standards adoption. Therefore,
pooling datasets across studies may require substantial effort to integrate the data.
Furthermore, users should note that the maintainers of Project Data Sphere are not
responsible for data quality; instead, this is the responsibility of the organizations that
volunteer the data. Therefore, the data quality can vary between studies.An additional
limitation of Project Data Sphere is that formost studies, only a subset of the recorded
variables have been released to the database. For example, for trial NCT00415194,
lesion measurements, radiotherapy information, surgery information, and protocol
deviations were recorded, but these measurements were not provided to Project Data
Sphere.



Project Data Sphere and the Applications of Historical Patient … 267

3 Application of Project Data Sphere in Drug Development

AlthoughProjectData Sphere is a relatively recent initiative, several papers published
have made use of Project Data Sphere data. Wendling et al. [11] identified prognostic
biomarkers for survival in pancreatic cancer. Gill et al. [12] and Geifman et al. [13]
identified concomitant medications and surgical treatments that are associated with
survival in prostate cancer patients. As another example, Abdallah et al. [14] built a
predictive model for prostate cancer survival as part of a crowd-sourcing challenge.
Finally, Green et al. [15] performed an indirect comparison of two different drug
regiments for prostate cancer.

Although the published applications of Project Data Sphere we described above
were useful in understanding disease progression and selecting treatments, support-
ing drug development was not the focus of these papers. Thus, we describe below
several possible use cases for Project Data Sphere for the design and analysis of new
oncology trials. These use cases are drawn from papers using patient level historical
data. Here, we present 3 major use cases of how the patient level data in Project Data
Sphere can support drug development and provide value beyond what summary data
can provide. These applications are population selection, historical comparisons, and
identification of stratification factors.

4 Population Selection

Choosing which population to run a trial in is one of the major decisions in clinical
research. Generally, this decision is made by clinicians based on the drug’s mecha-
nism of action, preclinical data, and early clinical data. The project team’s assessment
of unmet medical need and the competitive landscape also contribute to this decision.
However, historical patient level data can provide additional information to help the
team identify the right patient population [16].

When setting the inclusion/exclusion criteria for a trial, one approach is to identify
a population with a poor expected outcome under the standard of care. Not only does
this approach focus on a population with unmet medical need, but it also increases
the statistical power to detect a drug effect. To understand why, consider a trial where
the population selected is expected to have a long survival time under standard of
care. Under this scenario, few events would be observed before the end of the study,
and the power to detect a drug effect would be low [17]. While it is possible to extend
the length of the trial or increase the number of patients studied to increase the power,
both optionswould increase the cost of the clinical trial. A relevant study fromProject
Data Sphere could help compare different patient subgroups under standard of care.
Patient subgroups that are unlikely to experience an event before the end of the trial
could be identified and potentially excluded from the study. In this way, much of
the prognostic modeling that has already been done with Project Data Sphere data
[11–14] could help to set inclusion criteria.
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Another requirement for a successful trial is that the population must be large
enough for a clinical trial to be run. If the population selected is too small, the trial
may suffer from low enrollment. Project teams can use Project Data Sphere data to
determine the relative size of populations considered by the team. Such an analysis
would give the team quantitative evidence to ensure that the selected population is
large enough.

Statisticians can contribute to population selection. First, the statistician can search
for a relevant study in Project Data Sphere, with input from the project team. If a
relevant dataset can be identified, the statistician can then summarize the distribution
of relevant covariates and outcomes, and show how each covariate is related to the
outcome. Based on these results, the team can propose several candidate sets of
inclusion/exclusion criteria.

To compare different proposed populations based on candidate sets of inclu-
sion/exclusion criteria, the statistician can compute the number of patients in the
dataset that fall within each population definition. In addition, the statistician can
present the distribution of outcomes for each population. When one population is
a subset of the other population, the statistician can also present the distribution of
outcomes of the excluded patients. If necessary, the statistician may also perform a
sample size calculation or simulation comparing the proposed inclusion/exclusion
criteria to estimate trial performance characteristics [18]. Based on these results, the
team may arrive at a final set of criteria or new proposals to test.

5 Historical Comparisons

Phase II oncology trials traditionally do not use a control group. Instead, the results
are usually compared to historical summary level data. Historical comparisons with
summary level control data have a long history in the statistics literature [19]. One
shortcoming of historical comparisons is the possibility that the populations are
different, thus confounding the comparison. This problem can be partly corrected
by adjusting for baseline covariates in the current and historical populations. While
several methods for adjustment exist with summary level historical data [20, 21],
more accurate adjustment methods can be used when patient level historical data is
available [15, 22–27]. Therefore, by using patient level data fromProject Data Sphere
as a historical control, the comparisons are likely to be more accurate. Common
methods of analysis when full patient level data is available include matched pair
analysis [15, 22–24], inverse probabilityweighting [25–27], and regressionmodeling
[22, 23]. All these methods require patient level data from both studies, and they can
account for differences in baseline covariates between the treatment group and the
historical control group. These methods can reduce both the bias and the variance in
the estimated treatment effect [27].
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Regression modeling is one approach to historical comparisons. With regression
modeling, the outcome is modeled as a function of the covariates, and the treatment
arm is included as a covariate. The estimated “treatment arm effect” from the regres-
sion model is the estimated drug effect. Unlike matched pair analysis, regression
modeling allows all data to be used. One disadvantage of this approach is that if the
regression model is misspecified, the resulting estimate for the drug effect will be
biased.

Another approach to historical comparison is inverse probability weighting. With
this method, one fits a regression model where the outcome is the treatment group
and the covariates are the baseline measurements. This type of model is called a
propensity scoremodel. Patients in the historical group can thenbe reweighted so that,
assuming the model is correct, the distribution of baseline covariates is identical to
that of the new trial. The drug effect can then be estimated using standard approaches
(e.g. Cox regression) applied to the reweighted data. While a propensity model may
be less intuitive than the regression model, the propensity score may depend on
fewer covariates and may be easier to model. However both regression modeling and
inverse probability weighting require the model to be correctly specified, otherwise
the estimated drug effect will be biased.

An alternative approach to historical comparison is matched pair analysis, which
matches similar patients in the current and historical data. Here, similarity is deter-
mined by the propensity score. One advantage of this method is that once the pairs
are selected, the analysis is the same as that of a real randomized trial. A disadvantage
of this method is that due to the difference in the sample sizes of the two studies,
some of the data points will not be part of a matched pair, and these data will not be
used in the analysis. This reduces the efficiency of the analysis, and it may result in
higher uncertainty in the estimates.

When using Project Data Sphere data as a historical control, the Project Data
Sphere study and analysis method should be pre-specified to be statistically valid. In
addition, the statistician should work with clinical experts to confirm that the Project
Data Sphere study is similar to the current study in terms of the eligibility criteria,
control treatment, treatment evaluation, and distribution of baseline characteristics
[19]. Ideally, the Project Data Sphere study should be recent, to reduce the amount
that patient care methods may have changed. Finally, the Project Data Sphere study
should have a sufficiently large sample size.

6 Stratification

In many Phase III oncology trials, the analysis is stratified by pre-specified baseline
covariates [28, 29]. One reason for using stratification is the belief that certain patient
populations may have different treatment efficacy. Another reason to use stratifica-
tion is that even if the treatment is the same across the subgroups, stratification can
potentially increase the power of the analysis because the heterogeneity within each
subgroup is expected to be lower than the heterogeneity of the entire population.
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The choice of stratification factor is generally made by clinicians based on the clini-
cian’s knowledge of the population, the drug’s mechanism of action, preclinical data,
and early clinical data. However, historical patient level data can provide additional
information to help the team identify the right stratification factors and the right
thresholds for the strata [29].

One way that a statistician can help the team is to fit a model that predicts the
outcome of interest using all the available baseline covariates. Next, the statistician
could use the model to calculate the fraction of variability in the outcome explained
by each of the baseline covariates. The list of covariates ranked by the magnitude of
their association with the outcome could then be supplied to the project team. The
project team can then consider these covariates, along with other prior knowledge
about the disease, when deciding which covariates to stratify by.

Another way that the statistician can support the stratification plan is to plot the
distribution of each covariate that is being considered as a stratification factor. If
cut points are set too high or low, some of the strata may have very few patients.
Analyzing the covariate distribution can help the team set better cut point(s) for the
strata.

Finally, one could perform a simulation analysis of different stratification
approaches by drawing on data from Project Data Sphere. For example, one could
simulate a clinical trial by random sampling of patients with replacement from a
Project Data Sphere study [18]. These patients could then be randomly assigned to
the treatment or control group of a trial. This would allow us to simulate a drug that
had no effect. The simulated data could be analyzed to calculate the treatment effect,
and the standard error of the estimated effect size could be computed. Next, one could
simulate different stratification approaches and check for the effect on the standard
error of the estimate. A stratification analysis that produced the lowest standard error
of the estimate would be preferred.

7 Conclusion

Project Data Sphere is a large public database of patient level oncology clinical
trial data. The database continues to grow and include coverage of less common
cancers. Project Data Sphere contains rich clinical data, and the data is easy to access.
Based on these feature, Project Data Sphere shows promise to be routinely applied
to support oncology drug development. In this paper, we summarized the contents of
Project Data Sphere and identified 3 major applications of Project Data Sphere data
in drug development: clinical trial population selection, historical comparisons, and
identification of stratification factors.
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Novel Test for the Equality of Continuous
Curves with Homoscedastic or
Heteroscedastic Measurement Errors

Zhongfa Zhang, Yarong Yang and Jiayang Sun

Abstract Testing equality of two curves occurs often in functional data analysis.
In this paper, we develop procedures for testing if two curves measured with either
homoscedastic or heteroscedastic errors are equal. The method is applicable to a
general class of curves. Compared with existing tests, ours does not require repeated
measurements to obtain the variances at each of the explanatory values. Instead,
our test calculates the overall variances by pooling all of the data points. The null
distribution of the test statistic is derived and an approximation formula to calculate
the p value is developed when the heteroscedastic variances are either known or
unknown. Simulations are conducted to show that this procedure works well in the
finite sample situation. Comparisons with other test procedures are made based on
simulated data sets. Applications to our motivating example from an environmental
study will be illustrated. An R package was created for ease of general applications.

Keywords Functional data analysis · Hypothesis test · Local regression ·
Tube formula
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1 Curve Test and its Motivating Example:
An Environmental Study—The Lead Project

In this paper, we present a new test procedure to formally test if two continuous
curves measured with errors are statistically equal over the defining interval.

Before we introduce the model, we will first introduce a real motivating study for
developing the test procedures.
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Studies have demonstrated a close adverse relationship between lead exposure
and children’s health see, for example, [27]. Among major sources of lead exposure
identified [1] are leaded paint, leaded gasoline, food, drinking water, industry wastes
and industry products etc. However, it is hard to identify the major source(s) of the
lead concentrations over time, in part due to the difficulties in obtaining long-term
high quality lead concentrations in children as well in their grown-up environment
retrospectively. Fortunately, there is a high correlation between lead concentration
measurements in children and that in their teeth. Once a tooth has finished its devel-
opment, the lead concentration in it will remain unchanged throughout one’s life. By
measuring the lead concentration in teeth, we can trace the lead concentration in a
child’s blood back to the year when the corresponding tooth was formed. This lead
concentration in blood will then be used as surrogate for lead exposure of child in
that year to be correlated with child’s health and lead concentrations from different
sources.

Each patient who participated in the study had either his/her first (molar 1) or
second molar (molar 2) extracted, and then the lead concentration as well as lead
isotopic ratios from that tooth were measured. The times for half-maximal enamel
formation for molar 1 and 2 are different, at about age 2 and 6 respectively. From
this point forward, we will refer to a patient as a member in group M1 if his/her first
molar was used and in group M2 otherwise.

The scatter plot of lead concentrations for the two groups is displayed in Fig. 1a.
From the plot, we see that points from the two groups are well mixed with each other.
Lead concentrations for both groups generally increased during the phase-in period
(1936–1960), then decreased afterward during the phase out period (1960–1990).
The phase-in and phase-out periods were mainly referring to the time periods when
the leaded gasoline was introduced and then phased out gradually till its totally ban
by EPA (1996).

In Fig. 1b, we imposed smoothing curves fitted by a local regression method.
To answer the question as of whether the two curves are statistically equal, we

need develop test procedures to do this.
The outline for the rest of this paper is as follows. In Sect. 2, we will formally

introduce the statistical model for the test procedure, following a brief literature
review in the field in Sect. 3. In Sect. 4, we introduce a few lemmas that are needed
to prove our theorems. In Sect. 5, we describe our test procedures, which are based
on the Tube formula and local regressions. Simulation studies are made in Sect. 7
and performance comparison with other test procedures will be presented in Sect. 8.
Test procedures are then applied to the motivating (teeth) data set mentioned above
in Sect. 9.

2 Model Setup

In this section, wewill formally introduce some statistical notations andmodel setups
to be used for the development of the proposed test procedures that will be discussed
in the next few sections.
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Fig. 1 Scatter plot of teeth enamel lead concentrations (in μg/gram) against year (1936–2000) with
(a) or without (b) local smoothing curves superimposed for each group

We formalize our model as following. Suppose

Y1(t) = f1(t) + ε1(t), (2.1)

and
Y2(t) = f2(t) + ε2(t), (2.2)

where ε1(t) and ε2(t) are two independent homogeneous Gaussian random errors
indexed by t with means E(ε1(t)) = E(ε2(t)) = 0 and variances Var(ε1(t)) = σ2

1
and Var(ε2(t)) = σ2

2 for all t. The term also implies that the errors at any t1, t2 with
t1 �= t2, εi (t1) and εi (t2) are independent for both i = 1, 2.

Of interest is to test H0 : f1(t) = f2(t) for all t ∈ T versus H1 : f1(t) �= f2(t)
for at least one t ∈ T , for some domain T (e.g., an interval).

We assume that both f1(t) and f2(t) are smooth functions with continuous deriva-
tives up to order 2. Such restrictions on choices of f are reasonable and sometimes
necessary.

One special case occurs when f2(t) ≡ 0 (or any other nonzero constant c). In
this case, we are testing if curve Y1(t) is statistically different from (homogeneous)
Gaussian random errors.

The observed data are {(t1,i ,Y1,i ), i = 1, . . . , n1} for model (2.1) and {(t2, j ,Y2, j )
j = 1, . . . , n2} for model (2.2), where sample sizes n1 and n2 may or may not equal.
The errors εi, j are assumed to be independent for i = 1, 2, j = 1, . . . , ni .

Notice here that the two sequences of t1,i and t2,i are not necessarily the same(but
they do need to be on the same support interval). At any given t value, our model
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does allow only one response value, so no repeated measurements are required. This
adds more flexibility in applications than other procedures, which we will introduce
in the next section.

3 Related Works of Functional Data Analysis

In this section, we will give a brief literature review and related works in this field.
Studies that extend numerical data analysis to functional data analysis can be

traced back to Parzen [18]. Ramsay and Daizell [19] coined the term Functional
Data Analysis (FDA) to distinguish it from ordinary data analysis. Since then, several
people have tried doing research on various aspects in the field. For example, [14]
considered canonical correlation analysis when the data are curves. James and Hastie
[9] discussed functional linear discriminant analysis for irregularly sampled curves.
A related work was done by Kitska [12], in which he extended the ANOVA test
procedure from discrete time to continuous time, termed his method Functional
ANOVA (FANOVA). But this method applies only when the underlying regression
is linear. See a recent summary in [26]. More closely related to our present research
is work done by [7], who gave a procedure to test significance of differences between
two curves by executing a Fourier or Wavelet transformation (on the curves), and
then using the partial coefficients to test the hypothesis. We call this an indirect
method since the test is based on transformed functions (curves) rather than on the
original functions (curves) themselves. This test procedure requires the two curves to
be on the same supporting sets (i.e, t values), but for each t value, there should have
multiple response values (repeated measurements) from each group being tested.
The algorithm will fail if there is only one response value at some point, because the
procedure will fail to calculate the variance of response at that point. In this paper,
we present a direct method to test the hypothesis by estimating the involved tail
probability directly under the null.

4 A Few Lemmas

In this section, we will introduce a few lemmas which will be needed to prove our
main theorem described in the next section.

Lemma 4.1 Assume that X1 ∼ χ2
n1 and X2 ∼ χ2

n2 are independent random vari-
ables having χ2 distribution with degree of freedom n1 and n2 respectively, where
n1 and n2 are relatively large. Let Gi = Xi (X1 + X2)

−1/(ni (n1 + n2)−1). Then
Gi → 1 in distribution. In particular, for i = 1, 2,

E {Gi } → 1, E
{
G2

i

} → 1. (4.1)
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Proof See Appendix A.
Now suppose that X1, X2, S1, S2 are four independent random variables such that

Xi ∼ χ2
ni and νi Si ∼ χ2

νi
for i = 1, 2. Let n = n1 + n2 and

Y = X1 + X2

X1/S1 + X2/S2
. (4.2)

Lemma 4.2 Assume ni > νi for i = 1, 2. Under the conditions of Lemma4.1, Y ∼
χ2

ν/ν approximately with degree of freedom ν estimated by formula

ν = n2ν1ν2
n22ν1 + n21ν2

. (4.3)

Proof See Appendix B.
To see how close the approximated distribution of Y stated in this lemma is to the

true distribution of Y , we did some numeric study based on generated data. First, we
choose νi , ni for i = 1, 2. Then we generate random samples of Xi and Si following
the distribution described in this lemma, for i = 1, 2. The correspondingY calculated
by formula (4.2) will serve our true samples of Y . A random sample drawn from a
χ2

ν/ν distribution, where ν is calculated by formula (4.3) will be our approximated
samples of Y . For ν1 = 120, ν2 = 300, n1 = 800 and n2 = 1000, we have generated
Fig. 2. In this figure, the density curve of χ2

ν/ν, where ν is calculated by (4.3) is
presented as dashed curve. The true density curve of Y is presented as solid black
curve. To compare, the density curves of X1 and X2 are also displayed in the plot.

D
en
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3
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5

0.8 1 1.2

pdf of
True Dist. of Y
Y~χ2(ν) ν
X1 ~ χ2(ν1) ν1
X2 ~ χ2(ν2) ν2

 x

Fig. 2 The true density of Y (solid black) by numerical method on generated data and the density
of χ2

ν/ν (dashed), with ν calculated by formula (4.3). The density curves of χ2
νi

/νi are also added
on the plot. n1 = 800, n2 = 1000, ν1 = 120, ν2 = 300
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Fig. 3 aCompare the degrees of freedomν calculatedby formula (4.3) (dotted lines) and the degrees
of freedom ν by generated datawith ν = 4πm2 (as true values, solid line)with different combination
of values ν1 = 100, 200, . . . , 800 (x-axis) and ν2 = 200, . . . , 1500 (from bottom curve up). Here
n1 = 1000, n2 = 1500. b Tube with 2 endpoints around a 1-dimensional manifold (dark line in the
middle) embedded in R2. This tube has its main part (shaded area) and 2 boundaries (white areas)

By allowing the 4 parameters to take a sequence of values of its own, we
can compare how close the two distributions are under different cases, by just
comparing the degrees of freedom of the two χ2 distributions. The estimated
degrees of freedom were obtained by the following steps. First, draw samples of
Xi ∼ χ2

ni , Si ∼ χ2
νi
, i = 1, 2. independently, then compute Y by formula (4.2) to

get a sample of Y. Repeat this step K times to get a set of i.i.d. samples of Y of size
K . Then its pdf p(y) is estimated and its peak valuem = maxy p(y) is calculated and
ν is calculated based on formula ν = 4πm2. This formula is obtained theoretically
through finding the relationship between the degree of freedom ν and the peak value
of density function of a χ2

ν/ν distribution. Our simulation plot (Fig. 3a) shows that
they agree with each other. See also Table 1 of numerical version of Fig. 3a.

To prove our Theorems, we also need the following definition and lemma.

Definition 4.3 (Tube) A tube T , with radius r of a manifold M(t) = {mn(t) :=
(m1(t), m2(t), . . . ,mn(t)), t ∈ T } embedded in n-dimensional space X (either
Euclidean space Rn or Spherical surface Sn−1 ⊂ Rn) is defined to be the set of all
points x ∈ X such that d(x,M(t)) ≤ r, or T = T (r) = {x ∈ X : d(x, y) ≤ r f or
atleast oney ∈ M(t)},where d is the usual Euclidean distance. It is one dimensional
if the domain T of t is 1-dimensional.
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Table 1 Comparison of true degrees of freedom (upper element)with calculated degrees of freedom
ν (lower element, as estimated d.f. via formula 4.3) for different combinations of degrees of freedom
of ν1 and ν2

ν1 ν2

100 200 300 400 500 600 700 800

100 192.7 232.6 242.4 253.6 252.8 258.6 264 268.5

192.3 227.3 241.9 250 255.1 258.6 261.2 263.2

200 289.5 379 422.9 449.6 471.8 468.7 497.2 500

294.1 384.6 428.6 454.5 471.7 483.9 493 500

300 354.8 496.2 580.1 625.4 643.1 677.4 705.3 732

357.1 500 576.9 625 657.9 681.8 700 714.3

400 407.3 570.9 697.8 763.9 808.8 844.7 889.8 896.7

400 588.2 697.7 769.2 819.7 857.1 886.1 909.1

500 422.2 672.3 789.9 879.5 941 1013.1 1038.9 1098.7

431 657.9 797.9 892.9 961.5 1013.5 1054.2 1087

600 456.1 721.3 868.2 1011.5 1062.6 1165.2 1180.2 1256.9

454.5 714.3 882.4 1000 1087 1153.8 1206.9 1250

700 471.6 768.9 943.5 1095.5 1204.6 1256.3 1355.2 1409.4

473 760.9 954.5 1093.8 1198.6 1280.5 1346.2 1400

800 486.7 793.8 1040 1152.3 1267.9 1433.2 1451.3 1534.3

487.8 800 1016.9 1176.5 1298.7 1395.3 1473.7 1538.5

Since the distance d in Rn can be equivalently defined by the inner product:

d(x, y)2 = 〈x − y, x − y〉, (4.4)

where x, y ∈ Rn , the tube can also bedefinedby the inner product.When x, y ∈ Sn−1,
the relation between distance and inner product reduces to:

d(x, y)2 = 2 − 2〈x, y〉.

The volume vol(T ) of a tube T can be roughly divided into two parts. The first
part is the (main) tubular area in the middle (shaded area), while the second part is
the one resulting from boundary correction if the manifold has boundaries (unshaded
white areas). See the illustration picture in Fig. 3b. This problem of calculating the
volume of a tube was first proposed and solved by Hotelling [8] in a 1-dimensional
manifold situation. Weyl [25] extended the results to higher dimensional manifolds;
that is, when M(t) is a surface. Other publications on the subject include [11, 13,
16, 17, 23].

When X = Sn−1 is the surface of the unit sphere in Rn and themanifold is a curve,
we have:
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Lemma 4.4 The volume of tube can be obtained by the following formula:

V ol(T ) = κ0An

2π
P(β1, (n−2)/2 ≥ w2) + E An

4
P(β1/2, (n−1)/2 ≥ w2), (4.5)

where βa,b denotes a random variable following a β distribution with parameters a
and b, An = 2πn/2/�(n/2) is the surface area of the unit sphere in Rn, w = 1 −
r2/2,κ0 is the length of themanifoldM(t) as before and E is the Euler characteristic
number (or the number of end points of M(t) in this case).

This theorem was provided by Knowles and Siegmund [13], extended by Sun and
Loader [22] [2.5, p1331] to cases when the dimension of the manifold d ≥ 2:

Pr

{
sup
x∈X

< T (x),U >≥ w

}
(4.6)

= κ0 J0(w) + ξ0

2
J1(w) + κ2 + ξ1 + m0

2π
J2(w) + O((1 − w2)(n−d+2)/2),

where Je(w) = (An−d+e−1/An)
∫ 1
w
(1 − u2)(n−d+e−3)/2ud−edu, e = 0, 1, 2.

It is easy to see the corresponding relationship between formula (4.5) and
(4.6): apart from a constant An , which is needed to be divided from the vol-
ume of tube to get the probability, J0(w) = 1/(2π)P(β1, (n−2)/2 ≥ w2), J1(w) =
P(β1/2, (n−1)/2 ≥ w2)/2. Formula (4.5) thus takes only the first two terms in formula
(4.6).

5 Theorems and Test Procedures

In this section, we will outline a few theorems and describe the test procedures when
different model assumptions arise. The lengthy proofs of these theorems will be
given in Appendix.

Remember we are testing: H0 : f1(t) = f2(t) for all t ∈ T versus H1 : f1(t) �=
f2(t) for at least one t ∈ T , for some domain T based on observed data sets
{(ti, j ,Yi, j ), i = 1, 2, j = 1, . . . , ni }, where Yi, j = fi (ti, j ) + εi, j with εi, j ∼
N (0,σ2

i ) assumed to be independent for i = 1, 2, j = 1, . . . , ni . σi and σ2 may or
may not equal. In case σ1 = σ2, we have the homoscedastic errors, while otherwise,
we have the heteroscedastic errors.

5.1 Homoscedastic Case

Here we assume the variances of the two homogeneous Gaussian random errors
εi , i = 1, 2 in models (2.1) and (2.2) are equal, i.e., we assume that σ2

1 = σ2
2 := σ2.
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Consider the quadratic local regression estimation. Then f1 can be obtained by
solving the following optimal problem

min

{

(a0, a1) :
n1∑

i=1

W (
t − t1.i

h
)(Y1,i − a0 − a1(t1,i − t))2

}

,

where W (t) is a kernel function and h is the window width with h > 0 and h → 0.
The estimated f1(t) from model (2.1) is

f̂1(t) = â0 =
n1∑

i=1

l1,i (t)Y1,i = 〈l1(t), Y1〉, (5.1)

where Y1 = (Y1,1, . . . ,Y1,n1)
′, l1(t) = (l1,i (t), i = 1, . . . , n1)′,

l1,i (t) = w1,i
∑

j w1, j (t − t1, j )(t1,i − t1, j )
∑

i

{
w1,i

∑
j w1, j (t − t1, j )(t1,i − t1, j )

} , (5.2)

and w1,i = W ((t − t1.i )h−1) for i = 1, . . . , n1.
Similarly, the estimated f2(t) by quadratic local regression for model (2.2) can

be expressed

f̂2(t) =
n2∑

i=1

l2,i (t)Y2,i = 〈l2(t), Y2〉, (5.3)

where Y2, l2(t) are similarly defined.
If both estimators f̂i (t) are unbiased, i.e., E f̂i (t) = fi (t) = ∑

j li, j (t)μi, j for
i = 1, 2, where μi, j = EYi, j for all i, j. Then for i = 1, 2,

E f̂i (t) =E(
∑

j

li, j (t)Yi, j ) =
∑

j

li, j (t)μi, j = 〈li (t),μi 〉,

Var( f̂i (t)) =σ2
∑

j

l2i, j (t) = σ2‖li (t)‖22,

where ‖ · ‖2 denotes the L2 norm.
Because ε1(t) and ε2(t) are assumed to be independent, Var( f̂1(t) − f̂2(t)) =

σ2(
∑

l21,i (t) + ∑
l22,i (t))= σ2(‖l1(t) ‖2 + ‖l2(t)‖2) and the standard deviation of

f̂1(t) − f̂2(t) is sd( f̂1(t) − f̂2(t)) =σ
√‖l1(t)‖2 + ‖l2(t)‖2.

Estimate of the standard deviation σ. Let ε̂i := (ε̂i,1, ε̂i,2, . . . , ε̂i,ni )
′ = (Yi,1 −

Ŷi,1,Yi,2 − Ŷi,2, . . . ,Yi,ni − Ŷi,ni )
′, where Ŷi, j = f̂i (ti, j ), for i = 1, 2. Let
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Li =

⎛

⎜⎜
⎝

li,1(ti,1) li,2(ti,1) . . . li,ni (ti,1)
li,1(ti,2) li,2(ti,2) . . . li,ni (ti,2)

. . . . . . . . . . . .

li,1(ti,ni ) li,2(ti,ni ) . . . li,ni (ti,ni )

⎞

⎟⎟
⎠

be the matrix such that Ŷi = LiYi . Therefore, ε̂i = (Ii − Li )Yi , where Ii is the
identity matrix of order ni . Let Ai = (Ii − Li )(Ii − Li )

′. Cleveland and Devin [5]
showed that E(ε̂′

i ε̂i ) = σ2tr(Ai ), Var(ε̂′
i ε̂i ) = 2σ4tr(A2

i ).

Also for i = 1, 2, let δi,1 := tr(Ai ), δi,2 := tr(A2
i ), and let

νi := δ2i,1/δi,2, ν = ν1 + ν2. (5.4)

Then by equating the first two moments of random variables from both sides, it can
be shown that ((ε̂′

i ε̂i )δi,1)(σ
2δi,2)

−1 ∼approx χ2
νi
, for i = 1, 2.

Since ε̂1 and ε̂2 are independent, we have
∑2

j=1((ε̂
′
j ε̂ j )δ j,1)(σ

2δ j,2)
−1 ∼approx

χ2
ν = χ2

ν1+ν2
. If we estimate σ2 by

σ̂2 = (ε̂′
1ε̂1)δ1,1

νδ1,2
+ (ε̂2

′ε̂2)δ2,1
νδ2,2

, (5.5)

then νσ̂2/σ2 ∼ χ2
ν .

This expression of estimated σ2 can be viewed in another way. Let σ̂2
i =

(ε̂′
i ε̂i )/δi,1, then (νi σ̂

2
i )/σ

2
i ∼ χ2

νi
approximately for i = 1, 2. The right hand side

of Eq. (5.5) can thus be written as:

σ̂2 =ν1σ̂
2
1 + ν2σ̂

2
2

ν1 + ν2
.

Therefore, our estimate of σ̂2 is aweighted average of estimates of the two individual
variances. This mimics the pooled estimation of variance in the two sample t-test
situation.

Let

Z(t):= ( f̂1(t) − f̂2(t)) − ( f1(t) − f2(t))

sd( f̂1(t) − f̂2(t))
. (5.6)

Under H0 : f1(t) = f2(t), EZ(t) = 0, Var(Z(t)) = 1 for all t ∈ T .

Z(t) is approximately a Gaussian random field. Let

ui (t) := li (t)√
‖l1(t)‖22 + ‖l2(t)‖22

, i = 1, 2.

Then Z(t) can be expressed in terms of u1(t) and u2(t) :
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Z(t) = ( f̂1(t) − f1(t)) − ( f̂2(t) − f2(t))

sd( f̂1(t) − f̂2(t))
= f̂1(t) − f1(t)

sd( f̂1(t) − f̂2(t))
− f̂2(t) − f2(t)

sd( f̂1(t) − f̂2(t))

=〈 l1(t)√
‖l1(t)‖22 + ‖l2(t)‖22

,
Y1 − EY1

σ
〉 − 〈 l2(t)√

‖l1(t)‖22 + ‖l2(t)‖22
,

Y2 − EY2

σ
〉

=〈u1(t), ε1

σ
〉 − 〈u2(t), ε2

σ
〉 = 〈u1(t), ξ1〉 − 〈u2(t), ξ2〉 ,

where ξi = εi/σ, i = 1, 2 aremultivariate standard normal (following amultivariate
N (0, 1) distribution), and are independent to each other.

The correlation function ρ(t, t ′) of the random field Z(t) is computed by

ρ(t, t ′) :=corr(Z(t), Z(t ′)) = 〈u1(t), u1(t ′)〉 + 〈u2(t), u2(t ′)〉 (5.7)

by the fact that ξi ’s are independent standard normal and that ui (t) ∈ Sn−1 for i =
1, 2.

Let us return to our primary test problem. Recall that we want to test H0 : f1(t) =
f2(t) for all t ⇔ H1 : f1(t) �= f2(t) for at least one t at a pre-specified level α.

Consider the test statistic
T = maxt∈T ‖Z(t)‖. (5.8)

If the realized T = t0 is too large, we reject the null hypothesis. More specifically,
we need to find the (tail) probability PrH0(T > t0). If this probability is larger than
α,we accept the null and declare that there is no difference between curves f1(t) and
f2(t).Otherwise, we will reject the null hypothesis. The key issue is how to estimate
the tail probability PrH0(T > t0). We offer the following theorem to estimate this
probability, which is generalization of the Theorem in [24].

Theorem 5.1 (Tail Probability Estimation for Homoscedastic Case) Suppose T =
[a, b] and f̂1(t) and f̂2(t) are unbiased estimates of f1(t) and f2(t), and l1(t) and
l2(t) are defined in (5.2) and (5.3) respectively. If σ2 is known, then

PrH0(T > t0) ≈ κ0

π
exp(− t20

2
) + E(1 − �(t0)) as t0 → ∞. (5.9)

If σ2 is unknown and is estimated by σ̂2 in (5.5) so that νσ̂2/σ2 ∼ χ2
ν, then

PrH0(T > t0) ≈ κ0

π
(1 + t20

ν
)−ν/2 + E

2
P(|tν | > t0) as t0 → ∞, (5.10)

where tν, ν �= 0 follows a standard t distribution with degree of freedom ν,

κ0 =
∫

T
|C(t)|1/2dt, (5.11)
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C = ∂ρ(t, t ′)/∂t∂t ′|t ′=t , and E is the Euler-Poincare characteristic of manifold
M(t) = (u1(t),−u2(t)) from T to Sn−1 = {x ∈ Rn : ‖x‖ = 1}, the n = n1 + n2
dimensional unit surface. E = 0 if M(a) = M(b), E = 2 if M(a) �= M(b) and
M has no self-overlap.

Proof See Appendix C.
When σ2 is known, Z(t) =< u1(t), ξ1 > − < u2(t), ξ2 > in (5.6) is actually a

finite Karhunen-Loeve expansion of the random field Z(t). The covariance function
ρ(s, t) of Z(t) in formula (5.7) has a finite expansion (of up to n terms of form
Zi, j (s)Zi, j (t), for i = 1, 2, j = 1, . . . , ni ). The constant κ0 can be approximated by
the following formula.

Computation of κ0: If T = [a, b], and is partitioned into k small intervals a = t0 <

t1 < t2 < · · · < tk = b such that maxi |ti − ti−1| → 0 as k → ∞. Then κ0 can be
approximated by

κ0 =
∫

T
|C(t)|1/2dt

≈
k∑

i=1

[‖u1(ti ) − u1(ti−1)‖22 + ‖u2(ti ) − u2(ti−1)‖22]1/2, (5.12)

where ‖.‖2 as before denotes the L2 norm. Its computation is often straight forward.

5.2 Special Case when f2(t) ≡ 0

This is amuch simpler versionof theprevious problemand is equivalent to a normality
test (over a continuous domain ). Studies of this problem can be found in James and
Stein [10], Shapiro and Wilk [21], Chakravarti et al. [3], but with a different setup.

Throughout this section, we will suppress the group subscripts to simplify our
notation.

Our test procedure will first use local regression to estimate f (t) for a selected
window width h and kernel function W (t) as before. The estimated curve f (t) can
be expressed

f̂ (t) =
n∑

i=1

li (t)Yi = 〈l(t), Y〉, (5.13)

where Y and l(t) are defined as before in (5.2), with index i being omitted.
Let T (t) = l(t)/‖l(t)‖. Theorem (5.1) is still valid and κ0 can be calculated by

κ0 = ∫
T ‖T ′(t)‖dt. Similar to the estimation formula of κ0 in (5.12), we can

estimate κ0 by κ0 ≈ ∑k
i=1 ‖T (ti ) − T (ti−1)‖, if T = [a, b] and it is partitioned into

k intervals a = t0 < t1 < t2 < · · · < tk = b withmaxi |ti − ti−1| → 0 as k → ∞. E
is similarly defined as it was in Theorem 5.10. QED
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5.3 Heteroscedastic Case

In this case, the assumption σ2
1 = σ2

2 is no longer valid. Instead, we assume the two
fitted models have different standard deviations for its error terms (see Sect. 2 for
detail).

Let f̂i (t) = ∑ni
j=1 li, j (t)Yi, j , for i = 1, 2, be estimated as before in the

homoscedastic case (note the estimate of fi (t) does not depend on σ2
i ’s at all) and

let

Z(t) := [ f̂1(t) − f1(t)] − [ f̂2(t) − f2(t)]
sd( f̂1(t) − f̂2(t))

ui (t) := σi li (t)√
σ2
1‖l1(t)‖2 + σ2

2‖l2(t)‖2
, ξi := εi

σi
= Yi − EYi

σi
,

for i = 1, 2, where ξi ∈ Rni is (multivariate) standard normal for i = 1, 2, indepen-
dent with each other, li (t), i = 1, 2 are defined similarly in (5.2).

Z(t) can be expressed in terms of u1(t) and u2(t) (again, with assumption that
f̂i (t), i = 1, 2 are unbiased, as we did in the homoscedastic case):

Z(t) = 〈u1(t), ξ1〉 − 〈u2(t), ξ2〉.

The correlation function ρ(t, t ′) of this random field Z(t) can be calculated as

ρ(t, t ′) :=corr(Z(t), Z(t ′)) = 〈u1(t), u1(t ′)〉 + 〈u2(t), u2(t ′)〉 (5.14)

Each individual σ2
i for i = 1, 2 can be estimated separately as:

σ̂2
i = ε̂′

i ε̂i

tr((I − Li )(I − Li )′)
(5.15)

where Li is the matrix in the estimation equation Ŷi = LiYi , ε̂i = Yi − Ŷi = (I −
Li )Yi . Such estimates satisfy the property that σ̂2

i /σ
2
i ≈ χ2

νi
/νi for i = 1, 2, as we

have discussed before.
To test H0 : f1(t) = f2(t) for all t ⇔ H1 : f1(t) �= f2(t) for at least one t ∈ T

at pre-specified level α, consider the test statistic

T = maxt∈T ‖Z(t)‖. (5.16)

Depending on the realized T = t0, we will reject or accept the null hypothesis if
t0 is large or small. More specifically, we need to find the probability Pr(T > t0).
If this is larger than α, we will accept the null and declare that there is no difference
between curves f1(t) and f2(t).
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The probability Pr(T > t0)will be estimated by a generalization andmodification
of the theorem in Sun and Loader [22], p1330. Modifications are made here to
estimate both the common degree of freedom ν and the variances when they are
unknown.

Theorem 5.2 (Tail Probability Estimation for Heteroscedastic Case)When the vari-
ances are not equal, the conclusions in Theorem5.1 are still valid with estimated ν
in (4.3) being replaced by

ν = n2ν1ν2
n22ν1 + n21ν2

.

That is:

Pr(T > t0) ≈ κ0

π
exp(− t20

2
) + E(1 − �(t0)) as t0 → ∞, (5.17)

for known variances, and

Pr(T > t0) ≈ κ0

π
(1 + t20

ν
)−ν/2 + E

2
P(|tν | > t0), (5.18)

for unknown variances, with σ2
i being estimated by formula (5.15).

Proof See Appendix D.

Remarks: when n1 = n2 and ν1 = ν2, it can be readily shown that the estimate of ν
in Theorem5.2 is reduced to the estimate of ν in (5.4) for the homoscedastic case.

Computation of κ0: κ0 in Theorem 5.2 will be estimated using formula (5.12) in
Theorem 5.1. The assumption of whether we have equal or unequal variances will
not affect the calculation of this quantity; see the definition of ui (t) of Z(t), and
[13, 22].

6 Boundary Correction and Automatic Bandwidth
Selection

In this section, we will propose a few options to improve the curve fittings, namely
with methods such as boundary corrections and automatic bandwidth selections
proposed in the literature.

For kernel regression, the bias in the boundary area is automatically corrected in
most cases [4] when the degree of the polynomial is properly selected. However,since
our method fixed the degree of polynomial to be 1 (so it is locally linear fitting), our
algorithm may need to address the boundary bias issue. We implemented a simple
idea to correct the boundary biases as was discussed in [6].

Another issue often mentioned in the literature is the automatic bandwidth selec-
tion problem. As numerous publications have pointed out (see [4] for an overview),
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bandwidth selection can be important in deciding the goodness of fit. In the imple-
mentation of our algorithm, we have offered three different methods to specify the
bandwidth.

The first method is to specify a fixed bandwidth directly for all data points in the
domain. The second method is to specify the percent of neighboring data points to
be use for each point in the domain. We call this percent of neighboring data points
in the later method as smoothing α. This method is more adapted than the fixed
bandwidth method. For example, if α = 0.5, we are using a bandwidth spanning a
window that have 50% of all data points falling in the window. Thus for different
points, the window sizes may change. Smoothing α = 0.5 has been set as the default
value for the parameter. Our simulation shows that this selection achieves the best
fitting for most situations. When both bandwidth and smoothing alpha are specified,
the bandwidth will be used, and the smoothing alpha will be discarded.

The thirdmethod is termed optimal one.When choosing this option, the algorithm
will make a series curve fittings using a sequence of α values. For each α, the
algorithm will calculate the generalized cross validation (GCV) statistic. The best α
value will be selected to be the ’optimal’ one if it generates the minimal GCV value.
This method has been used in the locfit package, see [15].

The performances of different combinations of these parameters will be illustrated
below in Fig. 4. Panels a and b were generated using the same parameters except that

Fig. 4 Performance comparisons using different parameters in the model. True curves are assumed
to be f1(x) = f2(x) = x ∗ (1 − x) + sin(2πx). a Simple correction was used. bNo correction was
used. c fixed bandwidth= 0.2. d–f Different smoothing alphas were used to fit the curves
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A used a simple correction method to the boundary biases, while B used none.
Panels c–f compare the effect using different smoothing parameters, which include
a fixed bandwidth (bw = 0.2, c) and smoothing α = 0.3(d), 0.5(e) and optimal(f).
The simple correction specification seems to generate an over-corrected curve in the
boundary area in our example (See the upward pattern in a), while it performs well
with the non boundary correction specification. When the smoothing α = 0.3, it is
apparently under-fitted the data (see panel d), while the default α(= 0.5) greatly
improve the fitting. The optimal smoothing α method improved the fitting again.
However, optimal bandwidth selection based on GCV is computationally intensive,
often generates a curve or curves that is over-fitted.

7 Simulations

In this section, we will show the overall performance of our proposed procedure
under different assumptions based on simulated datasets.

First, we assume that the random errors are homoscedastic. We then assign values
to n1 and n2, the sample sizes for the two groups of data sets that define the two curves.
The ti, j ’s for i = 1, 2, j = 1, . . . ni are chosen to be equally spaced between 0 and
1, so our T = [0, 1]. This should not cause any loss of generality, since otherwise,
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Fig. 5 Simulation results for test f1(t) = f2(t), t ∈ T = [0, 1] : homoscedastic variances were
assumed. 10000 repetitions were used
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Fig. 6 Simulation results for test: f1(t) = f2(t), for t ∈ T = [0, 1] : homoscedastic variance
assumption was dropped. 20000 repetitions were used. Heteroscedastic variances were used with
different σ2

1 and σ2
2

we can scale the domain to force it to be between 0 and 1. Set f1(t) = f2(t) = x ∗
(1 − x) + sin(2πx) so that H0 is true. Generate n1 and n2 i.i.d. Gaussian N (0,σ2)

random samples εi, j for i = 1, 2, j = 1, . . . , ni , where σ is the common standard
deviations of the two curves. The Yi is obtained by adding fi (t) and εi together. The
actual used σ are 0.4, ..., 1.6 in our simulation to produce Fig. 5.

Now partition T = [0, 1] into n equally spaced subintervals with the n + 1 end
points ti = i/n for i = 0, 1, . . . , n, where n is chosen by user, and is independent of
both n1 and n2. These t ′s are used to represent the continuous curves of f in computer.
The default smoothing α = 0.5 was used to fit the two curves to obtain the estimated
function values f̂1(ti ) and f̂2(ti ), for i = 1, . . . n. κ0 is computed based on formula
(5.12) and the realized test statistic t0 defined in (5.16) is computed, together with
the p-value based on the right-hand-side of formula (5.10). This p-value is compared
with a sequence of pre-selected levels (e.g., 0.005, 0.01, 0.02, 0.05, 0.1). For each
of the choice of σ2, the proportions that H0 is falsely rejected at each level among
10,000 iterations are calculated. The result is plotted in Fig. 5. Similar simulation
results were generated in Fig. 6 for the heteroscedastic case.
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Simulation results in Figs. 5 and 6 show that our approximation formulas (5.1) and
(5.2) are correct and accurate, with deviations from the true target tail probabilities
(the solid black line) in our study being usually less than 1%.

8 Comparison with Other Test Procedures

In this section, we will compare the performance of our curvetest procedure with
that of other test procedures from the literature.

We selected two test procedures from literature for making comparisons. One is
the test procedure called hanova, which is based on Adaptive Neyman Statistic from
[7] using Fourier transformation. Another is the ordinary ANOV A test for testing
group differences in linear regression model (i.e., test g in y ∼ x ∗ g).

To generate the data, we first set a few parameters, including the standard devi-
ations σi , i = 1, 2 for the errors of curves, the true curve functions f1(t) and f2(t),

σ1=0.5, σ2=0.5

0 0.02 0.04 0.06 0.08 0.1

0
0.

02
0.

04
0.

06
0.

08
0.

1
0.

12

σ1=0.7, σ2=0.7

0 0.02 0.04 0.06 0.08 0.1

0
0.

02
0.

04
0.

06
0.

08
0.

1
0.

12

σ1=0.9, σ2=0.9

0 0.02 0.04 0.06 0.08 0.1

0
0.

02
0.

04
0.

06
0.

08
0.

1
0.

12

σ1=0.5, σ2=0.7

0 0.02 0.04 0.06 0.08 0.1

0
0.

02
0.

04
0.

06
0.

08
0.

1
0.

12

σ1=0.5, σ2=0.9

0 0.02 0.04 0.06 0.08 0.1

0
0.

02
0.

04
0.

06
0.

08
0.

1
0.

12

σ1=0.7, σ2=0.9

0 0.02 0.04 0.06 0.08 0.1

0
0.

02
0.

04
0.

06
0.

08
0.

1
0.

12

y=x
curve
test
hanova

anova

True Error Rate

E
st

 E
rr

or
 R

at
e

(a) (b) (c)

(d) (e) (f)

Fig. 7 Comparison of different tail probability calculations for curvetest (in red), anova (in blue)
and or hanova (in cyan) for test: f1(t) = f2(t). Homoscedastic (a–c) or heteroscedastic (d–f)
variances were assumed here. 1000 repetitions were used to find the tail probably at different levels.
σ1 and σ2 are the standard deviations used to generate the random errors for curves in group 1
and 2 respectively with the true curve function being set to be f1(t) = f2(t) = t1−t ∗ (t − 1) for
t ∈ [0, 1]. There are N1 = 45 and N2 = 40 repeated measurements defining the curves 1 and 2
respectively for each generated data set
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a sequence of time points from 0 to 1 of length Nt (the common number of t-values
for both curves, as it is required by hanova and ANOV A procedures), and N1 and
N2 for the number of repeated measurements at each time points t . At any time t ,
there will have Ni repeated measurements for i = 1, 2. As a result, there will be
a total number of Nt ∗ Ni data points as our observed data for the corresponding
curve i, i = 1, 2. The data points representing the curve i was fi (t) plus N (0,σ2

i )

for i = 1, 2.
This data generating schema with repeated measurements at each time points is

necessary, as hanova and ANOV A procedures will fail if we have only one points
at any individual time point. hanova also requires to have a relatively large number
of data points at each time to have a reasonable approximation result.

Figure7 displays the simulation results for comparison with the other two test
procedures, for both homoscedastic (a–c) and heteroscedastic (d–f) cases. For either
case, hanova gives slightly larger tail probability estimation than the targeted values.
Both ANOV A and curvetest in most cases give the tail estimation close to the
targeted values. For homoscedastic error cases, the curvetest procedure gives tail
probabilities that aremost close to the targeted tail probabilities when the underlining
homoscedastic errors are large. For heteroscedastic case, ANOV A gives slightly
better estimates than curvetest, especially when the differences between the two
standard deviations are large.

9 Test Results on Teeth Lead Data Set

In this section, we will display the test results on the motivating data set from running
our test procedure for illustration purpose.

To do this, the proposed test procedure was applied to the Teeth data set based on
our R routine curvetest for illustration (see Appendix E), with kernel function

W (t) = (1 − |t |3)3 I[−1,1](t),

where I denotes the indicator function and bw = 14 for both groups. bw = 14 was
chosen for the common window width was on the scatter plot with smoothing curves
(Fig. 1b). The p-values for the test of null hypothesis are 0.213 and 0.210 respectively
if equal or unequal variances are assumed. The scatter plot with smoothing curves is
displayed in Fig. 1b.

10 Discussions

We have described and developed a general test procedure to test if two curves
measured with either homoscedastic or heteroscedastic errors are statistical equal,
with mild requirements on the fitted curves. This test procedure, as we discussed
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earlier, will have a wide range of applications in diversified areas. Ideally if we want
to compare the longitudinal trends of some quantity for two or more groups, we
can use longitudinal data analysis or the curve testing procedure developed here.
Furthermore, the curves can be functions defined over time (time related) or over
locations. For example, researchers often ask whether the growth curves (weights or
tumor volumes over time) between two groups of animals are significantly different.
The test developed here tests if the underlying continuous (growth) curves are actually
equal or not for each value within the study interval, though the curves are measured
at only finite discrete pointswith errors being either homoscedastic or heteroscedastic
among the two curves. This propertymakes our test procedure unique. Our procedure
directly tests whether the two curves are equal or not on all values in the definition
interval by estimating the tail probability when null is true, while ANOVA or its
variations have a different hypothesis. Our test does not require repeated values
(measurements) at each times/locations points for each of the groups, as other test
procedures do. Therefore, our curve test procedure will have a wider applications
than for example, hanova.

Testing equality of curves is closely related to building a simultaneous confidence
band (SCB) around a curve. To test if two curves f1(t) and f2(t)measuredwith errors
are statistically equal, we could alternatively and equivalently build a proper SCB
around the difference curve f1(t) − f2(t). If part of line 0 in the test region is outside
of this SCB, we will claim that the two curves are statistically different and vice
versa. However, subtle technique differences between SCB and our curve test exist.
For example, curve test allows the two curves to have differentmeasurement standard
errors, that is not true when using SCB approach. For more detail, see papers of Sun
and Loader [22], Sun [24], Naiman [16].

The choice of window width can have a relatively large effect on the test from
the algorithm, as it does to the smoothing algorithms. Therefore, we have offered
several methods for users to choose from for selection of the bandwidth, including an
automatic method. However, the choice of kernel function seems to affect little about
the test result. This agrees with our previous experience in the smoothing study, see,
for example, Cleveland and Devin [5].

In summary, we have developed a formal test procedure to test if two continuous
curves measured with either homoscedastic or heteroscedastic errors are statistically
equal or not, and developed an easy to use R-package for applications.

Appendix

Appendix A. Proof of Lemma 4.1

Let X1 = ∑n1
i=1 W

2
i , where Wi ∼i id N (0, 1). Since EX1 = n1, Var(X1) = 2n1,

we can approximate X1 by X1
d= n1 + √

2n1Z1 + o(
√
n1), X2 by X2

d= n2 +√
2n2Z2 + o(

√
n2), where Z1 and Z2 are independent standard normal random
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variables and notation
d= denotes equality in distribution. Therefore,

Gi =(
Xi

X1 + X2
)/(

ni
n1 + n2

)

d= ni + √
2ni Zi + o(

√
ni )

n1 + n2 + √
2n1Z1 + √

2n2Z2 + o(
√
n2) + o(

√
n1)

/(
ni

n1 + n2
)

= 1 +
√
2ni Zi+o(

√
ni )

ni

1 +
√
2n1Z1+√

2n2Z2+o(
√
n2)+o(

√
n1)

n1+n2

d∼approx 1,

as ni → ∞ for i = 1, 2. QED

Appendix B. Proof of Lemma 4.2

Clearly by Si/νi ∼ χ2
νi
, we have ESi = 1, Var(Si ) = 2/νi , and there exists a

sequence of i.i.d. standard normal random variables Wi,k, for k = 1, 2, . . . , νi , i =
1, 2 such that Si = (1/νi )

∑νi
k=1 Wi,k by definition. A large sample theory gives that

Si
d= 1 +

√
2
νi
Zi + o( 1√

νi
), where Zi ∼ N (0, 1).

Expanding Y = f (S1, S2) = (X1 + X2)/(X1/S1 + X2/S2) around (1, 1), we
have:

Y = f (S1, S2) =1 +
√

2

ν1
Z1

X1

X1 + X2
+

√
2

ν2
Z2

X2

X1 + X2
+ o(

1√
ν1

+ 1√
ν2

).

It is easy to find that EY → 1. Conditioning on X1, X2, we have

Var(Y ) =Var(E(Y |X1, X2)) + E(Var(Y |X1, X2))

=E(Var(Y |X1, X2)) + o(
1√
ν1

+ 1√
ν2

)

≈E

{

Var(

√
2

ν1
Z1

X1

X1 + X2
+

√
2

ν2
Z2

X2

X1 + X2
|X1, X2)

}

=E

{
2

ν1
(

X1

X1 + X2
)2 + 2

ν2
(

X2

X1 + X2
)2

}

= 2

ν1
E(

X1

X1 + X2
)2 + 2

ν2
E(

X2

X1 + X2
)2

≈ 2

ν1
(

n1
n1 + n2

)2 + 2

ν2
(

n2
n1 + n2

)2 (by Lemma (4.1))

= 2n21ν2 + 2n22ν1
(n1 + n2)2ν1ν2

.
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Thus by comparing Var(χ2
ν/ν) = 2/ν with Var(Y ) = (2n21ν2 + 2n22ν1)/((n1 +

n2)2ν1ν2), we have estimate ν in formula (4.3). QED

Appendix C. Proof of Theorem 5.1

Z(t) in formula (5.6) can be written as Z(t) = 〈u1(t), ξ1〉 − 〈u2(t), ξ2〉 =
〈M(t), ξ〉 , where M(t) = (u1(t),−u2(t))

′ ∈ Sn−1 and ξ = (ξ1, ξ2)
′ = (ε1/σ,

ε2/σ)′ ∈ Rn is standard multivariate normal. Conditioning on ‖ξ‖, the probabil-
ity can be written as

Pr(T ≥ t0) =Pr(sup
t∈T

| 〈M(t), ξ〉 | ≥ t0)

=
∫ ∞

t0

Pr(sup
t∈T

∣∣∣∣

〈
M(t),

ξ

‖ξ‖
〉∣∣∣∣ ≥ t0

y
| ‖ξ‖ = y)g(y, n)dy (10.1)

where g(y, n) is the probability density function (pdf) of the square root of a χ2

random variable with n degrees of freedom. SinceU = ξ/‖ξ‖ ∼ uni f orm(Sn−1) is
independent of ‖ξ‖,wecan drop the condition in the probability. Let T = {x ∈ Sn−1 :
supt∈T |< M(t), x >| ≥ (t0/y)}, we then have tubes around curveM(t) and curve
−M(t) embedded in Sn−1, with radius r = √

2 − 2t0/y (See relation (4.4)). The
probability inside the integral of (10.1) can be calculated by Vol(T )/Vol(Sn−1).We
then plug-in the tube formula (4.5) to get result (5.9). See also [22] [ Proposition 1, p.
1330]. Result (5.10) is obtained by replacing g(y, n) of the pdf of ‖ξ‖ = √

ε′ε/σ2 by
the pdf of ‖ξ̂‖ = √

ε′ε/σ̂2,where ‖ξ̂‖2/n ∼ Fn,ν . For details, see the above citation.
QED

Appendix D. Proof of Theorem 5.2

Suppose σ2
1 and σ2

2 are known. Let M(t) = (u1(t), u2(t))
′ ∈ Sn−1 ⊆ Rn for n =

n1 + n2, t ∈ T , as before. Let ξ = (ξ1, ξ2)
′ and U = ξ/‖ξ‖. Then U is uniformly

distributed (over Sn−1), independent of ‖ξ‖. Since σ1 and σ2 are known, ‖ξ‖2 will
follow a χ2

n distribution.
Conditioning on value ‖ξ‖, making use of the fact that ε1 and ε2 are independent,

we have
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Pr(T > t0) =Pr(sup
t∈T

‖Z(t)‖ ≥ t0) = Pr(sup
t∈T

〈M(t), ξ〉 ≥ t0)

=Pr(sup
t∈T

〈M(t),
ξ

‖ξ‖〉 ≥ t0
‖ξ‖ )

=
∫

y≥t0

Pr(sup
t∈T

〈M(t),U 〉 ≥ t0
y

| ‖ξ‖ = y) f‖ξ‖(y)dy

=
∫

y≥t0

Pr(sup
t∈T

〈M(t),U 〉 ≥ t0
y

) f‖ξ‖(y)dy,

where f‖ξ‖(y) denotes the pdf of ‖ξ‖, whose square follows a χ2
n distribution. The

last equation holds because of the fact that ξ/‖ξ‖ and ‖ξ‖ are independent.
When t0 is large, the following tube formula [cf: Lemma 4.5] can be plugged into

the last equation

Pr(sup
t∈T

‖〈M(t),U 〉‖ ≥ c) ≈ 2 ∗
{

κ0

2π
(1 − c2)n/2−1 + E

4
Pr(β{1/2,(n−1)/2} ≥ c2

}

where β{1/2,(n−1)/2} denotes a Beta random variable with parameters 1/2 and (n–1)/2.
The factor 2 corresponds to the two curves satisfying the probability condition: one
isM(t), another −M(t). This gives formula (5.17).

Suppose we don’t know both σ2
i , i = 1, 2, but they are estimated as in formula

(5.5). Let

Xi = ε′
i εi
σ2
i
, Si = σ̂2

i

σ2
i

, i = 1, 2, (10.2)

Y = X1
S1

+ X2
S2

, X = X1 + X2

X1/S1 + X2/S2
= X1 + X2

Y
. (10.3)

Then the requirements of Lemma 4.2 are satisfied, hence we have X ∼approx

χ2
ν/ν, with degrees of freedom ν estimated in formula (4.3). Therefore, Y =

(X1 + X2)/X → (χ2
n)/(χ

2
ν/ν) ∼ nFn,ν .

Now let

M̂(t) = (σ̂1l1(t),−σ̂2l2(t))√
σ̂2
1 ‖l1(t)‖2 + σ̂2

2 ‖l2(t)‖2
∈ Sn−1, U = ξ̂

‖ξ̂‖ ,

ξ̂ = (
ε1

σ̂1
,

ε2

σ̂2
) ∈ Rn, Ẑ(t) =< M̂(t), ξ̂ > .

Then
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Pr(T > t0) =Pr(sup
t∈T

‖Ẑ(t)‖ ≥ t0) = Pr(sup
t∈T

〈M̂(t), ξ̂〉 ≥ t0)

=Pr(sup
t∈T

〈M̂(t),
ξ̂

‖ξ̂‖〉 ≥ t0

‖ξ̂‖ )

=
∫

y≥t0

Pr(sup
t∈T

〈M̂(t),U 〉 ≥ t0
y

| ‖ξ̂‖ = y) f‖ξ̂‖(y)dy

=
∫

y≥t0

Pr(sup
t∈T

〈M̂(t),U 〉 ≥ t0
y

) f‖ξ̂‖(y)dy,

where Y =: ‖ξ̂‖2 ∼approx χ2
ν/ν, as Y was defined in (4.2).

Let the σ2
i be known values in M̂(t) in order to estimate κ0, so that we can use

the Tube formula (4.5) for the estimation of the probability inside the integral. After
some calculation, we get result (5.18). QED

Appendix E. Software

Our R package curvetest is freely available at http://www.r-project.org/. This pack-
age tests the equality of curves as described in this paper. Themain function curvetest
has the following parameters:

formula: specified the regression formula.
data1: data.frame representing the first (discretized) curve.
data2: a data frame representing the second curve. If it is NULL, then the test

is test f (t) == 0. data1 and data2 must have two columns with same column
names, that can be retrieved by calls on the formula.

equal.var: logic value, specifies if equal.variances are assumed. Default=TRUE.
plotit: logic, asks if curvetest should generate the scatter plots and smoothing

curves. It is useful to plot it to select the window width bw below. Default=F.
bw: Window bandwidth for both curves.
alpha: Smoothing parameter. Default=0.5.
nn: number of points used to smooth the curves. The points are equally spaced

between the domains that appeared in the two data set. Default=100.
myx: x (or t) values to estimate the curves. Default= NULL. This will put n

points specified by nn in the data range. If myx is non-null, papameter nn will be
suppressed.

bcorrect: method to use for boundary correction. Default=‘simple’. Other options
are: ’none’=no corrections.

Conf.level: the α value for the type I error level. Default=.05.
kernel: kernel function to choose for smoothing. Users can choose one of ‘Trio’,

‘Gaussian’, ‘Uniform’, ‘Triweight’, ‘Triangle’, ‘Epanechnikov’, ‘Quartic’. See
the definitions of them in Table 2.

http://www.r-project.org/
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Table 2 List of kernel functions

Kernel K(u)

Epanechnikov (3/4)(1 − u2)I (|u| ≤ 1)

Gaussian 1/(
√
2π)exp(−u2/2)

Quartic (15/16)(1 − u2)2 I (|u| ≤ 1)

Triangle (1− | u |) I (|u| ≤ 1)

Trio (1 − |u|3)3 I (|u| ≤ 1)

Triweight (35/32)(1 − u2)3 I (|u| ≤ 1)

Uniform I (|u| ≤ 1)/2

Usage:

n1=150; n2=155 ##numbers of data points for the two curves.
f1<-f2<-function(x){x*(1-x)+sin(2*pi*x)}; ##True functions.
x1=seq(0,1, length=n1);
x2=seq(0, 1, length=n2);
y1=f1(x1)+rnorm(n1, 0, 0.2)
y2=f2(x2)+rnorm(n2, 0, 0.2) ###Measured data for the

###two curves with noises.
curvetest(y˜x,data.frame(x=x1,y=y1),

data.frame(x=x2,y=y2), alpha = 0.7,
equal.var=TRUE,plotit=TRUE)

Output:
======================
Curve Test Procedures
======================

The p-value to test H0:f1(x)=f2(x) is 1.

With test statistics equals 1.2,
Estimated degree of freedom is 294.

Equal variances assumed.
Estimated common sigmaˆ2 is 0.0707.
====================
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Quality Control Metrics for
Extraction-Free Targeted RNA-Seq
Under a Compositional Framework

Dominic LaRoche, Dean Billheimer, Kurt Michels and Bonnie LaFleur

Abstract The rapid rise in the use of RNA sequencing technology (RNA-seq) for
scientific discovery has led to its consideration as a clinical diagnostic tool. However,
as a new technology the analytical accuracy and reproducibility of RNA-seq must
be established before it can realize its full clinical utility (SEQC/MAQC-III Con-
sortium, 2014; VanKeuren-Jensen et al. 2014). We respond to the need for reliable
diagnostics, quality control metrics and improved reproducibility of RNA-seq data
by recognizing and capitalizing on the relative frequency nature of RNA-Seq data.
Problems with sample quality, library preparation, or sequencing may result in a low
number of reads allocated to a given sample within a sequencing run. We propose a
method, based on outlier detection of Centered Log-Ratio (CLR) transformed counts,
for objectively identifying problematic samples based on the total number of reads
allocated to the sample. Normalization and standardization methods for RNA-Seq
generally assume that the total number of reads assigned to a sample does not affect
the observed relative frequencies of probeswithin an assay.This assumpion, knownas
Compositional Invariance, is an important property for RNA-Seq data which enables
the comparison of samples with differing read depths. Violations of the invariance
property can lead to spurious differential expression results, even after normalization.
We develop a diagnostic method to identify violations of the Compositional Invari-
ance property. Batch effects arising from differing laboratory conditions or operator
differences have been identified as a problem in high-throughput measurement sys-
tems (Leek et al. in Genome Biol 15, R29 [14]; Chen et al. in PLoS One 6 [10]).
Batch effects are typically identified with a hierarchical clustering (HC) method or
principal components analysis (PCA). For both methods, the multivariate distance
between the samples is visualized, either in a biplot for PCA or a dendrogram for
HC, to check for the existence of clusters of samples related to batch. We show
that CLR transformed RNA-Seq data is appropriate for evaluation in a PCA biplot
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and improves batch effect detection over current methods. As RNA-Seq makes the
transition from the research laboratory to the clinic there is a need for robust quality
control metrics. The realization that RNA-Seq data are compositional opens the door
to the existing body of theory and methods developed by Aitchison (The statistical
analysis of compositional data, Chapman & Hall Ltd., 1986) and others. We show
that the properties of compositional data can be leveraged to develop new metrics
and improve existing methods.

Keywords RNA-Seq · Next generation sequencing · Composition · Quality
control · Relative abundance · Normalization

1 Introduction

We develop quality control diagnostics for targeted RNA-Seq using the theory of
compositional data. Targeted sequencing allows researchers to efficiently measure
transcripts of interest for a particular disease by focusing sequencing efforts on a
select subset of transcript targets. Targeted sequencing offers several benefits over
traditional whole-transcriptome RNA-Seq for clinical use including the elimina-
tion of amplification bias, reduced sequencing cost, and a simplified bioinformatics
workflow. Moreover, extraction-free targeted sequencing technologies, such as HTG
EdgeSeq, permit the use of very small sample volumes. However, extraction free
technologies create the need for post-sequencing quality control metrics since poor
quality samples, which would likely be removed after unsuccessful RNA extrac-
tion in extraction-based technologies, can still be sequenced. The post-sequencing
methods described here should be easily extensible to traditional extraction-based
RNA-Seq because targeted and traditional RNA-Seq data share many of the same
properties.

Relative frequency measures are characterized as a vector of proportions of some
whole. These proportions are necessarily positive and sum to a constant which is
determined by the measurement system and not the measurand. Targeted and whole
transcriptome RNA-Seq measurements from NGS-based instruments provide only
relative frequencies of the measured transcripts. The measurement technology, along
with sample preparation, preclude the measurement of absolute abundance. The total
number of reads in a sequencing run for high-throughput RNA-Seq instruments is
determined by the maximum number of available reads and not the absolute number
of reads in a sample. For example, the Illumina Mi-Seq is limited to 25 million reads
in a sequencing run while the Roche 454 GS Junior (TM), with longer read lengths,
claims approximately 100,000 reads per run for shotgun sequencing. These reads
are distributed across all of the samples included in a sequencing run and, therefore,
impose a total sum constraint on the data. This constraint cascades down to each
probe or tag within a sample which is, in turn, constrained by the total number
of reads allocated to the sample thereby creating a natural hierarchical structure to
RNA-Seq data.
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Previous authors have identified the relative abundance nature ofRNA-Seqdata [6,
13, 16, 22, 23]. For example, [23] consider counts ofRNA tags as relative abundances
in their development of a model for estimating differential gene expression imple-
mented in the Bioconductor package edgeR. Similarly, Robinson and Oshlack [22]
explicitly acknowledge the mapped-read constraint when developing their widely
used Trimmed-Mean of M-values (TMM) normalization method for RNA-Seq data.
Finally, the commonly used log2 Counts per Million (CPM) re-scaling transforma-
tion proposed by Law et al. [13] divides each sequence count by the total number of
reads allocated to the sample thereby transforming the data for each sample into a
vector of proportions.

The positivity and summation constraint complicate the analysis of relative
frequency data. As early as 1896 Pearson [21] identified the spurious correlation
problem associated with compositions. John Aitchison observed that relative fre-
quency data is compositional and developed a methodology based on the geomet-
ric constraints of compositions [1]. Recent authors have argued that ignoring the
sum constraint can lead to unexpected results and erroneous inference [15]. Despite
the evidence that RNA-Seq data are compositional in nature, few researchers have
extended the broad set of compositional data analysis theory and operations for use
in RNA-Seq analysis problems.

Weprovide abrief backgroundoncompositionalmethods.We then extend existing
compositional data methodology to develop two quality control metrics and improve
batch effect detection for RNA-Seq data.

2 Methods

2.1 Compositional Data

Compositional data is defined as any data in which all elements are non-negative and
sum to a fixed constant [1]. For RNA-seq data, the total sum constraint is imposed by
the limited number of available reads in each sequencing run. Since this total differs
between sequencing platforms we will refer to the total number of available reads
asT. These reads are distributed among the D samples in a sequencing run such that:

D∑

i=1

ti = T (1)

where ti represents the total reads for sample i . Because of the total sum constraint,
the vector t is completely determined by D − 1 elements since the Dth element of t
can be determined from the other d = D − 1 elements and the total T:

tD = T −
d∑

i=1

ti (2)
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In Eq. 2, any of the elements can be chosen for tD with the remaining elements
labeled 1, ..., d in any order [1]. Similarly, the total reads for each sample (ti ) are
distributed among the P transcript targets in the assay such that

∑P
j=1 pi j = ti ,

where pi j is the number of reads allocated to target j in sample i . We highlight
the hierarchical structure of RNA-Seq data as it leads to useful properties when
developing quality control metrics.

From Eqs. 1 and 2 it is clear that the total reads allocated to each of the D samples
represent a D − 1 = d dimensional simplex (Sd ). This leads to problemswhen using
methods developed for standard Euclidean sample spaces such as interpreting the
traditional D × D covariance structure or measuring the distance between vectors.
In particular, it is clear that for a D-part composition x, cov(x1, x1 + · · · + xD) = 0
since x1 + · · · + xD is a constant. Moreover, the sum constraint induces negativity
in the covariance matrix,

cov(x1, x2) + · · · + cov(x1, xD) = −var(x1). (3)

Equation3 shows that at least one element of each row of the covariance
matrix must be negative. Aitchison refers to this as the “negative bias difficulty”
(although‘bias’ is not used in the traditional sense; [1], p. 53). The structurally induced
negative values create problems for the interpretation of the covariance matrix. Sim-
ilarly, the use of naive distance metrics in the simplex may not be interpretable as
in Euclidean space. Because of these difficulties, standard statistical methodology is
not always appropriate [1] and can produce misleading results [16].

To overcome these obstacles, Aitchison [5] proposed working in ratios of com-
ponents. We focus on the Centered Log-Ratio (CLR) which treats the parts of the
composition symmetrically and provides an informative covariance structure. The
CLR transformation is defined for a D-part composition x as:

yi = CLR(xi ) = log

(
xi

g(x)

)
, (4)

where g(x) is the geometric mean of x. The D × D covariance matrix is then defined
as:

� = [
cov

(
yi , y j

) : i, j = 1, ..., D
]

(5)

TheCLR transformation is similar to the familiar Counts perMillion (CPM) trans-

formation [13] defined as, log2
(
rgi+0.5
ti+1 × 106

)
, where rgi is the number of sequence

reads for each probe (g) and sample (i), (scaled to avoid zero counts), adjusted for
the number of mapped reads (library count) for each sample ti (scaled by a constant
1 to ensure the proportional read to library size ratio is greater than zero). The pri-
mary difference between the CLR and log(CPM) transformations is in the use of
the geometric mean in the denominator of the CLR transformation. The use of the
geometric mean results in subtracting the mean of the log transformed values from
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each log-transformed element thereby centering the vector of log-ratio transformed
read counts. The difference appears minor but has important implications for the
application of several common statistical methods.

Although the CLR transformation preserves the original dimension of the data,
and gives equal treatment to every element of x, the resulting covariance matrix, �,
is singular. Therefore, care should be taken when using general multivariate methods
on CLR transformed data. Aitchison [1] proposed an alternative transformation, the
additive log-ratio (ALR), which does not treat the components symmetrically but
results in a non-singular covariance matrix. The ALR transformation is defined as,

yi = ALR(xi ) = log

(
xi
xD

)
, (6)

where xD , the Dth component of x , can be any component.
As noted above, the compositional geometry must be accounted for whenmeasur-

ing the distance between two compositional vectors or finding the center of a group
of compositions [4]. Aitchison [2] outlined several properties for any compositional
difference metric which must be met: scale invariance, permutation invariance, per-
turbation invariance (similar to translation invariance for Euclidean distance), and
subcompositional dominance (similar to subspace dominance of Euclidean distance).
The scale invariance requirement is ignorable if the difference metric is applied to
data on the same scale (which is generally not satisfied in raw RNA-seq data due to
differences in read depth). The permutation invariance is generally satisfied by exist-
ing methods such as Euclidean distance [19]. However, the perturbation invariance
and subcompositional dominance are not generally satisfied [19].

Aitchison [1, 2] suggests using the sum of squares of all log-ratio differences.
Billheimer et al. [8] use the geometry of compositions to define a norm which, along
with the perturbation operator defined by Aitchison [1], allow the interpretation of
differences in compositions.Martin-Fernandez et al. [19] showed that applying either
Euclidean distance orMahalanobis distancemetric to CLR transformed data satisfies
all the requirements of a compositional distance metric. Euclidean distance on CLR
transformed compositions is referred to as Aitchison distance:

dA(xi , x j ) =
[

D∑

k=1

(
log

(
xik
g(xi )

)
− log

(
x jk

g(x j )

))2
] 1

2

(7)

or

dA(xi , x j ) =
[

D∑

k=1

(
clr(xik) − clr(x jk)

)2
] 1

2

. (8)

To avoid numerical difficulties arising from sequence targets with 0 reads,
Martin-Fernandez et al. [18] suggest an additive-multiplicative hybrid transforma-
tion. If zeros are present in the data We recommend using the Martin-Fernandez
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transformation with a threshold value of δ = 0.55
Total Reads to account for differences in

sequencing depth. The CLR transformation is then applied to the Martin-Fernandez
transformed data which contains no zeros.

Up to this point we have referred to the total reads available per sequencing run,
T. However, it is more typical to work with the aligned reads in practice. The total
aligned reads, T , is always a fraction of the total reads available for a sequencing
run, T. The fraction of the total reads aligned can be affected by multiple factors,
including the choice of alignment algorithm, which we do not address here. We
assume that T imposes the same constraints on the data as outlined above for T and
will refer exclusively to T hereafter.

3 Fractional Allocation of Aligned Reads to Samples

Problems with sample quality, library preparation, or sequencing may result in a low
number of reads allocated to a given sample within a sequencing run. The Percent
Pass Filter (% PF) metric provided on Illumina sequencers provides a measure that
can identify problems with sequencing that result in a low number of reads allocated
to a sample. However, % PFwill not necessarily catch problems associated with poor
sample quality or problems with sample pre-processing since these processes may
affect cluster generation, and not just cluster quality. This is particularly important for
extraction-free RNA-Seq technologies, such as the HTG EdgeSeq(tm), which allow
for the use of smaller input amounts but lack the intermediate steps for checking
sample quality. There is currently no objective way to evaluate sample quality based
on the total number of reads attributed to a sample. We propose a method for objec-
tively identifying problematic samples based on the total number of reads allocated
to the sample.

For most experimental designs we expect the number of reads allocated to each
sample in a sequencing run to arise from the same general data generating mecha-
nism, namely the chemistry of the NGS-based measurement system, regardless of
experimental condition. The objective is then to determine which samples arise from
a different mechanism. Outlier detection is well suited for discovering observations
that deviate so much from other observations that they are likely to have arisen from
a different mechanism [12]. We base our method off Tukey’s box-plots [27], which
is a commonly used and robust method for detecting outliers [7].

We expect the total number of reads allocated to each sample, ti , to be equivalent
notwithstanding random variation. For a given sequencing run with D samples we
define the vector of total reads allocated to each sample as t. Since the D dimensional
vector t is a composition we have t ∈ SD−1, the D − 1-dimensional simplex. As
noted above, traditional statistical methods may not be appropriate for data in the
simplex. Therefore, we map t ∈ SD−1 → x = CLR(t) ∈ RD using the Centered
Log Ratio transformation Eq. 4.We then apply Tukey’s method for detecting outliers
to x, which simply identifies those observations which lie outside 1.5 times the inter-
quartile range.
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Definition 1 xi is a quality control sample failure if xi < lower-quartile−1.5× IQR
or xi > upper-quartile+1.5× IQR, where IQR is the interquartile range of x.

We demonstrate the utility of our sample quality control measure using two sets of
targeted RNA-Seq data: (1) 120 mRNA technical replicate universal-RNA samples
prepared with the HTG EdgeSeq Immuno-Oncology assay and sequenced in 5 dif-
ferent equally sized runs, and (2) 105 miRNA technical replicate samples of human
plasma, FFPE tissue, and Brain RNA prepared with the HTG EdgeSeq Whole Tran-
scriptome miRNA assay. These two data sets differ in the both the type of RNA
(mRNA versus miRNA) and the number of sequence targets in each assay (558 ver-
sus 2,280 targets, for the mRNA and miRNA assays respectively). All samples were
prepared for sequencing using the HTG EdgeSeq Processor and sequenced with an
Illumina Mi-Seq sequencer.

We compare the utility of our method to evaluation of the un-transformed total
counts. Figure1 shows a boxplot and heat-map of the total number of reads allocated
to each sample for each of 5 sequencing runs. Figure2 shows the same data after CLR
transformation. After transformation the poor samples become much more visually

Fig. 1 a Distributions of total reads allocated to each sample in 5 runs on an Illumina Mi-Seq
sequencer. Only 1 sample is identified as a problematic sample. b Heat-maps showing the relative
totals for each sample within each run. The darker heat-maps for runs 4 and 5 reflect the generally
lower number of total reads in those sequencing runs as compared to runs 1 and 2. This is caused
by normal variation in the number of reads available in a sequencing run
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Fig. 2 a Distributions of CLR transformed total reads allocated to each sample in 5 runs on an
Illumina Mi-Seq sequencer. After CLR transformation, 6 samples are identified as a problematic.
b Heat-maps showing the relative CLR transformed totals for each sample within each run

evident in the heat maps. Additionally, the ability to detect outlying values increases
and the number of poor samples detected increases from 1 to 6.

4 Testing for Compositional Invariance

Normalization and standardization methods for RNA-Seq generally assume that the
total number of reads assigned to a sample does not affect the observed relative fre-
quencies of probes within an assay. For example, implicit in the CPM transformation
is the idea that if you re-scale the counts (by dividing by the total for each sample)
then the resulting counts are comparable and any differences are due to underlying
differences in expression. Othermethodswhich apply a scaling factor to each sample,
such as Trimmed-mean of M values (TMM) or Quantile normalization, also rely on
this assumption. In the parlance of compositional data these methods assume Com-
positional Invariance, i.e. the underlying composition is statistically independent of
the total size of the composition (the total counts for a sample, t).
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Compositional invariance (CI) is an important property for RNA-Seq data which
enables the comparison of samples with differing read depths. However, it is well
documented that the quality of RNA-Seq depends on the read depth of the sequencing
run with higher read-depths associated with higher quality data [25, 26]. Read depth
may affect the measurement of relative abundances for the target RNA sequences
as some targets may receive proportionally more reads as the read depth increases.
This would be a direct violation of CI and could lead seemingly differential expres-
sion between samples with different read depths, even after normalization. Another
form of CI violation, that is perhaps more likely in RNA-Seq experiments, is the
dependence between the variance of read counts and the read depth.

Aitchison [1] outlined a simple model for testing compositional covariance using
the ALR transformation,

[y1 . . . yd ] = [
1 t

] [
α1 · · · αd

β1 · · · βd

]
+ [e1 . . . ed ] , (9)

where y1 . . . yd are the d ALR transformed components, t is the vector of sample
total aligned reads, α1 . . . αd are the probe specific log-ratio intercepts, and β1 . . . βd

are the coefficients relating the the total aligned reads to the relative expression of
the probe. A test for compositional invariance for the experiment then becomes a test
of the null hypothesis, Ho : β1 = · · · = βd = 0. This test can be re-parameterized to
test for dependence between the variance and total aligned reads as well.

Unfortunately, the small sample sizes and large number of probes typically asso-
ciated with RNA-Seq experiments complicates the application of Aitchison’s model.
We propose an alternative visualization for simultaneously detecting both violations
of compositional invariance described above. We use the multivariate Aitchison dis-
tance (8) between all pairs of samples in a heat-mapwith the samples ordered by total
aligned reads. If CI is violated we expect pairs samples with similar total aligned
reads will have smaller scalar distances than those with large differences in total
aligned reads. This will result in visual clustering around the 45◦ axis. If the variance
depends on the total aligned reads, we expect the scalar distance between sample
pairs to decrease with increasing read depth resulting in a visual gradient in the dis-
tance heat map. To reduce the visual noise associated with outlier samples in the
heat-map we also provide a dot-plot of the distance between each CLR transformed
sample and the compositional center of the samples in the top quartile of total reads.

We demonstrate this visualization with two sets of miRNA samples (Fig. 3) and
two sets of mRNA samples (Fig. 4). The miRNA samples are composed of 40 tech-
nical replicates each of (1) plasma samples and (2) brain samples. In the miRNA
data there is a clear gradient along the 45◦ axis for the plasma samples (Fig. 3a).
This indicates a dependence between the total aligned reads and the variance of the
samples (as indicated by the increasing multivariate distance between replicates as
the total aligned reads decreases). In contrast, there is no clear gradient in the brain
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Fig. 3 Two sets of miRNA samples with samples in (1) showing a violation of compositional
invariance and (2) showing compositional invariance

samples (Fig. 3b). The mRNA samples are composed of (A) 16 technical replicates
of diseased pancreas tissue and (B) 16 technical replicates of normal pancreas tissue.
In the diseased pancreas samples there is a clear gradient with low total aligned read
samples more distant from samples with greater total aligned reads (Fig. 4(1)). This
indicates that the composition is dependent on the total aligned reads, a violation of
compositional invariance for these samples. In contrast, the normal pancreas samples
show no such pattern related to total aligned reads (Fig. 4(2)).



Quality Control Metrics for Extraction-Free Targeted RNA-Seq . . . 309

Fig. 4 Two sets of mRNA samples with samples in (1) showing a violation of compositional
invariance and (2) showing compositional invariance

5 Batch Effects and Normalization

Batch effects arising from differing laboratory conditions or operator differences
have been identified as a problem in high-throughput measurement systems [10,
14]. Identifying and controlling for batch effects is a critical step in the transition
of RNA-Seq from the lab to the clinic. Batch effects are typically identified with a
hierarchical clustering (HC) method or principal components analysis (PCA). For
both methods, the multivariate distance between the samples is visualized, either in
a biplot for PCA or a dendrogram for HC, to check for the existence of clusters of
samples related to batch. The compositional nature of RNA-Seq data has important
implications for the detection of batch effects due to the incompatibilitywith standard
measures of distance between compositions as noted above [1, 19].
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Principle components analysis is sensitive to differences in scale (total number
of reads) among the variables, failure to remove these difference can mask potential
batch effects and leave unwanted technical variation in the data. As noted above,
most normalization methods use a scaling factor calculated for each sample to re-
scale the read count for each gene within the sample [11]. The CLR transformation
can similarly be viewed as a scaling normalization (with the scale factor chosen as
the inverse of the geometric mean 1/g(x)). Unlike other normalization methods,
the CLR transformation has the added benefit of being applied at the individual
sample level, not experiment wise like quantile or median normalization [9], and
requires no assumptions about differential expression among samples like quantile or
median ratio normalization [6, 22]. Thismakes it particularlywell suited for the clinic
where there are generally no reference samples for normalization. Most importantly,
CLR transformation allows the use of Euclidean geometry, such as Euclidean or
Mahalanobis distance, so that standard PCA or HC applied to transformed samples
can be interpreted in the traditional way [3] .

We demonstrate the use of the compositional biplot to detect batch effects using
120 technical replicates of three sample types: brain, plasma, and FFPE. Samples
were prepared using the EdgeSeq Whole Transcriptome miRNA assay which mea-
sures 2,280 targets including including 11 control probes and 2,269 unique miRNA
probes. All sequencing was performed on an Illumina Mi-seq(tm) sequencer.

We perform a PCA on log-transformed and CLR transformed data. We then con-
struct form-biplots of the first two principle components for each transformed data
set (Fig. 5). The differences between the 3 samples types (brain, plasma, and FFPE)
dominate the first two principle components for both data sets. However, the CLR
transformed data provides tighter clusters, relative to the distance between the clus-
ters, than the log-transformed raw data. There is also a single FFPE sample which is

Fig. 5 Principle component analysis of (a) log-transformed and (b) CLR-transformed read count
data. The differences between sample types is much greater than the batch effects in both transfor-
mation. The CLR transformation results in tighter sample type clusters resulting from less variation
along the first principle component
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Fig. 6 Principle component analysis of only brain samples from (a) log-transformed and (b) CLR-
transformed read count data. The batch effects are more easily identified in the CLR transformed
data

closer to the brain samples than the other samples. It is worth noting that this sample
would have been removed using our proposed quality control metric. Since the sam-
ple type differences overwhelm the potential batch effects we performed a second
PCA on only the brain samples for both transformed data sets (Fig. 6). Both biplots
exhibit clustering by batch but the CLR transformed data shows better separation
between the batches.

6 Discussion

Our fractional read allocation metric can identify problematic samples which arise
from multiple failure modes, e.g. a low quality sample or a sequencing problem.
However, it is conceivable that a sample might have an unusually low (or high)
number of reads and still provide quality information. In certain experimental designs
one might be able to further evaluate these samples with a PCA biplot on the CLR
transformed data. In our PCA analysis we identified a FFPE sample which would
have failed our quality control and was clearly very different from the other technical
replicates. However, if this sample had remained quite similar to the other FFPE
replicates this would have provided information that the samplemay still be valuable.
In thisway, the quality controlmetric andPCAbiplot can be used in tandem to provide
additional information about the quality of a sample.

The compositional invariance visualization is a logical extension of the sample
quality control metric since the assumption of the sample quality control is that the
total number of aligned reads is related to the proportional allocation of reads within
the sample. As noted above samples which violate the compositional invariance
property may still contain valuable information. The identification compositional
invariance violations allows the investigator to account for the dependency between
the total aligned reads and the relative abundance of transcripts within the samples
when modelling.



312 D. LaRoche et al.

The principal components analysis biplot is a well know dimension reduction
visualization. For the current data the dimension is reduced from 2,280 probes to 2
principle components. The utility of the data reduction, including the quality of the
approximation of the multivariate distance between the samples, is proportional to
the amount of variance explained by these two principle components. In our data
the first two principle components explain between 72 and 21% of the variation in
the data. The analysis with the lowest percent of variation explained by the first 2
components is of the CLR-transformed brain samples. Surprisingly, batch effects are
still visible in this plot, in which case they can be removed [17].

As RNA-Seq makes the transition from the research laboratory to the clinic there
is a need for robust quality control metrics. The realization that RNA-Seq data are
compositional opens the door to the existing body of theory and methods developed
by John Atichison and others. We show that the properties of compositional data can
be leveraged to develop new metrics and enhance existing methods.
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Part VII
Omics Data Analysis



Leveraging Omics Biomarker Data
in Drug Development: With a GWAS
Case Study

Weidong Zhang

Abstract Biomarkers have proven powerful for target identification, understand-
ing disease progression, drug safety and treatment responses in drug development.
Recent development of omics technology has offered great opportunities for identi-
fications of omics biomarkers at low cost. Although biomarkers have brought many
promises to drug development, steep challenges arise due to high dimensionality of
data, complexity of technology and lack of full understanding of biology. In this arti-
cle, the application of omics data in drug development will be reviewed. A genome
wide association study (GWAS) will be presented.

Keywords Biomarker · Omics · Simulation · GWAS

1 Introduction

1.1 Overview of Biomarker in Drug Development

Precision medicine has gained great popularity in the last decade. In 2015, a total
of $215 million investment was budgeted to develop national databases after Presi-
dent Barack Obama announced a ‘Precision Medicine Initiative’. The goals of this
initiative are two-folds: (a) to focus on precise cancer drug development and (b) to
build a database with knowledge of biomarkers that can be used for a broader range
of diseases [4].

Biomarkers are indispensable assets to precisionmedicine and overall drug devel-
opment. A biomarker can be defined as “a characteristic that is objectively measured
and evaluated as an indicator of normal biological processes, pathogenic processes,
or pharmacologic responses to a therapeutic intervention” [3]. Biomarkers have been
identified as important factors to improve probability of success in drug development.
From a recent analysis performed by Thomas et al. 9,985 phase transition trials from
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2006 to 2015 were analyzed. Phase transitions are defined as either a drug candidate
advances into the next phase of development or is suspended by the sponsor. It was
shown that the success rate from Phase I to approval was increased to ~25% when
selection biomarkers were used as compared to ~8% for those programs without [2].

In this article, an overview of the biomarker discovery and omics biomarker
technologies will be presented. The statistical considerations in omics biomarker
analysis will be discussed. A GWAS case study will be presented for illustration of
application of omics technology.

1.2 Classification of Biomarkers

Depending on their functions, biomarkers can be classified into predictive biomark-
ers [8], prognostic biomarkers, pharmacodynamic (PD) biomarkers and surrogate
biomarkers. A predictive biomarker predicts a patient’s clinical response to the treat-
ment he/she received. Predictive biomarkers are of particular interest in precision
medicine due to the fact that a predictive biomarker can be used to identify a patient
population that potentially respond or respond better to the new treatment or avoid
side effects of a treatment. A recent successful story was reported by Tesaro, Inc, in
which there was a study that patients who carried the germline BRCA mutation had
progression-free survival (PFS) of 21 months after receiving niraparib as compared
to 5.5 months in the control group (Tesaro 2017). A prognostic biomarker, however,
can predict a patient’s clinical outcome in a way that is independent of any treat-
ment. An example of a prognostic biomarker can be found in a report by Paik et al. in
which case a 21-gene recurrence score was used to predict breast cancer recurrence
and overall survival in node-negative, tamoxifen-treated breast cancer [15]. A prog-
nostic biomarker may not be used to predict treatment response. However, it may
be helpful to a physician to decide whether chemotherapy should be prescribed for
high risk patients or avoided by low risk patients. Many biomarkers, however, may
be both prognostic and predictive biomarkers in nature, for example, in breast cancer
estrogen receptor (ER) can be used as a prognostic biomarker because ER negative
patients have a higher risk of relapse than ER-positive patients. On the other hand,
the anti-estrogen tamoxifen is more effective in preventing breast cancer recurrences
in ER-positive patients than in ER-negative patients, which constitutes ER as a pre-
dictive biomarker. Predictive biomarkers will be focused in most of the discussions
of this article due to their unique value in patient stratification in clinical trial design.

A PD biomarker can be used to quantify drug modulation and demonstrate princi-
ple of mechanism. Frequently, PD biomarkers are useful tools in early clinical trials
such as phase 1 to provide guidance for dose selection. PD biomarkers are critical
to demonstrate three pillars (target exposure, target binding and target modulation)
in drug discovery. It was shown that trials with successful demonstration of these
three pillars had much high overall successful rate in the subsequent proof of concept
(POC) studies [14].
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A surrogate biomarker may be used as a substitute for a clinical endpoint of
interest. According to the Biomarker Working Group [3], a surrogate endpoint is
defined as “a biomarker intended to substitute for a clinical endpoint. A clinical
investigator uses epidemiological, therapeutic, pathophysiological, or other scientific
evidence to select a surrogate endpoint that is expected to predict clinical benefit,
harm, or lack of benefit or harm”. For example, many imaging markers such as total
brain volume, hippocampal volume, etc. have been used as surrogate markers in
Alzheimer’s disease since those imaging markers seem to correlate well with disease
progression [11]. However, Fleming andDeMets [7] pointed out that correlation does
not automatically guarantee a surrogate status. In some circumstances, a drug may
be efficacious on the marker that correlates well with the clinical endpoint but may
not have any effect on the clinical endpoint of interest.

1.3 Overview of Omics Biomarker and Cutting-Edge
Technologies

Omics technologies refer to the newadvanced technologies that are primarily used for
the global detection of genes (genomics), mRNA (transcriptomics), proteins (pro-
teomics) and metabolites (metabolomics) in a specific biological sample. Omics
biomarkers are typically high-dimensional as illustrated in Fig. 1.

For example, gene expression profile technologies can measure abundance of all
the genes (~25 k) in the transcriptome for each sample, which gives scientists an
unbiased view of the global biological landscape. The omics technologies started
to emerge from the late 20th century when Microarray was first available for gene
profiling of whole transcriptome and whole genome genotyping. The early DNA
microarray consists of a solid glass surface and a collection of DNA fragments,
known as probes or oligos attached to the surface. A probe is a fragment of a section
of a gene that can be used to uniquely hybridize a cDNA or cRNA from a fluo-
rescent molecule labeled target sample. The fluorescent intensity of a probe-target
hybridization is quantified to determine the abundance ofDNAmolecules in the target
sample. The microarray technology has evolved greatly over the last decade; how-
ever, it suffers from major drawback such as dependence on known genes, relatively
low sensitivity and low dynamic range. Early in the 21st century, the next generation
sequencing (NGS) technologies started to show new promises by offering variety of
novel methods for genomics study. Over the last decade, turnaround time and cost
of sequencing have been substantially reduced as a result of the advancement of this
new technology. It was estimated that the cost of sequencing a genome dropped from
$100 million in 2001 to $1,245 in 2015 Wetterstrand [22], and the turnaround time
was shortened fromyears in the late 90 s to days including analysis in 2016 [13]. As of
today, NGS technology has been widely applied to a variety of biomedical research
areas including transcriptome profiling, identification of new RNA splice variant,
genome-wide genetic variants identification, genome-wise epigenetic modification
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Fig. 1 Omics provide paramount view of biological cascade

and DNA methylation profiling etc. In particular, NGS technology is a promising
tool for cancer research, given the “disorder of genome” nature of cancer disease. In
cancer research, NGS has significantly enhanced our ability to conduct comprehen-
sive characterization of cancer genome to identify novel genetic alterations, and has
significantly helped to dissect tumor complexity. Coupling with sophisticated com-
putational tools and algorithms, significant achievements have been accomplished
for breast cancer, ovarian cancer, colorectal cancer, lung cancer, liver cancer, kidney
cancer, head and neck cancer, melanoma, acute myeloid leukemia (AML) etc. [18].

Choice of technologies should be made based on the goal of the study. Unbi-
ased high dimensional technology gives maximum information but may not be an
efficient choice if the pathway under study is relatively well understood. For exam-
ple, in oncology, many times scientists want to focus on a select set of genes, gene
regions, or amplicons that have known associations with cancer, in which case tar-
geted sequencing panel may be used instead of whole exome or whole genome. In
pharmacology, genes from a specific pathway, e.g. JAK-STAT pathway may be of
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interest to study drug modulation for JAK inhibitors, and a Taqman low density array
(TLDA) panel may be sufficient instead of whole transcriptome.

2 Considerations of Statistical Analysis

Analysis of high dimensional omics biomarker needs special statistical considera-
tions. Conventional statistics focus on problems with large number of experimental
units (n) as compared to small number of features or variables (p) measured from
each unit. High dimensional biomarker data are often large in p and small in n. For
example, in GWAS in a clinical trial, about one million single nucleotide polymor-
phisms (SNPs) can be collected using microarray from each subject with the number
of subjects ranging from dozens to hundreds. Many statistical methods have been
developed in analysis of high-dimensional omics data. Typical methods include clus-
tering analysis for pattern discovery, and univariate or multivariate regression and
supervised and unsupervised classification analysis to predict disease status [9]. For
expression based omics data such as gene expression, proteomics, metabolomics
etc., dimension reduction is considered as the first step before subsequent analysis.
Dimension reduction techniques include descriptive statistical approach such as coef-
ficient variation (CV) filtering, by which biomarkers with low CV are removed from
subsequent regression/ANOVA analysis. This approach is particularly useful when
computing power is limited. However, the CV filtering step is typically skipped with
today’s high computational capacity, and instead, a univariate regression analysis is
used for both dimension reduction and inference.

Univariate single biomarker analysis is popular due to the simplicity and interpre-
tation benefit, but is often criticized for being oversimplifying biology by including
only one biomarker in the regression model. Multivariate and multiple regressions
consider multiple biomarkers in a model become more popular for being able to take
into account (1) Complexity of disease mechanism requires an integrated informa-
tion from multiple biomarkers to explain more biological variations. (2) Interactions
between biomarkers cannot be modeled with single biomarker analysis. (3) Corre-
lation and dependency among biomarkers cannot be handled with single biomarker
analysis.

Another challenging area in statistical analysis of high-dimensional omics data
is how to control false discovery rate (FDR), especially with presence of correlation
structure among biomarkers. Family-wise error rate (FWER) adjustment techniques
such as Bonferroni correction calculate the probability of making at least one type
I error, often considered too conservative. FDR based approaches control the prob-
ability of false discoveries from the “positive” findings (rejected null hypotheses).
Therefore, FDR procedures are more powerful than FWER but at the cost of high
type I errors. Common FDR based methods include Benjamini and Hochberg (BH)
method [1] and q value method [19]. The BH method first finds the largest k such
that P(m) ≤ k/m ∗ α, where m stands for m tests and α is a predefined FDR level.
Second, the null hypothesis for each H(i)with i = 1 . . . k are rejected. The q value
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method calculates q values that are considered as quantification of false discovery
rate. Both the qvalue and BH methods allow dependence of testing. However, the
qvalue method may provide more power than BH method, and has been widely used
in many omics studies [19].

For GWAS, determination of genome-wide significance threshold is difficult due
to as many as millions of statistical testing and complex genetic linkage disequilib-
rium (LD) structures. Many procedures have been proposed including Bonferroni,
FDR, Sidak, and permutation etc. however, it was suggested that a p = 5 × 10−8 can
be used for genome wide significance and p = 1 × 10−7 can be used as a suggestive
threshold at practical level [16, 17]. Fadista et al. recently studied different scenarios
and suggested that P-value thresholds should take into account impact of LD thresh-
olds, MAF and ancestry characteristics. Further, they confirmed a p value threshold
of 5 × 10−8 was appropriate for European population with MAF > 5%. However,
they suggested that the P-value threshold needs to be more stringent with European
ancestry with low MAF (3 × 10−8 for MAF > = 1%) due to the increasing number
of variants and the lower LD between less frequent variants [6].

3 A Case Study—A Novel Bootstrap Based Model Average
Approach for GWAS Using Outbred Mice

In a study conducted by Zhang et al. [23], a total of 288 outbred mice were used
to identify genetic polymorphisms that may be associated with phenotypes such as
High-density lipoprotein (HDL), Systolic blood pressure (SBP), Triglyceride (TG),
Glucose (GLU) and Albumin Creatinine Ratio (ACR). Outbred mice are similar to
human population with regard to genetic diversity but offer great accessibility. The
genotypeweremeasured usingAffymetrix®MouseDiversity Array covering ~620 k
SNPs. Population structure was first evaluated by calculating correlations between
SNP pairs within 50 Mb sliding window across the whole genome. A kinship matrix
between the individual animals was calculated based on identity by state among
the 44,428 SNPs using Efficient Mixed-Model Association (EMMA) [10]. Single-
locus association genome scans were performed by ANOVA and EMMA taking into
account population structures. To assess genome-wide significance of the association
statistics, a novel simulation technique was used as illustrated in the following steps:

(1) Each phenotype was transformed using van derWaerden’s scores [5].
(2) Genetic and residual variances of the transformed data for each phenotype were

estimated using EMMA. For each phenotype, 288 trait values were generated by
sampling from a multivariate normal distribution using the mvrnorm function
in R with covariance matrix defined by the estimated kinship.

(3) The observed trait values were reordered based on the rank orders of the simu-
lated values. By doing so, permutation was performed on the original data that
retains the correlation structure implied by the kinship matrix.
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(4) A genome scan using the permuted trait values and recorded the largest –log(p)
scores. This was repeated 100 times. A generalized extreme value distribution
was fitted to these scores and significance thresholds were derived from the
quantiles of this distribution [11].

It is well known that the biological process is a complex system that involves
multiple components. To obtain realistic estimates of effect sizes, multilocus analysis
was performed using forward stepwise regression with bootstrap resampling [21].
First, 100 data sets were generated by sampling with replacement from the 288
animals. Forward stepwise regression on each resampled data set was performed to
obtain a multilocus regression model with 20 SNPs. The choice of 20 is arbitrary
just to ensure that the number of SNPs in the regression model is more than the
number that could significantly influence the phenotype. A resamplemodel inclusion
probabilities (RMIP) for each SNP m was calculated as

RMI Pm = 1

R

R∑

r=1

irm

where R = 100 is the number of resampled data sets irm = 1 if at least one SNP
within ±wMb of SNP m was included in the model of sample r, otherwise irm = 0.
We varied the window size w from ±0.5 Mb to ±4 Mb.

Precision of the locations of theGWAShits was not well understood. A simulation
approach was used in this study to assess the genome-wide average precision of
mapping in this population. The steps are illustrated as follows:

(1) A SNP was randomly selected from the genome and trait values were simulated
assuming that SNP selected was the causal locus.

(2) Simulate an effect size corresponding to the same percentage of total variance
explained as the HDL QTL on Chromosome 1. Phenotype values were sampled
from a multivariate normal distribution using mvrnorm in R with correlation
structure defined by the kinship matrix and the genetic and residual variances
were the same as those estimated for HDL.

(3) The selected SNPwas removed from the data and a genome scan was performed
using EMMA. The distance between the SNPwith highest –log(p) and the target
SNP was recorded.

(4) The process from (2) to (3) was repeated 1000 times, and the distribution of
distances from the peak to the target SNP was computed.

The significance thresholds were evaluated by simulation and unrestricted per-
mutation, and was applied to each of the following three methods for measuring
association: the trend test, ANOVA test and EMMA. The estimated genome-wide
significance thresholds for glucose, HDL cholesterol, systolic blood pressure, and
triglycerides were similar across all of these combinations. Values ranged from 5.12
to 5.90, but no single method or trait was consistently higher or lower than another.

Two highly significant loci associated with HDL were identified from chromo-
some 1 and 5. There seemed to be an association with SBP on proximal Chromosome
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10 at 7 Mb that exceeded the genome-wide 0.05 thresholds for the simple trend and
ANOVA tests, however, it was not significant for the EMMA test. The logACR trait
was the most variable of the five traits two loci seemed to be significant on Chro-
mosome 5 at 147 Mb and Chromosome 11 at 88 Mb using the 0.05 thresholds from
either simple trend test or theANOVA test. The results frommultilocus genome-wide
scans using forward stepwise variable selection on bootstrapped samples showed that
RMIP for the two loci Chromosome 1 at 173 Mb and Chromosome 5 at 126 Mb for
HLD were 100% but the hit on Chromosome 1 at 181 Mb was never included as
an independent QTL in the multilocus analysis, which indicate this method may be
useful for prioritization of GWAS hits.

The simulated precision analysis showed that a GWAS hit in this population with
a large effect, e.g. as large as the effect of the HDL hit on chromosome 1, can be
localized within 1.34 Mb of the greatest association peak. This approach could be
expanded to a range of effect sizes in any genotyped population sample including
human GWA studies.

This study demonstrates that theGWAanalysis employed here can be successfully
applied to outbred mice populations to identify genetic variants underlying complex
traits.

4 Summary

Omics technology and genomics data have proven to be powerful tools in drug
development. Complexity of the biology, technology and high dimensionality of
omics data require extensive attention on novel analytical methodology develop-
ment. Using an example in GWAS, it can be shown that simulation-based method
offers many advantages in regards to prioritizing multiple GWAS hits, determina-
tion of genome wide threshold considering population structure, and estimation of
precision of GWAS hits. With whole-genome sequencing becoming a new norm for
genotyping, transcriptome profiling and many other genomic quantification applica-
tions, additional challenges associated with handling data quality control, interaction
modeling and integration of multiple types of biomarkers will manifold more com-
plex. With collective efforts from the statistical and other analytical communities,
significant progresses have been made and will greatly facilitate using these omics
information to elucidate disease mechanisms.
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A Simulation Study Comparing SNP
Based Prediction Models of Drug
Response

Wencan Zhang, Pingye Zhang, Feng Gao, Yonghong Zhu and Ray Liu

Abstract Lack of replication on findings and missing heritability are two of the
major challenges in Pharmacogenetics (PGx) studies. Recently developed statistical
methods for genome-wide association studies offer greater power both to identify
relevant genetic markers and to predict drug response or phenotype based on these
markers.However, the relative performance of thesemethods has not been thoroughly
studied. Here, we present several simulations to compare the performance of these
analysis methods. In our first simulation, we compared five different approaches:
Elastic Net (EN), Genome-wide Association Study (GWAS)+EN, Principal Compo-
nent Regression (PCR), Random Forest (RF) and Support Vector Machine (SVM).
The results showed that EN has the smallest test mean squared error (MSE) and the
highest portion of causal SNPs among identified SNPs. In the second simulation,
we compared three approaches, GWAS+EN, GWAS+RF and GWAS+SVM. The
GWAS+RF has the smallest test MSE and the highest causal percent. In the third
simulation study, we compared two cross validation procedures: GWAS+EN versus
modified learn and confirm cross validation GWAS+EN. The latter approach demon-
strated better prediction accuracy at the expense of greatly increased computational
time.
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1 Introduction

Over the last decade, many clinically important single nucleotide polymorphisms
(SNPs) and SNP-harboring genomic regions have been identified by Genome-Wide
Association Studies (GWAS). These variants may be used as biomarkers predic-
tive of disease susceptibility or treatment response, which can support both clinical
decision making and drug development [1]. However, non-reproducible findings and
missing heritability [2–9] are two of the major barriers to the application of pharma-
cogenomics findings in clinical practice. These problems exist because of the large
number of SNPs in the genome that are not associated with the outcome. In addition,
common diseases usually involve many SNPs with a small effect size at the single
SNP level.

Recent advances in statistical methodology have improved the power to identify
relevant SNPs and predict the outcome for a patient based on their SNPs. These
methods include techniques frommachine learning, such as random forests and sup-
port vector machines [10–18]. For example, Cosgun et al. [11] applied three machine
learning approaches: Random Forest Regression (RFR), Boosted Regression Tree
(BRT) and Support Vector Regression (SVR) to the prediction of warfarin mainte-
nance dose in a cohort of African Americans [11]. They showed that even though
all three methods achieved better performance than the previously published reports,
RFR had the best accuracy.

Building a predictive model from genomic SNP data usually involves two steps.
The first step, called feature selection, is to rank individual SNPs by their association
with the outcome of interest and select the top SNPs. The ranking is usually done
by fitting a simple logistic regression model or performing a trend test for a binary
response, such as response/non-response to a drug treatment or presence/absence
of an adverse event. The ranking can also be determined by fitting a generalized
liner model for a continuous response, such as change from baseline for an efficacy
measurement. The second step is to build a predictive model based on the selected
SNPs [10]. In some cases, the method for building the predictive model performs
feature selection as part of the fitting process (e.g. with elastic nets). With such fitting
procedures, it may be possible to omit the prior feature selection step, and instead
perform the analysis in a single step (e.g. a 1-step procedure).

Innovations in statistical procedures and methodologies could be helpful to
understand and meet those challenges in predictive model building. The objectives
of the current study are to compare these new methods. To do so, we developed
three different simulations. In the first simulation, we compared five approaches:
1-step Elastic Net (EN), 2-step genome-wide association study (GWAS)+EN, 1-step
Principal Component Regression (PCR), 1-step Random Forest (RF) and 1-step Sup-
port Vector Machine (SVM). For the second simulation, we compared three 2-step
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procedures, GWAS+EN, GWAS+RF and GWAS+SVM. In the third simulation, we
compared two cross validation approaches: GWAS+EN and a modified learn and
confirm cross validated GWAS+EN (i.e. Modified CV GWAS+EN).

2 Materials and Methods

2.1 Introduction to the Statistical Methods

2.1.1 Univariate Association Analysis

For all 2-step approaches used in this study, the first step was a univariate linear asso-
ciation analysis to select the top SNPs in Genome-wide association study (GWAS).
For each SNP, we fit the model

yi = βxi + εi

Here, yi is the observed patient outcome for the ith patient, β is the coefficient
for the SNP, and xi is copy number of the SNP (0, 1, or 2) in the ith patient. εi is a
normally distributed error term with mean 0. The null hypothesis was H0: β = 0. We
order SNPs by their P-Values and selected SNPs lower than a specified genome-wide
significance level of approximate P-value threshold of 5 × 10(−8).

2.1.2 Elastic Net (EN)

In the fitting of linear or logistic regression models, the elastic net is a reg-
ularized regression method that linearly combines the L1 and L2 penalties of
the lasso and ridge methods [19]. The decorrelation step leads to grouping effect
and better prediction accuracy [19]. In addition, the decorrelation allows the fitting
procedure to succeed even the number of SNPs (M) is greater than the number of
patients (N).

We used EN in our simulations and the hyper-parameters associated with L1 and
L2 penalties were trained using a five-fold cross validation external to the predictive
model building process to avoid potential bias in estimated test errors [20]. In the
1-step approach, we directly applied EN to all the SNPs to build the predictivemodel.
EN was used in both the one and two step simulations.

2.1.3 Random Forest (RF)

The Random Forest is a group of trees based on bootstrapped datasets [21]. We used
the RF method in both the one and two step simulations. The out of bag (OOB) error
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for each tree was computed based on samples not used in the bootstrapped dataset.
First, we generated a variable importance list for all SNPs. We then iteratively fit the
data with RF, each time building a new forest after discarding the lowest 30% of the
SNPs used in the previous iteration. OOB error was computed for each iteration. Our
final prediction model was the one with the smallest number of SNPs whose OOB
error was within 1 standard error of the smallest OOB error of all forests.

2.1.4 Principal Component Regression (PCR)

Principal components regression (PCR) uses principal components analysis (PCA)
to decompose the independent (x) variables into an orthogonal basis (the principal
components), and select a subset of those components as the variables to predicty
[22]. We only used PCR in an one step analysis in the first simulation. Here, the
principal components (PC) were linear combinations of the SNPs. The principal
components can be ranked by the amount of variance in the SNPs that each principal
component explains. Only the top 3000 SNPs ranked by p-value were use are in the
PCR method. In the one step PCR approach, we applied PCA on all M SNPs and
pick the top k PCs. We then used the k PCs for prediction.

2.1.5 Support Vector Machine (SVM)

In machine learning, support vector machines (SVMs) are supervised learning mod-
els used for classification and regression analysis [23].As part of thefitting procedure,
SVM assigns a weight to each feature (which in our case were SNPs). We used a
linear SVM to fit a predictive model for the patient outcomes. We computed the
weight for each SNP and ordered the SNPs by the weight. We iteratively fit a SVM,
each time discarding the lowest 10% of the SNPs used in the previous iteration. A
5-fold cross validation (CV) was used to get a CV error for each iteration. The final
model chosen was the one with the smallest number of SNPs whose CV error was
within 1 standard error of the smallest CV error of all SVMs. The SVM was used in
both one and two step simulations.

2.1.6 Cross Validation

A cross validation procedure was used in our simulation. In the model building
process, we have one sample of individuals (training sample) to “learn” the prediction
model. We can use another independent sample of individuals (testing sample) to
evaluate how well the prediction power (test error) is for our prediction model. Cross
validation (CV) can be used to estimate the test error using the training sample. It’s
just a technique to assess the prediction performance, we still use the entire training
sample to train your prediction model and we do not waste any data.
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Fig. 1 Standard cross validation flow chart

A fivefold cross validation has been used in all simulations in this study. In our
first and second simulations, we had following cross validation chart (Fig. 1):

2.2 Simulation One: One and Two Step Comparisons

In our first simulation study, we compared five approaches: 1-step elastic net (EN),
2-step genome-wide association study (GWAS)+EN, 1-step principal component
regression (PCR), 1-step random forest (RF) and 1-step support vector machine
(SVM). In all 1-step approaches, the EN, PCR, RF and SVM were directly used for
both feature selection and predictive model building with all SNP variants.

2.2.1 Settings for Simulation One

For our first simulation, we used real SNP data from chromosome 1 from 535 patients
(fromaTakeda clinical studywith PGx samples), asmeasured by the IlluminaHuman
Omni5Exome array. This dataset contained 9,968 SNPs after QC. We randomly
selected 5SNPs to be causal variants andused them to generate a simulated phenotype
y:

y = β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + e
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e ∼ N(0, σ 2)

Since the simulation did not modify the SNP data, the original LD structure was
maintained. The minor allele frequency (MAF) for the causal variants was 5, 7, 8, 9
and 16%. The coefficients for causal variants were set to 0.5, 0.75, 1, 1.25, and 1.5
and the variance of the noise term was set so that together the 5 associated variants
together explained 20% of the total variance in y. Two hundred fifty such datasets
were simulated and for each replicated dataset, 300 patients were randomly selected
for training sample and the other 235 patients for testing sample.

The top 100 SNPs found by GWAS were used in the GWAS+EN analysis. For
PCR, the top 25 PCs were used, which accounted for more than 99% of the total orig-
inal variance. Five-fold CV was used to estimate the test error across 250 simulated
datasets.

2.3 Simulation Two: 2-Step Strategy Comparisons

The second simulation compared three procedures, GWAS+EN, GWAS+RF and
GWAS+SVM. The following settings were used.

2.3.1 Settings for Simulation Two and Simulation Three

Simulations two and three used the same model as above to generate y. However,
in this case, the SNP values were simulated as well. In each replicated dataset, the
number of total genotypedSNPs (M)was set to 10,000. The number of causal variants
(m) was set to 5, all with MAF = 0.165. The coefficients for causal variants were set
to 0.5, 0.75, 1, 1.25, and 1.5. As before, the variance of the noise term was set so that
together, the SNPs explained 20% of the total variance. The remaining null markers
were generated with MAF following a uniform distribution U(0.1, 0.4). The training
sample size and testing sample size were both set to be 300. The top 100 SNPs found
by GWAS were used in the two step methods. We selected the top 10 PCs for PCR.
As before, we generated 250 simulated data sets and used 5 fold CV to estimate the
test error. These settings were used in both simulations two and three.

2.4 Simulation Three: Additional Cross Validation
Considerations

Amore sophisticated “learn and confirm” strategywas compared in simulation three.
The purpose is finding a better way to conduct cross validation by having an extra
validation (confirm) on the top SNPs already identified from the first step GWAS



A Simulation Study Comparing SNP Based Prediction … 333

Fig. 2 Modified cross validation flow chart

(learn), before a second step EN on model building. We considered two cross val-
idation approaches. 1. GWAS+EN (as shown in the Fig. 1) and 2. A modified CV
GWAS+EN. We used cross validation along with GWAS to stable the feature selec-
tion for the top variants (Fig. 2).

3 Results and Discussion

3.1 Results and Discussion for Simulation One

As shown in Table 1, the comparison of the five approaches identified that the 1-
step EN had the smallest test MSE (4.49) and the highest percent associated with
the causal variants (0.14). However it also came up with a relatively higher training
error (3.51). SVM had the highest sensitivity (0.74) and the smallest training error
(0.04). Random forest approach had the second smallest testMSE (4.78). In addition,
it had the second highest causal % (0.09). The 2-step approach (GWAS+CN) had
the second highest sensitivity (0.64). The training error was biasedly down warded
(underestimated) for SVM (0.04).

In Simulation One, with manageable number of SNP variants (<10,000) and sam-
ple size (535), one step methods, especially the EN and RF showed some advantages
over the rest of the other methods. When the phenotype-genotype model is gener-
ated by a linear model: EN and RF had better prediction accuracy than GWAS+EN.
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Table 1 Results of
simulation one

Approaches Test MSE Sensitivity Causal percent

EN 4.49 0.61 0.14

GWAS+EN 5.55 0.64 0.04

PCR 5.29 NA NA

RF 4.78 0.51 0.09

SVM 5.41 0.74 0.01

Test MSE: mean squared error on testing sample
Sensitivity: number of causal SNPs in final set/number of causal
SNPs
Causal Percent: number of causal SNPs in final set/number of
selected SNPs in final set

GWAS+EN approach may preferentially select in associated variants with the price
of bringingmore noise thanEN. The training errorwas biasedly downwarded (under-
estimated) for SVM. The cross validation error was a good estimate of the true test
error.

Cosgun et al. [11] applied three machine learning approaches: Random Forest
Regression (RFR), Boosted Regression Tree (BRT) and Support Vector Regression
(SVR) to the prediction of warfarin maintenance dose in a cohort of African Amer-
icans [11] and found R2 between the predicted and actual square root of warfarin
dose in this model was on average 66.4% for RFR, 57.8% for SVR and 56.9% for
BRT. Thus RFR had the best accuracy. Our results were consistent with Cosgun’s
study and had confirmed that RF is one of the better methods in prediction model
building.

3.2 Results and Discussion for Simulation Two

Table 2 shown the results from the second simulation. GWAS+Random Forest gives
the best prediction accuracy among all 2-step strategies. GWAS+Random Forest
tends to select SNPs with higher accuracy than the others with the smallest test MSE
(7.51) and causal % (0.09). This results again confirmed findings from Cosgun et al.
[11] and even in the 2-stepmodel building procedure, GWAS+RFhad better accuracy
than other methods. On the other hand, the GWAS+EN had the highest sensitivity
(0.65).

3.3 Results and Discussion on Simulation Three

The results of three procedure comparisons GWAS+EN and Modified CV
GWAS+EN are shown in Table 3. The results showed that the Modified CV
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Table 2 Results of
simulation two on two stage
approaches

Procedure Test MSE Sensitivity Causal percent

GWAS+EN 8.78 0.65 0.04

GWAS+RF 7.51 0.52 0.09

GWAS+SVM 10.02 0.48 0.05

Test MSE: mean squared error on testing sample
Sensitivity: number of causal SNPs in final set/number of causal
SNPs
Causal Percent: number of causal SNPs in final set/number of
selected SNPs in final set

Table 3 Results of
simulation three on different
cross validation
considerations

Procedure Test MSE Sensitivity Causal percent

GWAS+EN 8.79 0.66 0.04

Modified CV
GWAS+EN

8.12 0.51 0.04

Test MSE: mean squared error on testing sample
Sensitivity: number of causal SNPs in final set/number of causal
SNPs
Causal Percent: number of causal SNPs in final set/number of
selected SNPs in final set

GWAS+EN have better prediction accuracy than GWAS+EN (MSE of 8.12 vs. 8.79),
andmodest training error aswell (3.1 vs. 1.42)).Nevertheless, it camewithmore com-
putational burden. GWAS+EN had higher sensitivity thanModified CVGWAS+EN
(0.66 vs. 0.51).

The GWAS+EN procedure was a standard one (as shown in the Fig. 1). The
difference for the Modified CV GWAS+EN was that we used a “learn and confirm”
cross validation procedure along with GWAS to stable the feature selection for the
top variants (Fig. 2). The “learn and confirm” procedure was with an additional
confirmation step on the selected top ranked SNPs in a different data set before
building up the models. This strategy would be very similar to the model building
procedure by Shigemizu et al. [12] with real type 2 diabetes data [12], in which an
extra validation on the top identified SNPs was implemented before predictive model
building. We recommend this procedure as it came with higher accuracy and gave
additional stability on the SNPs for the predictive model building.

4 Conclusions

In our simulation of genotype-phenotype association:

1. One step EN showed better prediction accuracy than GWAS+EN.
2. GWAS+EN identified more total causal SNPs than EN, but the portion of causal

SNPs among the identified SNPs was lower.
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3. GWAS+RF gave the highest prediction accuracy among all two-step strategies.
4. Modified CVGWAS+EN (learn and confirm) had better prediction accuracy than

GWAS+EN, with the burden of extra computational cost.
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